WorldWideScience

Sample records for biofuels program overview

  1. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  2. Biofuels. An overview. Final Report

    International Nuclear Information System (INIS)

    De Castro, J.F.M.

    2007-05-01

    The overall objective of this desk study is to get an overview of the most relevant liquid biofuels especially in the African context, and more specifically in the Netherlands' relevant partner countries. The study will focus on biofuels for transport, but will also consider biofuels for cooking and power generation. Biogas as the result of anaerobic fermentation which can be used for cooking, lighting and electricity generation will not be considered in this study. Liquid biofuels are usually divided into alcohols that are used to substitute for gasoline and oils that are used to substitute for diesel and are often called Biodiesel, and this division will be followed in this study. In chapter 2 we will analyse several aspects of the use of alcohols particularly ethanol, in chapter 3 the same analysis will be done for oils, using as example the very promising Jatropha oil. In chapter we will analyse socio-economic issues of the use of these biofuels

  3. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  4. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  5. Assessment of environmental stresses for enhanced microalgal biofuel production-an overview

    Directory of Open Access Journals (Sweden)

    Dan eCheng

    2014-07-01

    Full Text Available Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  6. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    International Nuclear Information System (INIS)

    Cheng, Dan; He, Qingfang

    2014-01-01

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  7. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Dan, E-mail: dxcheng@ualr.edu; He, Qingfang, E-mail: dxcheng@ualr.edu [Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR (United States)

    2014-07-07

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  8. An overview of biofuels

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Ahmad, S.

    2007-01-01

    Biofuels for transport have received considerable attention due to rising oil prices and growing concern about greenhouse gas emissions. Biofuels namely ethanol and esters of fatty acids have the potential to displace a substantial amount of petroleum fuel in the next few decades which will help to conserve fossil fuel resources. Life cycle analyses show that biofuels release lesser amount of greenhouse gases and other air pollutants. Thus biofuels are seen as a pragmatic step towards reducing carbon dioxide emission from transport sector. Biofuels are compatible with petroleum and combustion engines can easily operate with 10% ethanol and 20% biodiesel blended fuel with no modification. However higher concentrations require 'flex-fuel' engines which automatically adjust fuel injection depending upon fuel mix. Biofuels are derived from renewable biomass and can be produced from a variety of feedstocks. The only limiting factors are the availability of cropland, growth of plants and the climate. Countries with warmer climate can get about five times more biofuel crops from each acre of land than cold climate countries. Genetically modified crops and fast growing trees are being developed increase the production of energy crops. (author)

  9. Biofuels and Land use in Sweden - An overview of land-use change effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, J. [IVL Swedish Environmental Research Inst., Stockholm (Sweden); Ahlgren, S. [Lund Univ., Lund (Sweden); Grahn, M. [Chalmers Univ. of Technology, Goeteborg (Sweden); Sundberg, C. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); and others

    2013-09-01

    Supported by policies, biofuel production has been continuously increasing worldwide during recent years owing to a scientific consensus that human-induced global warming is a reality and the need to reduce import dependency of fossil fuels. However, concerns have been raised that bio-fuels, often advocated as the future substitute for greenhouse gas (GHG) intensive fossil fuels, may cause negative effects on the climate and the environment. When assessing GHG emissions from biofuels, the production phase of the biofuel crop is essential since this is the phase in which most of the GHG emissions occur during the life cycle of the fuel (not accounting for biogenic CO{sub 2} from the tailpipe). Much research has been focusing on the GHG performance of biofuels, but there are also a range of other possible environmental effects of biofuel production, often linked to land use and land management. Changes in land use can result from a wide range of anthropogenic activities including agriculture and forestry management, livestock and biofuel production. Direct effects of land-use change (LUC) range from changes of carbon stock in standing biomass to biodiversity impacts and nutrient leakage. Beside the direct effects, indirect effects can influence other uses of land through market forces across countries and continents. These indirect effects are complex to measure and observe. This report provides an overview of a much debated issue: the connection between LUC and bio-fuel production and associated potential impacts on a wide range of aspects (i.e., soil chemistry, biodiversity, socio economics, climate change, and policy). The main purpose of the report is to give a broad overview of the literature on LUC impacts from biofuel production, not only taking into account the link between LUC and GHG, which has been addressed in many other studies. The report first presents a review of the literature in the different scientific areas related to LUC and biofuel production

  10. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Science.gov (United States)

    2010-03-12

    ... Biofuels AGENCY: Rural Business-Cooperative Service (RBS), USDA. ACTION: Notice of Contract for Proposal... Year 2009 for the Bioenergy Program for Advanced Biofuels under criteria established in the prior NOCP... Bioenergy Program for Advanced Biofuels. In response to the previously published NOCP, approximately $14.5...

  11. The social and environmental impacts of biofuels in Asia: An overview

    International Nuclear Information System (INIS)

    Phalan, Ben

    2009-01-01

    The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.

  12. The social and environmental impacts of biofuels in Asia: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Phalan, Ben [Conservation Science Group, University of Cambridge, Cambridge CB2 3EJ (United Kingdom)

    2009-11-15

    The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction. (author)

  13. Bio-fuels

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  14. Biofuels for automobiles - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, G. [Universitaet Karlsruhe, Engler-Bunte-Institut, Karlsruhe (Germany); Vetter, A. [Thueringer Landesanstalt fuer Landwirtschaft, Dornburg (Germany)

    2008-05-15

    Due to increasing oil prices and climate change concerns, biofuels have become more important as potential alternative energy sources. It is an open question as to which types of biofuels have the best yield potentials, characteristic properties and environmental consequences for providing the largest contribution to future energy requirements. Apart from the quality aspects, the question of quantity is very important, i.e., yields of biomass raw materials from agriculture and forestry as well as the conversion efficiencies/yields of the conversion process to automotive fuels. The most widely used biofuel forms today are fatty acid methyl esters and ethanol. However, in the future it is possible that synthetic hydrocarbons and hydrogen, produced via biotechnological or chemical processes may become feasible as fuel sources. Limitations in quantity are caused by net productivities of photosynthesis, which are limited by several factors, e.g., by the supply of water, limited availability of land, and conversion losses. As a consequence, biofuels as they exist can only contribute to a limited extent to securing raw material supplies for energy requirements in the future. Efficiency improvements in processing technologies and changes in consumer behavior and attitude will also be required. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  15. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  16. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  17. Panorama 2014 - Overview of second-generation biofuel projects

    International Nuclear Information System (INIS)

    Bouter, Anne; Lorne, Daphne

    2013-12-01

    Second-generation biofuels produced from lingo-cellulosic biomass are now one of the main technological options for reducing the climatic impacts imposed by fuels used in transportation. These processes are designed to significantly boost the quantities of biofuels available and to take over from their first-generation counterparts, given the ready availability of raw materials and their excellent environmental performances. They are already the subject of multiple pre-industrial scale projects in many regions of the world as part of R and D programs, and the first industrial installations are already operational or under construction, the majority of them in Europe and the United States. They now require a stable regulatory framework in order to progress to the industrial learning stage required for them to become fully competitive. This is why the current uncertainties surrounding regulations in Europe and to a lesser extent in the United States could delay their development. (authors)

  18. 75 FR 42745 - Production Incentives for Cellulosic Biofuels: Notice of Program Intent

    Science.gov (United States)

    2010-07-22

    ... Cellulosic Biofuels: Notice of Program Intent AGENCY: Office of Energy Efficiency and Renewable Energy...). Through this notice, biofuels producers and other interested parties are invited to submit pre-auction..., ``Production Incentives for Cellulosic Biofuels; Reverse Auction Procedures and Standards,'' (74 FR 52867...

  19. Methodological aspects on international biofuels trade: International streams and trade of solid and liquid biofuels in Finland

    International Nuclear Information System (INIS)

    Heinimoe, J.

    2008-01-01

    The use of biomass for fuel is increasing in industrialised countries. Rapidly developing biomass markets for energy purposes along with weak information on biofuels trade that statistics offer have been incentives for several recently published studies investigating the status of biofuels trade. The comparison of the studies is often challenging due particularly to the various approaches to the indirect trade of biofuels and the diverse data sources utilised. The purpose of this study was to provide an overview of the Finnish situation with respect to the status of the streams of international biofuels trade. Parallel to this, the study aimed to identify methodological and statistical challenges in observing international biofuels trade. The study analysed available statistical information and introduced a procedure to obtain a clear overview on import and export streams of biofuels. In Finland, the total direct import and export of biofuels, being mainly composed of wood pellets and tall oil, is tiny in comparison with the total consumption of biofuels. Instead, the indirect trade has remarkable importance. Large import volumes of industrial raw wood make Finland a net importer of biofuels. In 2004, approximately 22% (64 PJ) of wood-based energy in Finland originated from imported wood. The study showed that the indirect trade of biofuels may be a significant sector of global biofuels trade. In the case of Finland, a comprehensive compilation of statistics on energy and forestry enabled the determination of the trade status satisfactory. However, national and international statistics should be further developed to take better into consideration international trade and to support continuously developing biofuels markets. (author)

  20. An economic analysis of a major bio-fuel program undertaken by OECD countries

    International Nuclear Information System (INIS)

    2002-01-01

    Biofuels such as ethanol and bio-diesel are creating a new demand for agricultural output and for agriculture land in Canada. However, the participation of other large countries with a large demand potential is necessary for bio-fuels to have a significant impact on the price of grains and oilseeds. This paper quantified the potential impact that a major bio-fuel program initiated by OECD countries has on grain and oilseed prices. The program was initiated for the period 1999 to 2006. There is considerable interest by Canadian producers to stimulate grain and oilseed prices by increasing demand of biofuels. This renewable energy source produces fewer greenhouse gas emissions than petroleum products. The analysis presented in this paper only considered ethanol from corn or wheat and bio-diesel from vegetable oils. It also focused only on the use of bio-fuels in the OECD transportation sector. The analysis was undertaken with AGLINK, a multi-commodity multi-country policy-specific dynamic model of the international agricultural markets built by the OECD with member countries. It was shown that the increase in world and domestic prices for grains and vegetable oils will remain strong, particularly toward 2006. It was also shown that a major bio-fuel program for all OECD countries would be beneficial to Canadian agriculture. It was concluded that ultimately, an increase in OECD bio-fuels usage has a direct impact on the demand for grains and oilseeds which are important feed-stocks in biofuel production. The analysis presumes an increase in renewable fuel use, but does not consider factors such as financial incentives and regulatory requirements that could bring about this increase. 7 refs., 6 tabs., 4 figs

  1. Overview of the Estonian Biofuels Association activities

    International Nuclear Information System (INIS)

    Hueues, Meelis

    2000-01-01

    Due to global warming and environment pollution because of widespread use of fossil fuels there are already tendencies to stabilize and decrease the consumption of these energy resources and take into use more renewable energy resources. Estonian Biofuels Association (EBA) is a non-profit association, which was founded on 8. of May 1998 in Tallinn. The EBA is an independent and voluntary alliance of its members. Fields of activity of the EBA are by biofuels research, developing and evaluation to engage environmental, biofuels and energy saving. EBA members are: energy consultants, scientists, as well as fuel suppliers, DH-companies, technology suppliers, energy service companies etc. The members of EBA are involved in different projects in Estonia, where biomass are produced and used for heating, where wood, waste, peat, rape oil and biogas resources are examined and put into use, and also projects which deal with energy saving and environment friendly equipment production for using biofuels. During our short experience we have noticed that people in Estonia have become more aware of biomass and their use, so the development of environment friendly and sustainable energetics will continue in Estonia. Available biofuels in Estonia could compete with fossil fuels if burnt rationally with high technology equipment. EBA members are convinced that biomass have perspective and that they could play an important role in improving Estonian economic and environmental situation. Modem biomass combustion devices are taken into use more the faster general wealth increases and EBA can raise people's awareness of bio fuel subject through special, courses and media. We want Estonian energy policy to develop towards widespread use of renewable energy resources, which would save energy and environment improve nation's foreign trade balance and create jobs mainly in rural areas

  2. 2007 Biomass Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  3. A stochastic programming approach towards optimization of biofuel supply chain

    International Nuclear Information System (INIS)

    Azadeh, Ali; Vafa Arani, Hamed; Dashti, Hossein

    2014-01-01

    Bioenergy has been recognized as an important source of energy that will reduce dependency on petroleum. It would have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries in the near future. This paper analyzes challenges with supplying biomass to a biorefinery and shipping biofuel to demand centers. A stochastic linear programming model is proposed within a multi-period planning framework to maximize the expected profit. The model deals with a time-staged, multi-commodity, production/distribution system, facility locations and capacities, technologies, and material flows. We illustrate the model outputs and discuss the results through numerical examples considering disruptions in biofuel supply chain. Finally, sensitivity analyses are performed to gain managerial insights on how profit changes due to existing uncertainties. - Highlights: • A robust model of biofuel SC is proposed and a sensitivity analysis implemented. • Demand of products is a function of price and GBM (Geometric Brownian Motion) is used for prices of biofuels. • Uncertainties in SC network are captured through defining probabilistic scenarios. • Both traditional feedstock and lignocellulosic biomass are considered for biofuel production. • Developed model is applicable to any related biofuel supply chain regardless of region

  4. Allies in Biofuels. Opportunities in the Dutch - Argentinean biofuels trade relation

    International Nuclear Information System (INIS)

    Verhagen, M.

    2007-01-01

    First generation biofuels as an environmental solution are showing their own negative environmental, social and economic side effects. These need to be dealt with, because it is apparent that those same biofuels can be produced in a sustainable manner, thereby contributing to a healthier planet. Since both Argentina and the Netherlands would benefit from sustainable biofuels trade, policy measures need to be taken to guide the proper way. In what manner could bilateral cooperation concerning biofuels, optimize trade and policy output in both countries? By answering this question, one can hand solutions to upcoming problems - barriers to a sustainable energy structure - while at the same time facilitating trade between Argentina and the Netherlands. Besides providing information about the European, Dutch and Argentine market, this report presents an overview of biofuel policies. Special attention is given to the issue of sustainable biofuel production, in order to spread the necessary awareness, create wide support for corresponding politics, and offer opportunities for cooperation to prevent future entrapment. An entrapment, which could easily occur when actors in politics and business ignore international requirements for sustainable biofuel production. The research aims to produce the following output: Policy recommendations regarding the promotion of environmentally sound biofuels in both countries; A set arena to support a policy dialogue between both countries; An overview of current Dutch and Argentinean biofuel policies; Up to date information on current volumes of production, consumption and trade; Data with contact information of partners in both countries. Argentina shows an extremely professional agricultural sector, producing large quantities of vegetable oils, specifically of soybean. This sector has started to turn its attention towards biofuels - particularly to biodiesel. Projected production (for 2007-2008) is astonishingly high. The sector mainly

  5. Recent developments of biofuels/bioenergy sustainability certification: A global overview

    International Nuclear Information System (INIS)

    Scarlat, Nicolae; Dallemand, Jean-Francois

    2011-01-01

    The objective of this paper is to provide a review on the latest developments on the main initiatives and approaches for the sustainability certification for biofuels and/or bioenergy. A large number of national and international initiatives lately experienced rapid development in the view of the biofuels and bioenergy targets announced in the European Union, United States and other countries worldwide. The main certification initiatives are analysed in detail, including certification schemes for crops used as feedstock for biofuels, the various initiatives in the European Union, United States and globally, to cover biofuels and/or biofuels production and use. Finally, the possible way forward for biofuel certification is discussed. Certification has the potential to influence positively direct environmental and social impact of bioenergy production. Key recommendations to ensure sustainability of biofuels/bioenergy through certification include the need of an international approach and further harmonisation, combined with additional measures for global monitoring and control. The effects of biofuels/bioenergy production on indirect land use change (ILUC) is still very uncertain; addressing the unwanted ILUC requires sustainable land use planning and adequate monitoring tools such as remote sensing, regardless of the end-use of the product. - Research highlights: → There is little harmonisation between certification initiatives. → Certification alone is probably not able to avoid certain indirect effects. → Sustainability standards should be applied globally to all agricultural commodities. → A critical issue to certification is implementation and verification. → Monitoring and control of land use changes through remote sensing are needed.

  6. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

    Science.gov (United States)

    Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

    2015-01-01

    The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Panorama 2014 - Overview of biofuel sectors throughout the world

    International Nuclear Information System (INIS)

    Chabrelie, Marie-Francoise; Gruson, Jean-Francois; Sagnes, Charlene

    2013-12-01

    Biomass is all of the organic matter derived from the animal and plant organisms that make up our environment. Nowadays, it is possible to efficiently convert biomass into energy - biofuels in particular, which can be used as an alternative to fossil fuels - thanks to the increased use of new technologies. After a number of years of extremely high growth until 2008, world production of biofuels has continued to increase, but at a slower rate. Investment in them is starting to fall, mainly as a result of a more constrained global economy and the volatility of regulations governing how they can be used. The outlook does, however, look good for biofuels: a number of new promising technologies, still in the R and D stage, are starting to emerge. To a very great extent, their viability will be determined by the development of various state policies on biofuels. (authors)

  8. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  9. Panorama 2017 - 2016 overview and outlook for biofuels

    International Nuclear Information System (INIS)

    Lorne, Daphne

    2016-06-01

    With falling fossil fuel prices, 2015 was marked by a general decline in the appeal of alternative fuels. But although growth in worldwide volume of biofuel production and consumption is slowing, blending requirements continue to increase and investment, though declining, is still taking place. To ensure the long-term sustainability of biofuel processes, a variety of conditions must be met, such as an increase in fossil energy prices and/or CO_2 taxation, the use of policy levers including implementation of post-2020 objectives (incorporation levels, reduction of greenhouse gases, etc.) and fuel blending standards

  10. Economic and social implications of biofuel use and production in Canada

    International Nuclear Information System (INIS)

    Klein, K.

    2005-01-01

    The potential role of biofuels in meeting Canadian commitments to greenhouse gas emissions was discussed. The characteristics of various biofuels were presented, including ethanol, methanol, biodiesel and biogas. Benefits of biofuels included a reduction in air contaminants as well as lower greenhouse gas emissions. Federal and provincial programs are currently in place to encourage production and use of biofuels. The Federal Ethanol Expansion Plan was outlined with reference to its target to increase ethanol production from 238 m litres to 1400 m litres by 2010. The main instruments of the program include excision of the gasoline tax exemption, ethanol expansion and the fact that ethanol can operate a polyfuels vehicle fleet. Provincial policies on ethanol were outlined, driven by characteristics of provincial economies. Provincial tax exemptions for ethanol were provided and an overview of the global ethanol market was presented. A map of existing and projected ethanol projects in Canada was presented, along with a forecast of Canadian ethanol production capacity. A time-line of Nebraska's ethanol production from the years 1985 to 2004 was provided. Economic drivers for ethanol include additional markets for products of agricultural, marine and forestry industries; the enhancement and diversification of rural and regional economies; employment; and energy security. Challenges to growth in biofuel production include technological knowledge and a lack of public awareness concerning the benefits of biofuel. The production and use of biofuels may increase environmental amenities but decrease economic growth. Issues concerning the economics of biofuel research were reviewed. The demand for biofuels has grown slowly in Canada, but has been promoted or mandated federally and in several provinces. The costs of biofuel production were reviewed, with a chart presenting ethanol production costs by plant size. Barriers to trade include the complexity of provincial tax

  11. Research Program Overview

    Science.gov (United States)

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research products laboratories publications nisee b.i.p. members education FAQs links research Research Program Overview Tall Buildings Initiative Transportation Research Program Lifelines Program Concrete Grand

  12. Potential of biofuels for shipping. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Florentinus, A.; Hamelinck, C.; Van den Bos, A.; Winkel, R.; Cuijpers, M. [Ecofys Netherlands, Utrecht (Netherlands)

    2012-01-15

    Biofuels could be one of the options to realize a lower carbon intensity in the propulsion of ships and also possibly reduce the effect of ship emissions on local air quality. Therefore, EMSA, the European Maritime Safety Agency, is evaluating if and how biofuels could be used in the shipping sector as an alternative fuel. To determine the potential of biofuels for ships, a clearer picture is needed on technical and organizational limitations of biofuels in ships, both on board of the ship as in the fuel supply chain to the ship. Economic and sustainability analysis of biofuels should be included in this picture, as well as an overview on current and potential policy measures to stimulate the use of biofuels in shipping. Ecofys has determined the potential of biofuels, based on analysis of collected data through literature review, own expertise and experiences, direct communication with EMSA, research publications, market developments based on press and other media, and consultations with relevant stakeholders in the shipping market.

  13. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  14. Physiological and genetic studies towards biofuel production in cyanobacteria

    NARCIS (Netherlands)

    Schuurmans, R.M.

    2017-01-01

    The main aim of this thesis was to contribute to the optimization of the cyanobacterial cell factory and to increase the production of cellulose as a biofuel (precursor) via a physiological and a transgenic approach. Chapter 1 provides an overview of the current state of cyanobacterial biofuel

  15. Program overview

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The program overview describes the following resources and facilities; laser facilities, main laser room, target room, energy storage, laboratory area, building support systems, general plant project, and the new trailer complex

  16. Microalgal carbohydrates. An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Markou, Giorgos; Georgakakis, Dimitris [Agricultural Univ. of Athens (Greece). Dept. of Natural Resources Management and Agricultural Engineering; Angelidaki, Irini [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Environmental Engineering

    2012-11-15

    Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed. (orig.)

  17. Vehicle Technologies Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  18. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  19. Human Reliability Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, Michael

    2012-09-25

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  20. Socio-economic aspects of different biofuel development pathways

    International Nuclear Information System (INIS)

    Duer, Henrik; Christensen, Pernille Ovre

    2010-01-01

    There are several policy drivers for biofuels on a larger scale in the EU transport sector, including increased security of energy supply, reduced emission of greenhouse gases (GHG), and new markets for the agricultural sector. The purpose of this socio-economic cost analysis is to provide an overview of the costs of meeting EU biofuels targets, taking into account several external costs and benefits. Biofuels are generally more expensive than traditional fossil fuels, but the expected increasing value of GHG emission reductions will over time reduce the cost gap. High crude oil prices significantly improve the economic benefit of biofuels, but increased demand for biomass for energy purposes is likely to increase the price of biofuels feedstock and biofuels costs. The key question is to what extent increasing oil prices will be passed on to biofuels costs. Socio-economic least costs for biofuels production require a market with a clear pricing of GHG emissions to ensure that this factor is included in the decision-making of actors in all links of the fuel chain.

  1. Commercialization potential aspects of microalgae for biofuel production: An overview

    Directory of Open Access Journals (Sweden)

    Tahani S. Gendy

    2013-06-01

    This article discusses the importance of algae-based biofuels together with the different opinions regarding its future. Advantages and disadvantages of these types of biofuels are presented. Algal growth drives around the world with special emphasis to Egypt are outlined. The article includes a brief description of the concept of algal biorefineries. It also declares the five key strategies to help producers to reduce costs and accelerate the commercialization of algal biodiesel. The internal strengths and weaknesses, and external opportunities, and threats are manifested through the SWOT analysis for micro-algae. Strategies for enhancing algae based-fuels are outlined. New process innovations and the role of genetic engineering in meeting these strategies are briefly discussed. To improve the economics of algal biofuels the concept of employing algae for wastewater treatment is presented.

  2. Algal Biofuels R&D at NREL (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  3. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  4. Bio-fuels of the first generation

    International Nuclear Information System (INIS)

    2012-04-01

    After having briefly recalled the objective of use of renewable energies and the role bio-fuels may play, this publication briefly presents various bio-fuels: bio-diesel (from colza, soybean or sunflower oil), and ethanol (from beet, sugar cane, wheat or corn). Some key data regarding bio-fuel production and use in France are briefly commented. The publication outlines strengths (a positive energy assessment, a decreased dependency on imported fossil fuels and a higher supply safety, a diversification of agriculture revenues and prospects, a reduction of greenhouse gas emissions) and weaknesses (uncertainty regarding the evolution of soil use, an environmental impact related to farming methods) of this sector. Actions undertaken by the ADEME in collaboration with other agencies and institutions are briefly overviewed

  5. Conventional and advanced liquid biofuels

    Directory of Open Access Journals (Sweden)

    Đurišić-Mladenović Nataša L.

    2016-01-01

    Full Text Available Energy security and independence, increase and fluctuation of the oil price, fossil fuel resources depletion and global climate change are some of the greatest challanges facing societies today and in incoming decades. Sustainable economic and industrial growth of every country and the world in general requires safe and renewable resources of energy. It has been expected that re-arrangement of economies towards biofuels would mitigate at least partially problems arised from fossil fuel consumption and create more sustainable development. Of the renewable energy sources, bioenergy draws major and particular development endeavors, primarily due to the extensive availability of biomass, already-existence of biomass production technologies and infrastructure, and biomass being the sole feedstock for liquid fuels. The evolution of biofuels is classified into four generations (from 1st to 4th in accordance to the feedstock origin; if the technologies of feedstock processing are taken into account, than there are two classes of biofuels - conventional and advanced. The conventional biofuels, also known as the 1st generation biofuels, are those produced currently in large quantities using well known, commercially-practiced technologies. The major feedstocks for these biofuels are cereals or oleaginous plants, used also in the food or feed production. Thus, viability of the 1st generation biofuels is questionable due to the conflict with food supply and high feedstocks’ cost. This limitation favoured the search for non-edible biomass for the production of the advanced biofuels. In a general and comparative way, this paper discusses about various definitions of biomass, classification of biofuels, and brief overview of the biomass conversion routes to liquid biofuels depending on the main constituents of the biomass. Liquid biofuels covered by this paper are those compatible with existing infrastructure for gasoline and diesel and ready to be used in

  6. Biofuels made easy

    International Nuclear Information System (INIS)

    Hamilton, C.

    2004-01-01

    Much has been said and written in Australia since the Federal Government introduced its Clean Fuels Policy in September 2001. Various biofuel projects are now being considered in different states of Australia for the manufacture of bioethanol and biodiesel from renewable resources. However, the economic viability required to establish an Australian liquid biofuels industry is predicated on supportive government legislation and an encouraging fuel excise regime. On the other hand, the benefits of such an industry are also in debate. In an attempt to clarify some of the concerns being raised, this paper endeavours to provide an overview of the current use of bioethanol and biodiesel around the world, to summarise the process technologies involved, to review the benefits and non-benefits of renewable fuels to the transport industry and to address the issues for such an industry here in Australia

  7. Segregated Debate on Biofuels in Ghana? Options for Policymaking

    DEFF Research Database (Denmark)

    Ackom, Emmanuel; Poulsen, Emma

    2016-01-01

    Biofuels has been an increasingly debated issue since the beginning of this century. Some scholars emphasize the risks of biofuels on livelihood in Ghana; while others argue positively for the rural development and energy security potential of biofuels. These serve as the rationale of this study...... in the scholarly and grey literature published recently by using the search terms „biofuel‟ and „Ghana‟. The findings show a major skepticism - optimism divide in the biofuel discourse and its potential to improve livelihoods in Ghana. This study attempts to describe this dispute by quantifying different scholars......‟ position on a scale from pessimist to optimist. This is not meant to be reductionist or over simplistic, but rather the work we have done provide an illustrative perspective and overview of the scholarly divisions and gaps. Findings suggest that the biofuel discussions would benefit greatly from less...

  8. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  9. Sustainability of biofuels in Latin America: Risks and opportunities

    International Nuclear Information System (INIS)

    Janssen, Rainer; Rutz, Dominik Damian

    2011-01-01

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: → This study investigates risks and opportunities of biofuels in Latin America. → Latin American countries are setting up programmes to promote biofuel development. → Strong biofuel sectors provide opportunities for economic development. → Potential negative impact includes deforestation and effects on food security. → Sustainability initiatives exist to minimise negative impact.

  10. The biofuel support policy. Public thematic report. Assessing a public policy

    International Nuclear Information System (INIS)

    2012-01-01

    In its first part, this detailed report gives an overview of some key facts regarding biofuels: energy context, biofuels and energy, biofuels and agriculture, multiple and superimposed regulation levels, financial data, and international comparisons. The second part analyses the positions of the different actors (oil industry and dealers, car manufacturers, bio-diesel producers, ethanol producers, farmers producing raw materials, consumer associations, defenders of the environment, public bodies). The third part reports the assessment of the French public policy in terms of efficiency. Some recommendations are made

  11. Recent developments on biofuels production from microalgae and macroalgae

    DEFF Research Database (Denmark)

    Kumar, Kanhaiya; Ghosh, Supratim; Angelidaki, Irini

    2016-01-01

    and infrastructure requirement. Hydrogen production by microalgae through biophotolysis seems interesting as it directly converts the solar energy into hydrogen. However, the process has not been scaled-up till today. Hydrothermal liquefaction (HTL) is more promising due to handling of wet biomass at moderate......Biofuels from algae are considered as promising alternatives of conventional fossil fuels, as they can eliminate most of the environmental problems. The present study focuses on all the possible avenues of biofuels production through biochemical and thermochemical conversion methods in one place......, bringing together both microalgae and macroalgae on the same platform. It provides a brief overview on the mechanism of different biofuel production from algae. Factors affecting the biofuel process and the associated challenges have been highlighted alongwith analysis of techno-economic study available...

  12. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels

    International Nuclear Information System (INIS)

    Mohr, Alison; Raman, Sujatha

    2013-01-01

    Aims: The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. Scope: We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Conclusions: Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic). - Highlights: • Controversy surrounding 1G biofuels is relevant to sustainability appraisal of 2G. • Challenges for policy in managing the transition to 2G biofuels are highlighted. • A key lesson is that sustainability challenges are complexly interconnected

  13. Biofuels and sustainability in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole; Stafford, William [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa); Musango, Josephine Kaviti [Resource Based Sustainable Development, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa)

    2011-02-15

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  14. Biofuels and sustainability in Africa

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Stafford, William; Musango, Josephine Kaviti

    2011-01-01

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  15. The Brazilian biofuels industry

    Directory of Open Access Journals (Sweden)

    Goldemberg José

    2008-05-01

    Full Text Available Abstract Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion.

  16. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  17. Biofuels Program Plan, FY 1992--FY 1996. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This five-year program plan describes the goals and philosophy of the US Department of Energy`s (DOE) Biofuels Systems Division (BSD) program and the BSD`s major research and development (R&D) activities for fiscal years (FY) 1992 through 1996. The plan represents a consensus among government and university researchers, fuel and automotive manufacturers, and current and potential users of alternative fuels and fuel additives produced from biomass. It defines the activities that are necessary to produce versatile, domestic, economical, renewable liquid fuels from biomass feedstocks. The BSD program focuses on the production of alternative liquid fuels for transportation-fuels such as ethanol, methanol, biodiesel, and fuel additives for reformulated gasoline. These fuels can be produced from many plant materials and from a significant portion of the wastes generated by municipalities and industry. Together these raw materials and wastes, or feedstocks, are called biomass.

  18. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  19. Bio-fuel co-products in France: perspectives and consequences for cattle food

    International Nuclear Information System (INIS)

    2010-01-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  20. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  1. Biofuels and their global influence on land availability for agriculture and nature. A first evaluation and a proposal for further fact finding

    Energy Technology Data Exchange (ETDEWEB)

    Bergsma, G.; Kampman, B.; Croezen, H.; Sevenster, M.

    2007-02-15

    Unilever asked CE to make a script for a strategic study to provide insight in the effects of the various competing sectors, and in the limitations of land availability with respect to the production of biomass for biofuels. Furthermore, this strategic study should provide recommendations on how to proceed on these issues, aimed at governments and other stakeholders in the EU and the USA. This report is the result of this preliminary study, and provides the necessary background information and the script for further work. This report is build up along the following lines: Chapter 2: An overview of the main biofuel market developments, including biofuel policies and drivers, with a focus on the EU and the USA. Chapter 3: A discussion of the main issues and developments regarding the competition between biofuels, the food industry and biodiversity. Chapter 4: Overview of the relevant literature regarding the potential availability of biomass, the competition with the food sector and potential effects of increased use of biofuels on biodiversity. Chapter 5: Conclusions and recommendations for further studies, the script for further work. Chapter 6: Draft policy suggestions. A more extensive literature overview can be found in Annex A, the main actors in the biofuels land availability discussions are listed in Annex B. Annex C provides an overview of the global vegetable oil and oilseed markets.

  2. The second generation biofuels from the biomass

    International Nuclear Information System (INIS)

    2007-01-01

    The author takes stock on the second generation biofuels in the world, the recent technologies, their advantages, the research programs and the economical and environmental impacts of the biofuels development. (A.L.B.)

  3. Promoting biofuels: Implications for developing countries

    International Nuclear Information System (INIS)

    Peters, Joerg; Thielmann, Sascha

    2008-01-01

    Interest in biofuels is growing worldwide as concerns about the security of energy supply and climate change are moving into the focus of policy makers. With the exception of bioethanol from Brazil, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result, promotion measures such as tax exemptions or blending quotas are indispensable for ascertaining substantial biofuel demand. With particular focus on developing countries, this paper discusses the economic justification of biofuel promotion instruments and investigates their implications. Based on data from India and Tanzania, we find that substantial biofuel usage induces significant financial costs. Furthermore, acreage availability is a binding natural limitation that could also lead to conflicts with food production. Yet, if carefully implemented under the appropriate conditions, biofuel programs might present opportunities for certain developing countries

  4. An overview of biofuel policies across the world

    International Nuclear Information System (INIS)

    Sorda, Giovanni; Banse, Martin; Kemfert, Claudia

    2010-01-01

    In the last decade biofuel production has been driven by governmental policies. This article reviews the national strategy plans of the world's leading producers. Particular attention is dedicated to blending targets, support schemes and feedstock use. Individual country profiles are grouped by continent and include North America (Canada and the US), South America (Argentina, Brazil, and Colombia), Europe (the European Union, France, and Germany), Asia (China, India, Indonesia, Malaysia, and Thailand) and Australia.

  5. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    Directory of Open Access Journals (Sweden)

    BB Marvey

    2009-04-01

    Full Text Available Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decades after discontinuing its large scale production of bioethanol for use as en- gine fuel, South Africa (SA is again on its way to resuscitating its biofuel industry. Herein an overview is presented on South Africa’s oilseed and biofuel production, biofuels industrial strategy, industry readiness, chal- lenges in switching to biofuels and the strategies to overcome potential obstacles.

