WorldWideScience

Sample records for biochemical platform integration

  1. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    Energy Technology Data Exchange (ETDEWEB)

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  2. 2009 Biochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  3. A hybrid approach to device integration on a genetic analysis platform

    International Nuclear Information System (INIS)

    Brennan, Des; Justice, John; Aherne, Margaret; Galvin, Paul; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Macek, Milan

    2012-01-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization. (paper)

  4. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Leslie [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  5. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov (United States)

    Biochemical Process Development and Integration Biochemical Process Development and Integration Our conversion and separation processes to pilot-scale integrated process development and scale up. We also Publications Accounting for all sugar produced during integrated production of ethanol from lignocellulosic

  6. Biomass Program 2007 Program Peer Review - Biochemical and Products Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biochemical and Products Platform Review held on August 7-9, 2007 in Denver, Colorado.

  7. Biochem-Env, a platform of environmental biochemistry for research in ecology and ecotoxicology

    OpenAIRE

    Grondin, Virginie; Nelieu, Sylvie; Crouzet, Olivier; Hedde, Mickaël; Mougin, Christian

    2016-01-01

    The consortium AnaEE-France (http://www.anaee-s.fr) aims at understanding and predicting the biodiversity and ecosystems dynamics in a context of global change. It will allow improving the understanding of biotic processes/environment interactions, mobilizing experimental and modelling platforms devoted to the biology of continental ecosystems, both terrestrial and aquatic. In this context, the objectives of the platform Biochem-Env (http://www.biochemenv.fr) are to provide skills and innovat...

  8. Emerging heterogeneous integrated photonic platforms on silicon

    Directory of Open Access Journals (Sweden)

    Fathpour Sasan

    2015-05-01

    Full Text Available Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths and feasibility of electrically-injected lasers (at least at room temperature. More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for

  9. Development of integrated platform for computational material design

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshi, Matsubara; Kumi, Itai; Nobutaka, Nishikawa; Akifumi, Kato [Center for Computational Science and Engineering, Fuji Research Institute Corporation (Japan); Hideaki, Koike [Advance Soft Corporation (Japan)

    2003-07-01

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned.

  10. Development of integrated platform for computational material design

    International Nuclear Information System (INIS)

    Kiyoshi, Matsubara; Kumi, Itai; Nobutaka, Nishikawa; Akifumi, Kato; Hideaki, Koike

    2003-01-01

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned

  11. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Michael E. [Univ. of California, Los Angeles, CA (United States)

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are many unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies

  12. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments.

    Science.gov (United States)

    Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie

    2009-11-15

    Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.

  13. IMGMD: A platform for the integration and standardisation of In silico Microbial Genome-scale Metabolic Models.

    Science.gov (United States)

    Ye, Chao; Xu, Nan; Dong, Chuan; Ye, Yuannong; Zou, Xuan; Chen, Xiulai; Guo, Fengbiao; Liu, Liming

    2017-04-07

    Genome-scale metabolic models (GSMMs) constitute a platform that combines genome sequences and detailed biochemical information to quantify microbial physiology at the system level. To improve the unity, integrity, correctness, and format of data in published GSMMs, a consensus IMGMD database was built in the LAMP (Linux + Apache + MySQL + PHP) system by integrating and standardizing 328 GSMMs constructed for 139 microorganisms. The IMGMD database can help microbial researchers download manually curated GSMMs, rapidly reconstruct standard GSMMs, design pathways, and identify metabolic targets for strategies on strain improvement. Moreover, the IMGMD database facilitates the integration of wet-lab and in silico data to gain an additional insight into microbial physiology. The IMGMD database is freely available, without any registration requirements, at http://imgmd.jiangnan.edu.cn/database.

  14. InP-based generic foundry platform for photonic integrated circuits

    NARCIS (Netherlands)

    Augustin, L.M.; Lemos Alvares Dos Santos, R.M.; den Haan, E.; Kleijn, S.E.F.; Thijs, P.J.A.; Latkowski, S.; Zhao, D.; Yao, W.; Bolk, J.; Ambrosius, H.P.M.M.; Mingaleev, S.; Richter, A.; Bakker, A.; Korthorst, T.

    2017-01-01

    The standardization of photonic integration processes for InP has led to versatile and easily accessible generic integration platforms. The generic integration platforms enable the realization of a broad range of applications and lead to a dramatic cost reduction in the development costs of photonic

  15. From the Sugar Platform to biofuels and biochemicals : Final report for the European Commission Directorate-General Energy

    NARCIS (Netherlands)

    Taylor, R.; Nattrass, L.; Alberts, G.; Robson, P.; Chudziak, C.; Bauen, A.; Libelli, I.M.; Lotti, G.; Prussi, M.; Nistri, R.; Chiaramonti, D.; lópez-Contreras, A.M.; Bos, H.L.; Eggink, G.; Springer, J.; Bakker, R.; Ree, van R.

    2015-01-01

    Numerous potential pathways to biofuels and biochemicals exist via the sugar platform1. This study uses literature surveys, market data and stakeholder input to provide a comprehensive evidence base for policymakers and industry – identifying the key benefits and development needs for the sugar

  16. Hybrid Photonic Integration on a Polymer Platform

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2015-09-01

    Full Text Available To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard, which provides flexible optical input/ouptut interfaces (I/Os that allow robust coupling of indium phosphide (InP-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.

  17. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  18. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  19. Integrated Spintronic Platforms for Biomolecular Recognition Detection

    Science.gov (United States)

    Martins, V. C.; Cardoso, F. A.; Loureiro, J.; Mercier, M.; Germano, J.; Cardoso, S.; Ferreira, R.; Fonseca, L. P.; Sousa, L.; Piedade, M. S.; Freitas, P. P.

    2008-06-01

    This paper covers recent developments in magnetoresistive based biochip platforms fabricated at INESC-MN, and their application to the detection and quantification of pathogenic waterborn microorganisms in water samples for human consumption. Such platforms are intended to give response to the increasing concern related to microbial contaminated water sources. The presented results concern the development of biological active DNA chips and protein chips and the demonstration of the detection capability of the present platforms. Two platforms are described, one including spintronic sensors only (spin-valve based or magnetic tunnel junction based), and the other, a fully scalable platform where each probe site consists of a MTJ in series with a thin film diode (TFD). Two microfluidic systems are described, for cell separation and concentration, and finally, the read out and control integrated electronics are described, allowing the realization of bioassays with a portable point of care unit. The present platforms already allow the detection of complementary biomolecular target recognition with 1 pM concentration.

  20. Structural Integrity Management for Fixed Offshore Platforms in Malaysia

    OpenAIRE

    Narayanan Sambu Potty; Mohammad Kabir B. Mohd Akram

    2009-01-01

    Structural Integrity Management (SIM) is important for the protection of offshore crew, environment, business assets and company and industry reputation. API RP 2A contained guidelines for assessment of existing platforms mostly for the Gulf of Mexico (GOM). ISO 19902 SIM framework also does not specifically cater for Malaysia. There are about 200 platforms in Malaysia with 90 exceeding their design life. The Petronas Carigali Sdn Bhd (PCSB) uses the Asset Integrity Management ...

  1. Hybrid Integrated Platforms for Silicon Photonics

    Science.gov (United States)

    Liang, Di; Roelkens, Gunther; Baets, Roel; Bowers, John E.

    2010-01-01

    A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  2. 2009 Integrated Biorefinery Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Integrated Biorefinery (IBR) platform review meeting, held on February 18–19, 2009, at the Westin National Harbor, National Harbor, Maryland.

  3. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  4. Hybrid Integrated Platforms for Silicon Photonics

    Directory of Open Access Journals (Sweden)

    John E. Bowers

    2010-03-01

    Full Text Available A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  5. Integration of the TNXYZ computer program inside the platform Salome

    International Nuclear Information System (INIS)

    Chaparro V, F. J.

    2014-01-01

    The present work shows the procedure carried out to integrate the code TNXYZ as a calculation tool at the graphical simulation platform Salome. The TNXYZ code propose a numerical solution of the neutron transport equation, in several groups of energy, steady-state and three-dimensional geometry. In order to discretized the variables of the transport equation, the code uses the method of discrete ordinates for the angular variable, and a nodal method for the spatial dependence. The Salome platform is a graphical environment designed for building, editing and simulating mechanical models mainly focused on the industry and unlike other software, in order to form a complete scheme of pre and post processing of information, to integrate and control an external source code. Before the integration the in the Salome platform TNXYZ code was upgraded. TNXYZ was programmed in the 90s using Fortran 77 compiler; for this reason the code was adapted to the characteristics of the current Fortran compilers; in addition, with the intention of extracting partial results over the process sequence, the original structure of the program underwent a modularization process, i.e. the main program was divided into sections where the code performs major operations. This procedure is controlled by the information module (YACS) on Salome platform, and it could be useful for a subsequent coupling with thermal-hydraulics codes. Finally, with the help of the Monte Carlo code Serpent several study cases were defined in order to check the process of integration; the verification process consisted in performing a comparison of the results obtained with the code executed as stand-alone and after modernized, integrated and controlled by the Salome platform. (Author)

  6. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    Science.gov (United States)

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  7. Efficient Sensor Integration on Platforms (NeXOS)

    Science.gov (United States)

    Memè, S.; Delory, E.; Del Rio, J.; Jirka, S.; Toma, D. M.; Martinez, E.; Frommhold, L.; Barrera, C.; Pearlman, J.

    2016-12-01

    In-situ ocean observing platforms provide power and information transmission capability to sensors. Ocean observing platforms can be mobile, such as ships, autonomous underwater vehicles, drifters and profilers, or fixed, such as buoys, moorings and cabled observatories. The process of integrating sensors on platforms can imply substantial engineering time and resources. Constraints range from stringent mechanical constraints to proprietary communication and control firmware. In NeXOS, the implementation of a PUCK plug and play capability is being done with applications to multiple sensors and platforms. This is complemented with a sensor web enablement that addresses the flow of information from sensor to user. Open standards are being tested in order to assess their costs and benefits in existing and future observing systems. Part of the testing implied open-source coding and hardware prototyping of specific control devices in particular for closed commercial platforms where firmware upgrading is not straightforward or possible without prior agreements or service fees. Some platform manufacturers such as European companies ALSEAMAR[1] and NKE Instruments [2] are currently upgrading their control and communication firmware as part of their activities in NeXOS. The sensor development companies Sensorlab[3] SMID[4] and TRIOS [5]upgraded their firmware with this plug and play functionality. Other industrial players in Europe and the US have been sent NeXOS sensors emulators to test the new protocol on their platforms. We are currently demonstrating that with little effort, it is also possible to have such middleware implemented on very low-cost compact computers such as the open Raspberry Pi[6], and have a full end-to-end interoperable communication path from sensor to user with sensor plug and play capability. The result is an increase in sensor integration cost-efficiency and the demonstration will be used to highlight the benefit to users and ocean observatory

  8. CILogon: An Integrated Identity and Access Management Platform for Science

    Science.gov (United States)

    Basney, J.

    2016-12-01

    When scientists work together, they use web sites and other software to share their ideas and data. To ensure the integrity of their work, these systems require the scientists to log in and verify that they are part of the team working on a particular science problem. Too often, the identity and access verification process is a stumbling block for the scientists. Scientific research projects are forced to invest time and effort into developing and supporting Identity and Access Management (IAM) services, distracting them from the core goals of their research collaboration. CILogon provides an IAM platform that enables scientists to work together to meet their IAM needs more effectively so they can allocate more time and effort to their core mission of scientific research. The CILogon platform enables federated identity management and collaborative organization management. Federated identity management enables researchers to use their home organization identities to access cyberinfrastructure, rather than requiring yet another username and password to log on. Collaborative organization management enables research projects to define user groups for authorization to collaboration platforms (e.g., wikis, mailing lists, and domain applications). CILogon's IAM platform serves the unique needs of research collaborations, namely the need to dynamically form collaboration groups across organizations and countries, sharing access to data, instruments, compute clusters, and other resources to enable scientific discovery. CILogon provides a software-as-a-service platform to ease integration with cyberinfrastructure, while making all software components publicly available under open source licenses to enable re-use. Figure 1 illustrates the components and interfaces of this platform. CILogon has been operational since 2010 and has been used by over 7,000 researchers from more than 170 identity providers to access cyberinfrastructure including Globus, LIGO, Open Science Grid

  9. Multi-function microfluidic platform for sensor integration

    DEFF Research Database (Denmark)

    Fernandes, Ana C.; Semenova, Daria; Panjan, Peter

    2018-01-01

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high...... throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening...... of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate...

  10. An ultra-efficient nonlinear planar integrated platform for optical signal processing and generation

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2017-01-01

    This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed.......This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed....

  11. A Versatile Integrated Ambient Ionization Source Platform

    Science.gov (United States)

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-01

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.

  12. Quantum photonics hybrid integration platform

    Energy Technology Data Exchange (ETDEWEB)

    Murray, E.; Floether, F. F. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ellis, D. J. P.; Meany, T.; Bennett, A. J., E-mail: anthony.bennet@crl.toshiba.co.uk; Shields, A. J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Lee, J. P. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  13. Wireless, smartphone controlled potentiostat integrated with lab-on-disc platform

    DEFF Research Database (Denmark)

    Cheng, Chung-Hsiang; Zor, Kinga; Wang, Jen-Hung

    A smartphone controlled wireless data transmitting and inductive powering Power Lab-on-disc (PLoD) platform is developed based on 2.4 GHz Bluetooth and 205 kHz Qi techniques, respectively. A potentiostat is integrated on the PLoD platform, and amperometric measurements are performed. The wireless...

  14. A middleware-based platform for the integration of bioinformatic services

    Directory of Open Access Journals (Sweden)

    Guzmán Llambías

    2015-08-01

    Full Text Available Performing Bioinformatic´s experiments involve an intensive access to distributed services and information resources through Internet. Although existing tools facilitate the implementation of workflow-oriented applications, they lack of capabilities to integrate services beyond low-scale applications, particularly integrating services with heterogeneous interaction patterns and in a larger scale. This is particularly required to enable a large-scale distributed processing of biological data generated by massive sequencing technologies. On the other hand, such integration mechanisms are provided by middleware products like Enterprise Service Buses (ESB, which enable to integrate distributed systems following a Service Oriented Architecture. This paper proposes an integration platform, based on enterprise middleware, to integrate Bioinformatics services. It presents a multi-level reference architecture and focuses on ESB-based mechanisms to provide asynchronous communications, event-based interactions and data transformation capabilities. The paper presents a formal specification of the platform using the Event-B model.

  15. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum.

    Science.gov (United States)

    Lu, Tsung-Ju; Fanto, Michael; Choi, Hyeongrak; Thomas, Paul; Steidle, Jeffrey; Mouradian, Sara; Kong, Wei; Zhu, Di; Moon, Hyowon; Berggren, Karl; Kim, Jeehwan; Soltani, Mohammad; Preble, Stefan; Englund, Dirk

    2018-04-30

    We demonstrate a wide-bandgap semiconductor photonics platform based on nanocrystalline aluminum nitride (AlN) on sapphire. This photonics platform guides light at low loss from the ultraviolet (UV) to the visible spectrum. We measure ring resonators with intrinsic quality factor (Q) exceeding 170,000 at 638 nm and Q >20,000 down to 369.5 nm, which shows a promising path for low-loss integrated photonics in UV and visible spectrum. This platform opens up new possibilities in integrated quantum optics with trapped ions or atom-like color centers in solids, as well as classical applications including nonlinear optics and on-chip UV-spectroscopy.

  16. Third-party Reverse logistics platform and method Based on Bilateral Resource Integration

    Directory of Open Access Journals (Sweden)

    Zheng Hong Zhen

    2016-01-01

    Full Text Available Dispersion of reverse logistics resources makes it difficult to create relationships between demanders and providers, thereby the personalized demand for the construction of enterprise reverse logistics cannot be satisfied and the service quality cannot be guaranteed. Aiming at these problems, this paper presents a platform and method of enterprise reverse logistics based on bilateral resource integration (RLBRI. The method creates a third-party reverse logistics platform to accumulate a mass of reverse logistics demanders and providers together. And the platform integrates bilateral resources and acts as an intermediary to establish relationships between two sides. Through the platform, a complete and high-quality business chain for enterprise reverse logistics will be built efficiently. Finally put forward an effective strategy of non-defective reverse logistics depends on the integrity checking service provided by third-party logistics. By using this strategy it can short the distance of non-defective reverse transportation. Computational tests validate the strategy.

  17. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  18. KinomeXplorer: an integrated platform for kinome biology studies

    DEFF Research Database (Denmark)

    Horn, Heiko; Schoof, Erwin; Kim, Jinho

    2014-01-01

    A letter to the editor is presented related to the KinomeXplorer, an integrated platform providing workflows to efficiently analyze phosphorylation dependent interaction networks or kinase signaling networks....

  19. SysBioCube: A Data Warehouse and Integrative Data Analysis Platform Facilitating Systems Biology Studies of Disorders of Military Relevance.

    Science.gov (United States)

    Chowbina, Sudhir; Hammamieh, Rasha; Kumar, Raina; Chakraborty, Nabarun; Yang, Ruoting; Mudunuri, Uma; Jett, Marti; Palma, Joseph M; Stephens, Robert

    2013-01-01

    SysBioCube is an integrated data warehouse and analysis platform for experimental data relating to diseases of military relevance developed for the US Army Medical Research and Materiel Command Systems Biology Enterprise (SBE). It brings together, under a single database environment, pathophysio-, psychological, molecular and biochemical data from mouse models of post-traumatic stress disorder and (pre-) clinical data from human PTSD patients.. SysBioCube will organize, centralize and normalize this data and provide an access portal for subsequent analysis to the SBE. It provides new or expanded browsing, querying and visualization to provide better understanding of the systems biology of PTSD, all brought about through the integrated environment. We employ Oracle database technology to store the data using an integrated hierarchical database schema design. The web interface provides researchers with systematic information and option to interrogate the profiles of pan-omics component across different data types, experimental designs and other covariates.

  20. Study on integrated design and analysis platform of NPP

    International Nuclear Information System (INIS)

    Lu Dongsen; Gao Zuying; Zhou Zhiwei

    2001-01-01

    Many calculation software have been developed to nuclear system's design and safety analysis, such as structure design software, fuel design and manage software, thermal hydraulic analysis software, severe accident simulation software, etc. This study integrates those software to a platform, develops visual modeling tool for Retran, NGFM90. And in this platform, a distribution calculation method is also provided for couple calculation between different software. The study will improve the design and analysis of NPP

  1. Multi-function microfluidic platform for sensor integration.

    Science.gov (United States)

    Fernandes, Ana C; Semenova, Daria; Panjan, Peter; Sesay, Adama M; Gernaey, Krist V; Krühne, Ulrich

    2018-03-06

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. This platform is compatible with different sensor formats by enabling their replacement and was built in order to be highly flexible and thus suitable for a wide range of applications. Moreover, this re-usable platform can easily be connected to analytical equipment, such as HPLC, laboratory scale reactors or other microfluidic chips through the use of standardized fittings. In addition, the developed platform includes a two-sensor system interspersed with a mixing channel, which allows the detection of samples that might be outside the first sensor's range of detection, through dilution of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate solutions for up to 12 h. Furthermore, the influence of the fluid velocity on substrate diffusion was observed, indicating the need for in-flow calibration to achieve a good quantitative output. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Electrochemical Fabrication of Nanostructures on Porous Silicon for Biochemical Sensing Platforms.

    Science.gov (United States)

    Ko, Euna; Hwang, Joonki; Kim, Ji Hye; Lee, Joo Heon; Lee, Sung Hwan; Tran, Van-Khue; Chung, Woo Sung; Park, Chan Ho; Choo, Jaebum; Seong, Gi Hun

    2016-01-01

    We present a method for the electrochemical patterning of gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs) on porous silicon, and explore their applications in: (1) the quantitative analysis of hydroxylamine as a chemical sensing electrode and (2) as a highly sensitive surface-enhanced Raman spectroscopy (SERS) substrate for Rhodamine 6G. For hydroxylamine detection, AuNPs-porous silicon can enhance the electrochemical oxidation of hydroxylamine. The current changed linearly for concentrations ranging from 100 μM to 1.32 mM (R(2) = 0.995), and the detection limit was determined to be as low as 55 μM. When used as SERS substrates, these materials also showed that nanoparticles decorated on porous silicon substrates have more SERS hot spots than those decorated on crystalline silicon substrates, resulting in a larger SERS signal. Moreover, AgNPs-porous silicon provided five-times higher signal compared to AuNPs-porous silicon. From these results, we expect that nanoparticles decorated on porous silicon substrates can be used in various types of biochemical sensing platforms.

  3. Genomics Portals: integrative web-platform for mining genomics data.

    Science.gov (United States)

    Shinde, Kaustubh; Phatak, Mukta; Johannes, Freudenberg M; Chen, Jing; Li, Qian; Vineet, Joshi K; Hu, Zhen; Ghosh, Krishnendu; Meller, Jaroslaw; Medvedovic, Mario

    2010-01-13

    A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  4. Full scale test platform for European TBM systems integration and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Vála, Ladislav, E-mail: ladislav.vala@cvrez.cz; Reungoat, Mathieu; Vician, Martin

    2016-11-01

    Highlights: • A platform for EU-TBS maintenance and integration tests is described. • Its modular design allows adaptation to non-EU TBSs. • Assembling of the facility will be followed by initial tests in 2016. - Abstract: This article deals with description and current status of a project of a non-nuclear, full size (1:1 scale) test platform dedicated to tests, optimization and validation of integration and maintenance operations for the European TBM systems in the ITER port cell #16. The facility called TBM platform reproduces the ITER port cell #16 and port interspace with all the relevant interfaces and mock-ups of the corresponding main components. Thanks to the modular design of the platform, it is possible to adapt or change completely the interfaces in the future if needed or required according to the updated configuration of TBSs. In the same way, based on customer requirements, it will be possible to adapt the interfaces and piping inside the mock-ups in order to represent also the other, non-EU configurations of TBM systems designed for port cells #02 and #18. Construction of this test platform is realized and funded within the scope of the SUSEN project.

  5. Integration of DYN3D inside the NURESIM platform

    International Nuclear Information System (INIS)

    Gomez T, A. M.; Sanchez E, V. H.; Kliem, S.; Gommlich, A.; Rohde, U.

    2010-10-01

    The NURISP project (Nuclear Reactor Integrated Simulation Project) is focused on the further development of the European Nuclear Reactor Simulation (NURESIM) platform for advanced numerical reactor design and safety analysis tools. NURESIM is based on an open source platform - called SALOME - that offers flexible and powerful capabilities for pre- and post processing as well as for coupling of multi-physics and multi-scale solutions. The developments within the NURISP project are concentrated in the areas of reactors, physics, thermal hydraulics, multi-physics, and sensitivity and uncertainty methodologies. The aim is to develop experimentally validated advanced simulation tools including capabilities for uncertainty and sensitivity quantification. A unique feature of NURESIM is the flexibility in selecting the solvers for the area of interest and the interpolation and mapping schemes according to the problem under consideration. The Sub Project 3 (S P3) of NURISP is focused on the development of multi-physics methodologies at different scales and covering different physical fields (neutronics, thermal hydraulics and pin mechanics). One of the objectives of S P3 is the development of multi-physics methodologies beyond the state-of-the-art for improved prediction of local safety margins and design at pin-by-pin scale. The Karlsruhe Institute of Technology and the Research Center Dresden-Rossendorf are involved in the integration of the reactor dynamics code DYN3D into the SALOME platform for coupling with a thermal hydraulic sub-channel code (FLICA4) at fuel assembly and pin level. In this paper, the main capabilities of the SALOME platform, the steps for the integration process of DYN3D as well as selected preliminary results obtained for the DYN3D/FLICA4 coupling are presented and discussed. Finally the next steps for the validation of the coupling scheme at fuel assembly and pin basis are given. (Author)

  6. An integrated biotechnology platform for developing sustainable chemical processes.

    Science.gov (United States)

    Barton, Nelson R; Burgard, Anthony P; Burk, Mark J; Crater, Jason S; Osterhout, Robin E; Pharkya, Priti; Steer, Brian A; Sun, Jun; Trawick, John D; Van Dien, Stephen J; Yang, Tae Hoon; Yim, Harry

    2015-03-01

    Genomatica has established an integrated computational/experimental metabolic engineering platform to design, create, and optimize novel high performance organisms and bioprocesses. Here we present our platform and its use to develop E. coli strains for production of the industrial chemical 1,4-butanediol (BDO) from sugars. A series of examples are given to demonstrate how a rational approach to strain engineering, including carefully designed diagnostic experiments, provided critical insights about pathway bottlenecks, byproducts, expression balancing, and commercial robustness, leading to a superior BDO production strain and process.

  7. An integrated platform for biomolecule interaction analysis

    Science.gov (United States)

    Jan, Chia-Ming; Tsai, Pei-I.; Chou, Shin-Ting; Lee, Shu-Sheng; Lee, Chih-Kung

    2013-02-01

    We developed a new metrology platform which can detect real-time changes in both a phase-interrogation mode and intensity mode of a SPR (surface plasmon resonance). We integrated a SPR and ellipsometer to a biosensor chip platform to create a new biomolecular interaction measurement mechanism. We adopted a conductive ITO (indium-tinoxide) film to the bio-sensor platform chip to expand the dynamic range and improve measurement accuracy. The thickness of the conductive film and the suitable voltage constants were found to enhance performance. A circularly polarized ellipsometry configuration was incorporated into the newly developed platform to measure the label-free interactions of recombinant human C-reactive protein (CRP) with immobilized biomolecule target monoclonal human CRP antibody at various concentrations. CRP was chosen as it is a cardiovascular risk biomarker and is an acute phase reactant as well as a specific prognostic indicator for inflammation. We found that the sensitivity of a phaseinterrogation SPR is predominantly dependent on the optimization of the sample incidence angle. The effect of the ITO layer effective index under DC and AC effects as well as an optimal modulation were experimentally performed and discussed. Our experimental results showed that the modulated dynamic range for phase detection was 10E-2 RIU based on a current effect and 10E-4 RIU based on a potential effect of which a 0.55 (°/RIU) measurement was found by angular-interrogation. The performance of our newly developed metrology platform was characterized to have a higher sensitivity and less dynamic range when compared to a traditional full-field measurement system.

  8. Genomics Portals: integrative web-platform for mining genomics data

    Directory of Open Access Journals (Sweden)

    Ghosh Krishnendu

    2010-01-01

    Full Text Available Abstract Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc, and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  9. Fundamentals of power integrity for computer platforms and systems

    CERN Document Server

    DiBene, Joseph T

    2014-01-01

    An all-encompassing text that focuses on the fundamentals of power integrity Power integrity is the study of power distribution from the source to the load and the system level issues that can occur across it. For computer systems, these issues can range from inside the silicon to across the board and may egress into other parts of the platform, including thermal, EMI, and mechanical. With a focus on computer systems and silicon level power delivery, this book sheds light on the fundamentals of power integrity, utilizing the author's extensive background in the power integrity industry and un

  10. Exploration and implementation of ontology-based cultural relic knowledge map integration platform

    Science.gov (United States)

    Yang, Weiqiang; Dong, Yiqiang

    2018-05-01

    To help designers to better carry out creative design and improve the ability of searching traditional cultural relic information, the ontology-based knowledge map construction method was explored and an integrated platform for cultural relic knowledge map was developed. First of all, the construction method of the ontology of cultural relics was put forward, and the construction of the knowledge map of cultural relics was completed based on the constructed cultural relic otology. Then, a personalized semantic retrieval framework for creative design was proposed. Finally, the integrated platform of the knowledge map of cultural relics was designed and realized. The platform was divided into two parts. One was the foreground display system, which was used for designers to search and browse cultural relics. The other was the background management system, which was for cultural experts to manage cultural relics' knowledge. The research results showed that the platform designed could improve the retrieval ability of cultural relic information. To sum up, the platform can provide a good support for the designer's creative design.

  11. An Integrated Platform for Dynamic Software Updating and its Application in Self-* systems

    DEFF Research Database (Denmark)

    Gregersen, Allan Raundahl; Jørgensen, Bo Nørregaard; Hadaytullah

    2012-01-01

    Practical dynamic updating of modern Java applications requires tool support to become an integral part of the software development and maintenance lifecycle. In this paper we present Javeleon, an easy-to-use tool for dynamic updates of Java applications. To support integration with specific...... frameworks, component systems and application servers, Javeleon currently provides tight integration with the NetBeans Platform, facilitating dynamic updating for applications built on top of the NetBeans Platform in an unconstrained manner. Javeleon supports state-preserving unanticipated runtime evolution...

  12. A Platform for Mobile Service Provisioning Based on SOA-Integration

    Science.gov (United States)

    Decker, Michael; Bulander, Rebecca

    A middleware platform designed for the provisioning of data services for mobile computers using wireless data communication (e.g. smartphones or PDAs) has to offer a variety of different features. Some of these features have to be provided by external parties, e.g. billing or content syndication. The integration of all these features while considering mobile-specific challenges is a demanding task. In the article at hand we thus describe a middleware platform for mobile services which follows the idea of a so called Enterprise Service Bus (ESB). We explain the concept of ESB and argue why an ESB is an appropriate fundament for a platform for mobile service provisioning.

  13. REopt: A Platform for Energy System Integration and Optimization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, T.; Cutler, D.; Anderson, K.; Olis, D.; Elgqvist, E.; Callahan, M.; Walker, A.

    2014-08-01

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, and energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.

  14. Offshore platform integration and floatover technology

    CERN Document Server

    Liu, Gengshen

    2017-01-01

    This book discusses offshore platform integration technology, focusing on the floatover methodology and its applications. It also addresses topics related to safety and cost-effectiveness, as well as ensuring the success of a project through careful planning and established detailed operation procedure/working manuals, which are rarely found in the published literature. Unlike other publications in this area, the book not only includes details of technology development, but also presents real project cases in the discussion to make it more comprehensible. Each topic is illustrated with carefully created sketches to show the complex operation procedures. .

  15. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    Science.gov (United States)

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  16. Biochem-Env, a plateform of environmental biochemistry for research

    OpenAIRE

    GRONDIN, VIRGINIE; Nelieu, Sylvie; Crouzet, Olivier; Hedde, Mickaël; Mougin, Christian

    2016-01-01

    As a service of the research infrastructure AnaEE-France (http://www.anaee-france.fr/fr/), the platform Biochem-Env (http://www.biochemenv.fr) offers skills and innovative analytical tools for biochemical characterizations of soils, sediments, and micro-macro-organisms living in terrestrial and aquatic ecosystems. The platform provides methods validated according to Quality Guidelines, i.e. to measure global soil enzymatic activities. Our robot-supported protocols allow great number of enzyme...

  17. Wolfram technologies as an integrated scalable platform for interactive learning

    Science.gov (United States)

    Kaurov, Vitaliy

    2012-02-01

    We rely on technology profoundly with the prospect of even greater integration in the future. Well known challenges in education are a technology-inadequate curriculum and many software platforms that are difficult to scale or interconnect. We'll review an integrated technology, much of it free, that addresses these issues for individuals and small schools as well as for universities. Topics include: Mathematica, a programming environment that offers a diverse range of functionality; natural language programming for getting started quickly and accessing data from Wolfram|Alpha; quick and easy construction of interactive courseware and scientific applications; partnering with publishers to create interactive e-textbooks; course assistant apps for mobile platforms; the computable document format (CDF); teacher-student and student-student collaboration on interactive projects and web publishing at the Wolfram Demonstrations site.

  18. Development and application of knowledge-based subject group integration platforms:A case study of Shanghai Institute of Ceramics,CAS

    Institute of Scientific and Technical Information of China (English)

    Yu; LIU; Jian; FU; Huijun; ZHENG; Hao; CHEN; Zhiping; YANG

    2014-01-01

    Purpose:According to the different requirements of research group users,we established the knowledge-based subject group integration platforms of Shanghai Institute of Ceramics,the Chinese Academy of Sciences(abbreviated as SIC CAS hereinafter),which were designed and constructed to better meet the needs of CAS research groups for their development,collaboration and communication.Design/methodology/approach:We first identified the requirements of users via preliminary investigation,and then chose CASI1 P,iLibrary and XKE technology,respectively as the building tools compatible with the major demands of users.These steps helped us complete the layout design of SIC CAS integration platforms,as well as its knowledge organization and integration.Findings:According to the need of users,we applied three types of platform construction technologies to five SIC integration platforms,and formulated standard norms for the further construction process,which could provide useful reference for a sustainable development for the extensive construction in CAS institutes.Research limitations:In order to make the SIC integration platforms more intelligent and have more functions,we need to enlarge the scale of the Platforms and upgrade the building tools for the platform construction.Practical implications:The nature of SIC sub-project integration platforms is to construct a content-sensitive environment which can embed knowledge services and knowledge applications seamlessly into scientific activities,so the Platform is expected to be a useful tool to help researchers better understand the recent development of the research field and form collaborations with their peers.Originality/value:SIC integration platforms are the only pilot construction that used 3different platform technologies in the first batch of knowledge-based subject group integration platforms of the Chinese Academy of Sciences.The construction is user-centered throughout the whole process,namely,from the technology

  19. An Integrated System for Disabled People Developed with the Agent Platform PANGEA

    Directory of Open Access Journals (Sweden)

    Carolina ZATO

    2013-11-01

    Full Text Available New trends in multi-agent systems call for self-adaptation and high dynamics, hence the new model of open MAS or virtual organization of agents. However, as existing agent platforms are not yet equipped to support this behavior, it is necessary to create new systems and mechanisms to facilitate the development of these new architectures. This article presents PANGEA, an agent platform to develop open multi-agent systems, specifically those including organizational aspects such as virtual agent organizations. The platform allows the integral management of organizations and offers tools to the end user. Additionally, it includes a communication protocol based on the IRC standard, which facilitates implementation and remains robust even with a large number of connections. The introduction of a CommunicationAgent and a Sniffer make it possible to offer Web Services for the distributed control of interaction. In order to test PANGEA, an integral system was developed to help the disabled, gathering a set of easily deployable and integrated services under a single architecture.

  20. Biomass Program 2007 Peer Review - Integrated Biorefinery Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Integrated Biorefinery Platform Review held on August 13-15, 2007 in Golden, Colorado.

  1. IVSPlat 1.0: an integrated virtual screening platform with a molecular graphical interface.

    Science.gov (United States)

    Sun, Yin Xue; Huang, Yan Xin; Li, Feng Li; Wang, Hong Yan; Fan, Cong; Bao, Yong Li; Sun, Lu Guo; Ma, Zhi Qiang; Kong, Jun; Li, Yu Xin

    2012-01-05

    The virtual screening (VS) of lead compounds using molecular docking and pharmacophore detection is now an important tool in drug discovery. VS tasks typically require a combination of several software tools and a molecular graphics system. Thus, the integration of all the requisite tools in a single operating environment could reduce the complexity of running VS experiments. However, only a few freely available integrated software platforms have been developed. A free open-source platform, IVSPlat 1.0, was developed in this study for the management and automation of VS tasks. We integrated several VS-related programs into a molecular graphics system to provide a comprehensive platform for the solution of VS tasks based on molecular docking, pharmacophore detection, and a combination of both methods. This tool can be used to visualize intermediate and final results of the VS execution, while also providing a clustering tool for the analysis of VS results. A case study was conducted to demonstrate the applicability of this platform. IVSPlat 1.0 provides a plug-in-based solution for the management, automation, and visualization of VS tasks. IVSPlat 1.0 is an open framework that allows the integration of extra software to extend its functionality and modified versions can be freely distributed. The open source code and documentation are available at http://kyc.nenu.edu.cn/IVSPlat/.

  2. Fully integrated biochip platforms for advanced healthcare.

    Science.gov (United States)

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

  3. Participatory Planning, Monitoring and Evaluation of Multi-Stakeholder Platforms in Integrated Landscape Initiatives.

    Science.gov (United States)

    Kusters, Koen; Buck, Louise; de Graaf, Maartje; Minang, Peter; van Oosten, Cora; Zagt, Roderick

    2017-03-21

    Integrated landscape initiatives typically aim to strengthen landscape governance by developing and facilitating multi-stakeholder platforms. These are institutional coordination mechanisms that enable discussions, negotiations, and joint planning between stakeholders from various sectors in a given landscape. Multi-stakeholder platforms tend to involve complex processes with diverse actors, whose objectives and focus may be subjected to periodic re-evaluation, revision or reform. In this article we propose a participatory method to aid planning, monitoring, and evaluation of such platforms, and we report on experiences from piloting the method in Ghana and Indonesia. The method is comprised of three components. The first can be used to look ahead, identifying priorities for future multi-stakeholder collaboration in the landscape. It is based on the identification of four aspirations that are common across multi-stakeholder platforms in integrated landscape initiatives. The second can be used to look inward. It focuses on the processes within an existing multi-stakeholder platform in order to identify areas for possible improvement. The third can be used to look back, identifying the main outcomes of an existing platform and comparing them to the original objectives. The three components can be implemented together or separately. They can be used to inform planning and adaptive management of the platform, as well as to demonstrate performance and inform the design of new interventions.

  4. A service platform architecture design towards a light integration of heterogeneous systems in the wellbeing domain.

    Science.gov (United States)

    Yang, Yaojin; Ahtinen, Aino; Lahteenmaki, Jaakko; Nyman, Petri; Paajanen, Henrik; Peltoniemi, Teijo; Quiroz, Carlos

    2007-01-01

    System integration is one of the major challenges for building wellbeing or healthcare related information systems. In this paper, we are going to share our experiences on how to design a service platform called Nuadu service platform, for providing integrated services in occupational health promotion and health risk management through two heterogeneous systems. Our design aims for a light integration covering the layers, from data through service up to presentation, while maintaining the integrity of the underlying systems.

  5. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    Science.gov (United States)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  6. Integration of the program TNXYZ in the platform SALOME

    International Nuclear Information System (INIS)

    Chaparro V, F. J.; Silva A, L.; Del Valle G, E.; Gomez T, A. M.; Vargas E, S.

    2013-10-01

    This work presents the procedure realized to integrate the code TNXYZ like a processing tool to the graphic simulation platform SALOME. The code TNXYZ solves the neutron transport equation in stationary state, for several energy groups, quantizing the angular variable by the discrete ordinates method and the space variable by nodal methods. The platform SALOME is a graphic surrounding designed for the construction, edition and simulation of mechanical models focused to the industry and contrary to other software, it allows to integrate external source codes to the surrounding, to form a complete scheme of execution, supervision, pre and post information processing. The code TNXYZ was programmed in the 90s in a Fortran compiler, but to be used at the present time the code should be actualized to the current compiler characteristics; also, in the original scheme was carried out a modularization process, that is to say, the main program was divided in sections where the code carries out important operations, with the intention of flexibility the data extraction process along its processing sequence and that can be useful in a later development of coupling. Finally, to verify the integration a fuel assembly BWR was modeled, as well as a control cell. The cross sections were obtained with the Monte Carlo Serpent code. Some results obtained with Serpent were used to verify and to begin with the validation of the code, being obtained an acceptable comparison in the infinite multiplication factor. The validation process should extend and one has planned to present in a future work. This work is part of the development of the research group formed between the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (IPN) and the Instituto Nacional de Investigaciones Nucleares (ININ) in which a simulation Mexican platform of nuclear reactors is developed. (Author)

  7. Fully Integrated Biochip Platforms for Advanced Healthcare

    Directory of Open Access Journals (Sweden)

    Giovanni De Micheli

    2012-08-01

    Full Text Available Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

  8. SALOME. A software integration platform for multi-physics, pre-processing and visualisation

    International Nuclear Information System (INIS)

    Bergeaud, Vincent; Lefebvre, Vincent

    2010-01-01

    In order to ease the development of applications integrating simulation codes, CAD modelers and post-processing tools. CEA and EDF R and D have invested in the SALOME platform, a tool dedicated to the environment of the scientific codes. The platform comes in the shape of a toolbox which offers functionalities for CAD, meshing, code coupling, visualization, GUI development. These tools can be combined to create integrated applications that make the scientific codes easier to use and well-interfaced with their environment be it other codes, CAD and meshing tools or visualization software. Many projects in CEA and EDF R and D now use SALOME, bringing technical coherence to the software suites of our institutions. (author)

  9. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Directory of Open Access Journals (Sweden)

    Lena Simone Fohrmann

    2017-09-01

    Full Text Available Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  10. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Science.gov (United States)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  11. Optical devices for biochemical sensing in flame hydrolysis deposited glass

    Science.gov (United States)

    Ruano-Lopez, Jesus M.

