WorldWideScience

Sample records for biological effects

  1. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  2. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  3. Tritium biological effects and perspective of the biological study

    International Nuclear Information System (INIS)

    Komatsu, Kenshi

    1998-01-01

    Since tritium is an emitter of weak β-rays (5.7keV) and is able to bind to DNA, i.e., the most important genome component, the biological effects should be expected to be more profound than that of X-rays and γ-rays. When carcinogenesis, genetical effects and the detriments for fetus and embryo were used as a biological endpoint, most of tritium RBE (relative biological effectiveness) ranged from 1 to 2. The tritium risk in man could be calculated from these RBEs and γ-ray risk for human exposure, which are obtained mainly from the data on Atomic Bomb survivors. However, the exposure modality from environmental tritium should be a chronic irradiation with ultra low dose rate or a fractionated irradiation. We must estimate the tritium effect in man based on biological experiments alone, due to lack of such epidemiological data. Low dose rate experiment should be always accompanied by the statistical problem of data, since their biological effects are fairy low, and they should involve a possible repair system, such as adaptive response (or hormesis effect) and 'Kada effect' observed in bacteria. Here we discuss future works for the tritium assessment in man, such as (1) developing a high radiation sensitive assay system with rodent hybrid cells containing a single human chromosome and also (2) study on mammal DNA repair at molecular levels using a radiosensitive hereditary disease, Nijmegen Breakage Syndrome. (author)

  4. Biological effects of particle radiation

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko

    1988-01-01

    Conventional radiations such as photons, gamma rays or electrons show several physical or biological disadvantages to bring tumors to cure, therefore, more and more attentions is being paid to new modalitie such as fast neutrons, protons, negative pions and heavy ions, which are expected to overcome some of the defects of the conventional radiations. Except for fast neutrons, these particle radiations show excellet physical dose localization in tissue, moreover, in terms of biological effects, they demonstrate several features compared to conventional radiations, namely low oxygen enhancement ratio, high value of relative biological effectiveness, smaller cellular recovery, larger therapeutic gain factor and less cell cycle dependency in radiation sensitivity. In present paper the biological effects of particle radiations are shown comparing to the effects of conventional radiations. (author)

  5. The biological effectiveness of antiproton irradiation

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde

    2006-01-01

    ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose...... and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which...... has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest...

  6. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  7. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  8. Biological radiation effects

    International Nuclear Information System (INIS)

    Kiefer, J.

    1989-01-01

    The book covers all aspects of biological radiation effects. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects)

  9. The biological effectiveness of antiproton irradiation

    International Nuclear Information System (INIS)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde; Beyer, Gerd; Blackmore, Ewart; DeMarco, John J.; Doser, Michael; Durand, Ralph E.; Hartley, Oliver; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Moller, Soren Pape; Petersen, Jorgen; Skarsgard, Lloyd D.; Smathers, James B.; Solberg, Timothy D.; Uggerhoj, Ulrik I.; Vranjes, Sanja; Withers, H. Rodney; Wong, Michelle; Wouters, Bradly G.

    2006-01-01

    Background and purpose: Antiprotons travel through tissue in a manner similar to that for protons until they reach the end of their range where they annihilate and deposit additional energy. This makes them potentially interesting for radiotherapy. The aim of this study was to conduct the first ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 6 Co γ-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which compares the response in a minimally spread out Bragg peak (SOBP) to that in the plateau as a function of particle fluence. This value was ∼3.75 times larger for antiprotons than for protons. This increase arises due to the increased dose deposited in the Bragg peak by annihilation and because this dose has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest antiprotons warrant further investigation

  10. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  11. Biological Effects of Neutron and Proton Irradiations. Vol. II. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    1964-01-01

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  12. Biological effects of tritium and its behavior in the body. Ratio of biological effects (RBE)

    International Nuclear Information System (INIS)

    Takeda, Hiroshi

    1997-01-01

    Biological effects of radiation is known to depend not only on the radiation energy absorbed in the cells and the tissues of an organism, but also on ionization density. RBE, a biological effects ratio is used to correct the difference in absorbed dose due to the kind of nuclide. Determination of RBE has been carried out with end points of various biological effects as indicators for characterization of tritium effects. Recently, the tritium RBE was estimated from the indicators such as carcinogenesis, gene abnormalities, teratogenesis and gonadal abnormalities. The RBE values for HTO and 3 H-thymidine were in the range of 0.7-4.5 and 0.9-5.9. The varieties in RBE values were thought to be caused by the differences in the species or cell lines used, those in end points such as cell death, induction of mutagenesis and those in the kind of radiation as the control as well as the dose rate. Thus, there were various factors mediating RBE. (M.N.)

  13. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  14. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  15. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  16. Quantification of biologically effective environmental UV irradiance

    Science.gov (United States)

    Horneck, G.

    To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance: (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb; (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve; and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.

  17. Magnetic resonance: safety measures and biological effects

    International Nuclear Information System (INIS)

    Gordillo, I.; Lafuente, J.; Fernandez, C.; Barbero, M.J.; Cascon, E.

    1997-01-01

    The biological effects of electromagnetic fields is currently a subject of great controversy. For this reason, magnetic resonance imaging (MRI) and spectroscopy are constantly under investigation. The source of the risk in MRI is associated with the three types of electromagnetic radiation to which the patient is exposed: the static magnetic field, variable (gradient) magnetic fields and radiofrequency fields. Each is capable of producing significant biological effects when employed at sufficient intensity. Patients exposed to risk sources are those situated within the lines of force of the magnetic field, ellipsoid lines that are arranged around the magnet, representing the strength of the surrounding field. To date, at the intensity normally utilized in MRI(<2T) and respecting the field limit recommendations established by the US Food and Drug Administration (FDA) for clinical use of this technique no adverse secondary biological effects have been reported. The known biological effects and other possible secondary effects are reviewed, and the recommended safety measures are discussed. (Author)

  18. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  19. Estimation of Biological Effects of Tritium.

    Science.gov (United States)

    Umata, Toshiyuki

    2017-01-01

    Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.

  20. The relative biological effectiveness of antiprotons

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Alsner, Jan; Bassler, Niels

    2016-01-01

    Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase of the re......Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase...... of the relative biological effectiveness (RBE) of antiprotons near the end of range. We have performed the first-ever direct measurement of the RBE of antiprotons both at rest and in flight. Materials and methods: Experimental data were generated on the RBE of an antiproton beam entering a tissue-like target...

  1. Lunar biological effects and the magnetosphere.

    Science.gov (United States)

    Bevington, Michael

    2015-12-01

    The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Biological effectiveness of neutrons: Research needs

    International Nuclear Information System (INIS)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy

  3. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  4. Biological effects of hyperthermia

    International Nuclear Information System (INIS)

    Okumura, Hiroshi

    1980-01-01

    Biological effects of hyperthermia and application of hyperthermia to cancer therapy were outlined. As to independent effects of hyperthermia, heat sensitivity of cancer cells, targets of hyperthermia, thermal tolerance of cancer cells, effects of pH on hyperthermic cell survival, effects of hyperthermia on normal tissues, and possibility of clinical application of hyperthermia were described. Combined effect of hyperthermia and x-irradiation to enhance radiosensitivity of cancer cells, its mechanism, effects of oxygen on cancer cells treated with hyperthermia and irradiation, and therapeutic ratio of combined hyperthermia and irradiation were also described. Finally, sensitizers were mentioned. (Tsunoda, M.)

  5. Biological effect of radionuclides on plants

    International Nuclear Information System (INIS)

    Prister, B.S.; Khal'chenko, V.A.; Polyakova, V.Y.; Shevchenko, V.A.; Shejn, G.P.; Aleksakhin, R.M.

    1979-01-01

    Stated are dosimetry principles and given is an analysis of biological radionuclide effect on plants in aerial and root intakes. A comparative barley radiosensitivity characteristic depending on plant development phases during irradiation is given using LD 50 criteria. Considered is a possibility for using generalized bioinformation parameters as sensitive indications for estimating biological effects due to the influence of low radiation doses. On the grounds of data obtained generalization are forecasted probable losses of crops when getting radionuclides into plants during various vegetation periods

  6. Biological effects of nuclear weapons

    International Nuclear Information System (INIS)

    Frischauf, H.

    1983-01-01

    Prompt and delayed biological effects of nuclear weapons are discussed. The response to excess pressure on man is estimated, the acute radiation syndrome caused by different radiation doses and cancerogenous and genetic effects are described. Medical care after a nuclear explosion would be difficult and imperfect. (M.J.)

  7. Bone effects of biologic drugs in rheumatoid arthritis.

    Science.gov (United States)

    Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo

    2013-01-01

    Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.

  8. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  9. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  10. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  11. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  12. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...... measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current...

  13. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  14. [Side effects of biologic therapies in psoriasis].

    Science.gov (United States)

    Altenburg, A; Augustin, M; Zouboulis, C C

    2018-04-01

    The introduction of biologics has revolutionized the treatment of moderate to severe plaque psoriasis. Due to the continuous expansion of biological therapies for psoriasis, it is particularly important to acknowledge efficacy and safety of the compounds not only in clinical trials but also in long-term registry-based observational studies. Typical side effects and significant risks of antipsoriatic biologic therapies considering psoriatic control groups are presented. A selective literature search was conducted in PubMed and long-term safety studies of the psoriasis registries PsoBest, PSOLAR and BADBIR were evaluated. To assess the long-term safety of biologics, the evaluation of the course of large patient cohorts in long-term registries is of particular medical importance. Newer biologic drugs seem to exhibit a better safety profile than older ones.

  15. Relative biological efficiency of 592 MeV protons. Analysis of the biological effect of secondary radiation

    International Nuclear Information System (INIS)

    Legeay, G.; Baarli, J.

    1968-01-01

    The relative biological efficiency (RBE) of high energy protons is of importance because of their effects in the field of radioprotection around large accelerators and during space-flights. The nature of the interactions between 592 MeV protons and biological tissues makes it necessary to take into consideration the contribution of secondary radiation to the biological effect. Since it is not possible to obtain from a synchrotron a beam having a sufficiently large cross-section to irradiate large animals, one has to resort to certain devices concerning the mode of exposure when small laboratory animals are used. By irradiating rats individually and in groups, and by using the lethal test as a function of time, the authors show that the value of the RBE is different for animals of the same species having the same biological parameters. Thus there appears an increase in the biological effect due to secondary radiation produced in nuclear cascades which develop in a large volume, for example that of a human being. (author) [fr

  16. Modulation of mutagen-induced biological effects by inhibitors of DNA repair

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Mullenders, L.F.H.; Zwanenburg, T.S.B.

    1986-01-01

    When lesions are induced in the DNA by mutagenic agents, they are subjected to cellular repair. Unrepaired and misrepaired lesions lead to biological effects, such as cell killing, point mutations and chromosomal alterations (aberrations and sister chromatid exchanges - SCEs). It is very difficult to directly correlate any particular type of lesion to a specific biological effect. However, in specific cases, this has been done. For example, short wave UV induced biological effects (cell killing, chromosomal alterations) result predominantly from induced cyclobutane dimers and by photoreactivation experiments, one can demonstrate that with the removal of dimers all types biological effects are diminished. In cases where many types of lesions are considered responsible for the observed biological effects other strategies have been employed to identify the possible lesion. The frequencies of induced chromosomal alterations and point mutations increase with the dose of the mutagen employed and an inhibition of DNA repair following treatment with the mutagen. Prevention of the cells from dividing following mutagen treatment allows them to repair premutational damage, thus reducing the biological effects induced. By comprehensive studies involving quantification of primary DNA lesions, their repair and biological effects will enable us to understand to some extent the complex processes involved in the manifestation of specific biological effects that follow the treatment of cells with mutagenic carcinogens

  17. Distinguishing between "function" and "effect" in genome biology.

    Science.gov (United States)

    Doolittle, W Ford; Brunet, Tyler D P; Linquist, Stefan; Gregory, T Ryan

    2014-05-09

    Much confusion in genome biology results from conflation of possible meanings of the word "function." We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. The Biological Effects of Bilirubin Photoisomers

    Science.gov (United States)

    Jasprova, Jana; Dal Ben, Matteo; Vianello, Eleonora; Goncharova, Iryna; Urbanova, Marie; Vyroubalova, Karolina; Gazzin, Silvia; Tiribelli, Claudio; Sticha, Martin; Cerna, Marcela; Vitek, Libor

    2016-01-01

    Although phototherapy was introduced as early as 1950’s, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells. PMID:26829016

  19. Biological effects of heavy particles

    International Nuclear Information System (INIS)

    Sabatier, L.; Martins, B.; Dutrillaux, B.

    1991-01-01

    The usual definitions of biological dose and biological dosimetry do not fit in case of particles with high linear energy transfer (LET). The dose corresponds to an average value which is not representative of the highly localized energy transfer due to heavy ions. Fortunately, up to now, a biological dosimetry following an exposure to high LET particles is necessary only for cosmonauts. In radiotherapy applications, one exactly knows the nature and energy of incident particle beams. The quality requirements for a good biodosimeter include reliable relation between dose and effect, weak sensitivity to individual variations, reliability and stability of acquired informations against the time delay between exposure and measurements. Nothing is better than the human lymphocyte to be used for measurements that fulfil these requirements. In the case of a manned spaceship, the irradiation dose corresponds to a wide range of radiation (protons, neutrons, heavy ions), and making a dosimetry as well as defining it are of current concern. As yet, there exist two possible definitions, which reduce the dose either to a proton or to a neutron equivalent one. However, such an approximation is not a faithful representation of the irradiation effects and in particular, the long-term effects may be quite different. In the future, it is reasonable to expect an evolution towards technics that enable identifying irradiated cells and quantifying precisely their radiation damage in order to reconstruct the spectrum of particles received by a given cosmonaut in a given time. Let us emphasize that the radiation hazards due to a short stay in space are quite minor, but in the case of a travel to Mars, they cannot be neglected [fr

  20. Biological isotopy. Introduction to the isotopic effects and to their applications in biology

    International Nuclear Information System (INIS)

    Tcherkez, G.

    2010-01-01

    Since their discovery in the beginning of the 20. century, the study of stable isotopes has considerably developed. This domain, which remained limited in its applications until the 1990's, has become particularly important thereafter thanks to its practical applications and in particular to its economical impacts. Many techniques used in fraud control, in drugs use control, in selection of high-yield plants etc are based on isotopic abundance measurements. This reference book gives a synthesis of our actual knowledge on the use of stable isotopes and of isotope fractionation in biology. It presents the basic notions of isotopic biochemistry and explains the origin of the isotopic effects. The application principles of these effects to metabolism, to organisms physiology, to environmental biology etc are explained and detailed using examples and exercises. The first chapters present the basic knowledge which defines, from a mathematical point-of-view, the isotopic effects of chemical reactions or of physical processes taking place in biology. The measurements principle of natural isotopes abundance is then synthesised. Finally, all these notions are applied at different scales: enzymes, physiology, metabolism, environment, ecosystems and fraud crackdown. (J.S.)

  1. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-05-01

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  2. Influence of the 192Ir source decay on biological effect

    International Nuclear Information System (INIS)

    Wang Shunbao; Feng Ningyuan; Niu Wenzhe; Yang Yuhui; Guo Lei

    1994-01-01

    Biological effect of the 192 Ir high activity source on LA 795 tumor of mice and HCT-8 cells have been investigated when decay of the source power from 340.4 GBq to 81.4 GBq no marked difference was found between the two cell survival curves of HCT-8 cells and both of them compared with that of the X-ray irradiation the value of relative biological effect (0.1 survival) was 0.43. On the experiment of tumor LA 795 of mice, when the source power was 293.3 GBq and 96.2 GBq, no different biological effect can be seen between the two series of figures. The relative biological effect was 0.55-0.60 (tumor growth delay) comparing with those of X-ray irradiation

  3. [Biological effects of non-ionizing electromagnetic radiation].

    Science.gov (United States)

    Fedorowski, A; Steciwko, A

    1998-01-01

    Since the mid 1970's, when Adey discovered that extremely-low-frequency electromagnetic field (ELF EMF) may affect the calcium ions efflux from various cells, bioeffects of non-ionizing radiation (NIR) have become the subject of growing interest and numerous research projects. At present, the fact that NIR exerts both stimulatory and inhibitory effects on different physiological cellular parameters is rather unquestionable. At the same time, some epidemiological studies suggest that exposure to EMF is potentially harmful even if its intensity is very low. It has been proved that thermal factors are not responsible for these effects, therefore nowadays, they are called 'non-thermal effects'. Our paper deals with three different aspects of biological effects of non-ionizing radiation, bioelectromagnetism, electromagnetobiology and electromagnetic bioinformation. Firstly, we describe how EMF and photons can be produced within a living cell, how biological cycles are controlled, and what are the features of endogenous electromagnetic radiation. Secondly, we discuss various facets of external EMF interactions with living matter, focusing on extremely-low-frequencies, radio- and microwaves. Possible mechanisms of these interactions are also mentioned. Finally, we present a short overview of current theories which explain how electromagnetic couplings may control an open and dissipative structure, namely the living organism. The theory of electromagnetic bioinformation seems to explain how different physiological processes are triggered and controlled, as well as how long-range interactions may possibly occur within the complex biological system. The review points out that the presented research data must be assessed very carefully since its evaluation is crucial to set the proper limits of EMF exposure, both occupational and environmental. The study of biological effects of non-ioinizing radiation may also contribute to the development of new diagnostic and therapeutic

  4. Ionising radiation - physical and biological effects

    International Nuclear Information System (INIS)

    Holter, Oe.; Ingebretsen, F.; Parr, H.

    1979-01-01

    The physics of ionising radiation is briefly presented. The effects of ionising radiation on biological cells, cell repair and radiosensitivity are briefly treated, where after the effects on man and mammals are discussed and related to radiation doses. Dose limits are briefly discussed. The genetic effects are discussed separately. Radioecology is also briefly treated and a table of radionuclides deriving from reactors, and their radiation is given. (JIW)

  5. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    David, E.

    1993-01-01

    In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de

  6. Biological effects of radiation and estimation of risk to radiation workers

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1987-01-01

    The biological effects of radiation have three stages: physical, chemical and biological. A precise mathematical description of biological effects and of one-to-one correspondence between the initial energy absorption and final effect has not been possible, because several factors are involved in biological effects and their manifestation period varies from less than one second to several years. The mechanism of biological radiation effects is outlined. The two groups of these effects are (1) immediate and (2) delayed. The main aim of radiation protection programme is to eliminate the risk of non-stochastic effects to an acceptable level. The mean annual dose for 30,000 radiation workers in India is 2.7 m Sv. Estimated risk of fatal cancer from this dose is about 50 cases of cancer per year per million workers which is well below the ICRP standard for safe occupation stipulated at fatality rate less than or equal to 100 per year per milion workers. When compared with risk in other occupations, the risk to radiation workers is much less. (M.G.B.)

  7. On the mechanism of the biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Margulis, M.A.; Margulis, I.M.

    2005-01-01

    The mechanisms of the biological effects of ionizing radiation (IR) and ultrasound (US) were considered. The current views on the nature of toxicity of IR, which is usually assigned to the formation of radicals in living tissues and to the straight-line collision of an ionizing particle with the DNA molecule, were analyzed. It was established that the amount of radicals formed in biological tissues in conditions of ultrasonically induced cavitation can be as large as that for IR; however, the biological effect of US is much softer as compared to IR. It was shown that the contribution of the indirect mechanism to the total biological effect of IR can be estimated by comparing US and IR in their chemical action; the contribution of the indirect mechanism to the biological effect of IR was found to be negligibly small. An alternative mechanism was proposed to explain the biological effect of IR. In accordance with the proposed model, IR with a high linear energy transfer (LET) value breaks through cell walls and biological membranes and causes damage to them, such that the cell can lose its regenerative capacity. Moreover, high-energy heavy ionizing particles perforate cytoplasm to form channels. Ionizing radiation with a low LET value (γ- and X-rays) causes multiple damages to biological membranes. Ionizing particles can also cause damages to membranes of mitochondria thus affecting the mechanism of cellular respiration, which will cause neoplastic diseases. The straight-line collision of an ionizing particle with a DNA molecule was found to be 5-7 orders of magnitude less probable as compared to the collision with a wall or membrane. It was shown that multiple perforations of cell walls and damages to membranes are characteristic only of ionizing particles, which have sufficiently long tracks, and do not occur upon exposure to ultrasonic waves, microwaves, UV radiation, and magnetic fields [ru

  8. Ecological aspects od electromagnetic irradiation effects of biological objects

    International Nuclear Information System (INIS)

    Volobuev, A.P.; Donnik, I.M.; Alekseenko, N.N.

    2005-01-01

    General description of electromagnetic field effects on biological objects depending on its frequency properties is stated in the paper. Basic principles of low frequency field effect (10 -1 -0 2 Hz) are detailed. General and specific regularities of biological objects response to a low frequency field on subcell, cell, and system levels were considered taking into account their functional state. (author)

  9. The biological effects of radiation

    International Nuclear Information System (INIS)

    Sykes, D.A.

    1979-01-01

    The hazards of radiations to man are briefly covered in this paper. The natural background sources of radiations are stated and their resulting doses are compared to those received voluntarily by man. The basis of how radiations cause biological damage is given and the resulting somatic effects are shown for varying magnitude of dose. Risk estimates are given for cancer induction and genetic effects are briefly discussed. Finally four case studies of radiation damage to humans are examined exemplifying the symptoms of large doses of radiations [af

  10. Physical and biological factors determining the effective proton range

    International Nuclear Information System (INIS)

    Grün, Rebecca; Friedrich, Thomas; Krämer, Michael; Scholz, Michael; Zink, Klemens; Durante, Marco; Engenhart-Cabillic, Rita

    2013-01-01

    Purpose: Proton radiotherapy is rapidly becoming a standard treatment option for cancer. However, even though experimental data show an increase of the relative biological effectiveness (RBE) with depth, particularly at the distal end of the treatment field, a generic RBE of 1.1 is currently used in proton radiotherapy. This discrepancy might affect the effective penetration depth of the proton beam and thus the dose to the surrounding tissue and organs at risk. The purpose of this study was thus to analyze the impact of a tissue and dose dependent RBE of protons on the effective range of the proton beam in comparison to the range based on a generic RBE of 1.1.Methods: Factors influencing the biologically effective proton range were systematically analyzed by means of treatment planning studies using the Local Effect Model (LEM IV) and the treatment planning software TRiP98. Special emphasis was put on the comparison of passive and active range modulation techniques.Results: Beam energy, tissue type, and dose level significantly affected the biological extension of the treatment field at the distal edge. Up to 4 mm increased penetration depth as compared to the depth based on a constant RBE of 1.1. The extension of the biologically effective range strongly depends on the initial proton energy used for the most distal layer of the field and correlates with the width of the distal penumbra. Thus, the range extension, in general, was more pronounced for passive as compared to active range modulation systems, whereas the maximum RBE was higher for active systems.Conclusions: The analysis showed that the physical characteristics of the proton beam in terms of the width of the distal penumbra have a great impact on the RBE gradient and thus also the biologically effective penetration depth of the beam

  11. Biological radiation effects and radioprotection standards

    International Nuclear Information System (INIS)

    Clerc, H.

    1991-03-01

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  12. The relative biological effectiveness of out-of-field dose

    International Nuclear Information System (INIS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)

  13. The Picture Superiority Effect and Biological Education.

    Science.gov (United States)

    Reid, D. J.

    1984-01-01

    Discusses learning behaviors where the "picture superiority effect" (PSE) seems to be most effective in biology education. Also considers research methodology and suggests a new research model which allows a more direct examination of the strategies learners use when matching up picture and text in efforts to "understand"…

  14. Evaluation of radiobiological effects in 3 distinct biological models

    International Nuclear Information System (INIS)

    Lemos, J.; Costa, P.; Cunha, L.; Metello, L.F.; Carvalho, A.P.; Vasconcelos, V.; Genesio, P.; Ponte, F.; Costa, P.S.; Crespo, P.

    2015-01-01

    Full text of publication follows. The present work aims at sharing the process of development of advanced biological models to study radiobiological effects. Recognizing several known limitations and difficulties of the current monolayer cellular models, as well as the increasing difficulties to use advanced biological models, our group has been developing advanced biological alternative models, namely three-dimensional cell cultures and a less explored animal model (the Zebra fish - Danio rerio - which allows the access to inter-generational data, while characterized by a great genetic homology towards the humans). These 3 models (monolayer cellular model, three-dimensional cell cultures and zebra fish) were externally irradiated with 100 mGy, 500 mGy or 1 Gy. The consequences of that irradiation were studied using cellular and molecular tests. Our previous experimental studies with 100 mGy external gamma irradiation of HepG2 monolayer cells showed a slight increase in the proliferation rate 24 h, 48 h and 72 h post irradiation. These results also pointed into the presence of certain bystander effects 72 h post irradiation, constituting the starting point for the need of a more accurate analysis realized with this work. At this stage, we continue focused on the acute biological effects. Obtained results, namely MTT and clonogenic assays for evaluating cellular metabolic activity and proliferation in the in vitro models, as well as proteomics for the evaluation of in vivo effects will be presented, discussed and explained. Several hypotheses will be presented and defended based on the facts previously demonstrated. This work aims at sharing the actual state and the results already available from this medium-term project, building the proof of the added value on applying these advanced models, while demonstrating the strongest and weakest points from all of them (so allowing the comparison between them and to base the subsequent choice for research groups starting

  15. Effectiveness of a biological control agent Palexorista gilvoides in ...

    African Journals Online (AJOL)

    ACSS

    Effectiveness of a biological control agent Palexorista gilvoides in controlling Gonometa podorcarpi in conifer ... gilvoides as a potential biological control agent for G. podocarpi. Field and laboratory studies further established that P. .... version for windows (SPSS, 2002). Results. Gonometa podocarpi was present in.

  16. Biological effects of transuranium elements in experimental animals

    International Nuclear Information System (INIS)

    Bair, W.J.

    1975-01-01

    Results are reported from life span studies of the biological effects of the transuranium elements ( 238 Pu, 239 Pu, 241 Am, and 242 Cm) on laboratory animals following inhalation, skin absorption, or injection in various chemical forms. The dose levels at which major biological effects have been observed in experimental animals are discussed relative to the maximum permissible lung burden of 0.016 μCi for occupational exposures. Lung cancer has been observed at dose levels equivalent to about 100 times the maximum permissible lung burden. Current experiments directed towards determining whether health effects will occur at lower levels and the mechanisms by which α emitters induce cancer are reviewed. (U.S.)

  17. The biologic effects of cigarette smoke on cancer cells.

    Science.gov (United States)

    Sobus, Samantha L; Warren, Graham W

    2014-12-01

    Smoking is one of the largest preventable risk factors for developing cancer, and continued smoking by cancer patients is associated with increased toxicity, recurrence, risk of second primary cancer, and mortality. Cigarette smoke (CS) contains thousands of chemicals, including many known carcinogens. The carcinogenic effects of CS are well established, but relatively little work has been done to evaluate the effects of CS on cancer cells. In this review of the literature, the authors demonstrate that CS induces a more malignant tumor phenotype by increasing proliferation, migration, invasion, and angiogenesis and by activating prosurvival cellular pathways. Significant work is needed to understand the biologic effect of CS on cancer biology, including the development of model systems and the identification of critical biologic mediators of CS-induced changes in cancer cell physiology. © 2014 American Cancer Society.

  18. Biological effects on the source of geoneutrinos

    DEFF Research Database (Denmark)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik Thorleif

    2013-01-01

    its bulk earth value of similar to 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine...

  19. Current research in Canada on biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1980-05-01

    A survey of current research in Canada on the biological effects of ionizing radiation has been compiled. The list of projects has been classified according to structure (organizational state of the test system) as well as according to the type of effects. Using several assumptions, ballpark estimates of expenditures on these activities have been made. Agencies funding these research activities have been tabulated and the break-down of research in government laboratories and in academic institutions has been designated. Wherever possible, comparisons have been made outlining differences or similarities that exist between the United States and Canada concerning biological radiation research. It has been concluded that relevant research in this area in Canada is inadequate. Wherever possible, strengths and weaknesses in radiation biology programs have been indicated. The most promising course for Canada to follow is to support adequately fundamental studies of the biological effects of radiation. (auth)

  20. Biological effects of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ogiu, Toshiaki; Ohmachi, Yasushi; Ishida, Yuka [National Inst. of Radiological Sciences, Chiba (JP)] [and others

    2003-03-01

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  1. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  2. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    Gabriel, C.

    1996-01-01

    The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)

  3. Studying of ion implantation effect on the biology in China

    International Nuclear Information System (INIS)

    Yu Zengliang

    1993-04-01

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  4. Physical basis for biological effect

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1987-01-01

    Absorbed dose, or particle fluence, alone, are poor predictors of the biological effectiveness of ionizing radiations. Various radiation 'quality' parameters have been proposed to account quantitatively for the differences due to type of radiation. These include LET, quality factor (Q), lineal energy, specific energy and Z 2 /β 2 . However, all of these have major shortcomings, largely because they fail to describe adequately the microscopic stochastic properties of radiation which are primarily responsible for their relative effectiveness. Most biophysical models of radiation action now agree that the biological effectiveness of radiations are to a large extent determined by their very localized spatial properties of energy deposition (perhaps DNA and associated structures) and that the probability of residual permanent cellular damage (after cellular repair) depends on the nature of this initial macromolecular damage. Common features of these models make it clear that major future advances in identifying critical physical parameters of radiations for general practical application, or to describe their fundamental mechanisms of action, require accurate knowledge of the spatial patterns of energy deposition down to distances of the order of nanometres. Therefore, adequate descriptions are required of the nature and spatial distribution of the initial charged particles and of the interaction-by-interaction structure of the ensuing charged particle tracks. Recent development and application of Monte Carlo track structure simulations have already made it possible to commence such analyses of radiobiological data. (author). 56 refs, 7 figs

  5. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    Loken, M.K.

    1983-01-01

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  6. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  7. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  8. Biological effect of nitrogen ion implantation on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Chen Qiufang; Shu Shizhen

    1997-10-01

    Dry seed of stevia were implanted by 35∼150 keV nitrogen ions with various doses. The biological effect in M 1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam energy and dose added, but there was on significant linear regression relationship between ion dose and aberration rate. The results indicated the seedling height reduced with the increasing of dose for ion beam. The biological effect of nitrogen ion beam on M 1 stevia was lower than that of γ-rays. (6 refs., 1 fig., 4 tabs.)

  9. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  10. Biological effects of ionizing radiation - changing worker attitudes

    International Nuclear Information System (INIS)

    Johnson, N.; Schenley, C.

    1989-01-01

    Training Resources and Data Exchange (TRADE) Radiation Protection Training Special Interest Group has taken an innovative approach to providing DOE contractors with radiation worker training material information. Newly-hired radiation workers may be afraid to work near radiation and long-term radiation workers may become indifferent to the biological hazard of radiation. Commercially available training material is often presented at an inappropriate technical level or in an uninteresting style. These training problems have been addressed in the DOE system through development of a training videotape and supporting material package entitled Understanding Ionizing Radiation and its Biological Effects. The training package, developed and distributed by TRADE specifically to meet the needs of DOE contractor facilities, contains the videotape and accompanying paper supporting materials designed to assist the instructor. Learning objectives, presentation suggestion for the instructor, trainee worksheets, guided discussion questions, and trainee self-evaluation sheets are included in the training package. DOE contractors have agreed that incorporating this training module into radiation worker training programs enhances the quality of the training and increase worker understanding of the biological effects of ionizing radiation

  11. Biological effects data: Fluoride and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McMechan, K.J. (ed.); Holton, R.L.; Ulbricht, R.J.; Morgan , J.B.

    1975-04-01

    The Alumax Pacific Aluminum Corporation has proposed construction of an aluminum reduction facility near Youngs Bay at Warrenton, Oregon. This report comprises one part of the final report to Alumax on a research project entitled, Physical, Chemical and Biological Studies of Youngs Bay.'' It presents data pertaining to the potential biological effects of fluoride and sulfur dioxide, two potentially hazardous plant-stack emissions, on selected aquatic species of the area. Companion volumes provide a description of the physical characteristics the geochemistry, and the aquatic animals present in Youngs Bay and adjacent ecosystems. An introductory volume provides general information and maps of the area, and summarizes the conclusions of all four studies. The data from the two phases of the experimental program are included in this report: lethal studies on the effects of selected levels of fluoride and sulfur dioxide on the survival rate of eleven Youngs Bay faunal species from four phyla, and sublethal studies on the effects of fluoride and sulfur dioxide on the rate of primary production of phytoplankton. 44 refs., 18 figs., 38 tabs.

  12. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  13. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  14. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  15. Progranulin and its biological effects in cancer.

    Science.gov (United States)

    Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura

    2017-11-07

    Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.

  16. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  17. Study of biological effect of radiation

    International Nuclear Information System (INIS)

    Li Guisheng

    1992-01-01

    The some progress on the study of biological effect for protract exposure to low dose rate radiation is reported, and it is indicated that the potential risk of this exposure for the human health and the importance of the routine monitoring of radiation dose for various nuclear installations. The potential exposure to the low dose rate radiation would attract people's extra attention

  18. Biological effective dose studies in carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.

    2008-01-01

    Cancer of cervix is the second most common cancer worldwide among women. Several treatments related protocols of radiotherapy have been followed over few decades in its treatment for evaluating the response. These physical doses varying on the basics of fractionation size, dose rate and total dose needed to be indicated as biological effective dose (BED) to rationalize these treatments. The curative potential of radiation therapy in the management of carcinoma of the cervix is greatly enhanced by the use of intracavitary brachytherapy. Successful brachytherapy requires the high radiation dose to be delivered to the tumor where as minimum radiation dose reach to surrounding normal tissue. Present study is aimed to evaluate biologically effective dose in patients receiving high dose-rate brachytherapy plus external beam radiotherapy based on tumor cell proliferation values in cancer of the cervix patients. The study includes 30 patients' data as a retrospective analysis. In addition determine extent of a dose-response relationship existing between the biological effective dose at Point A and the bladder and rectum and the clinical outcomes

  19. Biological effectiveness of high-energy protons - Target fragmentation

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Shinn, J.; Hajnal, F.

    1991-01-01

    High-energy protons traversing tissue produce local sources of high-linear-energy-transfer ions through nuclear fragmentation. The contribution of these target fragments to the biological effectiveness of high-energy protons using the cellular track model is examined. The effects of secondary ions are treated in terms of the production collision density using energy-dependent parameters from a high-energy fragmentation model. Calculations for mammalian cell cultures show that at high dose, at which intertrack effects become important, protons deliver damage similar to that produced by gamma rays, and with fragmentation the relative biological effectiveness (RBE) of protons increases moderately from unity. At low dose, where sublethal damage is unimportant, the contribution from target fragments dominates, causing the proton effectiveness to be very different from that of gamma rays with a strongly fluence-dependent RBE. At high energies, the nuclear fragmentation cross sections become independent of energy. This leads to a plateau in the proton single-particle-action cross section, below 1 keV/micron, since the target fragments dominate. 29 refs

  20. Floral biology and the effects of plant-pollinator interaction on ...

    African Journals Online (AJOL)

    Reproductive biology and patterns of plant-pollinator interaction are fundamental to gene flow, diversity and evolutionary success of plants. Consequently, we examined the magnitude of insect-plant interaction based on the dynamics of breeding systems and floral biology and their effects on pollination intensity, fruit and ...

  1. Distribution and Biological Effects of Nanoparticles in the Reproductive System.

    Science.gov (United States)

    Liu, Ying; Li, Hongxia; Xiao, Kai

    2016-01-01

    Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our

  2. THz waves: biological effects, industrial and medical

    International Nuclear Information System (INIS)

    Coutaz, J.L.; Garet, F.; Le Drean, Y.; Zhadobov, M.; Veyret, B.; Mounaix, P.; Caumes, J.P.; Gallot, G.; Gian Piero, Gallerano; Mouret, G.; Guilpin, J.C.

    2011-01-01

    Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFR) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document gathers the slides of the available presentations: 1 - introduction and general considerations about THz waves, the THz physical phenomenon among NIR (J.L. Coutaz); 2 - interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); 3 - Tera-Hertz: standards and recommendations (B. Veyret); 4 - THz spectro-imaging technique: status and perspectives (P. Mounaix); 5 - THz technology: seeing the invisible? (J.P. Caumes); 6 - Tera-Hertz: biological and medical applications (G. Gallot); 7 - Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); 8 - Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); 9 - THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); 10 - Body scanners and civil aviation security (J.C. Guilpin, presentation not available). (J.S.)

  3. Biological effects of petroleum hydrocarbons: Predictions of long-term effects and recovery

    International Nuclear Information System (INIS)

    Capuzzo, J.M.

    1990-01-01

    Biological effects of petroleum hydrocarbons on marine organisms and ecosystems are dependent on the persistence and bioavailability of specific hydrocarbons, the ability of organisms to accumulate and metabolize various hydrocarbons, the fate of metabolized products, and the interference of specific hydrocarbons with normal metabolic processes that may alter an organism's chances for survival and reproduction in the environment. In considering the long-term effects of petroleum hydrocarbons on marine ecosystems it is important to ascertain what biological effects may result in subtle ecological changes, changes in community structure and function, and possible impairment of fisheries resources. It is also important to understand which hydrocarbons persist in benthic environments and the sublethal effects that lead to reduced growth, delayed development and reduced reproductive effort, population decline and the loss of that population's function in marine communities. Only through a multi-disciplinary approach to the study of the fate, transport and effects of petroleum hydrocarbons on marine ecosystems will there be a significant improvement in the ability to predict the long-term effects of oil spills and to elucidate the mechanisms of recovery

  4. Biological effects of inhaled 144CeCl3 in beagle dogs

    International Nuclear Information System (INIS)

    Hahn, F.F.; Boecker, B.B.; Griffith, W.C.; Muggenburg, B.A.

    1997-01-01

    Data on biological effects in humans exposed briefly to high levels of external X or gamma irradiation provide the foundation of protection guidelines for low linear energy transfer (LET) radiation. Unfortunately, the extrapolation of the risk of these biological effects to humans exposed to internally deposited radionuclides is complicated by the protracted exposure and differences in local doses to organs and tissues that result from internal irradiation. Therefore, data from humans exposed to external radiation may not provide all of the information necessary to understand the long-term health effects of internally deposited, beta-particle-emitting radionuclides. Because of these uncertainties, it is important to determine the spatial and temporal distribution of radionuclides such as radiocerium in the body and the relationship of their distribution to biological effects that result from acute inhalation exposure. The radiation effects of inhaled cerium 144 were studied in beagles

  5. The biological effects of low doses of radiation: medical, biological and ecological aspects

    International Nuclear Information System (INIS)

    Gun-Aajav, T.; Ajnai, L.; Manlaijav, G.

    2007-01-01

    Full text: The results of recent studies show that low doses of radiation make many different structural and functional changes in a cell and these changes are preserved for a long time. This phenomenon is called as effects of low doses of radiation in biophysics, radiation biology and radiation medicine. The structural and functional changes depend on doses and this dependence has non-linear and bimodal behaviour. More detail, the radiation effect goes up and reaches its maximum (Low doses maximum) in low doses region, then it goes down and takes its stationary means (there is a negative effect in a few cases). With increases in doses and with further increases it goes up. It is established that low dose's maximum depends on physiological state of a biological object, radiation quality and dose rate. During the experiments another special date was established. This specialty is that many different physical and chemical factors are mutually connected and have synergetic behaviour. At present, researches are concentrating their attention on the following three directions: 1. Direct and indirect interaction of radiation's low doses: 2. Interpretation of its molecular mechanism, regulation of the positive effects and elaboration of ways o removing negative effects: 3. Application of the objective research results into practice. In conclusion the authors mention the current concepts on interpretation of low doses effect mechanism, forward their own views and emphasize the importance of considering low doses effects in researches of environmental radiation pollution, radiation medicine and radiation protection. (author)

  6. Radiolabelled substrates for studying biological effects of trace contaminants

    International Nuclear Information System (INIS)

    1975-01-01

    A programme of coordinated isotopic tracer-aided investigations of the biological side-effects of foreign chemical residues in food and agriculture, initiated in 1973, was reviewed. The current status of representative investigations from the point of view of techniques and priorities was assessed. Such investigations involved radioactive substrates for studying DNA injury and its repair; 14 C-labelled acetylcholine as substrate for measuring enzyme inhibition due to the presence of, or exposure to, anticholinesteratic contaminants; radioactive substrates as indication of side-effects in non-target organisms and of their comparative susceptibilities; radioactive substrates as indicators of persistence or biodegradability of trace contaminants of soil or water; and labelled pools for studying the biological side-effects of trace contaminants. Priorities were identified

  7. Effect of ozonation on the biological treatability of a textile mill effluent.

    Science.gov (United States)

    Karahan, O; Dulkadiroglu, H; Kabdasli, I; Sozen, S; Babuna, F Germirli; Orhon, D

    2002-12-01

    Ozonation applied prior to biological processes, has proved to be a very effective chemical treatment step mostly for colour removal when soluble dyes are used in textile finishing operations. Its impact on biological treatability however has not been fully evaluated yet. This study evaluates the effect of ozonation on the quality of wastewater from a textile mill involving bleaching and reactive dyeing of cotton and synthetic knit fabric. The effect of ozonation on COD fractionation and kinetic coefficients defining major biological processes is emphasised. The results indicate that the extent of ozone applied greatly affects the remaining organic carbon composition in the wastewater. The relative magnitude of different COD fractions varies as a function of the ozone dose. Ozonation does not however exert a measurable impact on the rate of major biological processes.

  8. Biological effects induced by low amounts of nuclear fission products

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.; Shishkin, V.F.; Khudyakova, N.V.