  6. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  7. The biobased economy: biofuels, materials and chemicals in the post-oil era

    National Research Council Canada - National Science Library

    Langeveld, Hans; Meeusen, Marieke; Sanders, Johan

    2010-01-01

    .... Starting with a state-of-the-art overview of major biobased technologies, including biorefinery and technologies for the production of biofuels, biogas, biomass feedstocks for chemistry and bio...

  8. Global Biofuels at the Crossroads: An Overview of Technical, Policy, and Investment Complexities in the Sustainability of Biofuel Development

    Directory of Open Access Journals (Sweden)

    Kathleen Araújo

    2017-03-01

    Full Text Available Biofuels have the potential to alter the transport and agricultural sectors of decarbonizing societies. Yet, the sustainability of these fuels has been questioned in recent years in connection with food versus fuel trade-offs, carbon accounting, and land use. Recognizing the complicated playing field for current decision-makers, we examine the technical attributes, policy, and global investment activity for biofuels (primarily liquids. Differences in feedstock and fuel types are considered, in addition to policy approaches of major producer countries. Issues with recent, policy-driven trade developments are highlighted to emphasize how systemic complexities associated with sustainability must also be managed. We conclude with near-term areas to watch.

  9. AN OVERVIEW OF BIOFUELS PROCESS DEVELOPMENT IN SOUTH CAROLINA

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S.; French, T.

    2010-02-03

    The South Carolina Bio-Energy Research Collaborative is working together on the development and demonstration of technology options for the production of bio-fuels using renewable non-food crops and biomass resources that are available or could be made available in abundance in the southeastern United States. This collaboration consists of Arborgen LLC, Clemson University, Savannah River National Laboratory, and South Carolina State University, with support from Dyadic, Fagen Engineering, Renewed World Energies, and Spinx. Thus far, most work has centered on development of a fermentation-based process to convert switchgrass into ethanol, with the concomitant generation of a purified lignin stream. The process is not feed-specific, and the work scope has recently expanded to include sweet sorghum and wood. In parallel, the Collaborative is also working on developing an economical path to produce oils and fuels from algae. The Collaborative envisions an integrated bio-fuels process that can accept multiple feedstocks, shares common equipment, and that produces multiple product streams. The Collaborative is not the only group working on bio-energy in South Carolina, and other companies are involved in producing biomass derived energy products at an industrial scale.

  10. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  11. Biofuels. Environment, technology and food security

    International Nuclear Information System (INIS)

    Escobar, Jose C.; Lora, Electo S.; Venturini, Osvaldo J.; Yanez, Edgar E.; Castillo, Edgar F.; Almazan, Oscar

    2009-01-01

    The imminent decline of the world's oil production, its high market prices and environmental impacts have made the production of biofuels to reach unprecedent volumes over the last 10 years. This is why there have been intense debates among international organizations and political leaders in order to discuss the impacts of the biofuel use intensification. Besides assessing the causes of the rise in the demand and production of biofuels, this paper also shows the state of the art of their world's current production. It is also discussed different vegetable raw materials sources and technological paths to produce biofuels, as well as issues regarding production cost and the relation of their economic feasibility with oil international prices. The environmental impacts of programs that encourage biofuel production, farmland land requirements and the impacts on food production are also discussed, considering the life cycle analysis (LCA) as a tool. It is concluded that the rise in the use of biofuels is inevitable and that international cooperation, regulations and certification mechanisms must be established regarding the use of land, the mitigation of environmental and social impacts caused by biofuel production. It is also mandatory to establish appropriate working conditions and decent remuneration for workers of the biofuels production chain. (author)

  12. Biofuels in Central America

    International Nuclear Information System (INIS)

    Sanders, E.

    2007-08-01

    This report presents the results of an analysis of the biofuel markets in El Salvador, Panama, Costa Rica and Honduras. The aim of this report is to provide insight in the current situation and the expected developments in these markets and thus to provide investors with an image of the opportunities that could be present in this sector. An attempt has been made to provide a clear overview of this sector in the countries concerned. Due to a lack of data this has not been fully accomplished in some cases. [mk] [nl

  13. Federal Energy Management Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-05

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  14. Perspectives of microalgal biofuels as a renewable source of energy

    International Nuclear Information System (INIS)

    Kiran, Bala; Kumar, Ritunesh; Deshmukh, Devendra

    2014-01-01

    Highlights: • Microalgae offer solution of wastewater treatment, CO 2 sequestration, and energy crises. • Microalgal biofuel is renewable, nontoxic and environmentally friendly option. • Integration of wastewater treatment with biofuels production has made them more cost effective. • This article details out the potential production process and benefits of microalgal biofuels. - Abstract: Excessive use of fossil fuels to satisfy our rapidly increasing energy demand has created severe environmental problems, such as air pollution, acid rain and global warming. Biofuels are a potential alternative to fossil fuels. First- and second-generation biofuels face criticism due to food security and biodiversity issues. Third-generation biofuels, based on microalgae, seem to be a plausible solution to the current energy crisis, as their oil-producing capability is many times higher than that of various oil crops. Microalgae are the fastest-growing plants and can serve as a sustainable energy source for the production of biodiesel and several other biofuels by conversion of sunlight into chemical energy. Biofuels produced from microalgae are renewable, non-toxic, biodegradable and environment friendly. Microalgae can be grown in open pond systems or closed photobioreactors. Microalgal biofuels are a potential means to keep the development of human activities in synchronization with the environment. The integration of wastewater treatment with biofuel production using microalgae has made microalgal biofuels more attractive and cost effective. A biorefinery approach can also be used to improve the economics of biofuel production, in which all components of microalgal biomass (i.e., proteins, lipids and carbohydrates) are used to produce useful products. The integration of various processes for maximum economic and environmental benefits minimizes the amount of waste produced and the pollution level. This paper presents an overview of various aspects associated with

  15. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  16. Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Van Grinsven, A.; Croezen, H. [CE Delft, Delft (Netherlands); Verbeek, R.; Van Mensch, P.; Patuleia, A. [TNO, Delft, (Netherlands)

    2013-07-15

    This handbook on biofuels provides a comprehensive overview of different types of biofuels, and the technical options that exist to market the biofuels volumes expected to be consumed in the EU Member States in 2020. The study concludes that by fully utilizing the current blending limits of biodiesel (FAME) in diesel (B7) and bioethanol in petrol (E10) up to 7.9% share of biofuels in the EU transport sector can be technically reached by 2020. Increasing use of advanced biofuels, particularly blending of fungible fuels into diesel (eg. HVO and BTL) and the use of higher ethanol blends in compatible vehicles (e.g. E20), can play an important role. Also, the increased use of biomethane (in particular bio-CNG) and higher blends of biodiesel (FAME) can contribute. However, it is essential for both governments and industry to decide within 1 or 2 years on the way ahead and take necessary actions covering both, the fuels and the vehicles, to ensure their effective and timely implementation. Even though a range of technical options exist, many of these require considerable time and effort to implement and reach their potential. Large scale implementation of the options beyond current blending limits requires new, targeted policy measures, in many cases complemented by new fuel and vehicle standards, adaptation of engines and fuel distribution, etc. Marketing policies for these vehicles, fuels and blends are also likely to become much more important than in the current situation. Each Member State may develop its own strategy tailored to its market and policy objectives, but the EU should play a crucial facilitating role in these developments.

  17. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  18. Panorama 2011: New bio-fuel production technologies: overview of these expanding sectors and the challenges facing them

    International Nuclear Information System (INIS)

    Lorne, D.; Chabrelie, M.F.

    2011-01-01

    The numerous research programmes looking at new-generation biofuels that were initiated over the last ten years are now starting to bear fruit. Although no plants are producing and marketing biofuels yet, the large-scale, industrial feasibility of second-generation bio-fuel production at competitive cost may be demonstrated in the short-term. As far as third generation biofuels derived from algal biomass are concerned, there is a great deal of R and D interest in the sector, but the technology is still only in its infancy. (author)

  19. The Third Pacific Basin Biofuels Workshop: Proceedings

    Science.gov (United States)

    Among the many compelling reasons for the development of biofuels on remote Pacific islands, several of the most important include: (1) a lack of indigenous fossil fuels necessitates their import at great economic loss to local island economics, (2) ideal conditions for plant growth exist on many Pacific islands to produce yields of biomass feedstocks, (3) gaseous and liquid fuels such as methane, methanol and ethanol manufactured locally from biomass feedstocks are the most viable alternatives to gasoline and diesel fuels for transportation, and (4) the combustion of biofuels is cleaner than burning petroleum products and contributes no net atmospheric CO2 to aggravate the greenhouse effect and the subsequent threat of sea level rise to low islands. Dr. Vic Phillips, HNEI Program Manager of the Hawaii Integrated Biofuels Research Program welcomed 60 participants to the Third Pacific Basin Biofuels Workshop at the Sheraton Makaha Hotel, Waianae, Oahu, on March 27 and 28, 1989. The objectives of the workshop were to update progress since the Second Pacific Basin Biofuels Workshop in April 1987 and to develop a plan for action for biofuels R and D, technology transfer, and commercialization now (immediate attention), in the near-term (less than two years), in the mid-term (three to five years), and in the long-term (more than six years). An emerging theme of the workshop was how the production, conversion, and utilization of biofuels can help increase environmental and economic security locally and globally. Individual papers are processed separately for the data base.

  20. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka; Devarenne, Timothy P.; Downes, C. Meghan; Dutcher, Susan K.; Fox, David T.; Goodenough, Ursula; Jaworski, Jan; Holladay, Jonathan E.; Kramer, David M.; Koppisch, Andrew T.; Lipton, Mary S.; Marrone, Babetta L.; McCormick, Margaret; Molnár, István; Mott, John B.; Ogden, Kimberly L.; Panisko, Ellen A.; Pellegrini, Matteo; Polle, Juergen; Richardson, James W.; Sabarsky, Martin; Starkenburg, Shawn R.; Stormo, Gary D.; Teshima, Munehiro; Twary, Scott N.; Unkefer, Pat J.; Yuan, Joshua S.; Olivares, José A.

    2017-03-01

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.

  1. Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

    International Nuclear Information System (INIS)

    Clark, Christopher M; Bierwagen, Britta G; Morefield, Philip E; Ridley, Caroline E; Lin, Yolanda; Vimmerstedt, Laura; Bush, Brian W; Eaton, Laurence M; Langholtz, Matthew H; Peterson, Steve

    2013-01-01

    Biofuels are expected to be a major contributor to renewable energy in the coming decades under the Renewable Fuel Standard (RFS). These fuels have many attractive properties including the promotion of energy independence, rural development, and the reduction of national carbon emissions. However, several unresolved environmental and economic concerns remain. Environmentally, much of the biomass is expected to come from agricultural expansion and/or intensification, which may greatly affect the net environmental impact, and economically, the lack of a developed infrastructure and bottlenecks along the supply chain may affect the industry’s economic vitality. The approximately 30 million acres (12 million hectares) under the Conservation Reserve Program (CRP) represent one land base for possible expansion. Here, we examine the potential role of the CRP in biofuels industry development, by (1) assessing the range of environmental effects on six end points of concern, and (2) simulating differences in potential industry growth nationally using a systems dynamics model. The model examines seven land-use scenarios (various percentages of CRP cultivation for biofuel) and five economic scenarios (subsidy schemes) to explore the benefits of using the CRP. The environmental assessment revealed wide variation in potential impacts. Lignocellulosic feedstocks had the greatest potential to improve the environmental condition relative to row crops, but the most plausible impacts were considered to be neutral or slightly negative. Model simulations revealed that industry growth was much more sensitive to economic scenarios than land-use scenarios—similar volumes of biofuels could be produced with no CRP as with 100% utilization. The range of responses to economic policy was substantial, including long-term market stagnation at current levels of first-generation biofuels under minimal policy intervention, or RFS-scale quantities of biofuels if policy or market conditions were

  2. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  3. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  4. Putting a green toe on the biofuels foot : determining and reducing the ecological footprint anticipated from accelerated biofuel development in Canada

    International Nuclear Information System (INIS)

    McIntyre, T.

    2007-01-01

    Results from recent Environment Canada (EC) research on punctuated life cycle analysis of biofuels and completed ongoing global benchmarking were presented. The purpose of the presentation was to demonstrate how the research community was responding to and organizing themselves for the biofuels opportunity/challenge agenda. The presentation provided a list of some of the environmental benefits of biofuels claimed in the public domain and identified potential environmental impact areas of concern. The author indicated that environmental data was not very robust and that this complex issue lends itself to a weak understanding of theoretical versus likely/achievable benefits. Other topics that were presented included biomass conversion technologies; the petrochemical distribution infrastructure in Canada; the biofuels distribution infrastructure; biofuel spill fate and behaviour; and the focus of EC's BEST research and development program. 2 tabs., 1 fig

  5. 76 FR 7935 - Advanced Biofuel Payment Program

    Science.gov (United States)

    2011-02-11

    ... payments. Application materials may be obtained by contacting one of Rural Development's Energy...) number, which can be obtained at no cost via a toll-free request line at 1-866-705-5711 or online at http... producer'' provisions for determining whether an advanced biofuel producer of biogas or solid advanced...

  6. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  7. Biofuel developments in Mozambique. Update and analysis of policy, potential and reality

    International Nuclear Information System (INIS)

    Schut, Marc; Slingerland, Maja; Locke, Anna

    2010-01-01

    Climate change, rising oil prices and concerns about future energy supplies have contributed to a growing interest in using biomass for energy purposes. Several studies have highlighted the biophysical potential of biofuel production on the African continent, and analysts see Mozambique as one of the most promising African countries. Favorable growing conditions and the availability of land, water and labor are mentioned as major drivers behind this potential. Moreover, the potential of biofuel production to generate socio-economic benefits is reflected in the government's policy objectives for the development of the sector, such as reducing fuel import dependency and creating rural employment. This article provides an overview of biofuel developments in Mozambique and explores to what extent reality matches the suggested potential in the country. We conclude that biofuel developments mainly take place in areas near good infrastructure, processing and storage facilities, where there is (skilled) labor available, and access to services and goods. Moreover, our analysis shows the need to timely harmonize current trends in biofuel developments with the government's policy objectives as the majority of existing and planned projects are not focusing on remote rural areas, and - in absence of domestic markets - principally target external markets.

  8. An Overview of Algae Biofuel Production and Potential Environmental Impact (Journal Article)

    Science.gov (United States)

    Algae are one of the most potentially significant sources of biofuels in the future of renewable energy. A feedstock with almost unlimited applicability, algae can metabolize various waste streams (such as municipal wastewater, and carbon dioxide from power generation) and produc...

  9. Examining the potential for liquid biofuels production and usage in Ghana

    International Nuclear Information System (INIS)

    Afrane, George

    2012-01-01

    The perennial political and social upheavals in major oil-producing regions, the increasing energy demand from emerging economies, the global economic crisis and even environmental disasters, like the recent major oil spill in the Gulf of Mexico, all contribute to price fluctuations and escalations. Usually price instability affects the least-developed countries with the most fragile economies, like Ghana, the most. This paper gives a brief overview of the Ghanaian energy situation, describes the liquid biofuel production processes and examines the possibility of replacing some of the fossil fuels consumed annually, with locally produced renewable biofuels. Various scenarios for substituting different portions of petrol and diesel with biofuels derived from cassava and palm oil are examined. Based on 2009 crop production and fuel consumption data, replacement of 5% of both petrol and diesel with biofuels would require 1.96% and 17.3% of the cassava and palm oil produced in that year, respectively; while replacement of 10% of both fossil fuels would need 3.91% and 34.6% of the corresponding biofuels. Thus while petrol replacement could be initiated with little difficulty, regarding raw material availability, biodiesel would require enhanced palm oil production and/or oil supplement from other sources, including, potentially, jatropha. An implementation strategy is proposed.

  10. Biofuel market and carbon modeling to evaluate French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2006-10-01

    In order to comply with European objectives, France has set up an ambitious biofuel plan. This plan is evaluated considering two criteria: tax exemption need and GHG emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and a refining optimization model. Thus, we are able to determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducing the agro-industrial marginal cost of biofuel production to the biofuel refining long-run marginal revenue. In parallel, a biofuels LCA is carried out using model outputs. Such a method avoid common allocation problems between joint products. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and petroleum products demands. Consequently, biofuel tax exemption does not always appear to be necessary. LCA results show that biofuels production and use, from 'seed to wheel', would facilitate the French Government's to compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010. (authors)

  11. NASA/FAA Tailplane Icing Program Overview

    Science.gov (United States)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.

    1999-01-01

    The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.

  12. Regime-dependent topological properties of biofuels networks

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Janda, K.; Zilberman, D.

    2013-01-01

    Roč. 86, č. 2 (2013), 40-1-40-12 ISSN 1434-6028 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : topology * biofuels * correlations Subject RIV: AH - Economics Impact factor: 1.463, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-regime-dependent topological properties of biofuels networks.pdf

  13. Biofuel market and carbon modeling to analyse French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2007-01-01

    In order to comply with European Union objectives, France has set up an ambitious biofuel plan. This plan is evaluated on the basis of two criteria: tax exemption on fossil fuels and greenhouse gases (GHG) emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and an oil refining optimization model. Thus, we determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducting the biofuel long-run marginal revenue of refiners from the agro-industrial marginal cost of biofuel production. With a clear view of the refiner's economic choices, total pollutant emissions along the biofuel production chains are quantified and used to feed an LCA. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and demand for petroleum products and consequently these parameters should be taken into account by authorities to modulate biofuel tax exemption. LCA results show that biofuel production and use, from 'seed to wheel', would facilitate the French Government's compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010

  14. Practical implementation of liquid biofuels: The transferability of the Brazilian experiences

    International Nuclear Information System (INIS)

    Alonso-Pippo, Walfrido; Luengo, Carlos A.; Alonsoamador Morales Alberteris, Lidice; García del Pino, Gilberto; Duvoisin, Sergio

    2013-01-01

    The main purpose of this paper was to carry out a systematic analysis of the particularities and trends pertaining to the development of biofuels in Brazil—a country which has demonstrated its leadership in this field during the last 40 years. The Brazilian experiences with biofuels are often used as references for decision making by other developed and developing countries. The transferability of Brazil's biofuels practices would be appreciated by many researchers and energy policy markers across the world. This work uses an adapted 5W2H (what, when, where, why, who, how, and how much) analysis technique to answer a variety of questions about the subject. The data, facts, and figures herein are offered as resources for other researchers and policy makers seeking benchmarking. Also, this work discusses the main certainties and uncertainties of the sugarcane agro-industry, and also goes into detail about the ethanol supply chain structure, its management, and particularities. Finally, this research analyzes the central aspects of biofuels implementation in Brazil, lists the most important aspects to consider during a selection of possible standard biofuels, and presents the main aspects of the National Program of Biodiesel Production and its sustainability. - Highlights: • A systemic cause–effect analysis was carried out on biofuel program success. • Main questions concerning implementation of liquid biofuels in Brazil were studied. • Main weakness aspects of biofuel logistic were treated. • During selection of benchmarking strategy. What needs to take into account?

  15. Life Cycle Energy and CO2 Emission Optimization for Biofuel Supply Chain Planning under Uncertainties

    DEFF Research Database (Denmark)

    Ren, Jingzheng; An, Da; Liang, Hanwei

    2016-01-01

    The purpose of this paper is to develop a model for the decision-makers/stakeholders to design biofuel supply chain under uncertainties. Life cycle energy and CO2 emission of biofuel supply chain are employed as the objective functions, multiple feedstocks, multiple transportation modes, multiple...... sites for building biofuel plants, multiple technologies for biofuel production, and multiple markets for biofuel distribution are considered, and the amount of feedstocks in agricultural system, transportation capacities, yields of crops, and market demands are considered as uncertainty variables...... in this study. A bi-objective interval mix integer programming model has been developed for biofuel supply chain design under uncertainties, and the bio-objective interval programming method has been developed to solve this model. An illustrative case of a multiple-feedstock-bioethanol system has been studied...

  16. Reaching the Environmental Community: Designing an Information Program for the NREL Biofuels Program; May 2002-May 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ames, J.; Werner, C.

    2003-08-01

    Final report on subcontract for holding two briefings for policymakers and the environmental community on environmental issues related to biofuels; one on one on the energy and environmental issues associated with biofuels production and use, and the other on implications of pending renewable fuels standard legislation.

  17. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  18. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  19. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  20. Biofuels: stakes, perspectives and researches; Biocarburants: enjeux, perspectives et recherches

    Energy Technology Data Exchange (ETDEWEB)

    Appert, O.; Ballerin, D.; Montagne, X.

    2004-07-01

    The French institute of petroleum (IFP) is a major intervener of the biofuels sector, from the production to the end-use in engines. In this press conference, the IFP takes stock of the technological, environmental and economical stakes of today and future biofuel production processes and of their impact on transports. This document gathers 2 presentations dealing with: IFP's research strategy on biofuels (transparencies: context; today's processes: ethanol, ETBE, bio-diesel; tomorrows processes: biomass to liquid; perspectives), bio-diesel fuel: the Axens process selected by Diester Industrie company for its Sete site project of bio-diesel production unit. The researches carried out at the IFP on biofuels and biomass are summarized in an appendix: advantage and drawbacks of biofuels, the ethanol fuel industry, the bio-diesel industry, biomass to liquid fuels, French coordinated research program, statistical data of biofuel consumption in France, Spain and Germany. (J.S.)

  1. Evaluation of biofuels sustainability: can we keep biofuel appropriate and green?

    CSIR Research Space (South Africa)

    Amigun, B

    2009-11-01

    Full Text Available and Industrial Research (CSIR) Pretoria, South Africa bamigun@csir.co.za Outlines • State of biofuels in Africa - Biofuels initiatives in Africa • Barriers to biofuels market penetration and policy incentives to stimulate the market. • Sustainability... are then motivated to put these ideas into practice. The end of Phase I is the political decision to invest money and other resources into biofuel research. Biofuels developmental stages in Africa…explanation © CSIR 2009 www...

  2. A strategic assessment of biofuels development in the Western States

    Science.gov (United States)

    Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle

    2009-01-01

    The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...

  3. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  4. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  5. New feedstocks for biofuels. Alternative 1st generation of energy crops; Nieuwe Grondstoffen voor Biobrandstoffen. Alternatieve 1e Generatie Energiegewassen

    Energy Technology Data Exchange (ETDEWEB)

    Elbersen, W. [Agrotechnology and Food Sciences Group, WUR-AFSG, Wageningen (Netherlands); Oyen, L. [Plant Resources of Tropical Africa, WUR-PROTA, Wageningen (Netherlands)

    2009-08-15

    A brief overview is provided of a number of alternative crops that can supply feedstocks for 1st generation biofuels and a brief analysis is conducted of the option for renewable biofuel production. [Dutch] Er wordt een kort overzicht gegeven van een aantal alternatieve gewassen die grondstoffen voor 1e generatie biobrandstoffen kunnen leveren en wordt er een korte analyse gegeven van de mogelijkheid voor duurzame biobrandstofproductie.

  6. Biofuel's energetic paradigm and its implications: A global overview and the Colombian case

    International Nuclear Information System (INIS)

    Castiblanco Rozo, Carmenza; Hortua Romero, Sonia

    2012-01-01

    In the last decade biofuels have become a feasible answer given the global need for alternative energy sources. Its increasing demand has been reflected in the expansion of raw materials' crops, with implications in several topics: land use change, ecosystem services relating hydric resources, Greenhouse Gas Emissions (GHG), food security and land property. The objective of this article is a critical analysis of these issues based on a revision of international literature, but also approaching the Colombian case, particularly African oil palm expansion and its social implications. The main results point out that crop expansion will occur in tropical countries. This generates negative impacts that contribute to conflicts around water and land accessibility in regions characterized by their high social and ecosystem vulnerability. Additionally, it is necessary to improve information systems and to refine methodologies and models that allow an adequate evaluation of biofuel production impacts on human well being.

  7. Time-Frequency Dynamics of Biofuel-Fuel-Food System

    Czech Academy of Sciences Publication Activity Database

    Vácha, Lukáš; Janda, K.; Krištoufek, Ladislav; Zilberman, D.

    2013-01-01

    Roč. 40, č. 1 (2013), s. 233-241 ISSN 0140-9883 R&D Projects: GA ČR(CZ) GBP402/12/G097 Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : biofuels * correlations * wavelet coherence Subject RIV: AH - Economics Impact factor: 2.580, year: 2013 http://library.utia.cas.cz/separaty/2013/E/vacha-time-frequency dynamics of biofuels-fuels-food system.pdf

  8. Meeting the global demand for biofuels in 2021 through sustainable land use change policy

    International Nuclear Information System (INIS)

    Goldemberg, José; Mello, Francisco F.C.; Cerri, Carlos E.P.; Davies, Christian A.; Cerri, Carlos C.

    2014-01-01

    The 2013 renewable energy policy mandates adopted in twenty-seven countries will increase the need for liquid biofuels. To achieve this, ethanol produced from corn and sugarcane will need to increase from 80 to approximately 200 billion l in 2021. This could be achieved by increasing the productivity of raw material per hectare, expansion of land into dedicated biofuels, or a combination of both. We show here that appropriate land expansion policies focused on conservationist programs and a scientific basis, are important for sustainable biofuel expansion whilst meeting the increasing demand for food and fiber. The Brazilian approach to biofuel and food security could be followed by other nations to provide a sustainable pathway to renewable energy and food production globally. One sentence summary: Conservationist policy programs with scientific basis are key to drive the expansion of biofuel production and use towards sustainability

  9. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  10. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  11. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  12. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  13. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  14. Biomass upgrading by torrefaction for the production of biofuels: A review

    International Nuclear Information System (INIS)

    Stelt, M.J.C. van der; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J.

    2011-01-01

    An overview of the research on biomass upgrading by torrefaction for the production of biofuels is presented. Torrefaction is a thermal conversion method of biomass in the low temperature range of 200-300 o C. Biomass is pre-treated to produce a high quality solid biofuel that can be used for combustion and gasification. In this review the characteristics of torrefaction are described and a short history of torrefaction is given. Torrefaction is based on the removal of oxygen from biomass which aims to produce a fuel with increased energy density by decomposing the reactive hemicellulose fraction. Different reaction conditions (temperature, inert gas, reaction time) and biomass resources lead to various solid, liquid and gaseous products. A short overview of the different mass and energy balances is presented. Finally, the technology options and the most promising torrefaction applications and their economic potential are described. -- Highlights: → We reviewed recent developments in biomass upgrading by torrefaction. → Torrefaction improves biomass to a high quality solid fuel. → Main advantages of torrefaction are improvement of energy density and grindability. → Further research on kinetics is recommended for design of torrefaction reactor.

  15. Nevada Nuclear Waste Storage Investigations Quality-Assurance Program Plan: management and overview

    International Nuclear Information System (INIS)

    1981-10-01

    This Quality Assurance Program Plan (QAPP) defines the quality assurance program in effect for those activities of the Nevada Nuclear Waste Storage (NNWSI) that are directly controlled by: DOE/NV, the Technical Overview Contractor, and the Quality Assurance Overview Contractor. It is intended as a supplement to the NNWSI-QAP

  16. Commercial Crew Development Program Overview

    Science.gov (United States)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  17. Advances in biofuel production from oil palm and palm oil processing wastes: A review

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2016-03-01

    Full Text Available Over the last decades, the palm oil industry has been growing rapidly due to increasing demands for food, cosmetic, and hygienic products. Aside from producing palm oil, the industry generates a huge quantity of residues (dry and wet which can be processed to produce biofuel. Driven by the necessity to find an alternative and renewable energy/fuel resources, numerous technologies have been developed and more are being developed to process oil-palm and palm-oil wastes into biofuel. To further develop these technologies, it is essential to understand the current stage of the industry and technology developments. The objective of this paper is to provide an overview of the palm oil industry, review technologies available to process oil palm and palm oil residues into biofuel, and to summarise the challenges that should be overcome for further development. The paper also discusses the research and development needs, technoeconomics, and life cycle analysis of biofuel production from oil-palm and palm-oil wastes.

  18. DOE Solar Energy Technologies Program: Overview and Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  19. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  20. Biofuels worldwide

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    After over 20 years of industrial development, the outlook for biofuels now looks bright. Recent developments indicate that the use of biofuels, previously confined to a handful of countries including Brazil and the United States, is 'going global' and a world market may emerge. However, these prospects could eventually be limited by constraints relative to resources and costs. The future of biofuels probably depends on the development of new technologies to valorize lignocellulosic substances such as wood and straw. (author)

  1. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  2. Bio-fuel co-products in France: perspectives and consequences for cattle food; Coproduits des biocarburants en France: perspectives et consequences en alimentation animale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  3. 75 FR 20085 - Subpart B-Advanced Biofuel Payment Program

    Science.gov (United States)

    2010-04-16

    ... years (FY) and to obtain information to help determine payment rates. Before being accepted into the... information collection may be obtained from Cheryl Thompson, Regulations and Paperwork Management Branch... made to producers of advanced biofuel and biogas, which is fuel derived from renewable biomass, other...

  4. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  5. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  6. Human genome program report. Part 1, overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  7. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  8. Overview of Department of Energy programs

    International Nuclear Information System (INIS)

    Hill, J.R.

    1985-01-01

    An overview is presented of policies and standards of the US DOE in the protection of the public, government employees, and government property from damage caused by natural phenomena. Included are Department of Energy orders covering policy and standards for natural phenomena hazards mitigation and Office of Nuclear Safety projects related to natural phenomena hazards mitigation. National Federal programs, committees, and reports are listed. 18 references

  9. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  10. Driving biofuels in Europe. A research on the interaction between external regulation and value chain governance

    International Nuclear Information System (INIS)

    Aantjes, J.C.

    2007-05-01

    major contribution of this theory is the ability to identify the contributions of different actors to the decision-making process. Although both parts of the analytical framework - value chain analysis and the network approach - independently make valuable contributions, an integrated perspective will enhance their insights considerably. Chapter Three provides an introduction into biofuels. Bio-ethanol and biodiesel, two of the most commonly used biofuels in Europe, are discussed. Conversion routes are addressed and a discussion of the environmental aspects, costs, technical properties and socio-economic impact is drawn. Since biofuels are often divided into first and second generation, a short explanation of the similarities and differences is given. The aim of this glance at biofuels is to give a first insight in biofuels and to touch the contours of the biofuel value chains in Europe. Chapter Four discusses some methodological issues linked to the research design. It provides an overview of the data collection methods and reveals how data analysis has been performed. Chapter Five analyzes the biofuel value chains in Europe and the regulatory framework. Since there are little characteristics of a common market, this chapter emphasizes Europe's largest biofuel states in terms of production and consumption: France and Germany. The analysis concentrates on the biodiesel value chains in both countries. Regarding the external regulatory framework, the 2003 EU biofuel directives are taken as unit of analysis. It includes a review of the decision-making processes and analysis of the network environment. Specific attention is given to the role of biofuel value chain actors. To discover how external regulations and value chain governance interact, emphasis is on the role of powerful actors in governing the chain and dealing with the regulatory environment. Chapter Six presents the main conclusions of this research and provides an overview of the empirical findings in the

  11. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  12. Biofuel production and implications for land use, food production and environment in India

    International Nuclear Information System (INIS)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra; Balachandra, P.

    2011-01-01

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  13. Biofuel production and implications for land use, food production and environment in India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India); Balachandra, P., E-mail: patilb@mgmt.iisc.ernet.in [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-15

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  14. Biofuels for transport

    International Nuclear Information System (INIS)

    2004-01-01

    In the absence of strong government policies, the IEA projects that the worldwide use of oil in transport will nearly double between 2000 and 2030, leading to a similar increase in greenhouse gas emissions. Biofuels, such as ethanol, bio-diesel, and other liquid and gaseous fuels, could offer an important alternative to petroleum over this time frame and help reduce atmospheric pollution. This book looks at recent trends in biofuel production and considers what the future might hold if such alternatives were to displace petroleum in transport. The report takes a global perspective on the nascent biofuels industry, assessing regional similarities and differences as well as the cost and benefits of the various initiatives being undertaken around the world. In the short term, conventional biofuel production processes in IEA countries could help reduce oil use and thence greenhouse gas emissions, although the costs may be high. In the longer term, possibly within the next decade, advances in biofuel production and the use of new feedstocks could lead to greater, more cost-effective reductions. Countries such as Brazil are already producing relatively low-cost biofuels with substantial reductions in fossil energy use and greenhouse gas emissions. This book explores the range of options on offer and asks whether a global trade in biofuels should be more rigorously pursued

  15. Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2013-01-01

    Nigeria's economy is largely dependent on petroleum, yet the country is suffering from fuel supply shortages. In response to the transportation fuel supply difficulties in Nigeria, the country released the Nigerian Biofuel Policy and Incentives in 2007 to create favorable investment climate for the entrance of Nigeria into the biofuel sector. The paper assessed the progress made thus far by Nigeria, 4 years after the Nigerian biofuel was released in an attempt to answer the question whether the policy is adequate to transform Nigeria into a biofuel economy. The study found that little progress has been made, which includes commencement of the construction of 20 bioethanol factories, installation of biofuel handling facilities at two depots (Mosimi and Atlas Cove), and selection of retail outlets for biofuel/conventional fuel mix. The site construction of the announced biofuel projects is now slow and other progress is marginal. We therefore conclude that the Nigerian biofuel policy is unlikely to transform Nigeria into a biofuel economy unless the Government revert and refocus on biofuel and include additional financial incentives such as grants and subsidy to complement the tax waivers (income, import duty, VAT), loans, and insurance cover contained in the policy. - Highlights: ► Nigeria's economy is dependent on petroleum, yet the country is suffering from fuel shortages. ► The Nigerian Biofuel Policy and Incentives was released in 2007. ► Little progress has been made since the policy was released 4 years ago. ► Hence, the policy is unlikely to transform Nigeria into a biofuel economy

  16. Biofuels development and adoption in Nigeria: Synthesis of drivers, incentives and enablers

    International Nuclear Information System (INIS)

    Abila, Nelson

    2012-01-01

    Biofuels development and adoption in Nigeria has progressed significantly since the inception of the country's biofuel program in 2007. The rapid growth of the biofuels subsector in Nigeria inspired this review which aims at identifying the key drivers, agents, enablers, incentives and objectives driving the development. From the upstream to the downstream sub-sectors, there is an increasing entry of players and participants (private and public investors). This paper aims to explore the underlining drivers, enablers and incentives promoting the investments and participations in biofuels development, adoption and utilization in Nigeria. The research sourced data from basically secondary sources and undertook desk review of available information. The drivers identified are classified into the endogenous and exogenous categories. From the review, the paper presents a multi-components conceptual framework that captures key elements of the biofuel development in Nigeria. - Highlights: ► Delineate factors (drivers) promoting biofuels. ► Identify agents and their roles in incentivizing the biofuel development. ► Delineate incentives from enablers of biofuel development and adoption. ► Categorize objective motives of actors within the sustainability triangle. ► Propose a framework as a foundation for further research, policy analysis and intervention.