    Previous research in the field of Flame Hydrolysis Deposition (FHD) of glasses has focused on the production of low cost optical devices for the field of telecommunications. The originality of this doctoral research resides in the exploration of this technology in the fabrication of optical bio-chemical sensors, with integrated "Lab-on-a-chip" devices. To achieve this goal, we have combined and applied different microfabrication processes for the manufacture of sensor platforms using FHD. These structures are unique in that they take advantage of the intrinsic benefits of the microfabrication process, such as, miniaturisation and mass production, and combine them with the properties of FHD glass, namely: low loss optical transducing mechanisms, planar technologies and monolithic integration. This thesis demonstrates that FHD is a suitable technology for biosensing and Lab- on-a-Chip applications. The objective is to provide future researchers with the necessary tools to accomplish an integrated analytical system based on FHD. We have designed, fabricated, and successfully tested a FHD miniaturised sensor, which comprised optical and microfluidic circuitry, in the framework of low volume fluorescence assays. For the first time, volumes as low as 570 pL were analysed with a Cyanine-5 fluorophore with a detection limit of 20 pM, or ca. 6000 molecules (+/-3sigma) for this platform. The fabrication of the sensor generated a compilation of processes that were then utilised to produce other possible optical platforms for bio-chemical sensors in FHD, e.g. arrays and microfluidics. The "catalogue" of methods used included new recipes for reactive ion etching, glass deposition and bonding techniques that enabled the development of the microfluidic circuitry, integrated with an optical circuitry. Furthermore, we developed techniques to implement new tasks such as optical signal treatment using integrated optical structures, planar arraying of sensors, a separating element for

  12. Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing.

    Science.gov (United States)

    Eisenhofer, Graeme; Klink, Barbara; Richter, Susan; Lenders, Jacques Wm; Robledo, Mercedes

    2017-04-01

    The tremendous advances over the past two decades in both clinical genetics and biochemical testing of chromaffin cell tumours have led to new considerations about how these aspects of laboratory medicine can be integrated to improve diagnosis and management of affected patients. With germline mutations in 15 genes now identified to be responsible for over a third of all cases of phaeochromocytomas and paragangliomas, these tumours are recognised to have one of the richest hereditary backgrounds among all neoplasms. Depending on the mutation, tumours show distinct differences in metabolic pathways that relate to or even directly impact clinical presentation. At the same time, there has been improved understanding about how catecholamines are synthesised, stored, secreted and metabolised by chromaffin cell tumours. Although the tumours may not always secrete catecholamines it has become clear that almost all continuously produce and metabolise catecholamines. This has not only fuelled changes in laboratory medicine, but has also assisted in recognition of genotype-biochemical phenotype relationships important for diagnostics and clinical care. In particular, differences in catecholamine and energy pathway metabolomes can guide genetic testing, assist with test interpretation and provide predictions about the nature, behaviour and imaging characteristics of the tumours. Conversely, results of genetic testing are important for guiding how routine biochemical testing should be employed and interpreted in surveillance programmes for at-risk patients. In these ways there are emerging needs for modern laboratory medicine to seamlessly integrate biochemical and genetic testing into the diagnosis and management of patients with chromaffin cell tumours.

  13. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    KAUST Repository

    Mashraei, Yousof

    2016-06-08

    The digital microfluidic (DMF) platform introduces many applications in biomedical assays. If it is to be commercially available to the public, it needs to have the essential features of smart sensing and a compact size. In this work, we report on a fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF platforms. A simulation of the electrical field distribution shows reduced peak intensities and uniform distribution of the field. When compared to a V-notch square electrode, the fractal electrode shows a superior performance in both aspects, i.e. field uniformity and intensity. These improvements are translated into a successful and responsive actuation of a water droplet with 100V. Likewise, the effective dielectric strength is improved by a 33% increase in the fractal electrode breakdown voltage. Additionally, the capability of the fractal electrode to work as a capacitive biosensor is evaluated with CRP quantification test. Selected fractal electrodes undergo a surface treatment to immobilize anti-CRP antibodies on their surface. The measurement shows a response to the added CRP in capacitance within three minutes. When the untreated electrodes were used for quantification, there was no significant change in capacitance, and this suggested that immobilization was necessary. The electrodes configuration in the fabricated DMF platform allows the fractal electrodes to be selectively used as biosensors, which means the device could be integrated into point-of-care applications.

  14. From NHS Choices to the integrated customer service platform.

    Science.gov (United States)

    Gann, Bob; Grant, Maria J

    2013-03-01

    In 2013 the NHS Commissioning Board launches its new integrated customer service platform. The new service utilises the full range of channels (web, telephone, apps etc) to provide access to information to support transparency, participation and transactions. Digital health services have proven benefits in informed choice, shared decision making and patient participation. © 2013 The authors. Health Information and Libraries Journal © 2013 Health Libraries Group.

  15. Thermo-economic assessment of the integration of steam cycles on offshore platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    thermodynamic and economic performance indicators. The results illustrate the benefits of converting the gas turbines into a combined cycle. Using seawater results in smaller power generation and greater CO2-emissions than using process water, as the additional power generation in the combined cycle......The integration of steam bottoming cycles on oil platforms is often seen as a possible route to mitigate the CO2-emissions offshore. In this paper, a North Sea platform and its energy requirements are systematically analysed. The site-scale integration of steam networks is assessed by using...... is compensated by the significant pumping demand. This work emphasises that energy improvement efforts should be analysed at the scale of the overall site and not solely at the level of the combined cycle....

  16. An electrodynamic preconcentrator integrated thermoelectric biosensor chip for continuous monitoring of biochemical process

    International Nuclear Information System (INIS)

    Choi, Yong-Hwan; Kim, Min-gu; Kang, Dong-Hyun; Sim, Jaesam; Kim, Jongbaeg; Kim, Yong-Jun

    2012-01-01

    This paper proposes an integrated sensor chip for continuous monitoring of a biochemical process. It is composed of a preconcentrator and a thermoelectric biosensor. In the preconcentrator, the concentration of the injected biochemical sample is electrodynamically condensed. Then, in the downstream thermoelectric biosensor, the preconcentrated target molecules react with sequentially injected capture molecules and generate reaction heat. The reaction heat is detected based on the thermoelectric effect, and an integrated split-flow microchannel improves the sensor stability by providing ability to self-compensate thermal noise. These sequential preconcentration and detection processes are performed in completely label-free and continuous conditions and consequently enhance the sensor sensitivity. The performance of the integrated biosensor chip was evaluated at various flow rates and applied voltages. First, in order to verify characteristics of the fabricated preconcentrator, 10 µm -diameter polystyrene (PS) particles were used. The particles were concentrated by applying ac voltage from 0 to 16 V pp at 3 MHz at various flow rates. In the experimental result, approximately 92.8% of concentration efficiency was achieved at a voltage over 16 V pp and at a flow rate below 100 µl h −1 . The downstream thermoelectric biosensor was characterized by measuring reaction heat of biotin–streptavidin interaction. The preconcentrated streptavidin-coated PS particles flow into the reaction chamber and react with titrated biotin. The measured output voltage was 288.2 µV at a flow rate of 100 µl h −1 without preconcentration. However, by using proposed preconcentrator, an output voltage of 812.3 µV was achieved with a 16 V pp -applied preconcentration in the same given sample and flow rate. According to these results, the proposed label-free biomolecular preconcentration and detection technique can be applied in continuous and high-throughput biochemical applications

  17. Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform.

    Science.gov (United States)

    Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P

    2015-02-01

    We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.

  18. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform.

    Science.gov (United States)

    Stanton, Eric J; Heck, Martijn J R; Bovington, Jock; Spott, Alexander; Bowers, John E

    2015-05-04

    We present the design of a novel platform that is able to combine optical frequency bands spanning 4.2 octaves from ultraviolet to mid-wave infrared into a single, low M2 output waveguide. We present the design and realization of a key component in this platform that combines the wavelength bands of 350 nm - 1500 nm and 1500 nm - 6500 nm with demonstrated efficiency greater than 90% in near-infrared and mid-wave infrared. The multi-octave spectral beam combiner concept is realized using an integrated platform with silicon nitride waveguides and silicon waveguides. Simulated bandwidth is shown to be over four octaves, and measured bandwidth is shown over two octaves, limited by the availability of sources.

  19. Integrating Carbon Nanotubes into Microfluidic Chip for Separating Biochemical Compounds

    DEFF Research Database (Denmark)

    Chen, Miaoxiang Max; Mogensen, Klaus Bo; Bøggild, Peter

    2012-01-01

    We present a new type of device to separate biochemical compounds wherein carbon nanotubes (CNTs) are integrated as chromatographic stationary phase. The CNTs were directly grown on the bottom of microfluidic channels on Si/SiO2 substrates by chemical vapor deposition (CVD). Acetylene was used...... as carbon source and Ni was employed as catalyst. For electrokinetic separations, higher electrical field strength is usually required; therefore, the CNTs were constructed in pillar-array-form by patterning the catalyst layer. Electrical field strength of 2.0 kV/cm has been realized, which is more than one...

  20. Gene Expression Analysis of Escherichia Coli Grown in Miniaturized Bioreactor Platforms for High-Throughput Analysis of Growth and genomic Data

    DEFF Research Database (Denmark)

    Boccazzi, P.; Zanzotto, A.; Szita, Nicolas

    2005-01-01

    Combining high-throughput growth physiology and global gene expression data analysis is of significant value for integrating metabolism and genomics. We compared global gene expression using 500 ng of total RNA from Escherichia coli cultures grown in rich or defined minimal media in a miniaturize...... cultures using just 500 ng of total RNA indicate that high-throughput integration of growth physiology and genomics will be possible with novel biochemical platforms and improved detection technologies....

  1. Integrative set enrichment testing for multiple omics platforms

    Directory of Open Access Journals (Sweden)

    Poisson Laila M

    2011-11-01

    Full Text Available Abstract Background Enrichment testing assesses the overall evidence of differential expression behavior of the elements within a defined set. When we have measured many molecular aspects, e.g. gene expression, metabolites, proteins, it is desirable to assess their differential tendencies jointly across platforms using an integrated set enrichment test. In this work we explore the properties of several methods for performing a combined enrichment test using gene expression and metabolomics as the motivating platforms. Results Using two simulation models we explored the properties of several enrichment methods including two novel methods: the logistic regression 2-degree of freedom Wald test and the 2-dimensional permutation p-value for the sum-of-squared statistics test. In relation to their univariate counterparts we find that the joint tests can improve our ability to detect results that are marginal univariately. We also find that joint tests improve the ranking of associated pathways compared to their univariate counterparts. However, there is a risk of Type I error inflation with some methods and self-contained methods lose specificity when the sets are not representative of underlying association. Conclusions In this work we show that consideration of data from multiple platforms, in conjunction with summarization via a priori pathway information, leads to increased power in detection of genomic associations with phenotypes.

  2. Photonic integration and photonics-electronics convergence on silicon platform

    CERN Document Server

    Liu, Jifeng; Baba, Toshihiko; Vivien, Laurent; Xu, Dan-Xia

    2015-01-01

    Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference de...

  3. Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    Science.gov (United States)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.

  4. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  5. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Towards a fully integrated indium-phosphide membrane on silicon photonics platform

    NARCIS (Netherlands)

    van Engelen, J.P.; Pogoretskiy, V.; Smit, M.K.; van der Tol, J.J.G.M.; Jiao, Y.

    2017-01-01

    Recently a uni-traveling-carrier photodetector with high speed (> 67GHz) and a high-gain optical amplifier (110/cm at 4 kA/cm2) have been demonstrated using the InP membrane-on-Silicon (IMOS) integration technology. Passives in IMOS have shown features comparable to SOI platforms due to the tight

  7. Integrated platform and API for electrophysiological data.

    Science.gov (United States)

    Sobolev, Andrey; Stoewer, Adrian; Leonhardt, Aljoscha; Rautenberg, Philipp L; Kellner, Christian J; Garbers, Christian; Wachtler, Thomas

    2014-01-01

    Recent advancements in technology and methodology have led to growing amounts of increasingly complex neuroscience data recorded from various species, modalities, and levels of study. The rapid data growth has made efficient data access and flexible, machine-readable data annotation a crucial requisite for neuroscientists. Clear and consistent annotation and organization of data is not only an important ingredient for reproducibility of results and re-use of data, but also essential for collaborative research and data sharing. In particular, efficient data management and interoperability requires a unified approach that integrates data and metadata and provides a common way of accessing this information. In this paper we describe GNData, a data management platform for neurophysiological data. GNData provides a storage system based on a data representation that is suitable to organize data and metadata from any electrophysiological experiment, with a functionality exposed via a common application programming interface (API). Data representation and API structure are compatible with existing approaches for data and metadata representation in neurophysiology. The API implementation is based on the Representational State Transfer (REST) pattern, which enables data access integration in software applications and facilitates the development of tools that communicate with the service. Client libraries that interact with the API provide direct data access from computing environments like Matlab or Python, enabling integration of data management into the scientist's experimental or analysis routines.

  8. Design of the Hospital Integrated Information Management System Based on Cloud Platform.

    Science.gov (United States)

    Aijing, L; Jin, Y

    2015-12-01

    At present, the outdated information management style cannot meet the needs of hospital management, and has become the bottleneck of hospital's management and development. In order to improve the integrated management of information, hospitals have increased their investment in integrated information management systems. On account of the lack of reasonable and scientific design, some hospital integrated information management systems have common problems, such as unfriendly interface, poor portability and maintainability, low security and efficiency, lack of interactivity and information sharing. To solve the problem, this paper carries out the research and design of a hospital information management system based on cloud platform, which can realize the optimized integration of hospital information resources and save money.

  9. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

    Science.gov (United States)

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-02-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development.

  10. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  11. Multi-fields' coordination information integrated platform for nuclear power plant operation preparation

    International Nuclear Information System (INIS)

    Yuan Chang; Li Yong; Ye Zhiqiang

    2011-01-01

    To realize the coordination in multi-fields' work and information sharing, by applying the method of Enterprise Architecture (EA), the business architecture, functional flow and application architecture of Nuclear Power Plant's operation preparation information integrated platform are designed, which can realize the information sharing and coordination of multi fields. (authors)

  12. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Directory of Open Access Journals (Sweden)

    Carl A. Batt

    2009-05-01

    Full Text Available The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.

  13. Integrated Tourism E-Commerce Platform for Scenery Administration Bureau, Travel Agency and Tourist

    Science.gov (United States)

    Liang, Zhixue; Wang, Shui

    Collaboration among multiple travel agencies and with scenery administration bureaus is vital for small or medium sized travel companies to succeed in the fierce competition of the tourism industry; business processes such as regrouping individual travelers between different agencies prove to be difficult and unpleasant user experience; tourists want to be more informed and have more initiative. To address these issues, proposes an integrated tourism e-commerce platform for travel agencies and scenery administration bureaus as well as tourists to interact in a more smooth way; this platform is constructed upon J2EE framework, provides online collaboration & coordination for companies and information services (such as self-navigation using Google Map etc) for tourists. A running implementation of this platform has been put into real business for a small travel company.

  14. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.

    Science.gov (United States)

    Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B

    2015-08-10

    We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.

  15. The business impact of an integrated continuous biomanufacturing platform for recombinant protein production.

    Science.gov (United States)

    Walther, Jason; Godawat, Rahul; Hwang, Chris; Abe, Yuki; Sinclair, Andrew; Konstantinov, Konstantin

    2015-11-10

    The biotechnology industry primarily uses batch technologies to manufacture recombinant proteins. The natural evolution of other industries has shown that transitioning from batch to continuous processing can yield significant benefits. A quantitative understanding of these benefits is critical to guide the implementation of continuous processing. In this manuscript, we use process economic modeling and Monte Carlo simulations to evaluate an integrated continuous biomanufacturing (ICB) platform and conduct risk-based valuation to generate a probabilistic range of net-present values (NPVs). For a specific ten-year product portfolio, the ICB platform reduces average cost by 55% compared to conventional batch processing, considering both capital and operating expenses. The model predicts that these savings can further increase by an additional 25% in situations with higher-than-expected product demand showing the upward potential of the ICB platform. The ICB platform achieves these savings and corresponding flexibility mainly due to process intensification in both upstream and downstream unit operations. This study demonstrates the promise of continuous bioprocessing while also establishing a novel framework to quantify financial benefits of other platform process technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Design Considerations for Integration of Terahertz Time-Domain Spectroscopy in Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Rasha Al-Hujazy

    2018-03-01

    Full Text Available Microfluidic platforms have received much attention in recent years. In particular, there is interest in combining spectroscopy with microfluidic platforms. This work investigates the integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS systems. A semiclassical computational model is used to simulate the emission of THz radiation from a GaAs photoconductive THz emitter. This model incorporates white noise with increasing noise amplitude (corresponding to decreasing dynamic range values. White noise is selected over other noise due to its contributions in THz-TDS systems. The results from this semiclassical computational model, in combination with defined sample thicknesses, can provide the maximum measurable absorption coefficient for a microfluidic-based THz-TDS system. The maximum measurable frequencies for such systems can be extracted through the relationship between the maximum measurable absorption coefficient and the absorption coefficient for representative biofluids. The sample thickness of the microfluidic platform and the dynamic range of the THz-TDS system play a role in defining the maximum measurable frequency for microfluidic-based THz-TDS systems. The results of this work serve as a design tool for the development of such systems.

  17. Snap: an integrated SNP annotation platform

    DEFF Research Database (Denmark)

    Li, Shengting; Ma, Lijia; Li, Heng

    2007-01-01

    Snap (Single Nucleotide Polymorphism Annotation Platform) is a server designed to comprehensively analyze single genes and relationships between genes basing on SNPs in the human genome. The aim of the platform is to facilitate the study of SNP finding and analysis within the framework of medical...

  18. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.

    Science.gov (United States)

    Liang, Muxuan; Li, Zhizhong; Chen, Ting; Zeng, Jianyang

    2015-01-01

    Identification of cancer subtypes plays an important role in revealing useful insights into disease pathogenesis and advancing personalized therapy. The recent development of high-throughput sequencing technologies has enabled the rapid collection of multi-platform genomic data (e.g., gene expression, miRNA expression, and DNA methylation) for the same set of tumor samples. Although numerous integrative clustering approaches have been developed to analyze cancer data, few of them are particularly designed to exploit both deep intrinsic statistical properties of each input modality and complex cross-modality correlations among multi-platform input data. In this paper, we propose a new machine learning model, called multimodal deep belief network (DBN), to cluster cancer patients from multi-platform observation data. In our integrative clustering framework, relationships among inherent features of each single modality are first encoded into multiple layers of hidden variables, and then a joint latent model is employed to fuse common features derived from multiple input modalities. A practical learning algorithm, called contrastive divergence (CD), is applied to infer the parameters of our multimodal DBN model in an unsupervised manner. Tests on two available cancer datasets show that our integrative data analysis approach can effectively extract a unified representation of latent features to capture both intra- and cross-modality correlations, and identify meaningful disease subtypes from multi-platform cancer data. In addition, our approach can identify key genes and miRNAs that may play distinct roles in the pathogenesis of different cancer subtypes. Among those key miRNAs, we found that the expression level of miR-29a is highly correlated with survival time in ovarian cancer patients. These results indicate that our multimodal DBN based data analysis approach may have practical applications in cancer pathogenesis studies and provide useful guidelines for

  19. Voltage margin control for offshore multi-use platform integration

    DEFF Research Database (Denmark)

    Mier, V.; Casielles, P.G.; Koto, J.

    This paper discusses a multiterminal direct current (MTDC) connection proposed for integration of offshore multi-use platforms into continental grids. Voltage source converters (VSC) were selected for their suitability for multiterminal dc systems and for their flexibility in control. A five...... terminal VSC-MTDC which includes offshore generation, storage, loads and ac connection, was modeled and simulated in DigSILENT Power Factory software. Voltage margin method has been used for reliable operation of the MTDC system without the need of fast communication. Simulation results show......, sell or store energy attending to the price in the electricity market....

  20. Integration of fractal biosensor in a digital microfluidic platform

    KAUST Repository

    Mashraei, Yousof

    2015-11-01

    Fractal capacitive electrodes have been successfully integrated into a digital microfluidic open-platform. These electrodes perform actuation and withstand voltages up to 300V without insulation-layer breakdown. They were used to quantify the concentration levels of C-reactive protein (CRP) to determine the risk of cardiovascular disease. The capacitance increased sevenfold and stabilized in less than 5 minutes. The sensor shows a decreasing trend of capacitance readouts with the increase of concentrations. The same immunoassay was tested with untreated electrodes and showed no significant response, which suggests that immobilization was necessary. This configuration allows the electrodes to be used as biosensors.

  1. Information Integration Platform for Patient-Centric Healthcare Services: Design, Prototype and Dependability Aspects

    Directory of Open Access Journals (Sweden)

    Yohanes Baptista Dafferianto Trinugroho

    2014-03-01

    Full Text Available Technology innovations have pushed today’s healthcare sector to an unprecedented new level. Various portable and wearable medical and fitness devices are being sold in the consumer market to provide the self-empowerment of a healthier lifestyle to society. Many vendors provide additional cloud-based services for devices they manufacture, enabling the users to visualize, store and share the gathered information through the Internet. However, most of these services are integrated with the devices in a closed “silo” manner, where the devices can only be used with the provided services. To tackle this issue, an information integration platform (IIP has been developed to support communications between devices and Internet-based services in an event-driven fashion by adopting service-oriented architecture (SOA principles and a publish/subscribe messaging pattern. It follows the “Internet of Things” (IoT idea of connecting everyday objects to various networks and to enable the dissemination of the gathered information to the global information space through the Internet. A patient-centric healthcare service environment is chosen as the target scenario for the deployment of the platform, as this is a domain where IoT can have a direct positive impact on quality of life enhancement. This paper describes the developed platform, with emphasis on dependability aspects, including availability, scalability and security.

  2. Multilayered photonic integration on SOI platform using waveguide-based bridge structure

    Science.gov (United States)

    Majumder, Saikat; Chakraborty, Rajib

    2018-06-01

    A waveguide based structure on silicon on insulator platform is proposed for vertical integration in photonic integrated circuits. The structure consists of two multimode interference couplers connected by a single mode (SM) section which can act as a bridge over any other underlying device. Two more SM sections acts as input and output of the first and second multimode couplers respectively. Potential application of this structure is in multilayered photonic links. It is shown that the efficiency of the structure can be improved by making some design modifications. The entire simulation is done using effective-index based matrix method. The feature size chosen are comparable to waveguides fabricated previously so as to fabricate the proposed structure easily.

  3. Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    The integration of steam bottoming cycles on oil and gas platforms is currently regarded as the most promising option for improving the performance of these energy-intensive systems. In this paper, a North Sea platform is taken as case study, and a systematic analysis of its energy requirements...... cooling utility, and (iv) the weight limitations on the platform are quantitatively assessed. The results illustrate the benefits of converting the gas turbine process into a combined cycle, since the fuel gas consumption and the total CO2-emissions can be reduced by more than 15 %. Using the cooling...... water from the processing plant reveals to be more profitable than using seawater, as the additional pumping power outweighs the benefit of using a cooling medium at a temperature of about 8 °C lower. This study highlights thereby the importance of analysing energy savings and recovery options...

  4. Performance Measurement of Complex Event Platforms

    Directory of Open Access Journals (Sweden)

    Eva Zámečníková

    2016-12-01

    Full Text Available The aim of this paper is to find and compare existing solutions of complex event processing platforms (CEP. CEP platforms generally serve for processing and/or predicting of high frequency data. We intend to use CEP platform for processing of complex time series and integrate a solution for newly proposed method of decision making. The decision making process will be described by formal grammar. As there are lots of CEP solutions we will take the following characteristics under consideration - the processing in real time, possibility of processing of high volume data from multiple sources, platform independence, platform allowing integration with user solution and open license. At first we will talk about existing CEP tools and their specific way of use in praxis. Then we will mention the design of method for formalization of business rules used for decision making. Afterwards, we focus on two platforms which seem to be the best fit for integration of our solution and we will list the main pros and cons of each approach. Next part is devoted to benchmark platforms for CEP. Final part is devoted to experimental measurements of platform with integrated method for decision support.

  5. Integrated vehicle-based safety systems (IVBSS) : light vehicle platform field operational test data analysis plan.

    Science.gov (United States)

    2009-12-22

    This document presents the University of Michigan Transportation Research Institutes plan to : perform analysis of data collected from the light vehicle platform field operational test of the : Integrated Vehicle-Based Safety Systems (IVBSS) progr...

  6. Integrated vehicle-based safety systems (IVBSS) : heavy truck platform field operational test data analysis plan.

    Science.gov (United States)

    2009-11-23

    This document presents the University of Michigan Transportation Research Institutes plan to perform : analysis of data collected from the heavy truck platform field operational test of the Integrated Vehicle- : Based Safety Systems (IVBSS) progra...

  7. VOLTTRON Lite: Integration Platform for the Transactional Network

    Energy Technology Data Exchange (ETDEWEB)

    Haack, Jereme N.; Katipamula, Srinivas; Akyol, Bora A.; Lutes, Robert G.

    2013-10-31

    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energy’s (DOE’s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform. The platform is intended to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop units (RTUs) and the electric grid using applications or “agents” that reside on the platform, on the equipment, on local building controller or in the Cloud. This document describes the core of the transactional network platform, the Volttron Lite™ software and associated services hosted on the platform. Future enhancements are also discussed. The appendix of the document provides examples of how to use the various services hosted on the platform.

  8. Power System and Energy Storage Models for Laser Integration on Naval Platforms

    Science.gov (United States)

    2015-09-30

    Power System and Energy Storage Models for Laser Integration on Naval Platforms A.L. Gattozzi, J.D. Herbst, R.E. Hebner Center for... Electromechanics , University of Texas Austin, Texas a.gattozzi@cem.utexas.edu J.A. Blau, K.R. Cohn, W.B. Colson, J.E. Sylvester, M.A. Woehrman Physics...emerging technologies present significant challenges to the electric power distribution and thermal management systems, particularly for

  9. Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance

    International Nuclear Information System (INIS)

    Benkstein, Kurt D.; Martinez, Carlos J.; Li, Guofeng; Meier, Douglas C.; Montgomery, Christopher B.; Semancik, Steve

    2006-01-01

    The development of miniaturized chemical sensors is an increasingly active area of research. Such devices, particularly when they feature low mass and low power budgets, can impact a broad range of applications including industrial process monitoring, building security and extraterrestrial exploration. Nanostructured materials, because of their high surface area, can provide critical enhancements in the performance of chemical microsensors. We have worked to integrate nanomaterial films with MEMS (microelectromechanical systems) microhotplate platforms developed at the National Institute of Standards and Technology in order to gain the benefits of both the materials and the platforms in high-performance chemical sensor arrays. Here, we describe our success in overcoming the challenges of integration and the benefits that we have achieved with regard to the critical sensor performance characteristics of sensor response, speed, stability and selectivity. Nanostructured metal oxide sensing films were locally deposited onto microhotplates via chemical vapor deposition and microcapillary pipetting, and conductive polymer nanoparticle films were deposited via electrophoretic patterning. All films were characterized by scanning electron microscopy and evaluated as conductometric gas sensors

  10. Monolithic photonic integration technology platform and devices at wavelengths beyond 2 μm for gas spectroscopy applications

    NARCIS (Netherlands)

    Latkowski, S.; van Veldhoven, P.J.; Hänsel, A.; D'Agostino, D.; Rabbani-Haghighi, H.; Docter, B.; Bhattacharya, N.; Thijs, P.J.A.; Ambrosius, H.P.M.M.; Smit, M.K.; Williams, K.A.; Bente, E.A.J.M.

    2017-01-01

    In this paper a generic monolithic photonic integration technology platform and tunable laser devices for gas sensing applications at 2 μm will be presented. The basic set of long wavelength optical functions which is fundamental for a generic photonic integration approach is realized using planar,

  11. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out.

    Science.gov (United States)

    Liu, Hong; Crooks, Richard M

    2012-03-06

    We report a battery-powered, microelectrochemical sensing platform that reports its output using an electrochromic display. The platform is fabricated based on paper fluidics and uses a Prussian blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. The integrated metal/air battery powers both the electrochemical sensor and the electrochromic read-out, which are in electrical contact via a paper reservoir. The sample activates the battery and the presence of analyte in the sample initiates the color change of the Prussian blue spot. The entire system is assembled on the lab bench, without the need for cleanroom facilities. The applicability of the device to point-of-care sensing is demonstrated by qualitative detection of 0.1 mM glucose and H(2)O(2) in artificial urine samples.

  12. SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa

    Science.gov (United States)

    Macharia, Daniel; Korme, Tesfaye; Policelli, Fritz; Irwin, Dan; Adler, Bob; Hong, Yang

    2010-01-01

    SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management.

  13. Using a blog as an integrated eLearning tool and platform.

    Science.gov (United States)

    Goh, Poh Sun

    2016-06-01

    Technology enhanced learning or eLearning allows educators to expand access to educational content, promotes engagement with students and makes it easier for students to access educational material at a time, place and pace which suits them. The challenge for educators beginning their eLearning journey is to decide where to start, which includes the choice of an eLearning tool and platform. This article will share one educator's decision making process, and experience using blogs as a flexible and versatile integrated eLearning tool and platform. Apart from being a cost effective/free tool and platform, blogs offer the possibility of creating a hyperlinked indexed content repository, for both created and curated educational material; as well as a distribution and engagement tool and platform. Incorporating pedagogically sound activities and educational practices into a blog promote a structured templated teaching process, which can be reproduced. Moving from undergraduate to postgraduate training, educational blogs supported by a comprehensive online case-based repository offer the possibility of training beyond competency towards proficiency and expert level performance through a process of deliberate practice. By documenting educational content and the student engagement and learning process, as well as feedback and personal reflection of educational sessions, blogs can also form the basis for a teaching portfolio, and provide evidence and data of scholarly teaching and educational scholarship. Looking into the future, having a collection of readily accessible indexed hyperlinked teaching material offers the potential to do on the spot teaching with illustrative material called up onto smart surfaces, and displayed on holographic interfaces.

  14. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    Science.gov (United States)

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  15. Integration Platform As Central Service Of Data Replication In Distributed Medical System

    Directory of Open Access Journals (Sweden)

    Wiesław Wajs

    2007-01-01

    Full Text Available The paper presents the application of Java Integration Platform (JIP to data replicationin the distributed medical system. After an introductory part on the medical system’s architecture,the focus shifts to a comparison of different approaches that exist with regard totransferring data between the system’s components. A description is given of the historicaldata processing and of the whole area of the JIP application to the medical system.

  16. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    International Nuclear Information System (INIS)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C.; Koeber, S.; Freude, W.; Koos, C.; Rembe, C.

    2014-01-01

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB

  17. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C. [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Koeber, S.; Freude, W., E-mail: christian.koos@kit.edu; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany and Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Rembe, C. [Polytec GmbH, 76337 Waldbronn (Germany)

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  18. InP-based photonic integrated circuit platform on SiC wafer.

    Science.gov (United States)

    Takenaka, Mitsuru; Takagi, Shinichi

    2017-11-27

    We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 μm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO 2 /Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.

  19. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    Science.gov (United States)

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO 2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  20. Integration of the HTC Vive into the medical platform MeVisLab

    Science.gov (United States)

    Egger, Jan; Gall, Markus; Wallner, Jürgen; de Almeida Germano Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter

    2017-03-01

    Virtual Reality (VR) is an immersive technology that replicates an environment via computer-simulated reality. VR gets a lot of attention in computer games but has also great potential in other areas, like the medical domain. Examples are planning, simulations and training of medical interventions, like for facial surgeries where an aesthetic outcome is important. However, importing medical data into VR devices is not trivial, especially when a direct connection and visualization from your own application is needed. Furthermore, most researcher don't build their medical applications from scratch, rather they use platforms, like MeVisLab, Slicer or MITK. The platforms have in common that they integrate and build upon on libraries like ITK and VTK, further providing a more convenient graphical interface to them for the user. In this contribution, we demonstrate the usage of a VR device for medical data under MeVisLab. Therefore, we integrated the OpenVR library into MeVisLab as an own module. This enables the direct and uncomplicated usage of head mounted displays, like the HTC Vive under MeVisLab. Summarized, medical data from other MeVisLab modules can directly be connected per drag-and-drop to our VR module and will be rendered inside the HTC Vive for an immersive inspection.

  1. Infrared microspectroscopy: a multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection.

    Science.gov (United States)

    Didonna, Alessandro; Vaccari, Lisa; Bek, Alpan; Legname, Giuseppe

    2011-03-16

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrP(Sc)) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrP(C), into nascent PrP(Sc). The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level.

  2. Infrared Microspectroscopy: A Multiple-Screening Platform for Investigating Single-Cell Biochemical Perturbations upon Prion Infection

    Science.gov (United States)

    2011-01-01

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrPSc) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrPC, into nascent PrPSc. The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level. PMID:22778865

  3. G-DOC Plus - an integrative bioinformatics platform for precision medicine.

    Science.gov (United States)

    Bhuvaneshwar, Krithika; Belouali, Anas; Singh, Varun; Johnson, Robert M; Song, Lei; Alaoui, Adil; Harris, Michael A; Clarke, Robert; Weiner, Louis M; Gusev, Yuriy; Madhavan, Subha

    2016-04-30

    G-DOC Plus is a data integration and bioinformatics platform that uses cloud computing and other advanced computational tools to handle a variety of biomedical BIG DATA including gene expression arrays, NGS and medical images so that they can be analyzed in the full context of other omics and clinical information. G-DOC Plus currently holds data from over 10,000 patients selected from private and public resources including Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and the recently added datasets from REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT), caArray studies of lung and colon cancer, ImmPort and the 1000 genomes data sets. The system allows researchers to explore clinical-omic data one sample at a time, as a cohort of samples; or at the level of population, providing the user with a comprehensive view of the data. G-DOC Plus tools have been leveraged in cancer and non-cancer studies for hypothesis generation and validation; biomarker discovery and multi-omics analysis, to explore somatic mutations and cancer MRI images; as well as for training and graduate education in bioinformatics, data and computational sciences. Several of these use cases are described in this paper to demonstrate its multifaceted usability. G-DOC Plus can be used to support a variety of user groups in multiple domains to enable hypothesis generation for precision medicine research. The long-term vision of G-DOC Plus is to extend this translational bioinformatics platform to stay current with emerging omics technologies and analysis methods to continue supporting novel hypothesis generation, analysis and validation for integrative biomedical research. By integrating several aspects of the disease and exposing various data elements, such as outpatient lab workup, pathology, radiology, current treatments, molecular signatures and expected outcomes over a web interface, G-DOC Plus will continue to strengthen precision medicine research. G-DOC Plus is available

  4. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform

    Science.gov (United States)

    Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.

    2016-01-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692

  5. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    Science.gov (United States)

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  6. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    Directory of Open Access Journals (Sweden)

    Shunguang Wan

    2012-07-01

    Full Text Available Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures.

  7. Integration of the TNXYZ computer program inside the platform Salome; Integracion del programa de computo TNXYZ dentro de la plataforma Salome

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro V, F. J.

    2014-07-01

    The present work shows the procedure carried out to integrate the code TNXYZ as a calculation tool at the graphical simulation platform Salome. The TNXYZ code propose a numerical solution of the neutron transport equation, in several groups of energy, steady-state and three-dimensional geometry. In order to discretized the variables of the transport equation, the code uses the method of discrete ordinates for the angular variable, and a nodal method for the spatial dependence. The Salome platform is a graphical environment designed for building, editing and simulating mechanical models mainly focused on the industry and unlike other software, in order to form a complete scheme of pre and post processing of information, to integrate and control an external source code. Before the integration the in the Salome platform TNXYZ code was upgraded. TNXYZ was programmed in the 90s using Fortran 77 compiler; for this reason the code was adapted to the characteristics of the current Fortran compilers; in addition, with the intention of extracting partial results over the process sequence, the original structure of the program underwent a modularization process, i.e. the main program was divided into sections where the code performs major operations. This procedure is controlled by the information module (YACS) on Salome platform, and it could be useful for a subsequent coupling with thermal-hydraulics codes. Finally, with the help of the Monte Carlo code Serpent several study cases were defined in order to check the process of integration; the verification process consisted in performing a comparison of the results obtained with the code executed as stand-alone and after modernized, integrated and controlled by the Salome platform. (Author)

  8. Supporting Building Portfolio Investment and Policy Decision Making through an Integrated Building Utility Data Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Azizan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lasternas, Bertrand [Carnegie Mellon Univ., Pittsburgh, PA (United States); Alschuler, Elena [US DOE; View Inc; Loftness, Vivian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Wang, Haopeng [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mo, Yunjeong [Carnegie Mellon Univ., Pittsburgh, PA (United States); Wang, Ting [Carnegie Mellon Univ., Pittsburgh, PA (United States); Zhang, Chenlu [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sharma, Shilpi [Carnegie Mellon; Stevens, Ivana [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-03-18

    The American Recovery and Reinvestment Act stimulus funding of 2009 for smart grid projects resulted in the tripling of smart meters deployment. In 2012, the Green Button initiative provided utility customers with access to their real-time1 energy usage. The availability of finely granular data provides an enormous potential for energy data analytics and energy benchmarking. The sheer volume of time-series utility data from a large number of buildings also poses challenges in data collection, quality control, and database management for rigorous and meaningful analyses. In this paper, we will describe a building portfolio-level data analytics tool for operational optimization, business investment and policy assessment using 15-minute to monthly intervals utility data. The analytics tool is developed on top of the U.S. Department of Energy’s Standard Energy Efficiency Data (SEED) platform, an open source software application that manages energy performance data of large groups of buildings. To support the significantly large volume of granular interval data, we integrated a parallel time-series database to the existing relational database. The time-series database improves on the current utility data input, focusing on real-time data collection, storage, analytics and data quality control. The fully integrated data platform supports APIs for utility apps development by third party software developers. These apps will provide actionable intelligence for building owners and facilities managers. Unlike a commercial system, this platform is an open source platform funded by the U.S. Government, accessible to the public, researchers and other developers, to support initiatives in reducing building energy consumption.

  9. Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles Symposium. Technical Evaluation Report

    National Research Council Canada - National Science Library

    Decuypere, Roland; Selegan, David

    2007-01-01

    ...) of the Research and Technology Organization (RTO) of NATO organized a joint symposium on Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles which met from 14-18 May 2007 in Florence Italy...

  10. SVIP-N 1.0: An integrated visualization platform for neutronics analysis

    International Nuclear Information System (INIS)

    Luo Yuetong; Long Pengcheng; Wu Guoyong; Zeng Qin; Hu Liqin; Zou Jun

    2010-01-01

    Post-processing is an important part of neutronics analysis, and SVIP-N 1.0 (scientific visualization integrated platform for neutronics analysis) is designed to ease post-processing of neutronics analysis through visualization technologies. Main capabilities of SVIP-N 1.0 include: (1) ability of manage neutronics analysis result; (2) ability to preprocess neutronics analysis result; (3) ability to visualization neutronics analysis result data in different way. The paper describes the system architecture and main features of SVIP-N, some advanced visualization used in SVIP-N 1.0 and some preliminary applications, such as ITER.

  11. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  12. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  13. Minilaparoscopic hysterectomy made easy: first report on alternative instrumentation and new integrated energy platform.

    Science.gov (United States)

    Ng, Ying Woo; Lim, Li Min; Fong, Yoke Fai

    2014-05-01

    Minilaparoscopy is an attractive approach for hysterectomy due to advantages such as reduced morbidities and enhanced cosmesis. However, it has not been popularized due to the lack of suitable instruments and high technical demand. We aim to highlight the first case of minilaparoscopic hysterectomy reported in Asia and the use of a new integrated energy platform, Thunderbeat. We would like to propose an alternative method of instrumentation, so as to improve the feasibility and safety of minilaparoscopic hysterectomy. The first minilaparoscopic hysterectomy in Singapore was successfully completed using the alternative instrumentation and new energy platform. There was no conversion or complication during the surgery. The patient recovered uneventfully. To our knowledge, this is the first report on the use of such alternative instrumentation. This approach in instrumentation and the new energy platform will improve the feasibility and speed of the surgery and ensure safety in our patients. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  14. A commercial real-time manufacturing integration platform for the new control system on FTU

    International Nuclear Information System (INIS)

    Panella, M.; Bertocchi, A.; Bozzolan, V.; Buceti, G.; Centioli, C.; Imparato, A.; Mazza, G.; Torelli, C.; Vitale, V.

    1999-01-01

    In 1994 a working group was set up in Frascati to investigate how to build up a new control system for FTU (Frascati tokamak upgrade) considering the evolution in the information technology. Strong emphasis was placed on the use of standard solutions (be they de-facto or de-jure) and commercial platforms where-ever possible. This paper describes our operational experience with the new control system based on the commercial DEC BASEstar family of products. BASEstar is based on client/server computing technologies, providing an environment to collect, process, manage, distribute and integrate real time manufacturing data. UNIX, VMS, PC Win, OS-9 are integrated to handle hosts, PC, VME CPUs. A 4 GL programming language, CIMfast, has been used to handle via automatic procedures the tokamak discharge. X11 standard based mimics are available to display the plants status. A real flexibility of the whole system has been experience and the further use of the this system has been planned for the ITER DTP (divertor test platform). (orig.)