    1991-01-01

    The review deals with the problem of biological hazard of low radiation doses for animals and human beings taking into the danger of internal and external irradiation by nuclear fission products under conditions of enhancing anthropogenic radiation contamination of biosphere. An attention is paid to the estimation of life span carcinogenesis, genetic and delayed effects. A conclusion is made on a necessity of multiaspect investigation of biological importance of low radiation doses taking into account modifying effects of other environmental factors

  9. Biological effects of low-dose ionizing radiation exposure; Biologische Wirkungen niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst (comps.)

    2009-07-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  10. Immunomodulatory Effects of Macrolide Antibiotics - Part 1 : Biological Mechanisms

    NARCIS (Netherlands)

    Altenburg, J.; de Graaff, C. S.; van der Werf, T. S.; Boersma, W. G.

    2011-01-01

    Macrolide antibiotics are well known for their antibacterial and anti-inflammatory properties. This article provides an overview of the biological mechanisms through which macrolides exert this 'double effect'. Their antibacterial effect consists of the inhibition of bacterial protein synthesis,

  11. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  12. Assessment of the biological effects of 'strange' radiation

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Tryapitsina, G.A.; Urutskoyev, L.I.; Akleyev, A.V.

    2006-01-01

    The results from studies of the effects produced by electrical explosions of foils made from super pure materials in water point to the emergence of new chemical elements. An additional finding was the discharge of 'strange' radiation accompanying the transformation of chemical elements. However, currently, the mechanism involved in the interaction between 'strange' radiation and a substance or a biological entity remains obscure. Therefore, the aim of the present research is to investigate the biological effects of the 'strange' radiation. Pilot studies were performed at the RECOM RRC 'Kurchatov Institute' in April-May of 2004. The animals used in the experiment were female mice of C57Bl/6 line aged 80 days with body weight 16-18 g. The animals were exposed to radiation discharged during explosions of Ti foils in water and aqueous solutions. The cages with animals were placed at 1 m from the epicenter of the explosion. Explosions were carried out on the 19. (3 explosions), 20. (4 explosions) and 22. (3 explosions) of April, 2004 (explosions No1373 - No1382, respectively). The animals were assigned to 4 experimental groups comprised of 17-20 mice per group. The animals received experimental exposure within 1, 2 and 3 days of the experiment. In total, the experimental groups were exposed to 3, 7 and 10 explosions, respectively. In order to identify the biological reactions, the following parameters were estimated: number of nucleated cells in the bone marrow, number of CFU in the spleen after additional gamma-irradiation (6 Gy), cell composition of the bone marrow, the rate of erythrocytes with the different level of maturation in the bone marrow, the rate of erythrocytes with the micronuclei in the bone marrow, the reaction of bone marrow cells to additional gamma-irradiation (2 Gy), number of leucocytes in the peripheral blood, and cell composition of the peripheral blood. The following conclusions were drawn from these studies: 1. 'strange' radiation resulting

  13. Ionizing radiation biological effects and the proper protective measures against it's harmful effects

    International Nuclear Information System (INIS)

    Hhalel, A.M.

    1990-01-01

    This book intrduces a good knowledge in specifications of ionizing radiation biological effects and the proper protective measures againest harmful effectes. The book is devided in to five main sections, the first one introduces the hostorical bachground of the contributions of a number of scietists in the basic knolwledge of radiation and its biological effects. The second section deals with the physical and chemical principles of radiation the third one talks about radiation detection. While the fourth section talks (via seven chapter) about the effectes of ionizing radiation on living organisms molecules cells, tissues organs systems and the living organism the fifth section talks about the uses of radiation sources, the probability of radiation accidents, protective measures, international recommendations related to doses and safe use of ionizing radiation. (Abed Al-wali Al-ajlouni). 53 refs., 107 figs., 13 tabs

  14. BIOLOGIC AND ECONOMIC EFFECTS OF INCLUDING DIFFERENT ...

    African Journals Online (AJOL)

    The biologic and economic effects of including three agro-industrial by-products as ingredients in turkey poult diets were investigated using 48 turkey poults in a completely randomised design experiment. Diets were formulated to contain the three by-products – wheat offal, rice husk and palm kernel meal, each at 20% level ...

  15. Adverse effects of biologics: a network meta-analysis and Cochrane overview

    DEFF Research Database (Denmark)

    Singh, J. A.; Wells, G. A.; Christensen, Robin Daniel Kjersgaard

    2011-01-01

    Background Biologics are used for the treatment of rheumatoid arthritis and many other conditions. While the efficacy of biologics has been established, there is uncertainty regarding the adverse effects of this treatment. Since serious risks such as tuberculosis (TB) reactivation, serious...

  16. Third eye, the biological effects; 3. oeil, les effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-02-01

    The discovery of a third kind of photo-receptor cell in the human eye has permitted to better understand the biological effects of lighting, not only on the vision, but also on some nervous processes, like emotion, mood, stress, biological clock, etc.. This additional dimension has led the engineers of Philips Lighting company to launch a new indoor lighting concept named 'Carpe Diem'. This concept adapts both the illuminance and the color of a lighting system according to the type of work and to the expected stimulating effect. (J.S.)

  17. Nuclear energy: biological effects and environmental impact

    International Nuclear Information System (INIS)

    Boonefaes, M.

    1987-01-01

    This thesis is concerned with the large development of nuclear power plants and the recent nuclear catastrophe which has made clear how the hazards resulting from radioactivity affect public health and the environment. Environmental effects of nuclear power plants operating in normal conditions are small, but to obtain nuclear power plants of reduced radioactivity, optimization of their design, construction, operation and waste processing plays a decisive role. Biological effects of ionizing radiations and environmental impacts of Nuclear Power plants are developed [fr

  18. Biological effects of tritium

    International Nuclear Information System (INIS)

    Nieto, M.

    1985-01-01

    The aim of this project is to study the thermal effects on proliferation activity in the intestinal epithelium of the goldfish acclimated at different temperatures (stationary state). The cell division occurs only at certain phases of the circadian cycle when the proliferative activity is synchronized or trained by an environmental factor such as light-dark cycle. Another aspect of the project is the study of the biological effects, non-stochastic, on cell kinetics in animals chronically exposed to low dose rates or tritium and gamma rays from 60 CO, used as a standard radiation. The influence on the accumulated dose per cell and cycle cell in function of the duration of the cell cycle at different acclimation temperatures should be considered. To calculate the risk of tritium contamination from nuclear power plants (radiation exposure), the organic tissue-bond is of decisive importance due to the long turnover of the organic tissue-bond in organisms favouring transport of tritium to other organisms of the ecosystem and to man. (author)

  19. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  20. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    Science.gov (United States)

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  1. Electromagnetic effects - From cell biology to medicine.

    Science.gov (United States)

    Funk, Richard H W; Monsees, Thomas; Ozkucur, Nurdan

    2009-01-01

    In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.

  2. The mechanism for the primary biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Byakov, Vsevolod M; Stepanov, Sergei V

    2006-01-01

    The primary biological response of living organisms to the passage of fast charged particles is traditionally believed to be dominated by the chemical reactions of the radical products from the radiolysis of cellular water (OH, H, e aq - , O 2 - , H 2 O 2 ) and by the bioradicals that they produce (and which can also result from the direct electronic activation of biomolecules). This understanding has provided insight into how ionizing radiations affect biological systems and, most importantly, what radioprotection and radiosensibilizing effects are produced by chemical compounds introduced into an organism. However, a number of key radiobiological facts remain unexplained by the current theory, stimulating a search for other biologically active factors that may be triggered by radiation. This review examines a fact that is usually ignored in discussing the biological impact of ionizing radiation: the local increase in acidity in the water solution along the track of a charged particle. The acidity in the track is very different from its value for cellular water in a living organism. Biological processes are well-known to be highly sensitive to changes in the environmental acidity. It seems that the biological impact of ionizing radiations is dominated not by the water radiolysis products (mostly radicals) listed above but particles of a different nature, hydroxonium ions H 3 O + , where the term hydroxonium refer to protonated water molecules. This modification of the mechanism of primary radiobiological effects is in good agreement with experimental data. In particular, the extremal dependence of the relative biological efficiency (RBE) of radiations on their ionizing energy losses is accounted for in quantitative terms, as is the increase in the RBE in the relativistic energy range. (reviews of topical problems)

  3. Assessment of refinery effluents and receiving waters using biologically-based effect methods

    International Nuclear Information System (INIS)

    2012-01-01

    Within the EU it is apparent that the regulatory focus on the use of biologically-based effects methods in the assessment of refinery effluents and receiving waters has increased in the past decade. This has been reflected in a recent refinery survey which revealed an increased use of such methods for assessing the quality of refinery effluents and their receiving waters. This report provides an overview of recent techniques used for this purpose. Several case studies provided by CONCAWE member companies describe the application of biological methods to effluent discharge assessment and surface water monitoring. The case studies show that when biological methods are applied to refinery effluents and receiving waters they raise different questions compared with those obtained using physical and chemical methods. Although direct measurement of the toxicity of effluent and receiving to aquatic organisms is the most cited technique, more recent efforts include tests that also address the persistence of effluent toxicity once discharged into the receiving water. Similarly, ecological monitoring of receiving waters can identify effects of effluent inputs arising from species interactions and other secondary effects that would not always be apparent from the results of biological tests conducted on single aquatic organisms. In light of recent and proposed regulatory developments the objectives of this report are therefore to: Discuss the application of biologically-based effects methods (including ecological monitoring) to refinery discharges and receiving waters; Assess the implications of such methods for future regulation of refinery discharges; and Provide guidance on good practice that can be used by refineries and the downstream oil industry to carry out and interpret data obtained using biologically-based effects methods. While the emphasis is on the toxic effects of effluents, other properties will also be covered because of their interdependency in determining

  4. Assessment of refinery effluents and receiving waters using biologically-based effect methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    Within the EU it is apparent that the regulatory focus on the use of biologically-based effects methods in the assessment of refinery effluents and receiving waters has increased in the past decade. This has been reflected in a recent refinery survey which revealed an increased use of such methods for assessing the quality of refinery effluents and their receiving waters. This report provides an overview of recent techniques used for this purpose. Several case studies provided by CONCAWE member companies describe the application of biological methods to effluent discharge assessment and surface water monitoring. The case studies show that when biological methods are applied to refinery effluents and receiving waters they raise different questions compared with those obtained using physical and chemical methods. Although direct measurement of the toxicity of effluent and receiving to aquatic organisms is the most cited technique, more recent efforts include tests that also address the persistence of effluent toxicity once discharged into the receiving water. Similarly, ecological monitoring of receiving waters can identify effects of effluent inputs arising from species interactions and other secondary effects that would not always be apparent from the results of biological tests conducted on single aquatic organisms. In light of recent and proposed regulatory developments the objectives of this report are therefore to: Discuss the application of biologically-based effects methods (including ecological monitoring) to refinery discharges and receiving waters; Assess the implications of such methods for future regulation of refinery discharges; and Provide guidance on good practice that can be used by refineries and the downstream oil industry to carry out and interpret data obtained using biologically-based effects methods. While the emphasis is on the toxic effects of effluents, other properties will also be covered because of their interdependency in determining

  5. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  6. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    Science.gov (United States)

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  7. Study of the effects of radon in three biological systems

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Lopez, A.; Brena, M.; Rosa, M.E. De la; Villalobos P, R.

    2002-01-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  8. Oxygen effect in radiation biology: caffeine and serendipity

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    2005-01-01

    The 'hit theory' developed in 1920s to explain the actions of ionizing radiation on cells and organisms was purely physical, and its limitation was its inadequacy to address the contemporary findings such as the oxygen enhancement of radiobiological damage, and the increased radio- sensitivity of dividing compared to non-dividing cells. The textbooks written prior to 1970s did not either refer at all to oxygen as a radiosensitizer, or had mentioned it only in a passing manner; yet 'oxygen effect' was emerging as the central dogma in radiation biology. The oxygen effect in radiation biology is highly interdisciplinary encompassing atomic physics (i.e. interaction of photon with matter), radiation chemistry (formation of reactive oxygen species), molecular signalling, gene expression and genetic alterations in cells (mutation, cancer) or the cell death (apoptosis, necrosis, mitotic catastrophe, etc.). Cell death in higher organisms is now recognized as the precursor of possible error-free cell replacement repair. (author)

  9. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  10. Uranium: properties and biological effects after internal contamination

    International Nuclear Information System (INIS)

    Souidi, M.; Tissandie, E.; Racine, R.; Ben Soussan, H.; Rouas, C.; Grignard, E.; Dublineau, I.; Gourmelon, P.; Lestaevel, P.; Gueguen, Y.

    2009-01-01

    Uranium is a radionuclide present in the environment since the origin of the Earth. In addition to natural uranium, recent deposits from industrial or military activities are acknowledged. Uranium's toxicity is due to a combination of its chemical (heavy metal) and radiological properties (emission of ionizing radiations). Acute toxicity induces an important weight loss and signs of renal and cerebral impairment. Alterations of bone growth, modifications of the reproductive system and carcinogenic effects are also often seen. On the contrary, the biological effects of a chronic exposure to low doses are unwell known. However, results from different recent studies suggest that a chronic contamination with low levels of uranium induces subtle but significant levels. Indeed, an internal contamination of rats for several weeks leads to detection of uranium in many cerebral structures, in association with an alteration of short-term memory and an increase of anxiety level. Biological effects of uranium on the metabolisms of xenobiotics, steroid hormones and vitamin D were described in the liver, testis and kidneys. These recent scientific data suggest that uranium could participate to increase of health risks linked to environmental pollution. (authors)

  11. A Systematic Review of the Cost-Effectiveness of Biologics for the Treatment of Inflammatory Bowel Diseases.

    Directory of Open Access Journals (Sweden)

    Saara Huoponen

    Full Text Available Biologics are used for the treatment of inflammatory bowel diseases, Crohn´s disease and ulcerative colitis refractory to conventional treatment. In order to allocate healthcare spending efficiently, costly biologics for inflammatory bowel diseases are an important target for cost-effectiveness analyses. The aim of this study was to systemically review all published literature on the cost-effectiveness of biologics for inflammatory bowel diseases and to evaluate the methodological quality of cost-effectiveness analyses.A literature search was performed using Medline (Ovid, Cochrane Library, and SCOPUS. All cost-utility analyses comparing biologics with conventional medical treatment, another biologic treatment, placebo, or surgery for the treatment of inflammatory bowel diseases in adults were included in this review. All costs were converted to the 2014 euro. The methodological quality of the included studies was assessed by Drummond's, Philips', and the Consolidated Health Economic Evaluation Reporting Standards checklist.Altogether, 25 studies were included in the review. Among the patients refractory to conventional medical treatment, the incremental cost-effectiveness ratio ranged from dominance to 549,335 €/Quality-Adjusted Life Year compared to the incremental cost-effectiveness ratio associated with conventional medical treatment. When comparing biologics with another biologic treatment, the incremental cost-effectiveness ratio ranged from dominance to 24,012,483 €/Quality-Adjusted Life Year. A study including both direct and indirect costs produced more favorable incremental cost-effectiveness ratios than those produced by studies including only direct costs.With a threshold of 35,000 €/Quality-Adjusted Life Year, biologics seem to be cost-effective for the induction treatment of active and severe inflammatory bowel disease. Between biologics, the cost-effectiveness remains unclear.

  12. Effects of marine reserves on the reproductive biology and ...

    African Journals Online (AJOL)

    Effects of marine reserves on the reproductive biology and recruitment rates of commonly and rarely exploited limpets. ... For recruitment, we hypothesised that if recruits are attracted to adults or survive better ... AJOL African Journals Online.

  13. Bystander effect: Biological endpoints and microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, M. Ahmad [Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, 302 Rowell Building, Burlington, VT 05405 (United States) and DNA Microarray Facility, University of Vermont, Burlington, VT 05405 (United States)]. E-mail: mchaudhr@uvm.edu

    2006-05-11

    In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell

  14. Bystander effect: Biological endpoints and microarray analysis

    International Nuclear Information System (INIS)

    Chaudhry, M. Ahmad

    2006-01-01

    In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell

  15. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    Science.gov (United States)

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.

  16. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory?

    Science.gov (United States)

    Buchachenko, Anatoly

    2016-01-01

    The main source of magnetic and electromagnetic effects in biological systems is now generally accepted and demonstrated in this paper to be radical pair mechanism which implies pairwise generation of radicals in biochemical reactions. This mechanism was convincingly established for enzymatic adenosine triphosphate (ATP) and desoxynucleic acid (DNA) synthesis by using catalyzing metal ions with magnetic nuclei ((25)Mg, (43)Ca, (67)Zn) and supported by magnetic field effects on these reactions. The mechanism, is shown to function in medicine as a medical remedy or technology (trans-cranial magnetic stimulation, nuclear magnetic control of the ATP synthesis in heart muscle, the killing of cancer cells by suppression of DNA synthesis). However, the majority of magnetic effects in biology remain to be irreproducible, contradictory, and enigmatic. Three sources of such a state are shown in this paper to be: the presence of paramagnetic metal ions as a component of enzymatic site or as an impurity in an uncontrollable amount; the property of the radical pair mechanism to function at a rather high concentration of catalyzing metal ions, when at least two ions enter into the catalytic site; and the kinetic restrictions, which imply compatibility of chemical and spin dynamics in radical pair. It is important to keep in mind these factors to properly understand and predict magnetic effects in magneto-biology and biology itself and deliberately use them in medicine. © 2015 Wiley Periodicals, Inc.

  17. Estimation of biological effects of phytocenosis radioactive contamination

    International Nuclear Information System (INIS)

    Suvorova, L.I.; Smirnov, E.G.; Shejn, G.N.

    1990-01-01

    Biological effects of argicultural field contamination in the Chernobyl NPP 30-km zone in the period of 1986-1988 are studies. Depth of some kings of herbs is noted in spite of natural phytocenosis high stability. It is revealed that increased mutageneous effect is observed for seeds from phytocenosis subjected to radiation factor effects. The genetic radiation effects at cell level will be observed in the nearest years as the radiation factor will not disappear in the 30-km zone (chronic irradiation of plants in the dose range from 0.1x10 -4 up to 0.1 Gy/day). These injuries visually will not effect greatly on natural populations

  18. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  19. Delayed biological effects of incorporated sulfur-35 in combination with IOS-4876

    International Nuclear Information System (INIS)

    Rusanova, O.V.

    1990-01-01

    Comparative evaluation of some delayed effects of sulfur-35 single administration to mongree white rats males is carried out; modifying effect of IOS-4876 preparation on biological efficiency of incorporated sulfur-35 is also evaluated. Different radionuclide doses demonstrated identical tumor effect exceeding by 2.2-3 times the level of spontaneous tumors. Sulfur-35 incorporated in quantities of 185 and 925 kBq/g causes proved increase in rats death level during the first two years of observation. IOS-4876 preparation leads to certain decrease in the level of delayed biological effects due to internal irradiation. 11 refs

  20. Effects of biology teachers' professional knowledge and cognitive activation on students' achievement

    Science.gov (United States)

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-11-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge - pedagogical content knowledge (PCK) and content knowledge (CK) - and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers' instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students' learning and an indirect effect of teachers' PCK on students' learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers' education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.

  1. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.

    1995-01-01

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m 3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m 3 , this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  2. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  3. Biological effects of exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Ahnstroem, G.

    1992-10-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people

  4. Health and biological effects of non-ionizing radiations

    International Nuclear Information System (INIS)

    De Seze, R.; Souques, M.; Aurengo, A.; Bach, V.; Burais, N.; Cesarini, J.P.; Cherin, A.; Decobert, V.; Dubois, G.; Hours, M.; Lagroye, I.; Leveque, Ph.; Libert, J.P.; Lombard, J.; Loos, N.; Mir, L.; Perrin, A.; Poulletier De Gannes, F.; Thuroczy, G.; Wiart, J.; Lehericy, St.; Pelletier, A.; Marc-Vergnes, J.P.; Douki, Th.; Guibal, F.; Tordjman, I.; Gaillot de Saintignon, J.; Collard, J.F.; Scoretti, R.; Magne, I.; Veyret, B.; Katrib, J.

    2011-01-01

    This document gathers the slides of the available presentations given during this conference day on the biological and health effects of non-ionizing radiations. Sixteen presentations out of 17 are assembled in the document and deal with: 1 - NMR: biological effects and implications of Directive 2004/40 on electromagnetic fields (S. Lehericy); 2 - impact of RF frequencies from mobile telephone antennas on body homeostasis (A. Pelletier); 3 - expression of stress markers in the brain and blood of rats exposed in-utero to a Wi-Fi signal (I. Lagroye); 4 - people exposure to electromagnetic waves: the challenge of variability and the contribution of statistics to dosimetry (J. Wiart); 5 - status of knowledge about electromagnetic fields hyper-sensitivity (J.P. Marc-Vergnes; 6 - geno-toxicity of UV radiation: respective impact of UVB and UVA (T. Douki); 7 - National day of prevention and screening for skin cancers (F. Guibal); 8 - UV tan devices: status of knowledge about cancer risks (I. Tordjman, and J. Gaillot de Saintignon); 9 - modulation of brain activity during a tapping task after exposure to a 3000 μT magnetic field at 60 Hz (M. Souques and A. Legros); 10 - calculation of ELF electromagnetic fields in the human body by the finite elements method (R. Scoretti); 11 - French population exposure to the 50 Hz magnetic field (I. Magne); 12 - LF and static fields, new ICNIRP recommendations: what has changed, what remains (B. Veyret); 13 - risk assessment of low energy lighting systems - DELs and CFLs (J.P. Cesarini); 14 - biological effects to the rat of a chronic exposure to high power microwaves (R. De Seze); 15 - theoretical and experimental electromagnetic compatibility approaches of active medical implants in the 10-50 Hz frequency range: the case of implantable cardiac defibrillators (J. Katrib); French physicians and electromagnetic fields (M. Souques). (J.S.)

  5. Effect of Ceramic Scaffold Architectural Parameters on Biological Response

    Directory of Open Access Journals (Sweden)

    Maria Isabella eGariboldi

    2015-10-01

    Full Text Available Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1 surface topography, (2 pore size and geometry, (3 porous networks and (4 macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way, as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  6. Review: Bioenergetic Fields and Their Biologic Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Zahra Movaffaghi

    2007-04-01

    Full Text Available As interests in complementary and alternative medicine grows, the scientists are looking forward in researches which determine the mechanisms in which they exert their effectiveness. Some of these modalities like Yoga, Acupuncture, and especially other bio-field therapies such as none contact therapeutic touch, affects the bio-field which spreads throughout the body and into the space around it. According to physic’s law, when electricity flows throw the living tissues, like what happens in our heart and brain, biomagnetic fields are being induced in the surrounding space. Beside that moving charges like ions and free radicals which finally produce electromagnetic fields. Using very sensitive magnetometers, biomagnetic fields have been detected and get amplified up to 1000 times by meditation. This phenomenon could be the basis for most of most complementaty therapeutic approaches like therapeutic touch. On the other hand the electrical, magnetic and bio-magnetic fields have a well known application in conventional medicine. Modern research about bio-magnetism and magneto-biology suggests that in term of both aspects, the effects and the mechanisms for all the different looking modalities used in conventional medicine and complementary medicine which have commons in their fundamentals. This article reviews some of the recent works on biological effects of natural or artificial electromagnetic fields.

  7. 'K' contribution to the biological effect of ionizing radiations

    International Nuclear Information System (INIS)

    Boissiere, Arnaud

    2004-01-01

    The aim of this work is to determine the importance of 'K' ionizations on DNA as critical physical events initiating the biological effects of ionizing radiation, in particular in human cells. Ultra-soft X-rays are used as a probe of core ionization events. A decisive test consists in comparing the biological effects at 250 eV and 350 eV (before and after the carbon K - threshold). The results show a sharp increase of the biological efficiency for both cellular inactivation and chromosomal exchange aberration above the carbon K-threshold, correlated with the one of core events occurring in DNA atoms. The heavy ion irradiation displays again the paradoxical behaviour of cellular inactivation cross sections as a function of LET. Finally, the 'K' event contribution to cellular inactivation of usual low LET radiation is estimated to be about 75%. (author) [fr

  8. Biological radiation effects

    International Nuclear Information System (INIS)

    Koggl, D.; Dedenkov, A.N.

    1986-01-01

    All nowadays problems of radio biology are considered: types of ionizing radiations, their interaction with material; damage of molecular structures and their reparation; reaction of cells and their recovery from radiation damage; reaction of the whole organism and its separate systems. Particular attention is given to the problems of radiation carcinogenesis and radiation hazard for man

  9. Biological radiation effects

    International Nuclear Information System (INIS)

    Sejourne, Michele.

    1977-01-01

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man [fr

  10. Professional development strategies for teaching urban biology teachers to use concept maps effectively

    Science.gov (United States)

    McGregor Petgrave, Dahlia M.

    Many teachers are not adequately prepared to help urban students who have trouble understanding conceptual ideas in biology because these students have little connection to the natural world. This study explored potential professional development strategies to help urban biology teachers use concept maps effectively with various topics in the biology curriculum. A grounded theory approach was used to develop a substantive professional development model for urban biology teachers. Qualitative data were collected through 16 semi-structured interviews of professional developers experienced in working with concept maps in the urban context. An anonymous online survey was used to collect quantitative data from 56 professional developers and teachers to support the qualitative data. The participants were from New York City, recruited through the NY Biology-Chemistry Professional Development Mentor Network and the NY Biology Teachers' Association. According to the participants, map construction, classroom applications, lesson planning, action research, follow-up workshops, and the creation of learning communities are the most effective professional development strategies. The interviewees also proposed English language learning strategies such as picture maps, native word maps, and content reading materials with underlined words. This study contributes to social change by providing a professional development model to use in planning workshops for urban teachers. Urban teachers improve their own conceptual understanding of biology while learning how to implement concept mapping strategies in the classroom. Students whose teachers are better prepared to teach biology in a conceptual manner have the potential of growing into more scientifically literate citizens.

  11. Sediment contaminants and biological effects in southern California: Use of a multivariate statistical approach to assess biological impact

    International Nuclear Information System (INIS)

    Maxon, C.L.; Barnett, A.M.; Diener, D.R.

    1997-01-01

    This study attempts to predict biological toxicity and benthic community impact in sediments collected from two southern California sites. Contaminant concentrations and grain size were evaluated as predictors using a two-step multivariate approach. The first step used principal component analysis (PCA) to describe contamination type and magnitude present at each site. Four dominant PC vectors, explaining 88% of the total variance, each corresponded to a unique physical and/or chemical signature. The four PC vectors, in decreasing order of importance, were: (1) high molecular weight polynuclear aromatic hydrocarbons (PAH), most likely from combusted or weathered petroleum; (2) low molecular weight alkylated PAH, primarily from weathered fuel product; (3) low molecular weight nonalkylated PAH, indicating a fresh petroleum-related origin; and (4) fine-grained sediments and metals. The second step used stepwise regression analysis to predict individual biological effects (dependent) variables using the four PC vectors as independent variables. Results showed that sediment grain size alone was the best predictor of amphipod mortality. Contaminant vectors showed discrete depositional areas independent of grain size. Neither contaminant concentrations nor PCA vectors were good predictors of biological effects, most likely due to the low concentrations in sediments

  12. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  13. Operational and biological effects zones from base stations of cellular telephony

    Energy Technology Data Exchange (ETDEWEB)

    Geronikolou, St. A., E-mail: sgeronik@bioacademy.gr [Biomedical Research Foundation Academy of Athens, Athens (Greece); Zimeras, S., E-mail: zimste@aegean.gr [University of the Aegean, Karlovassi, Samos (Greece); Tsitomeneas, S. Th., E-mail: stsit@teipir.gr [Piraeus University of Applied Sciences, Aigaleo (Greece)

    2016-03-25

    The possible environmental impacts of cellular base stations are operational and biological. The operational effects comprise Εlectro-Μagnetic Interference (EMI), lightning alterations and aesthetic degradation. Both thermal and non-thermal biological effects depend on the absorption of UHF radiofrequencies used. We measured, calculated and estimated the impact zones. The results are: (a) The lightning lethal zone equal to the antenna height, (b) the EMI impact in a zone up to 40m and (c) the ICNIRP’s limits exceed to a zone of 8∼20m into the antenna’s radiation pattern (for 2G GSM and 3G UMTS station). Finally we conclude the adverse effects must not expected in a zone of more than 150m from the radiated antenna, whereas, there is possibility of stochastic effects in intermediate distances (20/40-150m).

  14. The effect of biological cohesion on current ripple development

    Science.gov (United States)

    Malarkey, Jonathan; Baas, Jaco H.; Hope, Julie

    2014-05-01

    Results are presented from laboratory experiments examining the role of biological cohesion, associated with Extra Polymeric Substances, on the development of current ripples. The results demonstrate the importance of biological cohesion compared to the effect of physical cohesion associated with clays in an otherwise sandy bed. FURTHER INFORMATION In fluvial and marine environments sediment transport is mainly dependent on the nature of the bed surface (rippled or flat) and the nature of cohesion in the bed. Cohesion can be either physical, as a result of the presence of clays, or biological as a result of the presence of organisms. In the case of the latter, biological cohesion occurs as a result of the presence of Extra Polymeric Substances (EPS) secreted by microorganisms. While it is known that EPS can dramatically increase the threshold of motion (Grant and Gust, 1987), comparatively little is known about the effect of EPS on ripple formation and development. The experiments described here seek to fill this gap. They also allow the effect of biological cohesion to be compared with that of physical cohesion from previous experiments (Baas et al., 2013). The experiments, which were conducted in a 10m flume at Bangor University, involved a current over a bed made of fine sand, with a median diameter of 0.148mm, and various amounts of xanthan gum, a proxy for naturally occurring EPS (Vardy et al., 2007). The hydrodynamic experimental conditions were matched very closely to those of Baas et al. (2013). The ripple dimensions were recorded through the glass side wall of the tank using time lapse photography. In the physical cohesion experiments of Baas et al. (2013) for clay contents up to 12%, the clay was very quickly winnowed out of the bed, leaving essentially clay-free ripples that developed at more or less the same rate as clean sand ripples. The resulting equilibrium ripples were essentially the same length as the clean sand ripples but reduced in height. By

  15. The Effects Of Physical And Biological Cohesion On Bedforms

    Science.gov (United States)

    Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.

    2014-12-01

    Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield

  16. Radioprotection, biological effects of the radiations and security in the handling of radioactive material

    CERN Document Server

    Teran, M

    2000-01-01

    The development of the philosophy of the radioprotection is dependent on the understanding of the effects of the radiation in the man. Behind the fact that the radiation is able to produce biological damages there are certain factors with regard to the biological effects of the radiations that determine the boarding of the radioprotection topics.

  17. Biological effects and medical applications of infrared radiation.

    Science.gov (United States)

    Tsai, Shang-Ru; Hamblin, Michael R

    2017-05-01

    Infrared (IR) radiation is electromagnetic radiation with wavelengths between 760nm and 100,000nm. Low-level light therapy (LLLT) or photobiomodulation (PBM) therapy generally employs light at red and near-infrared wavelengths (600-100nm) to modulate biological activity. Many factors, conditions, and parameters influence the therapeutic effects of IR, including fluence, irradiance, treatment timing and repetition, pulsing, and wavelength. Increasing evidence suggests that IR can carry out photostimulation and photobiomodulation effects particularly benefiting neural stimulation, wound healing, and cancer treatment. Nerve cells respond particularly well to IR, which has been proposed for a range of neurostimulation and neuromodulation applications, and recent progress in neural stimulation and regeneration are discussed in this review. The applications of IR therapy have moved on rapidly in recent years. For example, IR therapy has been developed that does not actually require an external power source, such as IR-emitting materials, and garments that can be powered by body heat alone. Another area of interest is the possible involvement of solar IR radiation in photoaging or photorejuvenation as opposites sides of the coin, and whether sunscreens should protect against solar IR? A better understanding of new developments and biological implications of IR could help us to improve therapeutic effectiveness or develop new methods of PBM using IR wavelengths. Copyright © 2016. Published by Elsevier B.V.

  18. Biological activity of selected plants with adaptogenic effect

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2016-05-01

    Full Text Available The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diffusion method against three species of Gram-negative bacteria: Escherichia coli CCM 3988, Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671 and two Gram-positive bacteria: Bacillus thuringiensis CCM 19, Stapylococcus aureus subsp. aureus CCM 2461. Results showed that plants with adaptogenic effect are rich for biologically active substances. The highest antioxidant activity by DPPH method was determined in the sample of Eleuterococcus senticosus (3.15 mg TEAC – Trolox equivalent antioxidant capacity per g of sample and by phosphomolybdenum method in the sample of Codonopsis pilosulae (188.79 mg TEAC per g of sample. In the sample of Panax ginseng was measured the highest content of total polyphenols (8.10 mg GAE – galic acid equivalent per g of sample and flavonoids (3.41 μg QE – quercetin equivalent per g of sample. All samples also showed strong antimicrobial activity with the best results in Panax ginseng and Withania somnifera in particular for species Yersinia enterocolitica CCM 5671 and Salmonella enterica subsp. enterica CCM 3807. The analyzed species of plant with high value of biological activity can be used more in the future, not only in food, but also in cosmetics and pharmaceutical industries.

  19. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  20. View of environmental radiation effects from the study of radiation biology in C. elegans

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya

    2011-01-01

    Caenorhabditis (C.) elegans is a non-parasitic soil nematode and is well-known as a unique model organism, because of its complete cell-lineage, nervous network and genome sequences. Also, C. elegans can be easily manipulated in the laboratory. These advantages make C. elegans as a good in vivo model system in the field of radiation biology. Radiation effects in C. elegans have been studied for three decades. Here, I briefly review the current knowledge of the biological effects of ionizing irradiation in C. elegans with a scope of environmental radiation effects. Firstly, basic information of C. elegans as a model organism is described. Secondly, historical view is reported on the study of radiation biology in C. elegans. Thirdly, our research on learning behavior is presented. Finally, an opinion of the use of C. elegans for environmental radiation protection is referred. I believe that C. elegans may be a good promising in vivo model system in the field of environmental radiation biology. (author)

  1. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Balaji Kulandaivelu

    Full Text Available The biosynthesis of nanoparticles has been proposed as an environmental friendly and cost effective alternative to chemical and physical methods. Silver nanoparticles are biologically synthesized and characterized were used in the study. The invitro cytotoxic effect of biologically synthesized silver nanoparticles against MCF-7 cancer cell lines were assessed. The cytotoxic effects of the silver nanoparticles could significantly inhibited MCF-7 cancer cell lines proliferation in a time and concentration-dependent manner by MTT assay. Acridine orange, ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver nanoparticles ranging from 1 to 100 μg/mL. At 100 μg/mL concentration, the silver nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Western blot analysis has revealed that nanoparticle was able to induce cytochrome c release from the mitochondria, which was initiated by the inhibition of Bcl-2 and activation of Bax. Thus, the results of the present study indicate that biologically synthesized silver nanoparticles might be used to treat breast cancer. The present studies suggest that these nanoparticles could be a new potential adjuvant chemotherapeutic and chemo preventive agent against cytotoxic cells. However, it necessitates clinical studies to ascertain their potential as anticancer agents.

  2. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Patrick Osawaru Ajaja,

    2012-01-01

    Full Text Available The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups, sex (male and female, repeated testing (Pre,Post and follow-up tests, and six weeks of experience. The samples of the study included six senior secondary schools, 112science students, and 12 biology and chemistry teachers. The instruments used for this study were: teacher’s questionnaireon knowledge and use of learning cycle (KULC; and Biology and Chemistry Achievement Test (BCAT. The data collected wereanalyzed with simple percentage, Analysis of Covariance (ANCOVA and student t-test statistics. The major findings of thestudy included that only 30.43% and 26.31% of biology and chemistry teachers have the knowledge that learning cycle is aninstructional method; all the biology and chemistry teachers sampled have never used learning cycle as an instructionalmethod; learning cycle had a significant effect on students achievement in biology and chemistry; students taught withlearning cycle significantly achieved better in biology/chemistry Post-test than those taught with lecture method; the posttestscores of students in the learning cycle group increased over the period of experience; non-significant difference in Posttestscores between males and females taught with learning cycle; non-significant interaction effect between method andsex on achievement; and a significant higher retention of biology and chemistry knowledge by students taught with learningcycle than those taught with lecture method. It was concluded that the method seems an appropriate instructional modelthat could be used to solve the problems of

  3. Correlation of microdosimetric measurements with relative biological effectiveness from clinical experience for two neutron therapy beams

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.; Myrianthopoulos, L.C.; Horton, J.L. Jr.; Roberts, W.K.

    1986-01-01

    Microdosimetric measurements were made for the neutron therapy beams at the University of Chicago and at the Cleveland Clinic with the same geometry and phantom material using the same tissue-equivalent spherical proportional counter and standard techniques. The energy deposition spectra (dose distributions in lineal energy) are compared for these beams and for their scattered components (direct beam blocked). The model of dual radiation action (DRA) of Kellerer and Rossi is employed to interpret these data in terms of biological effectiveness over this limited range of radiation qualities. The site-diameter parameter of the DRA theory is determined for the Cleveland beam by setting the biological effectiveness (relative to 60 Co gamma radiation) equal to the relative biological effectiveness value deduced from radiobiology experiments and clinical experience. The resulting value of this site-diameter parameter is then used to predict the biological effectiveness of the Chicago beam. The prediction agrees with the value deduced from radiobiology and clinical experience. The biological effectiveness of the scattered components of both beams is also estimated using the model

  4. Effect of Biological and Chemical Ripening Agents on the Nutritional ...

    African Journals Online (AJOL)

    Effect of Biological and Chemical Ripening Agents on the Nutritional and Metal Composition of Banana ( Musa spp ) ... Journal Home > Vol 18, No 2 (2014) > ... curcas leaf were used and compared with a control with no ripening agent.

  5. Comparison of ballistic impact effects between biological tissue and gelatin.

    Science.gov (United States)

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang

    2018-02-01

    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The biological effectiveness of heavy ion radiations in the environment

    International Nuclear Information System (INIS)

    Craven, P.A.

    1996-03-01

    Although heavy ions are rarely encountered in the majority of terrestrial environments, the exposure of humans to this fascinating class of ionizing radiation is becoming more frequent. Long-duration spaceflight, new radiotherapeutic procedures and enhanced levels of radon, and other naturally-occurring alpha particle emitters, have all increased concern and stimulated interest recently within the radiological protection and radiobiological communities. Significant data concerning the long-term effects of low levels of heavy ions on mammalian systems are correspondingly scarce, leading to increased emphasis on modelling all aspects of the radiation-organism interaction. Contemporary radiation protection procedures reflect the need for a more fundamental understanding of the mechanisms responsible for the biological actions of such radiations. Major deficiencies exist in the current recommendations for assessment of relative effectiveness, the enhanced severity of the biological consequences instigated by heavy ions, over conventional sparsely ionizing radiations. In an attempt to remedy some of the inadequate concepts and assumptions presently employed and, simultaneously, to gain insight into the fundamental mechanisms behind the notion of radiation quality, a series of algorithms have been developed and executed as computer code, to evaluate the biological effectiveness of heavy ion radiation ''tracks'' according to a number of criteria. These include consideration of the spatial characteristics of physical energy deposition in idealised cellular structures (finite particle range, radial extension of tracks via δ-ray emission) and the likelihood of induction and mis-repair of severe molecular lesions (double-strand breaks, multiply-damaged sites). (author)

  7. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days.

    Science.gov (United States)

    Grifoni, D; Zipoli, G; Sabatini, F; Messeri, G; Bacci, L

    2013-12-01

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photokeratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process.

  8. Predicting the biological effects of mobile phone radiation absorbed energy linked to the MRI-obtained structure.

    Science.gov (United States)

    Krstić, Dejan; Zigar, Darko; Petković, Dejan; Sokolović, Dušan; Dinđić, Boris; Cvetković, Nenad; Jovanović, Jovica; Dinđić, Nataša

    2013-01-01

    The nature of an electromagnetic field is not the same outside and inside a biological subject. Numerical bioelectromagnetic simulation methods for penetrating electromagnetic fields facilitate the calculation of field components in biological entities. Calculating energy absorbed from known sources, such as mobile phones when placed near the head, is a prerequisite for studying the biological influence of an electromagnetic field. Such research requires approximate anatomical models which are used to calculate the field components and absorbed energy. In order to explore the biological effects in organs and tissues, it is necessary to establish a relationship between an analogous anatomical model and the real structure. We propose a new approach in exploring biological effects through combining two different techniques: 1) numerical electromagnetic simulation, which is used to calculate the field components in a similar anatomical model and 2) Magnetic Resonance Imaging (MRI), which is used to accurately locate sites with increased absorption. By overlapping images obtained by both methods, we can precisely locate the spots with maximum absorption effects. This way, we can detect the site where the most pronounced biological effects are to be expected. This novel approach successfully overcomes the standard limitations of working with analogous anatomical models.

  9. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days

    International Nuclear Information System (INIS)

    Grifoni, D.; Zipoli, G.; Sabatini, F.; Messeri, G.; Bacci, L.

    2013-01-01

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photo-keratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process. (authors)

  10. Biological activity of selected plants with adaptogenic effect

    OpenAIRE

    Eva Ivanišová; Miroslava Kačániová; Jana Petrová; Radka Staňková; Lucia Godočíková; Tomáš Krajčovič; Štefan Dráb

    2016-01-01

    The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diff...