  17. Overview of the U.S. Department of Energy's Isotope Programs

    International Nuclear Information System (INIS)

    Carty, J.

    2004-01-01

    This presentation provides an overview of the U.S. Department of Energy's Isotopes Program. The charter of the Isotope Programs covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials, and related isotope services

  18. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  19. Energy valuation methods for biofuels in South Florida: Introduction to life cycle assessment and emergy approaches

    Energy Technology Data Exchange (ETDEWEB)

    Treese II, J. Van [Southwest Florida Research and Education Center, Immokalee, FL (United States); Hanlon, Edward A. [Southwest Florida Research and Education Center, Immokalee, FL (United States); Amponsah, Nana [Intelligentsia International, LaBelle, FL (United States); Izursa, Jose -Luis [Intelligentsia International, LaBelle, FL (United States); Capece, John C. [Univ. of Florida, Gainesville, FL (United States)

    2013-03-01

    Here, recent changes in the United States requiring the use of ethanol in gasoline for most vehicular transportation have created discussion about important issues, such as shifting the use of certain plants from food production to energy supply, related federal subsidies, effects on soil, water and atmosphere resources, tradeoffs between food production and energy production, speculation about biofuels as a possible means for energy security, potential reduction of greenhouse gas (GHG) emissions or development and expansion of biofuels industry. A sustainable approach to biofuel production requires understanding inputs (i.e., energy required to carry out a process, both natural and anthropogenic) and outputs (i.e., energy produced by that process) and cover the entire process, as well as environmental considerations that can be overlooked in a more traditional approach. This publication gives an overview of two methods for evaluating energy transformations in biofuels production: (1) Life Cycle Assessment (LCA) and (2) Emergy Assessment (EA). The LCA approach involves measurements affecting greenhouse gases (GHG), which can be linked to the energy considerations used in the EA. Although these two methods have their basis in energy or GHG evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. Using these two methods can ensure that the energy components are well understood and can help to evaluate the economic environmental component of a biofuel process. In turn, using these two evaluative tools will allow for decisions about biofuel processes that favor sustainability

  20. Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies

    International Nuclear Information System (INIS)

    Laak, W.W.M. van der; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for stimulating biofuels by analysing three experiments in depth. The approach of strategic niche management (SNM) is used to explain success and failure of these projects. Based on the analysis as well as recent innovation literature we develop a list of guidelines that is important to consider when developing biofuel policies

  1. Biofuels: which interest, which perspectives?

    International Nuclear Information System (INIS)

    2006-01-01

    This paper is a synthesis of several studies concerning the production and utilization of bio-fuels: energy balance and greenhouse effect of the various bio-fuel systems; economical analysis and profitability of bio-fuel production; is the valorization of bio-fuel residues and by-products in animal feeding a realistic hypothesis?; assessment of the cost for the community due to tax exemption for bio-fuels

  2. Biofuels in China.

    Science.gov (United States)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  3. Four myths surrounding U.S. biofuels

    International Nuclear Information System (INIS)

    Wetzstein, M.; Wetzstein, H.

    2011-01-01

    The rapid growth of biofuels has elicited claims and predictions concerning the current and future role of these fuels in the U.S. vehicle-fuel portfolio. These assertions are at times based on a false set of assumptions concerning the biofuel's market related to the petroleum and agricultural commodities markets, and the nonmarket consequences of our automobile driving. As an aid in clarifying these market relations, the following four biofuel myths are presented: (1) biofuels will be adopted because we will soon run out of oil, (2) biofuels will solve the major external costs associated with our automobile driving, (3) biofuels cause food price inflation (the food before fuel issue), and (4) biofuels will become a major vehicle fuel. - Highlights: → Biofuels will be adopted because we will soon run out of oil. → Biofuels will solve the major external costs associated with our automobile driving. → Biofuels cause food price inflation (the food before fuel issue). → Biofuels will become a major vehicle fuel.

  4. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  5. Biomass, biogas and biofuels

    International Nuclear Information System (INIS)

    Colonna, P.

    2011-01-01

    This article reviews the different ways to produce biofuels. It appears that there are 3 generations of biofuels. The first generation was based on the use of the energetic reserves of the plants for instance sugar from beetroot or starch from cereals or oil from oleaginous plants. The second generation is based on a more complete use of the plant, the main constituents of the plant: cellulose and lignin are turned into energy. The third generation of biofuels relies on the use of energy plants and algae. The second generation of biofuels reduces drastically the competition between an alimentary use and a non-alimentary use of plants. In 2008 the production of biofuels reached 43 Mtep which represents only 2% of all the energy used in the transport sector. The international agency for energy expects that the production of biofuels would be multiplied by a factor 6 (even 10 if inciting measures are taken) by 2030. (A.C.)

  6. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    Full text: As the twentieth century drew to a close, there was considerable support for the use of biofuels as a source of renewable energy. To many people, they offered significant savings in greenhouse gas emissions compared to fossil fuels, an opportunity for reduced dependency on oil for transport, and potential as a counter weight to increasing oil prices. They also promised an opportunity for rural economies to benefit from a new market for their products and a chance of narrowing the gap between rich and poor nations. Biofuel development was encouraged by government subsidies, and rapid growth occurred in many parts of the world. Forty per cent of Brazilian sugar cane is used for biofuel production, for example, as is almost a quarter of maize grown in the United States. Although only around 1 per cent of arable land is cultivated to grow feedstock for biofuels, there has been increasing concern over the way a largely unchecked market has developed, and about its social and environmental consequences. Recent research has confirmed that food prices have been driven significantly higher by competition for prime agricultural land and that savings in greenhouse gas emissions are much smaller - and in some cases entirely eliminated - when environmentally important land, such as rainforest, is destroyed to grow biofuels. As a result, many now believe that the economic benefits of biofuels have been obtained at too high a social and environmental price, and they question whether they can be a truly sustainable source of energy. The United Kingdom has always had sustainability at the heart of its biofuel policies and set up the Renewable Fuels Agency to ensure that this goal was met. The direct effects of biofuel production are already being assessed through five measures of environmental performance and two measures of social performance, as well as measures of the energy efficiency of the production processes used and of the greenhouse gas savings achieved

  7. Strategic niche management for biofuels : analysing past experiments for developing new biofuels policy

    NARCIS (Netherlands)

    Laak, W.W.M.; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for

  8. The second generation biofuels from the biomass; Les biocarburants de deuxieme generation issus de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The author takes stock on the second generation biofuels in the world, the recent technologies, their advantages, the research programs and the economical and environmental impacts of the biofuels development. (A.L.B.)

  9. The biofuels excellence network; Rede de excelencia em biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo de Tarso; Nascimento Filho, Lenart Palmeira do; Campos, Michel Fabianski [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Freire, Luiz Gustavo de Melo [Accenture, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The organization of the Biofuels Excellence Network, inside PROMINP - the Program of Mobilization of the National Industry of Oil and Natural Gas, has the objective of improving the actions of technical innovation and management in the chain of Oil, Gas Natural and Biofuels, through the optimized use of physical, financial, technological resources, of information and staff, with maximum qualification in areas of the human knowledge, whose purpose is to make decisions on specific problems of improvement of processes and/or products, besides promoting actions for the development and reinforcement of the markets of ethanol and biodiesel. The organization of the Biofuels Excellence Network became necessary, in order to enable Brazil to reach vanguard standards in biofuels (ethanol and biodiesel) in a sustainable, competitive and environmentally responsible way. Among the main reasons for the creation of the Biofuels Excellence Network are: to speed up the acquisition of knowledge and innovation, through partnerships with academical, technological, and government institutions; to contribute with PETROBRAS Strategical Planning planned goals; to capture synergies through the accomplishment of Projects of the Strategical Partners interest; to create sustainable economic value as a result of the Network Projects; to foster specialized professional qualification for the alcohol industry. (author)

  10. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  11. 20% biofuels in 2020. An outline of policy options for the implementation of 20-20

    International Nuclear Information System (INIS)

    Verhagen, B.; Ritter, B.; Van Thuijl, E.; Neeft, J.; Hoogma, R.

    2008-07-01

    This report provides an outline of the technical feasibility of the Dutch target of 20% biofuels on energy basis in 2020. In order to reach this target additional effort is required with respect to the obligatory market share of 10% as proposed by the EU. The first chapters of this report describe the basic data. Chapter 2 gives an overview of developments in the market for transport fuels in the period 2008-2020 and the division of that market in a number of market segments. Chapter 3 provides information on production, distribution, availability of vehicles and user aspects of the main biofuels. Subsequently, chapter 4 addresses the options for achieving the 20% biofuels target. Chapter 5 sketches the variants on the basic route and calculates the costs of these variants. Chapter 6 discusses the timing and cost of the basic route and the variants. The main conclusion of this report is that 20% blending can be achieved. [mk] [nl

  12. Exploring new strategies for cellulosic biofuels production

    Science.gov (United States)

    Paul Langan; S. Gnankaran; Kirk D. Rector; Norma Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel

    2011-01-01

    A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of...

  13. The price for biofuels sustainability

    International Nuclear Information System (INIS)

    Pacini, Henrique; Assunção, Lucas; Dam, Jinke van; Toneto, Rudinei

    2013-01-01

    The production and usage of biofuels has increased worldwide, seeking goals of energy security, low-carbon energy and rural development. As biofuels trade increased, the European Union introduced sustainability regulations in an attempt to reduce the risks associated with biofuels. Producers were then confronted with costs of sustainability certification, in order to access the EU market. Hopes were that sustainably-produced biofuels would be rewarded with higher prices in the EU. Based on a review of recent literature, interviews with traders and price data from Platts, this paper explores whether sustainability premiums emerged and if so, did they represent an attracting feature in the market for sustainable biofuels. This article finds that premiums for ethanol and biodiesel evolved differently between 2011 and 2012, but have been in general very small or inexistent, with certified fuels becoming the new norm in the market. For different reasons, there has been an apparent convergence between biofuel policies in the EU and the US. As market operators perceive a long-term trend for full certification in the biofuels market, producers in developing countries are likely to face additional challenges in terms of finance and capacity to cope with the sustainability requirements. - Highlights: • EU biofuel sustainability rules were once thought to reward compliant producers with price-premiums. • Premiums for certified biofuels, however, have been small for biodiesel and almost non-existent for ethanol. • As sustainable biofuels became the new norm, premiums disappeared almost completely in 2012. • Early stages of supply chains concentrate the highest compliance costs, affecting specially developing country producers. • Producers are now in a market where sustainable biofuels have become the new norm

  14. Road-map for 2. generation biofuels

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents road-map issues concerning the requirements for biofuels of second generation, and defines the priorities addressed by a demonstrator program. It recalls the context created by the challenges of climate change and the excessive dependence on fossil fuels, and the objectives defined by the European Union in terms of biofuel share in the global consumption. Then, it describes the candidate technologies for the production of this second generation of biofuels, those based on thermo-chemical processes (mainly the pyrolysis-gasification of biomass), and those based on biochemical processes (enzymatic hydrolysis and fermentation of biomass). It highlights the technological challenges for these processes, and describes the various objectives of research projects supported by a 'demonstrator fund'. It discusses the necessity to develop demonstrators, and mentions some current projects of private companies, competitiveness clusters, and public research institutions. An agenda is defined from 2009 to 2020 which encompasses the research, demonstration and operation phases. An appendix provides brief presentations of thermo-chemical or biological demonstrators currently under operation or under construction in foreign countries (Germany, Finland, United States of America, Sweden, Spain, Canada, Japan, and Denmark)

  15. Global biofuel use, 1850-2000

    Science.gov (United States)

    Fernandes, Suneeta D.; Trautmann, Nina M.; Streets, David G.; Roden, Christoph A.; Bond, Tami C.

    2007-06-01

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, ˜220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, ˜180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at ˜1200 ± 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  16. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  17. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    Directory of Open Access Journals (Sweden)

    Hamideh Aghahosseini

    2016-07-01

    Full Text Available Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of electricity. This review article presents how nanoscience, engineering and medicine are combined to assist in the development of renewable glucose-based biofuel cell systems. Here, we review recent advances and applications in both abiotic and enzymatic glucose biofuel cells with emphasis on their “implantable” and “implanted” types. Also the challenges facing the design and application of glucose-based biofuel cells to convert them to promising replacement candidates for non-rechargeable lithium-ion batteries are discussed. Nanotechnology could make glucose-based biofuel cells cheaper, lighter and more efficient and hence it can be a part of the solutions to these challenges.

  18. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  19. Tracking U.S. biofuel innovation through patents

    International Nuclear Information System (INIS)

    Kessler, Jeff; Sperling, Daniel

    2016-01-01

    We use biofuel patents as a proxy for biofuel innovation. Through use of natural language processing and machine-learning algorithms, we expand patent classification capabilities to better explain the history of biofuels innovation. Results indicate that after the initial establishment of the U.S. biofuel industry, there were two surges in biofuel innovation: 1995–2000, characterized by heavy patenting by 1st generation (food-based) biofuel firms; and 2005–2010, characterized by a second surge of innovation by those same large firms, complemented by a large number of biotechnology firms producing a relatively small number of 2nd generation biofuel patents. Our analysis corroborates the widespread understanding that the first surge in biofuel innovation was linked to innovations in agriculture, and that the second surge of biofuel innovation was driven by demand-pull policies mandating and incentivizing biofuels. But the slow emergence of a 2nd generation cellulose-based biofuels industry, far slower than called for by policy, suggests that technology-push policies more focused on R&D and investment may be needed to accelerate the commercialization of 2nd generation biofuels. - Highlights: • Patenting activity closely corresponds to sociotechnical shifts in biofuel innovation. • The Renewable Fuel Standard likely contributed to the rise in biofuel patenting activity after 2005. • 2nd generation biofuel technology innovation appears lacking compared to 1st generation technologies.

  20. An overview of solution methods for multi-objective mixed integer linear programming programs

    DEFF Research Database (Denmark)

    Andersen, Kim Allan; Stidsen, Thomas Riis

    Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...

  1. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    Science.gov (United States)

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biofuel Supply Chains: Impacts, Indicators and Sustainability Metrics

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development has introduced a program to study the environmental impacts and sustainability of biofuel supply chains. Analyses will provide indicators and metrics for valuating sustainability. In this context, indicators are supply chain rat...

  3. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  4. European biofuel policies in retrospect

    International Nuclear Information System (INIS)

    Van Thuijl, E.; Deurwaarder, E.P.

    2006-05-01

    Despite the benefits of the production and use of biofuels in the fields of agriculture, security of energy supply and the environment, in India and surrounding countries, the barriers to the use of biofuels are still substantial. The project ProBios (Promotion of Biofuels for Sustainable Development in South and South East Asia) aims at promoting biofuels in the view of sustainable development in the Southern and South eastern Asian countries. The first stage of this project concerns a study, which will provide a thorough review of the complicated and sector-overarching issue of biofuels in India and surrounding countries. This report describes past experiences with the policy context for a selection of EU countries, with the purpose of identifying conclusions from the European experience that may be valuable for Indian and South East Asian policy makers and other biofuels stakeholders

  5. Policies for second generation biofuels: current status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Haakan; Greaker, Mads; Potter, Emily

    2011-07-01

    support to RandD in line with other low emission fuel alternatives. RandD on cellulosic ethanol can also be supported by indirect measures. The most important measure in this respect is to ensure a correct pricing of fossil fuels now and in the future. Many argue that production and use of first generation biofuels will bridge the conversion to second generation biofuels. We doubt that the necessary cost reductions for second generation biofuels can be obtained from widespread use of first generation biofuels. First, the production processes are simply too different, and second, the advantage with all kinds of biofuels are that it easy to introduce into the transport market at once the technology is ripe. Some also argue that second generation biofuels need to be protected against competition from import of low cost first generation biofuels made in developing countries. However, with targeted support to second generation biofuels, there is no need to pay attention to the infant industry argument. Trade policy should only aim to correct for insufficient internalizing of GHG emission costs from the production of biofuels in countries without a price on carbon. It is by no means certain that second generation biofuels will play a central role in the decarbonizing of the transport market. Necessary cost reductions may not be achieved. The GHG emissions from land use change connected to large-scale growing of cellulosic feedstock may turn out to offset the gains from changing fuel. It is important to avoid a technological or political lock-in in biofuels. In other words, policies should be flexible, and it should be possible to terminate support programs within a short notice.(Author)

  6. An Overview of Residential Ventilation Activities in the Building America Program (Phase I)

    Energy Technology Data Exchange (ETDEWEB)

    Barley, D.

    2001-05-21

    This report provides an overview of issues involved in residential ventilation; provides an overview of the various ventilation strategies being evaluated by the five teams, or consortia, currently involved in the Building America Program; and identifies unresolved technical issues.

  7. Overview of Faculty Development Programs for Interprofessional Education.

    Science.gov (United States)

    Ratka, Anna; Zorek, Joseph A; Meyer, Susan M

    2017-06-01

    Objectives. To describe characteristics of faculty development programs designed to facilitate interprofessional education, and to compile recommendations for development, delivery, and assessment of such faculty development programs. Methods. MEDLINE, CINAHL, ERIC, and Web of Science databases were searched using three keywords: faculty development, interprofessional education, and health professions. Articles meeting inclusion criteria were analyzed for emergent themes, including program design, delivery, participants, resources, and assessment. Results. Seventeen articles were identified for inclusion, yielding five characteristics of a successful program: institutional support; objectives and outcomes based on interprofessional competencies; focus on consensus-building and group facilitation skills; flexibility based on institution- and participant-specific characteristics; and incorporation of an assessment strategy. Conclusion. The themes and characteristics identified in this literature overview may support development of faculty development programs for interprofessional education. An advanced evidence base for interprofessional education faculty development programs is needed.

  8. Employee assistance programs: an overview and suggested roles for psychiatrists.

    Science.gov (United States)

    Brill, P; Herzberg, J; Speller, J L

    1985-07-01

    Although employee assistance programs are rapidly becoming the predominant vehicle for the delivery of mental health services in occupational settings, few programs employ a psychiatrist on either a part-time or a full-time basis. After providing an overview of the need for, cost-effectiveness of, and current status of employee assistance programs, the authors draw on their own experiences with employee assistance programs to present four broad categories of roles the psychiatrist can assume in such programs: clinician, supervisor and educator, administrator, and organizational consultant. Problems encountered in these roles are also discussed.

  9. Oil price, biofuels and food supply

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Mevel, Simon; Shrestha, Ashish

    2011-01-01

    The price of oil could play a significant role in influencing the expansion of biofuels, but this issue has yet to be fully investigated in the literature. Using a global computable general equilibrium (CGE) model, this study analyzes the impact of oil price on biofuel expansion, and subsequently, on food supply. The study shows that a 65% increase in oil price in 2020 from the 2009 level would increase the global biofuel penetration to 5.4% in 2020 from 2.4% in 2009. If oil prices rise 150% from their 2009 levels by 2020, the resulting penetration of biofuels would be 9%, which is higher than that would be caused by current mandates and targets introduced in more than forty countries around the world. The study also shows that aggregate agricultural output drops due to an oil price increase, but the drop is small in major biofuel producing countries as the expansion of biofuels would partially offset the negative impacts of the oil price increase on agricultural outputs. An increase in oil price would reduce global food supply through direct impacts as well as through the diversion of food commodities and cropland towards the production of biofuels. - Highlights: ► A global CGE model to analyze impacts of oil price on biofuels and food supply. ► Global biofuel penetration increases from 2.4% (2009) to 5.4% (2020) in baseline. ► A 150% rise of oil price boosts biofuels more than current mandates and targets do. ► Biofuels partially offset drops in agricultural outputs caused by oil price rise. ► Biofuels as well as oil price rise negatively affect global food supply.

  10. An Overview of Quality Programs that Support Transition-Aged Youth

    Directory of Open Access Journals (Sweden)

    Christopher M. Kalinyak

    2016-12-01

    Full Text Available This article provides a concise overview of several programs that deliver services to transition-aged youth, ages 14–29. Included are family support, the Assisting Unaccompanied Children and Youth program, the Substance Abuse and Mental Health Services Administration services, the wraparound approach, intensive home-based treatment, multisystemic therapy, foster care, independent living, mentoring, the Steps to Success program, the Jump on Board for Success program, the Options program, the Positive Action program, the Transition to Success model, and the Transition to Independence Program. Primary focus is placed upon the usefulness of each of the programs in facilitating successful outcomes for transition-aged youth.

  11. 76 FR 13345 - Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers

    Science.gov (United States)

    2011-03-11

    ... Advanced Biofuel Payment Program Application materials may be obtained by contacting one of Rural... Bradstreet Data Universal Numbering System (DUNS) number, which can be obtained at no cost via a toll-free... biogas and solid advanced biofuel per year. (In calculating whether a producer meets either of these...

  12. Novel biofuel formulations for enhanced vehicle performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Dennis [Michigan State Univ., East Lansing, MI (United States); Narayan, Ramani [Michigan State Univ., East Lansing, MI (United States); Berglund, Kris [Michigan State Univ., East Lansing, MI (United States); Lira, Carl [Michigan State Univ., East Lansing, MI (United States); Schock, Harold [Michigan State Univ., East Lansing, MI (United States); Jaberi, Farhad [Michigan State Univ., East Lansing, MI (United States); Lee, Tonghun [Michigan State Univ., East Lansing, MI (United States); Anderson, James [Michigan State Univ., East Lansing, MI (United States); Wallington, Timothy [Michigan State Univ., East Lansing, MI (United States); Kurtz, Eric [Michigan State Univ., East Lansing, MI (United States); Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  13. Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

  14. 1996 ICF program overview

    International Nuclear Information System (INIS)

    Correll, D

    1996-01-01

    The continuing objective of the Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship and Management (SSM) Program. The extension of current program research capabilities in the National Ignition Facility (NIF) is necessary for the ICF Program to satisfy its stewardship responsibilities. ICF resources (people and facilities) are increasingly being redirected in support of the performance, schedule, and cost goals of the NIF. One of the more important aspects of ICF research is the national nature of the program. Lawrence Livermore National Laboratory's (LLNL's) ICF Program falls within DOE's national ICF Program, which includes the Nova and Beamlet laser facilities at LLNL and the OMEGA, Nike, and Trident laser facilities at the University of Rochester (Laboratory for Laser Energetics, UR/LLE), the Naval Research Laboratory (NRL), and Los Alamos National Laboratory (LANL), respectively. The Particle Beam Fusion Accelerator (PBFA) and Saturn pulsed-power facilities are at Sandia National Laboratories (SNL). General Atomics, Inc. (GA) develops and provides many of the targets for the above experimental facilities. LLNL's ICF Program supports activities in two major interrelated areas: (1) target physics and technology (experimental, theoretical, and computational research); and (2) laser science and optics technology development. Experiments on LLNL's Nova laser primarily support ignition and weapons physics research. Experiments on LLNL's Beamlet laser support laser science and optics technology development. In addition, ICF sciences and technologies, developed as part of the DP mission goals, continue to support additional DOE objectives. These objectives are (1) to achieve diversity in energy sources

  15. From first generation biofuels to advanced solar biofuels.

    Science.gov (United States)

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  16. Human Research Program Science Management: Overview of Research and Development Activities

    Science.gov (United States)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  17. Bio-fuels production and the environmental indicators

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de Paula [Mechanical Engineering Department/Pontifical Catholic University of Rio de Janeiro - PUC-Rio, Rua Marques de Sao Vicente 225, Gavea, CEP 22453-900, Rio de Janeiro, RJ (Brazil); Muylaert de Araujo, Maria Silvia [Energy and Environment Planning Program/Federal University of Rio de Janeiro - COPPE/UFRJ, Cidade Universitaria, Centro de Tecnologia, Bloco C, sala 211, Ilha do Fundao, CEP: 21945-970, Caixa Postal: 68501, Rio de Janeiro, RJ (Brazil)

    2009-10-15

    The paper evaluates the role of the bio-fuels production in the transportation sector in the world, for programs of greenhouse gases emissions reductions and sustainable environmental performance. Depending on the methodology used to account for the local pollutant emissions and the global greenhouse gases emissions during the production and consumption of both the fossil and bio-fuels, the results can show huge differences. If it is taken into account a life cycle inventory approach to compare the different fuel sources, these results can present controversies. A comparison study involving the American oil diesel and soybean diesel developed by the National Renewable Energy Laboratory presents CO{sub 2} emissions for the bio-diesel which are almost 20% of the emissions for the oil diesel: 136 g CO{sub 2}/bhp-h for the bio-diesel from soybean and 633 g CO{sub 2}/bhp-h for the oil diesel [National Renewable Energy Laboratory - NREL/SR-580-24089]. Besides that, important local environmental impacts can also make a big difference. The water consumption in the soybean production is much larger in comparison with the water consumption for the diesel production [National Renewable Energy Laboratory - NREL/SR-580-24089]. Brazil has an important role to play in this scenario because of its large experience in bio-fuels production since the seventies, and the country has conditions to produce bio-fuels for attending great part of the world demand in a sustainable pathway. (author)

  18. Estimates of US biofuels consumption, 1990

    International Nuclear Information System (INIS)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs

  19. Estimates of US biofuels consumption, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  20. Second-generation pilot biofuel units worldwide - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The production of biofuels from agricultural raw material is attracting great interest for many reasons, among them global warming, oil price hikes, the depletion of oil reserves and the development of new agricultural markets. However, the technologies currently under development are hindered by the fact that available land is limited and by a risk of competition with food crops. In the last few years, research and development efforts have sought to alleviate these limitations by exploring new pathways to convert little-used plant feedstocks to biofuels with better efficiencies. Large-scale research programs concentrating on these new technologies are underway in the U.S. and Europe, with industrial development expected between 2012 and 2020

  1. Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Huang, Jikun; Qiu, Huanguang [Center for Chinese Agricultural Policy, Chinese Academy of Sciences and Institute of Geographical Sciences and Natural Resources Research, Jia 11, Datun Road, Beijing 100101 (China); Rozelle, Scott [Freeman Spogli Institute of International Studies, Stanford University, East Encina Hall, Stanford, CA 94305 (United States); Sombilla, Mercy A. [Southeast Asian Regional Center for Graduate Study and Research in Agriculture, College, Laguna 4031 (Philippines)

    2009-11-15

    Similar to many other countries, all nations in the Greater Mekong Subregion (GMS) have planned or are planning to develop strong national biofuel programs. The overall goal of this paper is to better understand the impacts of global and regional biofuels on agriculture and the rest of the economy, with a specific focus on the GMS. Based on a modified multi-country, multi-sector computable general equilibrium model, this study reveals that global biofuel development will significantly increase agricultural prices and production and change trade in agricultural commodities in the GMS and the rest of world. While biofuel in the GMS will have little impacts on global prices, it will have significant effects on domestic agricultural production, land use, trade, and food security. The results also show that the extent of impacts from biofuel is highly dependent on international oil prices and the degree of substitution between biofuel and gasoline. The findings of this study have important policy implications for the GMS countries and the rest of world. (author)

  2. Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade

    International Nuclear Information System (INIS)

    Yang, Jun; Huang, Jikun; Qiu, Huanguang; Rozelle, Scott; Sombilla, Mercy A.

    2009-01-01

    Similar to many other countries, all nations in the Greater Mekong Subregion (GMS) have planned or are planning to develop strong national biofuel programs. The overall goal of this paper is to better understand the impacts of global and regional biofuels on agriculture and the rest of the economy, with a specific focus on the GMS. Based on a modified multi-country, multi-sector computable general equilibrium model, this study reveals that global biofuel development will significantly increase agricultural prices and production and change trade in agricultural commodities in the GMS and the rest of world. While biofuel in the GMS will have little impacts on global prices, it will have significant effects on domestic agricultural production, land use, trade, and food security. The results also show that the extent of impacts from biofuel is highly dependent on international oil prices and the degree of substitution between biofuel and gasoline. The findings of this study have important policy implications for the GMS countries and the rest of world. (author)

  3. Reducing the Risk: Unemployed Migrant Youth and Labour Market Programs. Overview.

    Science.gov (United States)

    Australian Inst. of Multicultural Affairs, Melbourne (Australia).

    This booklet is an overview and summary of the publication "Reducing the Risk: Unemployed Migrant Youth and Labour Market Programs" which reviews programs and services for migrant and refugee youth in Australia. The unemployment rate for this group is higher than for their Australian-born peers, and their participation in governmental…

  4. Overview of the Novel Intelligent JAXA Active Rotor Program

    Science.gov (United States)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  5. The Danish Biofuel Debate

    DEFF Research Database (Denmark)

    Hansen, Janus

    2014-01-01

    of biofuels enrol scientific authority to support their positions? The sociological theory of functional differentiation combined with the concept of advocacy coalition can help in exploring this relationship between scientific claims-making and the policy stance of different actors in public debates about...... biofuels. In Denmark two distinct scientific perspectives about biofuels map onto the policy debates through articulation by two competing advocacy coalitions. One is a reductionist biorefinery perspective originating in biochemistry and neighbouring disciplines. This perspective works upwards from...

  6. Outlook for advanced biofuels

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N; Faaij, Andre P.C.

    2006-01-01

    To assess which biofuels have the better potential for the short-term or the longer term (2030), and what developments are necessary to improve the performance of biofuels, the production of four promising biofuels-methanol, ethanol, hydrogen, and synthetic diesel-is systematically analysed. This present paper summarises, normalises and compares earlier reported work. First, the key technologies for the production of these fuels, such as gasification, gas processing, synthesis, hydrolysis, and fermentation, and their improvement options are studied and modelled. Then, the production facility's technological and economic performance is analysed, applying variations in technology and scale. Finally, likely biofuels chains (including distribution to cars, and end-use) are compared on an equal economic basis, such as costs per kilometre driven. Production costs of these fuels range 16-22 Euro /GJ HHV now, down to 9-13 Euro /GJ HHV in future (2030). This performance assumes both certain technological developments as well as the availability of biomass at 3 Euro /GJ HHV . The feedstock costs strongly influence the resulting biofuel costs by 2-3 Euro /GJ fuel for each Euro /GJ HHV feedstock difference. In biomass producing regions such as Latin America or the former USSR, the four fuels could be produced at 7-11 Euro /GJ HHV compared to diesel and gasoline costs of 7 and 8 Euro /GJ (excluding distribution, excise and VAT; at crude oil prices of ∼35 Euro /bbl or 5.7 Euro /GJ). The uncertainties in the biofuels production costs of the four selected biofuels are 15-30%. When applied in cars, biofuels have driving costs in ICEVs of about 0.18-0.24 Euro /km now (fuel excise duty and VAT excluded) and may be about 0.18 in future. The cars' contribution to these costs is much larger than the fuels' contribution. Large-scale gasification, thorough gas cleaning, and micro-biological processes for hydrolysis and fermentation are key major fields for RD and D efforts, next to

  7. Biofuel supply chain, market, and policy analysis

    Science.gov (United States)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  8. Overview of the U.S. Department of Energy's Isotope Programs

    Energy Technology Data Exchange (ETDEWEB)

    Carty, J.

    2004-10-05

    This presentation provides an overview of the U.S. Department of Energy's Isotopes Program. The charter of the Isotope Programs covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials, and related isotope services.

  9. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  10. Biofuels in Central America, a real potential for commercial production

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O.L. (Regional Coordinator Energy and Environmental Partnership with Central America EEP (El Salvador))

    2007-07-01

    The purpose of this paper is to show the current capabilities of the Central American countries regarding the production of biofuels, and the real potential in increasing the volumes produced and the impacts that can be generated if a non sustainable policy is followed for achieving the targets of biofuel production. Due to the world oil price crisis, and the fact that Central American counties are fully dependant on oil imports (just Guatemala and Belize produce little amounts of oil), just to mention, in some countries the imports of oil is equivalent to the 40% of the total exports, the region started to look for massive production of biofuels, something that it is not new for us. The countries have started with programs for producing ethanol from sugar cane, because it is one of the most strongest industries in Central America and they have all the infrastructure and financial sources to develop this project. The ethanol is a biofuel that can be mixed with gasoline or a complete substitute. Another biofuel that is currently under develop, is the production of biodiesel, and the main source for it nowadays is the Palm oil, where Costa Rica, Honduras and Guatemala have already commercial productions of crude palm oil, but the principal use of it is for the food industry, but now it is under assessment for using part of it for biodiesel. EEP is now developing pilot programs for production of biodiesel from a native plant named Jatropha curcas, and up to now we have a commercial plantation in Guatemala, and we started as well in Honduras for start spreading this plantations. In El Salvador we installed a pilot processing plant for biodiesel that can be operated with multiple feed stock, such as Jatropha, palm oil, castor oil, vegetable used oil and others. Currently we have interesting and good results regarding the production of Jatropha, we have developed a methodology for its cropping, harvesting and processing. All the vehicles and equipment involved in the

  11. Biofuels - 5 disturbing questions

    International Nuclear Information System (INIS)

    Legalland, J.P.; Lemarchand, J.L.

    2008-01-01

    Initially considered as the supreme weapon against greenhouse gas emissions, biofuels are today hold responsible to all harms of the Earth: leap of agriculture products price, deforestation, food crisis. Considered some time ago as the perfect clean substitute to petroleum, biofuels are now suspected to have harmful effects on the environment. Should it be just an enormous technical, environmental and human swindle? Should we abandon immediately biofuels to protect the earth and fight the threatening again starvation? Should we wait for the second generation of efficient biofuels, made from non food-derived products and cultivation wastes? This book analyses this delicate debate through 5 main questions: do they starve the world? Are they a clean energy source? Do they contribute to deforestation? Are they economically practicable? Is the second generation ready? (J.S.)