  15. Pin count-aware biochemical application compilation for mVLSI biochips

    DEFF Research Database (Denmark)

    Lander Raagaard, Michael; Pop, Paul

    2015-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. In this paper we are interested in flow-based biochips, in which the fluidic flow manipulated using integrated microvalves, which are cont...... a biochemical application. We focus on the compilation task, where the strategy is to delay operations, without missing their deadlines, such that the sharing of control signals is maximized. The evaluation shows a significant reduction in the number of control pins required....

  16. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips

    Directory of Open Access Journals (Sweden)

    Mirela Alistar

    2017-05-01

    Full Text Available Biochips, or digital labs-on-chip, are developed with the purpose of being used by laboratory technicians or biologists in laboratories or clinics. In this article, we expand this vision with the goal of enabling everyone, regardless of their expertise, to use biochips for their own personal purposes. We developed OpenDrop, an integrated electromicrofluidic platform that allows users to develop and program their own bio-applications. We address the main challenges that users may encounter: accessibility, bio-protocol design and interaction with microfluidics. OpenDrop consists of a do-it-yourself biochip, an automated software tool with visual interface and a detailed technique for at-home operations of microfluidics. We report on two years of use of OpenDrop, released as an open-source platform. Our platform attracted a highly diverse user base with participants originating from maker communities, academia and industry. Our findings show that 47% of attempts to replicate OpenDrop were successful, the main challenge remaining the assembly of the device. In terms of usability, the users managed to operate their platforms at home and are working on designing their own bio-applications. Our work provides a step towards a future in which everyone will be able to create microfluidic devices for their personal applications, thereby democratizing parts of health care.

  17. The Innovative Capabilities Of Digital Payment Platforms

    DEFF Research Database (Denmark)

    Kazan, Erol

    2015-01-01

    This study presents a model for studying the innovative capabilities of digital payment platforms in regards to open innovation integration and commercialization. We perceive digital platforms as layered modular IT artifacts, where platform governance and the configuration of platform layers impact...... the support for open innovation. The proposed model has been employed in a comparative case study between two digital payment platforms: Apple Pay and Google Wallet. The findings suggest that digital payment platforms make use of boundary resources to be highly integrative or integratable, which supports...... the intended conjoint commercialization efforts. Furthermore, the architectural design of digital platforms impacts the access to commercialization, resulting to an exclusion or inclusion strategy in accessing value opportunities. Our findings contribute to the open innovation and digital platform literature...

  18. Integrated method to optimize well connection and platform placement on a multi-reservoir scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Sergio Henrique Guerra de; Madeira, Marcelo Gomes; Franca, Martha Salles [Halliburton, Rio de Janeiro, RJ (Brazil); Mota, Rosane Oliveira; Silva, Edilon Ribeiro da; King, Vanessa Pereira Spear [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This paper describes a workflow created to optimize the platform placement and well-platform connections on a multi reservoir scenario using an integrated reservoir simulator paired with an optimization engine. The proposed methodology describes how a new platform, being incorporated into a pre-existing asset, can be better used to develop newly-discovered fields, while helping increase the production of existing fields by sharing their production load. The sharing of production facilities is highly important in Brazilian offshore assets because of their high price (a few billion dollars per facility) and the fact that total production is usually limited to the installed capacity of liquid processing, which is an important constraint on high water-cut well production rates typical to this region. The case study asset used to present the workflow consists of two deep water oil fields, each one developed by its own production platform, and a newly-discovered field with strong aquifer support that will be entirely developed with a new production platform. Because this new field should not include injector wells owing to the strong aquifer presence, the idea is to consider reconnecting existing wells from the two pre-existing fields to better use the production resources. In this scenario, the platform location is an important optimization issue, as a balance between supporting the production of the planned wells on the new field and the production of re-routed wells from the existing fields must be reached to achieve improved overall asset production. If the new platform is too far away from any interconnected production well, pressure-drop issues along the pipeline might actually decrease production from the existing fields rather than augment it. The main contribution of this work is giving the reader insights on how to model and optimize these complex decisions to generate high-quality scenarios. (author)

  19. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Directory of Open Access Journals (Sweden)

    Hsien-Chin Wei

    2017-02-01

    Full Text Available Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA platform. An adjustable microampere constant-current (AMCC source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  20. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    Science.gov (United States)

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Miniaturized Integrated Platform for Electrical and Optical Monitoring of Cell Cultures

    Directory of Open Access Journals (Sweden)

    Costin Brasoveanu

    2012-08-01

    Full Text Available The following paper describes the design and functions of a miniaturized integrated platform for optical and electrical monitoring of cell cultures and the necessary steps in the fabrication and testing of a silicon microchip Micro ElectroMechanical Systems (MEMS-based technology for cell data recording, monitoring and stimulation. The silicon microchip consists of a MEMS machined device containing a shank of 240 μm width, 3 mm long and 50 μm thick and an enlarged area of 5 mm × 5 mm hosting the pads for electrical connections. Ten platinum electrodes and five sensors are placed on the shank and are connected with the external electronics through the pads. The sensors aim to monitor the pH, the temperature and the impedance of the cell culture. The electrodes are bidirectional and can be used both for electrical potential recording and stimulation of cells. The fabrication steps are presented, along with the electrical and optical characterization of the system. The target of the research is to develop a new and reconfigurable platform according to the particular applications needs, as a tool for the biologist, chemists and medical doctors working is the field of cell culture monitoring in terms of growth, maintenance conditions, reaction to electrical or chemical stimulation (drugs, toxicants, etc.. HaCaT (Immortalised Human Keratinocyte cell culture has been used for demonstration purposes in order to provide information on the platform electrical and optical functions.

  2. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis

    Directory of Open Access Journals (Sweden)

    Raquel L. Costa

    2017-07-01

    Full Text Available There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were

  3. Launching platforms for user-generated content

    OpenAIRE

    Batista, Guilherme Luís Caroço

    2015-01-01

    Field lab: Entrepreneurial and innovative ventures This paper intends to discuss and absorb the Best Practices employed by successful User- Generated Content (UGC)1 platforms and constitute a guide on how to launch a platform without having a cyclical lack of content and users. Research shows that companies have resorted to integration with mature UGC platforms, and providing content by themselves, in an initial state. I conclude that integration possibilities should be explore...

  4. A multi-landing pad DNA integration platform for mammalian cell engineering

    Science.gov (United States)

    Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron

    2018-01-01

    Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873

  5. High Level of Integration in Integrated Disease Management Leads to Higher Usage in the e-Vita Study: Self-Management of Chronic Obstructive Pulmonary Disease With Web-Based Platforms in a Parallel Cohort Design.

    Science.gov (United States)

    Talboom-Kamp, Esther Pwa; Verdijk, Noortje A; Kasteleyn, Marise J; Harmans, Lara M; Talboom, Irvin Jsh; Numans, Mattijs E; Chavannes, Niels H

    2017-05-31

    Worldwide, nearly 3 million people die of chronic obstructive pulmonary disease (COPD) every year. Integrated disease management (IDM) improves disease-specific quality of life and exercise capacity for people with COPD, but can also reduce hospital admissions and hospital days. Self-management of COPD through eHealth interventions has shown to be an effective method to improve the quality and efficiency of IDM in several settings, but it remains unknown which factors influence usage of eHealth and change in behavior of patients. Our study, e-Vita COPD, compares different levels of integration of Web-based self-management platforms in IDM in three primary care settings. The main aim of this study is to analyze the factors that successfully promote the use of a self-management platform for COPD patients. The e-Vita COPD study compares three different approaches to incorporating eHealth via Web-based self-management platforms into IDM of COPD using a parallel cohort design. Three groups integrated the platforms to different levels. In groups 1 (high integration) and 2 (medium integration), randomization was performed to two levels of personal assistance for patients (high and low assistance); in group 3 there was no integration into disease management (none integration). Every visit to the e-Vita and Zorgdraad COPD Web platforms was tracked objectively by collecting log data (sessions and services). At the first log-in, patients completed a baseline questionnaire. Baseline characteristics were automatically extracted from the log files including age, gender, education level, scores on the Clinical COPD Questionnaire (CCQ), dyspnea scale (MRC), and quality of life questionnaire (EQ5D). To predict the use of the platforms, multiple linear regression analyses for the different independent variables were performed: integration in IDM (high, medium, none), personal assistance for the participants (high vs low), educational level, and self-efficacy level (General Self

  6. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes.

    Science.gov (United States)

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-04-25

    With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.

  7. An integrated platform for gas-diffusion separation and electrochemical determination of ethanol on fermentation broths

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Gabriela Furlan [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Vieira, Luis Carlos Silveira; Gobbi, Angelo Luiz [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Lima, Renato Sousa [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Kubota, Lauro Tatsuo, E-mail: kubota@iqm.unicamp.br [Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil)

    2015-05-22

    Highlights: • Integrated platform was developed to determine ethanol in fermentation broths. • The designed system integrates gas diffusion separation with voltammetric detection. • Detector relied on Ni(OH){sub 2}-modified electrode stabilized by Co{sup 2+} and Cd{sup 2+} insertion. • Separation was made by PTFE membrane separating sample from electrolyte (receptor). • Despite the sample complexity, accurate tests were achieved by direct interpolation. - Abstract: An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH){sub 2}-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH){sub 2} structure by insertion of Co{sup 2+} and Cd{sup 2+} ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v){sup −1}, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate

  8. An Intelligent Automation Platform for Rapid Bioprocess Design.

    Science.gov (United States)

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.

  9. An Intelligent Automation Platform for Rapid Bioprocess Design

    Science.gov (United States)

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  10. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  11. Study of interfacial phenomena for bio/chemical sensing applications

    Science.gov (United States)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  12. Synthesis of Biochemical Applications on Flow-Based Microfluidic Biochips using Constraint Programming

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2012-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. In this paper we are interested in flow-based biochips, in which the flow of liquid is manipulated using integrated microvalves. By combin...

  13. Microfluidic very large-scale integration for biochips: Technology, testing and fault-tolerant design

    DEFF Research Database (Denmark)

    Araci, Ismail Emre; Pop, Paul; Chakrabarty, Krishnendu

    2015-01-01

    of this paper is on continuous-flow biochips, where the basic building block is a microvalve. By combining these microvalves, more complex units such as mixers, switches, multiplexers can be built, hence the name of the technology, “microfluidic Very Large-Scale Integration” (mVLSI). A roadblock......Microfluidic biochips are replacing the conventional biochemical analyzers by integrating all the necessary functions for biochemical analysis using microfluidics. Biochips are used in many application areas, such as, in vitro diagnostics, drug discovery, biotech and ecology. The focus...... presents the state-of-the-art in the mVLSI platforms and emerging research challenges in the area of continuous-flow microfluidics, focusing on testing techniques and fault-tolerant design....

  14. OTEC platform configuration and integration study. Volume I. Systems engineering and integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The economic success of an Ocean Thermal Energy Conversion (OTEC) system is highly dependent on a platform which provides adequate support for the power system, accommodates reliably the cold water pipe, and is most cost effective. The results of a study conducted for the Department of Energy to assess six generic types of platforms to determine the most satisfactory platform for severl potential sites are presented. The six platform configurations are ship, circular barge, semi-submersible, Tuned Sphere, submersible, and spar. These represent directional and symmetric types of platforms which operate on the surface, at the interface, and submerged. The five sites for this study were primarily New Orleans, Keahole Point (Hawaii), Brazil, and secondarily Key West and Puerto Rico. Electrical transmission of energy by submarine cable is the planned form of energy transmission for all sites except Brazil, where chemical conversion is to be the method of transmission. This study is devoted to the platform (or ocean systems) of the OTEC plant which is chiefly comprised of the hull and structure, the seawater system, the position control system, and miscellaneous support/assembly systems. The principal elements in the work breakdown structure for the commercial plants are presented. The assessment of the six platform configurations was conducted utilizing a baseline plan (100-MW(e) (Net)) and site (New Orleans) with variations from the baseline to cover the range of interested platforms and sites.

  15. University technology platform of anticipatory learning

    Directory of Open Access Journals (Sweden)

    Leonid Davidovich Gitelman

    2016-03-01

    Full Text Available The innovative development sets large-scale and challenging tasks, which need to be addressed in the lack-of-knowledge conditions and require the coordination and integration of numerous expert structures, which are scattered around the world and have different status and competencies. One of the mechanisms of integrating the partners’ intellectual and financial resources is provided by the technology platforms. The article discusses the nature and functions of technology platforms and analyzes the experience of their application in different countries with a special emphasis on universities. The article gives an overview of the various interpretations of technology platform concepts. It also describes the development and implementation of the technological platform at the Ural Federal University (research and education centre ‘ENGEC’, which was targeted at organizing anticipatory learning in the sphere of energy engineering and high-tech industries; its mechanism and role in improving different university activities and processes are shown. This platform is based on the original methodology ‘Integrated System of Consulting, Training, and Transformation’ (ISCT, which includes authentic methods and technologies, which are used in the educational process. A significant advantage of this methodology is that it can be applied in university education as well as in corporate training integrated with innovative activities.

  16. Quality control of next-generation sequencing library through an integrative digital microfluidic platform.

    Science.gov (United States)

    Thaitrong, Numrin; Kim, Hanyoup; Renzi, Ronald F; Bartsch, Michael S; Meagher, Robert J; Patel, Kamlesh D

    2012-12-01

    We have developed an automated quality control (QC) platform for next-generation sequencing (NGS) library characterization by integrating a droplet-based digital microfluidic (DMF) system with a capillary-based reagent delivery unit and a quantitative CE module. Using an in-plane capillary-DMF interface, a prepared sample droplet was actuated into position between the ground electrode and the inlet of the separation capillary to complete the circuit for an electrokinetic injection. Using a DNA ladder as an internal standard, the CE module with a compact LIF detector was capable of detecting dsDNA in the range of 5-100 pg/μL, suitable for the amount of DNA required by the Illumina Genome Analyzer sequencing platform. This DMF-CE platform consumes tenfold less sample volume than the current Agilent BioAnalyzer QC technique, preserving precious sample while providing necessary sensitivity and accuracy for optimal sequencing performance. The ability of this microfluidic system to validate NGS library preparation was demonstrated by examining the effects of limited-cycle PCR amplification on the size distribution and the yield of Illumina-compatible libraries, demonstrating that as few as ten cycles of PCR bias the size distribution of the library toward undesirable larger fragments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Integration Between SCORM Learning Objects and the CIEMAT Virtual Elearning Platform; Integracion de Objetos de Aprendizaje SCORM con la Plataforma de Ensenanza Virtual del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Bailador Ferreras, M A; Troiani, S; Gonzalez Giralda, C; Llorente Herranz, C; Marco Arboli, M L

    2010-08-06

    New information and communications technologies have made a major contribution in the way of understanding the training needs, which have been involved in the change from the traditional teaching to the use of virtual learning platforms. Thus, Ciemat, has installed a virtual platform for education, in particular MOODLE in which have been installed some virtual contents developed with Flash. The next necessary step has been how to integrate the contents with the MOODLE virtual platform, following the aim to know the assessment for learning tracking of the learners. This document provides the technological facts for the integration of the flash virtual contents and the virtual platform in order to achieve the training process is efficiently evaluated. (Author) 5 refs.

  18. Integration of the virtual model of a Stewart platform with the avatar of a vehicle in a virtual reality

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2016-08-01

    The development of methods of computer aided design and engineering allows conducting virtual tests, among others concerning motion simulation of technical means. The paper presents a method of integrating an object in the form of a virtual model of a Stewart platform with an avatar of a vehicle moving in a virtual environment. The area of the problem includes issues related to the problem of fidelity of mapping the work of the analyzed technical mean. The main object of investigations is a 3D model of a Stewart platform, which is a subsystem of the simulator designated for driving learning for disabled persons. The analyzed model of the platform, prepared for motion simulation, was created in the “Motion Simulation” module of a CAD/CAE class system Siemens PLM NX. Whereas the virtual environment, in which the moves the avatar of the passenger car, was elaborated in a VR class system EON Studio. The element integrating both of the mentioned software environments is a developed application that reads information from the virtual reality (VR) concerning the current position of the car avatar. Then, basing on the accepted algorithm, it sends control signals to respective joints of the model of the Stewart platform (CAD).

  19. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  20. A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems.

    NARCIS (Netherlands)

    F.J. Bruggeman (Frank); H. Burchard; B. Kooi; B.P. Sommeijer (Ben)

    2006-01-01

    textabstractBiochemical systems are bound by two mathematically-relevant restrictions. First, state variables in such systems represent non-negative quantities, such as concentrations of chemical compounds. Second, biochemical systems conserve mass and energy. Both properties must be reflected in

  1. Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver.

    Science.gov (United States)

    Nishi, Hidetaka; Tsuchizawa, Tai; Kou, Rai; Shinojima, Hiroyuki; Yamada, Takashi; Kimura, Hideaki; Ishikawa, Yasuhiko; Wada, Kazumi; Yamada, Koji

    2012-04-09

    On the silicon (Si) photonic platform, we monolithically integrated a silica-based arrayed-waveguide grating (AWG) and germanium (Ge) photodiodes (PDs) using low-temperature fabrication technology. We confirmed demultiplexing by the AWG, optical-electrical signal conversion by Ge PDs, and high-speed signal detection at all channels. In addition, we mounted a multichannel transimpedance amplifier/limiting amplifier (TIA/LA) circuit on the fabricated AWG-PD device using flip-chip bonding technology. The results show the promising potential of our Si photonic platform as a photonics-electronics convergence.

  2. MetaABC--an integrated metagenomics platform for data adjustment, binning and clustering.

    Science.gov (United States)

    Su, Chien-Hao; Hsu, Ming-Tsung; Wang, Tse-Yi; Chiang, Sufeng; Cheng, Jen-Hao; Weng, Francis C; Kao, Cheng-Yan; Wang, Daryi; Tsai, Huai-Kuang

    2011-08-15

    MetaABC is a metagenomic platform that integrates several binning tools coupled with methods for removing artifacts, analyzing unassigned reads and controlling sampling biases. It allows users to arrive at a better interpretation via series of distinct combinations of analysis tools. After execution, MetaABC provides outputs in various visual formats such as tables, pie and bar charts as well as clustering result diagrams. MetaABC source code and documentation are available at http://bits2.iis.sinica.edu.tw/MetaABC/ CONTACT: dywang@gate.sinica.edu.tw; hktsai@iis.sinica.edu.tw Supplementary data are available at Bioinformatics online.

  3. An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Yejing; Qu, Yanyan; Jiang, Hao; Wu, Qi [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Lihua, E-mail: lihuazhang@dicp.ac.cn [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yuan, Huiming [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhou, Yuan [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Xiaodan; Zhang, Yukui [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2014-06-23

    Highlights: • An integrated platform for quantitative N-glycoproteome analysis was established. • On-line enrichment, deglycosylation and labeling could be achieved within 160 min. • A N{sub 2}-assisted interface was applied to improve the compatibility of the platform. • The platform exhibited improved quantification accuracy, precision and throughput. - Abstract: Relative quantification of N-glycoproteomes shows great promise for the discovery of candidate biomarkers and therapeutic targets. The traditional protocol for quantitative analysis of glycoproteomes is usually off-line performed, and suffers from long sample preparation time, and the risk of sample loss or contamination due to manual manipulation. In this study, a novel integrated sample preparation platform for quantitative N-glycoproteome analysis was established, with combination of online N-glycopeptide capture by a HILIC column, sample buffer exchange by a N{sub 2}-assisted HILIC–RPLC interface, deglycosylation by a hydrophilic PNGase F immobilized enzymatic reactor (hIMER) and solid dimethyl labeling on a C18 precolumn. To evaluate the performance of such a platform, two equal aliquots of immunoglobulin G (IgG) digests were sequentially pretreated, followed by MALDI-TOF MS analysis. The signal intensity ratio of heavy/light (H/L) labeled deglycosylated peptides with the equal aliquots was 1.00 (RSD = 6.2%, n = 3), much better than those obtained by the offline protocol, with H/L ratio as 0.76 (RSD = 11.6%, n = 3). Additionally, the total on-line sample preparation time was greatly shortened to 160 min, much faster than that of offline approach (24 h). Furthermore, such an integrated pretreatment platform was successfully applied to analyze the two kinds of hepatocarcinoma ascites syngeneic cell lines with high (Hca-F) and low (Hca-P) lymph node metastasis rates. For H/L labeled Hca-P lysates with the equal aliquots, 99.6% of log 2 ratios (H/L) of quantified glycopeptides ranged from −1

  4. Automatic and integrated micro-enzyme assay (AIμEA) platform for highly sensitive thrombin analysis via an engineered fluorescence protein-functionalized monolithic capillary column.

    Science.gov (United States)

    Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo

    2015-04-21

    Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.

  5. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  6. Cost-effective improvements of a rotating platform by integration of a high-accuracy inclinometer and encoders for attitude evaluation

    International Nuclear Information System (INIS)

    Wen, Chenyang; He, Shengyang; Hu, Peida; Bu, Changgen

    2017-01-01

    Attitude heading reference systems (AHRSs) based on micro-electromechanical system (MEMS) inertial sensors are widely used because of their low cost, light weight, and low power. However, low-cost AHRSs suffer from large inertial sensor errors. Therefore, experimental performance evaluation of MEMS-based AHRSs after system implementation is necessary. High-accuracy turntables can be used to verify the performance of MEMS-based AHRSs indoors, but they are expensive and unsuitable for outdoor tests. This study developed a low-cost two-axis rotating platform for indoor and outdoor attitude determination. A high-accuracy inclinometer and encoders were integrated into the platform to improve the achievable attitude test accuracy. An attitude error compensation method was proposed to calibrate the initial attitude errors caused by the movements and misalignment angles of the platform. The proposed attitude error determination method was examined through rotating experiments, which showed that the standard deviations of the pitch and roll errors were 0.050° and 0.090°, respectively. The pitch and roll errors both decreased to 0.024° when the proposed attitude error determination method was used. This decrease validates the effectiveness of the compensation method. Experimental results demonstrated that the integration of the inclinometer and encoders improved the performance of the low-cost, two-axis, rotating platform in terms of attitude accuracy. (paper)

  7. Time-varying spatial data integration and visualization: 4 Dimensions Environmental Observations Platform (4-DEOS)

    Science.gov (United States)

    Paciello, Rossana; Coviello, Irina; Filizzola, Carolina; Genzano, Nicola; Lisi, Mariano; Mazzeo, Giuseppe; Pergola, Nicola; Sileo, Giancanio; Tramutoli, Valerio

    2014-05-01

    In environmental studies the integration of heterogeneous and time-varying data, is a very common requirement for investigating and possibly visualize correlations among physical parameters underlying the dynamics of complex phenomena. Datasets used in such kind of applications has often different spatial and temporal resolutions. In some case superimposition of asynchronous layers is required. Traditionally the platforms used to perform spatio-temporal visual data analyses allow to overlay spatial data, managing the time using 'snapshot' data model, each stack of layers being labeled with different time. But this kind of architecture does not incorporate the temporal indexing neither the third spatial dimension which is usually given as an independent additional layer. Conversely, the full representation of a generic environmental parameter P(x,y,z,t) in the 4D space-time domain could allow to handle asynchronous datasets as well as less traditional data-products (e.g. vertical sections, punctual time-series, etc.) . In this paper we present the 4 Dimensions Environmental Observation Platform (4-DEOS), a system based on a web services architecture Client-Broker-Server. This platform is a new open source solution for both a timely access and an easy integration and visualization of heterogeneous (maps, vertical profiles or sections, punctual time series, etc.) asynchronous, geospatial products. The innovative aspect of the 4-DEOS system is that users can analyze data/products individually moving through time, having also the possibility to stop the display of some data/products and focus on other parameters for better studying their temporal evolution. This platform gives the opportunity to choose between two distinct display modes for time interval or for single instant. Users can choose to visualize data/products in two ways: i) showing each parameter in a dedicated window or ii) visualize all parameters overlapped in a single window. A sliding time bar, allows

  8. A review of digital microfluidics as portable platforms for lab-on a-chip applications.

    Science.gov (United States)

    Samiei, Ehsan; Tabrizian, Maryam; Hoorfar, Mina

    2016-07-07

    Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.

  9. On challenges and opportunities of designing integrated IT platforms for supporting knowledge works in organizations

    OpenAIRE

    Laha, Arijit

    2009-01-01

    Designing and implementing comprehensive IT-based support environments for KM in organizations is fraught with many problems. Solving them requires intimate knowledge about the information usage in knowledge works and the scopes of technology intervention. In this paper, the Task-oriented Organizational Knowledge Management or TOKM, a design theory for building integrated IT platforms for supporting organizational KM, is proposed. TOKM brings together two apparently mutually exclusive practic...

  10. Integrated numerical platforms for environmental dose assessments of large tritium inventory facilities

    International Nuclear Information System (INIS)

    Castro, P.; Ardao, J.; Velarde, M.; Sedano, L.; Xiberta, J.

    2013-01-01

    Related with a prospected new scenario of large inventory tritium facilities [KATRIN at TLK, CANDUs, ITER, EAST, other coming] the prescribed dosimetric limits by ICRP-60 for tritium committed-doses are under discussion requiring, in parallel, to surmount the highly conservative assessments by increasing the refinement of dosimetric-assessments in many aspects. Precise Lagrangian-computations of dosimetric cloud-evolution after standardized (normal/incidental/SBO) tritium cloud emissions are today numerically open to the perfect match of real-time meteorological-data, and patterns data at diverse scales for prompt/early and chronic tritium dose assessments. The trends towards integrated-numerical-platforms for environmental-dose assessments of large tritium inventory facilities under development.

  11. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  12. Towards Digital Integration: Platform Thinking in the Fashion Business

    DEFF Research Database (Denmark)

    Schou, Finn

    2005-01-01

    ¬quately to changing demands in their business activities. However many companies find it dif¬ficult to achieve the full poten¬tial of these technologies as practical advices that can help companies and the management in their decision-making, selecting and implementing new technology are rare (Boer and Krabbendam......, 1998). The intention of this paper is, through illustrative case studies from France and Denmark within the highly competitive business of optical frame design (fashion) to present a model for strategy as well as a practical model for improvement of time to market of styling objects by use of digital...... platforms. Aspects are: 1) selection of platform from a strategic point of view, 2) selection of 2D and 3D CAD from a practical point of view and 3) creation and implementation of digital platforms. Finally, briefly aspects of teaching of platform theory at the department of Architecture & Industrial design...

  13. Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2014-01-01

    Full Text Available Tungsten oxide nanoneedles (NNs are grown and integrated directly with polymeric transducing platforms for gas sensors via aerosol-assisted chemical vapor deposition (AACVD method. Material analysis shows the feasibility to grow highly crystalline nanomaterials in the form of NNs with aspect ratios between 80 and 200 and with high concentration of oxygen vacancies at the surface, whereas gas testing demonstrates moderate sensing responses to hydrogen at concentrations between 10 ppm and 50 ppm, which are comparable with results for tungsten oxide NNs grown on silicon transducing platforms. This method is demonstrated to be an attractive route to fabricate next generation of gas sensors devices, provided with flexibility and functionality, with great potential in a cost effective production for large-scale applications.

  14. Using Docker Compose for the Simple Deployment of an Integrated Drug Target Screening Platform

    Directory of Open Access Journals (Sweden)

    List Markus

    2017-06-01

    Full Text Available Docker virtualization allows for software tools to be executed in an isolated and controlled environment referred to as a container. In Docker containers, dependencies are provided exactly as intended by the developer and, consequently, they simplify the distribution of scientific software and foster reproducible research. The Docker paradigm is that each container encapsulates one particular software tool. However, to analyze complex biomedical data sets, it is often necessary to combine several software tools into elaborate workflows. To address this challenge, several Docker containers need to be instantiated and properly integrated, which complicates the software deployment process unnecessarily. Here, we demonstrate how an extension to Docker, Docker compose, can be used to mitigate these problems by providing a unified setup routine that deploys several tools in an integrated fashion. We demonstrate the power of this approach by example of a Docker compose setup for a drug target screening platform consisting of five integrated web applications and shared infrastructure, deployable in just two lines of codes.

  15. Using Docker Compose for the Simple Deployment of an Integrated Drug Target Screening Platform.

    Science.gov (United States)

    List, Markus

    2017-06-10

    Docker virtualization allows for software tools to be executed in an isolated and controlled environment referred to as a container. In Docker containers, dependencies are provided exactly as intended by the developer and, consequently, they simplify the distribution of scientific software and foster reproducible research. The Docker paradigm is that each container encapsulates one particular software tool. However, to analyze complex biomedical data sets, it is often necessary to combine several software tools into elaborate workflows. To address this challenge, several Docker containers need to be instantiated and properly integrated, which complicates the software deployment process unnecessarily. Here, we demonstrate how an extension to Docker, Docker compose, can be used to mitigate these problems by providing a unified setup routine that deploys several tools in an integrated fashion. We demonstrate the power of this approach by example of a Docker compose setup for a drug target screening platform consisting of five integrated web applications and shared infrastructure, deployable in just two lines of codes.

  16. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Mohamad Hajj-Hassan

    2008-12-01

    Full Text Available We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gelderived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2 responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100% of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multisensor platforms that can be cost-effectively and reliably mass-produced.

  17. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.

  18. Novel Developments of Mobile Sensing Based on the Integration of Microfluidic Devices and Smartphone

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-01-01

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS2) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS2 offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS2 in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS2 enables applications to remote infield testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS2 by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  19. Hierarchical DSE for multi-ASIP platforms

    DEFF Research Database (Denmark)

    Micconi, Laura; Corvino, Rosilde; Gangadharan, Deepak

    2013-01-01

    This work proposes a hierarchical Design Space Exploration (DSE) for the design of multi-processor platforms targeted to specific applications with strict timing and area constraints. In particular, it considers platforms integrating multiple Application Specific Instruction Set Processors (ASIPs...

  20. Integration of the program TNXYZ in the platform SALOME; Integracion del programa TNXYZ en la plataforma SALOME

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro V, F. J.; Silva A, L.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M.; Vargas E, S., E-mail: javier.paquito@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    This work presents the procedure realized to integrate the code TNXYZ like a processing tool to the graphic simulation platform SALOME. The code TNXYZ solves the neutron transport equation in stationary state, for several energy groups, quantizing the angular variable by the discrete ordinates method and the space variable by nodal methods. The platform SALOME is a graphic surrounding designed for the construction, edition and simulation of mechanical models focused to the industry and contrary to other software, it allows to integrate external source codes to the surrounding, to form a complete scheme of execution, supervision, pre and post information processing. The code TNXYZ was programmed in the 90s in a Fortran compiler, but to be used at the present time the code should be actualized to the current compiler characteristics; also, in the original scheme was carried out a modularization process, that is to say, the main program was divided in sections where the code carries out important operations, with the intention of flexibility the data extraction process along its processing sequence and that can be useful in a later development of coupling. Finally, to verify the integration a fuel assembly BWR was modeled, as well as a control cell. The cross sections were obtained with the Monte Carlo Serpent code. Some results obtained with Serpent were used to verify and to begin with the validation of the code, being obtained an acceptable comparison in the infinite multiplication factor. The validation process should extend and one has planned to present in a future work. This work is part of the development of the research group formed between the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (IPN) and the Instituto Nacional de Investigaciones Nucleares (ININ) in which a simulation Mexican platform of nuclear reactors is developed. (Author)

  1. A wireless sensor tag platform for container security and integrity

    Science.gov (United States)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    2011-04-01

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. This allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.

  2. Construction of a test platform for Test Blanket Module (TBM) systems integration and maintenance in ITER Port Cell #16

    Energy Technology Data Exchange (ETDEWEB)

    Vála, Ladislav, E-mail: ladislav.vala@cvrez.cz [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Reungoat, Mathieu, E-mail: mathieu.reungoat@cvrez.cz [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Vician, Martin [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Poitevin, Yves; Ricapito, Italo; Zmitko, Milan; Panayotov, Dobromir [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • A non-nuclear, full size facility – TBM platform – is under construction in CVR. • It is designed for tests, optimization and validation of TBS maintenance operations. • It will allow testing and validation of specific maintenance tools and RH equipment. • It reproduces ITER Port Cell #16, as well as the TBS interfaces and main equipment. • The TBM platform will be available for full operation in the first half of 2016. - Abstract: This paper describes a project of a non-nuclear, 1:1 scale testing platform dedicated to tests, optimization and validation of integration and maintenance operations for the European TBM systems in the ITER Port Cell #16. This TBM platform is currently under construction in Centrum výzkumu Řež, Czech Republic. The facility is realized within the scope of the SUSEN project and its full operation is foreseen in the first half of 2016.

  3. Plasmonic nanofocusing of light in an integrated silicon photonics platform.

    Science.gov (United States)

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2011-07-04

    The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.

  4. Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing.

    Science.gov (United States)

    Qi, Huijie; Niu, Lihong; Zhang, Jie; Chen, Jian; Wang, Shujie; Yang, Jingjing; Guo, Siyi; Lawson, Tom; Shi, Bingyang; Song, Chunpeng

    2018-04-01

    Surface plasmon resonance (SPR) nanosensors based on metallic nanohole arrays have been widely reported to detect binding interactions in biological specimens. A simple and effective method for constructing nanoscale arrays is essential for the development of SPR nanosensors. In this work, we report a one-step method to fabricate nanohole arrays by thermal nanoimprinting in the matrix of IPS (Intermediate Polymer Stamp). No additional etching process or supporting substrate is required. The preparation process is simple, time-saving and compatible for roll-to-roll process, potentially allowing mass production. Moreover, the nanohole arrays were integrated into detection platform as SPR sensors to investigate different types of biological binding interactions. The results demonstrate that our one-step method can be used to efficiently fabricate large-area and uniform nanohole arrays for biochemical sensing.

  5. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures

    Directory of Open Access Journals (Sweden)

    Sherwin Ting

    2014-09-01

    In conclusion, we have developed a simple robust and scalable platform that integrates both hESC expansion and CM differentiation in one unit process which is capable of meeting the need for large amounts of CMs.

  6. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.

    Science.gov (United States)

    Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren

    2017-09-23

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.

  7. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  8. Silicon based cryogenic platform for the integration of qubit and classical control chips

    Science.gov (United States)

    Leonhardt, T.; Hollmann, A.; Jirovec, D.; Neumann, R.; Klemt, B.; Kindel, S.; Kucharski, M.; Fischer, G.; Bougeard, D.; Bluhm, H.; Schreiber, L. R.

    Electrostatically confined electron-spin-qubits proved viable for quantum information processing. Yet their up-scaling not only demands improvement of physical qubits, but also the development and cryogenic integration of classical control hardware. Therefore, we created a platform to integrate quantum chips and classical electronics. These multilayer interposer chips incorporate passive circuit elements, high bandwidth coplanar wave guides and interconnects for electron spin resonant qubit control as well as low impedance DC microstrips reducing EM-crosstalk from AC to DC lines. We used the interposer for measurements of a Si/SiGe quantum dot at 30 mK. We also characterized a commercial voltage controlled oszillator (VCO) based on hetero-bipolar transistors. Tunable about 30 GHz it is ideal for electron spin resonant qubit control. Cooled from 300 to 4 K it exhibits a slightly increased output power and frequency, while the phase noise level is constant. The device remains functional up to magnetic fields of 6 T.

  9. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  10. A Comparison and Integration of MiSeq and MinION Platforms for Sequencing Single Source and Mixed Mitochondrial Genomes.

    Directory of Open Access Journals (Sweden)

    Michael R Lindberg

    Full Text Available Single source and multiple donor (mixed samples of human mitochondrial DNA were analyzed and compared using the MinION and the MiSeq platforms. A generalized variant detection strategy was employed to provide a cursory framework for evaluating the reliability and accuracy of mitochondrial sequences produced by the MinION. The feasibility of long-read phasing was investigated to establish its efficacy in quantitatively distinguishing and deconvolving individuals in a mixture. Finally, a proof-of-concept was demonstrated by integrating both platforms in a hybrid assembly that leverages solely mixture data to accurately reconstruct full mitochondrial genomes.

  11. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers.

    Science.gov (United States)

    Irigoyen, Antonio; Jimenez-Luna, Cristina; Benavides, Manuel; Caba, Octavio; Gallego, Javier; Ortuño, Francisco Manuel; Guillen-Ponce, Carmen; Rojas, Ignacio; Aranda, Enrique; Torres, Carolina; Prados, Jose

    2018-01-01

    Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses ('gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.

  12. An FPGA-based rapid prototyping platform for wavelet coprocessors

    Science.gov (United States)

    Vera, Alonzo; Meyer-Baese, Uwe; Pattichis, Marios

    2007-04-01

    MatLab/Simulink-based design flows are being used by DSP designers to improve time-to-market of FPGA implementations. 1 Commonly, digital signal processing cores are integrated in an embedded system as coprocessors. Existing CAD tools do not fully address the integration of a DSP coprocessor into an embedded system design. This integration might prove to be time consuming and error prone. It also requires that the DSP designer has an excellent knowledge of embedded systems and computer architecture details. We present a prototyping platform and design flow that allows rapid integration of embedded systems with a wavelet coprocessor. The platform comprises of software and hardware modules that allow a DSP designer a painless integration of a coprocessor with a PowerPC-based embedded system. The platform has a wide range of applications, from industrial to educational environments.

  13. Finding Common Ground: Use of a Geographically-Framed Landscape Template as an Integrating Platform for an International Education Initiative

    Science.gov (United States)

    Brierley, Gary; Li, Xilai; Qiao, Youming; Huang, He Qing; Wang, Zhaoyin

    2018-01-01

    This situated case study outlines how a place-based landscape template provided an integrative platform for the environmental arm of a cross-disciplinary international education initiative, the Three Brothers Project, wherein geographers at the University of Auckland worked alongside engineers at Tsinghua University in Beijing to support…

  14. IVAG: An Integrative Visualization Application for Various Types of Genomic Data Based on R-Shiny and the Docker Platform.

    Science.gov (United States)

    Lee, Tae-Rim; Ahn, Jin Mo; Kim, Gyuhee; Kim, Sangsoo

    2017-12-01

    Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.

  15. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    Science.gov (United States)

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. An integrated biomedical knowledge extraction and analysis platform: using federated search and document clustering technology.

    Science.gov (United States)

    Taylor, Donald P

    2007-01-01

    High content screening (HCS) requires time-consuming and often complex iterative information retrieval and assessment approaches to optimally conduct drug discovery programs and biomedical research. Pre- and post-HCS experimentation both require the retrieval of information from public as well as proprietary literature in addition to structured information assets such as compound libraries and projects databases. Unfortunately, this information is typically scattered across a plethora of proprietary bioinformatics tools and databases and public domain sources. Consequently, single search requests must be presented to each information repository, forcing the results to be manually integrated for a meaningful result set. Furthermore, these bioinformatics tools and data repositories are becoming increasingly complex to use; typically they fail to allow for more natural query interfaces. Vivisimo has developed an enterprise software platform to bridge disparate silos of information. The platform automatically categorizes search results into descriptive folders without the use of taxonomies to drive the categorization. A new approach to information retrieval for HCS experimentation is proposed.

  17. Citizen Sensors for SHM: Towards a Crowdsourcing Platform

    Science.gov (United States)

    Ozer, Ekin; Feng, Maria Q.; Feng, Dongming

    2015-01-01

    This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490

  18. Citizen Sensors for SHM: Towards a Crowdsourcing Platform

    Directory of Open Access Journals (Sweden)

    Ekin Ozer

    2015-06-01

    Full Text Available This paper presents an innovative structural health monitoring (SHM platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters.

  19. USA Hire Testing Platform

    Data.gov (United States)

    Office of Personnel Management — The USA Hire Testing Platform delivers tests used in hiring for positions in the Federal Government. To safeguard the integrity of the hiring processes and ensure...

  20. Health-e-Child a grid platform for european paediatrics

    CERN Document Server

    Skaburskas, K; Shade, J; Manset, D; Revillard, J; Rios, A; Anjum, A; Branson, A; Bloodsworth, P; Hauer, T; McClatchey, R; Rogulin, D

    2008-01-01

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integr...

  1. SAR system development for UAV multicopter platforms

    OpenAIRE

    Escartin Martínez, Antonio

    2015-01-01

    SAR system development for UAV multicopter platforms This thesis describes the optimization of a synthetic aperture radar (SAR) at X-band and its integration into an unmanned aerial vehicle (UAV) of type octocopter. For such optimization the SAR system functionality was extended from singlepol to fulpol and it has been optimized at hardware level in order to improve its quality against noise figure. After its integration into the octocopter platform, its features has been used in order to ...