  11. Biological effects of deuterium - depleted water

    International Nuclear Information System (INIS)

    Stefanescu, I.; Titescu, Gh.; Croitoru, Cornelia; Saros-Rogobete, Irina

    2000-01-01

    Deuterium-depleted water (DDW) is represented by water that has an isotopic content smaller than 145 ppm D/(D + H). DDW production technique consists in the separation of deuterium from water by a continuous distillation process under pressure of about 133.3 mbar. The water used as raw material has a isotopic content of 145 ppm D/(D + H) and can be demineralized water, distillated water or condensed-steam. DDW results as a distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 the Institute of Cryogenics and Isotopic Technologies, DDW producer, co-operated with Romanian specialized institutes for studying the biological effects of DDW. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. These investigations led to the following conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the DDW persists after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defense mechanisms; - DDW stimulates immuno-defense reactions represented by the opsonic, bactericidal and phagocyte capacity of the immune system together with an increase in the number of poly-morphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance and following growth stages; - It was studied germination, growth and quantitative character variability in plants; one can remark the favorable influence of DDW on biological processes in plants in various ontogenetic stages. (authors)

  12. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  13. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis.

    Directory of Open Access Journals (Sweden)

    Ingunn Fride Tvete

    Full Text Available Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores. The ranking of the drugs when given without DMARD was certolizumab (ranked highest, etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest, tocilizumab, anakinra/rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept [corrected]. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment and adalimumab/ etanercept (combined with DMARD treatment the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs.

  14. Relationship between α/β and radiosensitivity and biologic effect of fractional irradiation of tumor cells

    International Nuclear Information System (INIS)

    Guo Chuanling; Chinese Academy of Sciences, Beijing; Wang Jufang; Jin Xiaodong; Li Wenjian

    2006-01-01

    Five kinds of malignant human tumor cells, i.e. SMMC-7721, HeLa, A549, HT29 and PC3 cell lines, were irradiated by 60 Co γ-rays to 1-6 Gy in a single irradiation or two irradiations of half dose. The radiosensitivity was compared with the dose-survival curves and D 50 and D 10 values. Differences in the D 50 and D 10 between the single and fractional irradiation groups showed the effect of fractional irradiation. Except for PC3 cells, all the cell lines showed obvious relationship between radiosensitivity and biologic effect of fractional irradiation and the α/β value. A cell line with bigger α/β was more radiation sensitive, with less obvious effect of fractional irradiation. The results indicate that there were obvious differences in radiosensitivity, repair ability and biologic effect of fractional irradiation between tumor cells from different tissues. To some tumor cell lines, the relationship between radiosensitivity, biologic effect of fractional irradiation and repair ability was attested. The α/β value of single irradiation can be regarded as a parameter to investigate the radiosensitivity and biologic effect of fractional irradiation of tumor cells. (authors)

  15. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Giovanetti, Anna, E-mail: anna.giovanetti@enea.i [ENEA, Institute of Radiation Protection, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Fesenko, Sergey [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria); Cozzella, Maria L. [ENEA, National Institute for Metrology of Ionizing Radiation, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Asencio, Lisbet D. [Centro de Estudios Ambientales, Carretera a Castillo de Jagua, CP. 59350 C. Nuclear, Cienfuegos (Cuba); Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)

    2010-06-15

    The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg{sup -1}. Five biological endpoints: mortality, animals' weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

  16. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium

    International Nuclear Information System (INIS)

    Giovanetti, Anna; Fesenko, Sergey; Cozzella, Maria L.; Asencio, Lisbet D.; Sansone, Umberto

    2010-01-01

    The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg -1 . Five biological endpoints: mortality, animals' weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

  17. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  18. A Systematic Review of the Cost-Effectiveness of Biologics for Ulcerative Colitis.

    Science.gov (United States)

    Stawowczyk, Ewa; Kawalec, Paweł

    2018-04-01

    Ulcerative colitis (UC) is a chronic autoimmune inflammation of the colon. The condition significantly decreases quality of life and generates a substantial economic burden for healthcare payers, patients and the society in which they live. Some patients require chronic pharmacotherapy, and access to novel biologic drugs might be crucial for long-term remission. The analyses of cost-effectiveness for biologic drugs are necessary to assess their efficiency and provide the best available drugs to patients. Our aim was to collect and assess the quality of economic analyses carried out for biologic agents used in the treatment of UC, as well as to summarize evidence on the drivers of cost-effectiveness and evaluate the transferability and generalizability of conclusions. A systematic database review was conducted using MEDLINE (via PubMed), EMBASE, Cost-Effectiveness Analysis Registry and CRD0. Both authors independently reviewed the identified articles to determine their eligibility for final review. Hand searching of references in collected papers was also performed to find any relevant articles. The reporting quality of economic analyses included was evaluated by two reviewers using the International Society of Pharmacoeconomics and Outcomes Research (ISPOR) Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement checklist. We reviewed the sensitivity analyses in cost-effectiveness analyses to identify the variables that may have changed the conclusions of the study. Key drivers of cost-effectiveness were selected by identifying uncertain parameters that caused the highest change of the results of the analyses compared with base-case results. Of the 576 identified records, 87 were excluded as duplicates and 16 studies were included in the final review; evaluations for Canada, the UK and Poland were mostly performed. The majority of the evaluations revealed were performed for infliximab (approximately 75% of total volume); however, some

  19. An integrated strategy for biological effects monitoring in Scottish coastal waters

    International Nuclear Information System (INIS)

    Park, R.A.; Dobson, J.; Richardson, L.; Hill, A.

    1999-01-01

    The paper summarises SEPA's current programme of water quality and biological effects monitoring and, using recent examples, discusses the current environmental issues affecting the condition of our coastal waters. (author)

  20. Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields

    International Nuclear Information System (INIS)

    Binhi, V.N.; Savin, A.V.

    2002-01-01

    Extremely low-frequency magnetic fields are known to affect biological systems. In many cases, biological effects display 'windows' in biologically effective parameters of the magnetic fields: most dramatic is the fact that the relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the order of 10-100 μT do. Linear resonant physical processes do not explain the frequency windows in this case. Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has been proposed recently to explain those 'windows'. It considers the quantum-interference effects on the protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field frequency and amplitude windows within which the biological effects occur. It agrees with a lot of experiments. However, according to the mechanism, the lifetime Γ -1 of ion quantum states within a protein cavity should be of unrealistic value, more than 0.01 s for frequency band 10-100 Hz. In this paper, a biophysical mechanism has been proposed, which (i) retains the attractive features of the ion interference mechanism, i.e., predicts physical characteristics that might be experimentally examined and (ii) uses the principles of gyroscopic motion and removes the necessity to postulate large lifetimes. The mechanism considers the dynamics of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the molecular gyroscopes. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of 28 Aa

  1. Metabolism and biological effects of alpha-emitting radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Bair, W. J.

    1979-05-01

    The emphasis of much of the current and planned research on the toxicity of alpha-emitting radionuclides is directed toward the complexities of actual and potential conditions of occupational environmental exposures of human beings. These, as well as the more limited studies on mechanisms of biological transport and effects, should increase our ability to predict health risks more accurately and to deal more confidently with human exposures, if and when they occur.

  2. Biological effects of the ionizing radiation. Press breakfast

    International Nuclear Information System (INIS)

    Flury-Herard, A.; Boiteux, S.; Dutrillaux, B.; Toledano, M.

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  3. ICBEN review of research on the biological effects of noise 2011-2014

    Science.gov (United States)

    Basner, Mathias; Brink, Mark; Bristow, Abigail; de Kluizenaar, Yvonne; Finegold, Lawrence; Hong, Jiyoung; Janssen, Sabine A; Klaeboe, Ronny; Leroux, Tony; Liebl, Andreas; Matsui, Toshihito; Schwela, Dieter; Sliwinska-Kowalska, Mariola; Sörqvist, Patrik

    2015-01-01

    The mandate of the International Commission on Biological Effects of Noise (ICBEN) is to promote a high level of scientific research concerning all aspects of noise-induced effects on human beings and animals. In this review, ICBEN team chairs and co-chairs summarize relevant findings, publications, developments, and policies related to the biological effects of noise, with a focus on the period 2011-2014 and for the following topics: Noise-induced hearing loss; nonauditory effects of noise; effects of noise on performance and behavior; effects of noise on sleep; community response to noise; and interactions with other agents and contextual factors. Occupational settings and transport have been identified as the most prominent sources of noise that affect health. These reviews demonstrate that noise is a prevalent and often underestimated threat for both auditory and nonauditory health and that strategies for the prevention of noise and its associated negative health consequences are needed to promote public health. PMID:25774609

  4. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  5. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-01

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  6. Effects of hypervitaminosis of vitamin B3 on silkworm biology

    Indian Academy of Sciences (India)

    Unknown

    [Etebari K and Matindoost L 2004 Effects of hypervitaminosis of vitamin B3 on silkworm biology; J. Biosci. 29 417–422]. 1. ... ate growth of larvae and the reproduction in many insects and also mites has been ... were dried in air for 10 min.

  7. Cytogenetic measurements of the relative biological effectiveness of tritium

    International Nuclear Information System (INIS)

    Chopra, C.; Heddle, J.A.

    1988-10-01

    Chromosome aberrations in peripheral blood lymphocytes, which are used to estimate radiation dose biologically, were induced by tritium 1.14 times as effectively as X-rays (95% confidence limits: 0.8 - 1.5). Chromosome translocations in spermatogonia, which are one component of genetic risk, were induced by tritium 1.21 times as effectively as X-rays (95% confidence limits: 0.8 -1.9). All experimental measurements were made in CBA/H mice injected with tritiated water or exposed to X-rays at a comparable dose rate

  8. Biological effectiveness and application of heavy ions in radiation therapy described by a physical and biological model

    International Nuclear Information System (INIS)

    Olsen, K.J.; Hansen, J.W.

    1982-12-01

    A description is given of the physical basis for applying track structure theory in the determination of the effectiveness of heavy-ion irradiation of single- and multi-hit target systems. It will be shown that for applying the theory to biological systems the effectiveness of heavy-ion irradiation is inadequately described by an RBE-factor, whereas the complete formulation of the probability of survival must be used, as survival depends on both radiation quality and dose. The theoretical model of track structure can be used in dose-effect calculations for neutron-, high-LET, and low-LET radiation applied simultaneously in therapy. (author)

  9. Dosimetric characteristics of biological effect of sulfur-35

    International Nuclear Information System (INIS)

    Borisova, V.V.

    1990-01-01

    Experimental materials related to evaluation of dosimetric characteristics of sulfur-35 are presented. Hemogenic organs are subjected to greatest influence especially in the first hours after radionuclide entry into the organism. Comparison is made of absorbed doses in blood with observed blastomogen effect of hemogenic organs. It is noted, that quantitative evaluation of relative biological efficiency of low energy beta-emitters should be performed with account of dosimetric peculiarities of the nuclides mentioned above. 10 refs.; 3 tabs

  10. The cost-effectiveness of biologics for the treatment of rheumatoid arthritis: a systematic review.

    Directory of Open Access Journals (Sweden)

    Jaana T Joensuu

    Full Text Available Economic evaluations provide information to aid the optimal utilization of limited healthcare resources. Costs of biologics for Rheumatoid arthritis (RA are remarkably high, which makes these agents an important target for economic evaluations. This systematic review aims to identify existing studies examining the cost-effectiveness of biologics for RA, assess their quality and report their results systematically.A literature search covering Medline, Scopus, Cochrane library, ACP Journal club and Web of Science was performed in March 2013. The cost-utility analyses (CUAs of one or more available biological drugs for the treatment of RA in adults were included. Two independent investigators systematically collected information and assessed the quality of the studies. To enable the comparison of the results, all costs were converted to 2013 euro.Of the 4890 references found in the literature search, 41 CUAs were included in the current systematic review. While considering only direct costs, the incremental cost-effectiveness ratio (ICER of the tumor necrosis factor inhibitors (TNFi ranged from 39,000 to 1,273,000 €/quality adjusted life year (QALY gained in comparison to conventional disease-modifying antirheumatic drugs (cDMARDs in cDMARD naïve patients. Among patients with an insufficient response to cDMARDs, biologics were associated with ICERs ranging from 12,000 to 708,000 €/QALY. Rituximab was found to be the most cost-effective alternative compared to other biologics among the patients with an insufficient response to TNFi.When 35,000 €/QALY is considered as a threshold for the ICER, TNFis do not seem to be cost-effective among cDMARD naïve patients and patients with an insufficient response to cDMARDs. With thresholds of 50,000 to 100,000 €/QALY biologics might be cost-effective among patients with an inadequate response to cDMARDs. Standardization of multiattribute utility instruments and a validated standard conversion method

  11. Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.

    Science.gov (United States)

    Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong

    2016-08-01

    The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.

  12. The effect of cosmic rays on biological systems - an investigation during GLE events

    Science.gov (United States)

    Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Vashenuyk, E. V.

    2012-01-01

    In this study, first direct and circumstantial evidences of the effects of cosmic rays (CR) on biological systems are presented. A direct evidence of biological effects of CR is demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA). A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. The circumstantial evidence was obtained by statistical analysis of cases of congenital malformations (CM) at two sites in the Murmansk region. The number of cases of all classes of CM reveals a significant correlation with the number of GLE events. The number of cases of CM with pronounced chromosomal abnormalities clearly correlates with the GLE events that occurred a year before the birth of a child. We have found a significant correlation between modulations of the water properties and daily background variations of CR intensity. We believe that the effects of CR on biological systems can be also mediated by fluctuations in water properties, considered as one of possible mechanisms controlling the effects of CRs on biological systems.

  13. Effects of low-level radiation on biologic systems: a literature review

    International Nuclear Information System (INIS)

    Best, T.L.; Hoditschek, B.

    1980-12-01

    This review presents an organized survey of scientific literature dealing with the biologic effects of low-level radiation. It includes brief discussions of topics of particular interest, a listing of useful review articles, an extensive bibliography, and listings of sources that can be used to update this document in the future. The topics discussed include experimental studies, the linear hypothesis, medical effects, occupational effects, effects of exposure to naturally occurring radiation, consumer products, and laws and regulations

  14. Biological applications of the Moessbauer effect

    International Nuclear Information System (INIS)

    Boulay, P.

    1968-12-01

    The applications of Moessbauer spectrometry in the fields of physics and chemistry have been increasing steadily since its discovery in 1958. Attempts have been made to find applications in biology. Two possibilities of investigation exist in this field: the study of mechanical or vibrational movements in certain animal organs, and the determination of the organic molecular structure in a biological context. An example is given of each of these possibilities. (author) [fr

  15. Ultraviolet radiation and its biological effects

    International Nuclear Information System (INIS)

    Rames, J.; Bencko, V.

    1993-01-01

    In connexion with contamination of the atmosphere with freons, the interest is increasing in geophysical and health aspects of 'ozone holes' - the seasonal incidence of increased intensity of UV radiation. Its biological effects depend on the intensity of the radiation, the exposure time and the wavelength. There is a wide range of various sorts of damage, local as well as general. In addition to skin pigmentation and symptoms produced by an elevated histamine blood level, also changes are found which may have more serious and permanent consequences: changes in the number and structure of Langerhans islets, changes of the peripheral capillary walls, dimerization of pyrimidine and thymine in DNA. These changes demonstrably contribute to the development of skin malignancies. After exposure of the eye, changes in pigmentation are found, and depending on the dose, possibly also development of conjunctivitis or retinal damage. Recently the interaction of UV radiation with arsenic was investigated. On the other side, therapeutic effects of UV radiation combined with chemotherapy are used in dermatology, eg., for inhibition of contact sensitization. (author) 42 refs

  16. Characterization of the angular memory effect of scattered light in biological tissues.

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  17. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Shah, Alok; Nanjappa, C.; Chauhan, O.P.

    2014-01-01

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  18. Nutrigenetic Effect of Moringa oleifera Seed Meal on the Biological ...

    African Journals Online (AJOL)

    Nutrigenetic Effect of Moringa oleifera Seed Meal on the Biological Growth Programme of Young Broiler Chickens. ... Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  19. Information on biological health effects of ionizing radiation and radionuclides: the rule of a web site

    International Nuclear Information System (INIS)

    Comte, A.; Gaillard-Lecanu, E.; Flury-Herard, A.; Ourly, F.; Hemidy, P.; Lallemand, J.

    2006-01-01

    The purpose of this project is to provide a source of information on biological and health effects of radionuclides and ionizing radiation in an easy to use format. Reported work is made up of two distinct parts: data sheets for selected radionuclides and a web file. Data sheets: Specific radiation data sheets provide an overview of the properties, the environmental behaviour, the different pathways of human exposure and the biological and health consequences of selected radionuclides. Radionuclides that have been selected are those commonly dealt with in nuclear industry (and in other areas such as medicine) and released to the environment or naturally occurring (plutonium, tritium, carbon 14). Data sheets corresponding to the different radionuclides are based on the main sources of scientific information in dosimetry, epidemiology, radiobiology and radiation protection. These data sheets are intended for radiation protection specialists and physicians. They include: main physical and chemical characteristics, main radiation protection data: dose coefficients (public, workers), dose limits sources, total released estimate (nuclear industry, atmospheric tests, main pathway of human exposure and biological behaviour, biological and health effects, medical supervision, treatment a list of the main references, appendix providing accurate information. Web file: http://www-dsv.cea.fr/doc/carmin_ext/fond.php This web file provides a source of information on biological and health effects of ionizing radiation and biological basic knowledge of radiation protection. Available for consultation via Internet, compiled information provides, in a same file, subjects as varied as biological mechanisms, ionizing radiations action, biological and health effects, risk assessment This file is mainly intended to assist in informing and training of non-specialist readership (students, teaching on radiation protection basic knowledge. This electronic document is divided in three

  20. Late biological effects from internal and external exposure

    International Nuclear Information System (INIS)

    Adams, W.H.

    1985-01-01

    Information on late biological effects of radiation was obtained from the long-term medical followup of a small population of Marshallese accidentally exposed to radioactive fallout from a thermonuclear test in 1954. Endocrine data are compatible with a sequence of nonstochastic radiation effects. The ingestion of radioisotopes of iodine produced clinical thyroid hypofunction in children, biochemical evidence of thyroid dysfunction in some adults, thyroid adenomatous module formation, and, as a possible indirect effect of thyroid damage, at least two cases of pituitary adenoma. In contrast, the only evidence of a stochastic effect has been a real increase in thyroid cancers among the more highly exposed people of Rongelap, none of whom have evidence of residual disease. While three nonthyroidal cancers which are known to be inducible in humans by external irradiation have been documented in the exposed population, three similar cancers have occurred in an unexposed comparison population of Marshallese. Nonstochastic effects of radiation exposure may be common but subtle. In the Marshallese experience the morbidity of delayed nonstochastic effects far exceeds that of the stochastic. 20 refs., 5 figs., 1 tab

  1. E. Biological effects of radiation on man

    International Nuclear Information System (INIS)

    1976-01-01

    This report firstly summarises information on the biological hazards of radiation and their relation to radiation dose, and hence estimates the biological risks associated with nuclear power production. Secondly, it describes the basis and present status of radiation protection standards in the nuclear power industry

  2. Heavy water effects on the structure, functions and behavior of biological systems

    International Nuclear Information System (INIS)

    Buzgariu, Wanda; Caloianu, Maria; Moldovan, Lucia; Titescu, G.

    2003-01-01

    The H 2 O substitution for D 2 O either in environment or in the culture medium of the living systems generates changes in their main functions and composition. In this paper some of the heavy water effects in biological systems such as structural and functional changes were reviewed: normal cell architecture alterations, cell division and membrane functions disturbance, muscular contractility and the perturbations of biological oscillators such as circadian rhythm, heart rate, respiratory cycle, tidal and ultradian rhythm. (authors)

  3. Challenges in Analyzing the Biological Effects of Resveratrol

    DEFF Research Database (Denmark)

    Erdogan, Cihan Süleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biolog......The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety...... research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard...... experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds...

  4. The effect of network biology on drug toxicology

    DEFF Research Database (Denmark)

    Gautier, Laurent; Taboureau, Olivier; Audouze, Karine Marie Laure

    2013-01-01

    Introduction: The high failure rate of drug candidates due to toxicity, during clinical trials, is a critical issue in drug discovery. Network biology has become a promising approach, in this regard, using the increasingly large amount of biological and chemical data available and combining...... it with bioinformatics. With this approach, the assessment of chemical safety can be done across multiple scales of complexity from molecular to cellular and system levels in human health. Network biology can be used at several levels of complexity. Areas covered: This review describes the strengths and limitations...... of network biology. The authors specifically assess this approach across different biological scales when it is applied to toxicity. Expert opinion: There has been much progress made with the amount of data that is generated by various omics technologies. With this large amount of useful data, network...

  5. Clinical oncology based upon radiation biology

    International Nuclear Information System (INIS)

    Hirata, Hideki

    2016-01-01

    This paper discussed the biological effects of radiation as physical energy, especially those of X-ray as electromagnetic radiation, by associating the position of clinical oncology with classical radiation cell biology as well as recent molecular biology. First, it described the physical and biological effects of radiation, cell death due to radiation and recovery, radiation effects at tissue level, and location information and dosage information in the radiotherapy of cancer. It also described the territories unresolved through radiation biology, such as low-dose high-sensitivity, bystander effects, etc. (A.O.)

  6. A Study Assessing the Potential of Negative Effects in Interdisciplinary Math–Biology Instruction

    Science.gov (United States)

    Madlung, Andreas; Bremer, Martina; Himelblau, Edward; Tullis, Alexa

    2011-01-01

    There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the development of broader but shallower skills or the possibility that math anxiety causes some students to disengage in the classroom, or, paradoxically, to focus so much on the mathematics that they lose sight of its application for the biological concepts in the center of the unit at hand. We have developed and assessed an integrative learning module and found disciplinary learning gains to be equally strong in first-year students who actively engaged in embedded quantitative calculations as in those students who were merely presented with quantitative data in the context of interpreting biological and biostatistical results. When presented to advanced biology students, our quantitative learning tool increased test performance significantly. We conclude from our study that the addition of mathematical calculations to the first year and advanced biology curricula did not hinder overall student learning, and may increase disciplinary learning and data interpretation skills in advanced students. PMID:21364099

  7. Tannins: current knowledge of food sources, intake, bioavailability and biological effects.

    Science.gov (United States)

    Serrano, José; Puupponen-Pimiä, Riitta; Dauer, Andreas; Aura, Anna-Marja; Saura-Calixto, Fulgencio

    2009-09-01

    Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30 000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous-organic solvents, but a significant number of non-extractable tannins are usually not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non-extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicrobial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed.

  8. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?

    International Nuclear Information System (INIS)

    Marill, Julie; Anesary, Naeemunnisa Mohamed; Zhang, Ping; Vivet, Sonia; Borghi, Elsa; Levy, Laurent; Pottier, Agnes

    2014-01-01

    Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation

  9. Relative biological effectiveness of protons and heavy particles

    International Nuclear Information System (INIS)

    Vyglenov, A.; Fedorenko, B.; Kabachenko, A.

    1986-01-01

    The genetic effectiveness was studied of protons (9 GeB/nuclon, 0,72 Gy/min), α-particles (4 GeB/nuclon, 0,9 Gy/min) and carbon ions (4 GeB/nuclon 0,36 Gy/min). The translocation yield in mouse spermatogonia was used as indicator of radiation-induced genetic injury. Reciprocal translocation were registered six months after the irradiation on spermatocytes in diakinesmetaphase I. Comparison was made with gamma-irradiated animals from 60 Co source with dose rate 1,44 Gy/min. The relative biological effectiveness (RBE) was determined by comparing the regression coefficients from the linear dose translocation yield dependency. The values of the RBE coefficients were 0.8, 0.9 and 1.2, accordingly for protons, α-particles and carbon ions

  10. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    Science.gov (United States)

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  11. Wood smoke particle sequesters cell iron to impact a biological effect.

    Science.gov (United States)

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  12. Summary of experimental studies on biological effects of radionuclides in Chinese Nuclear Industry

    International Nuclear Information System (INIS)

    Chen Rusong

    1994-11-01

    The experimental studies on the biological effects with internal contamination of radionuclides (Such as Uranium, Plutonium, Tritium, Iodine, Radon and its products, etc.) in the Chinese nuclear industry were summarized systematically. In these studies some institutes in the nuclear industry system and other relevant units in China were involved. The review was carried out in both stochastic and deterministic effects, and focused on the dose-effect relationship. The research work showed that great progress for the experimental studies on biological effects with internal irradiation has been made in China. There is a definite characteristic in a certain extent. It makes contribution to develop the production of nuclear industry and the construction of national economy. Several constructive suggestions of prospects for the work in future were proposed and it will make an attention in the field of radiation protection at home and abroad

  13. Effect of biologic therapy on radiological progression in rheumatoid arthritis: what does it add to methotrexate?

    Directory of Open Access Journals (Sweden)

    Jones G

    2012-07-01

    Full Text Available Graeme Jones, Erica Darian-Smith, Michael Kwok, Tania WinzenbergMenzies Research Institute, University of Tasmania, Tasmania, AustraliaAbstract: There have been substantial advances in the treatment of rheumatoid arthritis in recent years. Traditional disease-modifying antirheumatic drugs (DMARDs have been shown to have small effects on the progression of radiographic damage. This quantitative overview summarizes the evidence for biologic DMARDS and radiographic damage either alone or in combination with methotrexate. Two outcomes were used (standardized mean difference and odds of progression. A total of 21 trials were identified of which 18 had useable data. For biologic monotherapy, tocilizumab, adalimumab, and etanercept were significantly better than methotrexate, with tocilizumab ranking first in both outcomes while golimumab was ineffective in both outcomes. For a biologic in combination with methotrexate compared with methotrexate alone, most therapies studied (etanercept, adalimumab, infliximab, certolizumab, tocilizumab, and rituximab were effective at slowing X-ray progression using either outcome, with infliximab ranking first in both outcomes. The exceptions to this were golimumab (no effect on standardized mean difference and abatacept (no effect on odds of progression. This effect was additional to methotrexate; thus, the overall benefit is moderate to large in magnitude, which is clearly of major clinical significance for sufferers of rheumatoid arthritis and supports the use of biologic DMARDs in those with a poor disease prognosis.Keywords: rheumatoid, trials, meta-analysis, radiographs, biologic, disease-modifying antirheumatic drugs, DMARDs

  14. Future development of biological understanding of radiation protection: implications of nonstochastic effects

    International Nuclear Information System (INIS)

    Hahn, F.F.; McClellan, R.O.; Boecker, B.B.; Muggenburg, B.A.

    1988-01-01

    Radiation-protection standards are based on minimizing or preventing biological effects in exposed populations. Radiation-induced biological effects can be classified as stochastic--malignant and hereditary diseases for which the probability of an effect occurring is a function of dose without threshold--and nonstochastic--inflammatory and degenerative diseases for which the severity and frequency of the effect varies with the dose and for which a threshold is present. The current International Commission on Radiation Protection (ICRP) approach for setting limits for intakes of radionuclides by workers, which accounts for doses to significantly exposed organs of the body, is based on limitation of stochastic effects in most situations. When setting exposure limits, nonstochastic effects are generally considered to be unlikely at the limits for stochastic effects. In some situations, limits based on prevention of nonstochastic effects are lower than for stochastic effects. This review considers the threshold radiation doses for thyroid, bone, liver and lung and their relationship to the limits recommended by the ICRP and the cancer risks at the limits. This review indicates that the threshold dose for nonstochastic effects in thyroid and lung is much above the dose limit as advocated by ICRP. The threshold dose for nonstochastic effects in bone and liver is much closer to the dose limit, but protection from nonstochastic effects should still be afforded by the dose limits

  15. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  16. The biological effects of radium-224 injected into dogs

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Hahn, F.F.; Boecker, B.B.

    1996-01-01

    A life-span study was conducted in 128 beagle dogs to determine the biological effects of intravenously injected 224 Ra chloride. The 224 Ra chloride was prepared by the same method used for intravenous injections in humans who were treated for ankylosing spondylitis and tuberculosis. Thus the results obtained from dogs can be compared directly to the population of treated humans, both for the elucidation of the effect of exposure rate and for comparison with other radionuclides for which data for humans are unavailable. Using equal numbers of males and females, the dogs were injected with one of four levels of 224 Ra resulting in initial body burdens of approximately 13, 40, 120 or 350 kBq of 224 Ra kg -1 body mass. A control group of dogs was injected with diluent only. All dogs were divided further into three groups for which the amount of injected 224 Ra (half-life of 3.62 days) or diluent was given in a single injection or divided equally into 10 or 50 weekly injections. As a result of these three injection schedules, the accumulation of dose from the injected 224 Ra was distributed over approximately 1, 3 or 12 months. Each injection schedule included four different injection levels resulting in average absorbed α-particle doses to bone of 0.1, 0.3, 1 and 3 Gy, respectively. The primary early effect observed was a hematological dyscrasia in the dogs receiving either of the two highest injection levels. The effect was most severe in the dogs receiving a single injection of 224 Ra and resulted in the death of three dogs injected at the highest level. The late-occurring biological effects were tumors. Bone tumors were the most common followed by tumors in the nasal mucosa. 52 refs., 8 figs., 8 tabs

  17. Stigmatized biologies: Examining the cumulative effects of oral health disparities for Mexican American farmworker children.

    Science.gov (United States)

    Horton, Sarah; Barker, Judith C

    2010-06-01

    Severe early childhood caries (ECC) can leave lasting effects on children's physical development, including malformed oral arches and crooked permanent dentition. This article examines the way that the ECC of Mexican American farmworker children in the United States sets them up for lasting dental problems and social stigma as young adults. We examine the role of dietary and environmental factors in contributing to what we call "stigmatized biologies," and that of market-based dental public health insurance systems in cementing their enduring effects. We adapt Margaret Lock's term, local biology, to illustrate the way that biology differs not only because of culture, diet, and environment but also because of disparities in insurance coverage. By showing the long-term effects of ECC and disparate dental treatment on farmworker adults, we show how the interaction of immigrant caregiving practices and underinsurance can having lasting social effects. An examination of the long-term effects of farmworker children's ECC illustrates the ways that market-based health care systems can create embodied differences that in turn reproduce a system of social inequality.

  18. Biological effects of ionizing radiations. Radiological accident from Goiania, GO, Brazil

    International Nuclear Information System (INIS)

    Okuno, Emico

    2013-01-01

    This article presents the fundaments of radiation physics, the natural and artificial sources, biological effects, radiation protection. We also examine the sequence of events that resulted in Goiania accident with a source of caesium-137 from abandoned radiotherapy equipment and its terrible consequences. (author)

  19. Using Nonfiction Scientific Literature for Conservation Biology Education: The "Tigerland" Effect

    Science.gov (United States)

    Neff, Paula Kleintjes; Weiss, Nicole M.; Middlesworth, Laura; Wierich, Joseph; Beilke, Elizabeth; Lee, Jacqueline; Rohlinger, Spencer; Pletzer, Joshua

    2017-01-01

    Despite the volume of research published and pedagogy practiced in conservation biology, there is little assessment of the effectiveness of pedagogical techniques for improving undergraduate conservation literacy and student engagement. We evaluated student responses (2009-2011) to reading "Tigerland and Other Unintended Destinations" by…

  20. Research progress on space radiation biology

    International Nuclear Information System (INIS)

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  1. Analytical and compositional aspects of isoflavones in food and their biological effects

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Kulling, Sabine E.; Schwartz, Heidi

    2009-01-01

    , age, gender, background diet, food matrix, and the chemical nature of the IFs on the metabolism of IFs are described. Potential mechanisms by which IFs may exert their actions are reviewed, and genetic polymorphism as determinants of biological response to soy IFs is discussed. The effects of IFs......This paper provides an overview of analytical techniques used to determine isoflavones (IFs) in foods and biological fluids with main emphasis on sample preparation methods. Factors influencing the content of IFs in food including processing and natural variability are summarized and an insight...

  2. Application of magnetic resonance imaging and spectroscopy in studying the biological effects of manufactured nanoparticles

    International Nuclear Information System (INIS)

    Lei Hao; Wei Li; Liu Maili

    2006-01-01

    With the rapid development of nanoscience and nanotechnology in recent years, growing research interest and efforts have been directed to study the biological effects of manufactured nanoparticles and substances alike. Despite the fact that significant progress has been made, this is still largely an uncharted field. Any advances in this field would certainly require thorough multi-disciplinary collaboration, in which the expertise and tools in nanoscience/nanotechnoloogy, physics, chemistry and biomedicine have to be combined. Due to their wide range of applications in physics, chemistry and biomedicine, magnetic resonance (MR) imaging and spectroscopy are among the most important and powerful research tools currently in use, mainly because these techniques can be used in situ and noninvasively to acquire dynamic and real-time information in various samples ranging from protein solution to the human brain. In this paper, the application of MR imaging and spectroscopy in studying the biological effects of manufactured nanoparticles is discussed. It is expected that these techniques will play important roles in 1) detecting the presence of nanoparticles in biological tissues and in vivo, 2) studying the interactions between the nanoparticles and biomolecules and 3) investigating the metabonomic aspect of the biological effects of nanoparticles. (authors)

  3. Biological effects of 2450 MHZ microwave radiation on Raji-Cell in vitro

    International Nuclear Information System (INIS)

    Tan Ming; Zhang Mengdan; Xu Hao.

    1988-01-01

    A water circulating microwave exposure system designed by the authors was used to investigate the thermal and nonthermal biological effects at different power density (1.0mw/cm 2 , 3.9mw/cm 2 , 6.2mw/cm 2 , 8.3mw/cm 2 , 10.5mw/cm 2 ). The results show that the growth of Raji-Cell is inhibited significantly by microwave exposure in 8.3 mw/cm 2 and 10.5 mw/cm 2 groups in temperature controlled test (below 37.0 deg C). It shows that while the growth curve goes down, the rate of inhibition and time of generation increase. The degree of inhibition would increase when the medium temperature was not controlled. And, the mechanisms of thermal and nonthermal biological effects were discussed

  4. Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings

    Directory of Open Access Journals (Sweden)

    Yu Julia X

    2011-05-01

    Full Text Available Abstract Background Metal oxides in nanoparticle form such as zinc oxide and titanium dioxide now appear on the ingredient lists of household products as common and diverse as cosmetics, sunscreens, toothpaste, and medicine. Previous studies of zinc oxide and titanium dioxide in non-nanoparticle format using animals have found few adverse effects. This has led the FDA to classify zinc oxide as GRAS (generally recognized as safe for use as a food additive. However, there is no regulation specific for the use of these chemicals in nanoparticle format. Recent studies, however, have begun to raise concerns over the pervasive use of these compounds in nanoparticle forms. Unfortunately, there is a lack of easily-adaptable screening methods that would allow for the detection of their biological effects. Results We adapted two image-based assays, a fluorescence resonance energy transfer-based caspase activation assay and a green fluorescent protein coupled-LC3 assay, to test for the biological effects of different nanoparticles in a high-throughput format. We show that zinc oxide nanoparticles are cytotoxic. We also show that titanium dioxide nanoparticles are highly effective in inducing autophagy, a cellular disposal mechanism that is often activated when the cell is under stress. Conclusion We suggest that these image-based assays provide a method of screening for the biological effects of similar compounds that is both efficient and sensitive as well as do not involve the use of animals.

  5. A literature survey of the biological effects and mechanics of electromagnetic radiation

    International Nuclear Information System (INIS)

    Zeh, K.A.

    1985-01-01

    The following report discusses the very controversial subject of electromagnetic interaction with the human body. The project was undertaken in the form of a literature survey to investigate the biological mechanisms responsible for the interaction, the theoretical models and associated mathematical techniques required to model the human body, the resulting energy deposition in the human and the factors which effect this. It was established that at present the most realistic model of man can be obtained using a block model and moment method technique with improved methods such as conjugate gradients or band approximation for the necessary matrix inversion. The impedance method of modelling could be very promising for future research. From the literature studied on biological effects no scientific evidence was found which definitely proves or disproves hazardous effects exist at low field intensities ( -2 ). The testes and the lens of the eye can be harmed, however, if the intensity is sufficient to cause a temperature rise of 1 degree Celsius in these organs

  6. Development of tools for integrated monitoring and assessment of hazardous substances and their biological effects in the Baltic Sea.

    Science.gov (United States)

    Lehtonen, Kari K; Sundelin, Brita; Lang, Thomas; Strand, Jakob

    2014-02-01

    The need to develop biological effects monitoring to facilitate a reliable assessment of hazardous substances has been emphasized in the Baltic Sea Action Plan of the Helsinki Commission. An integrated chemical-biological approach is vitally important for the understanding and proper assessment of anthropogenic pressures and their effects on the Baltic Sea. Such an approach is also necessary for prudent management aiming at safeguarding the sustainable use of ecosystem goods and Services. The BEAST project (Biological Effects of Anthropogenic Chemical Stress: Tools for the Assessment of Ecosystem Health) set out to address this topic within the BONUS Programme. BEAST generated a large amount of quality-assured data on several biological effects parameters (biomarkers) in various marine species in different sub-regions of the Baltic Sea. New indicators (biological response measurement methods) and management tools (integrated indices) with regard to the integrated monitoring approach were suggested.

  7. Effectiveness of biological surrogates for predicting patterns of marine biodiversity: a global meta-analysis.

    Directory of Open Access Journals (Sweden)

    Camille Mellin

    Full Text Available The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P and as the predictability of targets using surrogates (R(2. A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R(2. The type of surrogate used (higher-taxa, cross-taxa or subset taxa was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R(2, with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a <10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.

  8. Inquiry-based training improves teaching effectiveness of biology teaching assistants

    Science.gov (United States)

    Hughes, P. William; Ellefson, Michelle R.

    2013-01-01

    Graduate teaching assistants (GTAs) are used extensively as undergraduate science lab instructors at universities, yet they often have having minimal instructional training and little is known about effective training methods. This blind randomized control trial study assessed the impact of two training regimens on GTA teaching effectiveness. GTAs teaching undergraduate biology labs (n = 52) completed five hours of training in either inquiry-based learning pedagogy or general instructional “best practices”. GTA teaching effectiveness was evaluated using: (1) a nine-factor student evaluation of educational quality; (2) a six-factor questionnaire for student learning; and (3) course grades. Ratings from both GTAs and undergraduates indicated that indicated that the inquiry-based learning pedagogy training has a positive effect on GTA teaching effectiveness. PMID:24147138

  9. Biological effects of particles from the paris subway system.

    Science.gov (United States)

    Bachoual, Rafik; Boczkowski, Jorge; Goven, Delphine; Amara, Nadia; Tabet, Lyes; On, Dinhill; Leçon-Malas, Véronique; Aubier, Michel; Lanone, Sophie

    2007-10-01

    Particulate matter (PM) from atmospheric pollution can easily deposit in the lungs and induce recruitment of inflammatory cells, a source of inflammatory cytokines, oxidants, and matrix metalloproteases (MMPs), which are important players in lung structural homeostasis. In many large cities, the subway system is a potent source of PM emission, but little is known about the biological effects of PM from this source. We performed a comprehensive study to evaluate the biological effects of PM sampled at two sites (RER and Metro) in the Paris subway system. Murine macrophages (RAW 264.7) and C57Bl/6 mice, respectively, were exposed to 0.01-10 microg/cm2 and 5-100 microg/mouse subway PM or reference materials [carbon black (CB), titanium dioxide (TiO2), or diesel exhaust particles (DEPs)]. We analyzed cell viability, production of cellular and lung proinflammatory cytokines [tumor necrosis factor alpha (TNFalpha), macrophage inflammatory protein (MIP-2), KC (the murin analog of interleukin-8), and granulocyte macrophage-colony stimulating factor (GM-CSF)], and mRNA or protein expression of MMP-2, -9, and -12 and heme oxygenase-1 (HO-1). Deferoxamine and polymixin B were used to evaluate the roles of iron and endotoxin, respectively. Noncytotoxic concentrations of subway PM (but not CB, TiO2, or DEPs) induced a time- and dose-dependent increase in TNFalpha and MIP-2 production by RAW 264.7 cells, in a manner involving, at least in part, PM iron content (34% inhibition of TNF production 8 h after stimulation of RAW 264.7 cells with 10 microg/cm2 RER particles pretreated with deferoxamine). Similar increased cytokine production was transiently observed in vivo in mice and was accompanied by an increased neutrophil cellularity of bronchoalveolar lavage (84.83+/-0.98% of polymorphonuclear neutrophils for RER-treated mice after 24 h vs 7.33+/-0.99% for vehicle-treated animals). Subway PM induced an increased expression of MMP-12 and HO-1 both in vitro and in vivo. PM from the

  10. Health-related biological effects of electric, magnetic, and electro-magnetic fields with special reference to nonthermal effects

    International Nuclear Information System (INIS)

    Stevenson, A.F.G.

    1993-02-01

    This expert report is a supplement to the report by L. von Klitzing (The actions and effects of electric, magnetic, and electro-magnetic fields in man with special reference to athermal effects) and concerns in particular the biological effects on cationic homeostasis and cell regulation with special reference to calcium and the effects on the pineal gland. The report concludes with statements on teratogenicity, concerogenicity, mutagenicity and a bibliography of literature. (VHE) [de

  11. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    International Nuclear Information System (INIS)

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  12. Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins

    International Nuclear Information System (INIS)

    Mei, Q.; Chen, Y.; Hong, J.; Chen, H.; Ding, X.; Yin, Y.; Koh, K.; Lee, J.

    2012-01-01

    Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18 % and 5 %, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies. (author)

  13. The College Student and Marijuana: Research Findings Concerning Adverse Biological and Psychological Effects.

    Science.gov (United States)

    Nicholi, Armand M., Jr.