  12. Market possibilities for biofuels

    International Nuclear Information System (INIS)

    Hektor, B.

    1992-01-01

    The market for biofuels in Sweden after introduction of a proposed CO 2 -tax on fossil fuels is forecast. The competition between biofuels, fossil fuels and electricity is described for important market segments such as: Paper industry, Sawmills, Other energy-intensive industry, Power and heat producers, small Heat producers, and for Space heating of one-family houses. A market increase of the use of biofuels is probable for the segment small (district) heating centrals, 10 TWh in the next ten year period and even more during a longer period. Other market segments will not be much affected. An increased use of biofuels in paper and pulp industry will not influence the fuel market, since the increase will happen in the industry's normal lumber purchase. (2 figs., 18 tabs.)

  13. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  14. Application of US and EU Sustainability Criteria to Analysis of Biofuels-Induced Land Use Change

    Directory of Open Access Journals (Sweden)

    Krissana Treesilvattanakul

    2014-08-01

    Full Text Available This research asks and answers a question that had been avoided by all the previous research on biofuels impacts. That is, to what extent are the US and EU biofuels sustainability criteria binding in the sense that if applied, sufficient land would be available to implement the programs? In answering the question, we simulate the global land by agro-ecological zone that would be needed to supply feedstocks for the US and EU biofuel programs using an advanced version of the GTAP-BIO model. Then we estimate the global area of land that would not be available due to sustainability criteria restrictions, again by agro-ecological zone. Finally, we determine the extent to which the US and EU sustainability criteria are binding and find that they are not binding at the biofuel levels currently targeted by the US and EU. In addition, we evaluate the same question, but this time freezing global food consumption, and get the same answer—plenty of land is available to meet the targets and supply food demands.

  15. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    Science.gov (United States)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  16. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  17. Biofuel implementation agendas. A review of Task 39 Member Countries

    International Nuclear Information System (INIS)

    Van Neeft, J.; Van Thuijl, E.; Wismeijer, R.; Mabee, W.

    2007-01-01

    Biofuels for use in the transportation sector have been produced on a significant scale since the 1970's, using a variety of technologies. The biofuels widely available today are predominantly sugar- and starch-based bioethanol, and oilseed- and waste oil-based biodiesel, although new technologies under development may allow the use of lignocellulosic feedstocks. Measures to promote the use of biofuels include renewable fuel mandates, tax incentives, and direct funding for capital projects or fleet upgrades. This paper provides a review of the policies behind the successful establishment of the biofuel industry in countries around the world. The impact of direct funding programs and excise tax exemptions are examined using the United States as a case study. It is found that the success of five major bioethanol producing states (Illinois, Iowa, Nebraska, South Dakota, and Minnesota) is closely related to the presence of funding designed to support the industry in its start-up phase. The study concludes that successful policy interventions can take many forms, but that success is equally dependent upon external factors which include biomass availability, an active industry, and competitive energy prices

  18. Overview of the Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.; Peck, C.; Stright, D.; Newes, E.; Inman, D.; Vimmerstedt, L.; Hsu, S.; Bush, B.

    2015-02-01

    Biofuels are promoted in the United States through legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007). Meeting the volumetric targets has prompted an unprecedented increase in funding for biofuels research, much of it focused on producing ethanol and other fuel types from cellulosic feedstocks as well as additional biomass sources (such as oil seeds and algae feedstock). In order to help propel the biofuels industry, the U.S. government has enacted a variety of incentive programs (including subsidies, fixed capital investment grants, loan guarantees, vehicle choice credits, and corporate average fuel economy standards) -- the short-and long-term ramifications of which are not well understood. Efforts to better understand the impacts of incentive strategies can help policy makers to develop a policy suite which will foster industry development while reducing the financial risk associated with government support of the nascent biofuels industry.

  19. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  20. Micro-economic modelling of biofuel system in France to determine tax exemption policy under uncertainty

    International Nuclear Information System (INIS)

    Rozakis, S.; Sourie, J.-C.

    2005-01-01

    Liquid biofuel support program launched in 1993 in France is implemented through tax exemptions to biofuels produced by agro-industrial chains. Activity levels are fixed by decree and allocated by the government to the different chains. Based on earmarked budget increase voted in parliament, total quantity of biofuels will be increased by 50% in the horizon 2002-2003. A micro-economic biofuel activity model containing a detailed agricultural sector component, that is represented by 700 farms, is used to estimate costs and surpluses generated by the activity at the national level as well as tax exemption levels. Furthermore, Monte Carlo simulation has been used to search for efficient tax exemptions policies in an uncertain environment, where biofuel profitability is significantly affected by petroleum price and soja cake prices. Results suggest that, for the most efficient units both at the industry level (large size biomass conversion units) and at the agricultural sector level (most productive farms), unitary tax exemptions could be decreased by 10-20% for both biofuels, ethyl ether and methyl ester, with no risk for the viability of any existing chain. (author)

  1. Micro-economic modelling of biofuel system in France to determine tax exemption policy under uncertainty

    International Nuclear Information System (INIS)

    Rozakis, S.; Sourie, J.-C.

    2005-01-01

    Liquid biofuel support program launched in 1993 in France is implemented through tax exemptions to biofuels produced by agro-industrial chains. Activity levels are fixed by decree and allocated by the government to the different chains. Based on earmarked budget increase voted in the parliament, total quantity of biofuels will be increased by 50% in the horizon 2002-2003. A micro-economic biofuel activity model containing a detailed agricultural sector component, that is represented by 700 farms, is used to estimate costs and surpluses generated by the activity at the national level as well as tax exemption levels. Furthermore, Monte Carlo simulation has been used to search for efficient tax exemptions policies in an uncertain environment, where biofuel profitability is significantly affected by petroleum price and soja cake prices. Results suggest that, for the most efficient units both at the industry level (large size biomass conversion units) and at the agricultural sector level (most productive farms), unitary tax exemptions could be decreased by 10-20% for both biofuels, ethyl ether and methyl ester, with no risk for the viability of any existing chain

  2. Program description for the program Fuel program sustainability July 1, 2011 through June 30, 2015; Programbeskrivning foer programmet Braensleprogrammet haallbarhet 1 juli 2011 till och med 30 juni 2015

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    The Fuel program sustainability is included as one of three programs in a cohesive commitment to increased, sustainable and efficient production and use of indigenous and renewable fuels that are implemented by the Swedish Energy Agency from July 1, 2011 to June 30, 2015. The program focuses on issues of environment and ecological sustainability of the production of biofuels, and systems and resource issues concerning the use. It does not include purely technical issues related to biofuels production or processes in which fuel is converted to heat, electricity or fuel. Questions about fuel supply and fuel processing / scale combustion are treated in the parallel running programs; the Fuel program supply and the Fuel program conversion. The four-year program will commence on July 1, 2011 and will run until June 30, 2015 and has an annual budget of total SEK 16 millions. Ambiguities in the environmental area may through various regulations mean various forms of barriers on the biofuel market. The Fuel program sustainability aims to sort out such ambiguities and, if possible, eliminate such obstacles, identify solutions and develop opportunities. The availability of biofuels and croplands is limited relative to needs. Thus the program also aims to describe the resource efficiency and climate benefits of current biofuel chains, and the possibility of using instruments to stimulate good practice. The program consists of sub-areas that partly overlap. - The sub-area Environment and sustainability focuses on how biofuel production will be designed to meet national and international environmental objectives and sustainability criteria. - The sub-area Biofuels and greenhouse gases describes different climate aspects related to production and exploitation of biofuels. - The sub-area System and market focuses on resource- and climate-efficient solutions in a system perspective, and how the bio-energy system can be affected by policy instruments

  3. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  4. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  5. An overview of environment Canada's National Incinerator Testing and Evaluation Program (NITEP)

    International Nuclear Information System (INIS)

    Finkelstein, A.

    1991-01-01

    In response to the many concerns associated with incineration, Environment Canada established the National Incineration Testing and evaluation Program (NITEP) in 1984. It's mission was to assess the incineration process as a means for disposal of MSW in Canada. The program primarily focused on the environment and health impacts of MSW incinerators by determining how design and operating conditions can be modified to reduce emissions of concern. In addition to developing better measuring and monitoring methods, supporting ash residue management research programs, NITEP established four major field projects to develop the data base necessary for national guidelines. This paper presents a brief overview of the most significant field program findings over the past six years and the rationale for the Canadian Council of Ministers of the Environment (CCME) Operating and Emissions Guidelines for MSW Incinerators published in June of 1989. In addition an overview of the ash work completed to date, and work still underway, will be presented

  6. Biofuels, a bad thing?; Boeser Biokraftstoff?

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.; Bensmann, M.

    2008-05-15

    The discussions over biofuels are still going on. Critics claim that biofuels ruin engine components, destroy rainforests and cause high food prices and global hunger. According to this contribution, the Federal government's biofuels policy was wrong and was doomed to fail. (orig.)

  7. Assessing biofuels: Aiming for sustainable development or complying with the market?

    International Nuclear Information System (INIS)

    Diaz-Chavez, Rocio A.

    2011-01-01

    The growing interest in biofuels has led to increasing concern about their wider implications, particularly if grown for transport use in large scale. Such concerns include environmental, social and economic issues. To counterbalance the possible negative effects, a series of measures are being put in place to help their sustainability. Nevertheless, considering the different meanings of sustainability in different parts of the world and the need to expand productive rural activities, the differences between trying to assure a commodity and the benefits or impacts at local level raise the questions between the aims of sustainability and the need to comply with a market. The ideal situation would be to reconcile both aspects, which in practise represent a major challenge for governments and industry. This paper provides an overview on the sustainability assessment of biofuels to consider a possible way forward. - Highlights: → Multi-interactions in biomass production for bioenergy are a new paradigm to develop policies. → Certification and verification schemes are limited to assess broader sustainability issues. → Improved agricultural and forestry systems for biomass use will boost policies and investment.

  8. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  9. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  10. Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Guiping

    2014-01-01

    An advanced biofuels supply chain is proposed to reduce biomass transportation costs and take advantage of the economics of scale for a gasification facility. In this supply chain, biomass is converted to bio-oil at widely distributed small-scale fast pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to transportation fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to maximize biofuel producers' annual profit considering uncertainties in the supply chain for this pathway. The first stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants as well as the centralized biorefinery, while the second stage determines the biomass and biofuels flows. A case study based on Iowa in the U.S. illustrates that it is economically feasible to meet desired demand using corn stover as the biomass feedstock. The results show that the locations of fast pyrolysis plants are sensitive to uncertainties while the capacity levels are insensitive. The stochastic model outperforms the deterministic model in the stochastic environment, especially when there is insufficient biomass. Also, farmers' participation can have a significant impact on the profitability and robustness of this supply chain. - Highlights: • Decentralized supply chain design for advanced biofuel production is considered. • A two-stage stochastic programming is formulated to consider uncertainties. • Farmers' participation has a significant impact on the biofuel supply chain design

  11. An assessment of Thailand's biofuel development

    DEFF Research Database (Denmark)

    Kumar, S.; Salam, P. Abdul; Shrestha, Pujan

    2013-01-01

    The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects. The pol......The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects...... to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources...... as transportation fuel. Alternatively, the same amount of residue could provide 0.8-2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel) to potentially offset 6%-15% of national diesel consumption in the transportation sector....

  12. Policies for the Sustainable Development of Biofuels in the Pan American Region: A Review and Synthesis of Five Countries.

    Science.gov (United States)

    Solomon, Barry D; Banerjee, Aparajita; Acevedo, Alberto; Halvorsen, Kathleen E; Eastmond, Amarella

    2015-12-01

    Rapid growth of biofuel production in the United States and Brazil over the past decade has increased interest in replicating this success in other nations of the Pan American region. However, the continued use of food-based feedstock such as maize is widely seen as unsustainable and is in some cases linked to deforestation and increased greenhouse gas emissions, raising further doubts about long-term sustainability. As a result, many nations are exploring the production and use of cellulosic feedstock, though progress has been extremely slow. In this paper, we will review the North-South axis of biofuel production in the Pan American region and its linkage with the agricultural sectors in five countries. Focus will be given to biofuel policy goals, their results to date, and consideration of sustainability criteria and certification of producers. Policy goals, results, and sustainability will be highlighted for the main biofuel policies that have been enacted at the national level. Geographic focus will be given to the two largest producers-the United States and Brazil; two smaller emerging producers-Argentina and Canada; and one stalled program-Mexico. However, several additional countries in the region are either producing or planning to produce biofuels. We will also review alternative international governance schemes for biofuel sustainability that have been recently developed, and whether the biofuel programs are being managed to achieve improved environmental quality and sustainable development.

  13. A roadmap for biofuels...

    NARCIS (Netherlands)

    Faaij, A.P.C.; Londo, H.M.

    2009-01-01

    Biofuels have been in the eye of the storm, in particular since 2008, when the food crisis was considered by many to be caused by the increased production of biofuels. Heavy criticism in public media made various governments, including the European Commission, reconsider their targets and ambitions

  14. The rationality of biofuels

    International Nuclear Information System (INIS)

    Horta Nogueira, Luiz Augusto; Moreira, Jose Roberto; Schuchardt, Ulf; Goldemberg, Jose

    2013-01-01

    In an editorial of a recent issue of a known academic journal, Prof. Hartmut Michel affirmed that “…the production of biofuels constitutes an extremely inefficient land use… We should not grow plants for biofuel production.”, after comparing the area occupied with plants for bioenergy production with the one required for photovoltaic cells to supply the same amount of energy for transportation. This assertion is not correct for all situations and this comparison deserves a more careful analysis, evaluating the actual and prospective technological scenarios and other relevant aspects, such as capacity requirements, energy consumed during the life cycle of energy systems and the associated impacts. In this communication this comparison is revaluated, presenting a different perspective, more favorable for the bioenergy routes. - Highlights: • Energy systems and life cycle impacts are compared under equal conditions. • The comparison is done between biofuels and photovoltaic/battery in mobility uses. • Biofuels are a valuable option when produced sustainably by efficient routes

  15. Innovation subject to sustainability: the European policy on biofuels and its effects on innovation in the Brazilian bioethanol industry

    Directory of Open Access Journals (Sweden)

    Henrique Pacini

    2012-08-01

    Full Text Available Biofuels are a suitable complement for fossil energy in the transport sector and bioethanol is the main biofuel traded worldwide. Based on the assumption that innovation can be influenced by regulation, the Brazilian bioethanol industry is facing new requirements from external actors while reaching for international markets. Until 2010, national environmental laws were the main sustainability instrument that the biofuel industry faced. With the introduction of sustainability criteria for biofuels in the European Fuels Quality Directive (FQD and Renewable Energy Directive (RED of 2009, bioethanol producers have been pressured to innovate in respect of the requirements of future markets. Here, the aim is to analyse the case of Brazil, given the potential exports of sugarcane-based ethanol from this country to the EU. Brazil provides an interesting overview of how a bioethanol industry innovated while facing sustainability requirements in the past. A comparison between the European requirements and the industry´s status quo is then explored. The EU criteria are likely to have effects on the Brazilian bioethanol industry and incremental improvements in sustainability levels might take place based on the sustainability requirements. In addition, the industry could follow two other paths, namely risk diversification by engaging in multi-output models; and market leakage towards less-regulated markets. At the same time, an environmental overregulation of the biofuel market may make it more difficult for emerging biofuel industries in other countries, especially in Africa, by creating a barrier rather than contributing to its expansion. The results of this analysis show the main challenges to be addressed and the potential positive and negative impacts of the European Union biofuels policy on the Brazilian bioethanol industry.

  16. Sustainability development: Biofuels in agriculture

    OpenAIRE

    Cheteni, Priviledge

    2017-01-01

    Biofuels are socially and politically accepted as a form of sustainable energy in numerous countries. However, cases of environmental degradation and land grabs have highlighted the negative effects to their adoption. Smallholder farmers are vital in the development of a biofuel industry. The study sort to assess the implications in the adoption of biofuel crops by smallholder farmers. A semi-structured questionnaire was administered to 129 smallholder farmers who were sampled from the Easter...

  17. Price transmission between biofuels, fuels and food commodities

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Janda, K.; Zilberman, D.

    2014-01-01

    Roč. 8, č. 3 (2014), s. 362-373 ISSN 1932-104X Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : biofuels * price transmission * non-linearity * elasticity Subject RIV: AH - Economics Impact factor: 4.214, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433525.pdf

  18. Tapping the US sweet sorghum collection to identify biofuel germplasm

    Science.gov (United States)

    The narrow genetic base in sweet sorghum [Sorghum bicolor (L.) Moench] breeding programs is limiting the development of new varieties for biofuel production. Therefore, the identification of genetically diverse sweet sorghum germplasm in the U.S. National Plant Germplasm System (NPGS) collection is...

  19. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    Science.gov (United States)

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  20. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  1. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  2. Biofuels: policies, standards and technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Skyrocketing prices of crude oil in the middle of the first decade of the 21st century accompanied by rising prices for food focused political and public attention on the role of biofuels. On the one hand, biofuels were considered as a potential automotive fuel with a bright future, on the other hand, biofuels were accused of competing with food production for land. The truth must lie somewhere in-between and is strongly dependent on the individual circumstance in different countries and regions. As food and energy are closely interconnected and often compete with each other for other resources, such as water, the World Energy Council - following numerous requests of its Member Committees - decided to undertake an independent assessment of biofuels policies, technologies and standards.

  3. Land use and second-generation biofuel feedstocks: The unconsidered impacts of Jatropha biodiesel in Rajasthan, India

    International Nuclear Information System (INIS)

    Findlater, K.M.; Kandlikar, M.

    2011-01-01

    Governments around the world see biofuels as a common solution to the multiple policy challenges posed by energy insecurity, climate change and falling farmer incomes. The Indian government has enthusiastically adopted a second-generation feedstock - the oilseed-bearing shrub, Jatropha curcas - for an ambitious national biodiesel program. Studies estimating the production capacity and potential land use implications of this program have typically assumed that the 'waste land' slated for Jatropha production has no economic value and that no activities of note will be displaced by plantation development. Here we examine the specific local impacts of rapid Jatropha plantation development on rural livelihoods and land use in Rajasthan, India. We find that in Jhadol Tehsil, Jatropha is planted on both government and private land, and has typically displaced grazing and forage collection. For those at the socioeconomic margins, these unconsidered impacts counteract the very benefits that the biofuel programs aim to create. The Rajasthan case demonstrates that local land-use impacts need to be integrated into decision-making for national targets and global biofuel promotion efforts. - Highlights: → Hardy biofuel crops like Jatropha replace edible feedstocks that use arable land. → In Rajasthan, Jatropha displaces grazing and forage on both public and private land. → As Jatropha plantations mature, the loss of grass becomes more pronounced. → Unconsidered impacts negate the benefits that the biodiesel program aims to create. → Local land-use impacts need to be integrated into decision-making.

  4. Land use and second-generation biofuel feedstocks: The unconsidered impacts of Jatropha biodiesel in Rajasthan, India

    Energy Technology Data Exchange (ETDEWEB)

    Findlater, K.M. [Institute for Resources Environment and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC, V6T1Z4 (Canada); Kandlikar, M., E-mail: milind.k@ubc.ca [Liu Institute for Global Studies, University of British Columbia, 6476 NW Marine Drive, Vancouver, BC, V6T1Z2 (Canada)

    2011-06-15

    Governments around the world see biofuels as a common solution to the multiple policy challenges posed by energy insecurity, climate change and falling farmer incomes. The Indian government has enthusiastically adopted a second-generation feedstock - the oilseed-bearing shrub, Jatropha curcas - for an ambitious national biodiesel program. Studies estimating the production capacity and potential land use implications of this program have typically assumed that the 'waste land' slated for Jatropha production has no economic value and that no activities of note will be displaced by plantation development. Here we examine the specific local impacts of rapid Jatropha plantation development on rural livelihoods and land use in Rajasthan, India. We find that in Jhadol Tehsil, Jatropha is planted on both government and private land, and has typically displaced grazing and forage collection. For those at the socioeconomic margins, these unconsidered impacts counteract the very benefits that the biofuel programs aim to create. The Rajasthan case demonstrates that local land-use impacts need to be integrated into decision-making for national targets and global biofuel promotion efforts. - Highlights: > Hardy biofuel crops like Jatropha replace edible feedstocks that use arable land. > In Rajasthan, Jatropha displaces grazing and forage on both public and private land. > As Jatropha plantations mature, the loss of grass becomes more pronounced. > Unconsidered impacts negate the benefits that the biodiesel program aims to create. > Local land-use impacts need to be integrated into decision-making.

  5. Biofuels: making tough choices

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Sonja; Dufey, Annie; Vorley, Bill

    2008-02-15

    The jury is still out on biofuels. But one thing at least is certain: serious trade-offs are involved in the production and use of these biomass-derived alternatives to fossil fuels. This has not been lost on the European Union. The year kicked off with an announcement from the EU environment commissioner that it may be better for the EU to miss its target of reaching 10 per cent biofuel content in road fuels by 2020 than to compromise the environment and human wellbeing. The 'decision tree' outlined here can guide the interdependent processes of deliberation and analysis needed for making tough choices in national biofuels development.

  6. The biofuels in France

    International Nuclear Information System (INIS)

    2006-04-01

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO 2 accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  7. Biofuels for sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, S.

    2000-05-23

    Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

  8. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [University of Washington

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process control Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  9. Panorama 2018 - 2017 biofuels scoreboard

    International Nuclear Information System (INIS)

    Boute, Anne; Lorne, Daphne

    2018-01-01

    This note presents some 2017 statistical data about biofuels: consumption, fuel substitution rate, world ethanol and bio-diesel markets, diesel substitutes, French market, R and D investments, political measures for biofuels development

  10. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  11. Effect of biofuel on environment

    International Nuclear Information System (INIS)

    Kalam, M.A; Masjuki, H.H.; Maleque, M.A.

    2001-01-01

    Biofuels are alcohols, esters, and other chemical made from cellulosic biomass such as herbaceous and woody plants, agricultural and forestry residues, and a large portion of municipal solid and industrial waste. Biofuels are renewable and mostly suitable for diesel engines due to their similar physiochemical properties as traditional diesel oil. Demand of biofuel is increasing and some European countries have started using biofuel in diesel engine. This interest has been grown in many countries mainly due to fluctuating oil prices because of diminishing availability of conventional sources and polluted environment. However, the use of biofuel for diesel engine would be more beneficial to oil importing countries by saving foreign exchange, because biofuel is domestic renewable fuels. This paper presents the evaluation results of a multi-cylinder diesel engine operated on blends of ten, twenty, thirty, forty and fifty percent of ordinary coconut oil (COCO) with ordinary diesel (OD). The test results from all the COCO blends were compared with OD. The fuels were compared based on the emissions results including, exhaust temperature, NO x , smoke, CO, HC, benzene and polycyclic aromatic hydrocarbon (PAH). Carbon deposit on injector nozzles was also monitored. Exhaust emissions results showed that increasing coconut oil in blend decreases all the exhaust emissions. Carbon deposited on injector nozzles was observed where no hard carbon was found on injector tip when the engine was running on COCO blends. (Author)

  12. Land Clearing and the Biofuel Carbon Debt

    Science.gov (United States)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  13. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  14. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  15. A literature review of the market effects of federal biofuel policy and recommendations for future policy

    Science.gov (United States)

    Ayers, Alex Elgin

    The United States has had a federal biofuels policy since the 1970s. The purpose of this policy was to help the development of a biofuel industry during a time of high fuel prices in order to provide a domestic alternative to expensive foreign oil. Later the policy was changed to help lower the environmental impact caused by conventional fuels. Since that time the industry has grown and currently produces around 15 billion gallons of biofuels every year. The current federal biofuel policy is largely based on one program, the Renewable Fuel Standard (RFS), which mandates the production and blending of several different classes of biofuels and provides a form of subsidy to the biofuel industry. This paper examines the market effects of the federal biofuel policy and provides recommendations for improving the policy to counteract any negative effects. Federal biofuel policy has many far-reaching market effects. Some are easily calculable through expenditures and lost revenues, while others are harder to quantify because their full effects are not yet known. By evaluating these market effects, this paper will provide ample evidence that the federal biofuels policy needs to change, and will show what effects these changes could induce. The biofuels industry largely owes its existence to government policies, however as the research shows the industry can now stand on its own. This paper will examine what will happen if the federal policy is eliminated and what the future of the biofuels industry could hold. Based on these examinations, it is unlikely that the industry needs further government support and policies should be adjusted in light of this.

  16. Biofuel investment in Tanzania: Omissions in implementation

    International Nuclear Information System (INIS)

    Habib-Mintz, Nazia

    2010-01-01

    Increasing demand for biofuels as a component of climate change mitigation, energy security, and a fossil fuel alternative attracts investors to developing countries like Tanzania. Ample unused land is critical for first generation biofuels production and an important feature to attract foreign direct investments that can contribute towards agricultural modernization and poverty reduction initiatives. Despite the economic justifications, the existing institutional and infrastructural capacities dictate the impacts of biofuels market penetrations. Furthermore, exogenous factors like global recessionary pressure depressed oil prices below the level at which biofuel production were profitable in 2007, making Tanzania's competitiveness and potential benefits questionable. This paper investigates the extent that first generation, jatropha-based biofuels industry development in Tanzania observed during fieldwork in Kisarawe and Bahi may fulfill policy objectives. This paper argues that without strong regulatory frameworks for land, investment management, and rural development, biofuel industrialization could further exacerbate poverty and food insecurity in Tanzania. The paper concludes with policy recommendations for first generation biofuel development while keeping in mind implications of second generation production. Since the topic is broad and multifaceted, a multidisciplinary approach is used that includes political, institutional, and agricultural economics to analyze and conceptualize biofuel industry development and food security.

  17. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Introduction and overview of research program

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The research goals have remained the same over the last several years: (1) to provide data which rigorously test proton + nucleus (pA) reaction models appropriate for medium energies (nonrelativistic and relativistic); (2) to provide data and appropriate analyses of it to obtain new, unambiguous information about the details of nuclear structure and reaction mechanisms (this information, in turn, can be used to test fundamental models of nuclear structure and effective interactions); (3) to provide proton + nucleon data which help constrain the nucleon-nucleon phase shift solutions, and (4) to develop and improve the pA models themselves. For this reason, since its conception in 1976, our program has held to the pragmatic philosophy that precise, reliable experimental data and state-of-the-art theoretical analyses are of equal importance. Thus, experiment and theory have merged to play complementary and closely linked roles in our studies to date; this philosophy is not expected to change in the future. A schematic overview indicating the framework in which the research program operates is shown and discussed

  19. Round table on bio-fuels

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  20. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  1. International Trade of Biofuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  2. An overview of the Cooperative IASCC Research (CIR) program

    International Nuclear Information System (INIS)

    Pathania, R.; Gott, K.; Scott, P.

    2007-01-01

    Irradiation-Assisted Stress Corrosion Cracking (IASCC) has affected reactor core internal structures fabricated from austenitic stainless steels in both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The Cooperative IASCC Research (CIR) Program is an international research effort designed to address irradiation-assisted stress corrosion cracking (IASCC) in light water reactor (LWR) components. The objectives of the CIR program are to develop a mechanistic understanding of IASCC initiation and crack growth, to derive a predictive model of IASCC, if possible based on a mechanistic understanding, and thus to identify possible countermeasures to IASCC. It complements other more applied programs by concentrating on the underlying physical causes of IASCC. This paper provides an overview of the current status and achievements of the CIR program, which has been running since 1995. Two phases of the program have been completed and a final extension program is in progress which is scheduled to finish in 2008. The extent to which the CIR program has met its objectives, or will meet them with its current plans extending into 2008, is assessed. (author)

  3. Potentials of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Munack, A.; Schroder, O. [Johann Heinrich von Thunen Inst., Braunschweig (Germany); Krahl, J. [Coburg Univ. of Applied Sciences, Coburg (Germany); Bunger, J. [Inst. for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Univ. Inst., Bochum (Germany)

    2010-07-01

    This paper discussed the potential of biofuels with particular reference to the situation in Germany and Europe. Emphasis was on technical potential, such as biofuel production, utilization and environmental aspects. The Institute of Agricultural Technology and Biosystems Engineering ran vTI emission tests on diesel engines to evaluate the environmental impacts of biofuels. This testing facility is able to drive heavy-duty diesel engines in both stationary and dynamic test cycles, such as the European ESC and ETC. Additional analyses were conducted to determine the fine and ultra-fine particles, polycyclic aromatic hydrocarbons (PAH), aldehydes, ketones, and the usual regulated exhaust gas compounds. Ames tests were conducted to assess the mutagenic potential of tailpipe emissions. Previous study results showed that neat vegetable oils can render the exhaust high in mutagenic potency. Some of the non-regulated exhaust gas compounds were found to vary nonlinearly with the blend composition. B20 was found to have high mutagenic potential and was subject to sedimentation.

  4. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Innovative technological paradigm-based approach towards biofuel feedstock

    International Nuclear Information System (INIS)

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  6. Request for Correction 12001 Analyses Associated with the Impact of Biofuels

    Science.gov (United States)

    Request for Correction #11001 by the Competitive Enterprise Institute and ActionAid USA regarding the impacts of biofuel mandates on global hunger and mortality in the EPA's Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program, 40 CFR Part 80.

  7. Biofuels - Illusion or Reality? - The european experience

    International Nuclear Information System (INIS)

    Furfari, A.

    2008-01-01

    Environmental issues, rising prices and security of supply are putting energy at the centre of all attentions. Policy-makers pushed by various stakeholders are struggling to find more sustainable solutions to the world legitimate demand for energy. The transport sector is especially under pressure as it relies for 98% on oil. Despite vast research and development investments, no short-term solutions appeared to be reliable. Thanks to lawmakers support to biofuels, these substitutes for oil are now seen as the potential solution for a sustainable transport. This book analyses the real possibility of biofuels. Does Europe has enough land to produce the needed feedstock? What are the real gains in terms of greenhouse gases emissions and energy efficiency? Are biofuels really a sustainable solution? Will this policy succeed? Are the targets reachable? The reader will find some indications in this book to make up his mind on this complex, multifaceted and highly political subject. Contents: Summary. Introduction. Biofuels in the U.S.A. and Brazil. Do we have enough land in Europe? Biofuels life cycle analysis. Greenhouse gases reduction and efficiency. Case of the glycerin price. Variables affecting biofuels sustainability. Standard for Biofuels. Conclusion. General Bibliography. Annexes. References

  8. How policies affect international biofuel price linkages

    International Nuclear Information System (INIS)

    Rajcaniova, Miroslava; Drabik, Dusan; Ciaian, Pavel

    2013-01-01

    We estimate the role of biofuel policies in determining which country is the price leader in world biofuel markets using a cointegration analysis and a Vector Error Correction (VEC) model. Weekly prices are analyzed for the EU, US, and Brazilian ethanol and biodiesel markets in the 2002–2010 and 2005–2010 time periods, respectively. The US blender's tax credit and Brazil's consumer tax exemption are found to play a role in determining the ethanol prices in other countries. For biodiesel, our results demonstrate that EU policies – the consumer tax exemption and blending target – tend to determine the world biodiesel price. - Highlights: • We estimate the role of biofuel policies in determining biofuel prices. • We use a cointegration analysis and the Vector Error Correction (VEC) model. • The biofuel policies in US and Brazil determine the world ethanol prices. • EU biofuel policies tend to form the world biodiesel price

  9. Frames in the Ethiopian Debate on Biofuels

    Directory of Open Access Journals (Sweden)

    Brigitte Portner

    2013-01-01

    Full Text Available Biofuel production, while highly contested, is supported by a number of policies worldwide. Ethiopia was among the first sub-Saharan countries to devise a biofuel policy strategy to guide the associated demand toward sustainable development. In this paper, I discuss Ethiopia’s biofuel policy from an interpretative research position using a frames approach and argue that useful insights can be obtained by paying more attention to national contexts and values represented in the debates on whether biofuel production can or will contribute to sustainable development. To this end, I was able to distinguish three major frames used in the Ethiopian debate on biofuels: an environmental rehabilitation frame, a green revolution frame and a legitimacy frame. The article concludes that actors advocating for frames related to social and human issues have difficulties entering the debate and forming alliances, and that those voices need to be included in order for Ethiopia to develop a sustainable biofuel sector.

  10. Overview of ORNL/NRC programs addressing durability of concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1994-01-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal

  11. Recent Inventions and Trends in Algal Biofuels Research.

    Science.gov (United States)

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  12. Scope of algae as third generation biofuels

    Directory of Open Access Journals (Sweden)

    Shuvashish eBehera

    2015-02-01

    Full Text Available An initiative has been taken to develop different solid, liquid and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass have been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  13. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  14. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  15. The biofuels, situation, perspectives

    International Nuclear Information System (INIS)

    Acket, C.

    2007-03-01

    The climatic change with the fight against the greenhouse effect gases, sees the development of ''clean'' energy sources. Meanwhile the biofuels remain penalized by their high production cost, the interest is increasing. Facing their development ecologists highlight the environmental and social negative impacts of the development of the biofuels. The author aims to take stock on the techniques and the utilizations. (A.L.B.)

  16. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Georgakakis, Dimitris

    2012-01-01

    in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content...... of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several......Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest...

  17. DLA Energy Biofuel Feedstock Metrics Study

    Science.gov (United States)

    2012-12-11

    moderately/highly in- vasive  Metric 2: Genetically modified organism ( GMO ) hazard, Yes/No and Hazard Category  Metric 3: Species hybridization...4– biofuel distribution Stage # 5– biofuel use Metric 1: State inva- siveness ranking Yes Minimal Minimal No No Metric 2: GMO hazard Yes...may utilize GMO microbial or microalgae species across the applicable biofuel life cycles (stages 1–3). The following consequence Metrics 4–6 then

  18. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  19. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  20. The NASA Aviation Safety Program: Overview

    Science.gov (United States)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  1. Department of Energy Hazardous Waste Remedial Actions Program: An overview

    International Nuclear Information System (INIS)

    Eyman, L.D.; Swiger, R.F.