  2. Migration of the Almaraz NPP integrated operation management system to a new computer platform

    International Nuclear Information System (INIS)

    Gonzalez Crego, E.; Martin Lopez-Suevos, C.

    1996-01-01

    In all power plants, it becomes necessary, with the passage of time, to migrate the initial operation management systems to adapt them to current technologies. That is a good time to improve the inclusion of data in the corporative database and standardize the system interfaces and operation, whilst maintaining data system operability. This article contains Almaraz experience in migrating its Integrated Operation Management System to an advanced computer platform based on open systems (UNIX), communications network (ETHERNET) and database (ORACLE). To this effect, clear objectives and strict standards were established to facilitate the work. The most noteworthy results obtained are: Better quality of information and structure in the corporative database Standardised user interface in all applications. Joint migration of applications for Maintenance, Components and Spare parts, Warehouses and Purchases. Integration of new applications into the system. Introduction of the navigator, which allows movement around the database using all available applications. (Author)

  3. Mobile Prototyping Platforms for Remote Engineering Applications

    Directory of Open Access Journals (Sweden)

    Karsten Henke

    2009-08-01

    Full Text Available This paper describes a low-cost mobile communication platform as a universal rapid-prototyping system, which is based on the Quadrocopter concept. At the Integrated Hardware and Software Systems Group at the Ilmenau University of Technology these mobile platforms are used to motivate bachelor and master students to study Computer Engineering sciences. This could be done by increasing their interest in technical issues, using this platform as integral part of a new ad-hoc lab to demonstrate different aspects in the area of Mobile Communication as well as universal rapid prototyping nodes to investigate different mechanisms for self-organized mobile communication systems within the International Graduate School on Mobile Communications. Beside the three fields of application, the paper describes the current architecture concept of the mobile prototyping platform as well as the chosen control mechanism and the assigned sensor systems to fulfill all the required tasks.

  4. SABIO-RK: A data warehouse for biochemical reactions and their kinetics

    Directory of Open Access Journals (Sweden)

    Krebs Olga

    2007-03-01

    Full Text Available Systems biology is an emerging field that aims at obtaining a system-level understanding of biological processes. The modelling and simulation of networks of biochemical reactions have great and promising application potential but require reliable kinetic data. In order to support the systems biology community with such data we have developed SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics, a curated database with information about biochemical reactions and their kinetic properties, which allows researchers to obtain and compare kinetic data and to integrate them into models of biochemical networks. SABIO-RK is freely available for academic use at http://sabio.villa-bosch.de/SABIORK/.

  5. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  6. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  7. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  8. Advances in the development of the Mexican platform for analysis and design of nuclear reactors: AZTLAN Platform

    International Nuclear Information System (INIS)

    Gomez T, A. M.; Puente E, F.; Del Valle G, E.; Francois L, J. L.; Espinosa P, G.

    2017-09-01

    The AZTLAN platform project: development of a Mexican platform for the analysis and design of nuclear reactors, financed by the SENER-CONACYT Energy Sustain ability Fund, was approved in early 2014 and formally began at the end of that year. It is a national project led by the Instituto Nacional de Investigaciones Nucleares (ININ) and with the collaboration of Instituto Politecnico Nacional (IPN), the Universidad Autonoma Metropolitana (UAM) and Universidad Nacional Autonoma de Mexico (UNAM) as part of the development team and with the participation of the Laguna Verde Nuclear Power Plant, the National Commission of Nuclear Safety and Safeguards, the Ministry of Energy and the Karlsruhe Institute of Technology (Kit, Germany) as part of the user group. The general objective of the project is to modernize, improve and integrate the neutronic, thermo-hydraulic and thermo-mechanical codes, developed in Mexican institutions, in an integrated platform, developed and maintained by Mexican experts for the benefit of Mexican institutions. Two years into the process, important steps have been taken that have consolidated the platform. The main results of these first two years have been presented in different national and international forums. In this congress, some of the most recent results that have been implemented in the platform codes are shown in more detail. The current status of the platform from a more executive view point is summarized in this paper. (Author)

  9. Internet of things platforms in support of smart cities infrastructures

    CSIR Research Space (South Africa)

    Dlodlo, N

    2013-09-01

    Full Text Available the real and virtual worlds. This has been made possible through the development of IoT platforms. A city is referred to as ‘smart’ if it integrates smart objects into its products and services. The challenge is to integrate IoT platforms into the smart...

  10. 2011 Biomass Program Platform Peer Review. Integrated Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Rossmeissl, Neil [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s IBR Platform Review meeting.

  11. Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.

    Science.gov (United States)

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu

    2015-01-01

    The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.

  12. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    Science.gov (United States)

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  13. OTEC platform configuration and integration. Appendixes to Volume II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Price, David

    1978-07-07

    Detailed information and conceptual design drawings for the SPAR and SPHERE platforms for an OTEC commercial plant are presented. A work breakdown structure and a detailed estimate of the SPAR platform weight are included. (WHK)

  14. CNV Workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics.

    Science.gov (United States)

    Gai, Xiaowu; Perin, Juan C; Murphy, Kevin; O'Hara, Ryan; D'arcy, Monica; Wenocur, Adam; Xie, Hongbo M; Rappaport, Eric F; Shaikh, Tamim H; White, Peter S

    2010-02-04

    Recent studies have shown that copy number variations (CNVs) are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist. We developed a suite of software tools and resources (CNV Workshop) for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV. To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and is an ideal platform for coordinating multiple associated

  15. CNV Workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics

    Directory of Open Access Journals (Sweden)

    Rappaport Eric F

    2010-02-01

    Full Text Available Abstract Background Recent studies have shown that copy number variations (CNVs are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist. Results We developed a suite of software tools and resources (CNV Workshop for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV. Conclusions To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and

  16. Development and Application of integrated monitoring platform for the Doppler Weather SA-BAND Radar

    Science.gov (United States)

    Zhang, Q.; Sun, J.; Zhao, C. C.; Chen, H. Y.

    2017-10-01

    The doppler weather SA-band radar is an important part of modern meteorological observation methods, monitoring the running status of radar and the data transmission is important.This paper introduced the composition of radar system and classification of radar data,analysed the characteristics and laws of the radar when is normal or abnormal. Using Macromedia Dreamweaver and PHP, developed the integrated monitoring platform for the doppler weather SA-band radar which could monitor the real-time radar system running status and important performance indicators such as radar power,status parameters and others on Web page,and when the status is abnormal it will trigger the audio alarm.

  17. A Sol-gel Integrated Dual-readout Microarray Platform for Quantification and Identification of Prostate-specific Antigen.

    Science.gov (United States)

    Lee, SangWook; Lee, Jong Hyun; Kwon, Hyuck Gi; Laurell, Thomas; Jeong, Ok Chan; Kim, Soyoun

    2018-01-01

    Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.

  18. Applications integration in a hybrid cloud computing environment: modelling and platform

    Science.gov (United States)

    Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang

    2013-08-01

    With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.

  19. An integrated platform for assessing biologics (Conference Presentation)

    Science.gov (United States)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2016-04-01

    Protein therapeutics are a rapidly growing portion of the pharmaceuticals market and have many significant advantages over traditional small molecule drugs. As this market expands, however, critical regulatory and quality control issues remain, most notably the problem of protein aggregation. Individual target proteins often aggregate into larger masses which trigger an immune response in the body, which can reduce the efficacy of the drug for its intended purpose, or cause serious anaphylactic side-effects. Although detecting and minimizing aggregate formation is critical to ensure an effective product, aggregation dynamics are often highly complicated and there is little hope of reliable prediction and prevention from first principles. This problem is compounded for aggregates in the subvisible range of 100 nm to 10 micrometers where traditional techniques for detecting aggregates have significant limitations. Here, we present an integrated optofluidic platform for detecting nanoscale protein aggregates and characterizing interactions between these aggregates and a reference surface. By delivering light to a solution of proteins with an optical waveguide, scattered light from individual protein aggregates can be detected and analyzed to determine the force profile between each particle and the waveguide surface. Unlike existing methods which only determine size or charge, our label-free screening technique can directly measure the surface interaction forces between single aggregates and the glass substrate. This direct measurement capability may allow for better empirical predictions of the stability of protein aggregates during drug manufacturing and storage.

  20. Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform

    Directory of Open Access Journals (Sweden)

    Jinsong Liu

    2018-01-01

    Full Text Available Over the past few decades, wind energy has emerged as an alternative to conventional power generation that is economical, environmentally friendly and, importantly, renewable. Specifically, offshore wind energy is being considered by a number of countries to harness the stronger and more consistent wind resource compared to that over land. To meet the projected “20% energy from wind by 2030” scenario that was announced in 2006, 54 GW of added wind energy capacity need to come from offshore according to a National Renewable Energy Laboratory (NREL study. In this study, we discuss the development of a semi-submersible floating offshore platform with a catenary mooring system to support a very large 13.2-MW wind turbine with 100-m blades. An iterative design process is applied to baseline models with Froude scaling in order to achieve preliminary static stability. Structural dynamic analyses are performed to investigate the performance of the new model using a finite element method approach for the tower and a boundary integral equation (panel method for the platform. The steady-state response of the system under uniform wind and regular waves is first studied to evaluate the performance of the integrated system. Response amplitude operators (RAOs are computed in the time domain using white-noise wave excitation; this serves to highlight nonlinear, as well as dynamic characteristics of the system. Finally, selected design load cases (DLCs and the stochastic dynamic response of the system are studied to assess the global performance for sea states defined by wind fields with turbulence and long-crested irregular waves.

  1. On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.

    Science.gov (United States)

    Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo

    2016-02-17

    Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses.

    Directory of Open Access Journals (Sweden)

    Claire Saulou-Bérion

    Full Text Available For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins, for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes. The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL and synthesis/modification of lipid A (lpxA and arnA. The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq and chaperone (dnaJ, and regulation of transpeptidase expression (ycfS and ycbB. Interestingly, as these

  3. Analyzing Cyber-Physical Threats on Robotic Platforms.

    Science.gov (United States)

    Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J

    2018-05-21

    Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.

  4. Analyzing Cyber-Physical Threats on Robotic Platforms

    Directory of Open Access Journals (Sweden)

    Khalil M. Ahmad Yousef

    2018-05-01

    Full Text Available Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBotTM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.

  5. Study on the E-commerce platform based on the agent

    Science.gov (United States)

    Fu, Ruixue; Qin, Lishuan; Gao, Yinmin

    2011-10-01

    To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.

  6. Proof-of-Concept Prototyping for Observis Platform

    OpenAIRE

    Ekimov, Victor

    2012-01-01

    Observis Oy is a start-up company first appeared in January 2011. The company is building up a measurement platform that is open and easy to connect. It helps measurement device suppliers, system and service providers, and analyzing services to found and combine each other’s products to create more value to the end customers. Observis Oy intends to develop a platform for integration with other services in order to provide management functionality in environmental field of business. Platform i...

  7. A Practical Perspective on the Design and Implementation of Enterprise Integration Solution to improve QoS using SAP NetWeaver Platform

    Directory of Open Access Journals (Sweden)

    K.Krishna Mohan

    2010-06-01

    Full Text Available Most of the enterprise operations require information from several systems within and outside the enterprise(s. The past few years have seen explosive growth in direct program to program interaction for application integration, removing manual steps yielding tremendous improvements in reliability and efficiency. This paper addresses the practical approach for the design and implementation of Enterprise Application Integration in a heterogeneous environment with SAP NetWeaver Platform (i.e. Exchange Infrastructure (XI/Process Integration (PI using a Customizable Tool named TEmplate based Functional Requirements for Integration Design (TEFRID developed by the author(s to improve the Quality of Service (QoS and reduce the development time and cost with the end-to-end scenario development.

  8. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yier [Univ. of Central Florida, Orlando, FL (United States)

    2017-07-14

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from this project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.

  9. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  10. Thermo-Economic Modelling and Process Integration of CO2-Mitigation Options on Oil and Gas Platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    recovering CO2 that can be used for enhanced oil recovery. In this paper, a North Sea platform is considered as case study, and the site-scale retrofit integration of these three options is analysed, considering thermodynamic, economic and environmental performance indicators. The results illustrate......The offshore extraction of oil and gas is an energy-intensive process associated with large CO2 and CH4 emissions to the atmosphere and chemicals to the sea. The taxation of these emissions has encouraged the development of more energy-efficient and environmental-friendly solutions, of which three...

  11. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    Science.gov (United States)

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.

  12. Sparse canonical methods for biological data integration: application to a cross-platform study

    Directory of Open Access Journals (Sweden)

    Robert-Granié Christèle

    2009-01-01

    Full Text Available Abstract Background In the context of systems biology, few sparse approaches have been proposed so far to integrate several data sets. It is however an important and fundamental issue that will be widely encountered in post genomic studies, when simultaneously analyzing transcriptomics, proteomics and metabolomics data using different platforms, so as to understand the mutual interactions between the different data sets. In this high dimensional setting, variable selection is crucial to give interpretable results. We focus on a sparse Partial Least Squares approach (sPLS to handle two-block data sets, where the relationship between the two types of variables is known to be symmetric. Sparse PLS has been developed either for a regression or a canonical correlation framework and includes a built-in procedure to select variables while integrating data. To illustrate the canonical mode approach, we analyzed the NCI60 data sets, where two different platforms (cDNA and Affymetrix chips were used to study the transcriptome of sixty cancer cell lines. Results We compare the results obtained with two other sparse or related canonical correlation approaches: CCA with Elastic Net penalization (CCA-EN and Co-Inertia Analysis (CIA. The latter does not include a built-in procedure for variable selection and requires a two-step analysis. We stress the lack of statistical criteria to evaluate canonical correlation methods, which makes biological interpretation absolutely necessary to compare the different gene selections. We also propose comprehensive graphical representations of both samples and variables to facilitate the interpretation of the results. Conclusion sPLS and CCA-EN selected highly relevant genes and complementary findings from the two data sets, which enabled a detailed understanding of the molecular characteristics of several groups of cell lines. These two approaches were found to bring similar results, although they highlighted the same

  13. VOLTTRON™: An Agent Platform for Integrating Electric Vehicles and Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Haack, Jereme N.; Akyol, Bora A.; Tenney, Nathan D.; Carpenter, Brandon J.; Pratt, Richard M.; Carroll, Thomas E.

    2013-12-06

    The VOLTTRON™ platform provides a secure environment for the deployment of intelligent applications in the smart grid. VOLTTRON design is based on the needs of control applications running on small form factor devices, namely security and resource guarantees. Services such as resource discovery, secure agent mobility, and interacting with smart and legacy devices are provided by the platform to ease the development of control applications and accelerate their deployment. VOLTTRON platform has been demonstrated in several different domains that influenced and enhanced its capabilities. This paper will discuss the features of VOLTTRON and highlight its usage to coordinate electric vehicle charging with home energy usage

  14. A platform to integrate climate information and rural telemedicine in Malawi

    Science.gov (United States)

    Lowe, R.; Chadza, T.; Chirombo, J.; Fonda, C.; Muyepa, A.; Nkoloma, M.; Pietrosemoli, E.; Radicella, S. M.; Tompkins, A. M.; Zennaro, M.

    2012-04-01

    It is commonly accepted that climate plays a role in the transmission of many infectious diseases, particularly those transmitted by mosquitoes such as malaria, which is one of the most important causes of mortality and morbidity in developing countries. Due to time lags involved in the climate-disease transmission system, lagged observed climate variables could provide some predictive lead for forecasting disease epidemics. This lead time could be extended by using forecasts of the climate in disease prediction models. This project aims to implement a platform for the dissemination of climate-driven disease risk forecasts, using a telemedicine approach. A pilot project has been established in Malawi, where a 162 km wireless link has been installed, spanning from Blantyre City to remote health facilities in the district of Mangochi in the Southern region, bordering Lake Malawi. This long Wi-Fi technology allows rural health facilities to upload real-time disease cases as they occur to an online health information system (DHIS2); a national medical database repository administered by the Ministry of Health. This technology provides a real-time data logging system for disease incidence monitoring and facilitates the flow of information between local and national levels. This platform allows statistical and dynamical disease prediction models to be rapidly updated with real-time climate and epidemiological information. This permits health authorities to target timely interventions ahead of an imminent increase in malaria incidence. By integrating meteorological and health information systems in a statistical-dynamical prediction model, we show that a long-distance Wi-Fi link is a practical and inexpensive means to enable the rapid analysis of real-time information in order to target disease prevention and control measures and mobilise resources at the local level.

  15. Genetic and biochemical changes of the serotonergic system in migraine pathobiology.

    Science.gov (United States)

    Gasparini, Claudia Francesca; Smith, Robert Anthony; Griffiths, Lyn Robyn

    2017-12-01

    Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.

  16. Robust integration schemes for junction-based modulators in a 200mm CMOS compatible silicon photonic platform (Conference Presentation)

    Science.gov (United States)

    Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe

    2017-05-01

    Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive

  17. Handheld Microneedle-Based Electrolyte Sensing Platform.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Philip R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rivas, Rhiana [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, David [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Edwards, Thayne L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Koskelo, Markku [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Shawa, Luay [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Brener, Igal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chavez, Victor H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Polsky, Ronen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  18. a Workflow for UAV's Integration Into a Geodesign Platform

    Science.gov (United States)

    Anca, P.; Calugaru, A.; Alixandroae, I.; Nazarie, R.

    2016-06-01

    This paper presents a workflow for the development of various Geodesign scenarios. The subject is important in the context of identifying patterns and designing solutions for a Smart City with optimized public transportation, efficient buildings, efficient utilities, recreational facilities a.s.o.. The workflow describes the procedures starting with acquiring data in the field, data processing, orthophoto generation, DTM generation, integration into a GIS platform and analyzing for a better support for Geodesign. Esri's City Engine is used mostly for 3D modeling capabilities that enable the user to obtain 3D realistic models. The workflow uses as inputs information extracted from images acquired using UAVs technologies, namely eBee, existing 2D GIS geodatabases, and a set of CGA rules. The method that we used further, is called procedural modeling, and uses rules in order to extrude buildings, the street network, parcel zoning and side details, based on the initial attributes from the geodatabase. The resulted products are various scenarios for redesigning, for analyzing new exploitation sites. Finally, these scenarios can be published as interactive web scenes for internal, groups or pubic consultation. In this way, problems like the impact of new constructions being build, re-arranging green spaces or changing routes for public transportation, etc. are revealed through impact and visibility analysis or shadowing analysis and are brought to the citizen's attention. This leads to better decisions.

  19. HPC - Platforms Penta Chart

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Angelina Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    Strategy, Planning, Acquiring- very large scale computing platforms come and go and planning for immensely scalable machines often precedes actual procurement by 3 years. Procurement can be another year or more. Integration- After Acquisition, machines must be integrated into the computing environments at LANL. Connection to scalable storage via large scale storage networking, assuring correct and secure operations. Management and Utilization – Ongoing operations, maintenance, and trouble shooting of the hardware and systems software at massive scale is required.

  20. SenSyF Experience on Integration of EO Services in a Generic, Cloud-Based EO Exploitation Platform

    Science.gov (United States)

    Almeida, Nuno; Catarino, Nuno; Gutierrez, Antonio; Grosso, Nuno; Andrade, Joao; Caumont, Herve; Goncalves, Pedro; Villa, Guillermo; Mangin, Antoine; Serra, Romain; Johnsen, Harald; Grydeland, Tom; Emsley, Stephen; Jauch, Eduardo; Moreno, Jose; Ruiz, Antonio

    2016-08-01

    SenSyF is a cloud-based data processing framework for EO- based services. It has been pioneer in addressing Big Data issues from the Earth Observation point of view, and is a precursor of several of the technologies and methodologies that will be deployed in ESA's Thematic Exploitation Platforms and other related systems.The SenSyF system focuses on developing fully automated data management, together with access to a processing and exploitation framework, including Earth Observation specific tools. SenSyF is both a development and validation platform for data intensive applications using Earth Observation data. With SenSyF, scientific, institutional or commercial institutions developing EO- based applications and services can take advantage of distributed computational and storage resources, tailored for applications dependent on big Earth Observation data, and without resorting to deep infrastructure and technological investments.This paper describes the integration process and the experience gathered from different EO Service providers during the project.

  1. Unraveling Platform Strategies: A Review from an Organizational Ambidexterity Perspective

    Directory of Open Access Journals (Sweden)

    Xing Wan

    2017-05-01

    Full Text Available Platform strategies, which highlight the interdependence in and evolution of business ecosystems, are increasingly relevant for sustainable business models in the digital era. So far, platform research has existed as a fragmented body of insights from different fields, but an integrated theoretical perspective can lead to a more coherent understanding of the research overall. Organizational ambidexterity emphasizes the balance between exploration and exploitation, which is particularly conducive to understanding the sustainability of a firm. Using an organizational ambidexterity perspective, the authors analyze five platform strategies: pricing, openness, integration, differentiation, and envelopment. This paper provides a systematic review of the theoretical and empirical studies in leading management, economics, and information systems journals from 2000 to 2016. The findings show that platform strategies can help platform owners achieve ambidexterity by domain, temporal, and organizational separation. Finally, this paper proposes an agenda for future research.

  2. Health-e-Child: a grid platform for european paediatrics

    International Nuclear Information System (INIS)

    Skaburskas, K; Estrella, F; Shade, J; Manset, D; Revillard, J; Rios, A; Anjum, A; Branson, A; Bloodsworth, P; Hauer, T; McClatchey, R; Rogulin, D

    2008-01-01

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integration and indicates how these will be resolved in the HeC system. HeC is presented as an example of how computer science (and, in particular Grid infrastructures) originating from high energy physics can be adapted for use by biomedical informaticians to deliver tangible real-world benefits

  3. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    Science.gov (United States)

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  4. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  5. End-to-end integrated security and performance analysis on the DEGAS Choreographer platform

    DEFF Research Database (Denmark)

    Buchholtz, Mikael; Gilmore, Stephen; Haenel, Valentin

    2005-01-01

    We present a software tool platform which facilitates security and performance analysis of systems which starts and ends with UML model descriptions. A UML project is presented to the platform for analysis, formal content is extracted in the form of process calculi descriptions, analysed with the......We present a software tool platform which facilitates security and performance analysis of systems which starts and ends with UML model descriptions. A UML project is presented to the platform for analysis, formal content is extracted in the form of process calculi descriptions, analysed...

  6. Yeast identification by sequencing, biochemical kits, MALDI-TOF MS and rep-PCR DNA fingerprinting.

    Science.gov (United States)

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Chan, Jasper F W; Lau, Susanna K P; Kong, Fanrong; Xu, Yingchun; Woo, Patrick C Y

    2017-12-08

    No study has comprehensively evaluated the performance of 28S nrDNA and ITS sequencing, commercial biochemical test kits, MALDI-TOF MS platforms, and the emerging rep-PCR DNA fingerprinting technology using a cohort of yeast strains collected from a clinical microbiology laboratory. In this study, using 71 clinically important yeast isolates (excluding Candida albicans) collected from a single centre, we determined the concordance of 28S nrDNA and ITS sequencing and evaluated the performance of two commercial test kits, two MALDI-TOF MS platforms, and rep-PCR DNA fingerprinting. 28S nrDNA and ITS sequencing showed complete agreement on the identities of the 71 isolates. Using sequencing results as the standard, 78.9% and 71.8% isolates were correctly identified using the API 20C AUX and Vitek 2 YST ID Card systems, respectively; and 90.1% and 80.3% isolates were correctly identified using the Bruker and Vitek MALDI-TOF MS platforms, respectively. Of the 18 strains belonging to the Candida parapsilosis species complex tested by DiversiLab automated rep-PCR DNA fingerprinting, all were identified only as Candida parapsilosis with similarities ≥93.2%, indicating the misidentification of Candida metapsilosis and Candida orthopsilosis. However, hierarchical cluster analysis of the rep-PCR DNA fingerprints of these three species within this species complex formed three different discrete clusters, indicating that this technology can potentially differentiate the three species. To achieve higher accuracies of identification, the databases of commercial biochemical test kits, MALDI-TOF MS platforms, and DiversiLab automated rep-PCR DNA fingerprinting needs further enrichment, particularly for uncommonly encountered yeast species. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A Survey of Open Source Products for Building a SIP Communication Platform

    Directory of Open Access Journals (Sweden)

    Pavel Segec

    2011-01-01

    Full Text Available The Session Initiation Protocol (SIP is a multimedia signalling protocol that has evolved into a widely adopted communication standard. The integration of SIP into existing IP networks has fostered IP networks becoming a convergence platform for both real-time and non-real-time multimedia communications. This converged platform integrates data, voice, video, presence, messaging, and conference services into a single network that offers new communication experiences for users. The open source community has contributed to SIP adoption through the development of open source software for both SIP clients and servers. In this paper, we provide a survey on open SIP systems that can be built using publically available software. We identify SIP features for service development and programming, services and applications of a SIP-converged platform, and the most important technologies supporting SIP functionalities. We propose an advanced converged IP communication platform that uses SIP for service delivery. The platform supports audio and video calls, along with media services such as audio conferences, voicemail, presence, and instant messaging. Using SIP Application Programming Interfaces (APIs, the platform allows the deployment of advanced integrated services. The platform is implemented with open source software. Architecture components run on standardized hardware with no need for special purpose investments.

  8. The tsunami service bus, an integration platform for heterogeneous sensor systems

    Science.gov (United States)

    Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.

    2009-04-01

    components remain unchanged, components can be maintained and evolved independently on each other and service functionality as a whole can be reused. In GITEWS the functional integration pattern was adopted by applying the principles of an Enterprise Service Bus (ESB) as a backbone. Four services provided by the so called Tsunami Service Bus (TSB) which are essential for early warning systems are realized compliant to services specified within the Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC). 3. ARCHITECTURE The integration platform was developed to access proprietary, heterogeneous sensor data and to provide them in a uniform manner for further use. Its core, the TSB provides both a messaging-backbone and -interfaces on the basis of a Java Messaging Service (JMS). The logical architecture of GITEWS consists of four independent layers: • A resource layer where physical or virtual sensors as well as data or model storages provide relevant measurement-, event- and analysis-data: Utilizable for the TSB are any kind of data. In addition to sensors databases, model data and processing applications are adopted. SWE specifies encoding both to access and to describe these data in a comprehensive way: 1. Sensor Model Language (SensorML): Standardized description of sensors and sensor data 2. Observations and Measurements (O&M): Model and encoding of sensor measurements • A service layer to collect and conduct data from heterogeneous and proprietary resources and provide them via standardized interfaces: The TSB enables interaction with sensors via the following services: 1. Sensor Observation Service (SOS): Standardized access to sensor data 2. Sensor Planning Service (SPS): Controlling of sensors and sensor networks 3. Sensor Alert Service (SAS): Active sending of data if defined events occur 4. Web Notification Service (WNS): Conduction of asynchronous dialogues between services • An orchestration layer where atomic services are composed and

  9. The mid-IR silicon photonics sensor platform (Conference Presentation)

    Science.gov (United States)

    Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.

    2017-02-01

    Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in

  10. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  11. Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office

    Science.gov (United States)

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-01

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability. PMID:25608216

  12. Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office

    Directory of Open Access Journals (Sweden)

    Minwoo Ryu

    2015-01-01

    Full Text Available The Internet of Things (IoT allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.

  13. Integrated semantics service platform for the Internet of Things: a case study of a smart office.

    Science.gov (United States)

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-19

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.

  14. The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration

    Science.gov (United States)

    Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.

    2018-04-01

    Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.

  15. THE TSUNAMI SERVICE BUS, AN INTEGRATION PLATFORM FOR HETEROGENEOUS SENSOR SYSTEMS

    Science.gov (United States)

    Fleischer, J.; Häner, R.; Herrnkind, S.; Kriegel, U.; Schwarting, H.; Wächter, J.

    2009-12-01

    The Tsunami Service Bus (TSB) is the sensor integration platform of the German Indonesian Tsunami Early Warning System (GITEWS) [1]. The primary goal of GITEWS is to deliver reliable tsunami warnings as fast as possible. This is achieved on basis of various sensor systems like seismometers, ocean instrumentation, and GPS stations, all providing fundamental data to support prediction of tsunami wave propagation by the GITEWS warning center. However, all these sensors come with their own proprietary data formats and specific behavior. Also new sensor types might be added, old sensors will be replaced. To keep GITEWS flexible the TSB was developed in order to access and control sensors in a uniform way. To meet these requirements the TSB follows the architectural blueprint of a Service Oriented Architecture (SOA). The integration platform implements dedicated services communicating via a service infrastructure. The functionality required for early warnings is provided by loosely coupled services replacing the "hard-wired" coupling at data level. Changes in the sensor specification are confined to the data level without affecting the warning center. Great emphasis was laid on following the Sensor Web Enablement (SWE) standard [2], specified by the Open Geospatial Consortium (OGC) [3]. As a result the full functionality needed in GITEWS could be achieved by implementing the four SWE services: The Sensor Observation Service for retrieving sensor measurements, the Sensor Alert Service in order to deliver sensor alerts, the Sensor Planning Service for tasking sensors, and the Web Notification Service for conduction messages to various media channels. Beyond these services the TSB also follows SWE Observation & Measurements specifications (O&M) for data encoding and Sensor Model Language (SensorML) for meta information. Moreover, accessing sensors via the TSB is not restricted to GITEWS. Multiple instances of the TSB can be composed to realize federate warning system

  16. An integrated in vitro imaging platform for characterizing filarial parasite behavior within a multicellular microenvironment.

    Directory of Open Access Journals (Sweden)

    Timothy Kassis

    2014-11-01

    Full Text Available Lymphatic Filariasis, a Neglected Tropical Disease, is caused by thread-like parasitic worms, including B. malayi, which migrate to the human lymphatic system following transmission. The parasites reside in collecting lymphatic vessels and lymph nodes for years, often resulting in lymphedema, elephantiasis or hydrocele. The mechanisms driving worm migration and retention within the lymphatics are currently unknown. We have developed an integrated in vitro imaging platform capable of quantifying B. malayi migration and behavior in a multicellular microenvironment relevant to the initial site of worm injection by incorporating the worm in a Polydimethylsiloxane (PDMS microchannel in the presence of human dermal lymphatic endothelial cells (LECs and human dermal fibroblasts (HDFs. The platform utilizes a motorized controllable microscope with CO2 and temperature regulation to allow for worm tracking experiments with high resolution over large length and time scales. Using post-acquisition algorithms, we quantified four parameters: 1 speed, 2 thrashing intensity, 3 percentage of time spent in a given cell region and 4 persistence ratio. We demonstrated the utility of our system by quantifying these parameters for L3 B. malayi in the presence of LECs and HDFs. Speed and thrashing increased in the presence of both cell types and were altered within minutes upon exposure to the anthelmintic drug, tetramisole. The worms displayed no targeted migration towards either cell type for the time course of this study (3 hours. When cells were not present in the chamber, worm thrashing correlated directly with worm speed. However, this correlation was lost in the presence of cells. The described platform provides the ability to further study B. malayi migration and behavior.

  17. Analyzing Cyber-Physical Threats on Robotic Platforms

    Science.gov (United States)

    2018-01-01

    Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBotTM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications. PMID:29883403

  18. Advances in the development of the Mexican platform for analysis and design of nuclear reactors: AZTLAN Platform; Avances en el desarrollo de la plataforma mexicana para analisis y diseno de reactores nucleares: AZTLAN Platform

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A. M.; Puente E, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Ciudad de Mexico (Mexico); Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: armando.gomez@inin.gob.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2017-09-15

    The AZTLAN platform project: development of a Mexican platform for the analysis and design of nuclear reactors, financed by the SENER-CONACYT Energy Sustain ability Fund, was approved in early 2014 and formally began at the end of that year. It is a national project led by the Instituto Nacional de Investigaciones Nucleares (ININ) and with the collaboration of Instituto Politecnico Nacional (IPN), the Universidad Autonoma Metropolitana (UAM) and Universidad Nacional Autonoma de Mexico (UNAM) as part of the development team and with the participation of the Laguna Verde Nuclear Power Plant, the National Commission of Nuclear Safety and Safeguards, the Ministry of Energy and the Karlsruhe Institute of Technology (Kit, Germany) as part of the user group. The general objective of the project is to modernize, improve and integrate the neutronic, thermo-hydraulic and thermo-mechanical codes, developed in Mexican institutions, in an integrated platform, developed and maintained by Mexican experts for the benefit of Mexican institutions. Two years into the process, important steps have been taken that have consolidated the platform. The main results of these first two years have been presented in different national and international forums. In this congress, some of the most recent results that have been implemented in the platform codes are shown in more detail. The current status of the platform from a more executive view point is summarized in this paper. (Author)

  19. Cloud Based Earth Observation Data Exploitation Platforms

    Science.gov (United States)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.

    2017-12-01

    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland

  20. Design and control of multifunctional sorting and training platform based on PLC control

    Science.gov (United States)

    Wan, Hongqiang; Ge, Shuai; Han, Peiying; Li, Fancong; Zhang, Simiao

    2018-05-01

    Electromechanical integration, as a multi-disciplinary subject, has been paid much attention by universities and is widely used in the automation production of enterprises. Aiming at the problem of the lack of control among enterprises and the lack of training among colleges and universities, this paper presents a design of multifunctional sorting training platform based on PLC control. Firstly, the structure of the platform is determined and three-dimensional modeling is done. Then design the platform's aerodynamic control and electrical control. Finally, realize the platform sorting function through PLC programming and configuration software development. The training platform can be used to design the practical training experiment, which has a strong advance and pertinence in the electromechanical integration teaching. At the same time, the platform makes full use of modular thinking to make the sorting modules more flexible. Compared with the traditional training platform, its teaching effect is more significant.

  1. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform.

    Science.gov (United States)

    Denning, Chris; Borgdorff, Viola; Crutchley, James; Firth, Karl S A; George, Vinoj; Kalra, Spandan; Kondrashov, Alexander; Hoang, Minh Duc; Mosqueira, Diogo; Patel, Asha; Prodanov, Ljupcho; Rajamohan, Divya; Skarnes, William C; Smith, James G W; Young, Lorraine E

    2016-07-01

    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Fluidics platform and method for sample preparation

    Science.gov (United States)

    Benner, Henry W.; Dzenitis, John M.

    2016-06-21

    Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.

  3. Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors

    Science.gov (United States)

    Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.

    2018-05-01

    Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5  ×  10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.

  4. Virtual health platform for medical tourism purposes.

    Science.gov (United States)

    Martinez, Debora; Ferriol, Pedro; Tous, Xisco; Cabrer, Miguel; Prats, Mercedes

    2008-01-01

    This paper introduces an overview of the Virtual Health Platform (VHP), an alternative approach to create a functional PHR system in a medical tourism environment. The proposed platform has been designed in order to be integrated with EHR infrastructures and in this way it expects to be useful and more advantageous to the patient or tourist. Use cases of the VHP and its potential benefits summarize the analysis.

  5. Booly: a new data integration platform

    Directory of Open Access Journals (Sweden)

    Karten Harvey J

    2010-10-01

    Full Text Available Abstract Background Data integration is an escalating problem in bioinformatics. We have developed a web tool and warehousing system, Booly, that features a simple yet flexible data model coupled with the ability to perform powerful comparative analysis, including the use of Boolean logic to merge datasets together, and an integrated aliasing system to decipher differing names of the same gene or protein. Furthermore, Booly features a collaborative sharing system and a public repository so that users can retrieve new datasets while contributors can easily disseminate new content. Results We illustrate the uses of Booly with several examples including: the versatile creation of homebrew datasets, the integration of heterogeneous data to identify genes useful for comparing avian and mammalian brain architecture, and generation of a list of Food and Drug Administration (FDA approved drugs with possible alternative disease targets. Conclusions The Booly paradigm for data storage and analysis should facilitate integration between disparate biological and medical fields and result in novel discoveries that can then be validated experimentally. Booly can be accessed at http://booly.ucsd.edu.

  6. An Optimal Strategic Business Model for Small Businesses Using Online Platforms

    Directory of Open Access Journals (Sweden)

    Hana Kim

    2018-02-01

    Full Text Available As ecommerce continues to grow, small businesses are using a variety of platforms to secure potential consumers. However, it is important for small business owners to choose an efficient business model because of constraints such as technical problems. In this study, based on platform characteristics we divide online shopping platforms into different types as follows: (1 information brokerage services; (2 online malls; and (3 omni-channel platforms. The efficiency of each group is measured by stochastic frontier analysis, and the efficiency comparison between the groups is made using meta-frontier analysis. As a result of the study, it is found that the efficiency of small business owners increases as functional integration increases, satisfying utilitarian motivations. However, a platform with greater integration that has a social presence satisfying hedonic motivations improves the efficiency of all small businesses using the platform instead of just the efficiency of a marginal number of small business owners. This study, based on the dynamic capabilities viewpoint, suggests that the omni-channel platform represents the most sustainable approach for small business owners undergoing difficulties such as technological and organizational changes.

  7. An integrated telemedicine platform for the assessment of affective physiological states

    Directory of Open Access Journals (Sweden)

    Ganiatsas George

    2006-08-01

    Full Text Available Abstract AUBADE is an integrated platform built for the affective assessment of individuals. The system performs evaluation of the emotional state by classifying vectors of features extracted from: facial Electromyogram, Respiration, Electrodermal Activity and Electrocardiogram. The AUBADE system consists of: (a a multisensorial wearable, (b a data acquisition and wireless communication module, (c a feature extraction module, (d a 3D facial animation module which is used for the projection of the obtained data through a generic 3D face model; whereas the end-user will be able to view the facial expression of the subject in real time, (e an intelligent emotion recognition module, and (f the AUBADE databases where the acquired signals along with the subject's animation videos are saved. The system is designed to be applied to human subjects operating under extreme stress conditions, in particular car racing drivers, and also to patients suffering from neurological and psychological disorders. AUBADE's classification accuracy into five predefined emotional classes (high stress, low stress, disappointment, euphoria and neutral face is 86.0%. The pilot system applications and components are being tested and evaluated on Maserati's car. racing drivers.

  8. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    International Nuclear Information System (INIS)

    Kisselman, Gera; Qiu, Wei; Romanov, Vladimir; Thompson, Christine M.; Lam, Robert; Battaile, Kevin P.; Pai, Emil F.; Chirgadze, Nickolay Y.

    2011-01-01

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  9. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    Energy Technology Data Exchange (ETDEWEB)

    Kisselman, Gera; Qiu, Wei; Romanov, Vladimir; Thompson, Christine M.; Lam, Robert [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Battaile, Kevin P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Pai, Emil F.; Chirgadze, Nickolay Y., E-mail: nchirgad@uhnresearch.ca [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2C4 (Canada); University of Toronto, Toronto, Ontario M5S 1A8 (Canada)

    2011-06-01

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  10. Technological Integration of Acquisitions in Digital Industries

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Toppenberg, Gustav

    2015-01-01

    providers to extend the platform core and to derive network effects by consolidating platform user groups, and (b) complement providers to create monopoly positions for the complements and for innovation complementarity. To enable these acquisition benefits, acquirers face technological integration...... challenges in process and product integration. Through a case study of Network Solutions Corp. (NSC), a Fortune 500 company that has acquired more than 175 business units, we develop four propositions explaining how the benefits of platform core and complement acquisitions are differently contingent......Acquisitions have become essential tools to retain the technological edge in digital industries. This paper analyses the technological integration challenges in such acquisitions. Acquirers in digital industries are typically platform leaders in platform markets. They acquire (a) other platform...

  11. Providing a Platform for Parents? Exploring the Nature of Parental Engagement with School Learning Platforms

    Science.gov (United States)

    Selwyn, N.; Banaji, S.; Hadjithoma-Garstka, C.; Clark, W.