    1983-01-01

    This paper focuses on current knowledge about adverse biological and psychological affects of marijuana use, with special reference to risks for college students. Short-term effects on intellectual functioning and perceptual-motor coordination and long-term effects on reproduction and motivation are highlighted. (PP)

  14. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits

    Directory of Open Access Journals (Sweden)

    Laura Mandolesi

    2018-04-01

    Full Text Available Much evidence shows that physical exercise (PE is a strong gene modulator that induces structural and functional changes in the brain, determining enormous benefit on both cognitive functioning and wellbeing. PE is also a protective factor for neurodegeneration. However, it is unclear if such protection is granted through modifications to the biological mechanisms underlying neurodegeneration or through better compensation against attacks. This concise review addresses the biological and psychological positive effects of PE describing the results obtained on brain plasticity and epigenetic mechanisms in animal and human studies, in order to clarify how to maximize the positive effects of PE while avoiding negative consequences, as in the case of exercise addiction.

  15. Effects of microwave heating on the thermal states of biological tissues

    African Journals Online (AJOL)

    Effects of microwave heating on the thermal states of biological tissues. Nabil TM El-dabe, Mona AA Mohamed, Asma F El-Sayed. Abstract. A mathematical analysis of microwave heating equations in one-dimensional multi-layer model has been discussed. Maxwell's equations and transient bioheat transfer equation were ...

  16. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    Science.gov (United States)

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  17. Effects of Biologic Agents in Patients with Rheumatoid Arthritis and Amyloidosis Treated with Hemodialysis.

    Science.gov (United States)

    Kuroda, Takeshi; Tanabe, Naohito; Nozawa, Yukiko; Sato, Hiroe; Nakatsue, Takeshi; Kobayashi, Daisuke; Wada, Yoko; Saeki, Takako; Nakano, Masaaki; Narita, Ichiei

    Objective Our objective was to examine the safety and effects of therapy with biologics on the prognosis of rheumatoid arthritis (RA) patients with reactive amyloid A (AA) amyloidosis on hemodialysis (HD). Methods Twenty-eight patients with an established diagnosis of reactive AA amyloidosis participated in the study. The survival was calculated from the date of HD initiation until the time of death, or up to end of June 2015 for the patients who were still alive. HD initiation was according to the program of HD initiation for systemic amyloidosis patients associated with RA. Results Ten patients had been treated with biologics before HD initiation for a mean of 28.2 months (biologic group), while 18 had not (non-biologic group). HD was initiated in patients with similar characteristics except for the tender joint count, swollen joint count, and disease activity score (DAS)28-C-reactive protein (CRP). History of biologics showed that etanercept was frequently used for 8 patients as the first biologic. There was no significant difference in the mortality rate according to a Kaplan-Meier analysis (p=0.939) and or associated risk of death in an age-adjusted Cox proportional hazards model (p=0.758) between both groups. Infections were significantly more frequent causes of death in the biologic group than in the non-biologic group (p=0.021). However, treatment with biologics improved the DAS28-CRP score (p=0.004). Conclusion Under the limited conditions of AA amyloidosis treated with HD, the use of biologics might affect infection and thus may not improve the prognosis. Strict infection control is necessary for the use of biologics with HD to improve the prognosis.

  18. A study on the ranges of low energy ions in biological samples and its mechanism of biological effects

    International Nuclear Information System (INIS)

    Lu Ting; Xie Liqing; Li Junping; Xia Ji

    1993-01-01

    The seeds of wheat and bean are irradiated by iron ion beam with energy 100 keV. The RBS spectra of the samples are observed and the ranges and distributions of the iron ions in the wheat and bean are calculated theoretically by means of Monte Carlo method. The results of theory and experiment are compared and the mechanism of biological effects induced by ion is discussed

  19. METHODS OF ASSESSMENT OF THE RELATIVE BIOLOGICAL EFFECTIVENESS OF NEUTRONS IN NEUTRON THERAPY

    Directory of Open Access Journals (Sweden)

    V. A. Lisin

    2017-01-01

    Full Text Available The relative biological effectiveness (RBE of fast neutrons is an important factor influencing the quality of neutron therapy therefore, the assessment of RBE is of great importance. Experimental and clinical studies as well as different mathematical and radiobiological models are used for assessing RBE. Research is conducted for neutron sources differing in the method of producing particles, energy and energy spectrum. Purpose: to find and analyze the dose-dependence of fast neutron RBE in neutron therapy using the U-120 cyclotron and NG-12I generator. Material and methods: The optimal method for assessing the relative biological effectiveness of neutrons for neutron therapy was described. To analyze the dependence of the RBE on neutron dose, the multi-target model of cell survival was applied. Results: The dependence of the RBE of neutrons produced from the U-120 cyclotron and NG-120 generator on the dose level was found for a single irradiation of biological objects. It was shown that the function of neutron dose was consistent with similar dependencies found by other authors in the experimental and clinical studies.

  20. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  1. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  2. Gender Inequality in Biology Classes in China and Its Effects on Students' Short-Term Outcomes

    Science.gov (United States)

    Liu, Ning; Neuhaus, Birgit

    2014-01-01

    This study investigated gender inequality in biology lessons and analysed the effects of the observed inequality on students' short-term knowledge achievement, situational interest and students' evaluation of teaching (SET). Twenty-two biology teachers and 803 7th-grade students from rural and urban classrooms in China participated in the study.…

  3. Biological radioprotector

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  4. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference. Refs, figs, tabs.

  5. Chemical and biological effects of β-decay and inner shell ionization in biomolecules

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1979-01-01

    Tritium and iodine-125, and the Auger effect either caused by the EC-decay of 125 I or by the inner shell vacancy created selectively by mono-energetic X-ray are reviewed in this paper. The specifically labelled precursors to bound 3 H large biomolecules were prepared by conventional syntheses, and then incorporated into the DNA of proliferating cells. The effects like DNA strand breaks or mutational changes are likely to be affected by the localization of the carbonium ions in biological molecules. In contrast to lethality, it was demonstrated that 3 H transmutation effect contributed to DNA strand breaks and played a key role in producing genetic effects. The decay of 3 H in uracil-5- 3 H in the DNA of E. coli was about 7 times as mutagenic as that in uracil-6- 3 H, and 500-fold greater in bacteriophage S13. Drastic chemical consequences are associated with the Auger effect occurring as a possible relaxation process whenever inner shell ionization is initiated. When the vacancy is filled by an electron from an outer shell, the bond energy difference between inner shell electron and outer shell electron is released either in the form of an X-ray fluorescence photon or it can be transmitted to another outer electron which is then ejected. The radioactive decay in specifically labelled biomolecules or the inner shell ionization in heavy constituent atoms caused by resonant X-ray are relevant to a) selective microsurgery in biological macromolecules for the correlation of biological and chemical functions, b) radiotoxicity estimation, and c) radiation therapy. (Yamashita, S.)

  6. Final report on 'biological effects of tritium as a basis of research and development in nuclear fusion'

    International Nuclear Information System (INIS)

    1987-12-01

    The National Institute of Radiological Sciences, Japan, has undertaken a special study of ''biological effects of tritium as a basis of research and development in nuclear fusion'' over a 5-year period from April 1981 through March 1986. This is a final report, covering incorporation and metabolism of tritium, physical, chemical, and cellular effects of tritium, tritium damage to the mammalian tissue, and human exposure to tritium. The report is organized into five chapters, including ''Study of incorporation of tritium into the living body and its in vivo behavior''; ''Physical and chemical studies for the determination of relative biological effectiveness''; ''Analytical study on biological effects of tritium in cultured mammalian cells''; ''Study of tritium effects on the mammalian tissue, germ cells, and cell transformation''; and ''Changes in the hemopoietic stem cells and lymphocyte subsets in humans after exposure to some internal emitters''. (Namekawa, K.)

  7. Biological effects of transuranic elements in the environment: human effects and risk estimates

    International Nuclear Information System (INIS)

    Thompson, R.C.; Wachholz, B.W.

    1980-01-01

    The potential for human effects from environmentally dispersed transuranic elements is briefly reviewed. Inhalation of transuranics suspended in air and ingestion of transuranics deposited on or incorporated in foodstuffs are the significant routes of entry. Inhalation is probably the more important of these routes because gastrointestinal absorption of ingested transuranics is so inefficient. Major uncertainties are those concerned with substantially enhanced absorption by the very young and the possibility of increased availability as transuranics become incorporated in biological food chains

  8. PENGEMBANGAN PENUNTUN PRAKTIKUM BIOLOGI UMUM BERBASIS INKUIRI TERBIMBING MAHASISWA BIOLOGI STKIP PAYAKUMBUH

    Directory of Open Access Journals (Sweden)

    Sri Nengsi

    2016-05-01

    Full Text Available One of supporting the implementation of the practicum is the practical guidence. To increase motivation, activities, and learning outcomes it is used inquiry based practical guide for students are invited to experiment with doing practical activities with scientific. The purpose of this study was to reveal the validity, practicalities, and guiding the resulting effectiveness of guidence inquiry based on the general biology lesson for students of biology education STKIP Payakumbuh. This research is the development of Plomp development model which consists of three phases: problem identification and needs analysis, design development and implementation, evaluation. The results of this study indicate that the development of practical guidance guided inquiry based general biology for students of biology education STKIP Payakumbuh valid, practically and effectively.

  9. Dosimetry and biological effects of fast neutrons

    International Nuclear Information System (INIS)

    Zoetelief, J.

    1981-01-01

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  10. Physico-chemical properties and biological effects of diesel and biomass particles

    KAUST Repository

    Longhin, Eleonora

    2016-05-15

    © 2016 Elsevier Ltd. Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  11. Effective automated feature construction and selection for classification of biological sequences.

    Directory of Open Access Journals (Sweden)

    Uday Kamath

    Full Text Available Many open problems in bioinformatics involve elucidating underlying functional signals in biological sequences. DNA sequences, in particular, are characterized by rich architectures in which functional signals are increasingly found to combine local and distal interactions at the nucleotide level. Problems of interest include detection of regulatory regions, splice sites, exons, hypersensitive sites, and more. These problems naturally lend themselves to formulation as classification problems in machine learning. When classification is based on features extracted from the sequences under investigation, success is critically dependent on the chosen set of features.We present an algorithmic framework (EFFECT for automated detection of functional signals in biological sequences. We focus here on classification problems involving DNA sequences which state-of-the-art work in machine learning shows to be challenging and involve complex combinations of local and distal features. EFFECT uses a two-stage process to first construct a set of candidate sequence-based features and then select a most effective subset for the classification task at hand. Both stages make heavy use of evolutionary algorithms to efficiently guide the search towards informative features capable of discriminating between sequences that contain a particular functional signal and those that do not.To demonstrate its generality, EFFECT is applied to three separate problems of importance in DNA research: the recognition of hypersensitive sites, splice sites, and ALU sites. Comparisons with state-of-the-art algorithms show that the framework is both general and powerful. In addition, a detailed analysis of the constructed features shows that they contain valuable biological information about DNA architecture, allowing biologists and other researchers to directly inspect the features and potentially use the insights obtained to assist wet-laboratory studies on retainment or modification

  12. Correlation between biological activity and electron transferring of bovine liver catalase: Osmolytes effects

    International Nuclear Information System (INIS)

    Tehrani, H. Sepasi; Moosavi-Movahedi, A.A.; Ghourchian, H.

    2013-01-01

    Highlights: • Proline increases ET in Bovine Liver Catalase (BLC) whereas histidine decreases it. • Proline also increased the biological activity, whereas histidine decreased it. • Electron transferring and biological activity for BLC are directly correlated. • Proline causes favorable ET for BLC shown by positive E 1/2 (E°′) and negative ΔG. • Histidine makes ET unfavorable for BLC, manifested by E 1/2 (E°′) 0. -- Abstract: Catalase is a crucial antioxidant enzyme that protects life against detrimental effects of H 2 O 2 by disproportionating it into water and molecular oxygen. Effect of proline as a compatible and histidine as a non compatible osmolyte on the electron transferring and midpoint potential of catalase has been investigated. Proline increases the midpoint potential (ΔE m > 0), therefore causing the ΔG ET to be less positive and making the electron transfer reaction more facile whereas histidine decreases the E m (ΔE m ET , thereby rendering the electron transfer reaction less efficient. These results indicate the inhibitory effect of histidine evident by a −37% decrease in the cathodic peak current compared to 16% increase in the case of proline indicative of activation. The insight paves the tedious way towards our ultimate goal of elucidating a correlation between biological activity and electron transferring

  13. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    Science.gov (United States)

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary

  14. Effectiveness of Biology-Based Methods for Inhibiting Orthodontic Tooth Movement. A Systematic Review.

    Science.gov (United States)

    Cadenas de Llano-Pérula, M; Yañez-Vico, R M; Solano-Reina, E; Palma-Fernandez, J C; Iglesias-Linares, A

    Several experimental studies in the literature have tested different biology-based methods for inhibiting or decreasing orthodontic tooth movement (OTM) in humans. This systematic review investigated the effects of these interventions on the rate of tooth movement. Electronic [MedLine; SCOPUS; Cochrane Library; OpenGrey;Web of Science] and manual searches were conducted up to January 26th, 2016 in order to identify publications of clinical trials that compared the decreasing or inhibiting effects of different biology-based methods over OTM in humans. A primary outcome (rate of OTM deceleration/inhibition) and a number of secondary outcomes were examined (clinical applicability, orthodontic force used, possible side effects). Two reviewers selected the studies complying with the eligibility criteria (PICO format) and assessed risk of bias [Cochrane Collaboration's tool]. Data collection and analysis were performed following the Cochrane recommendations. From the initial electronic search, 3726 articles were retrieved and 5 studies were finally included. Two types of biology-based techniques used to reduce the rate of OTM in humans were described: pharmacological and low-level laser therapy. In the first group, human Relaxin was compared to a placebo and administered orally. It was described as having no effect on the inhibition of OTM in humans after 32 days, while the drug tenoxicam, injected locally, inhibited the rate of OTM by up to 10% in humans after 42 days. In the second group, no statistically significant differences were reported, compared to placebo, for the rate of inhibition of OTM in humans after 90 days of observation when a 860 nm continuous wave GaAlA slow-level laser was used. The currently available data do not allow us to draw definitive conclusions about the use of various pharmacological substances and biology-based therapies in humans able to inhibit or decrease the OTM rate. There is an urgent need for more sound well-designed randomized

  15. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Talita Roberta Ferreira Borges Silva

    2016-04-01

    Full Text Available The fall armyworm Spodoptera frugiperda (J.E. Smith (Lepidoptera: Noctuidae is a major pest of maize crops in Brazil. The effects of plant metabolites on the biology and behavior of insects is little studied. The aim of the study was to evaluate the activity of rutin on the biology of the S. frugiperda by using artificial diets containing rutin. The study evaluated four treatments: regular diet (control group and diets containing 1.0, 2.0 and 3.0 mg g-1 of rutin. The following biological variables parameters of the larvae were evaluated daily: development time (days, larval and pupal weight (g and viability (%, adult longevity and total life cycle (days. A completely randomized experimental design was used with 25 replication. The rutin flavonoid negatively affected the biology of S. frugiperda by prolonging the larval development time, reducing the weight of larvae and pupae and decreasing the viability of the pupae. The addition of different concentrations of rutin prolonged the S. frugiperda life cycle. The use of plant with insecticidal activity has the potential with strategy in IPM.

  16. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    Science.gov (United States)

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  17. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Hori, Naohiko; Torii, Yoshiya; Horiguchi, Yoji

    2002-05-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without 10 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of 10 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99±0.24, 3.04±0.19 and 1.43±0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50±0.32, 2.34±0.30 and 2.17±0.28 for ENB, TNB-1 and TNB-2, respectively. The biological effectiveness factor values of the neutron and photon components were 1.22±0.16, 1.23±0.16 and 1.21±0.16, respectively. The depth function of biological effectiveness factor in water phantom and the difference in biological effectiveness factor among boron compounds were also determined. The experimental determination of biological effectiveness factor outlined in this paper is applicable to the dose calculation for each dose component of the neutron beams and contribute to an accurate biological effectiveness factor as comparison with a neutron beam at a different facility employed in ongoing and planned BNCT clinical trials. (author)

  18. Biological effects of direct and indirect manipulation of the fascial system. Narrative review.

    Science.gov (United States)

    Parravicini, Giovanni; Bergna, Andrea

    2017-04-01

    Osteopathic Manipulative Treatment (OMT) is effective in improving function, movement and restoring pain conditions. Despite clinical results, the mechanisms of how OMT achieves its' effects remain unclear. The fascial system is described as a tensional network that envelops the human body. Direct or indirect manipulations of the fascial system are a distinctive part of OMT. This review describes the biological effects of direct and indirect manipulation of the fascial system. Literature search was performed in February 2016 in the electronic databases: Cochrane, Medline, Scopus, Ostmed, Pedro and authors' publications relative to Fascia Research Congress Website. Manipulation of the fascial system seems to interfere with some cellular processes providing various pro-inflammatory and anti-inflammatory cells and molecules. Despite growing research in the osteopathic field, biological effects of direct or indirect manipulation of the fascial system are not conclusive. To elevate manual medicine as a primary intervention in clinical settings, it's necessary to clarify how OMT modalities work in order to underpin their clinical efficacies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Behavioral and Biological Effects of Resonant Electromagnetic Absorption in Rats.

    Science.gov (United States)

    1976-11-01

    for 23-550 MHz, biological phantom materials to simulate tissue properties, monopole -above-ground radiation chamber, design of a waveguide slot array...Resonant Electromagnetic Power Absorption in Rats" L T OF FTCTIF S A,’L i .LIS SFigure Pa 1 A photograiph of the monopole -above-gruund radiation...and mice without ground effects (L/2b = 3.25 where 21Tb is the "average" circumference of the animals) ........ .................... ... 20 8

  20. Relative biological effectiveness of 160 MeV protons. II. Biological data and their interpretation in terms of microdosimetry

    International Nuclear Information System (INIS)

    Hall, E.J.; Kellerer, A.M.; Rossi, H.H.; Lam, Y.M.P.

    1978-01-01

    The radiobiological effectiveness of 160 MeV protons was measured relative to 60 Co γ rays using Chinese hamster cells cultured in vitro. Separate experiments were performed with cells irradiated in suspension, or attached to plastic tissue culture flasks. Proton irradiations were performed in the incident plateau of the depth dose profile and with the Bragg peak spread out to cover 10 cm. In all cases the relative biological effectiveness (RBE) for protons relative to gamma rays was 1.2 for doses in excess of about 200 rad. The attached cell experiments indicate an increasing RBE at low doses, which is consistent with the microdosimetric measurements

  1. Enhanced Biological Phosphorus Removal: Metabolic Insights and Salinity Effects

    OpenAIRE

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison to physical and chemical phosphorus removal processes, the biological process has several advantages such as high removal efficiency, low cost, and no chemical sludge production, but disturbances an...

  2. Biological effects in lymphocytes irradiated with 99mTc: determination of the curve dose-response

    International Nuclear Information System (INIS)

    Oliveira, Romero Marcilio Barros Matias de

    2002-08-01

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with 99m Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with 99m Tc were used, allowing the irradiation of blood with different administered activities of 99m Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with 99m Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with 99m Tc was best fitted by the curve Y=(8,99 ±2,06) x 1- -4 + (1,24 ±0,62) x 10 -2 D + (5,67 ± 0,64) x 10 -2 D 2 . (author)

  3. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  4. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2016-01-01

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  5. To the problem of biological risk

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.; Moskalev, Yu.I.

    1977-01-01

    Biological hazard of iodine-129 intake of the man organism is estimated. Data on the iodine-129 biological effect on men and animals are considered. Iodine-129 biological effect on a critical organ-man thyroid gland - as well as genetic danger of its intake by the man organism is also estimated

  6. Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Susanne Neugart

    2018-03-01

    Full Text Available Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold and decreased amounts of glucosinolates (up to 4.7-fold as well as phenolic compounds (up to 1.5-fold.

  7. Radiation biology. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Radiation biology (radiobiology) is the study of the action of ionizing radiations on living matter. This chapter gives an overview of the biological effects of ionizing radiation and discusses the physical, chemical and biological variables that affect dose response at the cellular, tissue and whole body levels at doses and dose rates relevant to diagnostic radiology.

  8. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.

    1965-01-01

    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  9. Health effects of low-level ionising radiation: biological basis for risk assessment

    International Nuclear Information System (INIS)

    Upton, A.C.

    1987-01-01

    The biological basis for risk assessment is discussed. The risks of carcinogenic effects, teratogenic effects, and genetic (heritable) effects are estimated to vary in proportion with the dose of radiation in the low-dose domain; however, the risks also appear to vary with the LET of the radiation, age at the time of irradiation, and other variables. Although the data suffice to place the risks in perspective with other hazards of modern life, further research to refine the reliability of the risk assessment is called for. (author)

  10. Investigating the Effect of Biological Crusts on Some Biological Properties of Soil (Case Study: Qare Qir Rangelands of Golestan Province

    Directory of Open Access Journals (Sweden)

    J. Kakeh

    2016-09-01

    Full Text Available Introduction: Physical and biological soil crusts are the principal types of soil crusts. Physical and biological soil crusts are distributed in arid, semi-arid and sub-humid regions which constitute over 40% of the earth terrestrial surface. Biological soil crusts (BSCs result from an intimate association between soil particles and cyanobacteria, algae, fungi, lichens and mosses in different proportions which live on the surface, or in the immediately uppermost millimeters of soil. Some of the functions that BSCs influences include: water absorption and retention, nutrient retention, Carbon and nitrogen fixation, biological activate and hydrologic Status. BSCs are important from the ecological view point and their effects on the environment, especially in rangeland, and desert ecosystems and this caused which researchers have a special attention to this component of the ecosystems more than before. Materials and Methods: This study carried out in the Qara Qir rangelands of Golestan province, northeast of Iran (37º15′ - 37º23′ N &54º33′ -54º39′ E, to investigate the effects of BSCs on some of soil biological properties. Four sites including with and without BSCs cover were selected. Soil biological properties such as microbial populations, soil respiration, microbial biomass carbon and nitrogen, as well as, other effective properties such asorganic carbon percent, total nitrogen, electrical conductivity, and available water content were measured in depths of 0-5 and 5-15 cm of soil with four replications. The gathered data were analyzed by nested plot, and the mean values were compared by Duncan test. Results and Discussion: The results showed that organic carbon and water content were higher at the surface under BSCs, followed by 5-15 cm soils under BSCs. Both soil depths of uncrusted soils showed substantially lower organic carbon and water content than the BSC-covered soils. Total nitrogen was far higher in BSC-encrusted surface

  11. The anti-tumor effect and biological activities of the extract JMM6 ...

    African Journals Online (AJOL)

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the ...

  12. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

    Science.gov (United States)

    Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J

    2013-01-01

    Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible. PMID:23610641

  13. Biological effects of radiation human health and safety

    International Nuclear Information System (INIS)

    1977-05-01

    The biological hazards of nuclear energy usage are a growing source of public concern. The medical profession may well be expected to contribute to public debate on the issue. This document, therefore, attempts a balanced review of the known and suspected human biological consequences of exposure to different types of ionizing radiation, emphasizing in particular the nuclear industry

  14. Effect of Gamma Rays on Some Biological performance of Chrysomya bezziana(VILL.)

    International Nuclear Information System (INIS)

    Al Seria, M. H.; Al Taweel, A.A.; Ahmed, A.M.; Al Izzi, M.A.J.

    2006-01-01

    The effect of different does of gamma rays on some biological performance of Old World Screwworm fly (OWSWF), Chrysomya bezziana exposed as pupae at different ages were investigated. Results reveealed that the ages of produced adults were effected significantly as the dose of gamma rays increased and the ages of irradiated pupae decreased While no effect was observed in sex ratio of emerged adults at any ages of irradiated pupae. The results have also showed that the female fecundity and percent of egg hatch were significantly effected as the dose of gamma ray increased for both type of mating investigated.

  15. Biological warfare, bioterrorism, and biocrime

    NARCIS (Netherlands)

    Jansen, H. J.; Breeveld, F. J.; Stijnis, C.; Grobusch, M. P.

    2014-01-01

    Biological weapons achieve their intended target effects through the infectivity of disease-causing infectious agents. The ability to use biological agents in warfare is prohibited by the Biological and Toxin Weapon Convention. Bioterrorism is defined as the deliberate release of viruses, bacteria

  16. Calculation of the biological effect of fractionated radiotherapy: the importance of radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Olsen, D.R.

    1995-01-01

    The total effect (TE) has been calculated for two different fractionation formalisms: the consecutive and repetitive fractionation mechanism, using a modified linear quadratic (LQ) model which includes the effect of apoptosis. For a given total dose, an increase in TE is seen when increasing the dose per fraction as well as the apoptotic fraction (F a ). Also, the TE increases with increasing α/β ratio (of the modified LQ model). The ratio of TE for tumour tissue and TE for late reacting tissue is calculated assuming the absence of apoptosis in late reacting tissue and a common value of α/β (of the modified LQ model). The biological effect ratio (BR) is higher for a large F a and low doses per fraction, than for large doses per fraction and a small F a . Assuming a consecutive fractionation mechanism, the TE formalism is unable to predict a log cell kill of more than 3 for β values of 0.010-0.028. It is less dependent on dose per fraction and F a than the repetitive fractionation mechanism. The biological effect ratio is only slightly higher than 1, and is less influenced by F a , dose per fraction and α/β ratio. A repetitive fractionation mechanism is also consistent with the preliminary results of published fractionation experiments. The calculations indicate that designing fractionation regimes for optimization of biological effect is a process where the role of apoptotic cell inactivation must be maximized, and where the influence of mitotic cell inactivation may be of less importance. (author)

  17. High school and college biology: A multi-level model of the effects of high school biology courses on student academic performance in introductory college biology courses

    Science.gov (United States)

    Loehr, John Francis

    The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.

  18. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  20. Glyphosate accumulation, translocation, and biological effects in Coffea arabica after single and multiple exposures

    DEFF Research Database (Denmark)

    Schrübbers, Lars Christoph; Valverde, Bernal E.; Strobel, Bjarne W.

    2016-01-01

    In perennial crops like coffee, glyphosate drift exposure can occur multiple times during its commercial life span. Due to limited glyphosate degradation in higher plants, a potential accumulation of glyphosate could lead to increased biological effects with increased exposure frequency....... In this study, we investigated glyphosate translocation over time, and its concentration and biological effects after single and multiple simulated spray-drift exposures. Additionally, shikimic acid/glyphosate ratios were used as biomarkers for glyphosate binding to its target enzyme.Four weeks after...... the exposure, glyphosate was continuously translocated. Shikimic acid levels were lin-ear correlated with glyphosate levels. After two months, however, glyphosate appeared to have reduced activity. In the greenhouse, multiple applications resulted in higher internal glyphosate concentrations.The time...

  1. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  2. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  3. Biological effects of ionizing radiation; Efectos biologicos de la radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Gisone, Pablo; Perez, Maria R [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  4. Far infrared radiation (FIR): its biological effects and medical applications.

    Science.gov (United States)

    Vatansever, Fatma; Hamblin, Michael R

    2012-11-01

    Far infrared (FIR) radiation (λ = 3-100 μm) is a subdivision of the electromagnetic spectrum that has been investigated for biological effects. The goal of this review is to cover the use of a further sub-division (3- 12 μm) of this waveband, that has been observed in both in vitro and in vivo studies, to stimulate cells and tissue, and is considered a promising treatment modality for certain medical conditions. Technological advances have provided new techniques for delivering FIR radiation to the human body. Specialty lamps and saunas, delivering pure FIR radiation (eliminating completely the near and mid infrared bands), have became safe, effective, and widely used sources to generate therapeutic effects. Fibers impregnated with FIR emitting ceramic nanoparticles and woven into fabrics, are being used as garments and wraps to generate FIR radiation, and attain health benefits from its effects.

  5. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  6. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium

    Science.gov (United States)

    Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju

    2016-09-01

    Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.

  7. Qualities of effective secondary science teachers: Perspectives of university biology students

    Science.gov (United States)

    McCall, Madelon J.

    This research was an attempt to hear the student voice concerning secondary science teacher effectiveness and to share that voice with those who impact the educational process. It was a snapshot of university freshmen biology students' opinions of the qualities of effective secondary science teachers based on their high school science experiences. The purpose of this study was to compile a list of effective secondary science teacher qualities as determined through a purposeful sampling of university second semester biology students and determine the role of the secondary science teacher in promoting interest and achievement in science, as well as the teacher's influence on a students' choice of a science career. The research was a mixed methods design using both quantitative and qualitative data obtained through the use of a 24 question electronic survey. There were 125 participants who provided information concerning their high school science teachers. Respondents provided information concerning the qualities of effective secondary science teachers and influences on the students' present career choice. The quantitative data was used to construct a hierarchy of qualities of effective secondary science teachers, divided into personal, professional, and classroom management qualities. The qualitative data was used to examine individual student responses to questions concerning secondary science teacher effectiveness and student career choice. The results of the research indicated that students highly value teachers who are both passionate about the subject taught and passionate about their students. High school science students prefer teachers who teach science in a way that is both interesting and relevant to the student. It was determined that the greatest influence on a secondary student's career choice came from family members and not from teachers. The secondary teacher's role was to recognize the student's interest in the career and provide encouragement

  8. Biological Maturity Status Strongly Intensifies the Relative Age Effect in Alpine Ski Racing.

    Directory of Open Access Journals (Sweden)

    Lisa Müller

    Full Text Available The relative age effect (RAE is a well-documented phenomenon in youth sports. This effect exists when the relative age quarter distribution of selected athletes shows a biased distribution with an over-representation of relatively older athletes. In alpine ski racing, it exists in all age categories (national youth levels up to World Cup. Studies so far could demonstrate that selected ski racers are relatively older, taller and heavier. It could be hypothesized that relatively younger athletes nearly only have a chance for selection if they are early maturing. However, surprisingly this influence of the biological maturity status on the RAE could not be proven, yet. Therefore, the aim of the present study was to investigate the influence of the biological maturity status on the RAE in dependence of the level of competition. The study investigated 372 elite youth ski racers: 234 provincial ski racers (P-SR; high level of competition and 137 national ski racers (N-SR; very high level of competition. Anthropometric characteristics were measured to calculate the age at peak height velocity (APHV as an indicator of the biological maturity status. A significant RAE was present among both P-SR and N-SR, with a larger effect size among the latter group. The N-SR significantly differed in APHV from the P-SR. The distribution of normal, early and late maturing athletes significantly differed from the expected normal distribution among the N-SR, not among the P-SR. Hardly any late maturing N-SR were present; 41.7% of the male and 34% of the female N-SR of the last relative age quarter were early maturing. These findings clearly demonstrate the significant influence of the biological maturity status on the selection process of youth alpine ski racing in dependence of the level of competition. Relatively younger athletes seem to have a chance of selection only if they are early maturing.

  9. Virtual lesions of the IFG abolish response facilitation for biological and non-biological cues

    Directory of Open Access Journals (Sweden)

    Roger D Newman-Norlund

    2010-03-01

    Full Text Available Humans are faster to perform a given action following observation of that same action. Converging evidence suggests that the human mirror neuron system (MNS plays an important role in this phenomenon. However, the specificity of the neural mechanisms governing this effect remain controversial. Specialist theories of imitation suggest that biological cues are maximally capable of eliciting imitative facilitation. Generalist models, on the other hand, posit a broader role for the MNS in linking visual stimuli with appropriate responses. In the present study, we investigated the validity of these two theoretical approaches by disrupting the left and right inferior frontal gyrus (IFG during the preparation of congruent (imitative and incongruent (complementary actions cued by either biological (hand or non-biological (static dot stimuli. Delivery of TMS over IFG abolished imitative response facilitation. Critically, this effect was identical whether actions were cued by biological or non-biological stimuli. This finding argues against theories of imitation in which biological stimuli are treated preferentially and stresses the notion of the IFG as a vital center of general perception-action coupling in the human brain.

  10. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  11. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  12. Biological indicators of radiation quality

    International Nuclear Information System (INIS)

    Bender, M.A.; Wong, R.M.A.

    1982-01-01

    The induction of many biological effects by high linear energy transfer (LET) radiation is strikingly different in one or two respects from the induction by acute low-LET radiation. If the acute low-LET dose-effect curve is of the usual quadratic form, it becomes linear as LET increases. In any case the linear slope increases as LET increases; that is, the relative biological effectiveness (RBE) increases. Both changes might be exploited as biological indicators of whether or not the recent recalculations of dose and of neutron contribution to dose at Hiroshima and Nagasaki seem consistent with the epidemiological observations. The biological end points that have been extensively studied in survivors include acute effects, growth and development after in utero or childhood exposure, genetic and cytogenetic effects in offspring, somatic chromosomal aberrations in survivors, and, of course, cancers, including leukemia. No significant indication among offspring of genetic or cytogenetic effects attributable to parental exposure has been found. Among the remaining end points, only the data on somatic chromosomal aberrations and on cancers appear robust enough to allow one to draw definite inferences by comparing experiences at the two cities

  13. A method for evaluation of UV and biologically effective exposures to plants

    International Nuclear Information System (INIS)

    Paris, A.V.; Southern Queensland Univ., Toowoomba, QLD; Wong, J.C.F.; Galea, V.

    1996-01-01

    This paper presents a method for evaluating the UV and biologically effective exposures to a plant canopy during the irradiation of soybean with supplemental levels of UV radiation in a greenhouse study. The method employs four materials as dosimeters that allow evaluation of the UV spectra. The exposures evaluated at three growth stages were less by factors of 0.44, 0.49 and 0.56 compared to the ambient exposures. At the end of the irradiation period, the ambient biologically effective exposure for generalized plant response was higher by 180% compared to that calculated over the canopy. This is the magnitude of the error in UV studies that provide the ambient exposure as a measure of the UV incident on the plant. Additionally, the difference between the ambient and canopy exposures varied during the growth stages. These results indicate that the dosimetric technique applied to evaluating the UV exposures over a plant canopy is a more accurate representation of the UV exposure incidence on a plant than any obtained by measuring the ambient exposures only. (Author)

  14. Ecological and nonhuman biological effects of solar UV-B radiation

    International Nuclear Information System (INIS)

    Worrest, R.C.

    1984-01-01

    Recent studies regarding the impact of UV-B radiation upon ecological and nonhuman biological systems is the subject of the report. For years scientists and laymen alike have causally noted the impact of solar ultraviolet radiation upon the nonhuman component of the biosphere. Stratospheric ozone functions effectively as an ultraviolet screen by filtering out solar radiation in the 220-320 nm waveband as it penetrates through the atmosphere, thus allowing only small amounts of the longer wavelengths of radiation in the waveband to leak through to the surface of the earth. Although this radiation (UV-B radiation, 290-320 nm) comprises only a small fraction (lesser tha 1%) of the total solar spectrum, it can have a major impact on biological systems due to its actinic nature. Many organic molecules, most notably DNA, absorb UV-B radiation which can initiate photochemical reactions. It is life's ability, or lack thereof, to cope with enhanced levels of solar UV-B radiation that has generated concern over the potential depletion of stratospheric ozone

  15. Enhanced Biological Phosphorus Removal : Metabolic Insights and Salinity Effects

    NARCIS (Netherlands)

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison

  16. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  17. Non-ionizing radiations : physical characteristics, biological effects and health hazard assessment

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    1988-01-01

    The Workshop was a project of the International Non-Ionizing Radiation Committee of IRPA and comprised a series of educational lectures and demonstrations intended to give a comprehensive overview of non-ionizing electromagnetic radiation: physical characteristics, sources of concern, levels of exposure, mechanisms of interaction and reported effects of these fields and radiations with biological tissues, human studies, health risk assessment, national and international standards and guidelines, and protective measures

  18. Lung lavage therapy to lessen the biological effects of inhaled 144Ce in dogs

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Boecker, B.B.; Hahn, F.F.; McClellan, R.O.

    1990-01-01

    To evaluate the therapeutic effects of removal of an internally deposited radionuclide on long-term biological effects, lung lavage was used to treat dogs that had inhaled 144Ce in a relatively insoluble form, in fused aluminosilicate particles. Either 10 lung lavages were performed between Days 2 and 56 after exposure or 20 lung lavages were performed between Days 2 and 84 after exposure. Approximately one-half of the 144Ce was removed by the lavages, resulting in a corresponding reduction in the total absorbed beta dose to lung. The mean survival time of the treated dogs was 1270 days compared to 370 days for untreated dogs whose initial pulmonary burdens of 144Ce were similar. Treated dogs died late from cancers of the lung or liver, whereas the untreated dogs died at much earlier times from radiation pneumonitis. Dogs treated with lung lavage but not exposed to 144Ce had a mean survival of 4770 days. We concluded that removal of 144Ce from the lung by lavage resulted in increased survival time and in a change in the biological effects from inhaled 144Ce from early-occurring inflammatory disease to late-occurring effects, principally cancer. In addition, the biological effects occurring in the treated dogs could be better predicted from the total absorbed beta dose in the lung and the dose rate after treatment rather than from the original dose rate to the lung. Therefore, we concluded that prompt treatment to remove radioactive materials could be of significant benefit to persons accidentally exposed to high levels of airborne, relatively insoluble, radioactive particles

  19. Biological effects of desert dust in respiratory epithelial cells and a murine model.

    Science.gov (United States)

    Abstract As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States could impact a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sedime...

  20. Biological effects induced by K photo-ionisation in and near constituent atoms of DNA

    International Nuclear Information System (INIS)

    Touati, A.; Herve du Penhoot, M.A.; Fayard, B.; Champion, C.; Abel, F.; Gobert, F.; Lamoureux, M.; Politis, M.F.; Martins, L.; Ricoul, M.; Sabatier, L.; Sage, E.; Chetioui, A.

    2002-01-01

    In order to assess the lethal efficiency and other biological effects of inner shell ionisations of constituent atoms of DNA ('K' events), experiments were developed at the LURE synchrotron facility using ultrasoft X rays as a probe of K events. The lethal efficiency of ultrasoft X rays above the carbon K threshold was especially investigated using V79 cells and compared with their efficiency to induce double strand breaks in dry plasmid-DNA. A correlation between the K event efficiencies for these processes is shown. Beams of 340 eV were found to be twice as efficient at killing cells than were beams at 250 eV. In addition, a rough two-fold increase of the relative biological effectiveness for dicentric+ring induction has also been observed between 250 and 340 eV radiations. (author)

  1. A Review: Some biological effects of high LET radiations

    Science.gov (United States)

    Wiley, A., Jr.

    1972-01-01

    There are qualitative and quantitative differences in the biological damage observed after exposure to high LET radiation as compared to that caused by low LET radiations. This review is concerned with these differences, which are ultimately reflected at the biochemical, cellular and even whole animal levels. In general, high LET radiations seem to produce biochemical damage which is more severe and possibly less repairable. Experimental data for those effects are presented in terms of biochemical RBE's with consideration of both early and late manifestations. An LET independent process by which significant biochemical damage may result from protons, neutrons and negative pion mesons is discussed.

  2. The effect of oxytocin on biological motion perception in dogs (Canis familiaris).

    Science.gov (United States)

    Kovács, Krisztina; Kis, Anna; Kanizsár, Orsolya; Hernádi, Anna; Gácsi, Márta; Topál, József

    2016-05-01

    Recent studies have shown that the neuropeptide oxytocin is involved in the regulation of several complex human social behaviours. There is, however, little research on the effect of oxytocin on basic mechanisms underlying human sociality, such as the perception of biological motion. In the present study, we investigated the effect of oxytocin on biological motion perception in dogs (Canis familiaris), a species adapted to the human social environment and thus widely used to model many aspects of human social behaviour. In a within-subjects design, dogs (N = 39), after having received either oxytocin or placebo treatment, were presented with 2D projection of a moving point-light human figure and the inverted and scrambled version of the same movie. Heart rate (HR) and heart rate variability (HRV) were measured as physiological responses, and behavioural response was evaluated by observing dogs' looking time. Subjects were also rated on the personality traits of Neuroticism and Agreeableness by their owners. As expected, placebo-pretreated (control) dogs showed a spontaneous preference for the biological motion pattern; however, there was no such preference after oxytocin pretreatment. Furthermore, following the oxytocin pretreatment female subjects looked more at the moving point-light figure than males. The individual variations along the dimensions of Agreeableness and Neuroticism also modulated dogs' behaviour. Furthermore, HR and HRV measures were affected by oxytocin treatment and in turn played a role in subjects' looking behaviour. We discuss how these findings contribute to our understanding of the neurohormonal regulatory mechanisms of human (and non-human) social skills.

  3. Pesticides; resource recovery; hazardous substances and oil spill responses; waste disposal; biological effects

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In the category of pesticides this volume features close to sixty standard test method, practices, and guides for evaluating the properties and efficacy of pesticides and antimicrobial agents. Also covered are standards for hazardous substances, oil spell responses, waste disposal, and biological effects of these materials

  4. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.

    Science.gov (United States)

    Seebacher, Frank; Franklin, Craig E

    2012-06-19

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.

  5. The biological effects of exposure to ionising radiation

    International Nuclear Information System (INIS)

    Higson, D.J.

    2016-01-01

    Scenarios for exposure to ionising radiation range from natural background radiation (chronic) to the explosions of atomic bombs (acute), with some medical, industrial and research exposures lying between these extremes. Biological responses to radiation that predominate at high doses incurred at high dose rates are different from those that predominate at low doses and low dose rates. Single doses from bomb explosions ranged up to many thousand mGy. Acute doses greater than about 1000 mGy cause acute radiation syndrome (ARS). Below this threshold, radiation has a variety of potential latent health effects: Change to the incidence of cancer is the most usual subject of attention but change to longevity may be the best overall measure because decreased incidences of non-cancer mortality have been observed to coincide with increased incidence of cancer mortality. Acute doses greater than 500 mGy cause increased risks of cancer and decreased life expectancy. For doses less than 100 mGy, beneficial overall health effects ('radiation hormesis') have been observed. At the other end of the spectrum, chronic exposure to natural radiation has occurred throughout evolution and is necessary for the normal life and health of current species. Dose rates greater than the present global average of about 2 mGy per year have either no discernible health effect or beneficial health effects up to several hundred mGy per year. It is clearly not credible that a single health effects model -- such as the linear no-threshold (LNT) model of risk estimation -- could fit all latent health effects. A more realistic model is suggested.