    1988-01-01

    This paper describes the national Department of Energy (DOE) program for managing hazardous waste. An overview of the DOE Hazardous Waste Remedial Actions Program (HAZWRAP), including its mission, organizational structure, and major program elements, is given. The paper focuses on the contractor support role assigned to Martin Marietta Energy Systems, Inc., through the establishment of the HAZWRAP Support Contractor Office (SCO). The major SCO programs are described, and the organization for managing the programs is discussed. The HAZWRAP SCO approaches to waste management planning and to technology research, development, and demonstration are presented. The role of the SCO in the DOE Environmental Restoration Program and the development of the DOE Waste Information network are reviewed. Also discussed is the DOE Work for Others Program, where waste management decentralized support, via interagency agreements between DOE and the Department of Defense and DOE and the Environmental Protection Agency, is provided for those sponsors planning remedial response actions. 2 refs

  2. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  3. Indirect land use change and biofuel policy

    International Nuclear Information System (INIS)

    Kocoloski, Matthew; Griffin, W Michael; Matthews, H Scott

    2009-01-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO 2 emissions (including from land use) than gasoline, would still be cost-effective at a CO 2 price of $80 per ton or less, well above estimated CO 2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  4. Indirect land use change and biofuel policy

    Science.gov (United States)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  5. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  6. Contrasts and synergies in different biofuel reports.

    Science.gov (United States)

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-06

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  7. PERSPECTIVE: Learning from the Brazilian biofuel experience

    Science.gov (United States)

    Wang, Michael

    2006-11-01

    In the article `The ethanol program in Brazil' [1] José Goldemberg summarizes the key features of Brazil's sugarcane ethanol program—the most successful biofuel program in the world so far. In fact, as of 2005, Brazil was the world's largest producer of fuel ethanol. In addition to providing 40% of its gasoline market with ethanol, Brazil exports a significant amount of ethanol to Europe, Japan, and the United States. The success of the program is attributed to a variety of factors, including supportive governmental policies and favorable natural conditions (such as a tropical climate with abundant rainfall and high temperatures). As the article points out, in the early stages of the Brazilian ethanol program, the Brazilian government provided loans to sugarcane growers and ethanol producers (in most cases, they are the same people) to encourage sugarcane and ethanol production. Thereafter, ethanol prices were regulated to ensure that producers can economically sustain production and consumers can benefit from using ethanol. Over time, Brazil was able to achieve a price for ethanol that is lower than that for gasoline, on the basis of energy content. This lower cost is largely driving the widespread use of ethanol instead of gasoline by consumers in Brazil. In the United States, if owners of E85 flexible-fuel vehicles (FFVs) are expected to use E85 instead of gasoline in their FFVs, E85 will have to be priced competitively against gasoline on an energy-content basis. Compared with corn-based or sugar beet-based ethanol, Brazil's sugarcane-based ethanol yields considerably more favorable results in terms of energy balance and reductions in greenhouse gas emissions. These results are primarily due to (i) the dramatic increase of sugarcane yield in Brazil in the past 25 years and (ii) the use of bagasse instead of fossil fuels in ethanol plants to provide the heat needed for ethanol plant operations and to generate electricity for export to electric grids

  8. NASA's Radioisotope Power Systems Program Overview - A Focus on RPS Users

    Science.gov (United States)

    Hamley, John A.; McCallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. To meet this goal, the RPS Program manages investments in RPS technologies and RPS system development, working closely with the Department of Energy. This paper provides an overview of the RPS Program content and status, its collaborations with potential RPS users, and the approach employed to maintain the readiness of RPS to support future NASA mission concepts.

  9. Aviation Safety Program: Weather Accident Prevention (WxAP) Project Overview and Status

    Science.gov (United States)

    Nadell, Shari-Beth

    2003-01-01

    This paper presents a project overview and status for the Weather Accident Prevention (WxAP) aviation safety program. The topics include: 1) Weather Accident Prevention Project Background/History; 2) Project Modifications; 3) Project Accomplishments; and 4) Project's Next Steps.

  10. 78 FR 34975 - Notice of Contract Proposals (NOCP) for the Advanced Biofuels Payment Program

    Science.gov (United States)

    2013-06-11

    ... Dun and Bradstreet Data Universal Numbering System (DUNS) number, which can be obtained at no cost via... liquid advanced biofuel per year or exceeding 15,900,000 million British Thermal Units of biogas and...

  11. Tapping the US historic sweet sorghum collection to identify biofuel germplasm

    Science.gov (United States)

    Sweet sorghum [Sorghum bicolor (L.) Moench] has gained an important role as a viable alternative to fossil fuels and a more profitable option than maize and sugarcane. Nevertheless, the actual narrow genetic base in sweet sorghum breeding programs is limiting the development of new biofuel varietie...

  12. Economy-wide impacts of biofuels in Argentina

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Chisari, Omar O.; Romero, Carlos A.

    2013-01-01

    Argentina is one of the world's largest biodiesel producers and the largest exporter, using soybeans as feedstock. Using a computable general equilibrium model that explicitly represents the biofuel industry, this study carries out several simulations on two sets of issues: (i) international markets for biofuel and feedstock, such as an increase in prices of soybean, soybean oil, and biodiesel, and (ii) domestic policies related to biofuels, such as an introduction of biofuel mandates. Both sets of issues can have important consequences to the Argentinean economy. The simulations indicate that increases in international prices of biofuels and feedstocks would increase Argentina's gross domestic product and social welfare. Increases in international prices of ethanol and corn also can benefit Argentina, but to a lesser extent. The domestic mandates for biofuels, however, would cause small losses in economic output and social welfare because they divert part of biodiesel and feedstock from exports to lower-return domestic consumption. An increase in the export tax on either feedstock or biodiesel also would lead to a reduction in gross domestic product and social welfare, although government revenue would rise. - Highlights: ► Argentina is one of the largest biodiesel producer and exporter using soybeans. ► Economy-wide impacts are assessed using a CGE model for Argentina. ► Policies simulated are feedstock and biodiesel price change, and domestic mandates. ► Increases in international prices of biofuels and feedstock benefit the country. ► Domestic mandates for biofuels cause small losses in economic output

  13. Impact of the Introduction of Biofuel in the Transportation Sector in Indonesia

    Directory of Open Access Journals (Sweden)

    Joni Jupesta

    2010-06-01

    Full Text Available Indonesia faces serious energy problems; its status as an oil exporter has changed to that of a net oil importer. Additionally, a highly subsidized price of fossil fuels, combined with a high dependency on oil, burden Indonesia’s national budget. In 2006, the government enacted a Mix Energy Policy, which strives for a mixture of energy sources by introducing renewable energy into the existing energy systems. Among the several alternative renewable energy options, biofuel is perceived as having the most potential in Indonesia, due to favorable climate and the availability of land and technology. This paper assesses the impact of the introduction of biofuel in the transportation sector of Indonesia in terms of energy, economics and the environment. A linear programming model was built to simulate the impact of the introduction of biofuel. The author concludes that the introduction of biofuel may have a positive impact by partially replacing the oil used for domestic transportation, generating income due to export of excess production, creating jobs in several sectors, and reducing carbon emissions in a sustainable way. In the model, four scenarios are tested: under the scenario ‘land and technology’, with proper land allocation and technology development, biofuel production can reach 2,810 PJ/annum and reduce greenhouse gas emissions by 168 million tons/annum CO2-equivalent. Furthermore, a profit of 49 billion USD can be generated in 2025 (all maximum values.

  14. Overview of AEOD's program for trending reactor operational events

    International Nuclear Information System (INIS)

    Baranowsky, P.W.; O'Reilly, P.D.; Rasmuson, D.M.; Houghton, J.R.

    1994-01-01

    This paper presents an overview of the trending program being performed by AEOD. The major elements of the program include: (1) system and component reliability trending and analysis, (2) special data collection and analysis (e.g., IPE and PRA component failure data, common cause failure event data), (3) risk assessment of safety issues based on actual operating experience, (4) Accident Sequence Precursor (ASP) Program, and (5) trending US industry risk. AEOD plans to maintain up-to-date safety data trends for selected high risk or high regulatory profile components, systems, accident initiators, accident sequences, and regulatory issues. AEOD will also make greater use of PRA insights and perform limited probabilistic safety assessments to evaluate the safety significance of qualitative results. Examples of a system study and an issue evaluation are presented, as well as a summary of the common cause failure event database

  15. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  16. Near-zero emissions combustor system for syngas and biofuels

    International Nuclear Information System (INIS)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on

  17. Bio-fuels - biohazard

    International Nuclear Information System (INIS)

    Slovak, K.

    2008-01-01

    Politicians have a clear explanation for growing commodity prices. It is all the fault of speculators. It is easy to point the finger at an imaginary enemy. It is more difficult and from the point of view of a political career suicidal to admit one's mistakes. And there are reasons for remorse. According to studies prepared by the OECD and the World Bank bio-fuels are to be blame for high food prices. The bio-fuel boom that increases the demand for agro-commodities has been created by politicians offering generous subsidies. And so farming products do not end up on the table, but in the fuel tanks of cars in the form of additives. And their only efficiency is that they make food more expensive. The first relevant indication that environmentalist tendencies in global politics have resulted in shortages and food price increases can be found in a confidential report prepared by the World Bank. Parts of the report were leaked to the media last month. According to this information growing bio-fuel production has resulted in a food price increase by 75%. The theory that this development was caused by speculators and Chinese and Indian demand received a serious blow. And the OECD report definitely contradicted the excuse used by the politicians. According to the report one of the main reasons for growing food prices are generously subsidized bio-fuels. Their share of the increase of demand for agro-commodities in 2005 -2007 was 60% according to the study. (author)

  18. Biofuels development and the policy regime.

    Science.gov (United States)

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Stabilizing the agricultural frontier: Leveraging REDD with biofuels for sustainable development

    International Nuclear Information System (INIS)

    Killeen, Timothy J.; Schroth, Goetz; Turner, Will; Harvey, Celia A.; Steininger, Marc K.; Dragisic, Christine; Mittermeier, Russell A.

    2011-01-01

    We evaluate the potential of a proposed policy model that would explicitly link the cultivation of biofuels with forest conservation (Biofuel + FC) as part of the United Nations Framework Convention on Climate Change. The model postulates that a ratio of 4:1 forest conservation to biofuel cultivation be linked to proposals for reducing emissions from deforestation and forest degradation (REDD + Biofuel), while a ratio of 9:1 biofuel cultivation to reforestation on degraded landscape (RDL + Biofuel) be linked to the afforestation/reforestation component of the Clean Development Mechanism. Both biofuel production options would be limited to the cultivation of woody perennial biofuel species on low biomass landscapes in order to maximize the carbon benefits of the proposed policy model. The potential to conserve forest, avoid GHG emissions, improve carbon sequestration, and produce renewable energy are evaluated by an illustrative model for five case studies (Pará – Brazil, East Kalimantan – Indonesia, Madagascar, Colombia and Liberia). The Biofuel + FC policy model is then compared with three counterfactual scenarios: REDD Alone with no biofuel cultivation; Biofuel Alone with expanded biofuel cultivation in the absence of REDD and a Most Likely scenario where REDD and biofuel cultivation are implemented without explicit regulatory linkages. The proposed policy model would leverage forest carbon with biofuel markets, which would reduce greenhouse gas emissions and conserve biodiversity, as well as improve human welfare in developing countries, a win–win–win strategy for sustainable development. -- Highlights: ► We propose to link biofuel cultivation with forest conservation (REDD + Biofuels). ► A similar proposal to support reforestation on degraded landscapes (RDL + Biofuels). ► Woody perennial biofuel species on low biomass landscapes maximize carbon benefits. ► REDD+ revenues can subsidize and foster sustainable biofuels. ► Production of

  20. An Assessment of Thailand’s Biofuel Development

    Directory of Open Access Journals (Sweden)

    Pujan Shrestha

    2013-04-01

    Full Text Available The paper provides an assessment of first generation biofuel (ethanol and biodiesel development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues—environmental, socio-economic and food security aspects. The policies, measures and incentives for the development of biofuel include targets, blending mandates and favorable tax schemes to encourage production and consumption of biofuels. Biofuel development improves energy security, rural income and reduces greenhouse gas (GHG emissions, but issues related to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources. The authors estimate that sustainably-derived agricultural crop residues alone could amount to 10.4 × 106 bone dry tonnes per year. This has the technical potential of producing 1.14–3.12 billion liters per year of ethanol to possibly displace between 25%–69% of Thailand’s 2011 gasoline consumption as transportation fuel. Alternatively, the same amount of residue could provide 0.8–2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel to potentially offset 6%–15% of national diesel consumption in the transportation sector.

  1. Biofuels barometer - EurObserv'ER - July 2011

    International Nuclear Information System (INIS)

    2011-07-01

    13,6 % the increase in EU biofuel consumption in 2010. In 2010 biofuel continued to gnaw away at petrol and diesel consumption in the European Union. However its pace backs the assertion that EU biofuel consumption growth slackened off. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total biofuel consumption figure for 2010 should hover at around 13,9 Mtoe

  2. Institutional analysis of biofuel production in Northern Ghana

    OpenAIRE

    Kwoyiga, Lydia

    2013-01-01

    The thesis studied the nature of institutional arrangement around biofuel production and how this arrangement has shaped the production outcome of biofuel companies and community development. The study was conducted in two communities of the Yendi Municipal Assembly of the Northern Region of Ghana. In this area, a biofuel company called Biofuel Africa Limited has acquired areas of land and cultivated Jatropha plantations. A total of 32 informants were interviewed to arrive at information ne...

  3. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  4. Assessment of biofuels supporting policies using the BioTrans model

    International Nuclear Information System (INIS)

    Lensink, Sander; Londo, Marc

    2010-01-01

    The introduction of advanced, 2nd generation biofuels is a difficult to forecast process. Policies may impact the timing of their introduction and the future biofuels mix. The least-cost optimization model BioTrans supports policy analyses on these issues. It includes costs for all parts of the supply chain, and endogenous learning for all biofuels technologies, including cost reductions through scale. BioTrans shows that there are significant lock-in effects favouring traditional biofuels, and that the optimal biofuels mix by 2030 is path dependent. The model captures important barriers for the introduction of emerging technologies, thereby providing valuable quantitative information that can be used in analyses of biofuels supporting policies. It is shown that biodiesel from oil crops will remain a cost effective way of producing biofuels in the medium term at moderate target levels. Aiming solely at least-cost biofuel production is in conflict with a longer term portfolio approach on biofuels, and the desire to come to biofuels with the lowest greenhouse gas emissions. Lowering the targets because of environmental constraints delays the development of 2nd generation biofuels, unless additional policy measures (such as specific sub targets for these fuels) are implemented.

  5. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  6. Fuel taxes and biofuel promotion: a complementary approach

    International Nuclear Information System (INIS)

    Santamaría, Marta; Azqueta, Diego

    2015-01-01

    Public support for renewable energy technologies is usually justified in terms of its contribution to reducing energy dependency; an improvement in environmental quality and a stimulation of economic activity and employment. In the case of biofuels, greenhouse gas emissions reduction has received significant attention. Nevertheless, nowadays there is a lively debate surrounding the convenience of biofuels. This is a consequence of the potentially negative impacts revealed from their production on a large scale. The aim of the present work is to analyses the potential contribution of biofuels to the main impact categories identified above. This paper tries to analyze the role of biofuel promotion in the context of fuel taxes. Based on the assessment of biofuels in Spain related to environmental damage and economic impacts, it shows that fuel taxes and biofuel promotion should be considered as complementary tools and treated accordingly. (full text)

  7. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    OpenAIRE

    Hamideh Aghahosseini; Ali Ramazani; Pegah Azimzadeh Asiabi; Farideh Gouranlou; Fahimeh Hosseini; Aram Rezaei; Bong-Ki Min; Sang Woo Joo

    2016-01-01

    Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of el...

  8. Transitioning to sustainable use of biofuel in Australia★

    Directory of Open Access Journals (Sweden)

    Sasongko Nugroho Adi

    2017-01-01

    Full Text Available Biofuel is identified as one of the key renewable energy sources for sustainable development, and can potentially replace fossil-based fuels. Anticipating the competition between food and energy security, the Australian Government is intensively exploring other biofuel resources. There have been numerous research projects in Australia using the second and third generation model based on different feedstocks including lignocellulosic and microalgae. Such projects have been successfully demonstrated but are yet to be commercially viable. Moreover, transition pathways to realize the potential benefits of these value chains are not well understood. This preliminary study tried to provide an alternative framework and proposes future long-term transport biofuel pathways in Australia which can be seen as a solution for a post-carbon society. The study is targeted to outline the milestone of the Australian biofuel industry and its roadmap into the future. An investigation has been carried out on biofuel status and barrier, technology development, market and the chronology of biofuel related policies in Australia to understand the current situation and possibilities to develop further strategies, while also providing an insight into the consequences of producing biofuel for transportation. Several methods have been proposed to introduce the transition into a post-carbon society. Seven scenarios were divided, covering the roadmap of first, second and third generation of biofuel, alternative transportation modes such as electric vehicles (EVs and fuel cell vehicles (FCVs and the elimination of the fossil fuel running vehicles within a time frame of 20 years. The utilization of biofuel can be seen as a short to medium mode for transition into a green transportation society. Our investigation also showed that microalgae gave a better ecological footprint which offers the strongest potential for future Australian biofuel industry and aviation. Meanwhile, EVs

  9. Whole-House Approach Benefits Builders, Buyers, and the Environment Building America Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-05-01

    This document provides an overview of the U.S. Department of Energy's Building America program. Building America works with the residential building industry to develop and implement innovative building processes and technologies.

  10. Biofuels barometer - EurObserv'ER - July 2010

    International Nuclear Information System (INIS)

    2010-07-01

    12.1 Mtoe of biofuels consumed in the transport sector in the EU in 2009. European Union biofuel use for transport reached the 12 million tons of oil equivalent (mtoe) threshold during 2009, heralding a further drop in the pace of the sector's growth, which rose by only 18.7% between 2008 and 2009 - just 1.9 mtoe of consumption over the previous year. The biofuel incorporation rate in all fuels used by transport in the EU is unlikely to pass 4% in 2009, which is a very long way short of the 5.75% goal for 2010 set in the 2003 European biofuel directive, which would require around 18 mtoe of biofuel use

  11. A viable technology to generate third-generation biofuel

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving; Nigam, Poonam Singh

    2011-01-01

    First generation biofuels are commercialized at large as the production technologies are well developed. However, to grow the raw materials, there is a great need to compromise with food security, which made first generation biofuels not so much promising. The second generation of biofuels does...

  12. Encendiendo una Llama. Bilingual Gifted and Talented Program: Overview, Identification of Students, and Instructional Approaches.

    Science.gov (United States)

    Hartford Public Schools, CT.

    Three pamphlets describe facets of "Encendiendo Una Llama," a Hartford (Connecticut) demonstration program for bilingual gifted and talented students. An overview pamphlet summarizes key aspects of the model program: identification procedures, instructional services, teacher training, parent involvement, evidence of effectiveness, implementation…

  13. Assessment of Peruvian biofuel resources and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regional production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.

  14. Engineering microbes for tolerance to next-generation biofuels

    Directory of Open Access Journals (Sweden)

    Dunlop Mary J

    2011-09-01

    Full Text Available Abstract A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.

  15. Montana Advanced Biofuels Great Falls Approval

    Science.gov (United States)

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  16. Overview of nuclear education and outreach program among Malaysian school students

    Science.gov (United States)

    Sahar, Haizum Ruzanna; Masngut, Nasaai; Yusof, Mohd Hafizal; Ngadiron, Norzehan; Adnan, Habibah

    2017-01-01

    This paper gives an overview of nuclear education and outreach program conducted by Agensi Nuklear Malaysia (Nuklear Malaysia) throughout its operation and establishment. Since its foundation in 1972, Nuklear Malaysia has been the pioneer and is competent in the application of nuclear science and technology. Today, Nuklear Malaysia has ventured and eventually contributed into the development of various socio-economic sectors which include but not limited to medical, industry, manufacturing, agriculture, health, radiation safety and environment. This paper accentuates on the history of education and outreach program by Nuklear Malaysia, which include its timeline and evolution; as well as a brief on education and outreach program management, involvement of knowledge management as part of its approach and later the future of Nuklear Malaysia education and outreach program.

  17. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    Energy Technology Data Exchange (ETDEWEB)

    Sastri, B.; Lee, A.

    2008-09-15

    . Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  18. Water use implications of biofuel scenarios

    Science.gov (United States)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  19. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  20. Third Generation Biofuels via Direct Cellulose Fermentation

    Directory of Open Access Journals (Sweden)

    David B. Levin

    2008-07-01

    Full Text Available Consolidated bioprocessing (CBP is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering.

  1. NREL Algal Biofuels Projects and Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  2. Biofuels development in China: Technology options and policies needed to meet the 2020 target

    International Nuclear Information System (INIS)

    Chang, Shiyan; Zhao, Lili; Timilsina, Govinda R.; Zhang, Xiliang

    2012-01-01

    China promulgated the Medium and Long-Term Development Plan for Renewable Energy in 2007, which included sub-targets of 2010 and 2020 for various renewable energy technologies. Almost all the 2010 sub-targets have been met and even surpassed except non-grain fuel ethanol. There is debate surrounding the questions of whether and how the country will be able to meet the 2020 biofuels target. This paper provides the assessment of potential technology pathways to achieve the 2020 target regarding their respective resource potential and supply cost. Barriers and policy options are identified based on broad literatures review. And an overview of biofuels projections is presented to provide insight into the comparison of various policy scenarios. The study shows that China can potentially satisfy non-grain fuel ethanol target by 2020 from technology perspective. But she will probably fall far short of this target if current situations continue. Additional policy efforts are needed. Meanwhile, the target of biodiesel production has high probability to be achieved. However, if given support policies, it will develop better. - Highlights: ► I. Non-grain feedstocks such as cassava, sweet sorghum and sweet potato grown in low productive arable lands or unutilized lands have enough potential to meet ethanol targets in 2020. ► II. If current situations continue, China will fall far short of the 2020 target. ► III. The target of biodiesel production has high probability to be achieved, while, if given support policies, it will develop better. ► IV. Supply cost is one of the major barriers faced by all biofuels pathways. ► V. Various policy measures would be necessary to overcome the costs barriers to biofuels in China.

  3. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  4. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  5. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  6. Biofuels and certification. A workshop at the Harvard Kennedy School of Government. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Devereaux, Charan; Lee, Henry

    2009-06-01

    both forests and food supplies from increased biofuel production is real, it is not clear that setting broad sustainability standards and then requiring sellers to certify that all of those standards have been met is the best way to address these interconnected problems. In particular, if too many standards and related certification requirements are put in place too soon, this could constrain the development of a global biofuels market. In contrast, certification targeted at a specific and limited set of problems and designed with the flexibility to adjust to changes in policies and programs can enhance the public's acceptance of the biofuel option while protecting key social and environmental goals. A second set of questions revolves around the locus of responsibility for certifying whether biofuel production meets sustainability targets. Should the biofuel processing firms, third parties, or governments be responsible for certifying the production of biofuels? This question also elicited significant discussion. While it could be easier to have individual country governments assume the certification of production responsibility, some governments may not have the capacity to implement an effective certification process. Production facilities that comply with international standards should not be kept out of the market because of their government's inability to manage the process. The possible contribution to effective certification of third party organizations or public-private partnerships should not be underestimated.

  7. REFUEL. Potential and realizable cost reduction of 2nd generation biofuels

    International Nuclear Information System (INIS)

    Londo, H.M.; Deurwaarder, E.P.; Lensink, S.M.; Junginer, H.M.; De Wit, M.

    2007-05-01

    In the REFUEL project steering possibilities for and impacts of a greater market penetration of biofuels are assessed. Several benefits are attributed to second generation biofuels, fuels made from lignocellulosic feedstock, such as higher productivity, less impacts on land use and food markets and improved greenhouse gas emission reductions. The chances of second generation biofuels entering the market autonomously are assessed and several policy measures enhancing those changes are evaluated. It shows that most second generation biofuels might become competitive in the biofuel market, if the production of biodiesel from oil crops becomes limited by land availability. Setting high biofuel targets, setting greenhouse gas emissions caps on biofuel and setting subtargets for second generation biofuels, all have a similar impact of stimulating second generation's entrance into the biofuel market. Contrary, low biofuel targets and high imports can have a discouraging impact on second generation biofuel development, and thereby on overall greenhouse gas performance. Since this paper shows preliminary results from the REFUEL study, one is advised to contact the authors before quantitatively referring to this paper

  8. Biofuels barometer - EurObserv'ER - July 2015

    International Nuclear Information System (INIS)

    2015-07-01

    +6.1% The increase of biofuel consumption in European Union transport between 2013 and 2014 (in energy content). Biofuel consumption for transport picked up in Europe after a year of uncertainty and decline, increasing by 6.1% over 2013, to 14 million toe (Mtoe) according to EurObserv'ER's first estimates. However it is still below its 2012 level when 14.5 Mtoe of biofuel was incorporated. Consumption of biofuel that meets the European Renewable Energy directive's sustainability criteria rose to 12.5 Mtoe, its highest level so far

  9. Graphic overview system for DOE's effluent and environmental monitoring programs

    International Nuclear Information System (INIS)

    Burson, Z.G.; Elle, D.R.

    1980-03-01

    The Graphic Overview System is a compilation of photos, maps, overlays, and summary information of environmental programs and related data for each DOE site. The information consists of liquid and airborne effluent release points, on-site storage locations, monitoring locations, aerial survey results, population distributions, wind roses, and other related information. The relationships of different environmental programs are visualized through the use of colored overlays. Trends in monitoring data, effluent releases, and on-site storage data are also provided as a corollary to the graphic display of monitoring and release points. The results provide a working tool with which DOE management (headquarters and field offices) can place in proper perspective key aspects of all environmental programs and related data, and the resulting public impact of each DOE site

  10. Biofuels in Italy: obstacles and development opportunities

    International Nuclear Information System (INIS)

    Pignatelli, Vito; Clementi, Chiara

    2006-01-01

    Today biofuels are the sole realistically practical way to reduce CO 2 emissions in the transportation sector. In many countries, including Italy, biofuel production and use are already a reality corresponding to a large agro-industrial production system that uses essentially mature technologies. To significantly lower production costs and optimise land use, Italy needs to develop new, second-generation biofuel production operations that can offer significant opportunities to the nation's agro-industrial sector [it

  11. Alternative spatial allocation of suitable land for biofuel production in China

    DEFF Research Database (Denmark)

    Zhang, Jianjun; Chen, Yang; Rao, Yongheng

    2017-01-01

    How to select locations for biofuel production is still a critical consideration for balance of crop and biofuel productions as well as of energy consumption and environmental conservation. Biofuels are widely produced all over the world, but this practice in China is still at the initial stage....... Based on China's current stage on food security and changing biofuel demands, this paper selected agro-environmental and socio-economic factors of biofuel production, and simulated and spatially allocated areas suited for biofuel production under the two scenarios of planning-oriented scenario (Po......S) and biofuel-oriented scenario (BoS) by the target year 2020. It also estimated biofuel production potentials and zones across China's provinces. The results show that land suited for biofuel production is primarily located in Northwestern, Northern, Northeastern, Central and Southwestern China...

  12. The changing dynamics between biofuels and commodity markets

    International Nuclear Information System (INIS)

    Bole, T.; Londo, H.M.

    2008-06-01

    The recent development of the biofuel industries coincides with significant increases in prices of basic commodities such as food and feed. Against popular perception, it appears that there is not a straightforward causal relationship between the two; there are a number of factors that determine the level and strength of the impact of the biofuels sector on other commodities. For the case of markets of agricultural raw material these factors include the amount of feedstock claimed by the biofuels industry, its relative purchasing power, the responsiveness of the agricultural sector to price incentives and availability of substitutes. For consumer food markets we must additionally consider the relative share of agricultural input costs in the retail food price and the demand elasticity. Based on the analysis of these factors and estimates of other studies that attempted to quantify the price impacts of biofuels on crop prices, we conclude that the impact of biofuels is relatively small, especially when compared with other causes that triggered the recent price increases. We end the paper with a recommendation for future efforts in curbing food price inflations while keeping ambitious biofuel targets and suggest a shift in focus of the debate around the social costs of biofuels

  13. Biofuel Cells – Alternative Power Sources

    International Nuclear Information System (INIS)

    Babanova, Sofia; Yolina Hubenova; Mario Mitov

    2009-01-01

    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  14. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  15. Biofuel consumption, biodiversity, and the environmental Kuznets curve: trivariate analysis in a panel of biofuel consuming countries.

    Science.gov (United States)

    Zaman, Khalid

    2017-11-01

    This study examined the relationship between biofuel consumption, forest biodiversity, and a set of national scale indicators of per capita income, foreign direct investment (FDI) inflows, trade openness, and population density with a panel data of 12 biofuels consuming countries for a period of 2000 to 2013. The study used Global Environmental Facility (GEF) biodiversity benefits index and forest biodiversity index in an environmental Kuznets curve (EKC) framework. The results confirmed an inverted U-shaped relationship between GEF biodiversity index and per capita income, while there is flat/no relationship between carbon emissions and economic growth, and between forest biodiversity and economic growth models. FDI inflows and trade openness both reduce carbon emissions while population density and biofuel consumption increase carbon emissions and decrease GEF biodiversity index. Trade openness supports to increases GEF biodiversity index while it decreases forest biodiversity index and biofuel consumption in a region.

  16. Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets

    International Nuclear Information System (INIS)

    Ozdemir, Enver Doruk; Haerdtlein, Marlies; Eltrop, Ludger

    2009-01-01

    The provision of biofuels today is based on energy crops rather than residual biomass, which results in the requirement of agricultural land area. The side products may serve as animal feed and thus prevent cultivation of other feedstock and the use of corresponding land area. These effects of biofuel provision have to be taken into account for a comprising assessment of land area requirement for biofuel provision. Between 18.5 and 21.1 Mio. hectares (ha) of land area is needed to meet the EU 2020 biofuel target depending on the biofuel portfolio when substitution effects are neglected. The utilization of the bioethanol side products distiller's dried grain and solubles (DDGS) and pressed beet slices may save up to 0.7 Mio. ha of maize cultivation area in the EU. The substitution effect due to the utilization of biodiesel side products (oil cakes of rape, palm and soy) as animal feed may account for up to 7.1 Mio. ha of soy cultivation area in Brazil. The results show that the substitution of land area due to use of side products might ease the pressures on land area requirement considerably and should therefore not be neglected in assessing the impacts of biofuel provision worldwide.

  17. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  18. Overview of the CTR blanket engineering research program at the University of Tokyo

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu; Madarame, Haruki; Takahashi, Yoichi; Takagi, Toshiyuki

    1989-01-01

    A small overview has been given on the fusion reactor blanket engineering research program at the University of Tokyo as an introduction to the following articles, especially in its history, organization, experimental facilities and ten years research activity. (orig.)

  19. Center for Advanced Biofuel Systems (CABS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni M. [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  20. Physics of the Cosmos (PCOS) Technology Development Program Overview

    Science.gov (United States)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  1. The European biofuels policy: from where and where to?

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, H.; Silveira, S.

    2011-05-15

    Biofuels for transport had a long history prior to their formal introduction in the European Union by means of formal directives in 2003 and 2009. Dating back to years before the First World War, busses were already rolling in Paris on a mixture of ethanol and petrol. Between 1920 and 1950 the French continued using sugar-beet-based ethanol as a tool to improve energy independence and reduce trade deficits. Ethanol utilization as a fuel blend only fell once oil prices achieved record lows in the 1960s., as large reserves started being tapped in the middle-east. In the 1970s. oil price shocks brought concerns about the European dependence on foreign energy, and the following decades saw many actions which started to change the biofuels panorama in Europe. By 1973 biodiesel research was already being conducted in Wieselburg, Austria, and in 1982 the country had its first pilot plant for biodiesel (producing fatty-acid methyl ester - FAME). After successful experiences with ethanol in Brazil, the first European directive which opened potential large markets for biofuels in Europe was the Council Directive 85/536/ECC, which authorized blends of 5% ethanol and 15% Ethyl Tertiary Butyl Ether (ETBE, a bio-ether) on petrol. The usage of bioethanol for blending, however, was hampered by the low prices of oil products which marked the late 1980s. and most of the 1990s. (the same reasons which dealt a blow to the Brazilian ethanol program during that time). In tandem with the development of biofuels in Europe, carbon emissions were already consolidated in scholarly literature as the major causal factor behind climate change. Since the UN's Brundtland commission report from 1987, alternatives to de-carbonize the transport sector were in high demand, but the deployment of alternatives was hampered by a conjuncture of low oil prices. The following years in the 1990s. were instrumental for the emergence of the modern environmental policy pursued by the EU, which became

  2. The Roundtable on Sustainable Biofuels: plant scientist input needed.

    Science.gov (United States)

    Haye, Sébastien; Hardtke, Christian S

    2009-08-01

    The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.

  3. Reconciling biofuels, sustainability and commodities demand. Pitfalls and policy options

    International Nuclear Information System (INIS)

    Uslu, A.; Bole, T.; Londo, M.; Pelkmans, L.; Berndes, G.; Prieler, S.; Fischer, G.; Cueste Cabal, H.

    2010-06-01

    Increasing fossil fuel prices, energy security considerations and environmental concerns, particularly concerning climate change, have motivated countries to explore alternative energy sources including biofuels. Global demand for biofuels has been rising rapidly due to biofuel support policies established in many countries. However, proposed strong links between biofuels demand and recent years' high food commodity prices, and notions that increasing biofuels production might bring about serious negative environmental impacts, in particularly associated with the land use change to biofuel crops, have shifted public enthusiasm about biofuels. In this context, the ELOBIO project aims at shedding further light to these aspects of biofuel expansion by collecting and reviewing the available data, and also developing strategies to decrease negative effects of biofuels while enabling their positive contribution to climate change, security of supply and rural development. ELOBIO considers aspects associated with both 1st and 2nd generation biofuels, hence analyses effects on both agricultural commodity markets and lignocellulosic markets. This project, funded by the Intelligent Energy Europe programme, consists of a review of current experiences with biofuels and other renewable energy policies and their impacts on other markets, iterative stakeholder-supported development of low-disturbing biofuels policies, model supported assessment of these policies' impacts on food, feed and lignocellulosic markets, and finally an assessment of the effects of selected optimal policies on biofuels costs and potentials. Results of the ELOBIO study show that rapid biofuel deployment without careful monitoring of consequences and implementation of mitigating measures risks leading to negative consequences. Implementing ambitious global biofuel targets for 2020, based on current 1st generation technologies, can push international agricultural commodity prices upwards and increase crop

  4. Total employment effect of biofuels

    International Nuclear Information System (INIS)

    Stridsberg, S.