    2011-01-01

    This paper investigates how schools are supporting parents' involvement with their children's education through the use of "Learning Platform" technologies--i.e. the integrated use of virtual learning environments, management information systems, communications, and other information and resource-sharing technologies. Based on in-depth…

  12. Integrated Rapid-Diagnostic-Test Reader Platform on a Cellphone

    Science.gov (United States)

    Mudanyali, Onur; Dimitrov, Stoyan; Sikora, Uzair; Padmanabhan, Swati; Navruz, Isa; Ozcan, Aydogan

    2012-01-01

    We demonstrate a cellphone based Rapid-Diagnostic-Test (RDT) reader platform that can work with various lateral flow immuno-chromatographic assays and similar tests to sense the presence of a target analyte in a sample. This compact and cost-effective digital RDT reader, weighing only ~65 grams, mechanically attaches to the existing camera unit of a cellphone, where various types of RDTs can be inserted to be imaged in reflection or transmission modes under light-emitting-diode (LED) based illumination. Captured raw images of these tests are then digitally processed (within less than 0.2 sec/image) through a smart application running on the cellphone for validation of the RDT as well as for automated reading of its diagnostic result. The same smart application running on the cellphone then transmits the resulting data, together with the RDT images and other related information (e.g., demographic data) to a central server, which presents the diagnostic results on a world-map through geo-tagging. This dynamic spatio-temporal map of various RDT results can then be viewed and shared using internet browsers or through the same cellphone application. We tested this platform using malaria, tuberculosis (TB) as well as HIV RDTs by installing it on both Android based smart-phones as well as an iPhone. Providing real-time spatio-temporal statistics for the prevalence of various infectious diseases, this smart RDT reader platform running on cellphones might assist health-care professionals and policy makers to track emerging epidemics worldwide and help epidemic preparedness. PMID:22596243

  13. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    Science.gov (United States)

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  14. Multi-platform Integrated Positioning and Attitude Determination using GNSS

    NARCIS (Netherlands)

    Buist, P.J.

    2013-01-01

    There is trend in spacecraft engineering toward distributed systems where a number of smaller spacecraft work as a larger satellite. However, in order to make the small satellites work together as a single large platform, the precise relative positions (baseline) and orientations (attitude) of the

  15. An Integrated Web-Based 3d Modeling and Visualization Platform to Support Sustainable Cities

    Science.gov (United States)

    Amirebrahimi, S.; Rajabifard, A.

    2012-07-01

    Sustainable Development is found as the key solution to preserve the sustainability of cities in oppose to ongoing population growth and its negative impacts. This is complex and requires a holistic and multidisciplinary decision making. Variety of stakeholders with different backgrounds also needs to be considered and involved. Numerous web-based modeling and visualization tools have been designed and developed to support this process. There have been some success stories; however, majority failed to bring a comprehensive platform to support different aspects of sustainable development. In this work, in the context of SDI and Land Administration, CSDILA Platform - a 3D visualization and modeling platform -was proposed which can be used to model and visualize different dimensions to facilitate the achievement of sustainability, in particular, in urban context. The methodology involved the design of a generic framework for development of an analytical and visualization tool over the web. CSDILA Platform was then implemented via number of technologies based on the guidelines provided by the framework. The platform has a modular structure and uses Service-Oriented Architecture (SOA). It is capable of managing spatial objects in a 4D data store and can flexibly incorporate a variety of developed models using the platform's API. Development scenarios can be modeled and tested using the analysis and modeling component in the platform and the results are visualized in seamless 3D environment. The platform was further tested using number of scenarios and showed promising results and potentials to serve a wider need. In this paper, the design process of the generic framework, the implementation of CSDILA Platform and technologies used, and also findings and future research directions will be presented and discussed.

  16. Study on concept of web-based reactor piping design data platform

    International Nuclear Information System (INIS)

    Wang Yu; Zhou Yu; Dong Jianling; Meng Yang

    2005-01-01

    For solving the piping design problems such as design data deficiency, designer communication inconvenience and design project inconsistence, Reactor Piping Design Database Platform, which is the main part of the Integrated Nuclear Project Research Platform, is proposed by analyzing the nuclear piping designs in detail. The functions and system structures of the platform are described in the paper for the sake of the realization of the Reactor Piping Design Database Platform. The platform is constituted by web-based management interface, AutoPlant selected as CAD software, and relation database management system (DBMS). (authors)

  17. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  18. Beyond xMOOCs in healthcare education: study of the feasibility in integrating virtual patient systems and MOOC platforms.

    Science.gov (United States)

    Stathakarou, Natalia; Zary, Nabil; Kononowicz, Andrzej A

    2014-01-01

    Background. Massive Open Online Courses (MOOCs) are an emerging trend in online learning. However, their technology is not yet completely adjusted to the needs of healthcare education. Integration of Virtual Patients within MOOCs to increase interactivity and foster clinical reasoning skills training, has been discussed in the past, but not verified by a practical implementation. Objective. To investigate the technical feasibility of integrating MOOCs with Virtual Patients for the purpose of enabling further research into the potential pedagogical benefits of this approach. Methods. We selected OpenEdx and Open Labyrinth as representative constituents of a MOOC platform and Virtual Patient system integration. Based upon our prior experience we selected the most fundamental technical requirement to address. Grounded in the available literature we identified an e-learning standard to guide the integration. We attempted to demonstrate the feasibility of the integration by designing a "proof-of-concept" prototype. The resulting pilot implementation was subject of verification by two test cases. Results. A Single Sign-On mechanism connecting Open Labyrinth with OpenEdx and based on the IMS LTI standard was successfully implemented and verified. Conclusion. We investigated the technical perspective of integrating Virtual Patients with MOOCs. By addressing this crucial technical requirement we set a base for future research on the educational benefits of using virtual patients in MOOCs. This provides new opportunities for integrating specialized software in healthcare education at massive scale.

  19. Beyond xMOOCs in healthcare education: study of the feasibility in integrating virtual patient systems and MOOC platforms

    Directory of Open Access Journals (Sweden)

    Natalia Stathakarou

    2014-11-01

    Full Text Available Background. Massive Open Online Courses (MOOCs are an emerging trend in online learning. However, their technology is not yet completely adjusted to the needs of healthcare education. Integration of Virtual Patients within MOOCs to increase interactivity and foster clinical reasoning skills training, has been discussed in the past, but not verified by a practical implementation.Objective. To investigate the technical feasibility of integrating MOOCs with Virtual Patients for the purpose of enabling further research into the potential pedagogical benefits of this approach.Methods. We selected OpenEdx and Open Labyrinth as representative constituents of a MOOC platform and Virtual Patient system integration. Based upon our prior experience we selected the most fundamental technical requirement to address. Grounded in the available literature we identified an e-learning standard to guide the integration. We attempted to demonstrate the feasibility of the integration by designing a “proof-of-concept” prototype. The resulting pilot implementation was subject of verification by two test cases.Results. A Single Sign-On mechanism connecting Open Labyrinth with OpenEdx and based on the IMS LTI standard was successfully implemented and verified.Conclusion. We investigated the technical perspective of integrating Virtual Patients with MOOCs. By addressing this crucial technical requirement we set a base for future research on the educational benefits of using virtual patients in MOOCs. This provides new opportunities for integrating specialized software in healthcare education at massive scale.

  20. CoreFlow: A computational platform for integration, analysis and modeling of complex biological data

    DEFF Research Database (Denmark)

    Pasculescu, Adrian; Schoof, Erwin; Creixell, Pau

    2014-01-01

    between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion......A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which...... provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts...

  1. studies on blood and plasma biochemical characteristics of the ...

    African Journals Online (AJOL)

    User

    A study to determine the blood parameters and plasma biochemical values of ... highest in animals at the 4th month state (9.75g/dl) and lowest at the 12th ... study is indicative of satisfactory physiological, nutritional and pathological ... domestication and integration into the micro-livestock farming system is ..... Principles and.

  2. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    Science.gov (United States)

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a

  3. Systematic methods for synthesis and design of sustainable chemical and biochemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Chemical and biochemical process design consists of designing the process that can sustainably manufacture an identified chemical product through a chemical or biochemical route. The chemical product tree is potentially very large; starting from a set of basic raw materials (such as petroleum...... for process intensification, sustainable process design, identification of optimal biorefinery models as well as integrated process-control design, and chemical product design. The lecture will present the main concepts, the decomposition based solution approach, the developed methods and tools together...

  4. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yafei [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States); Brott, David [Patient Safety, AstraZeneca R and D Wilmington, DE 19850 (United States); Luo, Wenli [Discovery Statistics, AstraZeneca R and D Waltham, MA 02451 (United States); Gangl, Eric [DMPK, AstraZeneca R and D Waltham, MA 02451 (United States); Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Fikes, James; Kinter, Lewis [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States); Valentin, Jean-Pierre [Global Safety Assessment, AstraZeneca R and D Alderley Park, Macclesfield, SK10 4TG (United Kingdom); Bialecki, Russell, E-mail: russell.bialecki@astrazeneca.com [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States)

    2013-05-01

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development.

  5. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    International Nuclear Information System (INIS)

    Chen, Yafei; Brott, David; Luo, Wenli; Gangl, Eric; Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Fikes, James; Kinter, Lewis; Valentin, Jean-Pierre; Bialecki, Russell

    2013-01-01

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development

  6. The pathogen-actin connection: A platform for defense signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Day, B; Henty, Jessica L; Porter, K J; Staiger, Chris J

    2011-09-08

    The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.

  7. Information Management Platform for Data Analytics and Aggregation (IMPALA) System Design Document

    Science.gov (United States)

    Carnell, Andrew; Akinyelu, Akinyele

    2016-01-01

    The System Design document tracks the design activities that are performed to guide the integration, installation, verification, and acceptance testing of the IMPALA Platform. The inputs to the design document are derived from the activities recorded in Tasks 1 through 6 of the Statement of Work (SOW), with the proposed technical solution being the completion of Phase 1-A. With the documentation of the architecture of the IMPALA Platform and the installation steps taken, the SDD will be a living document, capturing the details about capability enhancements and system improvements to the IMPALA Platform to provide users in development of accurate and precise analytical models. The IMPALA Platform infrastructure team, data architecture team, system integration team, security management team, project manager, NASA data scientists and users are the intended audience of this document. The IMPALA Platform is an assembly of commercial-off-the-shelf (COTS) products installed on an Apache-Hadoop platform. User interface details for the COTS products will be sourced from the COTS tools vendor documentation. The SDD is a focused explanation of the inputs, design steps, and projected outcomes of every design activity for the IMPALA Platform through installation and validation.

  8. MathWorks Simulink and C++ integration with the new VLT PLC-based standard development platform for instrument control systems

    Science.gov (United States)

    Kiekebusch, Mario J.; Di Lieto, Nicola; Sandrock, Stefan; Popovic, Dan; Chiozzi, Gianluca

    2014-07-01

    ESO is in the process of implementing a new development platform, based on PLCs, for upcoming VLT control systems (new instruments and refurbishing of existing systems to manage obsolescence issues). In this context, we have evaluated the integration and reuse of existing C++ libraries and Simulink models into the real-time environment of BECKHOFF Embedded PCs using the capabilities of the latest version of TwinCAT software and MathWorks Embedded Coder. While doing so the aim was to minimize the impact of the new platform by adopting fully tested solutions implemented in C++. This allows us to reuse the in house expertise, as well as extending the normal capabilities of the traditional PLC programming environments. We present the progress of this work and its application in two concrete cases: 1) field rotation compensation for instrument tracking devices like derotators, 2) the ESO standard axis controller (ESTAC), a generic model-based controller implemented in Simulink and used for the control of telescope main axes.

  9. Performance Tuning of Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Hongzhan; Austin, Brian M.; De Jong, Wibe A.; Oliker, Leonid; Wright, Nicholas J.; Apra, Edoardo

    2014-10-01

    Attaining performance in the evaluation of two-electron repulsion integrals and constructing the Fock matrix is of considerable importance to the computational chemistry community. Due to its numerical complexity improving the performance behavior across a variety of leading supercomputing platforms is an increasing challenge due to the significant diversity in high-performance computing architectures. In this paper, we present our successful tuning methodology for these important numerical methods on the Cray XE6, the Cray XC30, the IBM BG/Q, as well as the Intel Xeon Phi. Our optimization schemes leverage key architectural features including vectorization and simultaneous multithreading, and results in speedups of up to 2.5x compared with the original implementation.

  10. Future of Hydroinformatics: Towards Open, Integrated and Interactive Online Platforms

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    Hydroinformatics is a domain of science and technology dealing with the management of information in the field of hydrology (IWA, 2011). There is the need for innovative solutions to the challenges towards open information, integration, and communication in the Internet. This presentation provides an overview of the trends and challenges in the future of hydroinformatics, and demonstrates an information system, Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for more

  11. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications

    Science.gov (United States)

    Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R.

    This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.

  12. MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations.

    Science.gov (United States)

    Hospital, Adam; Andrio, Pau; Fenollosa, Carles; Cicin-Sain, Damjan; Orozco, Modesto; Gelpí, Josep Lluís

    2012-05-01

    MDWeb and MDMoby constitute a web-based platform to help access to molecular dynamics (MD) in the standard and high-throughput regime. The platform provides tools to prepare systems from PDB structures mimicking the procedures followed by human experts. It provides inputs and can send simulations for three of the most popular MD packages (Amber, NAMD and Gromacs). Tools for analysis of trajectories, either provided by the user or retrieved from our MoDEL database (http://mmb.pcb.ub.es/MoDEL) are also incorporated. The platform has two ways of access, a set of web-services based on the BioMoby framework (MDMoby), programmatically accessible and a web portal (MDWeb). http://mmb.irbbarcelona.org/MDWeb; additional information and methodology details can be found at the web site ( http://mmb.irbbarcelona.org/MDWeb/help.php)

  13. Cloud Service Platform: Hospital Information eXchange(HIX)

    OpenAIRE

    Fang Zhiyuan; Wei Li

    2013-01-01

    Health Information eXchange (HIX) is a part of Happiness Cloud Service Platform of Happiness Guangdong in Guangdong Province of China based on innovation of cloud-based business model. This article illustrates the hospital health care business services system based on cloud computing. major business functions of HIX includes integrated mobile medical information services, and mobile health information services. Key cloud service platform capabilities include appointment of HIX registration, d...

  14. Sharing Health Big Data for Research - A Design by Use Cases: The INSHARE Platform Approach.

    Science.gov (United States)

    Bouzillé, Guillaume; Westerlynck, Richard; Defossez, Gautier; Bouslimi, Dalel; Bayat, Sahar; Riou, Christine; Busnel, Yann; Le Guillou, Clara; Cauvin, Jean-Michel; Jacquelinet, Christian; Pladys, Patrick; Oger, Emmanuel; Stindel, Eric; Ingrand, Pierre; Coatrieux, Gouenou; Cuggia, Marc

    2017-01-01

    Sharing and exploiting Health Big Data (HBD) allow tackling challenges: data protection/governance taking into account legal, ethical, and deontological aspects enables trust, transparent and win-win relationship between researchers, citizens, and data providers. Lack of interoperability: compartmentalized and syntactically/semantica heterogeneous data. INSHARE project using experimental proof of concept explores how recent technologies overcome such issues. Using 6 data providers, platform is designed via 3 steps to: (1) analyze use cases, needs, and requirements; (2) define data sharing governance, secure access to platform; and (3) define platform specifications. Three use cases - from 5 studies and 11 data sources - were analyzed for platform design. Governance derived from SCANNER model was adapted to data sharing. Platform architecture integrates: data repository and hosting, semantic integration services, data processing, aggregate computing, data quality and integrity monitoring, Id linking, multisource query builder, visualization and data export services, data governance, study management service and security including data watermarking.

  15. A Social Environmental Sensor Network Integrated within a Web GIS Platform

    Directory of Open Access Journals (Sweden)

    Yorghos Voutos

    2017-11-01

    Full Text Available We live in an era where typical measures towards the mitigation of environmental degradation follow the identification and recording of natural parameters closely associated with it. In addition, current scientific knowledge on the one hand may be applied to minimize the environmental impact of anthropogenic activities, whereas informatics on the other, playing a key role in this ecosystem, do offer new ways of implementing complex scientific processes regarding the collection, aggregation and analysis of data concerning environmental parameters. Furthermore, another related aspect to consider is the fact that almost all relevant data recordings are influenced by their given spatial characteristics. Taking all aforementioned inputs into account, managing such a great amount of complex and remote data requires specific digital structures; these structures are typically deployed over the Web on an attempt to capitalize existing open software platforms and modern developments of hardware technology. In this paper we present an effort to provide a technical solution based on sensing devices that are based on the well-known Arduino platform and operate continuously for gathering and transmitting of environmental state information. Controls, user interface and extensions of the proposed project rely on the Android mobile device platform (both from the software and hardware side. Finally, a crucial novel aspect of our work is the fact that all herein gathered data carry spatial information, which is rather fundamental for the successful correlation between pollutants and their place of origin. The latter is implemented by an interactive Web GIS platform operating oversight in situ and on a timeline basis.

  16. LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    Science.gov (United States)

    2011-01-01

    Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350

  17. LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    Directory of Open Access Journals (Sweden)

    Lum Karl

    2011-03-01

    Full Text Available Abstract Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i Submitting specimens requests across collaborating organizations (ii Graphically defining new experimental data types, metadata and wizards for data collection (iii Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v Interacting dynamically with external data sources (vi Tracking study participants and cohorts over time (vii Developing custom interfaces using client libraries (viii Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36

  18. LabKey Server: an open source platform for scientific data integration, analysis and collaboration.

    Science.gov (United States)

    Nelson, Elizabeth K; Piehler, Britt; Eckels, Josh; Rauch, Adam; Bellew, Matthew; Hussey, Peter; Ramsay, Sarah; Nathe, Cory; Lum, Karl; Krouse, Kevin; Stearns, David; Connolly, Brian; Skillman, Tom; Igra, Mark

    2011-03-09

    Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks

  19. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    Science.gov (United States)

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals.

  20. Delivering on Industry Equipment Reliability Goals By Leveraging an Integration Platform and Decision Support Environment

    International Nuclear Information System (INIS)

    Coveney, Maureen K.; Bailey, W. Henry; Parkinson, William

    2004-01-01

    Utilities have invested in many costly enterprise systems - computerized maintenance management systems, document management systems, enterprise grade portals, to name but a few - and often very specialized systems, like data historians, high end diagnostic systems, and other focused and point solutions. From recent industry reports, we now know that the average nuclear power utilizes on average 1900 systems to perform daily work, of which 250 might facilitate the equipment reliability decision-making process. The time has come to leverage the investment in these systems by providing a common platform for integration and decision-making that will further the collective industry aim of enhancing the reliability of our nuclear generation assets to maintain high plant availability and to deliver on plant life extension goals without requiring additional large scale investment in IT infrastructure. (authors)

  1. Intrant ELISA: A Novel Approach to Fabrication of Electrospun Fiber Mat-Assisted Biosensor Platforms and Their Integration within Standard Analytical Well Plates

    Directory of Open Access Journals (Sweden)

    Samira Hosseini

    2016-11-01

    Full Text Available A combination of far-field electrospinning (FFES and free-radical polymerization has been used to fabricate coated electrospun polymer fiber mats as a new type of biosensor platform. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV electrospun fibers were dip-coated with different compositions of poly methyl methacrylate-co-methacrylic acid (poly(MMA-co-MAA. This synergistic approach utilizes large specific surface area of PHBV fibers and co-polymer coatings that feature an optimum concentration of surface carboxyl (–COOH groups. The platform surface morphology, porosity and tunable hydrophobicity enhance biomolecular interactions via plurality of molecular forces. These customized fiber mats have been integrated into a newly designed 96-well plate called an “intrant enzyme-linked immunosorbent assay” or i-ELISA. I-ELISA allows colorimetric sandwich assay to be carried out without any modifications or additional steps in ELISA methodology. By introducing the fiber mats in fabrication of i-ELISA via extensions on the lid, we address some of the limitations of the previous designs while demonstrating an enhanced signal intensity up to 12 times higher than that of conventional assays. With improved sensitivity, specificity and accuracy in the detection of dengue virus, i-ELISA has proven to be a reliable platform for biomolecular recognition. The proposed fiber mat-assisted well plate in this study holds great potential as a universal approach for integration of different types of fiber mats with pre-designed specific properties in order to enhance the detection sensitivity of the assay.

  2. AZTLAN platform: Mexican platform for analysis and design of nuclear reactors

    International Nuclear Information System (INIS)

    Gomez T, A. M.; Puente E, F.; Del Valle G, E.; Francois L, J. L.; Martin del Campo M, C.; Espinosa P, G.

    2014-10-01

    The Aztlan platform Project is a national initiative led by the Instituto Nacional de Investigaciones Nucleares (ININ) which brings together the main public houses of higher studies in Mexico, such as: Instituto Politecnico Nacional, Universidad Nacional Autonoma de Mexico and Universidad Autonoma Metropolitana in an effort to take a significant step toward the calculation autonomy and analysis that seeks to place Mexico in the medium term in a competitive international level on software issues for analysis of nuclear reactors. This project aims to modernize, improve and integrate the neutron, thermal-hydraulic and thermo-mechanical codes, developed in Mexican institutions, within an integrated platform, developed and maintained by Mexican experts to benefit from the same institutions. This project is financed by the mixed fund SENER-CONACYT of Energy Sustain ability, and aims to strengthen substantially to research institutions, such as educational institutions contributing to the formation of highly qualified human resources in the area of analysis and design of nuclear reactors. As innovative part the project includes the creation of a user group, made up of members of the project institutions as well as the Comision Nacional de Seguridad Nuclear y Salvaguardias, Central Nucleoelectrica de Laguna Verde (CNLV), Secretaria de Energia (Mexico) and Karlsruhe Institute of Technology (Germany) among others. This user group will be responsible for using the software and provide feedback to the development equipment in order that progress meets the needs of the regulator and industry; in this case the CNLV. Finally, in order to bridge the gap between similar developments globally, they will make use of the latest super computing technology to speed up calculation times. This work intends to present to national nuclear community the project, so a description of the proposed methodology is given, as well as the goals and objectives to be pursued for the development of the

  3. A Droplet Microfluidic Platform for Automating Genetic Engineering.

    Science.gov (United States)

    Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K

    2016-05-20

    We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.

  4. Technical Research on the Electric Power Big Data Platform of Smart Grid

    OpenAIRE

    Ruiguang MA; Haiyan Wang; Quanming Zhang; Yuan Liang

    2017-01-01

    Through elaborating on the associated relationship among electric power big data, cloud computing and smart grid, this paper put forward general framework of electric power big data platform based on the smart grid. The general framework of the platform is divided into five layers, namely data source layer, data integration and storage layer, data processing and scheduling layer, data analysis layer and application layer. This paper makes in-depth exploration and studies the integrated manage...

  5. Reinventing the Platform Core Through Acquisition

    DEFF Research Database (Denmark)

    Toppenberg, Gustav; Henningsson, Stefan; Eaton, Ben

    2016-01-01

    the acquisition and integration of companies presenting innovative technologies of relevance to the platform core. Using a revelatory case study of Cisco Systems, we develop the explanatory notion of ‘coring acquisition’. In this type of acquisition value is created through the acquisition of companies...

  6. Compact handheld low-cost biosensor platform for remote health monitoring

    Science.gov (United States)

    Hastanin, J.; Lenaerts, C.; Gailly, P.; Jans, H.; Huang, C.; Lagae, L.; Kokkinos, D.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original concept of plasmonic-related instrumentation platform dedicated to diagnostic biosensing tests out of the laboratory. The developed instrumental platform includes both disposable one-use microfluidic affinity biochip and compact optical readout device for biochip monitoring involving mobile Internet devices for data processing and communication. The biochip includes both microfluidic and optical coupling structures formed into a single plastic slab. The microfluidic path of the biochip operates in passive capillary pumping mode. In the proof-of-concept prototype, we address specifically the sensing format involving Surface Plasmon Resonance phenomenon. The biochip is plugged in the readout device without the use of an index matching fluid. An essential advantage of the developed biochip is that its implementation involves conventional hot embossing and thin film deposition process, perfectly suited for mass production of low-cost microfluidic biochip for biochemical applications.

  7. Design optimization and tolerance analysis of a spot-size converter for the taper-assisted vertical integration platform in InP.

    Science.gov (United States)

    Tolstikhin, Valery; Saeidi, Shayan; Dolgaleva, Ksenia

    2018-05-01

    We report on the design optimization and tolerance analysis of a multistep lateral-taper spot-size converter based on indium phosphide (InP), performed using the Monte Carlo method. Being a natural fit to (and a key building block of) the regrowth-free taper-assisted vertical integration platform, such a spot-size converter enables efficient and displacement-tolerant fiber coupling to InP-based photonic integrated circuits at a wavelength of 1.31 μm. An exemplary four-step lateral-taper design featuring 0.35 dB coupling loss at optimal alignment of a standard single-mode fiber; ≥7  μm 1 dB displacement tolerance in any direction in a facet plane; and great stability against manufacturing variances is demonstrated.

  8. Platform for efficient switching between multiple devices in the intensive care unit.

    Science.gov (United States)

    De Backere, F; Vanhove, T; Dejonghe, E; Feys, M; Herinckx, T; Vankelecom, J; Decruyenaere, J; De Turck, F

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Handheld computers, such as tablets and smartphones, are becoming more and more accessible in the clinical care setting and in Intensive Care Units (ICUs). By making the most useful and appropriate data available on multiple devices and facilitate the switching between those devices, staff members can efficiently integrate them in their workflow, allowing for faster and more accurate decisions. This paper addresses the design of a platform for the efficient switching between multiple devices in the ICU. The key functionalities of the platform are the integration of the platform into the workflow of the medical staff and providing tailored and dynamic information at the point of care. The platform is designed based on a 3-tier architecture with a focus on extensibility, scalability and an optimal user experience. After identification to a device using Near Field Communication (NFC), the appropriate medical information will be shown on the selected device. The visualization of the data is adapted to the type of the device. A web-centric approach was used to enable extensibility and portability. A prototype of the platform was thoroughly evaluated. The scalability, performance and user experience were evaluated. Performance tests show that the response time of the system scales linearly with the amount of data. Measurements with up to 20 devices have shown no performance loss due to the concurrent use of multiple devices. The platform provides a scalable and responsive solution to enable the efficient switching between multiple devices. Due to the web-centric approach new devices can easily be integrated. The performance and scalability of the platform have been evaluated and it was shown that the response time and scalability of the platform was within an acceptable range.

  9. Implementation of Online Veterinary Hospital on Cloud Platform.

    Science.gov (United States)

    Chen, Tzer-Shyong; Chen, Tzer-Long; Chung, Yu-Fang; Huang, Yao-Min; Chen, Tao-Chieh; Wang, Huihui; Wei, Wei

    2016-06-01

    Pet markets involve in great commercial possibilities, which boost thriving development of veterinary hospital businesses. The service tends to intensive competition and diversified channel environment. Information technology is integrated for developing the veterinary hospital cloud service platform. The platform contains not only pet medical services but veterinary hospital management and services. In the study, QR Code andcloud technology are applied to establish the veterinary hospital cloud service platform for pet search by labeling a pet's identification with QR Code. This technology can break the restriction on veterinary hospital inspection in different areas and allows veterinary hospitals receiving the medical records and information through the exclusive QR Code for more effective inspection. As an interactive platform, the veterinary hospital cloud service platform allows pet owners gaining the knowledge of pet diseases and healthcare. Moreover, pet owners can enquire and communicate with veterinarians through the platform. Also, veterinary hospitals can periodically send reminders of relevant points and introduce exclusive marketing information with the platform for promoting the service items and establishing individualized marketing. Consequently, veterinary hospitals can increase the profits by information share and create the best solution in such a competitive veterinary market with industry alliance.

  10. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    Science.gov (United States)

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  11. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    Stefan Bosse

    2015-02-01

    Full Text Available Multi-agent systems (MAS can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  12. CLOUD BASED WEB 3D GIS TAIWAN PLATFORM

    Directory of Open Access Journals (Sweden)

    W.-F. Tsai

    2012-09-01

    Full Text Available This article presents the status of the web 3D GIS platform, which has been developed in the National Applied Research Laboratories. The purpose is to develop a global earth observation 3D GIS platform for applications to disaster monitoring and assessment in Taiwan. For quick response to preliminary and detailed assessment after a natural disaster occurs, the web 3D GIS platform is useful to access, transfer, integrate, display and analyze the multi-scale huge data following the international OGC standard. The framework of cloud service for data warehousing management and efficiency enhancement using VMWare is illustrated in this article.

  13. IMPACT_S: integrated multiprogram platform to analyze and combine tests of selection.

    Directory of Open Access Journals (Sweden)

    Emanuel Maldonado

    Full Text Available Among the major goals of research in evolutionary biology are the identification of genes targeted by natural selection and understanding how various regimes of evolution affect the fitness of an organism. In particular, adaptive evolution enables organisms to adapt to changing ecological factors such as diet, temperature, habitat, predatory pressures and prey abundance. An integrative approach is crucial for the identification of non-synonymous mutations that introduce radical changes in protein biochemistry and thus in turn influence the structure and function of proteins. Performing such analyses manually is often a time-consuming process, due to the large number of statistical files generated from multiple approaches, especially when assessing numerous taxa and/or large datasets. We present IMPACT_S, an easy-to-use Graphical User Interface (GUI software, which rapidly and effectively integrates, filters and combines results from three widely used programs for assessing the influence of selection: Codeml (PAML package, Datamonkey and TreeSAAP. It enables the identification and tabulation of sites detected by these programs as evolving under the influence of positive, neutral and/or negative selection in protein-coding genes. IMPACT_S further facilitates the automatic mapping of these sites onto the three-dimensional structures of proteins. Other useful tools incorporated in IMPACT_S include Jmol, Archaeopteryx, Gnuplot, PhyML, a built-in Swiss-Model interface and a PDB downloader. The relevance and functionality of IMPACT_S is shown through a case study on the toxicoferan-reptilian Cysteine-rich Secretory Proteins (CRiSPs. IMPACT_S is a platform-independent software released under GPLv3 license, freely available online from http://impact-s.sourceforge.net.

  14. IMPACT_S: integrated multiprogram platform to analyze and combine tests of selection.

    Science.gov (United States)

    Maldonado, Emanuel; Sunagar, Kartik; Almeida, Daniela; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    Among the major goals of research in evolutionary biology are the identification of genes targeted by natural selection and understanding how various regimes of evolution affect the fitness of an organism. In particular, adaptive evolution enables organisms to adapt to changing ecological factors such as diet, temperature, habitat, predatory pressures and prey abundance. An integrative approach is crucial for the identification of non-synonymous mutations that introduce radical changes in protein biochemistry and thus in turn influence the structure and function of proteins. Performing such analyses manually is often a time-consuming process, due to the large number of statistical files generated from multiple approaches, especially when assessing numerous taxa and/or large datasets. We present IMPACT_S, an easy-to-use Graphical User Interface (GUI) software, which rapidly and effectively integrates, filters and combines results from three widely used programs for assessing the influence of selection: Codeml (PAML package), Datamonkey and TreeSAAP. It enables the identification and tabulation of sites detected by these programs as evolving under the influence of positive, neutral and/or negative selection in protein-coding genes. IMPACT_S further facilitates the automatic mapping of these sites onto the three-dimensional structures of proteins. Other useful tools incorporated in IMPACT_S include Jmol, Archaeopteryx, Gnuplot, PhyML, a built-in Swiss-Model interface and a PDB downloader. The relevance and functionality of IMPACT_S is shown through a case study on the toxicoferan-reptilian Cysteine-rich Secretory Proteins (CRiSPs). IMPACT_S is a platform-independent software released under GPLv3 license, freely available online from http://impact-s.sourceforge.net.

  15. Experimental Peptide Identification Repository (EPIR): an integrated peptide-centric platform for validation and mining of tandem mass spectrometry data

    DEFF Research Database (Denmark)

    Kristensen, Dan Bach; Brønd, Jan Christian; Nielsen, Peter Aagaard

    2004-01-01

    LC MS/MS has become an established technology in proteomic studies, and with the maturation of the technology the bottleneck has shifted from data generation to data validation and mining. To address this bottleneck we developed Experimental Peptide Identification Repository (EPIR), which...... is an integrated software platform for storage, validation, and mining of LC MS/MS-derived peptide evidence. EPIR is a cumulative data repository where precursor ions are linked to peptide assignments and protein associations returned by a search engine (e.g. Mascot, Sequest, or PepSea). Any number of datasets can...

  16. ALICE Connex : Mobile Volunteer Computing and Edutainment Platform

    CERN Document Server

    Chalumporn, Gantaphon

    2016-01-01

    Mobile devices are very powerful and trend to be developed. They have functions that are used in everyday life. One of their main tasks is to be an entertainment devices or gaming platform. A lot of technologies are now accepted and adopted to improve the potential of education. Edutainment is a combination of entertainment and education media together to make use of both benefits. In this work, we introduce a design of edutainment platform which is a part of mobile volunteer computing and edutainment platform called ‘ALICE Connex’ for ALICE at CERN. The edutainment platform focuses to deliver enjoyment and education, while promotes ALICE and Volunteer Computing platform to general public. The design in this work describes the functionality to build an effective edutainment with real-time multiplayer interaction on round-based gameplay, while integrates seamless edutainment with basic particle physic content though game mechanism and items design. For the assessment method we will observe the enjoyment o...

  17. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    Science.gov (United States)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  18. A Novel Optical Sensor Platform Designed for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Yang, Shuo; Zhou, Bochao; Sun, Tong; Grattan, Kenneth T V

    2013-01-01

    This paper presents a novel design of an optical sensor platform, enabling effective integration of a number of optical fibre ('wired') sensors with wireless sensor networks (WSNs). In this work, a fibre Bragg grating-based temperature sensor with low power consumption is specially designed as a sensing module and integrated successfully into a WSN, making full use of the advantages arising from both the advanced optical sensor designs and the powerful network functionalities resident in WSNs. The platform is expected to make an important impact on many applications, where either the conventional optical sensor designs or WSNs alone cannot meet the requirements.

  19. Conservation Laws in Biochemical Reaction Networks

    DEFF Research Database (Denmark)

    Mahdi, Adam; Ferragut, Antoni; Valls, Claudia

    2017-01-01

    We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...

  20. Enhancing Trusted Cloud Computing Platform for Infrastructure as a Service

    Directory of Open Access Journals (Sweden)

    KIM, H.

    2017-02-01

    Full Text Available The characteristics of cloud computing including on-demand self-service, resource pooling, and rapid elasticity have made it grow in popularity. However, security concerns still obstruct widespread adoption of cloud computing in the industry. Especially, security risks related to virtual machine make cloud users worry about exposure of their private data in IaaS environment. In this paper, we propose an enhanced trusted cloud computing platform to provide confidentiality and integrity of the user's data and computation. The presented platform provides secure and efficient virtual machine management protocols not only to protect against eavesdropping and tampering during transfer but also to guarantee the virtual machine is hosted only on the trusted cloud nodes against inside attackers. The protocols utilize both symmetric key operations and public key operations together with efficient node authentication model, hence both the computational cost for cryptographic operations and the communication steps are significantly reduced. As a result, the simulation shows the performance of the proposed platform is approximately doubled compared to the previous platforms. The proposed platform eliminates cloud users' worry above by providing confidentiality and integrity of their private data with better performance, and thus it contributes to wider industry adoption of cloud computing.

  1. Miniaturized Quantum Semiconductor Surface Plasmon Resonance Platform for Detection of Biological Molecules

    Directory of Open Access Journals (Sweden)

    Jan J. Dubowski

    2013-06-01

    Full Text Available The concept of a portable, inexpensive and semi-automated biosensing platform, or lab-on-a-chip, is a vision shared by many researchers and venture industries. Under this scope, we have investigated the application of optical emission from quantum well (QW microstructures for monitoring surface phenomena on gold layers remaining in proximity (<300 nm with QW microstructures. The uncollimated QW radiation excites surface plasmons (SP and through the surface plasmon resonance (SPR effect allows for detection of small perturbation in the density surface adsorbates. The SPR technology is already commonly used for biochemical characterization in pharmaceutical industries, but the reduction of the distance between the SP exciting source and the biosensing platform to a few hundreds of nanometers is an innovative approach enabling us to achieve an ultimate miniaturization of the device. We evaluate the signal quality of this nanophotonic QW-SPR device using hyperspectral-imaging technology, and we compare its performance with that of a standard prism-based commercial system. Two standard biochemical agents are employed for this characterization study: bovine serum albumin and inactivated influenza A virus. With an innovative conical method of SPR data collection, we demonstrate that individually collected SPR scan, each in less than 2.2 s, yield a resolution of the detection at 1.5 × 10−6 RIU.

  2. Enterprise Application Integration Using Java Technologies

    Directory of Open Access Journals (Sweden)

    Alexandru BARBULESCU

    2006-01-01

    Full Text Available The current article points out some of the tasks and challenges companies must face in order to integrate their computerized systems and applications and then to place them on the Web. Also, the article shows how the Java 2 Enterprise Edition Platform and architecture helps the Web integration of applications. By offering standardized integration contracts, J2EE Platform allows application servers to play a key role in the process of Web integration of the applications.

  3. Optical Beam Deflection Based AFM with Integrated Hardware and Software Platform for an Undergraduate Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Siu Hong Loh

    2017-02-01

    Full Text Available Atomic force microscopy (AFM has been used extensively in nanoscience research since its invention. Recently, many teaching laboratories in colleges, undergraduate institutions, and even high schools incorporate AFM as an effective teaching tool for nanoscience education. This paper presents an optical beam deflection (OBD based atomic force microscope, designed specifically for the undergraduate engineering laboratory as a teaching instrument. An electronic module for signal conditioning was built with components that are commonly available in an undergraduate electronic laboratory. In addition to off-the-shelf mechanical parts and optics, the design of custom-built mechanical parts waskept as simple as possible. Hence, the overall cost for the setup is greatly reduced. The AFM controller was developed using National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS, an integrated hardware and software platform which can be programmed in LabVIEW. A simple yet effective control algorithm for scanning and feedback control was developed. Despite the use of an educational platform and low-cost components from the undergraduate laboratory, the developed AFM is capable of performing imaging in constant-force mode with submicron resolution and at reasonable scanning speed (approximately 18 min per image. Therefore, the AFM is suitable to be used as an educational tool for nanoscience. Moreover, the construction of the system can be a valuable educational experience for electronic and mechanical engineering students.

  4. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Leekitcharoenphon, Pimlapas; Aarestrup, Frank Møller

    2014-01-01

    technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial...

  5. Service platform for rapid development and deployment of context-Aware, mobile applications

    NARCIS (Netherlands)

    Pokraev, S.; Koolwaaij, Johan; van Setten, Mark; Broens, Tom; Dockhorn Costa, Patrícia; Wibbels, Martin; Ebben, Peter; Strating, Patrick

    2005-01-01

    In this paper we present a web services-based platform that facilitates and speeds up the development and deployment of context-aware, integrated mobile speech and data applications. The platform is capable of handling different types of context and offers sophisticated personalization mechanisms.

  6. Vibration Isolation and Trajectory Following Control of a Cable Suspended Stewart Platform

    Directory of Open Access Journals (Sweden)

    Xuechao Duan

    2016-10-01

    Full Text Available To achieve high-quality vibration isolation and trajectory following control of a cable driven parallel robot based Stewart platform in the five hundred meter aperture spherical radio telescope (FAST design, the integrated dynamic model of the Stewart platform including the electric cylinder is established in this paper, the globally feedback linearization of the dynamic model is implemented based on the control law partitioning approach. To overcome the disadvantages of the external disturbance on the base and unmodeled flexibility of the mechanism, a PID (Proportional-Derivative-Integral controller with base acceleration feedforward is designed in the operational space of the Stewart platform. Experiments of the vibration isolation and trajectory following control of the cable suspended Stewart platform with presence of the base disturbance is carried out. The experimental results show that the presented control scheme has the advantage of stable dynamics, high accuracy and strong robustness.

  7. An Experimental Study of an Offshore Platform

    DEFF Research Database (Denmark)

    Brincker, Rune; Asmussen, John Christian; Andersen, Palle

    of the multi-pile offshore platform is investigated by using a vibration based damage detection scheme. Changes in structural integrity are assumed to be reflected in the modal parameters estimated from only output data using an Auto-Regressive Moving Average (ARMA) model. Before the calibration of the ARMA...... model the quality of the measured data have been investigated. The estimated modal parameters and their corresponding variances are used as input to a probability based damage indicator. This indicator indicates, that since the construction of the platform, minor structural changes have taken place....

  8. Professional Cross-Platform Mobile Development in C#

    CERN Document Server

    Olson, Scott; Horgen, Ben; Goers, Kenny

    2012-01-01

    Develop mobile enterprise applications in a language you already know! With employees, rather than the IT department, now driving the decision of which devices to use on the job, many companies are scrambling to integrate enterprise applications. Fortunately, enterprise developers can now create apps for all major mobile devices using C#/.NET and Mono, languages most already know. A team of authors draws on their vast experiences to teach you how to create cross-platform mobile applications, while delivering the same functionality to PC's, laptops and the web from a single technology platform

  9. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease.