  6. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  7. Hydrodynamic effects in laser cutting of biological tissue phantoms

    Science.gov (United States)

    Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.

    2017-11-01

    We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.

  8. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Rabia [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Usman, Muhammad, E-mail: uk_phy@yahoo.com [Department of Physics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54729 (Pakistan); Tabassum, Saira; Zia, Muhammad [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2016-11-15

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  9. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-01-01

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  10. Effective Elastic Modulus of Structured Adhesives: From Biology to Biomimetics

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-06-01

    Full Text Available Micro- and nano-hierarchical structures (lamellae, setae, branches, and spatulae on the toe pads of many animals play key roles for generating strong but reversible adhesion for locomotion. The hierarchical structure possesses significantly reduced, effective elastic modulus (Eeff, as compared to the inherent elastic modulus (Einh of the corresponding biological material (and therefore contributes to a better compliance with the counterpart surface. Learning from nature, three types of hierarchical structures (namely self-similar pillar structure, lamella–pillar hybrid structure, and porous structure have been developed and investigated.

  11. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  12. Relative biological effectiveness and radiation weighting factors in the context of animals and plants

    International Nuclear Information System (INIS)

    Higley, K.A.; Kocher, D.C.; Real, A.G.; Chambers, D.B.

    2012-01-01

    Radiation weighting factors have long been employed to modify absorbed dose as part of the process of evaluating radiological impact to humans. Their use represents an acknowledgement of the fundamental difference in energy deposition patterns of charged and uncharged particles, and how this can translate into varying degrees of biological impact. Weighting factors used in human radiation protection are derived from a variety of endpoints taken from in-vitro experiments that include human and animal cell lines, as well as in-vivo experiments with animals. Nonetheless, the application of radiation weighting factors in the context of dose assessment of animals and plants is not without some controversy. Specifically, radiation protection of biota has largely focused on limiting deterministic effects, such as reduced reproductive fitness. Consequently, the application of conventional stochastic-based radiation weighting factors (when used for human protection) appears inappropriate. While based on research, radiation weighting factors represent the parsing of extensive laboratory studies on relative biological effectiveness. These studies demonstrate that the magnitude of a biological effect depends not just on dose, but also on other factors including the rate at which the dose is delivered, the type and energy of the radiation delivering the dose, and, most importantly, the endpoint under consideration. This article discusses the efforts taken to develop a logical, transparent, and defensible approach to establishing radiation weighting factors for use in assessing impact to non-human biota, and the challenges found in differentiating stochastic from deterministic impacts.

  13. Data warehousing in molecular biology.

    Science.gov (United States)

    Schönbach, C; Kowalski-Saunders, P; Brusic, V

    2000-05-01

    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  14. Biological anti-TNF drugs

    DEFF Research Database (Denmark)

    Prado, Mônica Simon; Bendtzen, Klaus; Andrade, Luis Eduardo Coelho

    2017-01-01

    practice shows a significant percentage of individuals who do not exhibit the desired response. Loss of therapeutic benefit after initial successful response is designated secondary failure. Immune-biological agents are not self-antigens and are therefore potentially immunogenic. Secondary failure...... is frequently caused by antibodies against immune-biologicals, known as anti-drug antibodies (ADA). ADA that neutralize circulating immune-biologicals and/or promote their clearance can reduce treatment efficacy. Furthermore, ADA can induce adverse events by diverse immunological mechanisms. This review...... provides a comprehensive overview of ADA in rheumatoid arthritis patients treated with anti-TNF immune-biologicals, and explores the concept of therapeutic drug monitoring (TDM) as an effective strategy to improve therapeutic management. Expert opinion: Monitoring circulating ADA and therapeutic immune-biological...

  15. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  16. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  17. WE-H-BRA-05: Investigation of LET Spectral Dependence of the Biological Effects of Therapeutic Protons

    Energy Technology Data Exchange (ETDEWEB)

    Guan, F; Bronk, L; Kerr, M; Wang, X; Li, Y; Peeler, C; Sahoo, N; Patel, D; Mirkovic, D; Titt, U; Grosshans, D; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To investigate the dependence of biologic effect (BE) of therapeutic protons on LET spectra by comparing BEs with equal dose-averaged LET (LETd) derived from different LET spectra using high-throughput in vitro clonogenic survival assays. Methods: We used Geant4 to design the relevant experimental setups and perform the dose, LETd, and LET spectra calculations for spot-scanning protons. The clonogenic assay was performed using the H460 lung cancer cell line cultured in 96-well plates. In the first experimental setup (S1), cells were irradiated using 127.4 MeV protons with a 93.22 mm Lucite buildup resulting in a LETd value of 3.4 keV/µm in the cell layer. In the second experimental setup (S2), cells were irradiated by a combination of 127.4 MeV and 136.4 MeV protons with a 96.61 mm Lucite buildup. The LETd values in the cell layer were 11.4 keV/µm and 1.5 keV/µm respectively, but an average LETd of 3.4 keV/µm was obtained by adjusting the relative fluence of each beam. Ten discrete dose levels with 0.5 Gy increments were delivered. Results: In the two setups, the energies or LET spectra were different but resulted in identical LETd values. We quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous experiments) events in the LET spectra separately for these two setups as 3.2% and 10.5%. The biologic effects at each identical dose level yielded statistically significant different survival curves (extra sum-of-squares F-test, P<0.0001). The second setup with a higher contribution from high-LET events exhibited the higher biologic effect with a dose enhancement factor of 1.17±0.03 at 0.10 surviving fraction. Conclusion: The dose-averaged LET may not be an accurate indicator of the biological effects of protons. Detailed LET spectra may need to be considered explicitly to accurately quantify the biologic effects of protons. Funding Support: U19 CA021239-35, R21 CA187484-01 and MDACC-IRG.

  18. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    International Nuclear Information System (INIS)

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  19. Low dose effects of ionizing radiations in in vitro and in vivo biological systems: a multi-scale approach study

    International Nuclear Information System (INIS)

    Antoccia, A.; Berardinelli, F.; Argazzi, E.; Balata, M.; Bedogni, R.

    2011-01-01

    Long-term biological effects of low-dose radiation are little known nowadays and its carcinogenic risk is estimated on the assumption that risk remains linearly proportional to the radiation dose down to low-dose levels. However in the last 20 years this hypothesis has gradually begun to seem in contrast with a huge collection of experimental evidences, which has shown the presence of plethora of non-linear phenomena (including hypersensitivity and induced radioresistance, adaptive response, and non-targeted phenomena like bystander effect and genomic instability) occurring after low-dose irradiation. These phenomena might imply a non-linear behaviour of cancer risk curves in the low-dose region and question the validity of the Linear No-Threshold (LNT) model currently used for cancer risk assessment through extrapolation from existing high-dose data. Moreover only few information is available regarding the effects induced on cryo preserved cells by multi-year background radiation exposure, which might induce a radiation-damage accumulation, due to the inhibition of cellular repair mechanisms. In this framework, the multi-year Excalibur (Exposure effects at low doses of ionizing radiation in biological culture) experiment, funded by INFN-CNS5, has undertaken a multi-scale approach investigation on the biological effects induced in in vitro and in vivo biological systems, in culture and cryo preserved conditions, as a function of radiation quality (X/γ-rays, protons, He-4 ions of various energies) and dose, with particular emphasis on the low-dose region and non-linear phenomena, in terms of different biological endpoints.

  20. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  1. Biological vs. physical mixing effects on benthic food web dynamics.

    Directory of Open Access Journals (Sweden)

    Ulrike Braeckman

    Full Text Available Biological particle mixing (bioturbation and solute transfer (bio-irrigation contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering or rather deprives them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-irrigator and Abra alba (bioturbator compared to abiotic physical mixing events on survival and food uptake of nematodes after a simulated phytoplankton bloom. The (13C labelled diatom Skeletonema costatum was added to 4 treatments: (1 microcosms containing the bioturbator, (2 microcosms containing the bio-irrigator, (3 control microcosms and (4 microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Δδ(13C of the added diatoms was highest in the physical mixing treatment, where macrobenthos was absent and the diatom (13C was homogenised. Overall, nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (µg C m(-2, which included TO(13C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since the freshly added diatoms represented only a limited food

  2. Psychological Effects towards Humans Living in the Environment Made of Biological Concrete in Malaysia at 2015

    Directory of Open Access Journals (Sweden)

    Amirreza Talaiekhozani

    2017-01-01

    Full Text Available In day-to-day life concrete become a compulsory material in the construction field as to make it a real concern among researchers for producing concrete with improved properties. Biological method is one of the new methods to improve concrete properties. Although, much research about biological concrete has been carried out, but till now nobody has not studied for the psychological effects of using a house or offices made up of biological concrete. The aim of this study is to investigate and find out the person's opinion about staying in a house or offices made up of biological concrete. In this study, a questionnaire containing eight questions was prepared and distributed among 21 persons in Malaysia University of Technology including students, academic and non-academic staffs among which few of them was an expert in the field of biological concrete and others did not have any knowledge about the bioconcrete. Finally, the results obtained from the questionnaires were analyzed. The results showed that 81% of participants in this study would like to stay in a house or office made up of biological concrete. However, 38% of participants believe that staying in a house or office made of biological concrete can cause health related problems. The current research paper can be considered significant for architects and civil engineers to have the insight to look into the psychological aspects of using biological concrete for various applications in the field of construction.

  3. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  4. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  5. Biology task group

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The accomplishments of the task group studies over the past year are reviewed. The purposes of biological investigations, in the context of subseabed disposal, are: an evaluation of the dose to man; an estimation of effects on the ecosystem; and an estimation of the influence of organisms on and as barriers to radionuclide migration. To accomplish these ends, the task group adopted the following research goals: (1) acquire more data on biological accumulation of specific radionuclides, such as those of Tc, Np, Ra, and Sr; (2) acquire more data on transfer coefficients from sediment to organism; (3) Calculate mass transfer rates, construct simple models using them, and estimate collective dose commitment; (4) Identify specific pathways or transfer routes, determine the rates of transfer, and make dose limit calculations with simple models; (5) Calculate dose rates to and estimate irradiation effects on the biota as a result of waste emplacement, by reference to background irradiation calculations. (6) Examine the effect of the biota on altering sediment/water radionuclide exchange; (7) Consider the biological data required to address different accident scenarios; (8) Continue to provide the basic biological information for all of the above, and ensure that the system analysis model is based on the most realistic and up-to-date concepts of marine biologists; and (9) Ensure by way of free exchange of information that the data used in any model are the best currently available

  6. Effect of solids retention time and wastewater characteristics on biological phosphorus removal

    DEFF Research Database (Denmark)

    Henze, Mogens; Aspegren, H.; Jansen, J.l.C.

    2002-01-01

    with time which has importance in relation to modelling. The overall conclusion of the comparison between the two plants is that the biological phosphorus removal efficiency under practical operating conditions is affected by the SRT in the plant and the wastewater composition. Thus great care should......The paper deals with the effect of wastewater, plant design and operation in relation to biological nitrogen and phosphorus removal and the possibilities to model the processes. Two Bio-P pilot plants were operated for 2.5 years in parallel receiving identical wastewater. The plants had SRT of 4...... and 21 days, the latter had nitrification and denitrification. The plant with 4 days SRT had much more variable biomass characteristics, than the one with the high SRT. The internal storage compounds, PHA, were affected significantly by the concentration of fatty acids or other easily degradable organics...

  7. Radiotoxicity of gadolinium-148 and radium-223 in mouse testes: Relative biological effectiveness of alpha-particle emitters in vivo

    International Nuclear Information System (INIS)

    Howell, R.W.; Goddu, S.M.; Narra, V.R.

    1997-01-01

    The biological effects of radionuclides that emit α particles are of considerable interest in view of their potential for therapy and their presence in the environment. The present work is a continuation of our ongoing effort to study the radiotoxicity of α-particle emitters in vivo using the survival of murine testicular sperm heads as the biological end point. Specifically, the relative biological effectiveness (RBE) of very low-energy α particles (3.2 MeV) emitted by 148 Gd is investigated and determined to be 7.4 ± 2.4 when compared to the effects of acute external 120 kVp X rays. This datum, in conjunction with our earlier results for 210 Po and 212 Pb in equilibrium with its daughters, is used to revise and extend the range of validity of our previous RBE-energy relationship for α particles emitted by tissue-incorporated radionuclides. The new empirical relationship is given by RBE α = 9.14 - 0.510 E α , where 3 α 223 Ra (in equilibrium with its daughters) experimentally in the same biological model and comparing the value obtained experimentally with the predicted value. The resulting RBE values are 5.4 ± 0.9 and 5.6, respectively. This close agreement strongly supports the adequacy of the empirical RBE-E α relationship to predict the biological effects of α-particle emitters in vivo. 42 refs., 5 figs., 1 tab

  8. Effectiveness of computer-assisted learning in biology teaching in primary schools in Serbia

    Directory of Open Access Journals (Sweden)

    Županec Vera

    2013-01-01

    Full Text Available The paper analyzes the comparative effectiveness of Computer-Assisted Learning (CAL and the traditional teaching method in biology on primary school pupils. A stratified random sample consisted of 214 pupils from two primary schools in Novi Sad. The pupils in the experimental group learned the biology content (Chordate using CAL, whereas the pupils in the control group learned the same content using traditional teaching. The research design was the pretest-posttest equivalent groups design. All instruments (the pretest, the posttest and the retest contained the questions belonging to three different cognitive domains: knowing, applying, and reasoning. Arithmetic mean, standard deviation, and standard error were analyzed using the software package SPSS 14.0, and t-test was used in order to establish the difference between the same statistical indicators. The analysis of results of the post­test and the retest showed that the pupils from the CAL group achieved significantly higher quantity and quality of knowledge in all three cognitive domains than the pupils from the traditional group. The results accomplished by the pupils from the CAL group suggest that individual CAL should be more present in biology teaching in primary schools, with the aim of raising the quality of biology education in pupils. [Projekat Ministarstva nauke Republike Srbije, br. 179010: Quality of Educational System in Serbia in the European Perspective

  9. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  10. Arsenic in the aquatic environment - speciation and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Landner, L [Swedish Environmental Research Group (MFG)

    1998-03-01

    The present report is a contribution to EC Commission`s undertaking to review existing EC provisions on the substances for which Sweden has been granted transitional provisions. The provisions imply that Sweden may maintain more stringent regulations on four substances until the end of 1998. The present report deals with speciation and biological effects of arsenic in three types of aquatic environments - marine water, estuarine or brackish water and freshwater. The similarity between arsenate and phosphate and the interference in phosphorylation reactions is discussed. It is clear that in Scandinavian inland waters the concentration of phosphorous is on average lower than in most inland waters in continental Europe. However, in most inland waters phosphorus is the limiting factor for phytoplankton development and eutrophication, which means that there is a clear risk for detrimental effects in the great majority of inland waters, also eutrophic waters 167 refs, 27 figs, 12 tabs. Exemption Substances Project (Directive 89/677/EEC)

  11. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1996-01-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  12. Effect of ionizing radiation on chemical and biological properties of Salmonella minnesota R595 lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    El Sabbagh, M; Galanos, C; Luederitz, O [Max-Planck-Institut fuer Immunbiologie, Freiburg (Germany, F.R.); Bertok, L [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary); Fuest, Gy [Orszagos Haema--tologiai es Vertranszfuzios Intezet, Budapest (Hungary)

    1982-01-01

    The effects of /sup 60/Co irradiation performed with various doses on the biological and chemical properties of the endotoxin of the Salmonella minnesota R595 were compared with those of unirradiated ones. The biological activity was measured using the lethal toxicity test, the local Schwartzman reaction and by activating the complementary system. Increasing the irradiation dose from 50 to 200 kGy the preparation became less active in the biological tests but the protective activity against the lethal action of the endotoxin remained uneffected. The irradiation resulted in a dose-dependent decrease of the amounts of 2-keto-3-deoxy-octonate, glucosamine, fatty acids, but did not affect all the degradation products identified. Therefore, no correlation between the chemical composition and the absence of endotoxin activity was found.

  13. Comparative analysis of biological effect of corannulene and graphene on developmental and sleep/wake profile of zebrafish larvae.

    Science.gov (United States)

    Li, Xiang; Zhang, Yuan; Li, Xu; Feng, DaoFu; Zhang, ShuHui; Zhao, Xin; Chen, DongYan; Zhang, ZhiXiang; Feng, XiZeng

    2017-06-01

    Little is known about the biological effect of non-planar polycyclic aromatic hydrocarbons (PAH) such as corannulene on organisms. In this study, we compared the effect of corannulene (non-planar PAH) and graphene (planar PAH) on embryonic development and sleep/wake behaviors of larval zebrafish. First, the toxicity of graded doses of corannulene (1, 10, and 50μg/mL) was tested in developing zebrafish embryos. Corannulene showed minimal developmental toxicity only induced an epiboly delay. Further, a significant decrease in locomotion/increase in sleep was observed in larvae treated with the highest dose (50μg/mL) of corannulene while no significant locomotion alterations were induced by graphene. Finally, the effect of corannulene or graphene on the hypocretin (hcrt) system and sleep/wake regulators such as hcrt, hcrt G-protein coupled receptor (hcrtr), and arylalkylamine N-acetyltransferase-2 (aanat2) was evaluated. Corannulene increased sleep and reduced locomotor activity and the expression of hcrt and hcrtr mRNA while graphene did not obviously disturb the sleep behavior and gene expression patterns. These results suggest that the corannulene has the potential to cause hypnosis-like behavior in larvae and provides a fundamental comparative understanding of the effects of corannulene and graphene on biology systems. Little is known about the biological effect of non-planar polycyclic aromatic hydrocarbons (PAH) such as corannulene on organisms. Here, we compare the effect of corannulene (no-planar PAH) and graphene (planar PAH) on embryonic development and sleep/wake behaviors of larval zebrafish. And we aim to investigate the effect of curvature on biological system. First, toxicity of corannulene over the range of doses (1μg/mL, 10μg/mL and 50μg/mL) was tested in developing zebrafish embryos. Corannulene has minimal developmental toxicity, only incurred epiboly delay. Subsequently, a significant decrease in locomotion/increase in sleep at the highest

  14. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    Science.gov (United States)

    Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%–20% for those cells containing internalized gold nanoparticles. PMID:21915155

  16. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    Science.gov (United States)

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  17. Radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    During the establishment and development of radiation biology, radiation chemistry acts like bridge which units the spatial and temporal insight coming from radiation physics with radiation biology. The theory, model, and methodology of radiation chemistry play an important role in promoting research and development of radiation biology. Following research development of radiation biology effects towards systems radiation biology the illustration and exploration both diversity of biological responses and complex process of biological effect occurring remain to need the theory, model, and methodology come from radiation chemistry. (authors)

  18. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    Science.gov (United States)

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  19. The biological effects of gamma irradiation and/or plant extract (Neem) on the greater wax moth, Galleria Mollenella

    International Nuclear Information System (INIS)

    Mohamed, H. F.

    2012-12-01

    The present study was evaluating the effect of plant extract (Neem) with the concentrations 0, 10, 15, 20, 25, 50, 75 and 100 ppm on the percentage of observed mortality and corrected mortality of the greater wax moth, Galleria mellon ella zeller. Also the effect of the plant extract concentrations 0.25, 50, 75 and 100 ppm on the biology of this insect as percentage larval mortality, percentage larval weight, percentage larval and pupal duration, total development time, fecundity of resulting adults. Furthermore, we examined the effect of gamma irradiation with the doses 0, 100, 200, 300 and 400 Gray on some biological aspects of G. mellon ella. In addition, we studied the combined effect of gamma irradiation and plant extract (Neem) on some biological aspects of G. mellon ella by the doses 0,100, 200, 300, 400 Gray of gamma irradiation and the concentration 15 ppm of Neem as the percentage larval mortality, percentage pupation, percentage pupal mortality, percentage of emergence and the percentage of adult survival. (Author)

  20. Optimization of total arc degree for stereotactic radiotherapy by using integral biologically effective dose and irradiated volume

    International Nuclear Information System (INIS)

    Lim, Do Hoon; Kim, Dae Yong; Lee, Myung Za; Chun, Ha Chung

    2001-01-01

    To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. With Xknife-3 planning system and 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, 100 deg, 200 deg, 300 deg, 400 deg, 500 deg, 600 deg, of total arc degrees, and 30 deg or 45 deg of arc intervals were used. After the completion of planning, the plans were compared each other using V 50 (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. At 30 deg of arc interval, the values of V 50 had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval, up to 400 deg of total arc degree, the values of V 50 decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. At 30 deg of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with 50 and 60 mm of collimator diameters, up to 400 deg of total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. In the stereotactic radiotherapy planning for brain lesions, planning with 400 deg of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of 500 deg and 600 deg of total arc degrees make the increase of V 50 and integral biologically effective dose, Therefore stereotactic radiotherapy planning using 400 deg of total arc degree can increase the therapeutic ratio and produce the effective outcome

  1. Biological effects of N+ ion implantation and UV radiation on streptomyces albus

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu

    2005-01-01

    The results of both 30 keV N + ion implantation and UV irradiation of Streptomyces albus showed complicate biological effects. The 'saddle shape' pattern of the dose-dependent curve formed by N + ion implantation with low energy was studied, and it proved that vacuum was not the reason, and the fact, the 'saddle shape' curve may be regarded as a HRS/IRR (hyper-radiosensitivity/increased radiaoresistance) effect caused by low dose irradiation. But Streptomyces albus UV irradiated after vacuum treatment only showed IRR effect or hormesis (survival rate >100%). The streptomycin resistance mutation of Streptomyces albus caused by low energy N + ion implantation and UV irradiation was also studied. the results showed that UV radiation is one effective means for streptomyces albus breeding. (authors)

  2. Radiation biology for the non-biologist

    International Nuclear Information System (INIS)

    Myers, D.K.

    1978-06-01

    This colloquium introduces some of the general concepts used in cell biology and in the study of the effects of ionizing radiation on living organisms. The present research activities in radiation biology in the Biology Branch at the Chalk River Nuclear Laboratories cover a broad range of interests in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into significant biological effects, including the eventual production of cancers and hereditary defects. The main theme of these research activities is an understanding of the mechanisms by which radiation damage to DNA (the carrier of hereditary information in all living organisms) can be actively repaired by the living cell. Advances in our understanding of these processes have broad implications for other areas of biology but also bear directly on the assessment of the biological hazards of ionizing radiation. The colloquium concludes with a brief discussion of the hazards of low-level radiation. (author)

  3. Document sheet no.3. The sanitary effects and the medical uses of the radioactivity, the radiations, the biological effects, the medical uses

    International Nuclear Information System (INIS)

    2004-01-01

    In order to inform the public the ANCLI published information sheets. This sheet no.3 deals with the sanitary effects and the medical uses of the radioactivity. It presents the radiations definitions (the internal and external irradiation, the doses levels, the absorbed doses), the biological effects (deterministic effects, random effects and chronicity effects), and the medical uses (radiotherapy and monitoring of chemotherapy). (A.L.B.)

  4. Some biological effects of one water based ferrofluid in cucurbita pepo

    International Nuclear Information System (INIS)

    Racuciu, M.; Creanga, D.; Olteanu, Z.; Horga, E. I.

    2005-01-01

    Full text: The biological interest in the ferrofluid effect in living organisms represents an important application field, mainly for biotechnological use, since the small ferrophase size allows the penetration through the biological membranes. Experiments have been designed to reveal the influences of an aqueous ferrofluid on the assimilatory pigments, the peroxide level, nucleic acid level and on the substance accumulation. Water based ferrofluid, stabilized with citric acid was added in various concentrations (10-50-100- 150-200-250 micro L/L) (after vigorous shaking) in the culture medium of Cucurbita pepo plantlets (pumpkin). Spectrophotometric standard assay methods have been applied in order to get experimental data regarding the levels of assimilatory pigments (chlorophyll a, chlorophyll b, carotenes), nucleic acids and peroxydase like enzymes. JASCO V350 spectrophotometer provided with. The stimulatory effect of relatively high ferrofluid concentrations have been observed in the ratio chlorophyll a/b, known as a measure of photosynthesis ratio. Non-significant changes in the nucleic acid level were noticed. Inhibitory effect upon the enzyme biosynthesis was assigned to the ferrofluid addition. The statistic analysis was accomplished by considering five repetitions of every measurement in ferrofluid samples and control ones. Average values of ferrofluid samples and control ones have been compared by means of t-test. Statistic significance was revealed in comparison to the significance threshold of 0.05. (Also one figure included.) References: [1] C. Gro , K.Buescher, E. Romanus, C,A, Helm, W.Weitschies, European cells and Materials, 2002, 3(2), 163. [2] M.M.Zamfirache, G. Capraru, D. Creanga, M. Racuciu, Gh. Calugaru, Ferrofluid experiment for simulating pollution effect on plant growth, The Annals of University Galati, 2004(XXVII), Fasc.II, 37. [3] A.Goodarzi, Y.Sahoo, M.T.Swihart, P.N. Prasad, Mat.Res.Soc.Symp.Proc., 2004,Vol.789, N6.6.1

  5. Biological effects of combined resveratrol and vitamin D3 on ovarian tissue.

    Science.gov (United States)

    Uberti, Francesca; Morsanuto, Vera; Aprile, Silvio; Ghirlanda, Sabrina; Stoppa, Ian; Cochis, Andrea; Grosa, Giorgio; Rimondini, Lia; Molinari, Claudio

    2017-09-15

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural antioxidant polyphenol able to exert a wide range of biological effect on several tissues. Despite its important beneficial properties, it has a low water solubility, which limits its therapeutic applications in humans. Resveratrol also acts as a phytoestrogen that modulates estrogen receptor (ER)-mediated transcription. In addition, it has been shown that ovarian tissues benefit greatly from vitamin D3, which exerts its beneficial effects through VDR receptors. The aim was to evaluate the cooperative effects of resveratrol combined with vitamin D3 on ovarian cells and tissues and some other organs as well. Moreover, the modulation of specific intracellular pathways involving ER and VDR receptors has been studied. The experiments were performed both in vitro and in vivo, to analyze cell viability, radical oxygen species production, signal transductions through Western Blot, and resveratrol quantification by HPLC. Cell viability, radical oxygen species production, and intracellular pathways have been studied on CHO-K1 cells. Also, the relative mechanism activated following oral intake in female Wistar rats as animal model was investigated, evaluating bioavailability, biodistribution and signal transduction in heart, kidney, liver and ovarian tissues. Both in in vitro and in vivo experiments, resveratrol exerts more evident effects when administered in combination with vitD in ovarian cells, showing a common biphasic cooperative effect: The role of vitamin D3 in maintaining and supporting the biological activity of resveratrol has been clearly observed. Moreover, resveratrol plus vitamin D3 blood concentrations showed a biphasic absorption rate. Such results could be used as a fundamental data for the development of new therapies for gynecological conditions, such as hot-flashes.

  6. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach.

    Science.gov (United States)

    DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P

    2017-01-01

    Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Biological effects on human health due to radiofrequency/microwave exposure

    DEFF Research Database (Denmark)

    Breckenkamp, Jürgen; Berg, Gabriele; Blettner, Maria

    2003-01-01

    We evaluated the methods and results of nine cohort studies dealing with the biological effects on human health from exposure to radiofrequencies/microwaves, published between 1980 and 2002. The size of the cohorts varied between 304 (3,362 person years) and nearly 200,000 persons (2.7 million......, however, inconsistent. The most important limitations of the studies were the lack of measurements referring to past and current exposures and, thus, the unknown details on actual exposure, the use of possibly biased data as well as the lack of adjustment for potential confounders and the use of indirect...

  8. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    Science.gov (United States)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from…

  9. Inactivation of biological substances by local heating

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masahiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1982-09-01

    Mechanism of inactivation of biological substances caused by local heating was investigated. The effect of hot-zone formation by local heating on reaction of radicals was previously evaluated. The thermal increase in a hot zone due to low energy LET x-rays had little effect on reactibility of the radicals, but, in a hot zone caused by high energy LET x-rays, formed radicals seemed immediately react to active biological molecules to inactivate them. Direct thermal effect on biological molecules was analysed. Thermal increase in a hot zone may induce degenaration of biological molecules which seems to occur in a short time judged from the extension of a hot zone and the duration of high temperature.

  10. A perspective on dose limits and biological effects of radiation on the foetus

    International Nuclear Information System (INIS)

    Myers, D.K.; Gordon, K.

    1992-01-01

    The potential biological effects of radiation doses to pregnant workers consistent with Canadian regulations and ICRP recommendations are reviewed. These hazards are in general very small compared to the normal hazards associated with human development. Potential carcinogenic effects may well be the major biological problem associated with foetal exposures. Radiation hazards to the embryo are essentially zero for exposures occurring during the first four weeks after conception. The new ICRP recommendations on exposures of pregnant women suggest a number of problems to be solved. These include (a) improvements in current methods of measuring both external radiation doses and intakes of certain radionuclides in Canada, (b) further research on the metabolism of radionuclides in pregnant women, including concentrations of certain radionuclides in foetal/embryonic tissues and also in adjacent tissues of the mother; and (c) socio-economic problems that may be involved in the implementation of the recommendations on exposures of pregnant workers, particularly in small facilities such as nuclear medicine departments in hospitals. (Author) 3 tabs., 21 refs

  11. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    Full text: Because of biological responses to ionizing radiation are dependent on irradiation time or dose rate as well as dose, simultaneous inclusion of dose and dose rate is required to evaluate the risk of long term irradiation at low dose rates. We previously published a novel statistical model for dose rate effect, modified exponential (MOE) model, which predicts irradiation time-dependent biological response to low dose rate ionizing radiation, by analyzing micronucleus formation and growth inhibition in a human osteosarcoma cell line, exposed to wide range of doses and dose rates of gamma-rays. MOE model demonstrates that logarithm of median effective dose exponentially increases in low dose rates, and thus suggests that the risk approaches to zero at infinitely low dose rate. In this paper, we extend the analysis in various kinds of human cell lines exposed to ionizing radiation for more than a year. We measured micronucleus formation and [ 3 H]thymidine uptake in human cell lines including an osteosarcoma, a DNA-dependent protein kinase-deficient glioma, a SV40-transformed fibroblast derived from an ataxia telangiectasia patient, a normal fibroblast, and leukemia cell lines. Cells were exposed to gamma-rays in irradiation room bearing 50,000 Ci of cobalt-60. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide. The number of binuclear cells bearing a micronucleus was counted under a fluorescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [ 3 H] thymidine was pulsed for 4 h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk. While dose and dose rate relationship cultured within one month followed MOE model in cell lines holding wild-type DNA repair system, dose rate effect was greatly impaired in DNA repair-deficient cell lines

  12. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells

    OpenAIRE

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 week...

  13. Effect of gamma irradiation on biological activity of thyrotropin

    Energy Technology Data Exchange (ETDEWEB)

    Strbak, V; Macho, L; Sedlak, J; Hromadova, M

    1976-03-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma irradiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity being after the former dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in a decrease of biological activity already during first month. The structural changes in the molecule of TSH were apparently not very extensive, since a decrease of disulfide bonds from 0.96 to 0.77 M per 1M of TSH was found immediately after the irradiation, while uv absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by the decrease of TSH stability during storage in dry state. It is hypothesized that TSH molecule may be affected in ..beta.. subunit or in its connection with ..cap alpha...

  14. Effect of gamma irradiation on biological activity of thyrotropin

    International Nuclear Information System (INIS)

    Strbak, V.; Macho, L.; Sedlak, J.; Hromadova, M.

    1976-01-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma radiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity after the 0.5 Mrad dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in decreased biological activity already during the first month. The structural changes in the TSH molecule were apparently not very extensive, as a decrease of disulfide bonds from 0.96 to 0.77 M per 1 M of TSH was found immediately after the irradiation, while UV absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by a decrease of TSH stability during storage in dry state. It is hypothesized that a TSH molecule may be affected in a β subunit or in its connection with α. (author)

  15. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  16. Biological effects due to weak magnetic fields on plants

    Science.gov (United States)

    Belyavskaya, N.

    In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron

  17. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  18. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  19. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  20. Computational Assessment of Pharmacokinetics and Biological Effects of Some Anabolic and Androgen Steroids.

    Science.gov (United States)

    Roman, Marin; Roman, Diana Larisa; Ostafe, Vasile; Ciorsac, Alecu; Isvoran, Adriana

    2018-02-05

    The aim of this study is to use computational approaches to predict the ADME-Tox profiles, pharmacokinetics, molecular targets, biological activity spectra and side/toxic effects of 31 anabolic and androgen steroids in humans. The following computational tools are used: (i) FAFDrugs4, SwissADME and admetSARfor obtaining the ADME-Tox profiles and for predicting pharmacokinetics;(ii) SwissTargetPrediction and PASS online for predicting the molecular targets and biological activities; (iii) PASS online, Toxtree, admetSAR and Endocrine Disruptomefor envisaging the specific toxicities; (iv) SwissDock to assess the interactions of investigated steroids with cytochromes involved in drugs metabolism. Investigated steroids usually reveal a high gastrointestinal absorption and a good oral bioavailability, may inhibit someof the human cytochromes involved in the metabolism of xenobiotics (CYP2C9 being the most affected) and reflect a good capacity for skin penetration. There are predicted numerous side effects of investigated steroids in humans: genotoxic carcinogenicity, hepatotoxicity, cardiovascular, hematotoxic and genitourinary effects, dermal irritations, endocrine disruption and reproductive dysfunction. These results are important to be known as an occupational exposure to anabolic and androgenic steroids at workplaces may occur and because there also is a deliberate human exposure to steroids for their performance enhancement and anti-aging properties.

  1. Biological mechanisms of radiation effects; Biologische Mechanismen der Strahlenwirkung

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, S.; Doerr, W. [Medizinische Universitaet Wien, ATRAB - Angewandte und Translationale Radiobiologie, Univ.-Klinik fuer Strahlentherapie, Wien (Austria)

    2017-07-15

    Exposure to ionizing radiation for diagnostic purposes is inevitable in modern medicine. The therapeutic application of irradiation is highly effective against cancer; however, this implies exposure of normal tissue structures to significant doses of radiation. Diagnostic or therapeutic exposure to ionizing radiation can result in tissue changes and tumor induction in the long term. Knowledge of the biological mechanisms underlying these effects is essential for individualization of the application. This article examines the biological mechanisms at the tissue and molecular level, the clinical manifestation of radiation effects, dose-dependence of the risk and the temporal progression as well as influencing factors. The time course of the reaction of tissues to radiation exposure extends over wide ranges up to many decades. The effects of radiation on tissues are classified into early and late and their pathobiology is significantly different. Various factors (R) influencing the clinical manifestation of radiation effects have been identified related to the exposure pattern. The radiation tolerance of normal tissue structures regarding the induction of functional deficits shows great variation but always has a threshold value, which is usually not exceeded in diagnostic procedures. The risk of a radiation-induced fatal malignancy (total body exposure 5%/Gy) for a medical administration of radiation must be considered as very low in comparison to the natural risks. Informed consent of patients must reflect this in a balanced way. (orig.) [German] Eine Exposition mit ionisierender Strahlung fuer diagnostische Zwecke ist in der modernen Medizin unumgaenglich. Bei einer Tumorerkrankung ist die therapeutische Anwendung dieser Strahlung hoch effektiv. Dies impliziert immer eine Exposition normaler Gewebestrukturen mit signifikanten Strahlendosen. Die diagnostische oder therapeutische Exposition mit ionisierender Strahlung kann langfristig zu Gewebeveraenderungen und

  2. The effect of initial density and parasitoid intergenerational survival rate on classical biological control

    International Nuclear Information System (INIS)

    Xiao Yanni; Tang Sanyi

    2008-01-01

    Models of biological control have a long history of theoretical development that have focused on the interaction of a parasitoid and its host. The host-parasitoid systems have identified several important and general factors affecting the long-term dynamics of interacting populations. However, much less is known about how the initial densities of host-parasitoid populations affect the biological control as well as the stability of host-parasitoid systems. To do this, the classical Nicholson-Bailey model with host self-regulation and parasitoid intergenerational survival rate is used to uncover the effect of initial densities on the successful biological control. The results indicate that the simplest Nicholson-Bailey model has various coexistence with a wide range of parameters, including boundary attractors where the parasitoid population is absent and interior attractors where host-parasitoid coexists. The final stable states of host-parasitoid populations depend on their initial densities as well as their ratios, and those results are confirmed by basins of attraction of initial densities. The results also indicate that the parasitoid intergenerational survival rate increases the stability of the host-parasitoid systems. Therefore, the present research can help us to further understand the dynamical behavior of host-parasitoid interactions, to improve the classical biological control and to make management decisions

  3. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  4. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells.

    Science.gov (United States)

    Iwata, Hiromitsu; Ogino, Hiroyuki; Hashimoto, Shingo; Yamada, Maho; Shibata, Hiroki; Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Tatekawa, Kotoha; Manabe, Yoshihiko; Mizoe, Jun-etsu; Shibamoto, Yuta

    2016-05-01

    To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (Pcells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential.

    Science.gov (United States)

    Chen, Z X; Dickson, D W

    1998-09-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  6. The use of nuclear reactor in radiation biology

    International Nuclear Information System (INIS)

    Ujeno, Yowri

    1991-01-01

    The Kyoto University Reactor (KUR) is widely used not only in biology, but also in applied biology, today. These studies were surveyed in the present paper and the future possibility to use KUR in radiation biology was discussed. The researches on the effects of thermal neutrons on various normal tissues, the biological effects of neutrons except thermal neutrons, especially intermediate neutrons between thermal and high speed neutrons or cold neutrons, the adaptive response of cells to thermal neutron radiation, the application of nuclear reactor-produced radionuclides including 195m Pt to biology, and the mutation in botanical science and so on, should be continued using nuclear reactor. The necessity of nuclear reactor in biology and applied biology is emphasized. (author)

  7. The relative biological effectiveness of radiations of different quality

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper is a review of the literature relevant to the selection of relative biological effectiveness (RBE) values for use in arriving at values of the quality factor (Q). Emphasis is placed on response to small ( M . In a wide variety of systems, the RBE M for fast (fission) neutrons, with low doses and dose rates, appears to be of the order of 20 or more compared to moderately filtered 250 kVp x rays and 40 or more compared to higher energy gamma rays. These values, which are much larger than those observed with large doses delivered at high dose rates, are due mainly, but not entirely, to a decrease in the slope of the curve for the ow-LET reference radiation at low dose

  8. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  9. Gamma radiation effect on biological activity and enzymatic properties of snake venoms

    International Nuclear Information System (INIS)

    Herrera, E.; Yarleque, A.; Campos, S.; Zavaleta, A.

    1986-01-01

    The effect of gamma radiation, from Co-60, on the biological activity and on some enzymatic activities, present in the venoms of Lachesis muta and Bothrops atrox, using samples of dried venom that had been irradiated at a dose of 0.1, 0.5 and 1.0 Mrad have been studied. Variations in the degree of hemorrhage and local necrosis were observed in albino mice injected subcutaneously with venoms of both types. The reduction of the biological activity was greater for the local hemorrhagic effect and was dependent on the doses of irradiation. The specific activity of various enzymes, present in both venoms, is affected by the gamma radiation, at a dose of 0.1 Mrad the order of increasing inactivation being: exonuclease (4%), phospholipase (24%), caseinolytic enzyme (20%), tamesterase (33%), a thrombine-like enzyme (40%), fibrinolytic enzyme (41%), 5'-nucleotidase (50%) and endonuclease (55%). The enzymatic inactivation was augmented by 0.5 and 1.0 Mrad, without maintaining an arithmetic relation. The enzyme of major resistance to the radiation was exonuclease, whereas 5'-nucleotidase and endonuclease were the most sensitive. No significant changes were observed in the spectrum of UV absorbtion (range 260 to 290 nm) nor in the contents of L-tyrosine in the irradiated venoms

  10. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    International Nuclear Information System (INIS)

    Xu Gang; Wang Xiaoteng; Gan Cailing; Fang Yanqiong; Zhang Meng

    2012-01-01

    Highlights: ► We analyzed biological effects of N + implantation on dry Jatropha curcas seed. ► N + implantation greatly decreased seedling survival rate. ► At doses beyond 15 × 10 16 ion cm −2 , biological repair took place. ► CAT was essential for H 2 O 2 removal. POD mainly functioned as seed was severely hurt. ► HAsA–GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N + with energy of 25 keV was applied to treat the dry seed at six different doses. N + beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 10 16 to 15 × 10 16 ions cm −2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 10 16 ion cm −2 , biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 10 16 ions cm −2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA–GSH cycle appeared to be for regeneration of HAsA.

  11. Atmospheric ions and probable indirect biological effect of low-level radiation

    International Nuclear Information System (INIS)

    Spurny, Z.

    1984-01-01

    The problem is discussed of the health consequences of low radiation doses (of less than 0.01 Gy). Owing to natural radioactivity and cosmic radiation, ions are formed in the atmosphere which may thus indirectly mediate the effects of ionizing radiation on the organism. The rate of ion formation is approximately 6.1 ion pairs/cm 3 .s and their number will not exceed 10 3 ions/cm 3 . In an environment where artificial radioactive sources are used, the ion concentration may reach up to 10 5 ions/cm 3 . The effect of ions on man may be divided into several types: 1. effect on mental state (behaviour, fatigue, headaches); 2. effect on the cardiovascular system; 3. effect on the bronchial system;and 4. effect on physiological processes, e.g., secretion by endocrine glands. It is not yet known whether the biological effect of small (fast) ions is a function of their electric charge only or of their kinetic energy as well. The view is discussed that low radiation doses through indirect effects have favourable and beneficial influence on the human organism. (M.D.)