    1998-08-01

    The study examined the total employment effect of both direct production of biofuel and energy conversion to heat and electricity, as well as the indirect employment effect arising from investments and other activities in conjunction with the production organization. A secondary effect depending on the increased capital flow is also included in the final result. The scenarios are based on two periods, 1993-2005 and 2005-2020. In the present study, the different fuels and the different applications have been analyzed individually with regard to direct and indirect employment within each separate sector. The greatest employment effect in the production chain is shown for logging residues with 290 full-time jobs/TWh, whereas other biofuels range between 80 and 280 full-time jobs/TWh. In the processing chain, the corresponding range is 200-300 full-time jobs per each additional TWh. Additionally and finally, there are secondary effects that give a total of 650 full-time jobs/TWh. Together with the predicted increase, this suggests that unprocessed fuel will provide an additional 16 000 annual full-time jobs, and that fuel processing will contribute with a further 5 000 full-time jobs. The energy production from the fuels will provide an additional 13 000 full-time jobs. The total figure of 34 000 annual full-time jobs must then be reduced by about 4000 on account of lost jobs, mainly in the oil sector and to some extent in imports of biofuel. In addition, the anticipated increase in capital turnover that occurs within the biofuel sector, will increase full-time jobs up to year 2020. Finally, a discussion is given of the accomplishment of the programmes anticipated by the scenario, where it is noted that processing of biofuel to wafers, pellets or powder places major demands on access to raw material of good quality and that agrarian fuels must be given priority if they are to enter the system sufficiently fast. Straw is already a resource but is still not accepted by

  5. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and Update FY15 and Beyond

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The NASA Electronic Parts and Packaging (NEPP) program, and its subset the NASA Electronic Parts Assurance Group (NEPAG), are NASA's point-of-contacts for reliability and radiation tolerance of electrical, electronic, and electromechanical (EEE) parts and their packages. This presentation includes a Fiscal Year 2015 program overview.

  6. Biofuel, land and water: maize, switchgrass or Miscanthus?

    International Nuclear Information System (INIS)

    Zhuang Qianlai; Qin Zhangcai; Chen Min

    2013-01-01

    The productive cellulosic crops switchgrass and Miscanthus are considered as viable biofuel sources. To meet the 2022 national biofuel target mandate, actions must be taken, e.g., maize cultivation must be intensified and expanded, and other biofuel crops (switchgrass and Miscanthus) must be cultivated. This raises questions on the use efficiencies of land and water; to date, the demand on these resources to meet the national biofuel target has rarely been analyzed. Here, we present a data-model assimilation analysis, assuming that maize, switchgrass and Miscanthus will be grown on currently available croplands in the US. Model simulations suggest that maize can produce 3.0–5.4 kiloliters (kl) of ethanol for every hectare of land, depending on the feedstock to ethanol conversion efficiency; Miscanthus has more than twice the biofuel production capacity relative to maize, and switchgrass is the least productive of the three potential sources of ethanol. To meet the biofuel target, about 26.5 million hectares of land and over 90 km 3 of water (of evapotranspiration) are needed if maize grain alone is used. If Miscanthus was substituted for maize, the process would save half of the land and one third of the water. With more advanced biofuel conversion technology for Miscanthus, only nine million hectares of land and 45 km 3 of water would probably meet the national target. Miscanthus could be a good alternative biofuel crop to maize due to its significantly lower demand for land and water on a per unit of ethanol basis. (letter)

  7. Improving the environmental performance of biofuels with industrial symbiosis

    International Nuclear Information System (INIS)

    Martin, Michael; Eklund, Mats

    2011-01-01

    In the production of biofuels for transport many critics have argued about the poor energy efficiency and environmental performance of the production industries. Optimism is thus set on the production of second generation biofuels, while first generation biofuels continue to dominate worldwide. Therefore it is interesting to consider how the environmental performance of first generation biofuel industries can be improved. The field of industrial symbiosis offers many possibilities for potential improvements in the biofuel industry and theories from this research field are used in this paper to highlight how environmental performance improvements can be accomplished. This comes in the form of by-product synergies and utility synergies which can improve material and energy handling. Furthermore, the processes and products can gain increased environmental performance improvements by the adaption of a renewable energy system which will act as a utility provider for many industries in a symbiotic network. By-products may thereafter be upcycled through biogas production processes to generate both energy and a bio-fertilizer. A case study of an actual biofuel industrial symbiosis is also reviewed to provide support for these theories. -- Highlights: → By-product and utility synergies may improve the production processes of biofuel industries for reduced energy consumption and improved environmental performance. → Upcycling tenants can make use of wastes to upgrade waste to a valuable product and/or energy source. → Energy systems for biofuel production have a large influence on the performance of biofuel industries.

  8. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    International Nuclear Information System (INIS)

    Jumbe, Charles B.L.; Msiska, Frederick B.M.; Madjera, Michael

    2009-01-01

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  9. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L., E-mail: charlesjumbe@bunda.unima.m [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M., E-mail: frederickmsiska@yahoo.co [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael, E-mail: michael.madjera@onlinehome.d [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  10. Biofuels development in Sub-Saharan Africa. Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L. [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M. [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops. (author)

  11. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  12. Environmental and energy aspects of liquid biofuels

    International Nuclear Information System (INIS)

    De Boo, W.

    1993-02-01

    When spending public money to reduce CO 2 emissions, it is necessary to establish which alternative energy source results in the largest reduction of CO 2 emission per unit cost. Comparison of different biofuels with other energy resources is therefore important. Bioethanol is compared with leadfree gasoline, and rapeseed oil methylester (RME) is compared with diesel. Subsequently, biofuel production as a method to reduce CO 2 emission will be compared with other sustainable energy resources. This comparison is based on the energy balance in chapter two and the final costs of biofuels in chapter six. The comparison of biofuels and current fossil fuels is based on emissions to the atmosphere of greenhouse gases and acidifying pollutants in chapter three. Pollution to soil and water by arable cropping is a specific characteristic of biofuel production and is difficult to compare with fossil fuels. On this subject biofuels are compared with other land uses in chapter four. This also applies to other adverse environmental aspects of agricultural production such as competition for land use with natural areas and recreation purposes. To explore future technological developments, a comparison is made in energy balances with estimated results after the year 2000. The overall conclusion is that there are far better options to achieve CO 2 reduction. 2 figs., 9 tabs., 14 appendices, 28 refs

  13. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  14. Biofuels from microbes

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Inst. of Resource and Energy Technology; Zverlov, V.V.; Schwarz, W.H. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Dept. of Microbiology

    2007-11-15

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. (orig.)

  15. Thermodynamic evaluation of biomass-to-biofuels production systems

    International Nuclear Information System (INIS)

    Piekarczyk, Wodzisław; Czarnowska, Lucyna; Ptasiński, Krzysztof; Stanek, Wojciech

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like Fischer–Tropsch fuels or Substitute Natural Gas which are produced either from wood or from waste biomass. For these biofuels the most promising conversion case is the one which involves production of syngas from biomass gasification, followed by synthesis of biofuels. The thermodynamic efficiency of biofuels production is analyzed and compared using both the direct exergy analysis and the thermo-ecological cost. This analysis leads to the detection of exergy losses in various elements which forms the starting point to the improvement of conversion efficiency. The efficiency of biomass conversion to biofuels is also evaluated for the whole production chain, including biomass cultivation, transportation and conversion. The global effects of natural resources management are investigated using the thermo-ecological cost. The energy carriers' utilities such as electricity and heat are externally generated either from fossil fuels or from renewable biomass. In the former case the production of biofuels not always can be considered as a renewable energy source whereas in the latter case the production of biofuels leads always to the reduction of depletion of non-renewable resources

  16. Effects of Deployment Investment on the Growth of the Biofuels Industry. 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stright, Dana [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This report updates the 2013 report of the same title. Some text originally published in that report is retained and indicated in gray. In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model--a system dynamics model of the biomass to biofuels system--that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial growth impact on the development of the biofuels industry. Results also show that other conditions, such as accompanying incentives, have major impacts on the effectiveness of such investments. Results from the 2013 report are compared to new results. This report does not advocate for or against investments, incentives, or policies, but analyzes simulations of

  17. Bio-fuels barometer - EurObserv'ER - July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    The European bio-fuel market is now regulated by the directive, known as ILUC, whose wording focuses on the environmental impact of first generation bio-fuel development. This long-awaited clarification has arrived against the backdrop of falling oil prices and shrinking European Union bio-fuel consumption, which should drop by 1.7% between 2014 and 2015, according to EurObserv'ER

  18. Biofuels barometer - EurObserv'ER - July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    The European biofuel market is now regulated by the directive, known as ILUC, whose wording focuses on the environmental impact of first generation biofuel development. This long-awaited clarification has arrived against the backdrop of falling oil prices and shrinking European Union biofuel consumption, which should drop by 1.7% between 2014 and 2015, according to EurObserv'ER

  19. Liquid biofuels - can they meet our expectations?

    Science.gov (United States)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  20. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    Science.gov (United States)

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

  1. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    Science.gov (United States)

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  2. Cadmium in the biofuel system

    International Nuclear Information System (INIS)

    Aabyhammar, T.; Fahlin, M.; Holmroos, S.

    1993-12-01

    Removal of biofuel depletes the soil of important nutrients. Investigations are being made of possibilities to return most of these nutrients by spreading the ashes remaining after combustion in the forest or on field. Return of ashes implies that both beneficial and harmful substances are returned. This study has been conducted to illustrate that the return of cadmium implies the greatest risk for negative influences. The occurrence, utilization, emissions and effects of cadmium are discussed. The behaviour of cadmium in soil is discussed in detail. Flows and quantities of cadmium in Swedish society are reviewed. Flows and quantities of both total and plant available cadmium in the entire forest and arable areas of Sweden are given. A scenario for a bioenergy system of max 100 TWh is discussed. The cadmium flow in different biofuels and forest raw products, and anticipated amounts of ashes and cadmium concentrations, are calculated. Power production from biofuels is surveyed. Possibilities to clean ashes have been examined in laboratory experiments. Ashes and trace elements occurring as a result of the gasification of biofuels are reviewed. Strategies for handling ashes are discussed. Proposals on continued inputs in both the biological and technical sciences are made. 146 refs, 23 figs, 38 tabs

  3. Towards a sustainably certifiable futures contract for biofuels

    International Nuclear Information System (INIS)

    Mathews, John A.

    2008-01-01

    How are biofuels to be certified as produced in a sustainable and responsible fashion? In the global debate over this issue, one party to the proceedings seems rarely to be mentioned-namely the commodities exchanges through which a global biofuels market is being created. In this contribution, I propose a solution to the problem of sustainability certification through a biofuels futures contract equipped with 'proof of origin' documentation. The proposal does not call for any radical break with current practice, extending existing certification procedures with a requirement for the vendor to provide documentation, probably in barcoded form, of the history of the biofuel offered for sale, including plantation and biorefinery where the biofuel was produced and subsequent blendings it may have undergone. The proposal is thus compatible with the blending practices of large global traders, whose activities are the source of the difficulties of other approaches to certification. It is argued that if such a sustainable futures contract for bioethanol (in the first instance) were to be introduced, then it would likely trade at a premium and become the primary vehicle for North-South trade in biofuels

  4. Biofuel and Food-Commodity Prices

    Directory of Open Access Journals (Sweden)

    David Zilberman

    2012-09-01

    Full Text Available The paper summarizes key findings of alternative lines of research on the relationship between food and fuel markets, and identifies gaps between two bodies of literature: one that investigates the relationship between food and fuel prices, and another that investigates the impact of the introduction of biofuels on commodity-food prices. The former body of literature suggests that biofuel prices do not affect food-commodity prices, but the latter suggests it does. We try to explain this gap, and then show that although biofuel was an important contributor to the recent food-price inflation of 2001–2008, its effect on food-commodity prices declined after the recession of 2008/09. We also show that the introduction of cross-price elasticity is important when explaining soybean price, but less so when explaining corn prices.

  5. Solid and liquid biofuels markets in Finland. A study on international biofuels trade. IEA bioenergy task 40 and EUROBIONET II. Country report of Finland

    International Nuclear Information System (INIS)

    Heinimoe, J.; Alakangas, E.

    2006-01-01

    This study considered the current situation of solid and liquid biofuels markets and international biofuels trade in Finland and identified the challenges of the emerging international biofuels markets for Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production (CHP) and a high share of biofuels in the total energy consumption are specific to the Finnish energy system. One third of the electricity is generated in CHP plants. As much as 27% of the total energy consumption is met by using wood and peat, which makes Finland the leading country in the use of biofuels. Finland has made a commitment to maintain greenhouse gas emissions at the 1990 level at the highest during the period 2008-2012. The Finnish energy policy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In this study, the wooden raw material streams of the forest industry were included the international biofuels trade in addition to biomass streams that are traded for energy production. In 2004, as much as 45% of the raw wood imported into Finland ended up in energy production. The total international trading of biofuels was evaluated at 72 PJ, of which the majority, 58 PJ, was raw wood. About 22% of wood based energy in Finland originated from imported raw wood. Tall oil and wood pellets composed the largest export streams of biofuels. The annual turnover of international biofuels trade was estimated at about euro 90 million for direct trade and at about euro 190 million for indirect trade. The forest industry as the biggest user of wood, and the producer and user of wood fuels has a central position in biomass and biofuels markets in Finland. Lately, the international aspects of Finnish biofuels markets have been emphasised as the import of raw wood and the export of wood pellets have increased. Expanding the use of biofuels in the road

  6. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  7. Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies

    International Nuclear Information System (INIS)

    Chen Xiaoguang; Khanna, Madhu; Yeh, Sonia

    2012-01-01

    This letter examines the effectiveness of various biofuel and climate policies in reducing future processing costs of cellulosic biofuels due to learning-by-doing. These policies include a biofuel production mandate alone and supplementing the biofuel mandate with other policies, namely a national low carbon fuel standard, a cellulosic biofuel production tax credit or a carbon price policy. We find that the binding biofuel targets considered here can reduce the unit processing cost of cellulosic ethanol by about 30% to 70% between 2015 and 2035 depending on the assumptions about learning rates and initial costs of biofuel production. The cost in 2035 is more sensitive to the speed with which learning occurs and less sensitive to uncertainty in the initial production cost. With learning rates of 5–10%, cellulosic biofuels will still be at least 40% more expensive than liquid fossil fuels in 2035. The addition of supplementary low carbon/tax credit policies to the mandate that enhance incentives for cellulosic biofuels can achieve similar reductions in these costs several years earlier than the mandate alone; the extent of these incentives differs across policies and different kinds of cellulosic biofuels. (letter)

  8. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1990-05-01

    A comprehensive Waste Characterization Program (WCP) is in place at Chalk River Laboratories to support disposal projects. The WCP is responsible for: 1) specifying the manifests for waste shipments; 2) developing and maintaining central databases for waste inventories and analytical data; and 3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management Quality Assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems, and for maintaining a QA program for disposal operations

  9. Biofuel initiatives in Japan: Strategies, policies, and future potential

    International Nuclear Information System (INIS)

    Matsumoto, Naoko; Sano, Daisuke; Elder, Mark

    2009-01-01

    Japan has developed a variety of national strategies and plans related to biofuels which address four main policy objectives, including reduction of greenhouse gas (GHG) emissions, energy security, rural development, and realisation of a recycle-based society. This paper reviews these national strategies and plans as well as associated implementing policies, and discusses the extent to which these objectives may be achieved. This paper found that the long-term potential of biofuels to contribute to GHG reduction goals will depend not only on the rates of technological development of the second generation biofuels but also on the development of other advanced vehicles. In the medium term, the potential contribution of biofuels to rural development and realising a recycle-based society could become significant depending on the progress of technology for both second generation biofuel production and the collection and transportation of their feedstocks. The potential contribution of biofuels to Japan's energy security is constrained by the availability of imports and the potential of domestic production. (author)

  10. The water-land-food nexus of first-generation biofuels

    Science.gov (United States)

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; de Carolis, Giulia; D'Odorico, Paolo

    2016-03-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

  11. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Session 8: biofuels; Session 8: Les biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Botte, J.M.

    2006-01-15

    Here are given the summaries of the speeches of Mr Daniel Le Breton (Total): the transports of the future: the role of biofuels; of Mr Pierre Rouveirolles (Renault): the future expectations and needs; of Mr Frederic Monot (IFP): the developments of new generations of biofuels from biomass; of Mr Willem Jan Laan (Unilever): the use of bio resources for food and fuel: a fair competition? All these speeches have been presented at the AFTP yearly days (12-13 october 2005) on the session 8 concerning the biofuels. (O.M.)

  13. Improving EU biofuels policy?

    DEFF Research Database (Denmark)

    Swinbank, Alan; Daugbjerg, Carsten

    2013-01-01

    to be 'like' a compliant biofuel. A more economically rational way to reduce GHG emissions, and one that might attract greater public support, would be for the RED to reward emission reductions along the lines of the FQD. Moreover, this modification would probably make the provisions more acceptable...... in the WTO, as there would be a clearer link between policy measures and the objective of reductions in GHG emissions; and the combination of the revised RED and the FQD would lessen the commercial incentive to import biofuels with modest GHG emission savings, and thus reduce the risk of trade tension....

  14. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...... Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor...

  15. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  16. Biofuels. Is the curse worse than the disease?

    International Nuclear Information System (INIS)

    Doornbosch, R.; Steenblik, R.

    2007-09-01

    Biofuels have been championed as an energy source that can increase security of supply, reduce vehicle emissions and provide a new income stream for farmers. These claims are contested, however. Critics assert that biofuels will increase energy-price volatility, food prices and even life-cycle emissions of greenhouse gases. This paper presents salient facts and figures to shed light on these controversial issues and asks whether biofuels offer a cure that is worse than the disease they seek to heal. The information gathered in this paper gives rise to two fundamental questions: (1) Do the technical means exist to produce biofuels in ways that enable the world to meet demand for transportation energy in more secure and less harmful ways, on a meaningful scale and without compromising the ability to feed a growing population?; and (2) Do current national and international policies that promote the production of biofuels represent the most cost-effective means of using biomass and the best way forward for the transport sector?

  17. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  18. Will EU Biofuel Policies affect Global Agricultural Markets?

    International Nuclear Information System (INIS)

    Banse, M.; Vvan Meijl, H.; Tabeau, A.; Woltjer, G.

    2008-04-01

    This paper assesses the global and sectoral implications of the European Union Biofuels Directive (BFD) in a multi-region computable general equilibrium framework with endogenous determination of land supply. The results show that, without mandatory blending policies or subsidies to stimulate the use of biofuel crops in the petroleum sector, the targets of the BFD will not be met in 2010 and 2020. With a mandatory blending policy, the enhanced demand for biofuel crops has a strong impact on agriculture at the global and European levels. The additional demand from the energy sector leads to an increase in global land use and, ultimately, a decrease in biodiversity. The development, on the other hand, might slow or reverse the long-term process of declining real agricultural prices. Moreover, assuming a further liberalization of the European agricultural market imports of biofuels are expected to increase to more than 50% of the total biofuel demand in Europe

  19. 75 FR 37771 - Office of Postsecondary Education; Overview Information; Transition Programs for Students with...

    Science.gov (United States)

    2010-06-30

    ... education (or consortia of institutions of higher education), to create or expand high quality, inclusive... DEPARTMENT OF EDUCATION Office of Postsecondary Education; Overview Information; Transition Programs for Students with Intellectual Disabilities Into Higher Education (TPSID)--Model Comprehensive...

  20. Current status: biomass valorisation and biofuels in Singapore

    International Nuclear Information System (INIS)

    Guermont, C.; Barbi, A.P.

    2010-05-01

    After having briefly presented the main types of biofuels (bio-ethanol, bio-diesel) and their first, second and third generation technologies to produce them (from food crops, from non food crops, and from algae), this report presents Singapore public R and D centres working in the field of biofuels development, and their activities. It also presents actors belonging to the private sector, and various realized and announced projects on biofuels

  1. Carbon and environmental footprinting of global biofuel production

    OpenAIRE

    Hammond, Geoff P.; Seth, S.M.

    2013-01-01

    The carbon and environmental footprints associated with the global production of biofuels have been computed from a baseline of 2007-2009 out until 2019. Estimates of future global biofuel production were adopted from OECD-FAO and related projections. In order to determine the footprints associated with these (essentially 'first generation') biofuel resources, the overall environmental footprint was disaggregated into bioproductive land, built land, carbon, embodied energy, materials and wast...

  2. Streamflow impacts of biofuel policy-driven landscape change.

    Directory of Open Access Journals (Sweden)

    Sami Khanal

    Full Text Available Likely changes in precipitation (P and potential evapotranspiration (PET resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979-2004 using the Weather Research Forecast (WRF model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity.

  3. Biofuels for transport in Europe: lessons from Germany and the UK

    International Nuclear Information System (INIS)

    Bomb, C.; McCormick, K.; Kaaberger, T.; Lund University, Lund

    2007-01-01

    The utilisation of biofuels is attracting growing support from the European Union and member states as a strategy to tackle climate change, enhance energy security, and contribute to regional development. This paper describes, compares, and analyses the markets for biofuels in Germany and the UK. The introduction of biofuels for transport in these member states provides contrasting pictures, and the success or failure of biofuels here is pertinent to the development and diffusion of biofuels across Europe. This paper concentrates on the socio-political context for the biofuels industry in Germany and the UK, discusses the lessons learned from the German and British experiences, and presents general conclusions for policy-makers that are predominantly relevant for the early stages of a biofuels industry. (author)

  4. Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Janda, Karel; Zilberman, D.

    2012-01-01

    Roč. 34, č. 5 (2012), s. 1380-1391 ISSN 0140-9883 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; GA ČR(CZ) GAP402/11/0948; VŠE Praha(CZ) IP100040 Program:GA Institutional support: RVO:67985556 ; RVO:67985998 Keywords : biofuels * networks * minimal spanning tree * hierarchical tree Subject RIV: AH - Economics; AH - Economics (NHU-C) Impact factor: 2.538, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kristoufek-correlations between biofuels and related commodities before and during the food crisis a taxonomy perspective.pdf

  5. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    Energy Technology Data Exchange (ETDEWEB)

    Selfa, Theresa L; Goe, Richard; Kulcsar, Laszlo; Middendorf, Gerad; Bain, Carmen

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A multi-method or mixed method research methodology was employed for each case study.

  6. Algae biofuels: versatility for the future of bioenergy.

    Science.gov (United States)

    Jones, Carla S; Mayfield, Stephen P

    2012-06-01

    The world continues to increase its energy use, brought about by an expanding population and a desire for a greater standard of living. This energy use coupled with the realization of the impact of carbon dioxide on the climate, has led us to reanalyze the potential of plant-based biofuels. Of the potential sources of biofuels the most efficient producers of biomass are the photosynthetic microalgae and cyanobacteria. These versatile organisms can be used for the production of bioethanol, biodiesel, biohydrogen, and biogas. In fact, one of the most economic methods for algal biofuels production may be the combined biorefinery approach where multiple biofuels are produced from one biomass source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Forecast for biofuel trade in Europe

    International Nuclear Information System (INIS)

    Hektor, B.; Vinterbaeck, J.; Toro, A.de; Nilsson, Daniel

    1993-01-01

    One principal general conclusion is that the European biofuel market for the period up to the year 2000 will be competitive, dynamic and affected by technical development and innovations. That leads to the conclusion that prices will go down, which will increase the ability of biofuels to compete in the market. Still, biofuels will generally not be able to compete at the price level of fossil fuels in the world market, but will need support or protection to reach a competitive position. There are several reasons for support, e.g. offsetting the green-house effect and acid rain, conservation of the limited fossil fuel deposits, utilisation of local and domestic energy resources, etc. As energy crops in Europe are at an introductory stage, no large international trade can be expected within the next ten years. In this study it is assumed that some limited protective measures are imposed, which is a possible result of the energy and environmental policy currently discussed for the European Community, EC. The study implies that in the year 2000 it is possible to transport large quantities of biofuels to large energy consumers if taxes and other incentives now under discussion in the EC and national governments are introduced. The study also implies that in the year 2000 it is possible to utilise biofuels primarily in local and national markets. In the latter case, international trade will be reduced to minor spot quantities

  8. [Progress in synthesis technologies and application of aviation biofuels].

    Science.gov (United States)

    Sun, Xiaoying; Liu, Xiang; Zhao, Xuebing; Yang, Ming; Liu, Dehua

    2013-03-01

    Development of aviation biofuels has attracted great attention worldwide because that the shortage of fossil resources has become more and more serious. In the present paper, the development background, synthesis technologies, current application status and existing problems of aviation biofuels were reviewed. Several preparation routes of aviation biofuels were described, including Fischer-Tropsch process, catalytic hydrogenation and catalytic cracking of bio-oil. The status of flight tests and commercial operation were also introduced. Finally the problems for development and application of aviation biofuels were stated, and some accommodation were proposed.

  9. Livelihood implications of biofuel crop production: Implications for governance

    DEFF Research Database (Denmark)

    Hunsberger, Carol; Bolwig, Simon; Corbera, Esteve

    2014-01-01

    While much attention has focused on the climate change mitigation potential of biofuels, research from the social sciences increasingly highlights the social and livelihood impacts of their expanded production. Policy and governance measures aimed at improving the social effects of biofuels have...... by their cultivation in the global South – income, food security, access to land-based resources, and social assets – revealing that distributional effects are crucial to evaluating the outcomes of biofuel production across these dimensions. Second, we ask how well selected biofuel governance mechanisms address...

  10. Biofuel Sustainability and the Formation of Transnational Hybrid Governance

    DEFF Research Database (Denmark)

    Ponte, Stefano; Daugbjerg, Carsten

    2015-01-01

    We examine the transnational governance of biofuel sustainability and its coexistence with the WTO trade regime. The way in which the EU Renewable Energy Directive (RED) is shaping transnational biofuel governance shows deep and mutual dependence between public and private. The EU relies on a pri......We examine the transnational governance of biofuel sustainability and its coexistence with the WTO trade regime. The way in which the EU Renewable Energy Directive (RED) is shaping transnational biofuel governance shows deep and mutual dependence between public and private. The EU relies...

  11. The development of the biofuels in the french farms

    International Nuclear Information System (INIS)

    Treguer, D.; Sourie, J.C.

    2005-03-01

    At first, developed to compensate the farmers incomes after 1993, the biofuels are going today on a second development phase, in the framework of the Kyoto protocol. The aim of this paper is to define the particularities of the biofuels production agricultural phase. The most important aspects of the common agricultural policy (PAC) for the biofuels are underlined. The costs of the raw material and the tool developed by the INRA to estimate the biofuels costs are also presented. In conclusion the authors propose some reference results. (A.L.B.)

  12. Hanford Waste Vitrification Plant quality assurance program description: Overview and applications

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1990-12-01

    This document describes the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository. The Hanford Waste Vitrification Plant Quality Assurance Program is comprised of this Quality Assurance Program Description as well as the associated contractors' quality assurance programs. The objective of this Quality Assurance Program Description is to provide the Hanford Waste Vitrification Plant Project participants with guidance and direction for program implementation while satisfying the US Department of Energy Office of Civilian Radioactive Waste Management needs in repository licensing activities with regard to canistered waste forms. To accomplish this objective, this description will be prepared in three parts: Part 1 - Overview and applications document; Part 2 - Development and qualification of the canistered waste form; Part 3 - Production of canistered waste forms. Part 1 describes the background, strategy, application, and content of the Hanford Waste Vitrification Plant Quality Assurance Program. This Quality Assurance Program Description, when complete, is designed to provide a level of confidence in the integrity of the canistered waste forms. 8 refs

  13. The context of biofuels for road transportation in Brazil; O contexto dos biocombustiveis para o transporte rodoviario no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], Email: mberni@uol.com.br; Bajay, Sergio Valdir [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], Email: bajay@fem.unicamp.br

    2006-07-01

    Brazil is one of the countries with greatest potential for fuels production from biomass and has already given a good example to the world as how to implement a program and use of biofuel based on renewable energy source. The Brazilian ethanol program has already 30 years of experience and has produced a mature industry. Biogas and biodiesel, in turn, is just in the initial phase, with a supply chain being structured and looking for the best solutions from the economic, social and environment standpoint. In this context, this work analyzed the potential, implications and experiences for biofuels with ethanol, mainly biogas and biodiesel for road transport in Brazil. (author)

  14. The perspectives for genetically modified cellulosic biofuels in the Central European conditions

    Czech Academy of Sciences Publication Activity Database

    Bláhová, P.; Janda, K.; Krištoufek, Ladislav

    2014-01-01

    Roč. 60, č. 6 (2014), s. 247-259 ISSN 0139-570X Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : ellulosic biofuels * genetic modifications Subject RIV: AH - Economics Impact factor: 0.442, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433521.pdf

  15. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    Science.gov (United States)

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  16. Philosophy and overview of the INEL waste management program

    International Nuclear Information System (INIS)

    Gertz, C.P.; Whitsett, J.B.; Hamric, J.P.

    1986-01-01

    The INEL philosophy of ''get the job done; do it right--the first time'' is described as it applies to all phases of waste management activities. In addition, an overview of INEL's waste management programs and projects--low-level waste management operations and technology development; transuranic waste management operations and technology development; high-level waste management operations and technology development; spent fuel storage operations and equipment/technology development; transportation operations, technology development, and prototype cask procurements--are discussed. Emphasis is placed on the application of the INEL philosophy to the successful initiation and continuation of INEL waste management activities

  17. Environmental effect of constructed wetland as biofuel production system

    Science.gov (United States)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  18. Heterologous Synthesis and Recovery of Advanced Biofuels from Bacterial Cell Factories.

    Science.gov (United States)

    Malik, Sana; Afzal, Ifrah; Mehmood, Muhammad Aamer; Al Doghaither, Huda; Rahimuddin, Sawsan Abdulaziz; Gull, Munazza; Nahid, Nazia

    2018-01-01

    Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels. Therefore, membrane transporter engineering is gaining increasing attentions from all over the world. The main objective of this review is to explore the ways to increase the microbial production of biofuels by counteracting the cellular toxicity and facilitating their easier recovery from media. Microbial synthesis of industrially viable compounds such as biofuels has been increased due to genomic revolution. Moreover, advancements in protein engineering, gene regulation, pathway portability, metabolic engineering and synthetic biology led the focus towards the development of robust and cost-effective systems for biofuel production. The most convenient way to combat cellular toxicity and to secrete biofuels is the use of membrane transport system. The use of membrane transporters is currently a serious oversight as do not involve chemical changes and contribute greatly to efflux biofuels in extracellular milieu. However, overexpression of transport systems can also be detrimental to cell, so, in future, structure-based engineering of transporters can be employed to evaluate optimum expression range, to increase biofuel specificity and transport rate through structural studies of biofuel molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Technical solutions to make biofuels more competitive

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    With the present day environmental and economical stakes, the French government has announced in 2005 a plan for the accelerated development of biofuels. In France, two traditional ways of biofuel generation exist: the bio-ethanol way and the bio-diesel way (methyl esters of vegetable oils). Two problems limit today the development of biofuels: the available cultivation surfaces and the production costs. The challenge of the next generation of biofuels concerns the better use of the available biomass, with no competition with the food productions, and in particular the development of ethyl esters of vegetable oils or the hydrogen processing of vegetable oils. Other processes are making their way, like the biomass to liquid (BTL) process, based on the Fischer-Tropsch synthesis, which allows to convert any type of biomass source into liquid fuels with a high production rate (about 5000 l/Ha). Short paper. (J.S.)

  20. Determination of calorific values of some renewable biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jothi V.; Pratt, Benjamin C. [Department of Chemistry, North Carolina A and T State University, Greensboro, North Carolina (United States)

    1996-06-01

    Thermal methods such as differential scanning calorimetry (DSC), and elemental analysis (EA) were employed to determine the calorific values of some renewable biofuels either directly or indirectly. The biofuels tested were the common milkweed, dogbane, kudzu, and eucalyptus tree. The purpose of this work was to optimize the experimental conditions for DSC analysis of biofuels, improve the calorific values by adding metal oxides as catalysts, and compare the heat values between DSC and EA analyses

  1. Wind versus Biofuels for Addressing Climate, Health, and Energy

    International Nuclear Information System (INIS)

    Jacobson, Mark Z.

    2007-01-01

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  2. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  3. Global nitrogen requirement for increased biofuel production

    NARCIS (Netherlands)

    Flapper, Joris

    2008-01-01

    Biofuels are thought to be one of the options to substitute fossil fuels and prevent global warming by the greenhouse gas (GHG) effect as they are seen as a renewable form of energy. However, biofuels are almost solely subjected to criticism from an energ

  4. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  5. Liquid biofuels in the aeroderivative gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    DiCampli, James; Schornick, Joe; Farr, Rachel

    2010-09-15

    While there are regional economic and political incentives for using liquid biofuels for renewable power generation, several challenges must be addressed. Given the fuel volumes required, base-load operation with renewable fuels such as biodiesel and ethanol are not likely sustainable with today's infrastructure. However, blending of biofuels with fossil fuels is a more economic option to provide renewable power. In turn, this lays the foundation to increase to more power generation in the future as new generation biofuels come on line. And, much like the automotive industry, the power industry will need to institute design changes to accommodate these fuels.

  6. Biofuel implementation in East Europe: Current status and future prospects

    International Nuclear Information System (INIS)

    Kondili, E.M.; Kaldellis, J.K.