    Science.gov (United States)

    Zhao, Ying-Yong; Miao, Hua; Cheng, Xian-Long; Wei, Feng

    2015-10-05

    The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-11-01

    Full Text Available Abstract Background Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time series measurements of molecular concentrations is an important step for building predictive models of cellular function. Inference techniques currently available in the literature may produce rate constant values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore, development of a thermodynamically consistent approach for estimating the rate constants of a biochemical reaction system is highly desirable. Results We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our method employs an appropriately designed prior probability density function that effectively integrates fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into account experimental strategies for collecting informative observations of molecular concentrations through perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides thermodynamically feasible estimates of the rate constant values and computes appropriate measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis techniques discussed in this paper, is available free of charge at http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.html. Conclusions Our approach provides an attractive statistical methodology for

  11. The development and implementation of MOSAIQ Integration Platform (MIP) based on the radiotherapy workflow

    Science.gov (United States)

    Yang, Xin; He, Zhen-yu; Jiang, Xiao-bo; Lin, Mao-sheng; Zhong, Ning-shan; Hu, Jiang; Qi, Zhen-yu; Bao, Yong; Li, Qiao-qiao; Li, Bao-yue; Hu, Lian-ying; Lin, Cheng-guang; Gao, Yuan-hong; Liu, Hui; Huang, Xiao-yan; Deng, Xiao-wu; Xia, Yun-fei; Liu, Meng-zhong; Sun, Ying

    2017-03-01

    To meet the special demands in China and the particular needs for the radiotherapy department, a MOSAIQ Integration Platform CHN (MIP) based on the workflow of radiation therapy (RT) has been developed, as a supplement system to the Elekta MOSAIQ. The MIP adopts C/S (client-server) structure mode, and its database is based on the Treatment Planning System (TPS) and MOSAIQ SQL Server 2008, running on the hospital local network. Five network servers, as a core hardware, supply data storage and network service based on the cloud services. The core software, using C# programming language, is developed based on Microsoft Visual Studio Platform. The MIP server could offer network service, including entry, query, statistics and print information for about 200 workstations at the same time. The MIP was implemented in the past one and a half years, and some practical patient-oriented functions were developed. And now the MIP is almost covering the whole workflow of radiation therapy. There are 15 function modules, such as: Notice, Appointment, Billing, Document Management (application/execution), System Management, and so on. By June of 2016, recorded data in the MIP are as following: 13546 patients, 13533 plan application, 15475 RT records, 14656 RT summaries, 567048 billing records and 506612 workload records, etc. The MIP based on the RT workflow has been successfully developed and clinically implemented with real-time performance, data security, stable operation. And it is demonstrated to be user-friendly and is proven to significantly improve the efficiency of the department. It is a key to facilitate the information sharing and department management. More functions can be added or modified for further enhancement its potentials in research and clinical practice.

  12. Development of fast wireless detection system for fixed offshore platform

    Science.gov (United States)

    Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping

    2011-04-01

    Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high

  13. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR.

    Science.gov (United States)

    Jakočiūnas, Tadas; Jensen, Emil D; Jensen, Michael K; Keasling, Jay D

    2018-01-01

    Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.

  14. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    Science.gov (United States)

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  15. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  16. Bringing eCare platforms to the market.

    Science.gov (United States)

    Vannieuwenborg, Frederic; Van der Auwermeulen, Thomas; Van Ooteghem, Jan; Jacobs, An; Verbugge, Sofie; Colle, Didier

    2017-09-01

    Due to changes in the demographic situation of most Western European countries, interest in Information and Communication Technologies (ICT)-supported care services is growing fast. eCare services that foster better care information exchange, social involvement, lifestyle monitoring services, etc., offered via ICT platforms, integrated in the homes of the elderly are believed to be cost-effective. Additionally, they could lead to an increased quality of life of both care receiver and (in)formal caregiver. Currently, adoption and integration of these eCare platforms (eCPs) is slowed down by several barriers such as unclear added value, a lack of regulations, or lack of sustainable financial models. In this work, the added value of eCPs is identified for the several involved key actors such as the care receiver, the (in)formal care providers, and the home care organizations. In a second step, several go-to-market strategies are formulated. Because the gap between the current way of providing home care and providing home care supported by a fully integrated eCP seems too big to bridge in one effort, a migration path is provided for stepwise integration and adoption of eCPs in the current way of home care provisioning.

  17. Lessons Learned from Implementing National Nuclear Safety Knowledge Platforms

    International Nuclear Information System (INIS)

    Simo, A.

    2016-01-01

    The Integrated Nuclear Security Advisory Services (INSServ) took place in Cameroon from 21st to 25th April 2014 and the Integrated Regulatory Review Service (IRRS) from 12th to 21st October 2014. This was after the government requested the Director General of International Atomic Energy Agency (IAEA) through an official correspondence on 11th June 2013, for these missions. The main objective was to further improve the effectiveness of the Cameroon governmental, legal and regulatory framework for safety and security. Revision of the legal and regulatory framework so that all international safety and security standards are addressed in laws and statutes have been done with documents downloaded from Nuclear portal sites found in GNSSN. Establishment and implementation of integrated management systems by NRPA is being done with documentation under the National Nuclear Portal with lessons learned from the IAEA review missions. The regulatory documents have been uploaded on the platform and can be accessed through FNRBA and NRPA website (www.anrp.cm). UN organizations implementing projects in Cameroon are also linked to the platform. The action plans and progress reports for IAEA/AFRA projects are also available. Moreover, NRPA regulatory activities and licensing sources are available on this platform.

  18. A contact-force regulated photoplethysmography (PPG) platform

    Science.gov (United States)

    Sim, Jai Kyoung; Ahn, Bongyoung; Doh, Il

    2018-04-01

    A photoplethysmography (PPG) platform integrated with a miniaturized force-regulator is proposed in this study. Because a thermo-pneumatic type regulator maintains a consistent contact-force between the PPG probe and the measuring site, a consistent and stable PPG signal can be obtained. We designed and fabricated a watch-type PPG platform with an overall size of 35 mm × 19 mm. In the PPG measurement on the radial artery wrist while posture of the wrist is changed to extension, neutral, or flexion, regulation of the contact-force provides consistent PPG measurements for which the variations in the PPG amplitude (PPGA) was 7.2 %. The proposed PPG platform can be applied to biosignal measurements in various fields such as PPG-based ANS monitoring to estimate nociception, sleep apnea syndrome, and psychological stress.

  19. A contact-force regulated photoplethysmography (PPG platform

    Directory of Open Access Journals (Sweden)

    Jai Kyoung Sim

    2018-04-01

    Full Text Available A photoplethysmography (PPG platform integrated with a miniaturized force-regulator is proposed in this study. Because a thermo-pneumatic type regulator maintains a consistent contact-force between the PPG probe and the measuring site, a consistent and stable PPG signal can be obtained. We designed and fabricated a watch-type PPG platform with an overall size of 35 mm × 19 mm. In the PPG measurement on the radial artery wrist while posture of the wrist is changed to extension, neutral, or flexion, regulation of the contact-force provides consistent PPG measurements for which the variations in the PPG amplitude (PPGA was 7.2 %. The proposed PPG platform can be applied to biosignal measurements in various fields such as PPG-based ANS monitoring to estimate nociception, sleep apnea syndrome, and psychological stress.

  20. Co-simulation Platform for Train-to-Ground communications

    DEFF Research Database (Denmark)

    Yan, Ying; Bouaziz, Maha; Kassab, Mohamed

    The project SAFE4RAIL (SAFE architecture for Robust distributed Application Integration in roLling stock) from the Shift2Rail Joint Undertaking will provide a cosimulation platform based on hardware/software co-simulation. The platform will be used for Train-to-Ground (T2G) test environments...... in the context of the validation of the new wireless Train Control Management System (TCMS) transmission over LTE technologies in order to evaluate performances with realistic services and under various railway traffic conditions....

  1. An Integrative Clinical Database and Diagnostics Platform for Biomarker Identification and Analysis in Ion Mobility Spectra of Human Exhaled Air

    Directory of Open Access Journals (Sweden)

    Schneider Till

    2013-06-01

    Full Text Available Over the last decade the evaluation of odors and vapors in human breath has gained more and more attention, particularly in the diagnostics of pulmonary diseases. Ion mobility spectrometry coupled with multi-capillary columns (MCC/IMS, is a well known technology for detecting volatile organic compounds (VOCs in air. It is a comparatively inexpensive, non-invasive, high-throughput method, which is able to handle the moisture that comes with human exhaled air, and allows for characterizing of VOCs in very low concentrations. To identify discriminating compounds as biomarkers, it is necessary to have a clear understanding of the detailed composition of human breath. Therefore, in addition to the clinical studies, there is a need for a flexible and comprehensive centralized data repository, which is capable of gathering all kinds of related information. Moreover, there is a demand for automated data integration and semi-automated data analysis, in particular with regard to the rapid data accumulation, emerging from the high-throughput nature of the MCC/IMS technology. Here, we present a comprehensive database application and analysis platform, which combines metabolic maps with heterogeneous biomedical data in a well-structured manner. The design of the database is based on a hybrid of the entity-attribute- value (EAV model and the EAV-CR, which incorporates the concepts of classes and relationships. Additionally it offers an intuitive user interface that provides easy and quick access to the platform’s functionality: automated data integration and integrity validation, versioning and roll-back strategy, data retrieval as well as semi-automatic data mining and machine learning capabilities. The platform will support MCC/IMS-based biomarker identification and validation. The software, schemata, data sets and further information is publicly available at http://imsdb.mpi-inf.mpg.de.

  2. Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform

    Science.gov (United States)

    Roche, Rigoberto J.; Shalkhauser, Mary Jo; Hickey, Joseph P.; Briones, Janette C.

    2016-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The NASA Glenn Research Center (GRC) team made a software defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development onto an STRS compliant platform to support future space communication systems for advanced exploration missions. The use of validated STRS compliant applications provides tested code with extensive documentation to potentially reduce risk, cost and e ort in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, and the test waveform and wrapper development e orts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation flight system SDRs for advanced exploration missions.

  3. Human health impacts for renewable energy scenarios from the EnerGEO Platform of Integrated Assessment (PIA)

    International Nuclear Information System (INIS)

    Lefevre, Mireille; Gschwind, Benoit; Blanc, Isabelle; Ranchin, Thierry; Cofala, Janusz; Fuss, Sabine

    2013-01-01

    This article reports impact results from running the EnerGEO Platform of Integrated Assessment (PIA) related to human health for different scenarios in Europe. The scenarios were prepared within the EnerGEO project. The idea of this European project is to determine how low carbon scenarios, and in particular scenarios with a high share of renewable energy, affect concentrations of air pollutants and as a consequence affect human health. PM 2.5 concentrations were estimated with the IIASA Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model on a time horizon up to the year 2050 for different scenarios. We analyse here the estimation of the Loss of Life Expectancy due to PM 2.5 concentrations for the Baseline scenario taken as a reference and the Maximum renewable power scenario. (orig.)

  4. Opening the SMS platform to users : Deliverable D7.2 - RISIS project

    NARCIS (Netherlands)

    van den Besselaar, P.A.A.; Khalili, A.; de Graaf, K.A.; Idrissou, O.A.K.; van Harmelen, Frank

    2017-01-01

    In this deliverable we describe the SMS (Semantically Mapping Science) data integration platform (http://sms.risis.eu), the technical core within the RISIS data infrastructure for Science, Technology and Innovation Studies (STI). The aim of the platform is to produce richer data to be used in social

  5. Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing

    International Nuclear Information System (INIS)

    Cho, Eun Jeong; Bright, Frank V.

    2002-01-01

    We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O 2 -responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance

  6. High resolution data from everyday life: coproducing a technically robust and engaging sensing platform

    Directory of Open Access Journals (Sweden)

    Matthew Machin

    2017-04-01

    We found it was feasible to integrate requirements from both researchers and patients when developing a sensing platform for dementia research. By seeking feedback from both user groups, we were better able to attend to device linkage requirements, platform functionality and acceptability, integrating these within development and procurement processes. Furthermore, we identified aspects of research setup and design that could support sustained engagement from participants, thereby improving data completeness and quality.

  7. A Semantic Big Data Platform for Integrating Heterogeneous Wearable Data in Healthcare.

    Science.gov (United States)

    Mezghani, Emna; Exposito, Ernesto; Drira, Khalil; Da Silveira, Marcos; Pruski, Cédric

    2015-12-01

    Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients' health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the "Knowledge as a Service" approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.

  8. Design for game based learning platforms

    DEFF Research Database (Denmark)

    Sørensen, Birgitte Holm; Meyer, Bente

    2010-01-01

    This paper focuses on the challenges related to the design of game based learning platforms for formal learning contexts that are inspired by the pupil's leisure time related use of web 2.0. The paper is based on the project Serious Games on a Global Market Place (2007-2011) founded by the Danish...... of web 2.0 and integrates theories of learning, didactics, games, play, communication, multimodality and different pedagogical approaches. In relation to the introduced model the teacher role is discussed.......This paper focuses on the challenges related to the design of game based learning platforms for formal learning contexts that are inspired by the pupil's leisure time related use of web 2.0. The paper is based on the project Serious Games on a Global Market Place (2007-2011) founded by the Danish...... Council for Strategic Research, in which an online game-based platform for English as a foreign language in primary school is studied. The paper presents a model for designing for game based learning platforms. This design is based on cultural and ethnographic based research on children's leisure time use...

  9. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki

    2018-01-01

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as “sensor platform LSI”) for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz. PMID:29342923

  10. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors

    Directory of Open Access Journals (Sweden)

    Chenzhong Shao

    2018-01-01

    Full Text Available For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS Large-Scale Integration (LSI (referred to as “sensor platform LSI” for bus-networked Micro-Electro-Mechanical-Systems (MEMS-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI was 73.66 Hz.

  11. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    Bruchet, Anthony; Mariet, Clarisse; Taniga, Velan; Descroix, Stephanie; Malaquin, Laurent; Goutelard, Florence

    2013-01-01

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  12. Advances in product family and product platform design methods & applications

    CERN Document Server

    Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja

    2014-01-01

    Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...

  13. Google analytics integrations

    CERN Document Server

    Waisberg, Daniel

    2015-01-01

    A roadmap for turning Google Analytics into a centralized marketing analysis platform With Google Analytics Integrations, expert author Daniel Waisberg shows you how to gain a more meaningful, complete view of customers that can drive growth opportunities. This in-depth guide shows not only how to use Google Analytics, but also how to turn this powerful data collection and analysis tool into a central marketing analysis platform for your company. Taking a hands-on approach, this resource explores the integration and analysis of a host of common data sources, including Google AdWords, AdSens

  14. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications

    Science.gov (United States)

    Micó, Gloria; Pastor, Daniel; Pérez, Daniel; Doménech, José David; Fernández, Juan; Baños, Rocío; Alemany, Rubén; Sánchez, Ana M.; Cirera, Josep M.; Mas, Roser

    2017-01-01

    Silicon nitride photonics is on the rise owing to the broadband nature of the material, allowing applications of biophotonics, tele/datacom, optical signal processing and sensing, from visible, through near to mid-infrared wavelengths. In this paper, a review of the state of the art of silicon nitride strip waveguide platforms is provided, alongside the experimental results on the development of a versatile 300 nm guiding film height silicon nitride platform. PMID:28895906

  15. Can the Integration of a PLE in an E-Portfolio Platform Improve Generic Competences?

    Science.gov (United States)

    Galván-Fernández, Cristina; Rubio-Hurtado, María José; Martínez-Olmo, Francesc; Rodríguez-Illera, José Luis

    2017-01-01

    The study analyzes the improvement in generic competences through e-portfolio/PLE platform and didactic planning. The new version of the platform, Digital Folder, contains utilities for students and teachers and some PLE components that help the learning process through e-portfolios. Didactic planning is compared for students from the University…

  16. High throughput miniature drug-screening platform using bioprinting technology

    International Nuclear Information System (INIS)

    Rodríguez-Dévora, Jorge I; Reyna, Daniel; Xu Tao; Zhang Bimeng; Shi Zhidong

    2012-01-01

    In the pharmaceutical industry, new drugs are tested to find appropriate compounds for therapeutic purposes for contemporary diseases. Unfortunately, novel compounds emerge at expensive prices and current target evaluation processes have limited throughput, thus leading to an increase of cost and time for drug development. This work shows the development of the novel inkjet-based deposition method for assembling a miniature drug-screening platform, which can realistically and inexpensively evaluate biochemical reactions in a picoliter-scale volume at a high speed rate. As proof of concept, applying a modified Hewlett Packard model 5360 compact disc printer, green fluorescent protein expressing Escherichia coli cells along with alginate gel solution have been arrayed on a coverslip chip under a repeatable volume of 180% ± 26% picoliters per droplet; subsequently, different antibiotic droplets were patterned on the spots of cells to evaluate the inhibition of bacteria for antibiotic screening. The proposed platform was compared to the current screening process, validating its effectiveness. The viability and basic function of the printed cells were evaluated, resulting in cell viability above 98% and insignificant or no DNA damage to human kidney cells transfected. Based on the reduction of investment and compound volume used by this platform, this technique has the potential to improve the actual drug discovery process at its target evaluation stage. (paper)

  17. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    Science.gov (United States)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  18. Reference framework for integrating web resources as e-learning services in .LRN

    Directory of Open Access Journals (Sweden)

    Fabinton Sotelo Gómez

    2015-11-01

    Full Text Available The learning management platforms (LMS as Dot LRN (.LRN have been widely disseminated and used as a teaching tool. However, despite its great potential, most of these platforms do not allow easy integration of common services on the Web. Integration of external resources in LMS is critical to extend the quantity and quality of educational services LMS. This article presents a set of criteria and architectural guidelines for the integration of Web resources for e-learning in the LRN platform. To this end, three steps are performed: first; the possible integration technologies to be used are described, second; the Web resources that provide educational services and can be integrated into LMS platforms are analyzed, finally; some architectural aspects of the relevant platform are identified for integration. The main contributions of this paper are: a characterization of Web resources and educational services available today on the Web; and the definition of criteria and guidelines for the integration of Web resources to .LRN.

  19. Security Framework for the Web of IoT Platforms

    OpenAIRE

    Atarah, Ivan Akoribila

    2017-01-01

    Connected devices of IoT platforms are known to produce, process and exchange vast amounts of data, most of it sensitive or personal, that need to be protected. However, achieving minimal data protection requirements such as confidentiality, integrity, availability and non-repudiation in IoT platforms is a non-trivial issue. For one reason, the trillions of interacting devices provide larger attack surfaces. Secondly, high levels of personal and private data sharing in this ubiquitous and het...

  20. A miniaturized and integrated gel post platform for multiparameter PCR detection of herpes simplex viruses from raw genital swabs.

    Science.gov (United States)

    Manage, Dammika P; Lauzon, Jana; Atrazhev, Alexey; Morrissey, Yuen C; Edwards, Ann L; Stickel, Alexander J; Crabtree, H John; Pabbaraju, Kanti; Zahariadis, George; Yanow, Stephanie K; Pilarski, Linda M

    2012-05-07

    Herpes simplex virus (HSV) is one of the most prevalent viruses, with acute and recurrent infections in humans. The current gold standard for the diagnosis of HSV is viral culture which takes 2-14 days and has low sensitivity. In contrast, DNA amplification by polymerase chain reaction (PCR) can be performed within 1-2 h. We here describe a multiparameter PCR assay to simultaneously detect HSV-1 and HSV-2 DNA templates, together with integrated positive and negative controls, with product detection by melting curve analysis (MCA), in an array of semi-solid polyacrylamide gel posts. Each gel post is 0.67 μL in volume, and polymerized with all the components required for PCR. Both PCR and MCA can currently be performed in one hour and 20 min. Unprocessed genital swabs collected in universal transport medium were directly added to the reagents before or after polymerization, diffusing from atop the gel posts. The gel post platform detects HSV templates in as little as 2.5 nL of raw sample. In this study, 45 genital swab specimens were tested blindly as a preliminary validation of this platform. The concordance of PCR on gel posts with conventional PCR was 91%. The primer sequestration method introduced here (wherein different primers are placed in different sets of posts) enables the simultaneous detection of multiple pathogens for the same sample, together with positive and negative controls, on a single chip. This platform accepts unprocessed samples and is readily adaptable to detection of multiple different pathogens or biomarkers for point-of-care diagnostics.

  1. Quantitative photoacoustic integrating sphere (QPAIS platform for absorption coefficient and Grüneisen parameter measurements: Demonstration with human blood

    Directory of Open Access Journals (Sweden)

    Yolanda Villanueva-Palero

    2017-06-01

    Full Text Available Quantitative photoacoustic imaging in biomedicine relies on accurate measurements of relevant material properties of target absorbers. Here, we present a method for simultaneous measurements of the absorption coefficient and Grüneisen parameter of small volume of liquid scattering and absorbing media using a coupled-integrating sphere system which we refer to as quantitative photoacoustic integrating sphere (QPAIS platform. The derived equations do not require absolute magnitudes of optical energy and pressure values, only calibration of the setup using aqueous ink dilutions is necessary. As a demonstration, measurements with blood samples from various human donors are done at room and body temperatures using an incubator. Measured absorption coefficient values are consistent with known oxygen saturation dependence of blood absorption at 750 nm, whereas measured Grüneisen parameter values indicate variability among five different donors. An increasing Grüneisen parameter value with both hematocrit and temperature is observed. These observations are consistent with those reported in literature.

  2. Achieving sustainable ground-water management by using GIS-integrated simulation tools: the EU H2020 FREEWAT platform

    Science.gov (United States)

    Rossetto, Rudy; De Filippis, Giovanna; Borsi, Iacopo; Foglia, Laura; Toegl, Anja; Cannata, Massimiliano; Neumann, Jakob; Vazquez-Sune, Enric; Criollo, Rotman

    2017-04-01

    In order to achieve sustainable and participated ground-water management, innovative software built on the integration of numerical models within GIS software is a perfect candidate to provide a full characterization of quantitative and qualitative aspects of ground- and surface-water resources maintaining the time and spatial dimension. The EU H2020 FREEWAT project (FREE and open source software tools for WATer resource management; Rossetto et al., 2015) aims at simplifying the application of EU water-related Directives through an open-source and public-domain, GIS-integrated simulation platform for planning and management of ground- and surface-water resources. The FREEWAT platform allows to simulate the whole hydrological cycle, coupling the power of GIS geo-processing and post-processing tools in spatial data analysis with that of process-based simulation models. This results in a modeling environment where large spatial datasets can be stored, managed and visualized and where several simulation codes (mainly belonging to the USGS MODFLOW family) are integrated to simulate multiple hydrological, hydrochemical or economic processes. So far, the FREEWAT platform is a large plugin for the QGIS GIS desktop software and it integrates the following capabilities: • the AkvaGIS module allows to produce plots and statistics for the analysis and interpretation of hydrochemical and hydrogeological data; • the Observation Analysis Tool, to facilitate the import, analysis and visualization of time-series data and the use of these data to support model construction and calibration; • groundwater flow simulation in the saturated and unsaturated zones may be simulated using MODFLOW-2005 (Harbaugh, 2005); • multi-species advective-dispersive transport in the saturated zone can be simulated using MT3DMS (Zheng & Wang, 1999); the possibility to simulate viscosity- and density-dependent flows is further accomplished through SEAWAT (Langevin et al., 2007); • sustainable

  3. Implementation and development of an automated, ultra-high-capacity, acoustic, flexible dispensing platform for assay-ready plate delivery.

    Science.gov (United States)

    Griffith, Dylan; Northwood, Roger; Owen, Paul; Simkiss, Ellen; Brierley, Andrew; Cross, Kevin; Slaney, Andrew; Davis, Miranda; Bath, Colin

    2012-10-01

    Compound management faces the daily challenge of providing high-quality samples to drug discovery. The advent of new screening technologies has seen demand for liquid samples move toward nanoliter ranges, dispensed by contactless acoustic droplet ejection. Within AstraZeneca, a totally integrated assay-ready plate production platform has been created to fully exploit the advantages of this technology. This enables compound management to efficiently deliver large throughputs demanded by high-throughput screening while maintaining regular delivery of smaller numbers of compounds in varying plate formats for cellular or biochemical concentration-response curves in support of hit and lead optimization (structure-activity relationship screening). The automation solution, CODA, has the capability to deliver compounds on demand for single- and multiple-concentration ranges, in batch sizes ranging from 1 sample to 2 million samples, integrating seamlessly into local compound and test management systems. The software handles compound orders intelligently, grouping test requests together dependent on output plate type and serial dilution ranges so that source compound vessels are shared among numerous tests, ensuring conservation of sample, reduced labware and costs, and efficiency of work cell logistics. We describe the development of CODA to address the customer demand, challenges experienced, learning made, and subsequent enhancements.

  4. PopHR: a knowledge-based platform to support integration, analysis, and visualization of population health data.

    Science.gov (United States)

    Shaban-Nejad, Arash; Lavigne, Maxime; Okhmatovskaia, Anya; Buckeridge, David L

    2017-01-01

    Population health decision makers must consider complex relationships between multiple concepts measured with differential accuracy from heterogeneous data sources. Population health information systems are currently limited in their ability to integrate data and present a coherent portrait of population health. Consequentially, these systems can provide only basic support for decision makers. The Population Health Record (PopHR) is a semantic web application that automates the integration and extraction of massive amounts of heterogeneous data from multiple distributed sources (e.g., administrative data, clinical records, and survey responses) to support the measurement and monitoring of population health and health system performance for a defined population. The design of the PopHR draws on the theories of the determinants of health and evidence-based public health to harmonize and explicitly link information about a population with evidence about the epidemiology and control of chronic diseases. Organizing information in this manner and linking it explicitly to evidence is expected to improve decision making related to the planning, implementation, and evaluation of population health and health system interventions. In this paper, we describe the PopHR platform and discuss the architecture, design, key modules, and its implementation and use. © 2016 New York Academy of Sciences.

  5. Remote Video Monitor of Vehicles in Cooperative Information Platform

    Science.gov (United States)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  6. A technical review of flexible endoscopic multitasking platforms.

    Science.gov (United States)

    Yeung, Baldwin Po Man; Gourlay, Terence

    2012-01-01

    Further development of advanced therapeutic endoscopic techniques and natural orifice translumenal endoscopic surgery (NOTES) requires a powerful flexible endoscopic multitasking platform. Medline search was performed to identify literature relating to flexible endoscopic multitasking platform from year 2004-2011 using keywords: Flexible endoscopic multitasking platform, NOTES, Instrumentation, Endoscopic robotic surgery, and specific names of various endoscopic multitasking platforms. Key articles from articles references were reviewed. Flexible multitasking platforms can be classified as either mechanical or robotic. Purely mechanical systems include the dual channel endoscope (DCE) (Olympus), R-Scope (Olympus), the EndoSamurai (Olympus), the ANUBIScope (Karl-Storz), Incisionless Operating Platform (IOP) (USGI), and DDES system (Boston Scientific). Robotic systems include the MASTER system (Nanyang University, Singapore) and the Viacath (Hansen Medical). The DCE, the R-Scope, the EndoSamurai and the ANUBIScope have integrated visual function and instrument manipulation function. The IOP and DDES systems rely on the conventional flexible endoscope for visualization, and instrument manipulation is integrated through the use of a flexible, often lockable, multichannel access device. The advantage of the access device concept is that it allows optics and instrument dissociation. Due to the anatomical constrains of the pharynx, systems are designed to have a diameter of less than 20 mm. All systems are controlled by traction cable system actuated either by hand or by robotic machinery. In a flexible system, this method of actuation inevitably leads to significant hysteresis. This problem will be accentuated with a long endoscope such as that required in performing colonic procedures. Systems often require multiple operators. To date, the DCE, the R-Scope, the IOP, and the Viacath system have data published relating to their application in human. Alternative forms of

  7. All-optical SR flip-flop based on SOA-MZI switches monolithically integrated on a generic InP platform

    Science.gov (United States)

    Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.

    2016-03-01

    At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.

  8. AZTLAN platform: Mexican platform for analysis and design of nuclear reactors; AZTLAN platform: plataforma mexicana para el analisis y diseno de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A. M.; Puente E, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edif. 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Francois L, J. L.; Martin del Campo M, C. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: armando.gomez@inin.gob.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2014-10-15

    The Aztlan platform Project is a national initiative led by the Instituto Nacional de Investigaciones Nucleares (ININ) which brings together the main public houses of higher studies in Mexico, such as: Instituto Politecnico Nacional, Universidad Nacional Autonoma de Mexico and Universidad Autonoma Metropolitana in an effort to take a significant step toward the calculation autonomy and analysis that seeks to place Mexico in the medium term in a competitive international level on software issues for analysis of nuclear reactors. This project aims to modernize, improve and integrate the neutron, thermal-hydraulic and thermo-mechanical codes, developed in Mexican institutions, within an integrated platform, developed and maintained by Mexican experts to benefit from the same institutions. This project is financed by the mixed fund SENER-CONACYT of Energy Sustain ability, and aims to strengthen substantially to research institutions, such as educational institutions contributing to the formation of highly qualified human resources in the area of analysis and design of nuclear reactors. As innovative part the project includes the creation of a user group, made up of members of the project institutions as well as the Comision Nacional de Seguridad Nuclear y Salvaguardias, Central Nucleoelectrica de Laguna Verde (CNLV), Secretaria de Energia (Mexico) and Karlsruhe Institute of Technology (Germany) among others. This user group will be responsible for using the software and provide feedback to the development equipment in order that progress meets the needs of the regulator and industry; in this case the CNLV. Finally, in order to bridge the gap between similar developments globally, they will make use of the latest super computing technology to speed up calculation times. This work intends to present to national nuclear community the project, so a description of the proposed methodology is given, as well as the goals and objectives to be pursued for the development of the

  9. Control Synthesis for the Flow-Based Microfluidic Large-Scale Integration Biochips

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2013-01-01

    In this paper we are interested in flow-based microfluidic biochips, which are able to integrate the necessary functions for biochemical analysis on-chip. In these chips, the flow of liquid is manipulated using integrated microvalves. By combining severalmicrovalves, more complex units, such asmi......In this paper we are interested in flow-based microfluidic biochips, which are able to integrate the necessary functions for biochemical analysis on-chip. In these chips, the flow of liquid is manipulated using integrated microvalves. By combining severalmicrovalves, more complex units...

  10. Migrating C/C++ Software to Mobile Platforms in the ADM Context

    Directory of Open Access Journals (Sweden)

    Liliana Martinez

    2017-03-01

    Full Text Available Software technology is constantly evolving and therefore the development of applications requires adapting software components and applications in order to be aligned to new paradigms such as Pervasive Computing, Cloud Computing and Internet of Things. In particular, many desktop software components need to be migrated to mobile technologies. This migration faces many challenges due to the proliferation of different mobile platforms. Developers usually make applications tailored for each type of device expending time and effort. As a result, new programming languages are emerging to integrate the native behaviors of the different platforms targeted in development projects. In this direction, the Haxe language allows writing mobile applications that target all major mobile platforms. Novel technical frameworks for information integration and tool interoperability such as Architecture-Driven Modernization (ADM proposed by the Object Management Group (OMG can help to manage a huge diversity of mobile technologies. The Architecture-Driven Modernization Task Force (ADMTF was formed to create specifications and promote industry consensus on the modernization of existing applications. In this work, we propose a migration process from C/C++ software to different mobile platforms that integrates ADM standards with Haxe. We exemplify the different steps of the process with a simple case study, the migration of “the Set of Mandelbrot” C++ application. The proposal was validated in Eclipse Modeling Framework considering that some of its tools and run-time environments are aligned with ADM standards.

  11. Energy modelling platforms for policy and strategy support

    International Nuclear Information System (INIS)

    Dyner, I.

    2000-01-01

    The energy field has been dominated by 'hard' modelling approaches by researchers from engineering and economics discipline. The recent trend towards a more liberalised environment moves away from central planning to market-based resource allocation, leading to the creation and use of strategic tools, with much 'softer' specifications, in the 'system-thinking' tradition. This paper presents the use of system dynamics in a generalised way, to provide a platform for integrated energy analysis. Issues of modularity and policy evolution are important in the design of the modelling platform to facilitate its use, and reuse. Hence the concepts of a platform, rather than a model, has to be implemented in a coherent way if it is to provide sustained value for ongoing support to both government policy and corporate strategy. (author)

  12. EPOS Thematic Core Service ANTHROPOGENIC HAZARDS (TCS AH) - development of e-research platform

    Science.gov (United States)

    Orlecka-Sikora, Beata

    2017-04-01

    TCS AH is based on IS-EPOS Platform. The Platform facilitates research on anthropogenic hazards and is available online, free of charge https://tcs.ah-epos.eu/. The Platform is a final product of the IS-EPOS project, founded by the national programme - POIG - which was implemented in 2013-2015 (POIG.02.03.00-14-090/13-00). The platform is a result of a joint work of scientific community and industrial partners. Currently, the development of TCS AH is carried under EPOS IP project (H2020-INFRADEV-1-2015-1, INFRADEV-3-2015). Platform is an open virtual access point for researchers and Ph. D. students interested in anthropogenic seismicity and related hazards. This environment is designed to ensure a researcher the maximum possible liberty for experimentation by providing a virtual laboratory, in which the researcher can design own processing streams and process the data integrated on the platform. TCS AH integrates: data and specific high-level services. Data gathered in the so-called "episodes", comprehensively describing a geophysical process, induced or triggered by human technological activity, which, under certain circumstances can become hazardous for people, infrastructure and the environment. 7 sets of seismic, geological and technological data were made available on the Platform. The data come from Poland, Germany, UK and Vietnam, and refer to underground mining, reservoir impoundment, shale gas exploitation and geothermal energy production. The next at least 19 new episodes related to conventional hydrocarbon extraction, reservoir treatment, underground mining and geothermal energy production are being integrated within the framework of EPOS IP project. The heterogeneous multi-disciplinary data (seismic, displacement, geomechanical data, production data etc.) are transformed to unified structures to form integrated and validated datasets. To deal with this various data the problem-oriented services were designed and implemented. The particular attention

  13. Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    Science.gov (United States)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.

  14. National platform electromobility. Interim report of the working group 3 Load infrastructure and rid integration; Nationale Plattform Elektromobilitaet. Zwischenbericht der Arbeitsgruppe 3 Lade-Infrastruktur und Netzintegration

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan [E.ON AG, Duesseldorf (Germany). Political Affairs and Communications Energy Mix, Environment, Efficiency; Ledwon, Martin [Siemens AG, Berlin (Germany). Government Affairs

    2010-07-01

    The contribution under consideration reports on the first intermediate results of the working group 3 ''Load infrastructure and grid integration'' of the national platform electromobility. Next to the representation of the general objective of this working group, the following aspects are considered: (a) Electromobility in the field of tension between the power supply system and renewable production; (b) Possible network loads due to the integration of electrically powered vehicles; (c) Requirements concerning the load infrastructure; (d) Technology development of the load point; (e) Potentials by the integration of electrical mobiles into the Smart Grid; (f) Research and Development roadmap. This contribution finishes with a presentation of a concrete conversion plan for the demand of infrastructure.

  15. Wireless sensor platform for harsh environments

    Science.gov (United States)

    Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor); Toygur, Lemi (Inventor); He, Yunli (Inventor)

    2009-01-01

    Reliable and efficient sensing becomes increasingly difficult in harsher environments. A sensing module for high-temperature conditions utilizes a digital, rather than analog, implementation on a wireless platform to achieve good quality data transmission. The module comprises a sensor, integrated circuit, and antenna. The integrated circuit includes an amplifier, A/D converter, decimation filter, and digital transmitter. To operate, an analog signal is received by the sensor, amplified by the amplifier, converted into a digital signal by the A/D converter, filtered by the decimation filter to address the quantization error, and output in digital format by the digital transmitter and antenna.

  16. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  17. Open-WiSe: a solar powered wireless sensor network platform.

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  18. PAC++: Object-oriented platform for accelerator codes

    International Nuclear Information System (INIS)

    Malitsky, N.; Reshetov, A.; Bourianoff, G.

    1994-06-01

    Software packages in accelerator physics have relatively long life cycles. They had been developed and used for a wide range of accelerators in the past as well as for the current projects. For example, the basic algorithms written in the first accelerator Program TRANSPORT are actual for design of most magnet systems. Most of these packages had been implemented on Fortran. But this language is rather inconvenient as a basic language for large integrated projects that possibly could include real-time data acquisition, data base access, graphic riser interface modules (GUI), arid other features. Some later accelerator programs had been based on object-oriented tools (primarily, C++ language). These range from systems for advanced theoretical studies to control system software. For the new generations of accelerators it would be desirable to have an integrated platform in which all simulation and control tasks will be considered with one point of view. In this report the basic principles of an object-oriented platform for accelerator research software (PAC++) are suggested and analyzed. Primary objectives of this work are to enable efficient self-explaining realization of the accelerator concepts and to provide an integrated environment for the updating and the developing of the code

  19. Analyzing composability of applications on MPSoC platforms

    NARCIS (Netherlands)

    Kumar, A.; Mesman, B.; Theelen, B.D.; Corporaal, H.; Yajun, H.

    2008-01-01

    Modern day applications require use of multi-processor systems for reasons of erformance, scalability and power efficiency. As more and more applications are integrated in a single system, mapping and analyzing them on a multi-processor platform becomes a multidimensional problem. Each possible set

  20. Low consumption single-use microvalve for microfluidic PCB-based platforms

    International Nuclear Information System (INIS)

    Flores, G; Aracil, C; Perdigones, F; Quero, J M

    2014-01-01

    In this paper, a single-use and unidirectional microvalve with low consumption of energy for PCB-based microfluidic platforms is reported. Its activation is easy because it works as a fuse. The fabrication process of the device is based on PCB technology and a typical SU-8 process, using the PCB as a substrate and SU-8 for the microfluidic channels and chambers. The microvalve is intended to be used to impulse small volumes of fluids and it has been designed to be highly integrable in PCB-based microfluidic platforms. The proposed device has been fabricated, integrated and tested in a general purpose microfluidic circuit, resulting in a low activation time, of about 100 μs, and a low consumption of energy, with a maximum of 27 mJ. These results show a significant improvement because the energy consumption is about 84% lower and the time response is about four orders of magnitude shorter if compared with similar microvalves for impulsion of fluids on PCB-based platforms. (paper)

  1. INTER-INTEGRATED CIRCUIT (I2C SEBAGAI SISTEM KOMUNIKASI MULTI-MIKROKONTROLER MENGGUNAKAN PLATFORM ARDUINO DAN MATLAB

    Directory of Open Access Journals (Sweden)

    I Nyoman Kusuma Wardana

    2016-06-01

    Full Text Available Pada aplikasi yang menggunakan mikrokontroler sebagai perangkat utama, pengguna sering dihadapkan pada masalah kurangnya jumlah pin yang tersedia pada suatu mikrokontoler. Terdapat dua alternatif yang dapat dilakukan ketika penggunaan pin menjadi masalah yang krusial, yaitu dengan mengganti jenis mikrokontroler atau menggunakan lebih dari satu buah mikrokontroler (multi-mikrokontroler. Kedua alternatif ini memiliki keunggulan dan kelemahannya masing-masing. Pada penelitian ini, penggunaan protokol Inter-integrated Circuit (I2C akan diterapkan untuk sistem multi-mikrokontroler dan multi-sensor menggunakan Platform Arduino yang terkontrol MATLAB. Sebuah Master dan dua buah slave akan diuji pada penelitian ini. Master dan Slave akan sepenuhnya dikontrol menggunakan MATLAB. Kedua slave akan ditanamkan program Arduino, sedangkan Master akan menggunakan program MATLAB. Hasil dari penelitian ini menunjukkan bahwa kedua Slave dapat dikontrol dengan baik, baik membaca sensor yang terpasang maupun mengontrol LED. Sistem komunikasi secara I2C telah terbangun dengan baik.

  2. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Friis, Peter; Hübner, Jörg

    2001-01-01

    The UV wavelength region is of great interest in absorption spectroscopy, which is employed for chemical analysis, since many organic compounds absorb in only this region. Germanium-doped silica, which is often preferred as the waveguide core material in optical devices for telecommunication....... The applicability of these waveguides was demonstrated in a biochemical microsystem consisting of multimode buried-channel SiOxNy waveguides that were monolithically integrated with microfluidic channels. Absorption measurements of a beta -blocking agent, propranolol, at 212-215 nm were performed. The detection...

  3. ICECAP: an integrated, general-purpose, automation-assisted IC50/EC50 assay platform.

    Science.gov (United States)

    Li, Ming; Chou, Judy; King, Kristopher W; Jing, Jing; Wei, Dong; Yang, Liyu

    2015-02-01

    IC50 and EC50 values are commonly used to evaluate drug potency. Mass spectrometry (MS)-centric bioanalytical and biomarker labs are now conducting IC50/EC50 assays, which, if done manually, are tedious and error-prone. Existing bioanalytical sample preparation automation systems cannot meet IC50/EC50 assay throughput demand. A general-purpose, automation-assisted IC50/EC50 assay platform was developed to automate the calculations of spiking solutions and the matrix solutions preparation scheme, the actual spiking and matrix solutions preparations, as well as the flexible sample extraction procedures after incubation. In addition, the platform also automates the data extraction, nonlinear regression curve fitting, computation of IC50/EC50 values, graphing, and reporting. The automation-assisted IC50/EC50 assay platform can process the whole class of assays of varying assay conditions. In each run, the system can handle up to 32 compounds and up to 10 concentration levels per compound, and it greatly improves IC50/EC50 assay experimental productivity and data processing efficiency. © 2014 Society for Laboratory Automation and Screening.