  12. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Wilson, J.W.; Williams, J.R.; Dicello, J.F.

    2000-01-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/μm. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used

  13. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...... informatics are seeking to build a holistic model for a better understanding of the drug pharmacology and clinical effects. Here we will present a webserver called ChemProt that can assist, in silico, the drug actions in the context of cellular and disease networks and contribute in the field of disease...... chemical biology, drug repurposing, and off-target effects prediction....

  14. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger?

    Directory of Open Access Journals (Sweden)

    Raffaella Marconi

    Full Text Available Preclinical in vivo studies using small animals are considered crucial in translational cancer research and clinical implementation of novel treatments. This is of paramount relevance in radiobiology, especially for any technological developments permitted to deliver high doses in single or oligo-fractionated regimens, such as stereotactic ablative radiotherapy (SABR. In this context, clinical success in cancer treatment needs to be guaranteed, sparing normal tissue and preventing the potential spread of disease or local recurrence. In this work we introduce a new dose-response relationship based on relevant publications concerning preclinical models with regard to delivered dose, fractionation schedule and occurrence of biological effects on non-irradiated tissue, abscopal effects.We reviewed relevant publications on murine models and the abscopal effect in radiation cancer research following PRISMA methodology. In particular, through a log-likelihood method, we evaluated whether the occurrence of abscopal effects may be related to the biologically effective dose (BED. To this aim, studies accomplished with different tumor histotypes were considered in our analysis including breast, colon, lung, fibrosarcoma, pancreas, melanoma and head and neck cancer. For all the tumors, the α / β ratio was assumed to be 10 Gy, as generally adopted for neoplastic cells.Our results support the hypothesis that the occurrence rate of abscopal effects in preclinical models increases with BED. In particular, the probability of revealing abscopal effects is 50% when a BED of 60 Gy is generated.Our study provides evidence that SABR treatments associated with high BEDs could be considered an effective strategy in triggering the abscopal effect, thus shedding light on the promising outcomes revealed in clinical practice.

  15. The effects of biological soil conservation practices and community perception toward these practices in the Lemo District of Southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Tamrat Sinore

    2018-06-01

    Full Text Available Land degradation is the critical ecological and agricultural challenges in Ethiopia. To combat this, the government and local farmers’ have undertaken soil and water conservation measures (physical, biological and integrated across the country since 1970's. This study investigate effect of elephant grass (P. purpureum and sesbania sesban (S. sesban used as biological land rehabilitation practices on soil properties and farmers’ perception on the practices. Composite soil samples (0–30 cm were randomly collected from lands treated with sesbania, elephant grass, and adjacent degraded grazing land, and a structured questionnaire was used to assess farmers’ perceptions. Statistical results showed that elephant grass and sesbania were significantly (P < .05 improves degraded land soil bulk density, pH, CEC, OC, TN, Av.P, K, Na, Ca, Mg and clay characteristics. Moreover, there was a significant (P < .05 difference between farmers’ perception of the effectiveness of physical, biological and integration of the two practices to control soil erosion. 48% of the farmers perceived that using both biological methods and the integration of biological with physical structures was more successful for controlling erosion and improving soil fertility. Logistic regression analysis revealed strong association (R2 = 0.84 between farmers’ perception on elephant grass and sesbanias' roles in soil conservation and groups of explanatory variables. Among the variables age, education and extension service significantly (P < .05 influenced farmers’ perception on the practices. Generally, elephant grass and sesbania are effective biological practices for rehabilitating lands and improving soil properties through minimizing erosion. Keywords: Soil erosion, Soil and water conservation, Biological soil conservation, Sesbania, Elephant grass

  16. Fertility among HIV-infected Indian women Indian women : the biological effect and its implications

    NARCIS (Netherlands)

    Darak, Shrinivas; Janssen, Fanny; Hutter, Inge

    In India, nearly one million women of childbearing age are infected with HIV. This study sought to examine the biological effect of HIV on the fertility of HIV-infected Indian women. This is relevant for the provision of pregnancy-related counselling and care to the infected women, and for

  17. Biological therapy in geriatric patients

    International Nuclear Information System (INIS)

    Mego, M.

    2012-01-01

    Targeted biological therapy, alone or in combination with conventional chemotherapy, make significant progress in the treatment of patients with malignancy. Its use as opposed to high-dose chemotherapy is not limited by age, nevertheless, we have relatively little knowledge of the toxicity and effectiveness in geriatric patients. Aim of this article is to give an overview of the biological effectiveness and toxicity of anticancer therapy in geriatric patients, based on published data. (author)

  18. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    Science.gov (United States)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  19. Biological effects of radiation and health risks from exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Kotian, Rahul P.; Kotian, Sahana Rahul; Sukumar, Suresh

    2013-01-01

    The very fact that ionizing radiation produces biological effects is known from many years. The first case of injury reported by Sir Roentgen was reported just after a few months after discovery of X-rays in 1895. As early as 1902, the first case of X-ray induced cancer was reported in the literature. Early human evidence of harmful effects as a result of exposure to radiation in large amounts existed in the 1920s and 1930s, based upon the experience of early radiologists, miners exposed to airborne radioactivity underground, persons working in the radium industry, and other special occupational groups. The long-term biological significance of smaller, repeated doses of radiation, however, was not widely appreciated until relatively recently, and most of our knowledge of the biological effects of radiation has been accumulated since World War II. The mechanisms that lead to adverse health effects after exposure to ionizing radiation are still not fully understood. Ionizing radiation has sufficient energy to change the structure of molecules, including DNA, within the cells of the body. Some of these molecular changes are so complex that it may be difficult for the body's repair mechanisms to mend them correctly. However, the evidence is that only a small fraction of such changes would be expected to result in cancer or other health effects. The most thoroughly studied individuals for the evaluation of health effects of ionizing radiation are the survivors of the Hiroshima and Nagasaki atomic bombings, a large population that includes all ages and both sexes.The Radiation Effects Research Foundation (RERF) in Japan has conducted followup studies on these survivors for more than 50 years. An important finding from these studies is that the occurrence of solid cancers increases in proportion to radiation dose. More than 60% of exposed survivors received a dose of radiation of less than 100 mSv (the definition of low dose used by the BEIR VII report). (author)

  20. Radiation biology: a century of hopes and disappointments

    International Nuclear Information System (INIS)

    Singh, B.B.

    1998-01-01

    In the history of science, radiation biology will rank perhaps as the most popular subject to have attracted researchers from many disciplines of basic as well as applied sciences. Apart from the excitement arising in clinics relating to radiation treatment of cancers the tragedies in Hiroshima and Nagasaki brought numerous scientists together to investigate the harmful biological effects of ionizing radiation. It is then radiation biology picked up a great momentum. It started developing in two different directions what may be called basic radiation biology and radiation biology applied to radiotherapy of cancer. While great strides were being made in basic radiation biology trying to understand the biological effects of radiation and mechanisms thereof, clinical aspect remained confined mainly to the medical fraternity where empiricalism became the rule

  1. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Science.gov (United States)

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  2. The Relationship between Grade 11 Palestinian Attitudes toward Biology and Their Perceptions of the Biology Learning Environment

    Science.gov (United States)

    Zeidan, Afif

    2010-01-01

    The aims of the study were to investigate (a) the relationship between the attitudes toward biology and perceptions of the biology learning environment among grade 11 students in Tulkarm District, Palestine and (b) the effect of gender and residence of these students on their attitudes toward biology and on their perceptions of the biology…

  3. Effects of space environment on biological characteristics of melanoma B16 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  4. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    Science.gov (United States)

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  5. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  6. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    Science.gov (United States)

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  7. Using counterfactuals to evaluate the cost-effectiveness of controlling biological invasions.

    Science.gov (United States)

    McConnachie, Matthew M; van Wilgen, Brian W; Ferraro, Paul J; Forsyth, Aurelia T; Richardson, David M; Gaertner, Mirijam; Cowling, Richard M

    2016-03-01

    Prioritizing limited conservation funds for controlling biological invasions requires accurate estimates of the effectiveness of interventions to remove invasive species and their cost-effectiveness (cost per unit area or individual). Despite billions of dollars spent controlling biological invasions worldwide, it is unclear whether those efforts are effective, and cost-effective. The paucity of evidence results from the difficulty in measuring the effect of invasive species removal: a researcher must estimate the difference in outcomes (e.g. invasive species cover) between where the removal program intervened and what might have been observed if the program had not intervened. In the program evaluation literature, this is called a counterfactual analysis, which formally compares what actually happened and what would have happened in the absence of an intervention. When program implementation is not randomized, estimating counterfactual outcomes is especially difficult. We show how a thorough understanding of program implementation, combined with a matching empirical design can improve the way counterfactual outcomes are estimated in nonexperimental contexts. As a practical demonstration, we estimated the cost-effectiveness of South Africa's Working for Water program, arguably the world's most ambitious invasive species control program, in removing invasive alien trees from different land use types, across a large area in the Cape Floristic Region. We estimated that the proportion of the treatment area covered by invasive trees would have been 49% higher (5.5% instead of 2.7% of the grid cells occupied) had the program not intervened. Our estimates of cost per hectare to remove invasive species, however, are three to five times higher than the predictions made when the program was initiated. Had there been no control (counter-factual), invasive trees would have spread on untransformed land, but not on land parcels containing plantations or land transformed by

  8. Biological interactions and human health effects of static magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1994-09-01

    Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided

  9. Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates.

    Science.gov (United States)

    Truong, Lisa; Ouedraogo, Gladys; Pham, LyLy; Clouzeau, Jacques; Loisel-Joubert, Sophie; Blanchet, Delphine; Noçairi, Hicham; Setzer, Woodrow; Judson, Richard; Grulke, Chris; Mansouri, Kamel; Martin, Matthew

    2018-02-01

    In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability. To address this complex problem, systemic effect levels were modeled at the study-level by leveraging study covariates (e.g., study type, strain, administration route) in addition to multiple descriptor sets, including chemical (ToxPrint, PaDEL, and Physchem), biological (ToxCast), and kinetic descriptors. Using random forest modeling with cross-validation and external validation procedures, study-level covariates alone accounted for approximately 15% of the variance reducing the root mean squared error (RMSE) from 0.96 log 10 to 0.85 log 10  mg/kg/day, providing a baseline performance metric (lower expectation of model performance). A consensus model developed using a combination of study-level covariates, chemical, biological, and kinetic descriptors explained a total of 43% of the variance with an RMSE of 0.69 log 10  mg/kg/day. A benchmark model (upper expectation of model performance) was also developed with an RMSE of 0.5 log 10  mg/kg/day by incorporating study-level covariates and the mean effect level per chemical. To achieve a representative chemical-level prediction, the minimum study-level predicted and observed effect level per chemical were compared reducing the RMSE from 1.0 to 0.73 log 10  mg/kg/day, equivalent to 87% of predictions falling within an order-of-magnitude of the observed value. Although biological descriptors did not improve model performance, the final model was enriched for biological descriptors that indicated xenobiotic metabolism gene expression, oxidative stress, and

  10. Biological effects of 224Ra. Benefit and risk of therapeutic application

    International Nuclear Information System (INIS)

    Mueller, W.A.; Ebert, H.G.

    1978-01-01

    The Second Symposium on the Biological effects of 224 Ra, held at Neuherberg, was focused on two topical aspects of radiation protection. One aspect was the long-term effects of high-LET ionizing radiations on man and the quantitative data involved in risk assessment at low doses. The evaluation of epidemiological studies and experimental research was discussed in order to provide facts and figures contributing to an objective assessment of the radiation hazard from incorporated radionuclides. The other aspect was that of radiation protection in medicine. In the case of 224 Ra treatment of ankylosing spondylitis the questions of benefit and risk of this therapeutic use of ionizing radiations were discussed, the aim being to achieve the therapeutic effect while reducing radiation exposure - and therefore the hazard - to a minimum. The proceedings contain the complete texts of 23 papers as well as the final round table discussions

  11. Introduction to radiation biology

    International Nuclear Information System (INIS)

    Uma Devi, P.; Satish Rao, B.S.; Nagarathnam, A.

    2000-01-01

    This book is arranged in a logical sequence, starting from radiation physics and radiation chemistry, followed by molecular, subcellular and cellular effects and going on to the level of organism. Topics covered include applied radiobiology like modifiers of radiosensitivity, predictive assay, health physics, human genetics and radiopharmaceuticals. The topics covered are : 1. Radiation Physics, 2. Detection and Measurement of Radiation, 3. Radiation Chemistry, 4. DNA Damage and Repair, 5. Chromosomal Aberrations and Gene Mutations, 6. Cellular Radiobiology 7. Acute Radiation Effects, 8. Delayed Effects of Radiation, 9. Biological Basis of Radiotherapy, 10. Chemical Modifiers of Radiosensitivity, 11. Hyperthermia, 12. High LET Radiations in Cancer, Therapy, 13. Predictive Assays, 14. Radiation Effects on Embryos, 15. Human Radiation Genetics, 16. Radiolabelled Compounds in Biology and Medicine and 17. Radiological Health

  12. On the 'hysteresis' effect in the biological nitrogen removal :theory and full scale experimental evaluation

    International Nuclear Information System (INIS)

    Tatano, F.

    1996-01-01

    The wastewater treatments plants localized in the Ruhr River (Germany), generally present a typical wastewater temperature variation curve during the winter period. These temperature changes produce specific effects on the nitrogen removal efficiencies in the activated sludge systems. The so called 'hysteresis' phenomenon is responsible for these effects. The paper deals with some simplified theoretical considerations and with a full scale experimental evaluations of the effects caused by the hysteresis phenomenon in the biological nitrogen removal

  13. Biological actions and effects of low-frequency fields

    International Nuclear Information System (INIS)

    Brix, J.

    1993-01-01

    Cell culture studies have shown that low-frequency electromagnetic fields may affect cell behaviour. The fact that the corresponding field strengths are too weak to affect membrane potential, suggests that these fields trigger enzymatic reactions at the outer face of the membrane, i.e. cell-intrinsic reaction cascades and a biological modification of the affected biological system take place. These are working models and hypotheses which need to substantiated by further studies in this field. Epidemiological studies suggest that electromagnetic fields influence cancer development in man. However there is no action model indicating exposure to fields to be a genotoxic agent possible triggering a direct genetic modification which precludesr any initialization. (orig.) [de

  14. Biological and sanitary effects of non ionizing radiations

    International Nuclear Information System (INIS)

    Brugere, H.; Hours, M.; Seze, R. de; Bernier, M.; Letertre, Th.; Aurengo, A.; Burais, N.; Bedja, M.; Merckel, O.; Decat, G.; Lagroye, I.; Perrin, A.; Poulletier de Gannes, F.; Aurengo, A.; Souques, M.; Cesarini, J.P.; Lagroye, I.; Aurengo, A.; Cesarini, J.P.

    2008-01-01

    The objective of this day was to encourage the collaborations, especially multidisciplinary, on the biological, clinical, epidemiological and dosimetry aspects. The different presentations are as follow: the magneto reception among animals; the health and radio frequencies foundation; expo-metry to radio frequency fields: dosemeters evaluation; the electro-optical probes as tool of hyper frequency dosimetry; characterisation of emissions produced by the low consumption fluo-compact lamps in the perspective of persons exposure; strong and weak points of epidemiology; numerical dosimetry in low frequency magnetic and/or electric field; exposure of the French population to the 50 Hz magnetic field: first results for the Ile-de-france and Rhone alpes areas; characterisation of the exposure to the very low frequency magnetic fields in the town of Champlan; measurement of the residential exposure of children to the extremely low frequency, very low frequency and radiofrequency (E.L.F., V.L.F. and R.F.) fields and modeling of the high voltage magnetic field face to the child leukemia; effects of radiofrequency signals of wireless communications on the young animals; study of combined effects of 2.45 GHz microwaves and a known mutagen on DNA by two different approaches; effects on the oxidizing stress of nervous cells exposure to an (enhanced data rates for GSM evolution) E.D.G.E. signal; is environmental epidemiology still a science; cardiac implants and exposure to 50 Hz electromagnetic fields in occupational environment; the tanning by artificial UV radiation: norms and legislation; mobiles phones, Wi Fi and other wireless communications; effects on health of 50-60 Hz electromagnetic fields; natural and artificial ultraviolet radiations: a proved risk. (N.C.)

  15. Turkish students' perceptions of their biology learning environments: the effects of gender and grade level

    NARCIS (Netherlands)

    Telli, S.; Brok, den P.J.; Tekkaya, C.; Cakiroglu, J.

    2009-01-01

    This study investigates the effects of gender and grade level on Turkish secondary school students’ perceptions of their biology learning environment. A total of 1474 high school students completed the What is Happening in This Classroom (WIHIC) questionnaire. The WIHIC maps several important

  16. Biological effect of ultrasoft x-ray, 1

    International Nuclear Information System (INIS)

    Narita, Noboru

    1985-01-01

    Biological effect on Escherichia coli by ultrasoft X-ray have been studied by comparing with that by uv light (2537 A) and by soft X-ray (40 kVp, 5 mA). Ultrasoft X-ray is aluminium characteristic X-ray (about 1.5 keV) produced by low energy electron collision on aluminium foil target and is obtained from Lea-type transmission target discharge tube. Escherichia coli used here are AB1157, AB1886 (uvrA6), JC1569 (recA), AB2470 (recB) and AB2480 (uvr rec) for inactivation experiment and WP2, WP2uvrA, WP2pKM101 and WP2uvrApKM101 for mutation induction experiment. These strains are all irradiated in buffer. Results obtained are summerized as follows : (i) inactivation by ultrasoft X-ray is located between ones by uv light and by soft X-ray, or ultrasoft X-ray gives a lethal damage that uvrA6 gene seems to contribute, and (ii) ultrasoft X-ray does not show the remarkable mutation induction like that induced by low dose irradiation of uv light or soft X-ray. (author)

  17. The effects on populations of exposure to low levels of ionizing radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-11-01

    In the summer of 1970, the Federal Radiation Council (whose activities have since been transferred to the Radiation Office of the EPA) asked the National Academy of Sciences for information relevant to an evaluation of present radiation protection guides. This report is in response to that request. It presents a summary and analysis, by members of the Advisory Committee on the Biological Effects of Ionizing Radiations and its subcommittees, of current knowledge relating to risks from exposure to ionizing radiation. In many respects, the report is a sequel to the reports of the Committee on the Biological Effects of Atomic Radiation, published by the NAS-NRC from 1956 to 1961.

  18. The effects on populations of exposure to low levels of ionizing radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations

    International Nuclear Information System (INIS)

    1972-11-01

    In the summer of 1970, the Federal Radiation Council (whose activities have since been transferred to the Radiation Office of the EPA) asked the National Academy of Sciences for information relevant to an evaluation of present radiation protection guides. This report is in response to that request. It presents a summary and analysis, by members of the Advisory Committee on the Biological Effects of Ionizing Radiations and its subcommittees, of current knowledge relating to risks from exposure to ionizing radiation. In many respects, the report is a sequel to the reports of the Committee on the Biological Effects of Atomic Radiation, published by the NAS-NRC from 1956 to 1961

  19. The First Time Ever I Saw Your Feet: Inversion Effect in Newborns' Sensitivity to Biological Motion

    Science.gov (United States)

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2014-01-01

    Inversion effect in biological motion perception has been recently attributed to an innate sensitivity of the visual system to the gravity-dependent dynamic of the motion. However, the specific cues that determine the inversion effect in naïve subjects were never investigated. In the present study, we have assessed the contribution of the local…

  20. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  1. Biological therapies (immunomodulatory drugs), worsening of psoriasis and rebound effect: new evidence of similitude.

    Science.gov (United States)

    Teixeira, Marcus Zulian

    2016-11-01

    Employing the secondary action or adaptative reaction of the organism as therapeutic response, homeopathy uses the treatment by similitude (similia similibus curentur) administering to sick individuals the medicines that caused similar symptoms in healthy individuals. Such homeostatic or paradoxical reaction of the organism is scientifically explained through the rebound effect of drugs, which cause worsening of symptoms after withdrawal of several palliative treatments. Despite promoting an improvement in psoriasis at the beginning of the treatment, modern biological therapies provoke worsening of the psoriasis (rebound psoriasis) after discontinuation of drugs. Exploratory qualitative review of the literature on the occurrence of the rebound effect with the use of immunomodulatory drugs [T-cell modulating agents and tumor necrosis factor (TNF) inhibitors drugs] in the treatment of psoriasis. Several researches indicate the rebound effect as the mechanism of worsening of psoriasis with the use of efalizumab causing the suspension of its marketing authorization in 2009, in view of some severe cases. Other studies also have demonstrated the occurrence of rebound psoriasis with the use of alefacept, etanercept and infliximab. As well as studied in other classes of drugs, the rebound effect of biologic agents supports the principle of similitude (primary action of the drugs followed by secondary action and opposite of the organism). Copyright © 2016 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  2. MIRD Commentary: Proposed Name for a Dosimetry Unit Applicable to Deterministic Biological Effects-The Barendsen (Bd)

    International Nuclear Information System (INIS)

    Sgouros, George; Howell, R. W.; Bolch, Wesley E.; Fisher, Darrell R.

    2009-01-01

    The fundamental physical quantity for relating all biologic effects to radiation exposure is the absorbed dose, the energy imparted per unit mass of tissue. Absorbed dose is expressed in units of joules per kilogram (J/kg) and is given the special name gray (Gy). Exposure to ionizing radiation may cause both deterministic and stochastic biologic effects. To account for the relative effect per unit absorbed dose that has been observed for different types of radiation, the International Commission on Radiological Protection (ICRP) has established radiation weighting factors for stochastic effects. The product of absorbed dose in Gy and the radiation weighting factor is defined as the equivalent dose. Equivalent dose values are designated by a special named unit, the sievert (Sv). Unlike the situation for stochastic effects, no well-defined formalism and associated special named quantities have been widely adopted for deterministic effects. The therapeutic application of radionuclides and, specifically, -particle emitters in nuclear medicine has brought to the forefront the need for a well-defined dosimetry formalism applicable to deterministic effects that is accompanied by corresponding special named quantities. This commentary reviews recent proposals related to this issue and concludes with a recommendation to establish a new named quantity

  3. Effects of polychromatic visible and infrared light on biological liquid media.

    Science.gov (United States)

    Zilov, V G; Khadartsev, A A; Bitsoev, V D

    2014-08-01

    Experimental study of the effects of polychromatic visible and infrared light on biological fluids was carried out in order to validate the new approaches to phototherapy. Polychromatic light generated by Bioptron device at different modes and frequencies was released through the fiberoptic cable, including the exposure paralleled by CO2 saturation of water and exposure from a device placed 10 cm above the water surface, which ensured maximum light absorption. The effects of irradiation were recorded in 26 and 15 min, while the increase of light absorption by blood plasma in vivo was recorded 1 h after a bath with water pre-exposed to polarized light. Absorption bands corresponding to those for immunomodulatory, anti-inflammatory, and antiviral drugs, were detected. Changes in the spectra of valency oscillations, depending on the oscillation anharmonism values, were detected.

  4. Biological effects of cesium-137 injected in beagle dogs of different ages

    International Nuclear Information System (INIS)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C.

    1995-01-01

    The toxicity of cesium-137 ( 137 Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of 137 Cs are important to understand because 137 Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantly earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy

  5. Biologics in pediatric psoriasis - efficacy and safety.

    Science.gov (United States)

    Dogra, Sunil; Mahajan, Rahul

    2018-01-01

    Childhood psoriasis is a special situation that is a management challenge for the treating dermatologist. As is the situation with traditional systemic agents, which are commonly used in managing severe psoriasis in children, the biologics are being increasingly used in the recalcitrant disease despite limited data on long term safety. Areas covered: We performed an extensive literature search to collect evidence-based data on the use of biologics in pediatric psoriasis. The relevant literature published from 2000 to September 2017 was obtained from PubMed, using the MeSH words 'biologics', 'biologic response modifiers' and 'treatment of pediatric/childhood psoriasis'. All clinical trials, randomized double-blind or single-blind controlled trials, open-label studies, retrospective studies, reviews, case reports and letters concerning the use of biologics in pediatric psoriasis were screened. Articles covering the use of biologics in pediatric psoriasis were screened and reference lists in the selected articles were scrutinized to identify other relevant articles that had not been found in the initial search. Articles without relevant information about biologics in general (e.g. its mechanism of action, pharmacokinetics and adverse effects) and its use in psoriasis in particular were excluded. We screened 427 articles and finally selected 41 relevant articles. Expert opinion: The available literature on the use of biologics such as anti-tumor necrosis factor (TNF)-α agents, and anti-IL-12/23 agents like ustekinumab suggests that these are effective and safe in managing severe pediatric psoriasis although there is an urgent need to generate more safety data. Dermatologists must be careful about the potential adverse effects of the biologics before administering them to children with psoriasis. It is likely that with rapidly evolving scenario of biologics in psoriasis, these will prove to be very useful molecules particularly in managing severe and recalcitrant

  6. An Augmented γ-Spray System to Visualize Biological Effects for Human Body

    Science.gov (United States)

    Manabe, Seiya; Tenzou, Hideki; Kasuga, Takaaki; Iwakura, Yukiko; Johnston, Robert

    2017-09-01

    The purpose of this study was to develop a new educational system with an easy-to-use interface in order to support comprehension of the biological effects of radiation on the human body within a short period of time. A paint spray-gun was used as a gamma rays source mock-up for the system. The application screen shows the figure of a human body for radiation deposition using the γ-Sprayer, a virtual radiation source, as well as equivalent dosage and a panel for setting the irradiation conditions. While the learner stands in front of the PC monitor, the virtual radiation source is used to deposit radiation on the graphic of the human body that is displayed. Tissue damage is calculated using an interpolation method from the data calculated by the PHITS simulation code in advance while the learner is pulling the trigger with respect to the irradiation time, incident position, and distance from the screen. It was confirmed that the damage was well represented by the interpolation method. The augmented ?-Spray system was assessed by questionnaire. Pre-post questionnaire was taken for our 41 students in National Institute of Technology, Kagawa College. It was also confirmed that the system has a capability of teaching the basic radiation protection concept, quantitative feeling of the radiation dose, and the biological effects

  7. Modelling effective dielectric properties of materials containing diverse types of biological cells

    International Nuclear Information System (INIS)

    Huclova, Sonja; Froehlich, Juerg; Erni, Daniel

    2010-01-01

    An efficient and versatile numerical method for the generation of different realistically shaped biological cells is developed. This framework is used to calculate the dielectric spectra of materials containing specific types of biological cells. For the generation of the numerical models of the cells a flexible parametrization method based on the so-called superformula is applied including the option of obtaining non-axisymmetric shapes such as box-shaped cells and even shapes corresponding to echinocytes. The dielectric spectra of effective media containing various cell morphologies are calculated focusing on the dependence of the spectral features on the cell shape. The numerical method is validated by comparing a model of spherical inclusions at a low volume fraction with the analytical solution obtained by the Maxwell-Garnett mixing formula, resulting in good agreement. Our simulation data for different cell shapes suggest that around 1MHz the effective dielectric properties of different cell shapes at different volume fractions significantly deviate from the spherical case. The most pronounced change exhibits ε eff between 0.1 and 1 MHz with a deviation of up to 35% for a box-shaped cell and 15% for an echinocyte compared with the sphere at a volume fraction of 0.4. This hampers the unique interpretation of changes in cellular features measured by dielectric spectroscopy when simplified material models are used.

  8. Effects of Conceptual Change Text Based Instruction on Ecology, Attitudes toward Biology and Environment

    Science.gov (United States)

    Çetin, Gülcan; Ertepinar, Hamide; Geban, Ömer

    2015-01-01

    The purpose of this study is to investigate the effects of the conceptual change text based instruction on ninth grade students' understanding of ecological concepts, and attitudes toward biology and environment. Participants were 82 ninth grade students in a public high school in the Northwestern Turkey. A treatment was employed over a five-week…

  9. Using biological effects tools to define Good Environmental Status under the Marine Strategy Framework Directive

    NARCIS (Netherlands)

    Lyons, B.P.; Thain, J.E.; Hylland, K.; Davis, I.; Vethaak, A.D.

    2010-01-01

    The use of biological effects tools offer enormous potential to meet the challenges outlined by the European Union Marine Strategy Framework Directive (MSFD) whereby Member States are required to develop a robust set of tools for defining 11 qualitative descriptors of Good Environmental Status

  10. Chemical and biological effects of radiation sterilization of medical products

    International Nuclear Information System (INIS)

    Gupta, B.L.

    1975-01-01

    Radiation is extensively used for the sterilization of plastic materials, pharmaceuticals and biological tissue grafts. The pharmaceuticals may be solid, liquid, or suspension in a liquid or a solution. Cobalt-60 gamma radiation, generally used for sterilization, primarily interacts with these materials through the Compton process. The resulting damage may be direct or indirect. In aqueous systems the primary species produced compete for interaction among themselves and the dissolved solutes. The nature, the G-values and the reactions of the primary species very much depend on the pH of the solution. The important chemical changes in plastic materials are gas liberation, change in concentration of double bonds, cross-linking, degradation and oxidation. These chemical changes lead to some physical changes like crystallinity, specific conductivity and permeability. The reactions in biological systems are very complex and are influenced by the presence or absence of water and oxygen. Water produces indirect damage and the radiation effect is generally more in the presence of oxygen. Most microorganisms are relatively radioresistant. Various tissues of an animal differ in their response to radiation. Catgut is not stable to irradiation. Lyophilized human serum is stable to irradiation whereas, when irradiated in aqueous solutions, several changes are observed. Generally, pharmaceuticals are considerably more stable in the dry solid state to ionizing radiations than in aqueous solutions or in any other form of molecular aggregation. (author)

  11. Biological Effects of Osteoblast-Like Cells on Nanohydroxyapatite Particles at a Low Concentration Range

    Directory of Open Access Journals (Sweden)

    Xiaochen Liu

    2011-01-01

    Full Text Available The biological effects of osteoblast-like MG-63 cells on nanohydroxyapatite (n-HA at the low concentration range (5–25 g/mL for 5 days was investigated. The results showed the viability and actin cytoskeleton of the cells descended with the increase of the concentration of n-HA, and the actin cytoskeleton of cells was depolymerised and became more disordered. Apoptotic rate of cells (1.85%, 1.99%, and 2.29% increased with the increase of n-HA concentration (5, 15, and 25 g/mL and become significantly higher than the control. Total intracellular protein content decreased with n-HA concentration increase, showing significant difference between 25 g/mL and the control, and no significant change of ALP activity was observed at the 5th day. The results revealed that the cell growth was inhibited by n-HA in a concentration-dependent manner, and the obvious biological effects of MG-63 cells on n-HA existed at the low concentration range from 5 to 25 g/mL.

  12. Effects of biological sex on the pathophysiology of the heart.

    Science.gov (United States)

    Fazal, Loubina; Azibani, Feriel; Vodovar, Nicolas; Cohen Solal, Alain; Delcayre, Claude; Samuel, Jane-Lise

    2014-02-01

    Cardiovascular diseases are the leading causes of death in men and women in industrialized countries. While the effects of biological sex on cardiovascular pathophysiology have long been known, the sex-specific mechanisms mediating these processes have been further elucidated over recent years. This review aims at analysing the sex-based differences in cardiac structure and function in adult mammals, and the sex-based differences in the main molecular mechanisms involved in the response of the heart to pathological situations. It emerged from this review that the sex-based difference is a variable that should be dealt with, not only in basic science or clinical research, but also with regards to therapeutic approaches. © 2013 The British Pharmacological Society.

  13. Occurrence of 210Po and Biological Effects of Low-Level Exposure: The Need for Research

    Science.gov (United States)

    Wiemels, Joseph L.

    2012-01-01

    Background: Polonium-210 (210Po) concentrations that exceed 1 Bq/L in drinking-water supplies have been reported from four widely separated U.S. states where exposure to it went unnoticed for decades. The radionuclide grandparents of 210Po are common in sediments, and segments of the public may be chronically exposed to low levels of 210Po in drinking water or in food products from animals raised in contaminated areas. Objectives: We summarized information on the environmental behavior, biokinetics, and toxicology of 210Po and identified the need for future research. Methods: Potential linkages between environmental exposure to 210Po and human health effects were identified in a literature review. Discussion: 210Po accumulates in the ovaries where it kills primary oocytes at low doses. Because of its radiosensitivity and tendency to concentrate 210Po, the ovary may be the critical organ in determining the lowest injurious dose for 210Po. 210Po also accumulates in the yolk sac of the embryo and in the fetal and placental tissues. Low-level exposure to 210Po may have subtle, long-term biological effects because of its tropism towards reproductive and embryonic and fetal tissues where exposure to a single alpha particle may kill or damage critical cells. 210Po is present in cigarettes and maternal smoking has several effects that appear consistent with the toxicology of 210Po. Conclusions: Much of the important biological and toxicological research on 210Po is more than four decades old. New research is needed to evaluate environmental exposure to 210Po and the biological effects of low-dose exposure to it so that public health officials can develop appropriate mitigation measures where necessary. PMID:22538346

  14. Relative biological effectiveness of high energy protons for a human melanoma

    International Nuclear Information System (INIS)

    Petrovic, I.; Ristic-Fira, A.; Todorovic, D.; Valastro, I.; Cirrone, P.; Cuttone, G.

    2005-01-01

    Relative biological effectiveness (RBE) for the survival of human melanoma cells induced by high linear energy transfer (LET) protons was investigated. Exponentially growing HTB140 cells were irradiated close to the Bragg peak maximum of the 62 MeV protons, as well as with 60 Co γ-rays, over single doses, ranging from 8-24 Gy. Clonogenic survival and cell viability were assessed up to 48 h post-irradiation, therefore considered as early inactivation effects. Dose dependent cell inactivation induced by high LET protons was observed. Surviving fractions have shown great overlapping with estimated cell viability, both with the increase of dose and with prolonged cell incubation. Evaluated RBEs were higher with the rise of dose, being in the range from 2 to 3. All analyzes performed have demonstrated a very radio-resistant nature of HTB140 melanoma cells. However, high LET protons are able to inactivate these cells in a larger extent compared to the effects of γ-rays. (author)

  15. Methods for studying and criteria for evaluating the biological effects of electric fields of industrial frequency

    Energy Technology Data Exchange (ETDEWEB)

    Savin, B. M.; Shandala, M. G.; Nikonova, K. V.; Morozov, Yu. A.

    1978-10-01

    Data are reviewed from a number of USSR research studies on the biological effects of electric power transmission lines of 1150 Kv and above. Effects on man, plants, animals, and terrestrial ecosystems are reported. Existing health standards in the USSR for the exposure of personnel working in electric fields are included. It is concluded that high-voltage electric fields have a harmful effect on man and his environment.

  16. Biological effects of carvacrol and cinnamaldehyde on Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Angélique Montagu

    2016-07-01

    Full Text Available Acinetobacter baumannii has emerged as a major cause of nosocomial infections. The ability of A. baumannii to display various resistance mechanisms against antibiotics has transformed it into a successful nosocomial pathogen. The limited number of antibiotics in development and the disengagement of the pharmaceutical industry have prompted the development of innovative strategies. One of these strategies is the use of essential oils, especially aromatic compounds that are potent antibacterial molecules. Among them, the combination of carvacrol and cinnamaldehyde has already demonstrated antibacterial efficacy against A. baumannii. The aim of this study was to determine the biological effects of these two compounds in A. baumannii, describing their effect on the rRNA and gene regulation under environmental stress conditions. Results demonstrated rRNA degradation by the carvacrol/cinnamaldehyde mixture, and this effect was due to carvacrol. Degradation was conserved after encapsulation of the mixture in lipid nanocapsules. Results showed an upregulation of the genes coding for heat shock proteins, such as groES, groEL, dnaK, clpB and the catalase katE, after exposure to carvacrol/cinnamaldehyde mixture. The catalase was upregulated after carvacrol exposure wich is related to an oxidative stress. The combination of thiourea (hydroxyl radical scavenger and carvacrol demonstrated a potent bactericidal effect. These results underline the development of defense strategies of the bacteria by synthesis of reactive oxygen species (ROS in response to environmental stress conditions, such as carvacrol.

  17. Effect of gamma irradiation on the pigments and the biological activities of methanolic extracts from leaves of centipedegrass (Eremochloa ophiuroides Munro)

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Lee, Seung Sik; Bai, Hyoung-Woo; Cho, Jae-Young; Kim, Tae Hoon; Chung, Byung Yeoup

    2013-01-01

    Extracts from centipedegrass (Eremochloa ophiuroides Munro) have been previously identified as having beneficial effects medically and cosmetically. In this study, the effects of gamma irradiation on pigment removal and biological activities of centipedegrass extracts to promote industrial application were investigated. The methanolic extracts were exposed to gamma irradiation at dose ranging from 2 to 20 kGy. The major pigments of centipedegrass extracts, cyanidin-3-O-glucoside and cyanidin-3-O-(6″-malonyl-)glucoside, were found to be effectively removed by gamma irradiation above 10 kGy. Although the reddish-orange color of the cyanidins was markedly decreased by gamma irradiation, the biological activities were relatively unaffected. The biological activities such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, inhibition of tyrosinase activity, and inhibition of elastase activity in methanolic extracts were modulated from 50.5% to 70.2%, from 50.9% to 65.8% and from 65.6% to 94.0%, respectively. Surprisingly, the biological activities have the highest activities after 6–8 kGy of gamma irradiation. These results indicate that despite pigment degradation, biological activities were maintained or increased by gamma irradiation. Based on these results, gamma irradiation may be a useful tool to remove the undesirable reddish-orange color present in centipedegrass without any loss of biological activities, thereby promoting its utility in industrial applications such as manufacturing of cosmetic products. - Highlights: • The pigments of centipedegrass extracts were decreased by gamma irradiation. • The contents of maysin and its derivatives were slightly changed by gamma irradiation. • The biological activities of centipedegrass extracts were retained or increased by gamma irradiation

  18. Effects of fumonisin B1 on selected biological responses and performance of broiler chickens

    Directory of Open Access Journals (Sweden)

    Ricardo H. Rauber

    2013-09-01

    Full Text Available The objective of this study was to determine the effects of three doses of fumonisin B1 (0, 100, and 200mg/kg of feed on biological variables (relative weight of liver [RWL], total plasma protein [TPP], albumin [Alb], calcium [Ca], phosphorus [P], uric acid [UA], alanine aminotransferase [ALT], aspartate aminotransferase [AST], gamma glutamyltransferase [GGT], alkaline phosphatase [AP], total cholesterol [Chol], triglycerides [Tri], sphinganine-to-sphingosine ratio [SA:SO], and C-reactive protein [CRP], morphological evaluation of the small intestine (villus height [VH], crypt depth [CD], and villus-to-crypt ratio [V:C], histological evaluation, and on performance (body weight [BW], feed intake [FI], and feed conversion rate [FCR] of broiler chickens. Significant effects of FB were observed on BW and FI (reduced, on RWL, TPP, Ca, ALT, AST, GGT, Chol, and Tri (increased at both 14 and 28 days evaluations. In addition, significant increase was observed on FCR, Alb, P, SA:SO, and CRP and significant reduction in UA, VH, and V:C only at the 28 days evaluation. Significant histological lesions were observed on liver and kidney of FB inoculated broilers at 14 and 28 days. Those results show that FB has a significant effect on biological and histological variables and on performance of broiler chickens.

  19. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  20. Biological effects of single HZE-particles of the cosmic radiation: Free Flyer Biostack

    International Nuclear Information System (INIS)

    1989-01-01

    The Free Flyer Biostack is designed as a passive, longer term experiment for investigations into the dosimetry of cosmic HZE particles (high-charge energetic particles), the effects of single HZE particles on isolated biological samples, and the synergistic effects of conditions in space, as e.g. zero gravity and presence of a permanent, weakly ionizing component of the cosmic radiation. For the experiments summarized in this project report, the AgCl detector type developed in Frankfurt has been used, consisting of monocrystalline AgCl films, about 130-150 μm thick, and doped with 5000 ppm of Cd. (DG) With 9 figs [de

  1. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  2. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects.