    2007-01-01

    There is a continuously increasing interest concerning the biofuel implementation in Europe, mainly because of environmental protection and energy supply security reasons. In this context, the European Union (EU) strongly encourages the use of biofuels through a number of Directives. To that effect, EU members follow the Directives implementing various political, fiscal and technical measures and incentives. In the light of the potential created by the recently joined Eastern European countries, an increasing interest is shown in the whole biofuel supply chain within the EU. In parallel, the status of the Eastern European countries domestic market, as far as biofuels are concerned, is an interesting issue, since most of these countries present a significant potential, however still lagging in biofuel implementation. In the above context, the objective of the present work is to give a concise and up-to-date picture of the present status of biofuel implementation in East Europe. The work also aims at identifying the prospects of these countries as far as biofuels are concerned and their role in the EU framework as potential suppliers of a wider market. (author)

  7. Perspectives for Sustainable Aviation Biofuels in Brazil

    Directory of Open Access Journals (Sweden)

    Luís A. B. Cortez

    2015-01-01

    Full Text Available The aviation industry has set ambitious goals to reduce carbon emissions in coming decades. The strategy involves the use of sustainable biofuels, aiming to achieve benefits from environmental, social, and economic perspectives. In this context, Brazilian conditions are favorable, with a mature agroindustry that regularly produces automotive biofuel largely adopted by Brazilian road vehicles, while air transportation has been growing at an accelerating pace and a modern aircraft industry is in place. This paper presents the main conclusions and recommendations from a broad assessment of the technological, economic, and sustainability challenges and opportunities associated with the development of drop-in aviation biofuels in Brazil. It was written by a research team that prepared the initial reports and conducted eight workshops with the active participation of more than 30 stakeholders encompassing the private sector, government institutions, NGOs, and academia. The main outcome was a set of guidelines for establishing a new biofuels industry, including recommendations for (a filling the identified research and development knowledge gaps in the production of sustainable feedstock; (b overcoming the barriers in conversion technology, including scaling-up issues; (c promoting greater involvement and interaction between private and government stakeholders; and (d creating a national strategy to promote the development of aviation biofuels.

  8. Public opinion about biofuels: The interplay between party identification and risk/benefit perception

    International Nuclear Information System (INIS)

    Fung, Timothy K.F.; Choi, Doo Hun; Scheufele, Dietram A.; Shaw, Bret R.

    2014-01-01

    Using an experiment embedded within a representative survey, this study examined the interactive effect of party identification and risk/benefit perception on public opinion about biofuels. Democrats tended to be more supportive of biofuels than Republicans. However, the effect of party identification on opinion about biofuels varied when individuals considered the risk/benefit of biofuels in different domains. Individuals who reported greater affiliation with the Democratic Party were likely to support funding biofuels research when primed with the economic risks or the social/ethical benefits of biofuels. For those who considered the social/ethical benefits of biofuels, more self-identified Democrats were likely to support biofuels production and use. However, more self-identified Democrats were less supportive of biofuels production and use when they considered the political risks of biofuels. Implications are discussed. - Highlights: • We examined public opinion about biofuels policies. • Effect of risk/benefit perception varied across respondents' party identification. • Democrats favored more research when considering economic risks or social benefits. • Democrats favored biofuels more when considering social benefits. • Democrats favored biofuels less when considering political risks

  9. Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves.

    Science.gov (United States)

    Tian, Ying-Ze; Chen, Jia-Bao; Zhang, Lin-Lin; Du, Xin; Wei, Jin-Jin; Fan, Hui; Xu, Jiao; Wang, Hai-Ting; Guan, Liao; Shi, Guo-Liang; Feng, Yin-Chang

    2017-12-01

    Source and ambient samples were collected in a city in China that uses considerable biofuel, to assess influence of biofuel combustion and other sources on particulate matter (PM). Profiles and size distribution of biofuel combustion were investigated. Higher levels in source profiles, a significant increase in heavy-biomass ambient and stronger correlations of K + , Cl - , OC and EC suggest that they can be tracers of biofuel combustion. And char-EC/soot-EC (8.5 for PM 2.5 and 15.8 for PM 10 of source samples) can also be used to distinguish it. In source samples, water-soluble organic carbon (WSOC) were approximately 28.0%-68.8% (PM 2.5 ) and 27.2%-43.8% (PM 10 ) of OC. For size distribution, biofuel combustion mainly produces smaller particles. OC1, OC2, EC1 and EC2 abundances showed two peaks with one below 1 μm and one above 2 μm. An advanced three-way factory analysis model was applied to quantify source contributions to ambient PM 2.5 and PM 10 . Higher contributions of coal combustion, vehicular emission, nitrate and biofuel combustion occurred during the heavy-biomass period, and higher contributions of sulfate and crustal dust were observed during the light-biomass period. Mass and percentage contributions of biofuel combustion were significantly higher in heavy-biomass period. The biofuel combustion attributed above 45% of K + and Cl - , above 30% of EC and about 20% of OC. In addition, through analysis of source profiles and contributions, they were consistently evident that biofuel combustion and crustal dust contributed more to cation than to anion, while sulfate & SOC and nitrate showed stronger influence on anion than on cation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 2016 National Algal Biofuels Technology Review Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  11. Fuelling expectations: A policy-promise lock-in of UK biofuel policy

    International Nuclear Information System (INIS)

    Berti, Pietro; Levidow, Les

    2014-01-01

    Controversy over EU-wide biofuel policy resonated within the UK, fuelling policy disagreements among UK public authorities. They disagreed over how to protect a space for future second-generation biofuels, which were expected to overcome harm from first-generation biofuels. The UK government defended rising targets for available biofuels as a necessary stimulus for industry to help fulfil the UK's EU obligations and eventually develop second-generation biofuels. By contrast, Parliamentary Select Committees opposed biofuel targets on grounds that these would instead lock-in first-generation biofuels, thus delaying or pre-empting second-generation biofuels. Those disagreements can be explained by different institutional responsibilities and reputational stakes towards ‘promise-requirement cycles’, whereby techno-optimistic promises generate future requirements for the actors involved. The UK government's stance illustrates a ‘policy-promise lock-in’, a dilemma whereby promised support is a requirement for credibility towards technology innovators and thus technoscientific development – but may delay the redirection of support from incumbent to preferable emerging technologies. Thus the sociology of expectations – previously applied to technological expectations from technology innovators – can be extended to analyse public authorities. - Highlights: • Controversy over EU-wide biofuel policy resonated within the UK. • At issue was how to stimulate future 2nd-generation biofuels. • The government defended targets for 1st-generation as necessary to stimulate industry. • Parliamentary Committees opposed biofuel targets as locking in 1st-generation. • The UK government′s stance illustrates a ‘policy-promise lock-in’

  12. Positive and negative impacts of agricultural production of liquid biofuels

    NARCIS (Netherlands)

    Reijnders, L.; Hester, R.E.; Harrison, R.M.

    2012-01-01

    Agricultural production of liquid biofuels can have positive effects. It can decrease dependence on fossil fuels and increase farmers’ incomes. Agricultural production of mixed perennial biofuel crops may increase pollinator and avian richness. Most types of agricultural crop-based liquid biofuel

  13. Energy properties of solid fossil fuels and solid biofuels

    International Nuclear Information System (INIS)

    Holubcik, Michal; Jandacka, Jozef; Kolkova, Zuzana

    2016-01-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  14. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  15. Transport biofuels - a life-cycle assessment approach

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil

  16. Overcoming the initial investment hurdle for advanced biofuels. An analysis of biofuel-related risks and their impact on project financing. Report of ELOBIO subtask 7

    International Nuclear Information System (INIS)

    Bole, T.; Londo, M.; Van Stralen, J.; Uslu, A.

    2010-04-01

    The ELOBIO research project aims to develop policies that will help achieve a higher share of biofuels in total transport fuel in a low-disturbing and sustainable way. Workpackage 7 of the ELOBIO project aims at addressing the objective of providing a reliable estimate of the potential and costs of biofuels, given the application of low-disturbing policy measures. More specifically, we seek to evaluate the impact of these biofuel policy measures on the investment climate for second-generation technologies. To this end, we try to answer several sub-questions in a following logical sequence: (1) What are the different factors that contribute to investment risk in biofuels and what are their relative contributions to overall biofuel project risk as perceived by finance providers?; (2) How do these risks translate into cost of capital for different biofuel technologies?; (3) How does cost of capital influence market penetration rates for the different technologies?; and (4) What is the best policy (or policy mix) to overcome the initial investment hurdle for advanced biofuels, thus lowering their cost of capital and achieve wider market deployment?.

  17. Next-generation biofuels: a new challenge for yeast.

    Science.gov (United States)

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Biofuels securing the planet's future energy needs

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment.

  19. Efficient production of automotive biofuels; Effektiv produktion av biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Hagberg, Linus; Rydberg, Tomas; Raadberg, Henrik; Saernholm, Erik

    2008-07-01

    , production of fatty acid methyl ester (FAME), pellets production and in some cases treatment with hydrogen gas, catalytic depolymerisation and anaerobic digestion can increase the use of steam and heat from district heating. This new 'offset' for heat can increase operational hours for the CHP. Conversely, biomass gasification produces a greater proportion of the necessary process energy internally and the waste heat produced in the process leads to a lower load for heat production in the CHP. These conclusions are illustrated in the form of a diagram of heat output distribution, both for the hypothetical polygeneration plant of ethanol production and for the hypothetical biomass gasification polygeneration plant with production of synthetic natural gas. The calculations are based on a district heating network where the heat is produced from a biofuel driven CHP (89 MW{sub e}, 173 MW{sub heat} and 230 MW{sub fuel}) and a biofuel driven HP. Since the prerequisites for each specific polygeneration plant are different, the effect of integrations in reality would differ from the results of these calculations--but the results give an overview of the consequences of the choice of energy polygeneration plant. Several interesting combinations in the form of biofuel polygeneration plants are already in operation or in the planning stage. Several conceivable alternatives are: - Ethanol production, anaerobic digestion/feed production, heat and power. - Ethanol production, pellets production, greenhouse, heat and power. - Gasification including fuel production, district heating network and pellets production. - Oilseed rape production, RME production, heat and power. - NExBTL production, refinery, district heating network/heat and power. In most cases the overall efficiency of biofuel production is lower than if biomass is used directly in heat and power production as shown in the system analysis. This is, however, in conflict with the increasing demand for biofuels. A biomass

  20. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    , more than 70% of the TDM funds will be competitively awarded as a result of yearly calls for proposed flight demonstrators and selected based on possible payoff to NASA, technology maturity, customer interest, cost, and technical risk reduction. This paper will give an overview of the TDM Program s mission and organization, as well as its current status in delivering advanced space technologies that will enable more flexible and robust future missions. It also will provide several examples of missions that fit within these parameters and expected outcomes.

  1. Biofuels in the long-run global energy supply mix for transportation.

    Science.gov (United States)

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  2. Algae as a Biofuel: Renewable Source for Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Vijay Kant Pandey

    2016-09-01

    Full Text Available Biofuels produced by algae may provide a feasible alternative to fossil fuels like petroleum sourced fuels. However, looking to limited fossil fuel associated with problems, intensive efforts have been given to search for alternative biofuels like biodiesel. Algae are ubiquitous on earth, have potential to produce biofuel. However, technology of biofuel from algae facing a number of hurdles before it can compete in the fuel market and be broadly organized. Different challenges include strain identification and improvement of algal biomass, both in terms of biofuel productivity and the production of other products to improve the economics of the entire system. Algal biofuels could be made more cost effective by extracting other valuable products from algae and algal strains. Algal oil can be prepared by culture of algae on municipal and industrial wastewaters. Photobioreactors methods provide a controlled environment that can be tailored to the specific demands of high production of algae to attain a consistently good yield of biofuel. The algal biomass has been reported to yield high oil contents and have good amount of the biodiesel production capacity. In this article, it has been attempted to review to elucidate the approaches for making algal biodiesel economically competitive with respect to petrodiesel. Consequently, R & D work has been carried out for the growth, harvesting, oil extraction and conversion to biodiesel from algal sources.

  3. The European Commission 2008 Directive Proposal on Biofuels - Comment

    Directory of Open Access Journals (Sweden)

    Florent Pelsy

    2008-09-01

    Full Text Available This article focuses on the 2008 Directive Proposal of the European Commission on biofuels. The development of biofuels as a renewable energy source has been perceived as a priority by the European Union. Indeed biofuels are approached by the EU as a new 'win-win' solution that could both reduce emission of greenhouses gases in the context of climate change and improve energy security while not affecting the European economic growth. The 2008 Directive Proposal of the Commission requires an objective of ten per cent of biofuels in the EU Transport in 2020. In order to qualify within that target biofuels shall be produced according to certain environmental criteria. This article points out the tremendous negative impacts on food security and the environment both in the developed and in the developing world of such a large-scale consumption of biofuels. It then considers that the environmental criteria required by the Directive Proposal of the Commission are not likely to be the adequate response to tackle the negative consequences of the implementation of that ten per cent target. It, thus, suggests the application of the precautionary principle as sketched out by the European Court of Justice in the case Pfizer - Alpharma to that ten per cent target and a moratorium on biofuels at the EU level.

  4. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  5. Assessing soil and groundwater contamination from biofuel spills.

    Science.gov (United States)

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  6. Panorama 2007: Biofuels in Europe

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The current leader on the world bio-diesel market, Europe is, after the United States and Brazil, one of the regions driving the production and utilization of biofuels. Its ambitious bio-fuel content targets for motor fuels (5.75% by 2010 and 8% by 2015) encourage Member States to significantly develop those pathways. This raises certain questions, especially about available biomass resources. It is likely that, beyond 2010, technologies other than those in existence today, using ligno-cellulosic biomass, will have to be implemented. (author)

  7. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  8. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  9. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  10. What is the future for biofuels and bio-energy crops

    International Nuclear Information System (INIS)

    2005-01-01

    This seminar is part of the Ifri research program on agricultural policies. It aims to evaluate the future prospects for the development of bio-energy crops in light of the new energetic and environmental order. Within one generation the hydrocarbon market will likely be under great pressure. The prospect of a lasting high oil price will lead to the use of renewable resources like biofuels. Moreover growing environmental concern about global warming give one more credibility to the development of biofuels. These fuels emit a limited amount of greenhouse gas compared to standard fuels. We have to therefore examine the development possibility of these fuels taking into account the agronomic features of the crops used, the technology of the transformation process and existing initiative policies with respect to the regions studied. Also, we have to evaluate the impact of the energy crisis on food supply via the substitution effect in land allocation. (author)

  11. Biofuels barometer - EurObserv'ER - July 2012

    International Nuclear Information System (INIS)

    2012-07-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by 3.1%, which translates into 14 million tons of oil equivalent (toe) used in 2011 compared to 13.6 million toe in 2010. The European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  12. Risks affecting the biofuels industry: A US and Canadian company perspective

    International Nuclear Information System (INIS)

    Pries, Fred; Talebi, Alireza; Schillo, R. Sandra; Lemay, Margaret A.

    2016-01-01

    Policymakers face the challenge of finding a mix of policies that are effective in growing the biofuels industry. We argue that a missing component of biofuel policy is consideration of the risks faced by companies in the biofuels industry. The purpose of this paper is to address the research question: What are the most important risks facing companies in the biofuels industry? We identify 22 risks in our analysis of 652 narrative risk factor descriptions disclosed by 26 publicly traded biofuel companies in the US and Canada. The results show that the most important risks are related to management and management processes, and to market conditions and profitability. Biofuel companies view technological risks, including those related to intellectual property protection, as less significant. These results suggest that, in order to be responsive to the risks companies face, biofuel policy needs to support the development of managers and management processes; to support market conditions and industry profitability; and to strike an appropriate balance between policy support for technology development and for business development. Further, we suggest a risk informed approach to setting government policy for the biofuels industry may support the industry's development. - Highlights: • Risk factors disclosed by 26 publicly traded biofuel companies were analyzed. • 22 risks were identified and assessed. • Key risks involved management, market conditions and profitability. • A risk focused approach to biofuel policy may support the industry's development.

  13. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  14. Biofuels, times are changing. Notification effect or real progress?

    International Nuclear Information System (INIS)

    Scarwell, H.J.

    2007-01-01

    This well-documented book analyses the implications relative to the recent decisions taken for the development of biofuels. The history of alcohol-based biofuels, in France, in Europe and in the rest of the world, shows why the present day 'opportunity window' makes these fuels more 'sustainable' today than in the past: the common agricultural policy, the oil crisis, the global warming and its expected impacts have led governments to develop biofuels. The authors stress on the fragile equilibrium between agriculture and energy markets and on the fact that the viability/sustainability of biofuels-related decisions will depend on the economic scales (from micro- to macro-economy) and on the agronomic environmental scales (from the rural area to the global environment). Many researches remain to be carried out on biofuels, in particular with respect to their potential toxicity and to their conformability with recent regulations. (J.S.)

  15. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  16. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  17. Zinc-Laccase Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2011-12-01

    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  18. Energy demands in the 21st century: the role of biofuels in a developing country

    International Nuclear Information System (INIS)

    Quaye, E.C.

    1996-01-01

    In most developing countries more than 25% of total energy use comes from biofuels. In Ghana, the figure is between 70-80%. Bioenergy is mainly used for cooking and heating, and is also important in rural or cottage industries. As a developing country, Ghana's economic growth remains coupled to the availability and supply of energy. About 29% of this energy is obtained through hydropower and imported petroleum. The two hydropower installations generate about 1102 MW annually mainly for domestic and industrial uses. At the current 3.0% average annual population growth rate, a population of about 35 million is expected by 2025. Coupled with the country's efforts to promote industrialization, future energy demand is expected to increase several fold. This paper provides an overview of Ghana's current energy situation and discusses the role of bioenergy in the future energy demand of the country. The paper concludes with a recommendation for a major shift in energy policy to accommodate the conversion of biofuels into versatile energy carriers in a decentralised system to meet the energy requirements of the people and to provide a basis for rural development and employment. (Author)

  19. An overview of the NASA rotary engine research program

    Science.gov (United States)

    Meng, P. R.; Hady, W. F.

    1984-01-01

    A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.

  20. Panorama 2011: Water and bio-fuels

    International Nuclear Information System (INIS)

    Lorne, D.

    2011-01-01

    Nowadays, water is seen as a major sustainability criterion for bio-energies. Although the biofuels being produced by food crops are subject to the same risks as the farming sector as far as water resources are concerned, future sectors have a significant potential to reduce these risks, and this potential needs to be better understood in order for biofuels as a resource and their related technologies to develop properly. (authors)

  1. Recent developments and key barriers to advanced biofuels: A short review.

    Science.gov (United States)

    Oh, You-Kwan; Hwang, Kyung-Ran; Kim, Changman; Kim, Jung Rae; Lee, Jin-Suk

    2018-06-01

    Biofuels are regarded as one of the most viable options for reduction of CO 2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO 2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The NASA Electronic Parts and Packaging (NEPP) Program: NEPP Overview - Automotive Electronics

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using U.S. Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Council's AECQ standardization program, the second part provides a summary of the results of NASA's procurement and testing experiences and other lessons learned along with preliminary test results.

  3. Microalgae for biofuels production and environmental applications ...

    African Journals Online (AJOL)

    This review presents the current classification of biofuels, with special focus on microalgae and their applicability for the production of biodiesel. The paper considered issues related with the processing and culturing of microalgae, for not only those that are involved in biofuel production, but as well as the possibility of their ...

  4. Three routes forward for biofuels: Incremental, leapfrog, and transitional

    International Nuclear Information System (INIS)

    Morrison, Geoff M.; Witcover, Julie; Parker, Nathan C.; Fulton, Lew

    2016-01-01

    This paper examines three technology routes for lowering the carbon intensity of biofuels: (1) a leapfrog route that focuses on major technological breakthroughs in lignocellulosic pathways at new, stand-alone biorefineries; (2) an incremental route in which improvements are made to existing U.S. corn ethanol and soybean biodiesel biorefineries; and (3) a transitional route in which biotechnology firms gain experience growing, handling, or chemically converting lignocellulosic biomass in a lower-risk fashion than leapfrog biorefineries by leveraging existing capital stock. We find the incremental route is likely to involve the largest production volumes and greenhouse gas benefits until at least the mid-2020s, but transitional and leapfrog biofuels together have far greater long-term potential. We estimate that the Renewable Fuel Standard, California's Low Carbon Fuel Standard, and federal tax credits provided an incentive of roughly $1.5–2.5 per gallon of leapfrog biofuel between 2012 and 2015, but that regulatory elements in these policies mostly incentivize lower-risk incremental investments. Adjustments in policy may be necessary to bring a greater focus on transitional technologies that provide targeted learning and cost reduction opportunities for leapfrog biofuels. - Highlights: • Three technological pathways are compared that lower carbon intensity of biofuels. • Incremental changes lead to faster greenhouse gas reductions. • Leapfrog changes lead to greatest long-term potential. • Two main biofuel policies (RFS and LCFS) are largely incremental in nature. • Transitional biofuels offer medium-risk, medium reward pathway.

  5. 75 FR 13740 - Office of Innovation and Improvement; Overview Information; Charter Schools Program (CSP) Grants...

    Science.gov (United States)

    2010-03-23

    ... DEPARTMENT OF EDUCATION Office of Innovation and Improvement; Overview Information; Charter Schools Program (CSP) Grants for National Leadership Activities; Notice Inviting Applications for New... of public schools have been identified for improvement, corrective action, or restructuring under...

  6. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  7. Bio-fuels for the gas turbine: A review

    International Nuclear Information System (INIS)

    Gupta, K.K.; Rehman, A.; Sarviya, R.M.

    2010-01-01

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  8. Research promotion of the FNR on biofuels. Energy from algae; Forschungsfoerderung der FNR zu Biokraftstoffen. Energie aus Algen

    Energy Technology Data Exchange (ETDEWEB)

    Spittel, Maria [Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Guelzow (Germany). Abt. Projektmanagement

    2012-07-01

    There is an increasing interest in biofuels motivated mainly by climate and environment conservation aspects, but also due to aiming at more independence in fuel supply security. Biofuels had a share of 5,6 % (33.7 TWh) in the total fuel consumption in 2011. The total turnover in the biofuel sector added up to about 3,350 Mill. EUR, showing its economic importance. In this context algae technology is becoming more and more prominent. Algae are seen as alternative resource with increasing importance for the production of biofuels. However, the viability of the involved production and conversion processes are strongly connected to further development and increasing efficiency of algae biotechnology. To date, using algae for energy purposes only is economically not viable. The synergetic combination of industrial and energetic uses of algae will become more important in the future. The Agency for Renewable Resources (FNR) funds innovative R and D and demonstration projects in the framework of the funding program ''Renewable Resources'' initiated by the German Ministry of Food Agriculture and Consumer Protection (BMELV). In this context, FNR supports the optimisation of already commercialised biofuels as well as the further development of future options like fuels from algae biomass. (orig.)

  9. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  10. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence

    Directory of Open Access Journals (Sweden)

    Phillip Steele

    2011-10-01

    Full Text Available The growing interest in US biofuels has been motivated by two primary national policy goals, (1 to reduce carbon emissions and (2 to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  12. Next generation biofuel engineering in prokaryotes

    Science.gov (United States)

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  13. Stochastic production planning for a biofuel supply chain under demand and price uncertainties

    International Nuclear Information System (INIS)

    Awudu, Iddrisu; Zhang, Jun

    2013-01-01

    Highlights: ► The proposed stochastic model outperforms the deterministic model. ► The price of biofuel is modeled as Geometric Brownian Motion (GBM). ► The proposed model can be applied in any biofuel supply chain. -- Abstract: In this paper, we propose a stochastic production planning model for a biofuel supply chain under demand and price uncertainties. The supply chain consists of biomass suppliers, biofuel refinery plants and distribution centers. A stochastic linear programming model is proposed within a single-period planning framework to maximize the expected profit. Decisions such as the amount of raw materials purchased, the amount of raw materials consumed and the amount of products produced are considered. Demands of end products are uncertain with known probability distributions. The prices of end products follow Geometric Brownian Motion (GBM). Benders decomposition (BD) with Monte Carlo simulation technique is applied to solve the proposed model. To demonstrate the effectiveness of the proposed stochastic model and the decomposition algorithm, a representative supply chain for an ethanol plant in North Dakota is considered. To investigate the results of the proposed model, a simulation framework is developed to compare the performances of deterministic model and proposed stochastic model. The results from the simulation indicate the proposed model obtain higher expected profit than the deterministic model under different uncertainty settings. Sensitivity analyses are performed to gain management insight on how profit changes due to the uncertainties affect the model developed.

  14. Different paths towards sustainable biofuels? : A comparative study of the International, EU, and Chinese regulation of the sustainability of biofuels

    NARCIS (Netherlands)

    Yue, Taotao

    2016-01-01

    Biofuels are promoted as a type of renewable energy from biomass that replaces fossil fuels in transportation, in an attempt to achieve the three-fold objectives of energy security, rural development, and GHG emission reductions. However, the increased consumption and production of biofuels have

  15. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  16. Advice on the accelerated market implementation of advanced biofuels

    International Nuclear Information System (INIS)

    2008-04-01

    The Platform for Sustainable Mobility aims to promote the accelerated market introduction of more sustainable motor fuels and vehicle technology. The Platform distinguishes four transition paths: hybridization of the fleet of cars; implementation of biofuels; hydrogen-fuelled driving (driving on natural gas and biogas); intelligent transport systems (ITS). This advice involves part of the transition path for the implementation of biofuels, i.e. accelerated market introduction of advances biofuels. [mk] [nl

  17. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  18. Biofuels barometer - EurObserv'ER - July 2014

    International Nuclear Information System (INIS)

    2014-07-01

    6.8% the drop in biofuel consumption in European Union transport between 2012 and 2013. The growth of biofuel consumption for use in transport in the European Union (EU -28) has dwindled in the past few years and finally dropped by about 1 million toe (6.8%) between 2012 and 2013 according to EurObserv'ER, to a consumption level of 13.6 million toe. Nevertheless, sustainable biofuel consumption, certified and thus eligible for inclusion in European targets increased slightly by 1.1% to 11.8 Mtoe

  19. Microbial engineering for the production of advanced biofuels.

    Science.gov (United States)

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  20. Liquid Biofuels: We Lose More than We Win

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Hedegaard, Karsten; Thyø, Kathrine

    2013-01-01

    biofuels, including first-generation bio-diesels (plant bio-diesels) as well as first- and second-generation bioethanols produced in Europe and the USA. When we prioritise biomass for these biofuels, we deprive ourselves the better alternative of using the same limited biomass for heat and power...... fuel substitution, and biomass is increasingly used for both the transport and the heat and power sectors, with increasing interest in using it for chemicals production as well. For the transport sector, the conversion of biomass to the liquid biofuels of bio-diesel and bioethanol is at present...

  1. Public policy and biofuels: The way forward?

    International Nuclear Information System (INIS)

    Charles, Michael B.; Ryan, Rachel; Ryan, Neal; Oloruntoba, Richard

    2007-01-01

    The use of biofuels has been given much attention by governments around the world, especially in increasingly energy-hungry OECD nations. Proponents have argued that they offer various advantages over hydrocarbon-based fuels, especially with respect to reducing dependence on OPEC-controlled oil, minimizing greenhouse gas (GHG) emissions, and ensuring financial and lifestyle continuity to farmers and agriculturally dependent communities. This paper adds to the continuing technical debate by addressing the issue from a holistic public policy perspective. In particular, it looks at the proposed benefits of biofuels, yet also addresses the implications of increased demand on the global and regional environment, in addition to the economic welfare of developing nations. Furthermore, it posits that short-term reliance on biofuels vis-a-vis other alternative energy sources may potentially inhibit the development and maturation of longer-term technologies that have greater potential to correct the harmful effects of fossil-fuel dependence. In light of this, the manifold policy instruments currently employed or proposed by governments in developed nations to promote biofuels emerge as questionable

  2. Will biofuel projects in Southeast Asia become white elephants?

    International Nuclear Information System (INIS)

    Goh, Chun Sheng; Lee, Keat Teong

    2010-01-01

    Southeast Asia's attempt to join the global biofuel development has not been very successful, despite the large amount of subsidies and incentives allotted for biofuel projects. The outcome of these projects has failed to meet expectation due to overrated assumptions and shortsighted policies. Utilization of edible feedstock such as palm oil and sugar cane for biofuel has disrupted the fragile industry due to the fluctuations of feedstock prices. The appropriate research on jatropha to prove its economic and environmental feasibility as energy crop has not been performed. Biofuel development in Southeast Asia remains at an early stage of development and requires highly intensive monitoring and strict legal enforcement to ensure future success.

  3. Production and trading of biomass for energy - An overview of the global status

    International Nuclear Information System (INIS)

    Heinimoe, J.; Junginger, M.

    2009-01-01

    The markets for industrially used biomass for energy purposes are developing rapidly toward being international commodity markets. Determining international traded biomass volumes for energy purposes is difficult, for several reasons, such as challenges regarding the compilation of statistics on the topic. While for some markets (pellets and ethanol) separate overviews exist, no comprehensive statistics and summaries aggregating separate biomass streams are available. The aim of this paper is to summarise trade volumes for various biomasses used for energy and to review the challenges related to measurement of internationally traded volumes of biofuels. International trade of solid and liquid biofuels was estimated to be about 0.9 EJ for 2006. Indirect trade of biofuels thorough trading of industrial roundwood and material byproducts comprises the largest proportion of trading, having a share of about 0.6 EJ. The remaining amount consisted of products that are traded directly for energy purposes, with ethanol, wood pellets, and palm oil being the most important commodities. In 2004-2006, the direct trade of biofuels increased 60%, whereas indirect trade has been almost constant. When compared to current global energy use of biomass (about 50 EJ yr -1 ) and to the long-term theoretical trading potential between the major regions of the world (80-150 EJ yr -1 ), the development of international trade of biomass for energy purposes is in its initial stage, but it is expected to continue to grow rapidly. (author)

  4. Biofuels 2.0 move to pilot plant

    International Nuclear Information System (INIS)

    Dupin, L.

    2010-01-01

    The second generation of biofuels, which use the non-energy parts of plants, do not compete with the food industry. These biofuels have been tried and tested at the laboratory but challenges are occurring with the transition to industrial plants. Demonstrators and prototypes are developing in Germany, Japan, USA and France and bet on two different processes, the biochemical way (enzymatic reaction and fermentation) and the thermochemical way (gasification and Fischer-Tropsch synthesis). Research is in progress on a possible third generation of biofuels which will use micro-algae. The interest of this third way is triple: no competition with the food industry, no land use (production in bioreactors), and enhanced CO 2 capture. (J.S.)

  5. MAIN TRENDS OF BIOFUELS PRODUCTION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Myroslav PANCHUK

    2017-12-01

    Full Text Available The analysis of biological resources for biofuels production in Ukraine has been carried out, and it has been shown that usage of alternative energy sources has great potential for substantially improving energy supply of the state and solving environmental problems. The directions of development and new technologies of obtaining motor fuels from biomass are systematized. It has been established that usage of different types of biofuels and their mixtures for feeding internal combustion engines involves application of modified engines in terms of structure and algorithms and usage of traditional designs of cars without significant structural changes. Moreover, the impact of biofuels on the efficient operation of the engine requires further integrated research.

  6. Increase of the investments for the biofuels

    International Nuclear Information System (INIS)

    Jemain, A.

    2005-01-01

    With the construction for 2007 of six new units of biofuels (three bio-diesel and three bio-ethanol), France is developing its energy policy in favor of the biofuels. This decision benefits Diester and Sofiproteol industries which will invest in the development of their deposits. The enthusiasm is less for the bio-ethanol industries. (A.L.B.)

  7. Promoting Second Generation Biofuels: Does the First Generation Pave the Road?

    Directory of Open Access Journals (Sweden)

    Hakan Eggert

    2014-07-01

    Full Text Available The U.S., Brazil and a number of European and other countries worldwide have introduced various support schemes for bioethanol and biodiesel. The advantage of these biofuels is that they are relatively easily integrated with the current fossil fuel-based transport sector, at least up to a certain point. However, recent studies point to various negative effects of expanding the production of first generation (1G biofuels further. 1G biofuels’ problems can be overcome by a transition to second generation (2G biofuels. So far, 2G biofuels are much more costly to produce. We therefore ask: to what extent is targeted support to 2G biofuels likely to bring costs down? Additionally, are current support schemes for biofuels well designed in order to promote the development of 2G biofuels? We find that the prospects for cost reduction look better for 2G bioethanol than for 2G biodiesel. Bioethanol made from cellulose is far from a ripe technology, with several cost-reducing opportunities yet to be developed. Hence, targeted support to cellulosic ethanol might induce a switch from 1G to 2G biofuels. However, we find little evidence that production and use of 1G bioethanol will bridge the conversion to 2G bioethanol. Hence, to the extent that private investment in the development of 2G bioethanol is too low, current support schemes for 1G biofuels may block 2G bioethanol instead of promoting it.

  8. Biofuels and the role of space in sustainable innovation journeys.

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison

    2014-02-15

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  9. Biofuels and the role of space in sustainable innovation journeys☆

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison

    2014-01-01

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970–80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  10. Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

    Directory of Open Access Journals (Sweden)

    Markus Millinger

    2018-03-01

    Full Text Available Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy.

  11. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  12. Overview of the DOE-EM Packaging Certification Program

    International Nuclear Information System (INIS)

    Feldman, M.R.; Bennett, M.E.; Shuler, J.M.