  4. A PUBLIC PLATFORM FOR GEOSPATIAL DATA SHARING FOR DISASTER RISK MANAGEMENT

    Directory of Open Access Journals (Sweden)

    S. Balbo

    2014-01-01

    This paper presents a case study scenario of setting up a Web platform based on GeoNode. It is a public platform called MASDAP and promoted by the Government of Malawi in order to support development of the country and build resilience against natural disasters. A substantial amount of geospatial data has already been collected about hydrogeological risk, as well as several other-disasters related information. Moreover this platform will help to ensure that the data created by a number of past or ongoing projects is maintained and that this information remains accessible and useful. An Integrated Flood Risk Management Plan for a river basin has already been included in the platform and other data from future disaster risk management projects will be added as well.

  5. NEON's Mobile Deployment Platform: A research tool for integrating ecological processes across scales

    Science.gov (United States)

    Sanclements, M.

    2016-12-01

    Here we provide an update on construction of the five NEON Mobile Deployment Platforms (MDPs) as well as a description of the infrastructure and sensors available to researchers in the near future. Additionally, we include information (i.e. timelines and procedures) on requesting MDPs for PI led projects. The MDPs will provide the means to observe stochastic or spatially important events, gradients, or quantities that cannot be reliably observed using fixed location sampling (e.g. fires and floods). Due to the transient temporal and spatial nature of such events, the MDPs are designed to accommodate rapid deployment for time periods up to 1 year. Broadly, the MDPs are comprised of infrastructure and instrumentation capable of functioning individually or in conjunction with one another to support observations of ecological change, as well as education, training and outreach. More specifically, the MDPs include the capability to make tower based measures of ecosystem exchange, radiation, and precipitation in conjunction with baseline soils data such as CO2 flux, and soil temperature and moisture. An aquatics module is also available with the MDP to facilitate research integrating terrestrial and aquatic processes. Ultimately, the NEON MDPs provides a tool for linking PI led research to the continental scale data sets collected by NEON.

  6. Self-organizing ontology of biochemically relevant small molecules.

    Science.gov (United States)

    Chepelev, Leonid L; Hastings, Janna; Ennis, Marcus; Steinbeck, Christoph; Dumontier, Michel

    2012-01-06

    The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. We conclude that the proposed methodology can ease the burden of chemical data annotators and

  7. Self-organizing ontology of biochemically relevant small molecules

    Science.gov (United States)

    2012-01-01

    Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology can ease the burden of

  8. Self-organizing ontology of biochemically relevant small molecules

    Directory of Open Access Journals (Sweden)

    Chepelev Leonid L

    2012-01-01

    Full Text Available Abstract Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology

  9. Biochemical mechanisms determine the functional compatibility of heterologous genes

    DEFF Research Database (Denmark)

    Porse, Andreas; Schou, Thea S.; Munck, Christian

    2018-01-01

    -gene libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast...... factors governing the functionality and fitness of antibiotic resistance genes. These findings emphasize the importance of biochemical mechanism for heterologous gene compatibility, and suggest physiological constraints as a pivotal feature orienting the evolution of antibiotic resistance....

  10. Strategies to Maximize the Potential of Marine Biomaterials as a Platform for Cell Therapy

    Science.gov (United States)

    Kim, Hyeongmin; Lee, Jaehwi

    2016-01-01

    Marine biopolymers have been explored as a promising cell therapy system for efficient cell delivery and tissue engineering. However, the marine biomaterial-based systems themselves have exhibited limited performance in terms of maintenance of cell viability and functions, promotion of cell proliferation and differentiation as well as cell delivery efficiency. Thus, numerous novel strategies have been devised to improve cell therapy outcomes. The strategies include optimization of physical and biochemical properties, provision of stimuli-responsive functions, and design of platforms for efficient cell delivery and tissue engineering. These approaches have demonstrated substantial improvement of therapeutic outcomes in a variety of research settings. In this review, therefore, research progress made with marine biomaterials as a platform for cell therapy is reported along with current research directions to further advance cell therapies as a tool to cure incurable diseases. PMID:26821034

  11. Analysis and experiments of a novel and compact 3-DOF precision positioning platform

    International Nuclear Information System (INIS)

    Huang, Hu; Zhao, Hongwei; Fan, Zunqiang; Zhang, Hui; Ma, Zhichao; Yang, Zhaojun

    2013-01-01

    A novel 3-DOF precision positioning platform with dimensions of 48 mm X 50 mm X 35 mm was designed by integrating piezo actuators and flexure hinges. The platform has a compact structure but it can do high precision positioning in three axes. The dynamic model of the platform in a single direction was established. Stiffness of the flexure hinges and modal characteristics of the flexure hinge mechanism were analyzed by the finite element method. Output displacements of the platform along three axes were forecasted via stiffness analysis. Output performance of the platform in x and y axes with open-loop control as well as the z-axis with closed-loop control was tested and discussed. The preliminary application of the platform in the field of nanoindentation indicates that the designed platform works well during nanoindentation tests, and the closed-loop control ensures the linear displacement output. With suitable control, the platform has the potential to realize different positioning functions under various working conditions.

  12. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  13. The EGS Data Collaboration Platform: Enabling Scientific Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Weers, Jonathan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Huggins, Jay V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-14

    Collaboration in the digital age has been stifled in recent years. Reasonable responses to legitimate security concerns have created a virtual landscape of silos and fortified castles incapable of sharing information efficiently. This trend is unfortunately opposed to the geothermal scientific community's migration toward larger, more collaborative projects. To facilitate efficient sharing of information between team members from multiple national labs, universities, and private organizations, the 'EGS Collab' team has developed a universally accessible, secure data collaboration platform and has fully integrated it with the U.S. Department of Energy's (DOE) Geothermal Data Repository (GDR) and the National Geothermal Data System (NGDS). This paper will explore some of the challenges of collaboration in the modern digital age, highlight strategies for active data management, and discuss the integration of the EGS Collab data management platform with the GDR to enable scientific discovery through the timely dissemination of information.

  14. An Embedded Software Platform for Distributed Automotive Environment Management

    Directory of Open Access Journals (Sweden)

    Seepold Ralf

    2009-01-01

    Full Text Available This paper discusses an innovative extension of the actual vehicle platforms that integrate intelligent environments in order to carry out e-safety tasks improving the driving security. These platforms are dedicated to automotive environments which are characterized by sensor networks deployed along the vehicles. Since this kind of platform infrastructure is hardly extensible and forms a non-scalable process unit, an embedded OSGi-based UPnP platform extension is proposed in this article. Such extension deploys a compatible and scalable uniform environment that allows to manage the vehicle components heterogeneity and to provide plug and play support, being compatible with all kind of devices and sensors located in a car network. Furthermore, such extension allows to autoregister any kind of external devices, wherever they are located, providing the in-vehicle system with additional services and data supplied by them. This extension also supports service provisioning and connections to external and remote network services using SIP technology.

  15. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    Science.gov (United States)

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  16. Polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes

    DEFF Research Database (Denmark)

    Johansson, Alicia; Calleja, M.; Dimaki, Maria

    2004-01-01

    A polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes has been designed and realized. Multi-walled carbon nanotubes from aqueous solution have been assembled between two metal electrodes that are separated by 2 mu m and embedded in the polymer cantilever. The entire chip......, except for the metallic electrodes and wiring, was fabricated in the photoresist SU-8. SU-8 allows for an inexpensive, flexible and fast fabrication method, and the cantilever platform provides a hydrophobic surface that should be well suited for nanotube assembly. The device can be integrated in a micro...

  17. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks

    Directory of Open Access Journals (Sweden)

    Thomas eEissing

    2011-02-01

    Full Text Available Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multi-scale by nature, project work and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug-drug or drug-metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach.

  18. Payment Platform

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Damsgaard, Jan

    2012-01-01

    thoroughly and substitute current payment standards in the decades to come. This paper portrays how digital payment platforms evolve in socio-technical niches and how various technological platforms aim for institutional attention in their attempt to challenge earlier platforms and standards. The paper...... applies a co-evolutionary multilevel perspective to model the interplay and processes between technology and society wherein digital payment platforms potentially will substitute other payment platforms just like the credit card negated the check. On this basis this paper formulate a multilevel conceptual...

  19. The AVANTSSAR Platform for the Automated Validation of Trust and Security of Service-Oriented Architectures

    DEFF Research Database (Denmark)

    Armando, Alessandro; Arsac, Wihem; Avanesov, Tigran

    2012-01-01

    The AVANTSSAR Platform is an integrated toolset for the formal specification and automated validation of trust and security of service-oriented architectures and other applications in the Internet of Services. The platform supports application-level specification languages (such as BPMN and our...

  20. A big data geospatial analytics platform - Physical Analytics Integrated Repository and Services (PAIRS)

    Science.gov (United States)

    Hamann, H.; Jimenez Marianno, F.; Klein, L.; Albrecht, C.; Freitag, M.; Hinds, N.; Lu, S.

    2015-12-01

    A big data geospatial analytics platform:Physical Analytics Information Repository and Services (PAIRS)Fernando Marianno, Levente Klein, Siyuan Lu, Conrad Albrecht, Marcus Freitag, Nigel Hinds, Hendrik HamannIBM TJ Watson Research Center, Yorktown Heights, NY 10598A major challenge in leveraging big geospatial data sets is the ability to quickly integrate multiple data sources into physical and statistical models and be run these models in real time. A geospatial data platform called Physical Analytics Information and Services (PAIRS) is developed on top of open source hardware and software stack to manage Terabyte of data. A new data interpolation and re gridding is implemented where any geospatial data layers can be associated with a set of global grid where the grid resolutions is doubling for consecutive layers. Each pixel on the PAIRS grid have an index that is a combination of locations and time stamp. The indexing allow quick access to data sets that are part of a global data layers and allowing to retrieve only the data of interest. PAIRS takes advantages of parallel processing framework (Hadoop) in a cloud environment to digest, curate, and analyze the data sets while being very robust and stable. The data is stored on a distributed no-SQL database (Hbase) across multiple server, data upload and retrieval is parallelized where the original analytics task is broken up is smaller areas/volume, analyzed independently, and then reassembled for the original geographical area. The differentiating aspect of PAIRS is the ability to accelerate model development across large geographical regions and spatial resolution ranging from 0.1 m up to hundreds of kilometer. System performance is benchmarked on real time automated data ingestion and retrieval of Modis and Landsat data layers. The data layers are curated for sensor error, verified for correctness, and analyzed statistically to detect local anomalies. Multi-layer query enable PAIRS to filter different data

  1. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    Directory of Open Access Journals (Sweden)

    Arthur Edwards

    2012-06-01

    Full Text Available Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe. The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  2. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment.

    Science.gov (United States)

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-02-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.

  3. Resilience of innovation platforms within armed conflicts: the case of ...

    African Journals Online (AJOL)

    . The Sub-Saharan Africa Challenge Program moved into the Province in 2008 and established four innovation platforms (IPs) under Integrated Agricultural Research for Development concepts, in Masisi and Rutshuru districts. The objective of ...

  4. Educational process in modern climatology within the web-GIS platform "Climate"

    Science.gov (United States)

    Gordova, Yulia; Gorbatenko, Valentina; Gordov, Evgeny; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    These days, common to all scientific fields the problem of training of scientists in the environmental sciences is exacerbated by the need to develop new computational and information technology skills in distributed multi-disciplinary teams. To address this and other pressing problems of Earth system sciences, software infrastructure for information support of integrated research in the geosciences was created based on modern information and computational technologies and a software and hardware platform "Climate» (http://climate.scert.ru/) was developed. In addition to the direct analysis of geophysical data archives, the platform is aimed at teaching the basics of the study of changes in regional climate. The educational component of the platform includes a series of lectures on climate, environmental and meteorological modeling and laboratory work cycles on the basics of analysis of current and potential future regional climate change using Siberia territory as an example. The educational process within the Platform is implemented using the distance learning system Moodle (www.moodle.org). This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.

  5. A central continuous integration platform: Agile Infrastructure use case and future plans

    CERN Multimedia

    CERN. Geneva; ANDERSEN, Terje; GEORGIOU, Stefanos

    2014-01-01

    We shall describe the use of Jenkins as a CI solution by the Configuration Team and present the requirements and plans for a central CI platform, as well as the associated challenges and possible solutions.

  6. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    Energy Technology Data Exchange (ETDEWEB)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M., E-mail: MuhammadMustafa.Hussain@kaust.edu.sa [Integrated Nanotechnology Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Aljedaani, Abdulrahman B. [High-Speed Fluids Imaging Laboratory, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2015-10-26

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  7. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    International Nuclear Information System (INIS)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M.; Aljedaani, Abdulrahman B.

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties

  8. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    KAUST Repository

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Aljedaani, Abdulrahman B.; Hussain, Muhammad Mustafa

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  9. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling

    Science.gov (United States)

    Medina, Ignacio; Carbonell, José; Pulido, Luis; Madeira, Sara C.; Goetz, Stefan; Conesa, Ana; Tárraga, Joaquín; Pascual-Montano, Alberto; Nogales-Cadenas, Ruben; Santoyo, Javier; García, Francisco; Marbà, Martina; Montaner, David; Dopazo, Joaquín

    2010-01-01

    Babelomics is a response to the growing necessity of integrating and analyzing different types of genomic data in an environment that allows an easy functional interpretation of the results. Babelomics includes a complete suite of methods for the analysis of gene expression data that include normalization (covering most commercial platforms), pre-processing, differential gene expression (case-controls, multiclass, survival or continuous values), predictors, clustering; large-scale genotyping assays (case controls and TDTs, and allows population stratification analysis and correction). All these genomic data analysis facilities are integrated and connected to multiple options for the functional interpretation of the experiments. Different methods of functional enrichment or gene set enrichment can be used to understand the functional basis of the experiment analyzed. Many sources of biological information, which include functional (GO, KEGG, Biocarta, Reactome, etc.), regulatory (Transfac, Jaspar, ORegAnno, miRNAs, etc.), text-mining or protein–protein interaction modules can be used for this purpose. Finally a tool for the de novo functional annotation of sequences has been included in the system. This provides support for the functional analysis of non-model species. Mirrors of Babelomics or command line execution of their individual components are now possible. Babelomics is available at http://www.babelomics.org. PMID:20478823

  10. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    Science.gov (United States)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  11. Research on website construction based on website group platform of Chengdu sport institution

    Science.gov (United States)

    Hu, Zunyu

    2018-04-01

    This paper describes the necessity of website construction based on the website group of Chengdu sport institute, and discusses the technical features of the website group, Based on the website group platform architecture, the key technologies such as Web Service, AJAX, RSS and other key technologies are used to realize the construction of the website. Based on the website group platform architecture of the site, it effectively solves the information isolated island between the sites, and realizes the information sharing and resource integration. It is also more convenient that site and other sites have composed of site group integrated operation and maintenance.

  12. Design of software platform based on linux operating system for γ-spectrometry instrument

    International Nuclear Information System (INIS)

    Hong Tianqi; Zhou Chen; Zhang Yongjin

    2008-01-01

    This paper described the design of γ-spectrometry instrument software platform based on s3c2410a processor with arm920t core, emphases are focused on analyzing the integrated application of embedded linux operating system, yaffs file system and qt/embedded GUI development library. It presented a new software platform in portable instrument for γ measurement. (authors)

  13. Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory

    2008-01-01

    We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

  14. Laser-induced heating integrated with a microfluidic platform for real-time DNA replication and detection

    Science.gov (United States)

    Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin

    2016-08-01

    This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.

  15. a Web-Based Interactive Platform for Co-Clustering Spatio-Temporal Data

    Science.gov (United States)

    Wu, X.; Poorthuis, A.; Zurita-Milla, R.; Kraak, M.-J.

    2017-09-01

    Since current studies on clustering analysis mainly focus on exploring spatial or temporal patterns separately, a co-clustering algorithm is utilized in this study to enable the concurrent analysis of spatio-temporal patterns. To allow users to adopt and adapt the algorithm for their own analysis, it is integrated within the server side of an interactive web-based platform. The client side of the platform, running within any modern browser, is a graphical user interface (GUI) with multiple linked visualizations that facilitates the understanding, exploration and interpretation of the raw dataset and co-clustering results. Users can also upload their own datasets and adjust clustering parameters within the platform. To illustrate the use of this platform, an annual temperature dataset from 28 weather stations over 20 years in the Netherlands is used. After the dataset is loaded, it is visualized in a set of linked visualizations: a geographical map, a timeline and a heatmap. This aids the user in understanding the nature of their dataset and the appropriate selection of co-clustering parameters. Once the dataset is processed by the co-clustering algorithm, the results are visualized in the small multiples, a heatmap and a timeline to provide various views for better understanding and also further interpretation. Since the visualization and analysis are integrated in a seamless platform, the user can explore different sets of co-clustering parameters and instantly view the results in order to do iterative, exploratory data analysis. As such, this interactive web-based platform allows users to analyze spatio-temporal data using the co-clustering method and also helps the understanding of the results using multiple linked visualizations.

  16. Programming signal processing applications on heterogeneous wireless sensor platforms

    NARCIS (Netherlands)

    Buondonno, L.; Fortino, G.; Galzarano, S.; Giannantonio, R.; Giordano, A.; Gravina, R.; Guerrieri, A.

    2009-01-01

    This paper proposes the SPINE frameworks (SPINE1.x and SPINE2) for the programming of signal processing applications on heterogeneous wireless sensor platforms. In particular, two integrable approaches based on the proposed frameworks are described that allow to develop applications for wireless

  17. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    Science.gov (United States)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  18. Power in the loop real time simulation platform for renewable energy generation

    Science.gov (United States)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  19. Seamless integration of dose-response screening and flow chemistry: efficient generation of structure-activity relationship data of β-secretase (BACE1) inhibitors.

    Science.gov (United States)

    Werner, Michael; Kuratli, Christoph; Martin, Rainer E; Hochstrasser, Remo; Wechsler, David; Enderle, Thilo; Alanine, Alexander I; Vogel, Horst

    2014-02-03

    Drug discovery is a multifaceted endeavor encompassing as its core element the generation of structure-activity relationship (SAR) data by repeated chemical synthesis and biological testing of tailored molecules. Herein, we report on the development of a flow-based biochemical assay and its seamless integration into a fully automated system comprising flow chemical synthesis, purification and in-line quantification of compound concentration. This novel synthesis-screening platform enables to obtain SAR data on b-secretase (BACE1) inhibitors at an unprecedented cycle time of only 1 h instead of several days. Full integration and automation of industrial processes have always led to productivity gains and cost reductions, and this work demonstrates how applying these concepts to SAR generation may lead to a more efficient drug discovery process. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel remote monitoring platform for RES-hydrogen based smart microgrid

    International Nuclear Information System (INIS)

    González, I.; Calderón, A.J.; Andújar, J.M.

    2017-01-01

    Highlights: • A remote monitoring platform is developed to monitor an experimental smart microgrid. • Smart microgrid integrates renewable energy sources (solar and wind) and hydrogen. • The platform is implemented using open-source tool Easy Java/Javascript Simulations. • Remote user accesses online to graphical/numerical information of all components. • Results show proper operation of the SMG and prove effective real-time monitoring. - Abstract: In the context of the future power grids – Smart Grids (SGs) – Smart MicroGrids (SMGs) play a paramount role. These ones are very specific portions of the SGs that deal with integration of small-rated distributed energy and storage resources closer to the loads – chiefly within the distribution domain. Data acquisition and monitoring tasks are vital functions that must be developed at every stage of the grid for a proper operation. This paper presents a remote monitoring platform (RMP) to monitor an experimental SMG. It integrates Renewable Energy Sources (RESs) (solar and wind) and hydrogen to operate in isolated regime. The RMP has been developed using the open-source authoring tool Easy Java/Javascript Simulations (EJsS). The interface has been designed to be intuitive and easy-to-use, providing real-time information of all the involved magnitudes over the network. Scalability, easy development, portability and cost effective are the main features of the proposed framework. The microgrid and the proposed monitoring platform are described and the successful results are reported. The remote user executes a ready-to-use file with low computational requirements and is enabled to graphically and numerically track the SMG behaviour. These results prove the suitability of the RMP as an effective means for continuous visualization of the coordinated energy flows of a real SMG.

  1. Challenges in Implementing IAEA National Nuclear Safety Knowledge Platforms

    International Nuclear Information System (INIS)

    Samba, R.N.; Simo, A.

    2016-01-01

    Full text: Integrated Management Systems and human resource development of nuclear knowledge have always been a challenge for developing countries. NRPA staff when trained by IAEA return and restitute with all colleagues the themes acquired in nuclear knowledge. NRPA became a member of Forum for Nuclear Regulatory Bodies in Africa (FNRBA) in 2009. FNRBA organized with IAEA a workshop from 14th to 18th October 2013 in Nairobi, Kenya on Knowledge Safety Network. NRPA of Cameroon created the first National Nuclear Portail under FNRBA. This was linked to other national websites. During the IAEA review missions, most counterparts took opportunity from the thermatic site to share information and develop advance reference materials. The IAEA Integrated Regulatory Review Service (IRRS) team also shared materials that could not be transferred through email with national counterparts using the Global Nuclear Safety and Security Network (GNSSN) sharepoint website due to large file sizes.The regulatory documents have been uploaded on the platform and can be accessed through FNRBA and NRPA website (www.anrp.cm). UN organizations implementing projects in Cameroon are also linked to the platform. The action plans and progress reports for IAEA/AFRA projects are also available. Moreover, NRPA regulatory activities and licensing sources are available on this platform. (author

  2. Experiences from the formal specification of the integration platform and the synthesis of SDT with the software bus

    International Nuclear Information System (INIS)

    Thunem, Harald; Mohn, Peter; Sandmark, Haakon; Stoelen, Ketil

    1999-04-01

    The three year programme 1997-1999 for the OECD Halden Reactor Project (HRP) identifies the need to gain experience from applying formal techniques in real-life system developments. This motivated the initiation of the HRP research activity Integration of Formal Specification in the Development of HAMMLAB 2000 (INT-FS). The principal objective was to experiment with formal techniques in system developments at the HRP; in particular, system developments connected to HAMMLAB 2000 - the computerised laboratory for man-machine-interaction experiments currently under construction. It was hoped that this experimentation with formal techniques should result in a better understanding of how such techniques should be utilised in a more industrial setting. To obtain more knowledge with respect to the practical effects and consequences of an increased level of formalization was another objective. This report summarises experiences, results and conclusions from a pre-study addressing INT-FS related issues connected to the development of the HAMMLAB 2000 Integration Platform (IP). The report starts by giving a brief overview of the IP. Then it describes and summarises experiences from the formalization of a top-level requirements specification for the IP. Finally, it discusses various approaches for the integration of applications generated automatically through the CASE-tool SDT and the Software Bus on which the communication within HAMMLAB 2000 will be based. The report concludes that the selected formalisms and tools are well-suited to describe IP-like systems. The report also concludes that the integration of SDT applications with the Software Bus will not be a major obstacle, and finally that a monitoring component for the IP is well-suited for development within INT-FS (author) (ml)

  3. SiGe BiCMOS manufacturing platform for mmWave applications

    Science.gov (United States)

    Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker

    2010-10-01

    TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.

  4. Research and Application of Construction of Operation Integration for Smart Power Distribution and Consumption Based on “Integration of Marketing with Distribution”

    Directory of Open Access Journals (Sweden)

    Zhenbao Feng

    2014-05-01

    Full Text Available The “information integrated platform of marketing and distribution integration system” researched and developed by this article is an advanced application platform to concurrently design and develop the automation of marketing and power distribution through integration and analysis of existing data based on the data platform of Jiaozuo Power Supply Corporation. It uses data mining and data bus technology, uniform analysis of comprehensive marketing and distribution data. And it conducts a real time monitoring on power utilization information for marketing and early warning maintenance business of power distribution according to electric business model, which realizes an integration of marketing and distribution business, achieves the target of integrated operation of marketing and distribution, improves the operation level of business, reduces maintenance costs of distribution grid, increases electricity sales of distribution grid and provide reliable practical basis for operation and maintenance of Jiaozuo power marketing and distribution.

  5. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming

    2013-06-01

    This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.

  6. A new large-scale manufacturing platform for complex biopharmaceuticals.

    Science.gov (United States)

    Vogel, Jens H; Nguyen, Huong; Giovannini, Roberto; Ignowski, Jolene; Garger, Steve; Salgotra, Anil; Tom, Jennifer

    2012-12-01

    Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion-dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non-ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled-up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi-)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large-scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow-through mode, this is its first commercial-scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low-dose biopharmaceuticals. Copyright © 2012 Wiley Periodicals, Inc.

  7. MycoCAP - Mycobacterium Comparative Analysis Platform.

    Science.gov (United States)

    Choo, Siew Woh; Ang, Mia Yang; Dutta, Avirup; Tan, Shi Yang; Siow, Cheuk Chuen; Heydari, Hamed; Mutha, Naresh V R; Wee, Wei Yee; Wong, Guat Jah

    2015-12-15

    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.

  8. A modular microfluidic architecture for integrated biochemical analysis.

    Science.gov (United States)

    Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang

    2005-07-12

    Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.

  9. A service integration platform for collaborative networks

    NARCIS (Netherlands)

    Osorio, A. L.; Afsarmanesh, H.; Camarinha-Matos, L.M.

    2011-01-01

    Integrated manufacturing constitutes a complex system made of heterogeneous information and control subsystems. Those subsystems are not designed to the cooperation. Typically each subsystem automates specific processes, and establishes closed application domains, therefore it is very difficult to

  10. EORTC Radiation Oncology Group quality assurance platform: Establishment of a digital central review facility

    International Nuclear Information System (INIS)

    Fairchild, Alysa; Aird, Edwin; Fenton, Paul A.; Gregoire, Vincent; Gulyban, Akos; Lacombe, Denis; Matzinger, Oscar; Poortmans, Philip; Ruyskart, Pascal; Weber, Damien C.; Hurkmans, Coen W.

    2012-01-01

    Objective: Quality assurance (QA) in clinical trials is essential to ensure treatment is safely and effectively delivered. As QA requirements have increased in complexity in parallel with evolution of radiation therapy (RT) delivery, a need to facilitate digital data exchange emerged. Our objective is to present the platform developed for the integration and standardization of QART activities across all EORTC trials involving RT. Methods: The following essential requirements were identified: secure and easy access without on-site software installation; integration within the existing EORTC clinical remote data capture system; and the ability to both customize the platform to specific studies and adapt to future needs. After retrospective testing within several clinical trials, the platform was introduced in phases to participating sites and QART study reviewers. Results: The resulting QA platform, integrating RT analysis software installed at EORTC Headquarters, permits timely, secure, and fully digital central DICOM-RT based data review. Participating sites submit data through a standard secure upload webpage. Supplemental information is submitted in parallel through web-based forms. An internal quality check by the QART office verifies data consistency, formatting, and anonymization. QART reviewers have remote access through a terminal server. Reviewers evaluate submissions for protocol compliance through an online evaluation matrix. Comments are collected by the coordinating centre and institutions are informed of the results. Conclusions: This web-based central review platform facilitates rapid, extensive, and prospective QART review. This reduces the risk that trial outcomes are compromised through inadequate radiotherapy and facilitates correlation of results with clinical outcomes.

  11. Product Platform Performance

    DEFF Research Database (Denmark)

    Munk, Lone

    The aim of this research is to improve understanding of platform-based product development by studying platform performance in relation to internal effects in companies. Platform-based product development makes it possible to deliver product variety and at the same time reduce the needed resources...... engaging in platform-based product development. Similarly platform assessment criteria lack empirical verification regarding relevance and sufficiency. The thesis focuses on • the process of identifying and estimating internal effects, • verification of performance of product platforms, (i...... experienced representatives from the different life systems phase systems of the platform products. The effects are estimated and modeled within different scenarios, taking into account financial and real option aspects. The model illustrates and supports estimation and quantification of internal platform...

  12. Smart home care platforms: Where is the added value?

    OpenAIRE

    Vannieuwenborg, Frederic; Van Auwermeulen, Thomas; Van Ooteghem, Jan; Jacobs, An; Verbrugge, Sofie; Colle, Didier; Pickavet, Mario

    2014-01-01

    Due to changes in the demographic situation of most Western European countries, interest in ICT supported care services grows fast. eCare services that foster a better care information exchange, social involvement, lifestyle monitoring services, etc., offered via smart care platforms integrated in the homes of the elderly are believed to be cost-effective and could lead to an increased quality of life of both care receiver and (in)formal care giver. Currently adoption and integration of these...

  13. The Platformization of the Web: Making Web Data Platform Ready

    NARCIS (Netherlands)

    Helmond, A.

    2015-01-01

    In this article, I inquire into Facebook’s development as a platform by situating it within the transformation of social network sites into social media platforms. I explore this shift with a historical perspective on, what I refer to as, platformization, or the rise of the platform as the dominant

  14. Scoping review and evaluation of SMS/text messaging platforms for mHealth projects or clinical interventions.

    Science.gov (United States)

    Iribarren, Sarah J; Brown, William; Giguere, Rebecca; Stone, Patricia; Schnall, Rebecca; Staggers, Nancy; Carballo-Diéguez, Alex

    2017-05-01

    Mobile technology supporting text messaging interventions (TMIs) continues to evolve, presenting challenges for researchers and healthcare professionals who need to choose software solutions to best meet their program needs. The objective of this review was to systematically identify and compare text messaging platforms and to summarize their advantages and disadvantages as described in peer-reviewed literature. A scoping review was conducted using four steps: 1) identify currently available platforms through online searches and in mHealth repositories; 2) expand evaluation criteria of an mHealth mobile messaging toolkit and integrate prior user experiences as researchers; 3) evaluate each platform's functions and features based on the expanded criteria and a vendor survey; and 4) assess the documentation of platform use in the peer-review literature. Platforms meeting inclusion criteria were assessed independently by three reviewers and discussed until consensus was reached. The PRISMA guidelines were followed to report findings. Of the 1041 potentially relevant search results, 27 platforms met inclusion criteria. Most were excluded because they were not platforms (e.g., guides, toolkits, reports, or SMS gateways). Of the 27 platforms, only 12 were identified in existing mHealth repositories, 10 from Google searches, while five were found in both. The expanded evaluation criteria included 22 items. Results indicate no uniform presentation of platform features and functions, often making these difficult to discern. Fourteen of the platforms were reported as open source, 10 focused on health care and 16 were tailored to meet needs of low resource settings (not mutually exclusive). Fifteen platforms had do-it-yourself setup (programming not required) while the remainder required coding/programming skills or setups could be built to specification by the vendor. Frequently described features included data security and access to the platform via cloud-based systems. Pay

  15. Development and Characteristics of a Mobile, Semi-Autonomous Floating Platform for in situ Lake Measurements

    Science.gov (United States)

    Barry, D.; Lemmin, U.; Le Dantec, N.; Zulliger, L.; Rusterholz, M.; Bolay, M.; Rossier, J.; Kangur, K.

    2013-12-01

    In the development of sustainable management strategies of lakes more insight into their physical, chemical and ecological dynamics is needed. Field data obtained from various types of sensors with adequate spatial and temporal sampling rate are essential to understand better the processes that govern fluxes and pathways of water masses and transported compounds, whether for model validation or for monitoring purposes. One advantage of unmanned platforms is that they limit the disturbances typically affecting the quality of data collected on small vessels, including perturbations caused by movements of onboard crew. We have developed a mobile, semi-autonomous floating platform with 8 h power autonomy using a 5 m long by 2.5 m wide catamaran. Our approach focused on modularity and high payload capacity in order to accommodate a large number of sensors both in terms of electronic (power and data) and mechanical constraints of integration. Software architecture and onboard electronics use National Instruments technology to simplify and standardize integration of sensors, actuators and communication. Piecewise-movable deck sections allow optimizing platform stability depending on the payload. The entire system is controlled by a remote computer located on an accompanying vessel and connected via a wireless link with a range of over 1 km. Real-time transmission of GPS-stamped measurements allows immediate modifications in the survey plan if needed. The displacement of the platform is semi-autonomous, with the options of either autopilot mode following a pre-planned course specified by waypoints or remote manual control from the accompanying vessel. Maintenance of permanent control over the platform displacement is required for safety reasons with respect to other users of the lake. Currently, the sensor payload comprises an array of fast temperature probes, a bottom-tracking ADCP and atmospheric sensors including a radiometer. A towed CTD with additional water quality

  16. HASILT: An intelligent software platform for HAZOP, LOPA, SRS and SIL verification

    International Nuclear Information System (INIS)

    Cui, Lin; Shu, Yidan; Wang, Zhaohui; Zhao, Jinsong; Qiu, Tong; Sun, Wenyong; Wei, Zhenqiang

    2012-01-01

    Incomplete process hazard analysis (PHA) and poor knowledge management have been two major reasons that have caused numerous lamentable disasters in the chemical process industry (CPI). To improve PHA quality, a new integration framework that combines HAZOP, layer of protection analysis (LOPA), safety requirements specification (SRS) and safety integrity level (SIL) validation is proposed in this paper. To facilitate the integrated work flow and improve the relevant knowledge management, an intelligent software platform named HASILT has been developed by our research team. Its key components and functions are described in this paper. Furthermore, since the platform keeps all history data in a central case base and case-based reasoning is used to automatically retrieve similar old cases for helping resolve new problems, a recall opportunity is created to reduce information loss which has been cited many times as a common root cause in investigations of accidents.

  17. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  18. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  19. ALLIANCES: simulation platform for radioactive waste disposal

    International Nuclear Information System (INIS)

    Deville, E.; Montarnal, Ph.; Loth, L.; Chavant, C.

    2009-01-01

    CEA, ANDRA and EDF are jointly developing the software platform ALLIANCES whose aim is to produce a tool for the simulation of nuclear waste storage and disposal. This type of simulations deals with highly coupled thermo-hydro-mechanical-chemical and radioactive (T-H-M-C-R) processes. ALLIANCES' aim is to accumulate within the same simulation environment the already acquired knowledge and to gradually integrate new knowledge. The current version of ALLIANCES contains the following modules: - Hydraulics and reactive transport in unsaturated and saturated media; - Multi-phase flow; - Mechanical thermal-hydraulics; - Thermo-Aeraulics; - Chemistry/Transport coupling in saturated media; - Alteration of waste package coupled with the environment; - Sensitivity analysis tools. The next releases will include more physical phenomena like: reactive transport in unsaturated flow and multicomponent multiphase flow; incorporation of responses surfaces in sensitivity analysis tools; integration of parallel numerical codes for flow and transport. Since the distribution of the first release of ALLIANCES (December 2003), the platform was used by ANDRA for his safety simulation program and by CEA for reactive transport simulations (migration of uranium in a soil, diffusion of different reactive species on laboratory samples, glass/iron/clay interaction). (authors)

  20. An E-government Interoperability Platform Supporting Personal Data Protection Regulations

    Directory of Open Access Journals (Sweden)

    Laura González

    2016-08-01

    Full Text Available Public agencies are increasingly required to collaborate with each other in order to provide high-quality e-government services. This collaboration is usually based on the service-oriented approach and supported by interoperability platforms. Such platforms are specialized middleware-based infrastructures enabling the provision, discovery and invocation of interoperable software services. In turn, given that personal data handled by governments are often very sensitive, most governments have developed some sort of legislation focusing on data protection. This paper proposes solutions for monitoring and enforcing data protection laws within an E-government Interoperability Platform. In particular, the proposal addresses requirements posed by the Uruguayan Data Protection Law and the Uruguayan E-government Platform, although it can also be applied in similar scenarios. The solutions are based on well-known integration mechanisms (e.g. Enterprise Service Bus as well as recognized security standards (e.g. eXtensible Access Control Markup Language and were completely prototyped leveraging the SwitchYard ESB product.

  1. A chip-scale integrated cavity-electro-optomechanics platform

    DEFF Research Database (Denmark)

    Winger, M.; Blasius, T. D.; Mayer Alegre, T. P.

    2011-01-01

    We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity...... resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave...

  2. A Virtual Commissioning Learning Platform

    DEFF Research Database (Denmark)

    Mortensen, Steffen; Madsen, Ole

    2018-01-01

    The introduction of reconfigurable manufacturing systems (RMS), Industry 4.0 and the associated technologies requires the establishment of new competencies. Towards that goal, Aalborg University (AAU) has developed an Industry 4.0 learning factory, the AAU Smart Production Lab. The AAU Smart...... Production Lab integrates a number of Industry 4.0 technologies for learning and research purposes. One of the many techniques is virtual commissioning. Virtual commissioning uses a virtual plant model and real controllers (PLCs) enabling a full emulation of the manufacturing system for verification. Virtual...... commissioning can lower the commissioning time up to 63%, allowing faster time to market. However, virtual commission is still missing industrial impact one of the reasons being lack of competencies and integration experiences. The paper presents the setup of the virtual commissioning learning platform...

  3. The NREL Biochemical and Thermochemical Ethanol Conversion Processes: Financial and Environmental Analysis Comparison

    Directory of Open Access Journals (Sweden)

    Jesse Sky Daystar

    2015-07-01

    Full Text Available The financial and environmental performance of the National Renewable Energy Lab’s (NREL thermochemical and biochemical biofuel conversion processes are examined herein with pine, eucalyptus, unmanaged hardwood, switchgrass, and sweet sorghum. The environmental impacts of the process scenarios were determined by quantifying greenhouse gas (GHG emissions and TRACI impacts. Integrated financial and environmental performance metrics were introduced and used to examine the biofuel production scenarios. The thermochemical and biochemical conversion processes produced the highest financial performance and lowest environmental impacts when paired with pine and sweet sorghum, respectively. The high ash content of switchgrass and high lignin content of loblolly pine lowered conversion yields, resulting in the highest environmental impacts and lowest financial performance for the thermochemical and biochemical conversion processes, respectively. Biofuel produced using the thermochemical conversion process resulted in lower TRACI single score impacts and somewhat lower GHG emissions per megajoule (MJ of fuel than using the biochemical conversion pathway. The cost of carbon mitigation resulting from biofuel production and corresponding government subsidies was determined to be higher than the expected market carbon price. In some scenarios, the cost of carbon mitigation was several times higher than the market carbon price, indicating that there may be other more cost-effective methods of reducing carbon emissions.

  4. InGaAsP Mach-Zehnder interferometer optical modulator monolithically integrated with InGaAs driver MOSFET on a III-V CMOS photonics platform.

    Science.gov (United States)

    Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru

    2018-02-19

    We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.

  5. Exploration of graphene oxide as an intelligent platform for cancer vaccines

    Science.gov (United States)

    Yue, Hua; Wei, Wei; Gu, Zonglin; Ni, Dezhi; Luo, Nana; Yang, Zaixing; Zhao, Lin; Garate, Jose Antonio; Zhou, Ruhong; Su, Zhiguo; Ma, Guanghui

    2015-11-01

    We explored an intelligent vaccine system via facile approaches using both experimental and theoretical techniques based on the two-dimensional graphene oxide (GO). Without extra addition of bio/chemical stimulators, the microsized GO imparted various immune activation tactics to improve the antigen immunogenicity. A high antigen adsorption was acquired, and the mechanism was revealed to be a combination of electrostatic, hydrophobic, and π-π stacking interactions. The ``folding GO'' acted as a cytokine self-producer and antigen reservoir and showed a particular autophagy, which efficiently promoted the activation of antigen presenting cells (APCs) and subsequent antigen cross-presentation. Such a ``One but All'' modality thus induced a high level of anti-tumor responses in a programmable way and resulted in efficient tumor regression in vivo. This work may shed light on the potential use of a new dimensional nano-platform in the development of high-performance cancer vaccines.We explored an intelligent vaccine system via facile approaches using both experimental and theoretical techniques based on the two-dimensional graphene oxide (GO). Without extra addition of bio/chemical stimulators, the microsized GO imparted various immune activation tactics to improve the antigen immunogenicity. A high antigen adsorption was acquired, and the mechanism was revealed to be a combination of electrostatic, hydrophobic, and π-π stacking interactions. The ``folding GO'' acted as a cytokine self-producer and antigen reservoir and showed a particular autophagy, which efficiently promoted the activation of antigen presenting cells (APCs) and subsequent antigen cross-presentation. Such a ``One but All'' modality thus induced a high level of anti-tumor responses in a programmable way and resulted in efficient tumor regression in vivo. This work may shed light on the potential use of a new dimensional nano-platform in the development of high-performance cancer vaccines. Electronic

  6. An Experimentation Platform for On-Chip Integration of Analog Neural Networks: A Pathway to Trusted and Robust Analog/RF ICs.