    Science.gov (United States)

    Dizdaroglu, Miral; Kirkali, Güldal; Jaruga, Pawel

    2008-12-15

    Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA-protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8-OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines

  3. Effects of help-seeking in a blended high school Biology class

    Science.gov (United States)

    Deguzman, Paolo

    Distance learning provides an opportunity for students to learn valuable information through technology and interactive media. Distance learning additionally offers educational institutions the flexibility of synchronous and asynchronous instruction while increasing enrollment and lowering cost. However, distance education has not been well documented within the context of urban high schools. Distance learning may allow high school students to understand material at an individualized pace for either enrichment or remediation. A successful high school student who participates in distance learning should exhibit high self regulatory skills. However, most urban high school students have not been exposed to distance learning and should be introduced to proper self regulatory strategies that should increase the likelihood of understanding the material. To help facilitate a move into distance learning, a blended distance learning model, the combination of distance learning and traditional learning, will be used. According to O'Neil's (in preparation) revised problem solving model, self regulation is a component of problem solving. Within the Blended Biology course, urban high school students will be trained in help-seeking strategies to further their understanding of genetics and Punnett Square problem solving. This study investigated the effects of help-seeking in a blended high school Biology course. The main study consisted of a help-seeking group (n=55) and a control group (n=53). Both the help-seeking group and the control group were taught by one teacher for two weeks. The help-seeking group had access to Blended Biology with Help-Seeking while the control group only had access to Blended Biology. The main study used a pretest and posttest to measure Genetics Content Understanding, Punnett Square Problem Solving, Adaptive Help-Seeking, Maladaptive Help-Seeking, and Self Regulation. The analysis showed no significant difference in any of the measures in terms of

  4. Comparison of Biological Effectiveness of Carbon-Ion Beams in Japan and Germany

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Ando, Koichi; Koike, Sachiko; Furusawa, Yoshiya; Matsumoto, Yoshitaka; Takai, Nobuhiko; Hirayama, Ryoichi; Watanabe, Masahiko; Scholz, Michael; Elsaesser, Thilo; Peschke, Peter

    2009-01-01

    Purpose: To compare the biological effectiveness of 290 MeV/amu carbon-ion beams in Chiba, Japan and in Darmstadt, Germany, given that different methods for beam delivery are used for each. Methods and Materials: Murine small intestine and human salivary gland tumor (HSG) cells exponentially growing in vitro were irradiated with 6-cm width of spread-out Bragg peaks (SOBPs) adjusted to achieve nearly identical beam depth-dose profiles at the Heavy-Ion Medical Accelerator in Chiba, and the SchwerIonen Synchrotron in Darmstadt. Cell kill efficiencies of carbon ions were measured by colony formation for HSG cells and jejunum crypts survival in mice. Cobalt-60 γ rays were used as the reference radiation. Isoeffective doses at given survivals were used for relative biological effectiveness (RBE) calculations and interinstitutional comparisons. Results: Isoeffective D 10 doses (mean ± standard deviation) of HSG cells ranged from 2.37 ± 0.14 Gy to 3.47 ± 0.19 Gy for Chiba and from 2.31 ± 0.11 Gy to 3.66 ± 0.17 Gy for Darmstadt. Isoeffective D 10 doses of gut crypts after single doses ranged from 8.25 ± 0.17 Gy to 10.32 ± 0.14 Gy for Chiba and from 8.27 ± 0.10 Gy to 10.27 ± 0.27 Gy for Darmstadt, whereas isoeffective D 30 doses after three fractionated doses were 9.89 ± 0.17 Gy through 13.70 ± 0.54 Gy and 10.14 ± 0.20 Gy through 13.30 ± 0.41 Gy for Chiba and Darmstadt, respectively. Overall difference of RBE between the two facilities was 0-5% or 3-7% for gut crypt survival or HSG cell kill, respectively. Conclusion: The carbon-ion beams at the National Institute of Radiological Sciences in Chiba, Japan and the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany are biologically identical after single and daily fractionated irradiation.

  5. Targeted alpha therapy using Radium-223: From physics to biological effects.

    Science.gov (United States)

    Marques, I A; Neves, A R; Abrantes, A M; Pires, A S; Tavares-da-Silva, E; Figueiredo, A; Botelho, M F

    2018-05-25

    With the advance of the use of ionizing radiation in therapy, targeted alpha therapy (TAT) has assumed an important role around the world. This kind of therapy can potentially reduce side effects caused by radiation in normal tissues and increased destructive radiobiological effects in tumor cells. However, in many countries, the use of this therapy is still in a pioneering phase. Radium-223 ( 223 Ra), an alpha-emitting radionuclide, has been the first of its kind to be approved for the treatment of bone metastasis in metastatic castration-resistant prostate cancer. Nevertheless, the interaction mechanism and the direct effects of this radiopharmaceutical in tumor cells are not fully understood neither characterized at a molecular level. In fact, the ways how TAT is linked to radiobiological effects in cancer is not yet revised. Therefore, this review introduces some physical properties of TAT that leads to biological effects and links this information to the hallmarks of cancer. The authors also collected the studies developed with 223 Ra to correlate with the three categories reviewed - properties of TAT, 5 R's of radiobiology and hallmarks of cancer- and with the promising future to this radiopharmaceutical. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. [Cost-effectiveness analysis of etanercept compared with other biologic therapies in the treatment of rheumatoid arthritis].

    Science.gov (United States)

    Salinas-Escudero, Guillermo; Vargas-Valencia, Juan; García-García, Erika Gabriela; Munciño-Ortega, Emilio; Galindo-Suárez, Rosa María

    2013-01-01

    to conduct cost-effectiveness analysis of etanercept compared with other biologic therapies in the treatment of moderate or severe rheumatoid arthritis in patients with previous unresponse to immune selective anti-inflammatory derivatives failure. a pharmacoeconomic model based on decision analysis to assess the clinical outcome after giving etanercept, infliximab, adalimumab or tocilizumab to treat moderate or severe rheumatoid arthritis was employed. Effectiveness of medications was assessed with improvement rates of 20 % or 70 % of the parameters established by the American College of Rheumatology (ACR 20 and ACR 70). the model showed that etanercept had the most effective therapeutic response rate: 79.7 % for ACR 20 and 31.4 % for ACR 70, compared with the response to other treatments. Also, etanercept had the lowest cost ($149,629.10 per patient) and had the most cost-effective average ($187,740.40 for clinical success for ACR 20 and $476,525.80 for clinical success for ACR 70) than the other biologic therapies. we demonstrated that treatment with etanercept is more effective and less expensive compared to the other drugs, thus making it more efficient therapeutic option both in terms of means and incremental cost-effectiveness ratios for the treatment of rheumatoid arthritis.

  7. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg335300@yahoo.com.cn [Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025 (China); Institute of Entomology, Guizhou University, Guiyang 550025 (China); Wang Xiaoteng [Department of Agricultural Resources and Environment, College of Agricultural, Guizhou University, Guiyang 550025 (China); Gan Cailing; Fang Yanqiong; Zhang Meng [College of Life Sciences, Guizhou University, Guiyang 550025 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyzed biological effects of N{sup +} implantation on dry Jatropha curcas seed. Black-Right-Pointing-Pointer N{sup +} implantation greatly decreased seedling survival rate. Black-Right-Pointing-Pointer At doses beyond 15 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place. Black-Right-Pointing-Pointer CAT was essential for H{sub 2}O{sub 2} removal. POD mainly functioned as seed was severely hurt. Black-Right-Pointing-Pointer HAsA-GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N{sup +} with energy of 25 keV was applied to treat the dry seed at six different doses. N{sup +} beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 Multiplication-Sign 10{sup 16} to 15 Multiplication-Sign 10{sup 16} ions cm{sup -2} severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 Multiplication-Sign 10{sup 16} ions cm{sup -2} may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  8. Biological radiation effects of Radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E

    1996-12-31

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 {+-} 0.3 to 111 {+-} 7.4 KBq/m{sup 3} equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m{sup 3}, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author).

  9. Evidence of market-driven size-selective fishing and the mediating effects of biological and institutional factors

    Science.gov (United States)

    Reddy, Sheila M. W.; Wentz, Allison; Aburto-Oropeza, Octavio; Maxey, Martin; Nagavarapu, Sriniketh; Leslie, Heather M.

    2014-01-01

    Market demand is often ignored or assumed to lead uniformly to the decline of resources. Yet little is known about how market demand influences natural resources in particular contexts, or the mediating effects of biological or institutional factors. Here, we investigate this problem by examining the Pacific red snapper (Lutjanus peru) fishery around La Paz, Mexico, where medium or “plate-sized” fish are sold to restaurants at a premium price. If higher demand for plate-sized fish increases the relative abundance of the smallest (recruit size class) and largest (most fecund) fish, this may be a market mechanism to increase stocks and fishermen’s revenues. We tested this hypothesis by estimating the effect of prices on the distribution of catch across size classes using daily records of prices and catch. We linked predictions from this economic choice model to a staged-based model of the fishery to estimate the effects on the stock and revenues from harvest. We found that the supply of plate-sized fish increased by 6%, while the supply of large fish decreased by 4% as a result of a 13% price premium for plate-sized fish. This market-driven size selection increased revenues (14%) but decreased total fish biomass (−3%). However, when market-driven size selection was combined with limited institutional constraints, both fish biomass (28%) and fishermen’s revenue (22%) increased. These results show that the direction and magnitude of the effects of market demand on biological populations and human behavior can depend on both biological attributes and institutional constraints. Fisheries management may capitalize on these conditional effects by implementing size-based regulations when economic and institutional incentives will enhance compliance, as in the case we describe here, or by creating compliance enhancing conditions for existing regulations. PMID:23865225

  10. Evidence of market-driven size-selective fishing and the mediating effects of biological and institutional factors.

    Science.gov (United States)

    Reddy, Sheila M W; Wentz, Allison; Aburto-Oropeza, Octavio; Maxey, Martin; Nagavarapu, Sriniketh; Leslie, Heather M

    2013-06-01

    Market demand is often ignored or assumed to lead uniformly to the decline of resources. Yet little is known about how market demand influences natural resources in particular contexts, or the mediating effects of biological or institutional factors. Here, we investigate this problem by examining the Pacific red snapper (Lutjanus peru) fishery around La Paz, Mexico, where medium or "plate-sized" fish are sold to restaurants at a premium price. If higher demand for plate-sized fish increases the relative abundance of the smallest (recruit size class) and largest (most fecund) fish, this may be a market mechanism to increase stocks and fishermen's revenues. We tested this hypothesis by estimating the effect of prices on the distribution of catch across size classes using daily records of prices and catch. We linked predictions from this economic choice model to a staged-based model of the fishery to estimate the effects on the stock and revenues from harvest. We found that the supply of plate-sized fish increased by 6%, while the supply of large fish decreased by 4% as a result of a 13% price premium for plate-sized fish. This market-driven size selection increased revenues (14%) but decreased total fish biomass (-3%). However, when market-driven size selection was combined with limited institutional constraints, both fish biomass (28%) and fishermen's revenue (22%) increased. These results show that the direction and magnitude of the effects of market demand on biological populations and human behavior can depend on both biological attributes and institutional constraints. Fisheries management may capitalize on these conditional effects by implementing size-based regulations when economic and institutional incentives will enhance compliance, as in the case we describe here, or by creating compliance enhancing conditions for existing regulations.

  11. Calculation of integrated biological response in brachytherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Coles, Ian P.; Deehan, Charles; O'Donoghue, Joseph A.

    1997-01-01

    Purpose: To present analytical methods for calculating or estimating the integrated biological response in brachytherapy applications, and which allow for the presence of dose gradients. Methods and Materials: The approach uses linear-quadratic (LQ) formulations to identify an equivalent biologically effective dose (BED eq ) which, if applied to a specified tissue volume, would produce the same biological effect as that achieved by a given brachytherapy application. For simple geometrical cases, BED multiplying factors have been derived which allow the equivalent BED for tumors to be estimated from a single BED value calculated at a dose reference point. For more complex brachytherapy applications a voxel-by-voxel determination of the equivalent BED will be more accurate. Equations are derived which when incorporated into brachytherapy software would facilitate such a process. Results: At both high and low dose rates, the BEDs calculated at the dose reference point are shown to be lower than the true values by an amount which depends primarily on the magnitude of the prescribed dose; the BED multiplying factors are higher for smaller prescribed doses. The multiplying factors are less dependent on the assumed radiobiological parameters. In most clinical applications involving multiple sources, particularly those in multiplanar arrays, the multiplying factors are likely to be smaller than those derived here for single sources. The overall suggestion is that the radiobiological consequences of dose gradients in well-designed brachytherapy treatments, although important, may be less significant than is sometimes supposed. The modeling exercise also demonstrates that the integrated biological effect associated with fractionated high-dose-rate (FHDR) brachytherapy will usually be different from that for an 'equivalent' continuous low-dose-rate (CLDR) regime. For practical FHDR regimes involving relatively small numbers of fractions, the integrated biological effect to

  12. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  13. The relative biological effectiveness of I-125 and Pd-103

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Li, William X.; Anderson, Lowell L.

    1995-01-01

    Purpose: To determine the relative biological effectiveness (RBE) of I-125 and Pd-103 relative to Co-60. Methods and Materials: A cell line REC:ras, derived from rat embryo cells, was used. Cells in exponential or plateau phase were irradiated at dose rates of about 0.07 Gy/h and 0.14 Gy/h. To circumvent the interface effect, cells were grown and irradiated on membranes made of cellulose acetate, which has an effective Z of 7.5. I-125 and Pd-103 seeds were placed in a custom designed template that yielded a homogeneous dose distribution in the plane of the cell culture. The dose rates of irradiation were measured by calibrated thermoluminescence dosimetry (TLD) chips. Results and Conclusions: Our measurements yielded an RBE of about 1.4 for I-125 at dose rates of about 0.07 Gy/h, and an RBE of about 1.9 for Pd-103 at dose rates of about 0.07 Gy/h and 0.14 Gy/h. The RBE of I-125 is similar to those measured by other investigators, the RBE for Pd-103 is being reported for the first time

  14. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1997-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. McKenna and Dritschilo. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  15. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1996-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part 'series' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  16. A systematic review of cost-effectiveness studies comparing conventional, biological and surgical interventions for inflammatory bowel disease.

    Science.gov (United States)

    Pillai, Nadia; Dusheiko, Mark; Burnand, Bernard; Pittet, Valérie

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic disease placing a large health and economic burden on health systems worldwide. The treatment landscape is complex with multiple strategies to induce and maintain remission while avoiding long-term complications. The extent to which rising treatment costs, due to expensive biologic agents, are offset by improved outcomes and fewer hospitalisations and surgeries needs to be evaluated. This systematic review aimed to assess the cost-effectiveness of treatment strategies for IBD. A systematic literature search was performed in March 2017 to identify economic evaluations of pharmacological and surgical interventions, for adults diagnosed with Crohn's disease (CD) or ulcerative colitis (UC). Costs and incremental cost-effectiveness ratios (ICERs) were adjusted to reflect 2015 purchasing power parity (PPP). Risk of bias assessments and a narrative synthesis of individual study findings are presented. Forty-nine articles were included; 24 on CD and 25 on UC. Infliximab and adalimumab induction and maintenance treatments were cost-effective compared to standard care in patients with moderate or severe CD; however, in patients with conventional-drug refractory CD, fistulising CD and for maintenance of surgically-induced remission ICERs were above acceptable cost-effectiveness thresholds. In mild UC, induction of remission using high dose mesalazine was dominant compared to standard dose. In UC refractory to conventional treatments, infliximab and adalimumab induction and maintenance treatment were not cost-effective compared to standard care; however, ICERs for treatment with vedolizumab and surgery were favourable. We found that, in general, while biologic agents helped improve outcomes, they incurred high costs and therefore were not cost-effective, particularly for use as maintenance therapy. The cost-effectiveness of biologic agents may improve as market prices fall and with the introduction of biosimilars. Future research

  17. Low doses of ionizing radiation: Biological effects and regulatory control. Invited papers and discussions. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1998-01-01

    The levels and biological effects resulting from exposure to ionizing radiation are continuously reviewed by the United Nations Committee on the Effects of Atomic Radiation (UNSCEAR). Since its creation in 1928, the International Commission on Radiological Protection (ICRP) has issued recommendations on protection against ionizing radiation. The UNSCEAR estimates and the ICRP recommendations have served as the basis for national and international safety standards on radiation safety, including those developed by the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO). Concerning health effects of low doses of ionizing radiation, the international standards are based on the plausible assumption that, above the unavoidable background radiation dose, the probability of effects increases linearly with dose, i.e. on a 'linear, no threshold' (LNT) assumption. However, in recent years the biological estimates of health effects of low doses of ionizing radiation and the regulatory approach to the control of low level radiation exposure have been much debated. To foster information exchange on the relevant issues, an International Conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, jointly sponsored by the IAEA and WHO in co-operation with UNSCEAR, was held from 17-21 November 1997 at Seville, Spain. These Proceedings contain the invited special reports, keynote papers, summaries of discussions, session summaries and addresses presented at the opening and closing of the Conference

  18. Comparison of the Cost-Effectiveness of Biologic Drugs Used for Moderate-to-Severe Psoriasis Treatment in the United States.

    Science.gov (United States)

    Wu, Jashin J; Feldman, Steven R; Rastogi, Shipra; Menges, Brandy; Lingohr-Smith, Melissa; Lin, Jay

    2018-04-16

    To compare the cost-effectiveness of the newly approved biologic drug, brodalumab, with other commonly used biologics for the treatment of moderate-to-severe psoriasis in the U.S. An economic model was constructed in Excel to compare average costs to achieve Psoriasis Area and Severity Index (PASI) 75, 90, and 100 among moderate-to-severe psoriasis patients treated with biologics. Total annual costs to health plans associated with treatment with 5 different biologics were estimated and cost-effectiveness compared using the estimated average cost per PASI 75, PASI 90, and PASI 100. Total annual costs to a health plan per patient with adalimumab, brodalumab, ixekizumab, secukinumab, and ustekinumab were estimated at $51,246, $38,538, $65,484, $57,510, and $57,013. Mean annual treatment costs per PASI 75, 90, and 100 were the lowest for brodalumab, with the annual cost per PASI 75 for brodalumab, adalimumab, ixekizumab, secukinumab, and ustekinumab estimated at $48,782, $82,655, $77,957, $75,671, and $87,243, per PASI 90 at $51,383, $119,178, $94,904, $108,509, and $130,615, and per PASI 100 at $87,585, $284,702, $176,983, $205,393, and $366,645. Brodalumab, which had the lowest drug cost and high drug efficacy, was associated with the lowest cost per PASI 75, 90, and 100 among the biologics evaluated.

  19. Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows.

    Science.gov (United States)

    Ribeiro, E S; Gomes, G; Greco, L F; Cerri, R L A; Vieira-Neto, A; Monteiro, P L J; Lima, F S; Bisinotto, R S; Thatcher, W W; Santos, J E P

    2016-03-01

    The objective of this series of studies was to investigate the effects of inflammatory diseases occurring before breeding on the developmental biology and reproductive responses in dairy cows. Data from 5 studies were used to investigate different questions associating health status before breeding and reproductive responses. Health information for all studies was composed of the incidence of retained fetal membranes, metritis, mastitis, lameness, and respiratory and digestive problems from parturition until the day of breeding. Retained placenta and metritis were grouped as uterine disease (UTD). Mastitis, lameness, digestive and respiratory problems were grouped as nonuterine diseases (NUTD). Study 1 evaluated the effect of disease before artificial insemination (AI), anovulation before synchronization of the estrous cycle, and low body condition score at AI on pregnancy per AI, as well as their potential interactions or additive effects. Study 2 investigated the effect of site of inflammation (UTD vs. NUTD) and time of occurrence relative to preantral or antral stages of ovulatory follicle development, and the effect of UTD and NUTD on fertility responses of cows bred by AI or by embryo transfer. Study 3 evaluated the effect of disease on fertilization and embryonic development to the morula stage. Study 4 evaluated the effect of disease on preimplantation conceptus development as well as secretion of IFN-τ and transcriptome. Study 5 investigated the effect of diseases before AI on the transcript expression of interferon-stimulated genes in peripheral blood leukocytes during peri-implantation stages of conceptus development after first AI postpartum. Altogether, these studies demonstrated that inflammatory disease before breeding reduced fertilization of oocytes and development to morula, and impaired early conceptus development to elongation stages and secretion of IFN-τ in the uterine lumen. Diseases caused inflammation-like changes in transcriptome of

  20. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems—teleological, essentialist, and anthropocentric thinking—that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. PMID:25713093

  1. Biological effects of cesium-137 injected in beagle dogs of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C. [and others

    1995-12-01

    The toxicity of cesium-137 ({sup 137}Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of {sup 137}Cs are important to understand because {sup 137}Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantly earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy.

  2. Characterization and biological effect of Buenos Aires urban air particles on mice lungs

    International Nuclear Information System (INIS)

    Martin, Susana; Dawidowski, Laura; Mandalunis, Patricia; Cereceda-Balic, Francisco; Tasat, Deborah Ruth

    2007-01-01

    Exposure to increased levels of ambient air particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Its association with adverse health effects and the still unclear mechanisms of action are of concern worldwide. Our objective was to analyze air PM from downtown Buenos Aires (UAP-BA), and evaluate its biological impact on normal airways. We studied the inflammatory response to intranasal instillation of UAP-BA in a short-term-exposure mouse model. We analyzed UAP-BA morphology by scanning electron microscopy and characterized particle chemical composition by energy dispersive X-ray analysis and capillary gas chromatography. We evaluated lung changes by histomorphometry and histochemical methods. Regarding size, surface area and distribution, UAP-BA proved to be small spherical ultrafine particles: free, in clusters and associated to a matrix. The particles contained polycyclic aromatic hydrocarbons, polychlorinated biphenyls and almost no metal traces. Histologically, UAP-BA induced the recruitment of phagocytes, a reduction in air spaces, an increase in mucous PAS positive cells and weak incomplete elastic fiber network. Our results demonstrate that UAP-BA causes adverse biological effects on the respiratory tract generating inflammation that, in turn, may cause tissue injury or organ dysfunction and may contribute to the pathogenesis of lung diseases

  3. Biological effects of high strength electric fields. Second interim progress report, September 1976--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.

    1977-05-01

    This report describes progress made on the Project during the period of September 9, 1976 to March 31, 1977 towards the determination of the biological effects of high strength electric fields on small laboratory animals. The efforts to date can be divided into five categories: (1) the design, construction, and testing of a prototype and special studies exposure system; (2) the design and construction of exposure systems for rats and mice; (3) dosimetry; (4) experiments to determine the maximum field strength which does not produce corona discharge, ozone formation, shocks to the animal, hair stimulation, or a behavioral preference by rats to avoid exposure to the field; and (5) preparations for the biological screening experiments.

  4. Comparative study on biological effects of gamma-radiation and volatile organic compound with the plant bioassay

    International Nuclear Information System (INIS)

    Shin, H. S.; Lee, J. H.; Kim, J. G.

    2003-01-01

    This research examined the presence of hazardous materials in chemical workplace field by means of an integrated biological monitoring. The pollen mother cells (PMC) of Tradescantia are very sensitive to chemical toxicants or ionizing radiation, and thus can be used as a biological end- point as sessing their effect. A parallel series of experiment using five increasing doses of gamma- ray at 10, 20, 30, 40 and 50 cGy was conducted. The MCN frequencies showed a good dose-response relationship in the range of radiation applied and yielded a correlation coefficient of 0.95. On the other hand, the MCN frequency resulted in a good response to exposure time in the workplace field. In case of in situ monitoring with the Tradescantia micronucleus assay, the frequencies were 6.2± 0.5, 8.2±1.0, and 15.7± 0.8 MCN/ 100 tetrads for 2, 6, and 9 hours exposure, respectively. Inhalation of the workplace air by workers may result in chronic damage to their health as proven by micronucleus formations in Tradescantia pollen mother cells. The combination of chemical/ biological monitoring is very effective to evaluate hazardous materials in workplace field and can be alternatively used for screening hazardous materials

  5. Accounting for biological effectiveness in radiological protection

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1989-01-01

    Relative biological effectiveness (RBE) presents a practical problem to radiological protection when attempts are made to ensure that the assessed risks from different types of radiation and different modes of exposure to radiation are commensurate with one another. Unfortunately, the theoretical understanding of RBE is still in the stage of competing explanations and hypotheses. Furthermore, the division of the concept of dose equivalent into a set of concepts for risk assessment and another set for measurement and control has introduced conflicting requirements of a practical nature that are difficult to resolve. Many of those working in radiobiology and radiation protection have perceived the need to increase the quality factors for photon and neutron radiations. It may be more reasonable to change the quality factors for neutrons than for other radiations. The advantages and disadvantages of different methods for accommodating such changes within the dose-equivalent concepts are to be examined. The method of accommodating such a change that has the least practical disadvantages is to increase the quality factors for all secondary particles produced in tissue by neutron radiations by a constant factor. The only disadvantage would be the perception that the quality factors for these secondary particles were not treated in a consistent fashion for all types of ionising radiation. (author)

  6. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  7. Effect of biological sprays on the incidence of grey mould, fruit yield and fruit quality in organic strawberry production

    Directory of Open Access Journals (Sweden)

    S. PROKKOLA

    2008-12-01

    Full Text Available Plant diseases, especially grey mould (Botrytis cinerea, may cause severe losses in organic strawberry production. In a two-year period, 2001–2002, the effects of different biological sprays on grey mould, the fruit yield and fruit quality of organically grown strawberry ‘Jonsok’ were studied in field trials at MTT Agrifood Research Finland in Ruukki and Mikkeli. In Experiment 1 the biological sprays were seaweed, garlic and compost extracts, silicon and Trichoderma spp. on both trial sites. In Experiment 2, compost extract, Trichoderma spp. and Gliocladium catenulatum sprays were studied in Ruukki. The treatment time was chosen to control grey mould. The effect of different biological sprays on the incidence of grey mould and total and marketable yield was insignificant compared to the untreated control. In both years and in all trials the incidence of grey mould was low and rot occurred mainly in the latter part of the harvesting period, which may partly explain the small differences between treatments. Anyhow, despite of feasible biological control cultural control methods will be important to manage the fungus in organic strawberry production.;

  8. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  9. Biological effect of low-dose application beta-radiation on the gingival mucosa of dogs

    International Nuclear Information System (INIS)

    Ippolitov, Yu.A.; Kovtun, N.N.; Timofeev, L.V.

    1999-01-01

    Biological effect of low-dose application beta-radiation on the gingival mucosa of dogs is studied. Obtained data illustrate the interactions between tissues in local exposure of live tissue to beta-radiation and determine the threshold total dose as 400 sGy. Higher doses lead to secondary changes in the gingival mucosa after which the tissue barrier does not recover [ru

  10. Relations between intuitive biological thinking and biological misconceptions in biology majors and nonmajors.

    Science.gov (United States)

    Coley, John D; Tanner, Kimberly

    2015-03-02

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems--teleological, essentialist, and anthropocentric thinking--that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. © 2015 J. D. Coley and K. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Biological basis of heavy ion beams for cancer therapy

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko

    1985-01-01

    Fast neutron therapy has started firstly and proton therapy has commenced secondly, fast neutron shows better biological effects compared to conventional radiations but its dose distribution is not good, and proton demonstrates excellent dose distribution but its biological effects are almost the same as that of conventional radiations. On the other hand, negative pi-mesons and heavy ions indicate high radiobiological effect and excellent dose distribution, therefore these particle radiations is considered to be more attractive for radiotherapeutic radiations to enhance cure rate of cancers. The biological strong points of these particles are as follows : 1) cells exposed to these particle radiations shows less recovery after irradiation compared to conventional radiations, 2) these radiations show high biological effects (high value of relative biological effectiveness = RBE) when the same dose is given, 3) big effects on hypoxic cells which exsist in tumor, i.e. the value of oxygen enhancement ratio (OER) is low, 4) the differences in radiosensitivity by stages of cell cycle are not so great (data was not shown in present paper), 5) biological effects at prepeak plateau region in depth dose curve formed by these particle radiations is less than that at peak region (therefore, if beam is modulated to cover tumor at spraed out broad peak, tumors is given more biological effect compared to normal tissues which is to be exposed to radiations at prepaeak region). Clinical trial using heavy ions are being performed at Lawrence Berkeley Laboratory which is only one facility to be able to try clinical trial. The results of clinical trials at Lawrence Berkeley Laboratory suggest to be very prospective to enhance tumor cure rate, however it is too early to estimate the effect of heavy ion therapy. (J.P.N.)

  12. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  13. Effect of Dendritic Polymer Architecture on Biological Behaviors of Self-Assembled Nanocarriers

    Science.gov (United States)

    Hsu, Hao-Jui

    Polymeric self-assembled nanocarriers represent one of the most versatile platforms for drug delivery. Through tailoring the physiochemical properties of amphiphilic block copolymers, self-assembled nanocarriers with great thermodynamic stability and desired biological properties could be achieved. The PEGylated dendron-based copolymers (PDCs) are one of the novel amphiphilic copolymers that have attracted a great deal of scientific interest due to their unique dendritic structure and properties. While the dendritic polymer architecture of PDC has been shown to enhance the thermodynamic stability of the self-assembling PDCs, dendron micelles, the effect of this polymer architecture on the biological properties of dendron micelles has not yet been studied. Therefore, this dissertation research is focused on understanding the role of dendritic polymer structure on moderating the biological properties of various self-assembled nanocarriers. To systematically investigate this, three studies have been designed and performed. First, we studied whether the dendritic structure of PDC allows dendron micelles to behave non-specific cellular interactions in a similar way that dendrimers would do. Second, cell-specific interactions of dendron micelles mediated by conjugated ligands were investigated. Third, we investigated the influence of dendritic PEG outer shell on micelle-serum protein interactions and its subsequent implication. Our results revealed that both non-specific and specific cellular interactions of dendron micelles were controllable through modulation of the PEG corona length. While the non-specific charge-dependent cellular interactions of dendron micelles were tunable through controlling the length of PEG corona, the use of long PEG tether was found to enhance the ligand-mediated cellular interactions of dendron micelles. With the ligand tethers, a 27-fold enhancement in ligand-mediated cellular interactions can be achieved, compared to non-targeted dendron

  14. Integration of genomic information with biological networks using Cytoscape.

    Science.gov (United States)

    Bauer-Mehren, Anna

    2013-01-01

    Cytoscape is an open-source software for visualizing, analyzing, and modeling biological networks. This chapter explains how to use Cytoscape to analyze the functional effect of sequence variations in the context of biological networks such as protein-protein interaction networks and signaling pathways. The chapter is divided into five parts: (1) obtaining information about the functional effect of sequence variation in a Cytoscape readable format, (2) loading and displaying different types of biological networks in Cytoscape, (3) integrating the genomic information (SNPs and mutations) with the biological networks, and (4) analyzing the effect of the genomic perturbation onto the network structure using Cytoscape built-in functions. Finally, we briefly outline how the integrated data can help in building mathematical network models for analyzing the effect of the sequence variation onto the dynamics of the biological system. Each part is illustrated by step-by-step instructions on an example use case and visualized by many screenshots and figures.

  15. Developmental biology, the stem cell of biological disciplines

    OpenAIRE

    Gilbert, Scott F.

    2017-01-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines.” Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, ...

  16. The Effects of Simultaneous Application of Different Organic and Biological Fertilizers on Quantitative and Qualitative Characteristics of Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    M Jahan

    2013-08-01

    Full Text Available Understanding of relations and interactions between ecosystem’s components and plants is one of the main conditions for sustainable production of medicinal plants. To study the effect of simultaneous application of organic and biological fertilizers on yield and yield components of zucchini squash, a split plot arrangement of factors based on randomized complete block design with tree replications was used during 2009-10 growing season. The mainplot factor was the type of organic fertilizers, including 1-cow manure, 2-sheep manure, 3-chicken manure, 4-vermicompost and 5-control. The subplot factor was the biofertilizer (namely Nitragin, containing Azotobacter sp. , Azospirillum sp. and Pseudomonas sp., utilization. The results showed the positive but non significant effect of organic and biological fertilizers on yield and yield components of zucchini squash. Amongst the organic fertilizers, cow and chicken manure, have superiority compared the others. The highest seed oil and protein percent resulted in chicken manure, although there was not significant different between treatments due to seed oil percent. The positive effect of organic and biological fertilizers on seed yield was higher than fruit yield. Positive correlations found between fruit and seed yield, and between one fruit weight and one fruit seed weight (R2=0.72** and 0.56**, respectively. At a glance, cow manure solely application was better than its application with nitragin. Nitragin application has no significant effect on some traits, when utilized with sheep manure and vermicompost. The possibilities of antagonistic effect among organic and biological fertilizers needs to be more studied.

  17. Biological radiation effects

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1976-01-01

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed [pt

  18. Nanogold – Biological effects and occupational exposure levels

    Directory of Open Access Journals (Sweden)

    Anna Maria Świdwińska-Gajewska

    2017-08-01

    Full Text Available Nanogold has different properties and biological activity compared to metallic gold. It can be applied in many fields, such as medicine, laboratory diagnostics and electronics. Studies on laboratory animals show that nanogold can be absorbed by inhalation and ingestion. It can penetrate deep into the epidermis and dermis, but there is no evidence that it is absorbed through the skin. Gold nanoobjects accumulate mainly in the liver and spleen, but they can also reach other internal organs. Nanogold can cross the blood–brain and blood–placenta barriers. Toxicokinetics of nanogold depends on the particle size, shape and surface charge. In animals exposure to gold nanoparticles via inhalation induces slight changes in the lungs. Exposure to nanogold by the oral route does not cause adverse health effects in rodents. In animals after injection of gold nanoobjects changes in the liver and lungs were observed. Nanogold induced genotoxic effects in cells, but not in animals. No adverse effects on the fetus or reproduction were found. There are no carcinogenicity studies on gold nanoparticles. The mechanism of toxicity may be related to the interaction of gold nanoobjects with proteins and DNA, and it leads to the induction of oxidative stress and genetic material damage. The impact of nanostructures on human health has not yet been fully understood. The person, who works with nanomaterials should exercise extreme caution and apply existing recommendations on the evaluation of nanoobjects exposure. The risk assessment should be the basis for taking appropriate measures to limit potential exposure to nanometals, including nanogold. Med Pr 2017;68(4:545–556

  19. BEDVH--A method for evaluating biologically effective dose volume histograms: Application to eye plaque brachytherapy implants

    International Nuclear Information System (INIS)

    Gagne, Nolan L.; Leonard, Kara L.; Huber, Kathryn E.; Mignano, John E.; Duker, Jay S.; Laver, Nora V.; Rivard, Mark J.

    2012-01-01

    Purpose: A method is introduced to examine the influence of implant duration T, radionuclide, and radiobiological parameters on the biologically effective dose (BED) throughout the entire volume of regions of interest for episcleral brachytherapy using available radionuclides. This method is employed to evaluate a particular eye plaque brachytherapy implant in a radiobiological context. Methods: A reference eye geometry and 16 mm COMS eye plaque loaded with 103 Pd, 125 I, or 131 Cs sources were examined with dose distributions accounting for plaque heterogeneities. For a standardized 7 day implant, doses to 90% of the tumor volume ( TUMOR D 90 ) and 10% of the organ at risk volumes ( OAR D 10 ) were calculated. The BED equation from Dale and Jones and published α/β and μ parameters were incorporated with dose volume histograms (DVHs) for various T values such as T = 7 days (i.e., TUMOR 7 BED 10 and OAR 7 BED 10 ). By calculating BED throughout the volumes, biologically effective dose volume histograms (BEDVHs) were developed for tumor and OARs. Influence of T, radionuclide choice, and radiobiological parameters on TUMOR BEDVH and OAR BEDVH were examined. The nominal dose was scaled for shorter implants to achieve biological equivalence. Results: TUMOR D 90 values were 102, 112, and 110 Gy for 103 Pd, 125 I, and 131 Cs, respectively. Corresponding TUMOR 7 BED 10 values were 124, 140, and 138 Gy, respectively. As T decreased from 7 to 0.01 days, the isobiologically effective prescription dose decreased by a factor of three. As expected, TUMOR 7 BEDVH did not significantly change as a function of radionuclide half-life but varied by 10% due to radionuclide dose distribution. Variations in reported radiobiological parameters caused TUMOR 7 BED 10 to deviate by up to 46%. Over the range of OAR α/β values, OAR 7 BED 10 varied by up to 41%, 3.1%, and 1.4% for the lens, optic nerve, and lacrimal gland, respectively. Conclusions: BEDVH permits evaluation of the

  20. Research program on the biological effects of oil pollution

    International Nuclear Information System (INIS)

    Barrett, R.T.

    1991-12-01

    A national research program on the biological effects of oil pollution (FOBO) was initiated by the Norwegian Ministry of Environment in October 1983 in the light of the increasing oil exploration and production activity in the North Sea and northern Norwegian waters. Ambitions were high and five main fields of research were suggested: Seabirds, fish (incl. salmon), marine mammals, the littoral zone and plankton. However, due to the lack of interest on the part of other potential financers, e.g. the Ministry of Fisheries and the oil companies, to participate, the four-year programme had to be limited to the following three topics: Seabirds around bruding colonies and at sea; Higher plants along the shoreline; The littoral zone. The program ran from the autumn of 1985 to the end of 1989 and this report summarizes the main results and conclusions of each project. 95 refs., 52 figs., 9 tabs

  1. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  2. High school teachers' perspectives on effective approaches for teaching biology to students with special needs

    Science.gov (United States)

    Kos, Agnieszka

    The demands of national educational reforms require high school biology teachers to provide high quality instruction to students with and without special needs. The reforms, however, do not provide teachers with adequate teaching strategies to meet the needs of all students in the same context. The purpose of this grounded theory study was to understand high school biology teachers' perspectives, practices, and challenges in relation to teaching students with special needs. This approach was used to develop a substantive model for high school biology teachers who are challenged with teaching students with and without special needs. Data were collected via in-depth interviews with 15 high school teachers in a Midwestern school district. The data were analyzed using open coding, axial coding, and selective coding procedures in accordance with the grounded theory approach. Essential model components included skills and training for teachers, classroom management strategies, teaching strategies, and student skills. The emergent substantive theory indicated that that teacher preparation and acquired skills greatly influence the effectiveness of inclusion implementation. Key findings also indicated the importance of using of a variety of instructional strategies and classroom management strategies that address students' special needs and their learning styles. This study contributes to social change by providing a model for teaching students and effectively implementing inclusion in regular science classrooms. Following further study, this model may be used to support teacher professional development and improve teaching practices that in turn may improve science literacy supported by the national educational reforms.

  3. Effect of host and food availability on the biological characteristics of Trichogramma galloi Zucchi (Hymenoptera, Trichogrammatidae)

    International Nuclear Information System (INIS)

    Pratissoli, Dirceu; Oliveira, Harley N. de; Oliveira, Regiane C. de; Zago, Hugo B.; Vieira, Stella M.J.

    2004-01-01

    Effect of host and food availability on the biological characteristics of Trichogramma galloi Zucchi (Hymenoptera, Trichogrammatidae). Biological characteristics of Trichogramma galloi Zucchi, 1988 were evaluated in laboratory where these parasitoids were reared on eggs of Diatraea saccharalis (Lepidoptera, Pyralidae) with or without honey, and exposed to eggs of the host after 0, 6, 12, 24, 36, 48, 60, 72 and 84 hours of emergence. The parasitism rate and viability showed higher for individuals that received food. The sex ratio was not influenced by food. The number of individuals per egg only showed difference for those adults that did not receive food and stayed six hours without the host eggs. Checking the effect of the availability of eggs, only the sex ratio, with or without honey, did not show differences. The results show that T. galloi needs a carbohydrate supply and the time can influence the reproductive capacity. (author)

  4. Evaluation of Anti-Inflammatory Drug-Conjugated Silicon Quantum Dots: Their Cytotoxicity and Biological Effect

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2013-01-01

    Full Text Available Silicon quantum dots (Si-QDs have great potential for biomedical applications, including their use as biological fluorescent markers and carriers for drug delivery systems. Biologically inert Si-QDs are less toxic than conventional cadmium-based QDs, and can modify the surface of the Si-QD with covalent bond. We synthesized water-soluble alminoprofen-conjugated Si-QDs (Ap-Si. Alminoprofen is a non-steroid anti-inflammatory drug (NSAID used as an analgesic for rheumatism. Our results showed that the “silicon drug” is less toxic than the control Si-QD and the original drug. These phenomena indicate that the condensed surface integration of ligand/receptor-type drugs might reduce the adverse interaction between the cells and drug molecules. In addition, the medicinal effect of the Si-QDs (i.e., the inhibition of COX-2 enzyme was maintained compared to that of the original drug. The same drug effect is related to the integration ratio of original drugs, which might control the binding interaction between COX-2 and the silicon drug. We conclude that drug conjugation with biocompatible Si-QDs is a potential method for functional pharmaceutical drug development.

  5. Facilitating Effects of Emotion on the Perception of Biological Motion: Evidence for a Happiness Superiority Effect.

    Science.gov (United States)

    Lee, Hannah; Kim, Jejoong

    2017-06-01

    It has been reported that visual perception can be influenced not only by the physical features of a stimulus but also by the emotional valence of the stimulus, even without explicit emotion recognition. Some previous studies reported an anger superiority effect while others found a happiness superiority effect during visual perception. It thus remains unclear as to which emotion is more influential. In the present study, we conducted two experiments using biological motion (BM) stimuli to examine whether emotional valence of the stimuli would affect BM perception; and if so, whether a specific type of emotion is associated with a superiority effect. Point-light walkers with three emotion types (anger, happiness, and neutral) were used, and the threshold to detect BM within noise was measured in Experiment 1. Participants showed higher performance in detecting happy walkers compared with the angry and neutral walkers. Follow-up motion velocity analysis revealed that physical difference among the stimuli was not the main factor causing the effect. The results of the emotion recognition task in Experiment 2 also showed a happiness superiority effect, as in Experiment 1. These results show that emotional valence (happiness) of the stimuli can facilitate the processing of BM.

  6. Radioprotective effects of dimethyl sulfoxide in golden hamster embryo cells exposed to γ-rays at 4 and 77 K as studied by electron spin resonance and biological measurements

    International Nuclear Information System (INIS)

    Miyazaki, T.; Suzuki, K.; Watanabe, M.

    1992-01-01

    Many studies have reported the biological effects of gamma-irradiation on cells. It has been generally accepted that OH radicals produced by radiolysis of water in cells play an important role in the biological effect. OH radicals, however, were not observed directly in these studies. Thus there is some ambiguity in the determination of the reactive species responsible for the biological effect. The effect of dimethyl sulfoxide on gamma-irradiated golden hamster embryo cells has been studied here at 4 and 77 K by direct observation of free radicals and by biological measurements. (author). 2 refs., 4 figs

  7. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Dahlback, A.; Henriksen, T.

    1988-08-01

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60 o N. A large depletion of 50% over Scandinavia (60 o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  8. Magnetic resonance imaging. Recent studies on biological effects of static magnetic and high-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Pophof, B.; Brix, G.