    2009-01-01

    The U.S. Department of Transportation, in 49 CFR 173.7(d) grants the U.S. Department of Energy (DOE) the power to use 'packagings made by or under the direction of the U.S. Department of Energy... for the transportation of Class 7 materials when evaluated, approved and certified by the Department of Energy against packaging standards equivalent to those specified in 10 CFR part 71'. Via DOE Order 460.1B, DOE has established the DOE Packaging Certification Program (PCP) within the Department of Environmental Management for purposes including the certification of radioactive materials packages for DOE use. This paper will provide an overview of the programs and activities currently undertaken by the PCP in support of the safe transport of radioactive materials, including technical review of Safety Analysis Reports for Packaging, development of guidance documents and training courses, a quality assurance audit and field assessment program, database and docket management, and testing and test methodology development. The paper will also highlight the various organizations currently utilized by the PCP to meet the requirements of DOE O 460.1B, as well as some creative and effective methods that are being used to meet program objectives. The DOE Package Certification Program's primary function is to perform technical reviews of SARPs in support of the packaging certification process to ensure that the maximum protection is afforded to the public, all federal regulations are met, and the process is as time-effective and cost-effective as possible. Five additional specific functions are also supported by the PCP: development of guidance documents, training courses, a QA audit and field assessment program, database and docket management, and testing methods development. Each of these functions individually contributes to the overall mission of the PCP as defined in DOE O 460.1B. Taken as a whole, these functions represent a robust program to ensure the safety of workers

  13. Biofuels: The hidden cause of deforestation?

    OpenAIRE

    Smith, Alison; Lebensohn, Ignacio; Lickacz, Lindsay; Clarke, Louise

    2009-01-01

    The objective of the project is to establish a causal relationship between the biofuel market in the USA and the Amazonic Deforestation. The project parts from an objectivist approach and uses economic as well as environmental theories as a starting point. It attempts to demonstrate that biofuels are not as environmentally friendly as advertised, but instead have a detrimental effect on the Amazon Rainforest. The project utilizes statistics as a main source for empirical data, as well various...

  14. Pathways to Carbon-Negative Liquid Biofuels

    Science.gov (United States)

    Woolf, D.; Lehmann, J.

    2017-12-01

    Many climate change mitigation scenarios assume that atmospheric carbon dioxide removal will be delivered at scale using bioenergy power generation with carbon capture and storage (BECCS). However, other pathways to negative emission technologies (NETs) in the energy sector are possible, but have received relatively little attention. Given that the costs, benefits and life-cycle emissions of technologies vary widely, more comprehensive analyses of the policy options for NETs are critical. This study provides a comparative assessment of the potential pathways to carbon-negative liquid biofuels. It is often assumed that that decarbonisation of the transport sector will include use of liquid biofuels, particularly for applications that are difficult to electrify such as aviation and maritime transport. However, given that biomass and land on which to grow it sustainably are limiting factors in the scaling up of both biofuels and NETs, these two strategies compete for shared factors of production. One way to circumvent this competition is carbon-negative biofuels. Because capture of exhaust CO2 in the transport sector is impractical, this will likely require carbon capture during biofuel production. Potential pathways include, for example, capture of CO2 from fermentation, or sequestration of biochar from biomass pyrolysis in soils, in combination with thermochemical or bio-catalytic conversion of syngas to alcohols or alkanes. Here we show that optimal pathway selection depends on specific resource constraints. As land availability becomes increasingly limiting if bioenergy is scaled up—particularly in consideration that abandoned degraded land is widely considered to be an important resource that does not compete with food fiber or habitat—then systems which enhance land productivity by increasing soil fertility using soil carbon sequestration become increasingly preferable compared to bioenergy systems that deplete or degrade the land resource on which they

  15. Biofuels in Central America; Biobrandstoffen in Midden-Amerika

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, E.

    2007-08-15

    This report presents the results of an analysis of the biofuel markets in El Salvador, Panama, Costa Rica and Honduras. The aim of this report is to provide insight in the current situation and the expected developments in these markets and thus to provide investors with an image of the opportunities that could be present in this sector. An attempt has been made to provide a clear overview of this sector in the countries concerned. Due to a lack of data this has not been fully accomplished in some cases. [mk]. [Dutch] De resultaten van een analyse van de bio-brandstoffenmarkten in El Salvador, Panama, Costa Rica en Honduras worden gepresenteerd. Het doel van het rapport is inzicht te geven in de stand van zaken en de te verwachten ontwikkelingen op deze markten om zo investeerders een beeld te geven in kansen die in deze sector eventueel aanwezig zijn. Getracht is een zo overzichtelijk mogelijk beeld te geven van deze sector in de betreffende landen. Afwezigheid van data heeft er toe geleid dat dit in sommige gevallen niet helemaal is gelukt.

  16. Governing biofuels in Brazil: A comparison of ethanol and biodiesel policies

    International Nuclear Information System (INIS)

    Stattman, Sarah L.; Hospes, Otto; Mol, Arthur P.J.

    2013-01-01

    Over the last decade Brazil has implemented a new and ambitious biofuel program: the National Program of Production and Use of Biodiesel (PNPB). When launching this program in 2004 the government stated that it wanted to avoid the same kind of geographical concentration, single crop focus, dominance of agribusiness, and exclusion of family farmers that have occurred with bioethanol production through the ProÁlcool policy since 1975. This paper compares the life histories of the bioethanol and the biodiesel policies of Brazil by analyzing their substantive policy content; the power and politics of actors that struggle for the design and implementation of the policies; and the polity in terms the organization and institutionalization of the policies. The paper concludes that both policies have become submerged by and dependent on the polity and politics of primarily the energy and agricultural sectors that operate as the two semi-autonomous governance fields. This submerging has shaped the substantive contents of biofuels policies, and explains why the 2004 biodiesel policy PNPB, in spite of its objectives for social inclusion and rural development, faces similar problems in implementation as its predecessor, the 1975 bioethanol policy ProÁlcool. - Highlights: • We compare governance fields of bioethanol and biodiesel policies in Brazil. • Biodiesel policy wants to learn from the mistakes made with bioethanol. • Governance fields stress dynamics between policy, polity, and politics. • Like ethanol, biodiesel became submerged by domains of energy and agriculture

  17. Recommendations for a sustainable development of biofuels in France

    International Nuclear Information System (INIS)

    Douaud, A.; Gruson, J.F.

    2006-01-01

    The biofuels are presented as a solution to the greenhouse gases and the petroleum consumption decrease. The development of the biofuels needs an active research of the production, transformation and use costs improvement. It will be necessary to prepare the market of the biofuels to the globalization. Some recommendations are also provided in the domains of the vegetal oil ester, the ethanol for the diesel and for the development of simulation tools to evaluate the costs. (A.L.B.)

  18. VARIATION IN BIOFUEL POTENTIAL OF TWELVE CALOPYLLUM INOPHYLLUM POPULATIONS IN INDONESIA

    OpenAIRE

    Leksono Budi; Laksmi Hendrati Rina; Windyarini Eritrina; Hasnah Trimaria

    2014-01-01

    The global energy crisis has raises demand for biofuel prices. It has driven the world to enhance environmentally-friendly renewable-energy (biofuel) production. Oil from the seeds of Calophyllum inophyllum (nyamplung) which can be harvested up to 50 years, is one of  such potential biofuel source. Methods for biofuel production from nyamplung seeds have been developed at an industrial scale by cooperative in Cilacap (Java) and Energy Self-Sufficient Villages (Desa Mandiri Energi) in Banyuwan...

  19. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    Science.gov (United States)

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  20. Is there a role for biofuels in promoting energy self sufficiency and security? A CGE analysis of biofuel policy in Thailand

    International Nuclear Information System (INIS)

    Wianwiwat, Suthin; Asafu-Adjaye, John

    2013-01-01

    Given the rising price of crude oil, some developing countries including Thailand are looking towards developing their domestic renewable energy resources, in particular biofuels. However, there are concerns about the possible adverse effects such a policy strategy would have on key variables such as sectoral output, land allocation and the effects of prices, particularly food prices. This study develops a computable general equilibrium (CGE) model of the Thailand economy that features enhancements of the energy sector and uses it to analyze the government’s recent renewable energy development plan. This plan aims to increase domestic energy use from renewable sources to replace fossil fuel imports. The study simulated specific policies contained in the plan. Among other things, we found that promoting biofuel use causes a rapid increase in the price of biofuel and biofuel feedstock in the short-run, whereas these prices only increase slightly in the long-run due to more elastic supplies. The prices of food and other products marginally increase, implying that food security is not undermined by the policy. On the basis of the findings, the study recommends a review of some of the targets because they were found to be rather high, and a phasing in of others. - Highlights: ► This study evaluates Thailand’s 10-year alternative energy development plan. ► Promoting biofuel use causes a rapid increase in the price of biofuel. ► Food prices marginally increase, implying that food security is not undermined. ► We recommend a review of some of the targets because they are too high

  1. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  2. Biofuels for transportation. From R and D to market

    Energy Technology Data Exchange (ETDEWEB)

    Pilo, C [comp.

    1996-11-01

    The aim of the Workshop was to bring together stakeholders in industry, government and science to identify technical, economic and institutional opportunities and/or barriers to the market penetration of biofuels and to tackle these issues jointly in an international environment. The Workshop was to cover the role of biofuels in replacing fossil fuels and achieving sustainable transportation. It was to be more oriented towards policy issues than towards analyses of scientific and technical details. The Workshop was focused on the conditions in Northern Europe and North America. Three main themes were chosen: THEME 1. Biomass Feedstocks. How do we produce them cost-effectively and for what purpose? THEME 2. Biofuels for Transportation. What will make them technically and economically competitive? THEME 3. Market Penetration of Biofuels. How do we remove barriers? The following biofuels were considered during the Workshop: Alcohols, such as ethanol and methanol. Ethers, such as MTBE (methyl-tertio-butyl-ether) and ETBE (ethyl-tertio-butyl-ether). Vegetable oils and esters, such as VME (vegetable-oil-methylester), RME (rape-oil-methyl-ester) and REE (rape-oil-ethyl-ester)

  3. The bio-fuels

    International Nuclear Information System (INIS)

    Levy, R.H.

    1993-02-01

    In France, using fallow soils for energy production may be a solution to agriculture problems. Technical and economical studies of biofuels (ethanol, methanol, ethyl tributyl ether, methyl tributyl ether and methyl ester) are presented with costs of production from the raw material to the end product, characteristics of the end product, engine consumption for pure or mixed fuels, and environmental impacts. For the author, the mixed ethanol process shows no advantages in term of energy dependency (ETBE, MTBE and colza ester give better results), ethanol production uses 90% and colza ester production 53% of the calorific power of the produced biofuels. Commercial balance: damaged, fiscal receipts: reduced, new jobs creation: inferior to 10.000 and the majority outside of the agriculture sphere, environmental impacts: slight diminution of greenhouse gases, but growth of soil and water pollution, all these points are developed by the author. Observations of some contradictors are also given. (A.B.). refs. figs., tabs

  4. The current potential of algae biofuels in the United Arab Emirates

    Science.gov (United States)

    In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...

  5. European airlines enter the biofuels market. Business Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E.

    2011-06-15

    Biofuels might offer opportunities for achieving improved balance of power to the European airlines in their market environment. The aviation sector in Europe is a high competitive market. It faces high rivalry and increasing fuel costs due to rising oil prices. Moreover, from 2012 the sector will be subject to stringent rules with respect to maximum allowed carbon emissions. Investigating the competitive forces in the aviation sector and executing a strategic group analysis maps the competitors and the major players in the supply chain and the options they have for using alternative fuels for low carbon performance. Both the market and non-market strategies of several European airlines have been studied. It appears that airlines are aiming at first mover advantage by moving upstream in the biofuel value chain. They search for collaboration with other stakeholders to change government regulation to their benefit and influence public opinion and research agendas. Airlines are late entrants in the biofuels market. This research has shown that biofuels can improve the market power balance for European airlines. Biofuels are key to improve the carbon performance of airlines. However, this implies that airlines take position at the resource side of the value chain for biojetfuels. This has the advantage of controlling the security of supply and managing biofuels production complying to ruling sustainability criteria.

  6. CONSUMERS’ ATTITUDES RELATED TO BIOFUEL USE IN TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    Florin Mariasiu

    2013-01-01

    Full Text Available This paper presents the results of a field survey to determine the attitudes of consumers (citizens related to the use of biofuels in transport. Attitudes of citizens towards biotechnologies and renewable energy use to reduce pollutant effects on the environment are an important factor (and even decisive in political decision-making necessary to develop new investments and the practical implementation of the proposed projects in the field of renewable sources. The aim of the study was to identify the attitudes of citizens (consumers regarding follow specific issues: the identification of environmental attitudes and use of biofuels, exploring the connections between attitudes and actions declared effective environmentally taken and exploring attitudes towards authorities environmental policies. It was found that there is a favorable attitude for a massive use of biofuels in transport, even in the absence of relevant sources of information about the complexity of the effects of using biofuels in transport.

  7. Time for commercializing non-food biofuel in China

    International Nuclear Information System (INIS)

    Wang, Qiang

    2011-01-01

    The booming automobile in China has added additional pressure on the country that needs to import almost 50% of its oil. Non-food-based biofuel is a viable fuel alternative for cars. China already has the required-foundation to commercialize non-food-based biofuel. Chinese crop straw and stock, energy crop, and woody biomass that could potentially be converted into energy are projected to be 700 million toe (ton of oil equivalent) in the near future. Meanwhile, Chinese food-based ethanol fuel industry ranks as the world's third after United States and Brazil. Several non-food-based ethanol plants are constructed or under constructed, one of which has been licensed. However, more efforts should be directed to commercializing non-food-based biofuel, including industrialized feedstock, strengthening key technology research, supporting private enterprise, and E10 upgrading to E20. The enormous increase in private ownership of car must compel China to commercialize biofuel. (author)

  8. Motor-operated Valve Program at NPP Krsko (NEK) - Status and Overview

    International Nuclear Information System (INIS)

    Nikolic, M; Jagodar, N.; Cerjak, J.; Butkovic, V.

    2002-01-01

    On the basics of US NRC Generic Letter 89-10 Safety-related Motor-operated Valve Testing and Surveillance and subsequent generic letters, Motor-operated Valve (MOV) Program at NEK has been developing. Namely, the holders of nuclear power plant operating licenses has to verify the design basis capability of safety-related e.g. important-to-safety MOVs, as well as to ensure the same for the life of the plant. In light of that, each plant should establish a program to address stressed issues for each program MOV (124 at NEK). Such comprehensive task requires significant effort in many aspects, and basically multidisciplinary skills. NEK MOV Program represents a blend of engineering and in-plant testing, comprised of three phases: Phase I Engineering, Phase II Field Implementation and Phase III Trending. Currently, the program is about the end of Phase I and II, as well as in development of engineering basis for launching Phase III. Overview of the major programmatic issues will be given in this paper along with ongoing activities: testing process, gear-ratio modification, pressure locking/thermal binding susceptibility screening and preventive maintenance. (author)

  9. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Dheeraj Rathore

    2016-06-01

    Full Text Available The increasing demand for biofuels has encouraged the researchers and policy makers worldwide to find sustainable biofuel production systems in accordance with the regional conditions and needs. The sustainability of a biofuel production system includes energy and greenhouse gas (GHG saving along with environmental and social acceptability. Life cycle assessment (LCA is an internationally recognized tool for determining the sustainability of biofuels. LCA includes goal and scope, life cycle inventory, life cycle impact assessment, and interpretation as major steps. LCA results vary significantly, if there are any variations in performing these steps. For instance, biofuel producing feedstocks have different environmental values that lead to different GHG emission savings and energy balances. Similarly, land-use and land-use changes may overestimate biofuel sustainability. This study aims to examine various biofuel production systems for their GHG savings and energy balances, relative to conventional fossil fuels with an ambition to address the challenges and to offer future directions for LCA based biofuel studies. Environmental and social acceptability of biofuel production is the key factor in developing biofuel support policies. Higher GHG emission saving and energy balance of biofuel can be achieved, if biomass yield is high, and ecologically sustainable biomass or non-food biomass is converted into biofuel and used efficiently.

  10. The role of biochemical engineering in the production of biofuels from microalgae.

    Science.gov (United States)

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  12. Beyond commonplace biofuels: Social aspects of ethanol

    International Nuclear Information System (INIS)

    Ribeiro, Barbara Esteves

    2013-01-01

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  13. Cascade upgrading of γ-valerolactone to biofuels.

    Science.gov (United States)

    Yan, Kai; Lafleur, Todd; Wu, Xu; Chai, Jiajue; Wu, Guosheng; Xie, Xianmei

    2015-04-25

    Cascade upgrading of γ-valerolactone (GVL), produced from renewable cellulosic biomass, with selective conversion to biofuels pentyl valerate (PV) and pentane in one pot using a bifunctional Pd/HY catalyst is described. Excellent catalytic performance (over 99% conversion of GVL, 60.6% yield of PV and 22.9% yield of pentane) was achieved in one step. These biofuels can be targeted for gasoline and jet fuel applications.

  14. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  15. Tools and methodologies to support more sustainable biofuel feedstock production.

    Science.gov (United States)

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  16. Multicriteria analysis of agricultural raw materials: A case study of BSBIOS and PETROBRAS BIOFUELS in Brazil

    International Nuclear Information System (INIS)

    Zonin, Valdecir José; Valle Antunes, José Antônio; Pinto Leis, Rodrigo

    2014-01-01

    Energy crises reverberate within societies and encourage worldwide change in this industry. In this context, Brazil has been consolidating the National Program for the Production and Use of Biodiesel (Programa Nacional de Produção e Uso do Biodiesel—PNPB). This article analyzes BSBIOS and PETROBRAS BIOFUELS, which is a company that is incorporated under the PNPB. After providing an overview, the manuscript focuses on the criteria used for the selection of the agricultural raw materials used in the biodiesel industry. A reference model that considered the economic, technological, and social dimensions was developed; these dimensions were analyzed in relation to the production matrices of the soybean, canola, sunflower, and castor plants. The company strategically opted to establish programs for promoting the production of only soybean and canola. In the short term, the company has accepted the evidence that the main source of raw materials is soybean production. This decision was made considering the multicriteria analysis that was developed, which involved a number of economic, technological, and social aspects. Consequently, this analysis used in the decision-making process exhibits both a macro (the national and international environment) and a micro perspective (the companies’ reality). - Highlights: • The economic viability of biodiesel production in Brazil hinges on crop production. • Biodiesel production in Brazil requires developing an efficient production chain. • Oleaginous crops will be diversified by creating a network of suppliers. • Raw material production is diversifying based on an analysis of relevant factors

  17. Potential emissions reduction in road transport sector using biofuel in developing countries

    Science.gov (United States)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  18. A study of the LCA based biofuel supply chain multi-objective optimization model with multi-conversion paths in China

    International Nuclear Information System (INIS)

    Liu, Zhexuan; Qiu, Tong; Chen, Bingzhen

    2014-01-01

    Highlights: • A LCA based biofuel supply chain model considering 3E criteria was proposed. • The model was used to design a supply chain considering three conversion pathways. • An experimental biofuel supply chain for China was designed. • A Pareto-optimal solution surface of this multi-objective problem was obtained. • The designed supply chain was rather robust to price variation. - Abstract: In this paper we present a life cycle assessment (LCA) based biofuel supply chain model with multi-conversion pathways. This model was formulated as a mixed integer linear programming (MILP) problem which took economic, energy, and environmental criteria (3E) into consideration. The economic objective was measured by the total annual profit. The energy objective was measured by using the average fossil energy input per megajoule (MJ) of biofuel. The environmental objective was measured by greenhouse gas (GHG) emissions per MJ of biofuel. After carefully consideration of the current situation in China, we chose to examine three conversion pathways: bio-ethanol (BE), bio-methanol (BM) and bio-diesel (BD). LCA was integrated to a multi-objective supply chain model by dividing each pathway into several individual parts and analyzing each part. The multi-objective MILP problem was solved using a ε-constraint method by defining the total annual profit as the optimization objective and assigning the average fossil energy input per MJ biofuel and GHG emissions per MJ biofuel as constraints. This model was then used to design an experimental biofuel supply chain for China. A surface of the Pareto optimal solutions was obtained by linear interpolation of the non-inferior solutions. The optimal results included the choice of optimal conversion pathway, biomass type, biomass locations, facility locations, and network topology structure in the biofuel supply chain. Distributed and centralized systems were also factored into our experimental system design. In addition, the

  19. Policies promoting Biofuels in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina [IVL Swedish Environmental Research Inst., Goeteborg (Sweden); Chalmers Univ. of Technology, Div. of Heat and Power Technology., Goeteborg (Sweden)

    2012-07-01

    This report was written as part of a course in Environmental Economics and Policy Instruments at the University of Gothenburg. It aims at summarizing the policy instruments introduced to directly affect the production and use of biofuels in Sweden. Since Sweden is part of the EU also EU policies were included. There are additional policy instruments which affect the production and utilization of biofuels in a more indirect way that are not presented here. The economic analysis in this paper is limited and could be developed from the information presented in order to draw further conclusions on necessary changes in order to reach set targets.

  20. Biofuels and food security: biting off more than we can chew?

    NARCIS (Netherlands)

    Clancy, Joy S.; Rivero Acha, Sergio Luis; Chen, Wei

    2014-01-01

    This paper examines the demonization of biofuels in relation to food security and assess whether or not the negativity towards biofuels is justified. We first examine the concept of food security which has been a concern long before the emergence of biofuels. We show that creating food security is

  1. Better greenhouse gas emissions accounting for biofuels : A key to biofuels sustainability

    NARCIS (Netherlands)

    Peeters, Marjan; Yue, Taotao

    2016-01-01

    Biofuels are promoted by governments as a replacement for fossil fuels in the transport sector. However, according to current scientific evidence, their use does not necessarily significantly reduce greenhouse gas emissions. This article examines issues related to the regulation of biofuels’

  2. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    Science.gov (United States)

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  3. The biofuels in France; Les biocarburants en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO{sub 2} accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  4. The use of biofuel on the railway transport

    Directory of Open Access Journals (Sweden)

    Valentin MOGILA

    2012-01-01

    Full Text Available The potential of biofuel application on rail transport for reducing the dependence on using the non-renewable diesel fuel and improving the environmental characteristics of the locomotive have been considered. The technique of comparative research concerning fuels on the rheostat and through operational tests has been offered. The methods of measuring harmful emissions with exhaust gases and the use of existing methods of controlling the fuel consumption have been developed. The conclusion about the prospects of using on diesel locomotives first the additives to the diesel fuel the biofuels of the first generation (biodiesel, and in future, the fuel of the second generation (synthetic biofuels has been made.

  5. VARIATION IN BIOFUEL POTENTIAL OF TWELVE CALOPYLLUM INOPHYLLUM POPULATIONS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Budi Leksono

    2016-05-01

    Full Text Available The global energy crisis has raises demand for biofuel prices. It has driven the world to enhance environmentally-friendly renewable-energy (biofuel production. Oil from the seeds of Calophyllum inophyllum (nyamplung which can be harvested up to 50 years, is one of  such potential biofuel source. Methods for biofuel production from nyamplung seeds have been developed at an industrial scale by cooperative in Cilacap (Java and Energy Self-Sufficient Villages (Desa Mandiri Energi in Banyuwangi, Purworejo, Kebumen, Ujung Kulon (Java and Selayar (South Sulawesi. However, there is only a limited-information available on biofuel potential, in term of  productivity and quality, from nyamplung populations. This paper reports the variations in biofuel potential among 12 populations in Indonesia (6 from Java, 6 outside Java. The oil was extracted using a combination of  vertical hot press (VHP and screw press expeller (SPE methods, followed by degumming to make refined oil, and esterification-transesterification to turn it into biodiesel. The result show great variation of  biofuel content among the population. Oil production percentage varies from 37-48.5% (VHP and 50-58% (SPE crude oil, 36-48% (VHP and 40-53% (SPE refined oil, and 1733% (SPE for biodiesel. Seed resin content is responsible for most of the variation after degumming. DNA analysis shows genetic variation among populations ranges from intermediate within Java to high ouside Java and is intermediate within populations. Information about biofuel content and potential of  populations and genetic variation between and within population are important factors for establishment of  geneticallyimproved seed-sources for biofuel production from nyamplung.

  6. Biofuel seeks endorsement

    NARCIS (Netherlands)

    Jongeneel, C.; Rentmeester, S.

    2015-01-01

    Biofuels such as ethanol from sugar cane and cellulose ‘waste’ are theoretically sustainable, as their combustion releases no more CO2 than is absorbed during production. Even so, they are also controversial, because they are believed to be grown at the expense of food crops, or because areas of

  7. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  8. Trace Gas Emissions From the Production and Use of Biofuels in the African Tropics

    Science.gov (United States)

    Bertschi, I.; Yokelson, R. J.; Ward, D. E.; Christian, T. J.; Hao, W. M.

    2001-12-01

    Biomass burning is an important source of many atmospheric trace gases and particles that play a significant role in regional-global, tropospheric and stratospheric chemical processes, and in the global climate. About 80% of biomass burning is thought to occur in the tropics in association with traditional land management practices and domestic biofuel use. More than 220 Tg (1 Tg = 1 x 1012 g) of fuel-wood and 11 Tg of charcoal are consumed annually for domestic heating and cooking in tropical Africa alone. Approximately 90% of the fuel-wood is consumed in open fires in rural areas. Previously, the emissions for fuel-wood fires and charcoal use and production in the tropics were known for only a limited number of chemical species. During SAFARI-2000 we conducted field experiments in remote Zambian villages and observed most of the major trace gases emitted from the production and use of biofuels using open-path Fourier transform infrared (OP-FTIR) spectroscopy, which provides an artifact-free overview of the trace gases present above several ppbv. Our OP-FTIR was deployed for several spot measurements over the course of an earthen kiln charcoal-making process and of several open wood and charcoal fires, all of which were built and tended by local inhabitants. We quantified the emissions of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen oxides (NOx), ammonia (NH3), non-methane hydrocarbons (NMHC), and oxygenated volatile organic compounds (OVOC). Our results also show much higher emission factors for methanol (CH3OH), acetic acid (CH3COOH), and formaldehyde (CH2O) from domestic biofuel production and use than from savanna fires in southern Africa. Thus, these year-round OVOC emissions will play an important role in the photochemistry of the troposphere and in the acidity of aerosols and precipitation especially in tropical regions.

  9. Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae).

    Science.gov (United States)

    Ho, Chuan-Wen; Wu, Tai-Han; Hsu, Tsai-Wen; Huang, Jao-Ching; Huang, Chi-Chun; Chiang, Tzen-Yuh

    2011-08-01

    Miscanthus, a nonfood plant with high potential as a biofuel, has been used in Europe and the United States. The selection of a cultivar with high biomass, photosynthetic efficiency, and stress resistance from wild populations has become an important issue. New genic microsatellite markers will aid the assessment of genetic diversity for different strains. Twelve polymorphic microsatellite markers derived from the transcriptome of Miscanthus sinensis fo. glaber were identified and screened on 80 individuals of M. sinensis. The number of alleles per locus ranged from 6 to 12, and the mean expected heterozygosity was 0.75. Cross-taxa transferability revealed that all loci can be applied to all varieties of M. sinensis, as well as the closely related species M. floridulus. These new genic microsatellite markers are useful for characterizing different traits in breeding programs or to select genes useful for biofuel.

  10. Indirect land use change and biofuels. Mathematical analysis reveals a fundamental flaw in the regulatory approach

    NARCIS (Netherlands)

    Kim, S.; Dale, B.E.; Heijungs, R.; Azapagic, A.; Darlington, T.; Kahlbaum, D.

    2014-01-01

    In the Renewable Fuel Standard (RFS2) program, the United States Environmental Protection Agency (U.S. EPA) has used partial equilibrium models to estimate the overall indirect land use change (iLUC) associated with the biofuel scenario mandated by the Energy Independence and Security Act of 2007

  11. The politics of biofuels, land and agrarian change: editors' introduction.

    Science.gov (United States)

    Borras, Saturnino M

    2010-01-01

    This introduction frames key questions on biofuels, land and agrarian change within agrarian political economy, political sociology and political ecology. It identifies and explains big questions that provide the starting point for the contributions to this collection. We lay out some of the emerging themes which define the politics of biofuels, land and agrarian change revolving around global (re)configurations; agro-ecological visions; conflicts, resistances and diverse outcomes; state, capital and society relations; mobilising opposition, creating alternatives; and change and continuity. An engaged agrarian political economy combined with global political economy, international relations and social movement theory provides an important framework for analysis and critique of the conditions, dynamics, contradictions, impacts and possibilities of the emerging global biofuels complex. Our hope is that this collection demonstrates the significance of a political economy of biofuels in capturing the complexity of the "biofuels revolution" and at the same time opening up questions about its sustainability in social and environmental terms that provide pathways towards alternatives.

  12. Impact of biofuels on contrail warming

    Science.gov (United States)

    Caiazzo, Fabio; Agarwal, Akshat; Speth, Raymond L.; Barrett, Steven R. H.

    2017-11-01

    Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (~ +8%). On the other hand, these contrails are composed of larger diameter crystals (~ +58%) at lower number concentrations (~ -75%), reducing both contrail optical depth (~ -29%) and albedo (~ -32%). The net changes in contrail RF induced by switching to biofuels range from -4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between -13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming—contrary to previous expectations of a significant decrease in warming.

  13. The impact of first-generation biofuels on the depletion of the global phosphorus reserve.

    Science.gov (United States)

    Hein, Lars; Leemans, Rik

    2012-06-01

    The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.

  14. Biofuels and the Environment: The First Triennial Report to ...

    Science.gov (United States)

    The Biofuels and the Environment: The First Triennial Report to Congress (External Review Draft) (EPA/600/R-10/183A) report, prepared by the National Center for Environmental Assessment (NCEA) within EPA’s Office of Research and Development, is the first report published on this issue. The 2007 Energy Independence and Security Act (EISA) mandates increased production of biofuels (fuels derived from organic materials) from 9 billion gallons per year in 2008 to 36 billion gallons per year by 2022. Additionally, EISA (Section 204) also requires that the U.S. Environmental Protection Agency (EPA) assess and report to Congress every three years on the current and potential future environmental and resource conservation impacts associated with increased biofuel production and use. Produce report to Congress that addresses the environmental impact associated with current and future biofuel production and use.

  15. Biofuels - Answering the energy and environmental challenges of transports

    International Nuclear Information System (INIS)

    Ballerini, Daniel and others

    2011-01-01

    The change of the worldwide energy context with the weight of the environmental stakes has led to increase the research works on biofuels of second and third generation. This book is an updated and enriched version of a previous edition published in 2006 and entitled 'biofuels - development status, perspectives and stakes'. It presents a detailed state-of-the-art of the production processes of biofuels of first generation. It describes the new production processes, named 'second generation' which use the lignocellulosic biomass as raw material. These new processes are progressively leading to industrial facilities which reduce the competition effect between the biofuel industry development and the agriculture for feeding purposes. A technical point is addressed which concerns the energy valorization of algae (the third generation) and the methane and hydrogen production by biochemical processes. (J.S.)

  16. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803

    International Nuclear Information System (INIS)

    Pei, Guangsheng; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2014-01-01

    Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap in the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.

  17. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Guangsheng; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun, E-mail: jianjunq@tju.edu.cn; Zhang, Weiwen, E-mail: jianjunq@tju.edu.cn [Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin (China); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China)

    2014-11-03

    Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap in the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.

  18. Biofuels and resource use efficiency in developing Asia: Back to basics

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, S.V.R.K.; Elder, Mark [Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa (Japan)

    2009-11-15

    In Asia, as elsewhere in the world, countries rushed to promote biofuels during the dramatic oil price increases of 2007-2008 as way to enhance energy security, without waiting for the settlement of controversial debates about the environmental effects of biofuels, especially their effects on greenhouse gas emissions, deforestation, biodiversity, and whether biofuels cause a conflict between food and fuel. This paper does not settle this debate, but instead argues that there are straightforward, practical and feasible measures that can be implemented immediately in order to reduce the pressure of biofuels on the environment and food supply, and more generally increase food production. The key is to focus on increasing resource use efficiency in agriculture, especially different forms of energy use. Resource use efficiency in agriculture is low in many parts of Asia. Concrete measures that could be taken include reductions in market-distorting input subsidies and the introduction of resource-conserving technologies. These could be supplemented with greater use of non-fossil fuels in agricultural production, use of agricultural wastes in energy production, inclusion of input use levels in biofuel certification systems, and greater investment in agricultural research, extension systems, and infrastructure development. Biofuel fever has waned since the onset of the global financial crisis in late 2008, but it is likely to return when economic conditions eventually improve, and possible moves to strengthen the European Union biofuel blending requirements could further accelerate it. Much of the debate on biofuel-related impacts in the region has focused on deforestation, with little attention on agricultural input use, which could also have serious consequences for greenhouse gas (GHG) emissions. In sum, this paper argues that governments can still improve the environmental performance of biofuels while reducing potential conflicts with food security by implementing the

  19. Biofuels and resource use efficiency in developing Asia: Back to basics

    International Nuclear Information System (INIS)

    Prabhakar, S.V.R.K.; Elder, Mark

    2009-01-01

    In Asia, as elsewhere in the world, countries rushed to promote biofuels during the dramatic oil price increases of 2007-2008 as way to enhance energy security, without waiting for the settlement of controversial debates about the environmental effects of biofuels, especially their effects on greenhouse gas emissions, deforestation, biodiversity, and whether biofuels cause a conflict between food and fuel. This paper does not settle this debate, but instead argues that there are straightforward, practical and feasible measures that can be implemented immediately in order to reduce the pressure of biofuels on the environment and food supply, and more generally increase food production. The key is to focus on increasing resource use efficiency in agriculture, especially different forms of energy use. Resource use efficiency in agriculture is low in many parts of Asia. Concrete measures that could be taken include reductions in market-distorting input subsidies and the introduction of resource-conserving technologies. These could be supplemented with greater use of non-fossil fuels in agricultural production, use of agricultural wastes in energy production, inclusion of input use levels in biofuel certification systems, and greater investment in agricultural research, extension systems, and infrastructure development. Biofuel fever has waned since the onset of the global financial crisis in late 2008, but it is likely to return when economic conditions eventually improve, and possible moves to strengthen the European Union biofuel blending requirements could further accelerate it. Much of the debate on biofuel-related impacts in the region has focused on deforestation, with little attention on agricultural input use, which could also have serious consequences for greenhouse gas (GHG) emissions. In sum, this paper argues that governments can still improve the environmental performance of biofuels while reducing potential conflicts with food security by implementing the

  20. The development of the biofuels in the german farms

    International Nuclear Information System (INIS)

    Palz, W.

    2005-03-01

    Germany is today at the first place of the world for the production and the utilization of vegetable oils and by products, the Diester. The main reasons of this enjoyment is the two european directives on biofuels and the tax exemption at 100% decided by the government in 2004. All the biofuels available in Germany, as the ethanol, the vegetable oils and the bio-alcohol, are presented in this paper. The research axis and the government policy in favor of the biofuels are also discussed. (A.L.B.)