    Science.gov (United States)

    Maliuk, Dzmitry; Makris, Yiorgos

    2015-08-01

    We discuss the design of an experimentation platform intended for prototyping low-cost analog neural networks for on-chip integration with analog/RF circuits. The objective of such integration is to support various tasks, such as self-test, self-tuning, and trust/aging monitoring, which require classification of analog measurements obtained from on-chip sensors. Particular emphasis is given to cost-efficient implementation reflected in: 1) low energy and area budgets of circuits dedicated to neural networks; 2) robust learning in presence of analog inaccuracies; and 3) long-term retention of learned functionality. Our chip consists of a reconfigurable array of synapses and neurons operating below threshold and featuring sub-μW power consumption. The synapse circuits employ dual-mode weight storage: 1) a dynamic mode, for fast bidirectional weight updates during training and 2) a nonvolatile mode, for permanent storage of learned functionality. We discuss a robust learning strategy, and we evaluate the system performance on several benchmark problems, such as the XOR2-6 and two-spirals classification tasks.

  7. Mobile@Old: A Smart Home Platform for Enhancing the Elderly Mobility

    Directory of Open Access Journals (Sweden)

    MOCANU, I.

    2017-11-01

    Full Text Available Regular physical exercises are widely considered to be a key factor for living a healthy life. In this paper we present Mobile@Old, an integrated platform for assisting elderly people to maintain a healthy lifestyle in their homes. Our aim is to highlight the main concepts, technologies, and findings this system rests on. To this end we integrate Mobile@Old in the general conceptual framework of serious games. We provide details about the designing and implementation of Vital Signs Monitoring (VSM and Physical Activity Trainer (PAT components of Mobile@Old. Relevant exercises and utilization scenarios are also presented in order to emphases the practical applicability of our approach. We evaluate the usability of platform using the System Usability Scale (SUS. Experimental data regarding the accuracy of whole body movements are also presented

  8. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    Science.gov (United States)

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  10. A Platform of Constructivist Learning in Practice: Computer Literacy Integrated into Elementary School

    Directory of Open Access Journals (Sweden)

    Ivan Garcia

    2010-06-01

    Full Text Available In Mexico, the conventional teaching approach, when applied specifically to elementary school, seems to fall short of attaining the overall quality objective. The main consequence of this problem is when teachers are not sure that their students really understand the dynamic nature of concepts and mechanism since an early age, particularly in elementary school. This paper presents a pedagogical/technological platform, based on constructivism ideas, as a means of making the learning process in elementary school more efficient and interesting. The constructivist platform presented here uses graphical simulators developed for Web 2.0 as a support tool, creating a teaching and learning environment in which practical experiments can be undertaken as each topic is introduced and explained.

  11. Atomdroid: a computational chemistry tool for mobile platforms.

    Science.gov (United States)

    Feldt, Jonas; Mata, Ricardo A; Dieterich, Johannes M

    2012-04-23

    We present the implementation of a new molecular mechanics program designed for use in mobile platforms, the first specifically built for these devices. The software is designed to run on Android operating systems and is compatible with several modern tablet-PCs and smartphones available in the market. It includes molecular viewer/builder capabilities with integrated routines for geometry optimizations and Monte Carlo simulations. These functionalities allow it to work as a stand-alone tool. We discuss some particular development aspects, as well as the overall feasibility of using computational chemistry software packages in mobile platforms. Benchmark calculations show that through efficient implementation techniques even hand-held devices can be used to simulate midsized systems using force fields.

  12. Smart adaptable system for older adults' Daily Life Activities Management - The ABLE platform.

    Science.gov (United States)

    Giokas, Kostas; Anastasiou, Athanasios; Tsirmpas, Charalampos; Koutsouri, Georgia; Koutsouris, Dimitris; Iliopoulou, Dimitra

    2014-01-01

    In this paper we propose a system (ABLE) that will act as the main platform for a number of low-cost, mature technologies that will be integrated in order to create a dynamically adaptive Daily Life Activities Management environment in order to facilitate the everyday life of senior (but not exclusively) citizens at home. While the main target group of ABLE's users is the ageing population its use can be extended to all people that are vulnerable or atypical in body, intellect or emotions and are categorized by society as disabled. The classes of assistive products that are well defined in the international standard, ISO9999 such as assistive products for personal medical treatment, personal care and protection, communication, information and reaction and for personal mobility, will be easily incorporated in our proposed platform. Furthermore, our platform could integrate and implement the above classes under several service models that will be analyzed further.

  13. Integrating Molecular Computation and Material Production in an Artificial Subcellular Matrix

    DEFF Research Database (Denmark)

    Fellermann, Harold; Hadorn, Maik; Bönzli, Eva

    Living systems are unique in that they integrate molecular recognition and information processing with material production on the molecular scale. Pre- dominant locus of this integration is the cellular matrix, where a multitude of biochemical reactions proceed simultaneously in highly compartmen......Living systems are unique in that they integrate molecular recognition and information processing with material production on the molecular scale. Pre- dominant locus of this integration is the cellular matrix, where a multitude of biochemical reactions proceed simultaneously in highly...... compartmentalized re- action compartments that interact and get delivered through vesicle trafficking. The European Commission funded project MatchIT (Matrix for Chemical IT) aims at creating an artificial cellular matrix that seamlessly integrates infor- mation processing and material production in much the same...

  14. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  15. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    Science.gov (United States)

    Drewnowski, Jakub; Zaborowska, Ewa; Hernandez De Vega, Carmen

    2018-02-01

    Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  16. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    Directory of Open Access Journals (Sweden)

    Drewnowski Jakub

    2018-01-01

    Full Text Available Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  17. From proteomics to systems biology: MAPA, MASS WESTERN, PROMEX, and COVAIN as a user-oriented platform.

    Science.gov (United States)

    Weckwerth, Wolfram; Wienkoop, Stefanie; Hoehenwarter, Wolfgang; Egelhofer, Volker; Sun, Xiaoliang

    2014-01-01

    Genome sequencing and systems biology are revolutionizing life sciences. Proteomics emerged as a fundamental technique of this novel research area as it is the basis for gene function analysis and modeling of dynamic protein networks. Here a complete proteomics platform suited for functional genomics and systems biology is presented. The strategy includes MAPA (mass accuracy precursor alignment; http://www.univie.ac.at/mosys/software.html ) as a rapid exploratory analysis step; MASS WESTERN for targeted proteomics; COVAIN ( http://www.univie.ac.at/mosys/software.html ) for multivariate statistical analysis, data integration, and data mining; and PROMEX ( http://www.univie.ac.at/mosys/databases.html ) as a database module for proteogenomics and proteotypic peptides for targeted analysis. Moreover, the presented platform can also be utilized to integrate metabolomics and transcriptomics data for the analysis of metabolite-protein-transcript correlations and time course analysis using COVAIN. Examples for the integration of MAPA and MASS WESTERN data, proteogenomic and metabolic modeling approaches for functional genomics, phosphoproteomics by integration of MOAC (metal-oxide affinity chromatography) with MAPA, and the integration of metabolomics, transcriptomics, proteomics, and physiological data using this platform are presented. All software and step-by-step tutorials for data processing and data mining can be downloaded from http://www.univie.ac.at/mosys/software.html.

  18. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement

    International Nuclear Information System (INIS)

    Yu Haitao; Li Xinxin; Gan Xiaohua; Liu Yongjing; Liu Xiang; Xu Pengcheng; Li Jungang; Liu Min

    2009-01-01

    With an integrated resonance exciting heater and a self-sensing piezoresistor, resonant micro-cantilever bio/chemical sensors are optimally designed and fabricated by micromachining techniques. This study is emphasized on the optimization of the integrated heating resistor. Previous research has put the heater at either the cantilever clamp end, the midpoint or the free end. Aiming at sufficiently high and stable resonant amplitude, our research indicates that the optimized location of the thermal-electric exciting resistor is the clamp end instead of other positions. By both theoretical analysis and resonance experiments where three heating resistors are placed at the three locations of the fabricated cantilever, it is clarified that the clamp end heating provides the most efficient resonance excitation in terms of resonant amplitude, Q-factor and resonance stability. Besides, the optimized combination of dc bias and ac voltage is determined by both analysis and experimental verification. With the optimized heating excitation, the resonant cantilever is used for biotin–avidin-specific detection, resulting in a ±0.1 Hz ultra-low noise floor of the frequency signal and a 130 fg mass resolution. In addition to resonance excitation, the heater is used to heat up the cantilever for speed-up desorption after detection that helps rapid and repeated sensing to chemical vapor. The clamp end is determined (by simulation) as the optimal heating location for uniform temperature distribution on the cantilever. Using the resonant cantilever, a rapid and repeated sensing experiment on dimethyl methylphosphonate (DMMP) vapor shows that a short-period heating at the detection interval significantly quickens the signal recovery and enhances the sensing repeatability

  19. Antimony-Induced Neurobehavioral and Biochemical Perturbations in Mice.

    Science.gov (United States)

    Tanu, Tanzina; Anjum, Adiba; Jahan, Momotaj; Nikkon, Farjana; Hoque, Mominul; Roy, Apurba Kumar; Haque, Azizul; Himeno, Seiichiro; Hossain, Khaled; Saud, Zahangir Alam

    2018-03-08

    Groundwater used for drinking has been contaminated with naturally occurring inorganic arsenic and other metals, and metal-contaminated drinking water is the biggest threat to public health in Bangladesh. Toxic metals present in the drinking water have a strong relationship with chronic diseases in humans. Antimony (Sb), a naturally occurring metal, has been reported to be present in the drinking water along with other heavy metals in Bangladesh. Although Sb is present in the environment, very little attention has been given to the toxic effects of Sb. The present study was designed to investigate the in vivo effects of Sb on neurobehavioral changes like anxiety, learning and memory impairment, and blood indices related to organ dysfunction. Mice exposed to antimony potassium-tartrate hydrate (Sb) (10 mg/kg body weight) significantly (p < 0.05) decreased the time spent in open arms while increased the time spent in closed arms compared to the control mice in elevated plus maze. The mean latency time of control group to find the platform decreased (p < 0.05) significantly during 7 days learning as compared to Sb-treated group in Morris water maze test, and Sb-exposed group spent significantly (p < 0.05) less time in the desired quadrant as compared to the control group in probe trial. Sb treatment also significantly altered blood indices related to liver and kidney dysfunction. Additionally, Sb-induced biochemical alterations were associated with significant perturbations in histological architecture of liver and kidney of Sb-exposed mice. These data suggest that Sb has a toxic effect on neurobehavioral and biochemical changes in mice.

  20. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective.

    Science.gov (United States)

    Shao, Yue; Fu, Jianping

    2014-03-12

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Support for Taverna workflows in the VPH-Share cloud platform.

    Science.gov (United States)

    Kasztelnik, Marek; Coto, Ernesto; Bubak, Marian; Malawski, Maciej; Nowakowski, Piotr; Arenas, Juan; Saglimbeni, Alfredo; Testi, Debora; Frangi, Alejandro F

    2017-07-01

    To address the increasing need for collaborative endeavours within the Virtual Physiological Human (VPH) community, the VPH-Share collaborative cloud platform allows researchers to expose and share sequences of complex biomedical processing tasks in the form of computational workflows. The Taverna Workflow System is a very popular tool for orchestrating complex biomedical & bioinformatics processing tasks in the VPH community. This paper describes the VPH-Share components that support the building and execution of Taverna workflows, and explains how they interact with other VPH-Share components to improve the capabilities of the VPH-Share platform. Taverna workflow support is delivered by the Atmosphere cloud management platform and the VPH-Share Taverna plugin. These components are explained in detail, along with the two main procedures that were developed to enable this seamless integration: workflow composition and execution. 1) Seamless integration of VPH-Share with other components and systems. 2) Extended range of different tools for workflows. 3) Successful integration of scientific workflows from other VPH projects. 4) Execution speed improvement for medical applications. The presented workflow integration provides VPH-Share users with a wide range of different possibilities to compose and execute workflows, such as desktop or online composition, online batch execution, multithreading, remote execution, etc. The specific advantages of each supported tool are presented, as are the roles of Atmosphere and the VPH-Share plugin within the VPH-Share project. The combination of the VPH-Share plugin and Atmosphere engenders the VPH-Share infrastructure with far more flexible, powerful and usable capabilities for the VPH-Share community. As both components can continue to evolve and improve independently, we acknowledge that further improvements are still to be developed and will be described. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  3. Systematic Integration of Innovation in Process Improvement Projects Using the Enhanced Sigma-TRIZ Algorithm and Its Effective Use by Means of a Knowledge Management Software Platform

    Directory of Open Access Journals (Sweden)

    Mircea FULEA

    2009-01-01

    Full Text Available In an evolving, highly turbulent and uncertain socio-economic environment, organizations must consider strategies of systematic and continuous integration of innovation within their business systems, as a fundamental condition for sustainable development. Adequate methodologies are required in this respect. A mature framework for integrating innovative problem solving approaches within business process improvement methodologies is proposed in this paper. It considers a TRIZ-centred algorithm in the improvement phase of the DMAIC methodology. The new tool is called enhanced sigma-TRIZ. A case study reveals the practical application of the proposed methodology. The integration of enhanced sigma-TRIZ within a knowledge management software platform (KMSP is further described. Specific developments to support processes of knowledge creation, knowledge storage and retrieval, knowledge transfer and knowledge application in a friendly and effective way within the KMSP are also highlighted.

  4. A collaborative platform for consensus sessions in pathology over Internet.

    Science.gov (United States)

    Zapletal, Eric; Le Bozec, Christel; Degoulet, Patrice; Jaulent, Marie-Christine

    2003-01-01

    The design of valid databases in pathology faces the problem of diagnostic disagreement between pathologists. Organizing consensus sessions between experts to reduce the variability is a difficult task. The TRIDEM platform addresses the issue to organize consensus sessions in pathology over the Internet. In this paper, we present the basis to achieve such collaborative platform. On the one hand, the platform integrates the functionalities of the IDEM consensus module that alleviates the consensus task by presenting to pathologists preliminary computed consensus through ergonomic interfaces (automatic step). On the other hand, a set of lightweight interaction tools such as vocal annotations are implemented to ease the communication between experts as they discuss a case (interactive step). The architecture of the TRIDEM platform is based on a Java-Server-Page web server that communicate with the ObjectStore PSE/PRO database used for the object storage. The HTML pages generated by the web server run Java applets to perform the different steps (automatic and interactive) of the consensus. The current limitations of the platform is to only handle a synchronous process. Moreover, improvements like re-writing the consensus workflow with a protocol such as BPML are already forecast.

  5. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  6. MiSTIC, an integrated platform for the analysis of heterogeneity in large tumour transcriptome datasets.

    Science.gov (United States)

    Lemieux, Sebastien; Sargeant, Tobias; Laperrière, David; Ismail, Houssam; Boucher, Geneviève; Rozendaal, Marieke; Lavallée, Vincent-Philippe; Ashton-Beaucage, Dariel; Wilhelm, Brian; Hébert, Josée; Hilton, Douglas J; Mader, Sylvie; Sauvageau, Guy

    2017-07-27

    Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  8. The Platform Architecture and Key Technology of Cloud Service that Support Wisdom City Management

    Directory of Open Access Journals (Sweden)

    Liang Xiao

    2013-05-01

    Full Text Available According to the new requirement of constructing “resource sharing and service on demand” wisdom city system, this paper put forward the platform architecture of cloud service for wisdom city management which support IaaS, PaaS and SaaS three types of service model on the basis of researching the operation mode of the wisdom city which under cloud computing environment and through the research of mass storing technology of cloud data, building technology of cloud resource pool, scheduling management methods and monitoring technology of cloud resource, security management and control technology of cloud platform and other key technologies. The platform supports wisdom city system to achieve business or resource scheduling management optimization and the unified and efficient management of large-scale hardware and software, which has the characteristics of cross-domain resource scheduling, cross-domain data sharing, cross-domain facilities integration and cross-domain service integration.

  9. The Western States Water Mission: A Hyper-Resolution Hydrological Model and Data Integration Platform for the Western United States

    Science.gov (United States)

    Famiglietti, J. S.; David, C. H.; Reager, J. T., II; Oaida, C.; Stampoulis, D.; Levoe, S.; Liu, P. W.; Trangsrud, A.; Basilio, R. R.; Allen, G. H.; Crichton, D. J.; Emery, C. M.; Farr, T.; Granger, S. L.; Hobbs, J.; Malhotra, S.; Osterman, G. B.; Rueckert, M.; Turmon, M.

    2017-12-01

    The Western States Water Mission (WSWM) is a high-resolution (3 km2), hydrological model and data integration platform under development at the Jet Propulsion Laboratory for the last 2 years. Distinctive features of the WSWM are its explicit representations of river networks and deep groundwater, an emphasis on uncertainty quantification, a major visualization and data distribution effort, and its focus on multivariate data assimilation, including GRACE/FO, SMAP, SWOT and MODSCAG fractional snow covered area. Importantly, the WSWM is actively managed as a flight project, i.e. with the rigor of a satellite mission. In this presentation we give an overview of the WSWM, including past accomplishments status, and future plans. In particular, results from recent 30-year simulations with GRACE and MODSCAG assimilation will be presented.

  10. An integrated in silico approach to design specific inhibitors targeting human poly(a-specific ribonuclease.

    Directory of Open Access Journals (Sweden)

    Dimitrios Vlachakis

    Full Text Available Poly(A-specific ribonuclease (PARN is an exoribonuclease/deadenylase that degrades 3'-end poly(A tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation. Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN's catalytic mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of DNP-poly(A amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-poly(A inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of pharmacophore models as well as novel modulators of PARN with therapeutic potential.

  11. Open innovation in health care: analysis of an open health platform.

    Science.gov (United States)

    Bullinger, Angelika C; Rass, Matthias; Adamczyk, Sabrina; Moeslein, Kathrin M; Sohn, Stefan

    2012-05-01

    Today, integration of the public in research and development in health care is seen as essential for the advancement of innovation. This is a paradigmatic shift away from the traditional assumption that solely health care professionals are able to devise, develop, and disseminate novel concepts and solutions in health care. The present study builds on research in the field of open innovation to investigate the adoption of an open health platform by patients, care givers, physicians, family members, and the interested public. Results suggest that open innovation practices in health care lead to interesting innovation outcomes and are well accepted by participants. During the first three months, 803 participants of the open health platform submitted challenges and solutions and intensively communicated by exchanging 1454 personal messages and 366 comments. Analysis of communication content shows that empathic support and exchange of information are important elements of communication on the platform. The study presents first evidence for the suitability of open innovation practices to integrate the general public in health care research in order to foster both innovation outcomes and empathic support. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Cirip.Eu – An educational microblogging platform around objects 2.0

    Directory of Open Access Journals (Sweden)

    Carmen Holotescu

    2013-03-01

    Full Text Available In recent years, the most daring player in the social media arena proved to be the microblogging technology, the most energetic in this field being Twitter, raising the interest of the educational actors. A number of microblogging platforms dedicated to education were implemented, such as Edmodo, Plurk, Cirip.eu or Twiducate. In this context, the paper aims to provide an overall analysis of the microblogging platform Cirip.eu for educational directions such as: information and knowledge management, courses enhancement, delivering online courses, collaborative projects, communities of practice, hosting different workshops, conferences or scientific events, building e- portfolios, etc. Thus, the main aspects of the paper will regard the following: 1. The facilities offered by Cirip.eu recommend it as a modern and flexible mobile Social Learning Management System (mSLMS, integrating users' Personal Learning Environments; 2. How microblogging can be integrated with other Web2.0 technologies, and into the Open Educational Resources movement; 3. How the experience and the new pedagogical approach in using microblogging can be captured and formally represented as learning design objects; 4. How learning design objects can be shared, discussed, improved, reused on the microblogging platform.

  13. Recent Progress in Optical Biosensors Based on Smartphone Platforms

    Science.gov (United States)

    Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda

    2017-01-01

    With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms. PMID:29068375

  14. Recent Progress in Optical Biosensors Based on Smartphone Platforms.

    Science.gov (United States)

    Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda

    2017-10-25

    With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms.

  15. A Privacy-Preserving Platform for User-Centric Quantitative Benchmarking

    Science.gov (United States)

    Herrmann, Dominik; Scheuer, Florian; Feustel, Philipp; Nowey, Thomas; Federrath, Hannes

    We propose a centralised platform for quantitative benchmarking of key performance indicators (KPI) among mutually distrustful organisations. Our platform offers users the opportunity to request an ad-hoc benchmarking for a specific KPI within a peer group of their choice. Architecture and protocol are designed to provide anonymity to its users and to hide the sensitive KPI values from other clients and the central server. To this end, we integrate user-centric peer group formation, exchangeable secure multi-party computation protocols, short-lived ephemeral key pairs as pseudonyms, and attribute certificates. We show by empirical evaluation of a prototype that the performance is acceptable for reasonably sized peer groups.

  16. Test Results of a Platform for Safety I and C Systems of SMART MMIS

    International Nuclear Information System (INIS)

    Suh, Yong Suk; Keum, Jong Yong; Jeong, Kwang Il; Lee, Joon Ku; Lee, Sang Seok; Kim, Kwan Woong

    2011-01-01

    SMART (System-integrated Modular Advanced ReacTor), a 330MWt integral pressurized light water reactor that integrates four reactor coolant pumps, one pressurizer, eight steam generators, and one reactor core into a reactor vessel, has been under development at KAERI since 1997. A standard design safety analysis report of the SMART prepared by KAERI was submitted to Korea institute of nuclear safety (KINS) at the end of 2010. KAERI aims to achieve standard design approval (SDA) from KINS by the end of 2011. SMART MMIS has been designed using digital systems. It has digital-based compact control rooms. Its instrumentation and control (I and C) systems are designed using modular equipment connected through datalinks. Non-safety I and C systems are designed based on the commercial distributed control systems. Safety I and C systems are based on a new platform developed by KAERI. The platform is a high-speed digital signal processor (DSP)-based control unit. It plays the role of a module that provides control functions of the safety I and C systems. The test facilities have been developed at KAERI since 2009. This paper presents the development and test results of the platform

  17. Distributed Processing of Sentinel-2 Products using the BIGEARTH Platform

    Science.gov (United States)

    Bacu, Victor; Stefanut, Teodor; Nandra, Constantin; Mihon, Danut; Gorgan, Dorian

    2017-04-01

    The constellation of observational satellites orbiting around Earth is constantly increasing, providing more data that need to be processed in order to extract meaningful information and knowledge from it. Sentinel-2 satellites, part of the Copernicus Earth Observation program, aim to be used in agriculture, forestry and many other land management applications. ESA's SNAP toolbox can be used to process data gathered by Sentinel-2 satellites but is limited to the resources provided by a stand-alone computer. In this paper we present a cloud based software platform that makes use of this toolbox together with other remote sensing software applications to process Sentinel-2 products. The BIGEARTH software platform [1] offers an integrated solution for processing Earth Observation data coming from different sources (such as satellites or on-site sensors). The flow of processing is defined as a chain of tasks based on the WorDeL description language [2]. Each task could rely on a different software technology (such as Grass GIS and ESA's SNAP) in order to process the input data. One important feature of the BIGEARTH platform comes from this possibility of interconnection and integration, throughout the same flow of processing, of the various well known software technologies. All this integration is transparent from the user perspective. The proposed platform extends the SNAP capabilities by enabling specialists to easily scale the processing over distributed architectures, according to their specific needs and resources. The software platform [3] can be used in multiple configurations. In the basic one the software platform runs as a standalone application inside a virtual machine. Obviously in this case the computational resources are limited but it will give an overview of the functionalities of the software platform, and also the possibility to define the flow of processing and later on to execute it on a more complex infrastructure. The most complex and robust

  18. Recover faster from disaster: Success factors for a crowdsourcing platform

    NARCIS (Netherlands)

    Roos, B.; Buul-Besseling, K. van; Streefkerk, J.W.; Neef, M.

    2015-01-01

    In this paper, we present a model that identifies seven success factors for the development of crowdsourcing platforms for disaster recovery. This model integrates two existing theories. The first theory focuses on success factors of crowdsourcing initiatives in general. The second theory states how

  19. Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Kildishev, Alexander V.; Shalaev, Vladimir M.

    2015-01-01

    Graphene has recently emerged as a viable platform for integrated optoelectronic and hybrid photonic devices because of its unique properties. The optical properties of graphene can be dynamically controlled by electrical voltage and have been used to modulate the plasmons in noble metal nanostru...

  20. Cross-Platform Technologies

    Directory of Open Access Journals (Sweden)

    Maria Cristina ENACHE

    2017-04-01

    Full Text Available Cross-platform - a concept becoming increasingly used in recent years especially in the development of mobile apps, but this consistently over time and in the development of conventional desktop applications. The notion of cross-platform software (multi-platform or platform-independent refers to a software application that can run on more than one operating system or computing architecture. Thus, a cross-platform application can operate independent of software or hardware platform on which it is execute. As a generic definition presents a wide range of meanings for purposes of this paper we individualize this definition as follows: we will reduce the horizon of meaning and we use functionally following definition: a cross-platform application is a software application that can run on more than one operating system (desktop or mobile identical or in a similar way.

  1. Platform Performance and Challenges - using Platforms in Lego Company

    DEFF Research Database (Denmark)

    Munk, Lone; Mortensen, Niels Henrik

    2009-01-01

    needs focus on the incentive of using the platform. This problem lacks attention in literature, as well as industry, where assessment criteria do not cover this aspect. Therefore, we recommend including user incentive in platform assessment criteria to these challenges. Concrete solution elements...... ensuring user incentive in platforms is an object for future research...

  2. A chip-scale integrated cavity-electro-optomechanics platform.

    Science.gov (United States)

    Winger, M; Blasius, T D; Mayer Alegre, T P; Safavi-Naeini, A H; Meenehan, S; Cohen, J; Stobbe, S; Painter, O

    2011-12-05

    We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave the way for a new class of micro-sensors utilizing optomechanical back-action for thermal noise reduction and low-noise optical read-out.

  3. A robust robotic high-throughput antibody purification platform.

    Science.gov (United States)

    Schmidt, Peter M; Abdo, Michael; Butcher, Rebecca E; Yap, Min-Yin; Scotney, Pierre D; Ramunno, Melanie L; Martin-Roussety, Genevieve; Owczarek, Catherine; Hardy, Matthew P; Chen, Chao-Guang; Fabri, Louis J

    2016-07-15

    Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development. Miniaturization and automation of chromatography using micro columns (RoboColumns(®) from Atoll GmbH) coupled to an automated liquid handling instrument (ALH; Freedom EVO(®) from Tecan) has been a successful approach to establish high throughput process development platforms. Recent advances in transient gene expression (TGE) using the high-titre Expi293F™ system have enabled recombinant mAb titres of greater than 500mg/L. These relatively high protein titres reduce the volume required to generate several milligrams of individual antibodies for initial biochemical and biological downstream assays, making TGE in the Expi293F™ system ideally suited to high throughput chromatography on an ALH. The present publication describes a novel platform for purifying Expi293F™-expressed recombinant mAbs directly from cell-free culture supernatant on a Perkin Elmer JANUS-VariSpan ALH equipped with a plate shuttle device. The purification platform allows automated 2-step purification (Protein A-desalting/size exclusion chromatography) of several hundred mAbs per week. The new robotic method can purify mAbs with high recovery (>90%) at sub-milligram level with yields of up to 2mg from 4mL of cell-free culture supernatant. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Platform Constellations

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    This research paper presents an initial attempt to introduce and explain the emergence of new phenomenon, which we refer to as platform constellations. Functioning as highly modular systems, the platform constellations are collections of highly connected platforms which co-exist in parallel and a......’ acquisition and users’ engagement rates as well as unlock new sources of value creation and diversify revenue streams....

  5. A mini-UAV VTOL Platform for Surveying Applications

    Directory of Open Access Journals (Sweden)

    Kuldeep Rawat

    2014-05-01

    Full Text Available In this paper we discuss implementation of a mini-Unmanned Aerial Vehicle (UAV vertical take-off and landing (VTOL platform for surveying activities related to highway construction. Recent advances in sensor and communication technologies have allowed scaling sizes of unmanned aerial platforms, and explore them for tasks that are economical and safe over populated or inhabited areas. In highway construction the capability of mini-UAVs to survey in hostile and/or hardly accessible areas can greatly reduce human risks. The project focused on developing a cost effective, remotely controlled, fuel powered mini-UAV VTOL (helicopter platform with certain payload capacity and configuration and demonstrated its use in surveying and monitoring activities required for highway planning and construction. With an on-board flight recorder global positioning system (GPS device, memory storage card, telemetry, inertial navigation sensors, and a video camera the mini-UAV can record flying coordinates and relay live video images to a remote ground receiver and surveyor. After all necessary integration and flight tests were done the mini-UAV helicopter was tested to operate and relay video from the areas where construction was underway. The mini-UAV can provide a platform for a range of sensors and instruments that directly support the operational requirements of transportation sector.

  6. Integrative NMR for biomolecular research

    International Nuclear Information System (INIS)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L.

    2016-01-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  7. Integrative NMR for biomolecular research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-04-15

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download{sub p}ackages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  8. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.

    Science.gov (United States)

    Zeng, Yining; Zhao, Shuai; Yang, Shihui; Ding, Shi-You

    2014-06-01

    A biochemical platform holds the most promising route toward lignocellulosic biofuels, in which polysaccharides are hydrolyzed by cellulase enzymes into simple sugars and fermented to ethanol by microbes. However, these polysaccharides are cross-linked in the plant cell walls with the hydrophobic network of lignin that physically impedes enzymatic deconstruction. A thermochemical pretreatment process is often required to remove or delocalize lignin, which may also generate inhibitors that hamper enzymatic hydrolysis and fermentation. Here we review recent advances in understanding lignin structure in the plant cell walls and the negative roles of lignin in the processes of converting biomass to biofuels. Perspectives and future directions to improve the biomass conversion process are also discussed. Copyright © 2013. Published by Elsevier Ltd.

  9. Thermochemical and biochemical routes to biofuels: state of the art, opportunities and challenges for Brazil; Rotas termoquimica e bioquimica para biocombustiveis: estado-da-arte, oportunidades e desafios para o Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Lora, Electo Eduardo Silva; Coral, Doris del Socorro Obando; Rocha, Mateus Henrique [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida

    2008-07-01

    In this work are defined the fundamentals of thermochemical and biochemical platforms for the production of biofuels and electricity. The environmental advantages and the land use for both technological options are discussed. For each case, the process scheme and relevant products are presented, as well as, the technological challenges. In addition, it will be presented the products yields according to the current state of the art for both platforms, as well as, a description of the principal demonstrative and commercial projects that are currently either in construction or in operation. Finally, it will be present the results of recent economical studies in order to summarize the production cost of the most promising biofuels. R and D opportunities for Brazil in both platforms are evaluated also. (author)

  10. Integrated Cu-based TM-pass polarizer using CMOS technology platform

    KAUST Repository

    Ng, Tien Khee

    2010-01-01

    A transverse-magnetic-pass (TM-pass) copper (Cu) polarizer is proposed and analyzed using the previously published two-dimensional Method-of-Lines beam-propagation model. The proposed polarizer exhibits a simulated high-pass filter characteristics, with TM0 and TE0 mode transmissivity of >70% and <5%, respectively, in the wavelength regime of 1.2-1.6 μm. The polarization extinction ratio (PER) given by 10 log10 (PTM0)/(PTE0) is +11.5 dB across the high-pass wavelength regime. To the best of the authors\\' knowledge, we report here the smallest footprint CMOS-platform compatible TM-polarizer.

  11. Estimating Biochemical Parameters of Tea (camellia Sinensis (L.)) Using Hyperspectral Techniques

    Science.gov (United States)

    Bian, M.; Skidmore, A. K.; Schlerf, M.; Liu, Y.; Wang, T.

    2012-07-01

    Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of tea quality at canopy scale. Experiments were carried out for tea plants growing in the field and greenhouse. Partial least squares regression (PLSR), which has proven to be the one of the most successful empirical approach, was performed to establish the relationship between reflectance and biochemical concentration across six tea varieties in the field. Moreover, a novel integrated approach involving successive projections algorithms as band selection method and neural networks was developed and applied to detect the concentration of total tea polyphenols for one tea variety, in order to explore and model complex nonlinearity relationships between independent (wavebands) and dependent (biochemicals) variables. The good prediction accuracies (r2 > 0.8 and relative RMSEP < 10 %) achieved for tea plants using both linear (partial lease squares regress) and nonlinear (artificial neural networks) modelling approaches in this study demonstrates the feasibility of using airborne and spaceborne sensors to cover wide areas of tea plantation for in situ monitoring of tea quality cheaply and rapidly.

  12. Technical requirements of a social networking platform for senior citizens.

    Science.gov (United States)

    Demski, Hans; Hildebrand, Claudia; López Bolós, José; Tiedge, Winfried; Wengel, Stefanie; O Broin, Daire; Palmer, Ross

    2012-01-01

    Feeling an integrative part of a social community adds to the quality of life. Elderly people who find it more difficult to actively join activities are often threatened by isolation. Social networking can enable communication and sharing activities makes it easier to set up and maintain contacts. This paper describes the development of a social networking platform and activities like gaming and exergaming all of which aim to facilitate social interaction. It reports on the particular challenges that need to be addressed when creating a social networking platform specially designed to meet the needs of the elderly.

  13. National platform electromobility. Interims report of the working group 1 propulsion technology and vehicle integration; Nationale Plattform Elektromobilitaet. Zwischenbericht der Arbeitsgruppe 1 Antriebstechnologie und Fahrzeugintegration

    Energy Technology Data Exchange (ETDEWEB)

    Meusinger, Josefin [Koordinierungsstelle der Industrie fuer die Nationale Plattform Elektromobilitaet, Berlin (Germany)

    2010-07-01

    The working group ''Propulsion technology and vehicle integration'' investigates electrical and electrified powertrains for the employment in passenger cars and commercial vehicles regarding to the goals of the national platform electrical mobility. Apart from the optimization of the architecture and the gradual physical integration of the components into drive modules the material research for new magnetic materials, for the surface refinement and basic research for the semiconductor technology/physics is a further compelling condition for long-term successes in the area of electric drives. Parallel to the increase of unit productions the degree of automation has to be improved significantly. The costs are to be affected positively by large numbers of unit productions. A bundling, acceleration and promotion of the activities from the research to the development in competence centres and landmark projects for the propulsion technology and vehicle integration are recommended. This is to be used by means of the existing instruments of the industrial community research.

  14. Using decommissioned offshore oil/gas platforms for nuclear/RO desalination: the ONDP (Offshore Nuclear Desalination Platform)

    International Nuclear Information System (INIS)

    Nagar, Ankesh

    2010-01-01

    shore by cables alongside the pipeline as additional bounty. The nuclear submarines and ships have been sailing the oceans of the world with these reactors and have proven safe. The other non-conventional energy sources like windmills and wave energy generation have also been tried on oil platforms but the magnitude of energy generation and desalination is incomparable with nuclear energy. The KLT 40S reactors are compact easy to transport and ship, built with excellent safety mechanisms, efficient and are made with 'plug and play' philosophy. The use of non weapon grade uranium makes them ideal for installing them offshore with existing security. They have a proven safety record as well and are cost effective in long run. These 'to be decommissioned' oil platforms are also ideal for DEMWAX (Reverse Osmosis) plants which instead of floats can be anchored at the base of the platform where they meet the required gravity, current and pressure. The location of oil platforms minimizes biofouling and reduces power requirement. Brine plume is also taken care with the available wide ocean floor and strong currents. The challenge is to integrate ready oil platform infrastructure with proven safe nuclear technology and water-management measures, to put them to practice with modification in an Offshore Nuclear Desalination Platform (ONDP). (author)

  15. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  16. Continuous Platform Development

    DEFF Research Database (Denmark)

    Nielsen, Ole Fiil

    low risks and investments but also with relatively fuzzy results. When looking for new platform projects, it is important to make sure that the company and market is ready for the introduction of platforms, and to make sure that people from marketing and sales, product development, and downstream......, but continuous product family evolution challenges this strategy. The concept of continuous platform development is based on the fact that platform development should not be a one-time experience but rather an ongoing process of developing new platforms and updating existing ones, so that product family...

  17. A not-so-short description of the PERFECT platform

    International Nuclear Information System (INIS)

    Bugat, S.; Zeghadi, A.; Adjanor, G.

    2010-01-01

    This article describes the building of the so-called 'PERFECT platform', which main issue was to allow the development of the PERFECT end-products dedicated to the prediction of the degradation of material properties due to irradiation. First, the general principles used to build the platform are detailed. Such principles guided the choices of preferential development language, architecture, and operating system. The architecture of the platform is then described. It allows an easy development of the end-products, and a 'black-box' integration of the codes developed during the project. Each end-product can be seen as a sequence of modules, each module representing a physical phenomenon in time and space. The platform is very flexible, so that different methodologies can be tested and compared inside an end-product. The second part is devoted to the description of a classical PERFECT study, defined thanks to the graphical user interface developed in the project. Focus is made in particular on how a selection of modules is done, how the input data can be entered, and how the study execution is fully controlled by the user. A final description of the post-processing facilities on the results is exposed.

  18. Medical support to a disabled nuclear platform at sea

    Directory of Open Access Journals (Sweden)

    Vishal Kansal

    2016-01-01

    Full Text Available Indian Navy has recently joined the select band of countries that are operating nuclear powered platforms. Despite the fact, that the present day nuclear technology is quite advanced and safe; accidents on board can still happen. An accident on board a Nuclear Platform at sea can result in ‘Radiation Exposure and Contamination’ to the crew members; which can prove catastrophic. Management of casualties on board a Nuclear platform at sea presents a formidable challenge. The distressed platform being at sea will also bring in many other operational variables like distance from shore, geographical location, weather conditions, availability of rescue assets and trained manpower etc. Consequently, there is a necessity to have a well defined ‘Medical Contingency Plan’ to deal with any such eventuality happening at sea. The successful execution of the contingency plan will depend upon close coordination among diverse authorities like local Service Hospital, Command Medical & Operational Authorities, Naval Dockyard, Radiation Safety Organisations and the Rescue/Hospital Ship crew. The need is to have a holistic review of our existing medical set up and integrate new equipment, training methodologies, operating procedures to have a credible response capability.

  19. Neutron CSI: Integrated platform for non-destructive composition and stress imaging with neutrons

    International Nuclear Information System (INIS)

    Materna, T.; Pirling, T.

    2011-01-01

    We propose to build an interdisciplinary platform for non-destructive analysis and imaging with neutrons. The project regroups an instrument already available at ILL (Laue-Langevin Institute), SALSA, with a new one for Neutron Tomography coupled to Prompt-Gamma Neutron Activation (PGNA) as well as partial usage of another proposed instrument, FIPPS. The focus of the proposition is the versatility of high spatial resolution and energy-selective neutron tomography to provide a rapid and precise 3D morphological map of an object as well as indirect information on its 3D elemental and structural composition through the scan of Bragg-edges in transmission. Coupled to PGNA imaging and the strain analysis power of SALSA, the aim of the platform is to answer key questions occurring in geological, metallurgical, engineering and medical fields, material research and cultural heritage. (authors)

  20. Electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and graphical user interface platform for aviation industries training purposes

    Science.gov (United States)

    Burhan, I.; Azman, A. A.; Othman, R.

    2016-10-01

    An electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and Visual Basic (VB) platform is fabricated as a supporting tool to existing teaching and learning process, and to achieve the objectives and learning outcomes towards enhancing the student's knowledge and hands-on skill, especially in electro pneumatic devices. The existing learning process for electro pneumatic courses conducted in the classroom does not emphasize on simulation and complex practical aspects. VB is used as the platform for graphical user interface (GUI) while PIC as the interface circuit between the GUI and hardware of electro pneumatic apparatus. Fabrication of electro pneumatic trainer interfacing between PIC and VB has been designed and improved by involving multiple types of electro pneumatic apparatus such as linear drive, air motor, semi rotary motor, double acting cylinder and single acting cylinder. Newly fabricated electro pneumatic trainer microcontroller interface can be programmed and re-programmed for numerous combination of tasks. Based on the survey to 175 student participants, 97% of the respondents agreed that the newly fabricated trainer is user friendly, safe and attractive, and 96.8% of the respondents strongly agreed that there is improvement in knowledge development and also hands-on skill in their learning process. Furthermore, the Lab Practical Evaluation record has indicated that the respondents have improved their academic performance (hands-on skills) by an average of 23.5%.