    2017-01-01

    During the last few years, new studies on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields used in magnetic resonance imaging (MRI) were published. Many of these studies have not yet been included in the current safety recommendations. Scientific publications since 2010 on biological effects of static and electromagnetic fields in MRI were researched and evaluated. New studies confirm older publications that have already described effects of static magnetic fields on sensory organs and the central nervous system, accompanied by sensory perceptions. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular system. Recent studies of thermal effects of high-frequency electromagnetic fields were focused on the development of anatomically realistic body models and a more precise simulation of exposure scenarios. Strong static magnetic fields can cause unpleasant sensations, in particular, vertigo. In addition, they can influence the performance of the medical staff and thus potentially endanger the patient's safety. As a precaution, medical personnel should move slowly within the field gradient. High-frequency electromagnetic fields lead to an increase in the temperature of patients' tissues and organs. This should be considered especially in patients with restricted thermoregulation and in pregnant women and neonates; in these cases exposure should be kept as low as possible. (orig.) [de

  9. Late biological effects of 137CsCl injected in beagle dogs

    International Nuclear Information System (INIS)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C.; Hahn, F.F.; Boecker, B.B.

    1994-01-01

    The toxicity of intravenously administered 137 CsCl in the Beagle dog was investigated as part of the ITRI program to evaluate the biological effects of internally deposited fission product radionuclides. The toxicity and health effects of 137 Cs are important to understand because 137 Cs is produced in large amounts in light-water nuclear reactors. Also, large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons tests and additonal cesium radioisotopes were released during the Chernobyl accident. The intravenous route of exposure was chosen because it was known that after intravenous injection, inhalation, or ingestion, internally deposited 137 CsCl is rapidly adsorbed and distributed throughout the body, exposing the whole body to beta and gamma radiation, and because of the reduced radiation protection problems associated with high-level exposure via injection compared to these other routes

  10. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells.

    Science.gov (United States)

    Yoshizawa, Sayuri; Chaya, Amy; Verdelis, Kostas; Bilodeau, Elizabeth A; Sfeir, Charles

    2015-12-01

    Magnesium (Mg) alloys have many unique qualities which make them ideal candidates for bone fixation devices, including biocompatibility and degradation in vivo. Despite a rise in Mg alloy production and research, there remains no standardized system to assess their degradation or biological effect on human stem cells in vivo. In this study, we developed a novel in vivo model to assess Mg alloys for craniofacial and orthopedic applications. Our model consists of a collagen sponge seeded with human bone marrow stromal cells (hBMSCs) around a central Mg alloy rod. These scaffolds were implanted subcutaneously in mice and analyzed after eight weeks. Alloy degradation and biological effect were determined by microcomputed tomography (microCT), histological staining, and immunohistochemistry (IHC). MicroCT showed greater volume loss for pure Mg compared to AZ31 after eight weeks in vivo. Histological analysis showed that hBMSCs were retained around the Mg implants after 8 weeks. Furthermore, immunohistochemistry showed the expression of dentin matrix protein 1 and osteopontin around both pure Mg and AZ31 with implanted hBMSCs. In addition, histological sections showed a thin mineral layer around all degrading alloys at the alloy-tissue interface. In conclusion, our data show that degrading pure Mg and AZ31 implants are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo. Importantly, this model may be modified to accommodate additional cell types and clinical applications. Magnesium (Mg) alloys have been investigated as ideal candidates for bone fixation devices due to high biocompatibility and degradation in vivo, and there is a growing need of establishing an efficient in vivo material screening system. In this study, we assessed degradation rate and biological effect of Mg alloys by transplanting Mg alloy rod with

  12. A study of the biological effects of rare earth elements at cellular level using nuclear techniques

    International Nuclear Information System (INIS)

    Feng Zhihui; Wang Xi; Zhang Sunxi; An Lizhi; Zhang Jingxia; Yao Huiying

    2001-01-01

    Objective: To investigate the biological effects and the effecting mechanisms of rare earth elements La, Gd and Ce on cultured rat cells. Methods: The biological effects of La 3+ on cultured rat cells and the subcellular distribution of La and Gd and Ce, and the inflow of 45 Ca 2+ into the cells and total cellular calcium were measured by isotopic tracing, Proton Induced X Ray Emission Analysis (PIXE) and the techniques of biochemistry and cellular biology. Results: La 3+ at the concentration of 10- 10( or 10 -9 ) - 10 -6 mol/L significantly increased quantity of incorporation of 3 H-TdR into DNA, total cellular protein and the activity of succinic dehydrogenase of mitochondria. The cell cycle analysis showed that the proportions of cells in S phase were accordingly increased acted by La 3+ at above range of concentration. But these values were significantly decreased when concentration of La 3+ raised to 10 -4 - 10 -3 mol/L. It was further discovered that La, Gd and Ce distributed mostly in the nuclei, and then in membranes. Gd and Ce also promoted the inflow of 45 Ca 2+ into the cells and increased the total calcium content in cells. Conclusions: 1) La 3+ at a wide concentration range of 10 -10 ( or 10 -9 ) - 10 -6 mol/L promotes proliferation of cultured rat cells, but at even higher concentration (10 -4 - 10 -3 mol/L) shows cellular toxicity, and there is a striking dose-effect relationship. 2) La, Gd and Ce can enter the cells and mainly distribute in the nuclei. 3) Gd and Ce can promote the inflow of extracellular Ca 2+ into the cells and increase total cellular calcium

  13. Metabolomics: Definitions and Significance in Systems Biology.

    Science.gov (United States)

    Klassen, Aline; Faccio, Andréa Tedesco; Canuto, Gisele André Baptista; da Cruz, Pedro Luis Rocha; Ribeiro, Henrique Caracho; Tavares, Marina Franco Maggi; Sussulini, Alessandra

    2017-01-01

    Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.

  14. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors.

    Science.gov (United States)

    Hu, PingAn; Zhang, Jia; Li, Le; Wang, Zhenlong; O'Neill, William; Estrela, Pedro

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  15. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  16. Antiprotons get biological

    CERN Multimedia

    2003-01-01

    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  17. Scientific projection paper on biologic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Matanoski, G.

    1980-01-01

    There is widespread knowledge about the effects of radiation in human populations but the studies have had some limitations which have left gaps in our knowledge. Most populations have had exposure to high doses with little information on the effect of dose rate. The characteristics of the populations have been restricted by the location of the disaster, the occupational limitations, or the basic risks associated with the under-lying disease for which radiation was given. All doses have been estimated and such values are subject to marked variability particularly when they rely on sources of data such as hospital records. The biological data although extensive have several deficits in information. Which are the sites in which cancer is produced by irradiation and what are the cell types which are produced. The sensitivity of various tissues and organs are not similar and it is important to rank them according to susceptibility. This has been done in the past but the results are not complete for all cell types and organs. The temporal patterns for tumor development, the latent period, the period of expressed excess, the life-time risks need to be defined more precisely for the cancers. Many populations have not been followed long enough to express the complete risk

  18. THz waves: biological effects, industrial and medical; Les ondes THz: effets biologiques, applications industrielles et medicales

    Energy Technology Data Exchange (ETDEWEB)

    Coutaz, J.L.; Garet, F. [Universite de Savoie au Bourget du Lac, IMEP-LAHC, UMR CNRS 5130, 73 (France); Le Drean, Y.; Zhadobov, M. [Institut d' Electronique et des Telecommunications de Rennes, 35 (France); Veyret, B. [I.M.S., 33 - Pessac (France); Mounaix, P. [Laboratoire Ondes et Matiere d' Aquitaine, Universite de Bordeaux, 1 UMR 5798, 33 - Talence (France); Caumes, J.P. [ALPhANOV, 33 - Bordeaux (France); Gallot, G. [Ecole Polytechnique, Laboratoire d' Optique et Biosciences, CNRS UMR 7645, INSERM U696, 91 - Palaiseau (France); Gian Piero, Gallerano [ENEA, Frascati (Italy); Mouret, G. [Universite du Littoral Cote d' Opale - ULCO, 59 - Dunkerque (France); Guilpin, J.C. [Direction Generale de l' Aviation Civile, 94 - Bonneuil sur Marne (France)

    2011-07-01

    Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFR) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document gathers the slides of the available presentations: 1 - introduction and general considerations about THz waves, the THz physical phenomenon among NIR (J.L. Coutaz); 2 - interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); 3 - Tera-Hertz: standards and recommendations (B. Veyret); 4 - THz spectro-imaging technique: status and perspectives (P. Mounaix); 5 - THz technology: seeing the invisible? (J.P. Caumes); 6 - Tera-Hertz: biological and medical applications (G. Gallot); 7 - Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); 8 - Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); 9 - THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); 10 - Body scanners and civil aviation security (J.C. Guilpin, presentation not available). (J.S.)

  19. Status of research on biological effects and safety of electromagnetic radiation: telecommunications frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, S B

    1994-06-01

    The possible adverse effects on human health of exposure to radiofrequency (RF) and microwave electromagnetic fields and radiation are of public concern. As the ambient electromagnetic environment continues to intensify (e.g. cellular and portable phones, wireless communications, LANs, PCNs) the effects of exposure from cumulative sources and prolonged exposure to low levels needs to be addressed. This review considers RF and microwave radiation above 100 kHz. It is acknowledged that there are several possible areas of biological interaction which have health implications and about which current knowledge is limited. Advice is based on the assessment of risks to health resulting from these exposures as derived from studies on the effects of RF radiation on animals and volunteers and from epidemiological studies of exposed populations. 360 refs., 9 tabs., 1 fig.

  20. Evidence of dark matter from biological observations

    International Nuclear Information System (INIS)

    Zioutas, K.

    1990-01-01

    In accordance with the generally accepted properties of dark matter (DM) candidates, the probability of their interaction with living matter must be equal to that for inorganic matter, and the expected effects might be unique and provide the etiology related to the appearance of several biological phenomena having sometimes fatal late effects. Although collisions with DM are rare, the charged secondaries (recoiling atoms) are expected to be high linear energy transfer particles favouring the highest relative biological effectiveness values for this, as yet invisible, part of the natural background radiation. A few cases are given, where a correlation between DM interaction and phenomena in living matter might already exist, or can show up in existing data: biorhythms with periodicities identical to known cosmic frequencies are explainable with gravitationally clustered DM around the sun, the moon, the earth, etc. The observed arrhythmia, when biological probes are moved (in airplanes, satellites, etc.) support this idea strongly. It is also proposed to implement some of the biological properties and processes (such as element composition and chemical reactions) in future DM detectors in order to improve their sensitivity. The interdisciplinary feedback is bidirectional: huge DM detectors could be used in attempt to understand enigmatic biological behaviour. (orig.)

  1. The need for and the importance of biological indicators of radiation effects with special reference to injuries in radiation accidents

    International Nuclear Information System (INIS)

    Koeteles, G.J.; Bianco, A.

    1982-01-01

    The need for further research on the existing and new biological indicators of radiation injury has been expressed. The studies on the radiation-induced alterations of membrane structure and function stimulated investigations aiming to develop an indicator based on membrane-phenomena. The co-ordinated research programme on ''Cell Membrane Probes as Biological Indicators of Radiation Injury in Radiation Accidents'' was initiated in mid 1977 and terminated in 1980. Within this programme many basic observations were made in connection with altered features of various animal and human cell membranes. Molecular, biophysical, biochemical and cell biological approaches were performed. The rapid reaction within minutes or hours of membranes against relatively low doses of various types of irradiations were described and the effects proved to be transitory, i.e. membrane regeneration occurred within hours. These dose- and timedependent alterations suggest the possibility of developing a biological indicator which would give signals at the earliest period after radiation injury when no other biological informations are available. The importance of a system of biological indicators is emphasized. (author)

  2. Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA

    Science.gov (United States)

    Schroeder, Anthony L.; Martinovic-Weigelt, Dalma; Ankley, Gerald T.; Lee, Kathy E.; Garcia-Reyero, Natalia; Perkins, Edward J.; Schoenfuss, Heiko L.; Villeneuve, Daniel L.

    2017-01-01

    Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.

  3. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  4. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  5. Model predictions and analysis of enhanced biological effectiveness at low dose rates

    International Nuclear Information System (INIS)

    Watt, D.E.; Sykes, C.E.; Younis, A.-R.S.

    1988-01-01

    A severe challenge to all models purporting to describe the biological effects of ionizing radiation has arisen with the discovery of two phenomena: the anomalous trend with dose rate of the frequency of neoplastic transformation of mammalian cells and the apparent excessive damaging power of electron-capture radionuclides when incorporated into cell nuclei. A new model is proposed which predicts and enables interpretation of these phenomena. Radiation effectiveness is found to be expressible absolutely in terms of the geometrical cross-sectional area of the radiosensitive sites. The duration of the irradiation, the mean free path for ionization, the influence of particles in the slowing-down spectrum perrtaining in the medium and two collective time factors determining the mean repair rate and the mean lifetime of unidentified reactive chemical species [pt

  6. Biological effects of the hypomagnetic field: An analytical review of experiments and theories.

    Directory of Open Access Journals (Sweden)

    Vladimir N Binhi

    Full Text Available During interplanetary flights in the near future, a human organism will be exposed to prolonged periods of a hypomagnetic field that is 10,000 times weaker than that of Earth's. Attenuation of the geomagnetic field occurs in buildings with steel walls and in buildings with steel reinforcement. It cannot be ruled out also that a zero magnetic field might be interesting in biomedical studies and therapy. Further research in the area of hypomagnetic field effects, as shown in this article, is capable of shedding light on a fundamental problem in biophysics-the problem of primary magnetoreception. This review contains, currently, the most extensive bibliography on the biological effects of hypomagnetic field. This includes both a review of known experimental results and the putative mechanisms of magnetoreception and their explanatory power with respect to the hypomagnetic field effects. We show that the measured correlations of the HMF effect with HMF magnitude and inhomogeneity and type and duration of exposure are statistically absent. This suggests that there is no general biophysical MF target similar for different organisms. This also suggests that magnetoreception is not necessarily associated with evolutionary developed specific magnetoreceptors in migrating animals and magnetotactic bacteria. Independently, there is nonspecific magnetoreception that is common for all organisms, manifests itself in very different biological observables as mostly random reactions, and is a result of MF interaction with magnetic moments at a physical level-moments that are present everywhere in macromolecules and proteins and can sometimes transfer the magnetic signal at the level of downstream biochemical events. The corresponding universal mechanism of magnetoreception that has been given further theoretical analysis allows one to determine the parameters of magnetic moments involved in magnetoreception-their gyromagnetic ratio and thermal relaxation time

  7. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.; Dittrich, Birger; Schirmeister, Tanja; Luger, Peter; Hesse, Malte; Chen, Yu-Sheng; Spackman, Peter R.; Spackman, Mark A.; Grabowsky, Simon (Heinrich-Heine); (Freie); (UC); (Bremen); (JG-UM); (UWA)

    2017-01-24

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us to predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.

  8. Review: Biological fertilization and its effect on medicinal and aromatic plants

    Directory of Open Access Journals (Sweden)

    KHALID ALI KHALID

    2012-11-01

    Full Text Available Khalid KA. 2012. Review: Biological fertilization and its effect on medicinal and aromatic plants. Nusantara Bioscience 4: 124-133. The need of increase food production in the most of developing countries becomes an ultimate goal to meet the dramatic expansion of their population. However, this is also associated many cases with a reduction of the areas of arable land which leaves no opinion for farmers but to increase the yield per unit area through the use of improved the crop varieties, irrigation and fertilization. The major problem facing the farmer is that he cannot afford the cost of these goods, particularly that of chemical fertilizers. Moreover, in countries where fertilizer production relies on imported raw materials, the costs are even higher for farmer and for the country. Besides this, chemical fertilizers production and utilization are considered as air, soil and water polluting operations. The utilization of bio-fertilizers is considered today by many scientists as a promising alternative, particularly for developing countries. Bio-fertilization is generally based on altering the rhizosphere flora, by seed or soil inoculation with certain organisms, capable of inducing beneficial effects on a compatible host. Bio-fertilizers mainly comprise nitrogen fixes (Rhizobium, Azotobacter, Azospirellum, Azolla or blue green algae, phosphate dissolvers or vesicular-arbuscular mycorrhizas and silicate bacteria. These organisms may affect their host plant by one or more mechanisms such as nitrogen fixation, production of growth promoting substances or organic acids, enhancing nutrient uptake or protection against plant pathogens. Growth characters, yield, essential oil and its constituents, fixed oil, carbohydrates, soluble sugars and nutrients contents of medicinal and aromatic plants were significantly affected by adding the biological fertilizers compared with recommended chemical fertilizers.

  9. Roles of radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2009-01-01

    Radiation chemistry acts as a bridge connecting radiation physics with radiation biology in spatial and temporal insight. The theory, model, and methodology coming from radiation chemistry play an important role in the research and development of radiation biology. The chemical changes induced by ionizing radiation are involved not only in early event of biological effects caused by ionizing radiation but in function radiation biology, such as DNA damage and repair, sensitive modification, metabolism and function of active oxygen and so on. Following the research development of radiation biology, systems radiation biology, accurate quality and quantity of radiation biology effects need more methods and perfect tools from radiation chemistry. (authors)

  10. Space Biology in Russia Today

    Science.gov (United States)

    Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene

    At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the

  11. Paramecium aurelia as a cellular model used for studies of the biological effects of natural ionizing radiation or chronic low-level irradiation

    International Nuclear Information System (INIS)

    Planel, H.; Soleilhavoup, J.P.; Tixador, R.; Croute, F.; Richoilley, G.

    1979-01-01

    Paramecium aurelia appears to be a very suitable object for investigating the biological effects of natural ionizing radiation or the influence of low doses of radiation. The biological effects of ionizing radiation on cell proliferation kinetics were tested. It is shown that radio-protection or chronic exposure to very low doses of 60 Co gamma rays induce different changes in cell growth rate. Special experimental techniques can help to obtain more obvious results using cells more sensitive to the stimulating effects of low doses of ionizing radiation. (author)

  12. Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum.

    Science.gov (United States)

    Morgunov, Igor G; Karpukhina, Olga V; Kamzolova, Svetlana V; Samoilenko, Vladimir A; Inozemtsev, Anatoly N

    2018-01-02

    The effect of biologically active form (threo-Ds-) of isocitric acid (ICA) on oxidative stress was studied using the infusorian Paramecium caudatum stressed by hydrogen peroxide and salts of some heavy metals (Cu, Pb, Zn, and Cd). ICA at concentrations between 0.5 and 10 mM favorably influenced the infusorian cells with oxidative stress induced by the toxicants studied. The maximal antioxidant effect of ICA was observed at its concentration 10 mM irrespective of the toxicant used (either H 2 O 2 or heavy metal ions). ICA was found to be a more active antioxidant than ascorbic acid. Biologically active pharmaceutically pure threo-Ds-ICA was produced through cultivation of the yeast Yarrowia lipolytica and isolated from the culture liquid in the form of crystalline monopotassium salt with a purity of 99.9%.

  13. Accumulation and biological effects of gallium in malignant cell lines in vitro

    International Nuclear Information System (INIS)

    Awano, Takayuki; Matsuzawa, Taiju

    1977-01-01

    Accumulation and biological effects of gallium (Ga) in malignant cells in vitro were studied. Biological effects were investigated cytokinetically and morphologically. The malignant cultured FM3A cells (originated from mammary carcinoma of C3H mice) accumulated 67 Ga actively. This accumulation was more intensive in proliferating cells than in non-proliferating cells. 6.5 percent of 67 Ga accumulated in the cultured FM3A cells was bound loosely at the cell surface. The colony forming capacity of C2W cells (originated from amelanotic melanoma of C57 Black mice ) was studied. The capacity decreased markedly when stable Ga was added to the medium in low concentration, but it decreased very little more in the range of rather high concentration. The growth response of FM3A cells to various concentrations of stable Ga was studied. The saturation density decreased and the doubling time became prolonged with increased Ga concentration. When 0.5 mM of stable Ga was added to the medium, the speed of proliferation changed markedly. The doubling time increased 1.7 times as compared to that before addition of Ga. The shape of the FM3A cells was usually spheroid in the medium. Swelling of the cells was observed when stable Ga was added to the culture medium. In particular, several per cent of these cells showed remarkable changes; that is, the cells were flattened and adhered to the dish and showed remarkable locomotion. It may be that these results are related to cell differentiation rather than to the cytotoxicity of stable Ga. (auth.)

  14. Accumulation and biological effects of gallium in malignant cell lines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Awano, T; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1977-02-01

    Accumulation and biological effects of gallium (Ga) in malignant cells in vitro were studied. Biological effects were investigated cytokinetically and morphologically. The malignant cultured FM3A cells (originated from mammary carcinoma of C3H mice) accumulated /sup 67/Ga actively. This accumulation was more intensive in proliferating cells than in non-proliferating cells. 6.5 percent of /sup 67/Ga accumulated in the cultured FM3A cells was bound loosely at the cell surface. The colony forming capacity of C2W cells (originated from amelanotic melanoma of C57 Black mice ) was studied. The capacity decreased markedly when stable Ga was added to the medium in low concentration, but it decreased very little more in the range of rather high concentration. The growth response of FM3A cells to various concentrations of stable Ga was studied. The saturation density decreased and the doubling time became prolonged with increased Ga concentration. When 0.5 mM of stable Ga was added to the medium, the speed of proliferation changed markedly. The doubling time increased 1.7 times as compared to that before addition of Ga. The shape of the FM3A cells was usually spheroid in the medium. Swelling of the cells was observed when stable Ga was added to the culture medium. In particular, several per cent of these cells showed remarkable changes; that is, the cells were flattened and adhered to the dish and showed remarkable locomotion. It may be that these results are related to cell differentiation rather than to the cytotoxicity of stable Ga.

  15. THE EFFECTS OF USING EDMODO IN BIOLOGY EDUCATION ON STUDENTS’ ATTITUDES TOWARDS BIOLOGY AND ICT

    Directory of Open Access Journals (Sweden)

    Veronika Végh

    2017-10-01

    Full Text Available ICT has gained a vital role within education, helping to facilitate the teaching-learning process. This paper examines the efficacy of the Edmodo interface within biology education in high schools. Two 10th grade classes were studied for a one semester period. Both classes followed the same curriculum, however Edmodo usage was compulsory for the experimental class. Anonymous pre-and post-test questionnaires were filled out by the students and statistically analyzed. The research included 58 students; 34 females and 24 males. Over the course of the semester, the experimental group developed increased feelings of importance towards Biology, whereas no change was observed in the control group. At the end of the semester, the experimental group scores leant favorable towards the positive impact of Edmodo use in the classroom, in comparison to the control group. These results show a positive impact of using Edmodo in the classroom, as a facilitative tool, to improve student comprehension in the participating Hungarian students.

  16. Pembangunan Kebun Biologi Wamena*[establishment of Wamena Biological Gardens

    OpenAIRE

    Rahmansyah, M; Latupapua, HJD

    2003-01-01

    The richness of biological resources (biodiversity) in mountainous area of Papua is an asset that has to be preserved.Exploitation of natural resources often cause damage on those biological assets and as genetic resources.Care has to be taken to overcome the situation of biological degradation, and alternate steps had been shaped on ex-situ biological conservation. Wamena Biological Gardens, as an ex-situ biological conservation, has been established to keep the high mountain biological and ...

  17. Essentialist Reasoning and Knowledge Effects on Biological Reasoning in Young Children

    Science.gov (United States)

    Herrmann, Patricia A.; French, Jason A.; DeHart, Ganie B.; Rosengren, Karl S.

    2013-01-01

    Biological kinds undergo a variety of changes during their life span, and these changes vary in degree by organism. Understanding that an organism, such as a caterpillar, maintains category identity over its life span despite dramatic changes is a key concept in biological reasoning. At present, we know little about the developmental trajectory of…

  18. Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage in vivo

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Bassler, Niels; Nielsen, Steffen

    2017-01-01

    of the SOBP to behind the distal dose fall-off. Irradiations were performed with the same dose plan at all positions, corresponding to a dose of 31.25 Gy in the middle of the SOBP. Endpoint of the study was early skin damage of the foot, assessed by a mouse foot skin scoring system. RESULTS: The MDD50 values......, where LETd,z =1 was 3.3 keV/μm. CONCLUSIONS: Although there is a need to expand the current study to be able to calculate an exact enhancement ratio, an enhanced biological effect in vivo for early skin damage in the distal edge was demonstrated....

  19. Herbicide effect on 14C cellulose and 14C straw decomposition in soils. Influence of phenylcarbamates on biological activity

    International Nuclear Information System (INIS)

    Ramanujam, T.; Bellinck, Celine; Mayaudon, J.

    1979-01-01

    Aniline, 2,4-D, 2,4,5-T, simazine and paraquat have no effect on cellulose decomposition in soils. The monophenylcarbamates SN 38210, IPC and CIPC, applied at 500 ppm exert per contra an important inhibitory effect. The decomposition of straw is little influenced by the phenylcarbamates, 100 ppm of 2,4-D, 2,4,5-T or simazine significantly increase the decomposition of straw in a sandy soil. The diphenylcarbamate SN 38584 has little effect on biological activity of soils; this is strongly inhibited by application of 500 ppm of SN 38210. This inhibition may be reduced by amending the soil with lignin but addition of straw or cellulose doesn't enhance biological activity of soil. Addition of 5000 ppm of soil extract or humic acids reduces somewhat the toxicity of SN 38210 [fr

  20. Assessment of radiation safety awareness and attitude toward biological effect of radiation for employees in nuclear workplace

    International Nuclear Information System (INIS)

    Youngchuay, U.; Jetawattana, S.; Toeypho, V.; Eso, J.

    2016-01-01

    This study demonstrated a potential relevance of data pertaining to the interaction of awareness in radiation biology and their attitude towards radiation hazards. The obtained information is useful in ascertaining the effectiveness of the ongoing radiation safety program and will be further used to determine the relationships between the radiation effective dose and cytogenetic approach in these groups of workers. (author)

  1. Effect of gamma irradiation on phenol content, antioxidant activity and biological activity of black maca and red maca extracts (Lepidium meyenii walp).

    Science.gov (United States)

    Zevallos-Concha, A; Nuñez, D; Gasco, M; Vasquez, C; Quispe, M; Gonzales, G F

    2016-01-01

    This study was performed to determine the effects of gamma irradiation on UV spectrum on maca, total content of polyphenols, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities and in vivo biological activities of red and black maca extracts (Lepidium meyenii). Adult mice of the strain Swiss aged 3 months and weighing 30-35 g in average were used to determine biological activities. Daily sperm production, effect on testosterone-induced prostate hyperplasia and forced swimming test were used to determine the effect of irradiation on biological activities of maca extracts. Irradiation did not show differences in UV spectrum but improves the amount of total polyphenols in red maca as well as in black maca extracts. In both cases, black maca extract has more content of polyphenols than red maca extract (p maca extract were administered to mice (p > 0.05). Black maca extract but not red maca extract has more swimming endurance capacity in the forced swimming test. Irradiation of black maca extract increased the swimming time to exhaustion (p maca extract (p > 0.05). Testosterone enanthate (TE) increased significantly the ventral prostate weight. Administration of red maca extract in animals treated with TE prevented the increase in prostate weight. Irradiation did not modify effect of red maca extract on prostate weight (p > 0.05). In conclusion, irradiation does not alter the biological activities of both black maca and red maca extracts. It prevents the presence of microorganisms in the extracts of black or red maca, but the biological activities were maintained.

  2. The Effect of Knowledge Linking Levels in Biology Lessons upon Students' Knowledge Structure

    Science.gov (United States)

    Wadouh, Julia; Liu, Ning; Sandmann, Angela; Neuhaus, Birgit J.

    2014-01-01

    Knowledge structure is an important aspect for defining students' competency in biology learning, but how knowledge structure is influenced by the teaching process in naturalistic biology classroom settings has scarcely been empirically investigated. In this study, 49 biology lessons in the teaching unit "blood and circulatory system" in…

  3. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  4. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  5. Assessing the effect of selection with deltamethrin on biological parameters and detoxifying enzymes in Aedes aegypti (L.).

    Science.gov (United States)

    Alvarez-Gonzalez, Leslie C; Briceño, Arelis; Ponce-Garcia, Gustavo; Villanueva-Segura, O Karina; Davila-Barboza, Jesus A; Lopez-Monroy, Beatriz; Gutierrez-Rodriguez, Selene M; Contreras-Perera, Yamili; Rodriguez-Sanchez, Iram P; Flores, Adriana E

    2017-11-01

    Resistance to insecticides through one or several mechanisms has a cost for an insect in various parameters of its biological cycle. The present study evaluated the effect of deltamethrin on detoxifying enzymes and biological parameters in a population of Aedes aegypti selected for 15 generations. The enzyme activities of alpha- and beta-esterases, mixed-function oxidases and glutathione-S-transferases were determined during selection, along with biological parameters. Overexpression of mixed-function oxidases as a mechanism of metabolic resistance to deltamethrin was found. There were decreases in percentages of eggs hatching, pupation and age-specific survival and in total survival at the end of the selection (F 16 ). Although age-specific fecundity was not affected by selection with deltamethrin, total fertility, together with lower survival, significantly affected gross reproduction rate, gradually decreasing due to deltamethrin selection. Similarly, net reproductive rate and intrinsic growth rate were affected by selection. Alterations in life parameters could be due to the accumulation of noxious effects or deleterious genes related to detoxifying enzymes, specifically those coding for mixed-function oxidases, along with the presence of recessive alleles of the V1016I and F1534C mutations, associating deltamethrin resistance with fitness cost in Ae. aegypti. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism

    Directory of Open Access Journals (Sweden)

    Teresa G. Valencak

    2017-08-01

    Full Text Available Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli, depending on the developmental stage and activity of the organism. The most common functional subunits of adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose biology have become clearer in the recent past, much less is known about sex-specific differences in regulation and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands. Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic disorders. Keywords: Body fatness, Adipose tissue, Sex-specific differences, Adipokines, Adipocytes, Obesity, Energy metabolism

  7. Investigation of the effect of ionizing radiation on gene expression variation by the 'DNA chips': feasibility of a biological dosimeter

    International Nuclear Information System (INIS)

    Gruel, G.

    2005-01-01

    After having described the different biological effects of ionizing radiation and the different approaches to biological dosimetry, and introduced 'DNA chips' or DNA micro-arrays, the author reports the characterization of gene expression variations in the response of cells to a gamma irradiation. Both main aspects of the use DNA chips are investigated: fundamental research and diagnosis. This research thesis thus proposes an analysis of the effect of ionizing radiation using DNA chips, notably by comparing gene expression modifications measured in mouse irradiated lung, heart and kidney. It reports a feasibility study of bio-dosimeter based on expression profiles

  8. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  9. Application of microbeam in bio-science and life science. Biological effects induced in bystander cells by particle microbeams

    International Nuclear Information System (INIS)

    Suzuki, Masao

    2006-01-01

    Biological events occurring in cells directly hit by radiation appear in bystander cells nearby not hit directly, which is called the bystander effect. This review describes the events and mechanisms of biological bystander effect yielded by the low-dose radiation including the microbeam. Bystander effects, particularly by charged particle beams, have been studied by two representative approaches by α-ray from plutonium (stochastic irradiation) and by particle microbeams (targeted irradiation), where a bystander effect like chromosome aberrations is shown to occur by communication between irradiated and non-irradiated cells through gap junction. Bystander effects that do not require the cell contact also occur in the irradiated cell-conditioned medium (ICCM), where, not only the short-life radicals like reactive oxygen species and NO, but also more long-life factors participate. Authors have shown the presence of such bystander-inducing factors in ICCM, producing the aberrations even 48 hr after irradiation of either low or high linear energy transfer (LET) radiation. Bystander effects can be important from the aspect of risk assessments of radiation in the terrestrial/spatial environment involving aircraft as well as in cancer therapy by low-dose heavy particle beams. (T.I)

  10. Biological effects after prenatal irradiation (embryo and fetus) ICRP Publication 90 Approved by the Commission in October 2002

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, J

    2003-06-01

    In its 1990 recommendations, the ICRP considered the radiation risks after exposure during prenatal development. This report is a critical review of new experimental animal data on biological effects and evaluations of human studies after prenatal radiation published since the 1990 recommendations. Thus, the report discusses the effects after radiation exposure during pre-implantation, organogenesis, and fetogenesis. The aetiology of long-term effects on brain development is discussed, as well as evidence from studies in man on the effects of in-utero radiation exposure on neurological and mental processes. Animal studies of carcinogenic risk from in-utero radiation and the epidemiology of childhood cancer are discussed, and the carcinogenic risk to man from in-utero radiation is assessed. Open questions and needs for future research are elaborated. The report reiterates that the mammalian embryo and fetus are highly radiosensitive. The nature and sensitivity of induced biological effects depend upon dose and developmental stage at irradiation. The various effects, as studied in experimental systems and in man, are discussed in detail. It is concluded that the findings in the report strengthen and supplement the 1990 recommendations of the ICRP.

  11. Relative biological effectiveness if alpha radiation for human lung exposure

    International Nuclear Information System (INIS)

    Yarmoshenko, I.; Kirdin, I.; Zhukovsky, M.

    2006-01-01

    Full text of publication follows: The concept of RBE, which introduced by ICRP and ICRU about 50 years ago to compare biological effects of ionizing radiation of different types, still continues to be the essential element of current and projected radiation protection systems in terms of deriving quantities (quality factor and radiation weighting factor). For example, RBE for the stochastic effects induction has to be considered for appropriate radiation weighting of the absorbed dose while estimating equivalent dose. Simulation of lung cancer radiation risk for the cases of inhalation of radon progeny and incorporation of plutonium in lung in comparison with external reference radiation allows assessment of RBE for alpha-radiation. Specific radiation risk models were developed by results of the direct epidemiological studies and used for such simulation. Simulation included published risk models for nuclear workers of the Mayak facilities in the former Soviet Union exposed to incorporated plutonium (Kreisheimer et al., 2003; Gilbert et al., 2004) and underground miners exposed to radon progenies (BEIR VI, 1999). Additionally lung cancer risk model was developed for a case of population indoor radon exposure. Lung cancer risk related to external exposure is estimated using the risk model develop ed using data of Life Span Study of Japanese atomic bomb survivors. By results of lifetime lung cancer risk simulation using Monte Carlo approach estimated median value of RBE in case of indoor radon exposure is 1.5 (with 90% range 0.4 to 7). In case of the two models developed by BEIR VI for lung cancer risk due to radon exposure in underground miners the median values of RBE are 2.1 and 4.4 (with 90% ranges 0.3 to 17 and 0.7 to 45) respectively.Two different models for lung cancer risk related to plutonium exposure resulted in close estimates of RBE: median value of 12 and 13 (with 90% range 4 to 104 and 4 to 136) respectively. Considerable discrepancy between RBE

  12. Comprehensive biological effects of a complex field poly-metallic pollution gradient on the New Zealand mudsnail Potamopyrgus antipodarum (Gray)

    Energy Technology Data Exchange (ETDEWEB)

    Gust, M., E-mail: marion.gust@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); AgroPariTech ENGREF, 19 avenue du Maine, F 75732 Paris (France); Buronfosse, T., E-mail: thierry.buronfosse@inserm.fr [Universite de Lyon, Laboratoire d' endocrinologie, Ecole Nationale Veterinaire de Lyon, avenue Bourgelat, 69280 Marcy l' Etoile (France); Geffard, O., E-mail: olivier.geffard@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Coquery, M., E-mail: marina.coquery@cemagref.fr [Cemagref, UR MALY, Laboratoire d' analyses physico-chimiques des milieux aquatiques, 3b quai Chauveau, 69009 Lyon (France); Mons, R., E-mail: raphael.mons@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Abbaci, K., E-mail: khedidja.abbaci@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Giamberini, L., E-mail: giamb@sciences.univ-metz.fr [Laboratoire des interactions Ecotoxicologie, Biodiversite, Ecosystemes, CNRS UMR 7146, campus Bridoux, 57000 Metz (France); Garric, J., E-mail: jeanne.garric@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France)

    2011-01-17

    The Lot River is known to be contaminated by metals, mainly cadmium and zinc, due to a former Zn ore treatment plant in the watershed of the Riou-Mort, a tributary of the Lot River. Many studies have been performed to characterize contamination, but few have assessed its consequences on the biological responses of organisms along the gradient. We exposed adult and juvenile New Zealand freshwater mudsnails Potamopyrgus antipodarum at several sites along the gradient of metal contamination for 28 days. Biological responses were monitored at different levels: individual (survival, growth and fecundity), tissue and biochemical (energy status and vertebrate-like sex steroid levels) to better understand the toxicity mechanisms involved. Accumulation of Cd and Zn was high during exposure. Most of the biological effects observed could be linked to this contamination and were concentration-dependent. Histological lesions of the digestive gland were observed, with hypertrophy of calcium cells and vacuolization of digestive cells. Such effects are likely to explain the decrease of energy status (triglycerides and proteins), juvenile growth and adult fecundity observed at the most polluted site. However the magnitude of the fall in fecundity cannot be attributed only to these tissular effects, indicating another mode of action of Cd or possible confounding factors. Steroid accumulation in snails indicated only organic pollution. Histopathological effects proved the most sensitive endpoint to metal (Cd and Zn) contamination.

  13. WE-B-304-03: Biological Treatment Planning

    International Nuclear Information System (INIS)

    Orton, C.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  14. The effect of different P fertilizer application (chemical, biologic and integrated on forage quality of two barely varieties (Bahman and Fasieh

    Directory of Open Access Journals (Sweden)

    Lezhia Zandiyeh

    2016-05-01

    Full Text Available Abstract To evaluate the effect of different sources of P fertilizer on grain yield and yield components of two barely varieties, this experiment was conducted in Research Farm, College of Agriculture, University of Tehran in 2010. The experimental treatments were arranged as factorial based on randomized complete block design with three replications. The treatments consisted of two barely varieties (Bahman and Fasieh and 7 levels of P fertilizer viz: 1. Control (no fertilizer application, 2. Chemical P fertilizer (based on the soil test, 3. Biological P fertilizer (P solubilizing bacteria, 4. Biological P fertilizer + 100% chemical P fertilizer, 5. Biological P fertilizer + 75% chemical P fertilizer, 6. Biological P fertilizer + 50% chemical P fertilizer, 7. Biological P fertilizer + 25% chemical P fertilizer. The results indicated that the ash percentage in Fasieh was significantly higher than Bahman at Chemical P fertilizer, integrated and Biological P fertilizer + 50% chemical P fertilizer. Except for Biological P fertilizer, DMD percentage was significantly higher in Fasieh compared to Bahman. The highest crude protein percentage was obtained for Fasieh in Biological P fertilizer + 50% chemical P fertilizer for Bahman in Biological P fertilizer + 75% chemical P fertilizer, respectively. The water soluble carbohydrate content was significantly higher in Fasieh at Chemical P fertilizer and integrated fertilizer treatments compared to Bahman variety. The highest NDF in Bahman was observed when received Biological P fertilizer + 50% chemical P fertilizer treatment, while the same results was obtained for Fasieh when received Biological P fertilizer + 100% chemical P fertilizer and Biological P fertilizer + 75% chemical P fertilizer.

  15. Personal recollections of radiation biology research at Hanford

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1995-01-01

    This paper traces the evolution of the Hanford biology programme over a period of nearly five decades. The programme began in the 1940s with a focus on understanding the potential health effects of radionuclides such as 131 I associated with fallout from the atomic bomb. These studies were extended in the 1950s to experiments on the toxicity and metabolism of plutonium and fission products such as 90 Sr and 137 Cs. In the 1960s, a major long term project was initiated on the inhalation toxicology and carcinogenic effects of plutonium oxide and plutonium nitrate in dogs and rodents. The project remained a major effort within the overall Hanford biology programme throughout the 1970s and 1980s, during which time a broad range of new projects on energy-related pollutants, radon health effects, and basic radiation biology were initiated. Despite the many evolutionary changes that have occurred in the Hanford biology programme, the fundamental mission of understanding the effects of radiation on human health has endured for nearly five decades. (author)

  16. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  17. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure

    2014-01-01

    be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method......Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources...... and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search...

  18. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (pmitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along with the increasing activity of antioxidase system and damages of lipid peroxidation. We also found that the relative expression of genes sdhb and aox1a

  19. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    Energy Technology Data Exchange (ETDEWEB)

    Sanzi Cortez, Fernando, E-mail: lecotox@unisanta.br [Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, 05508-000 Sao Paulo, SP (Brazil); Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Dias Seabra Pereira, Camilo [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Instituto do Mar, Universidade Federal de Sao Paulo, 11030-400 Santos, SP (Brazil); Ramos Santos, Aldo Ramos [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Cesar, Augusto; Choueri, Rodrigo Brasil [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Instituto do Mar, Universidade Federal de Sao Paulo, 11030-400 Santos, SP (Brazil); Martini, Gisela de Assis [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Bohrer-Morel, Maria Beatriz [Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, 05508-000 Sao Paulo, SP (Brazil)

    2012-09-15

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC{sub 50} = 0.490 mg L{sup -1}) and embryo-larval development (IC{sub 50} = 0.135 mg L{sup -1}) tests were above environmental relevant concentrations (ng L{sup -1}) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L{sup -1}, demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: Black-Right-Pointing-Pointer Triclosan causes biological adverse effects at environmental relevant concentrations. Black-Right-Pointing-Pointer Mechanisms of action oriented assays were more sensitive to detect biological damages. Black-Right-Pointing-Pointer Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  20. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    International Nuclear Information System (INIS)

    Sanzi Cortez, Fernando; Dias Seabra Pereira, Camilo; Ramos Santos, Aldo Ramos; Cesar, Augusto; Choueri, Rodrigo Brasil; Martini, Gisela de Assis; Bohrer-Morel, Maria Beatriz

    2012-01-01

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC 50 = 0.490 mg L −1 ) and embryo-larval development (IC 50 = 0.135 mg L −1 ) tests were above environmental relevant concentrations (ng L −1 ) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L −1 , demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: ► Triclosan causes biological adverse effects at environmental relevant concentrations. ► Mechanisms of action oriented assays were more sensitive to detect biological damages. ► Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.