WorldWideScience

Sample records for biochemical genomics screen

  1. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    OpenAIRE

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundam...

  2. Genomic futures of prenatal screening: ethical reflection.

    Science.gov (United States)

    Dondorp, W J; Page-Christiaens, G C M L; de Wert, G M W R

    2016-05-01

    The practice of prenatal screening is undergoing important changes as a result of the introduction of genomic testing technologies at different stages of the screening trajectory. It is expected that eventually it will become possible to routinely obtain a comprehensive 'genome scan' of all fetuses. Although this will still take several years, there are clear continuities between present developments and this future scenario. As this review shows, behind the still limited scope of screening for common aneuploidies, a rapid widening of the range of conditions tested for is already taking shape at the invasive testing stage. But the continuities are not just technical; they are also ethical. If screening for Down's syndrome is a matter of providing autonomous reproductive choice, then why would providing the choice to have a full fetal genome scan be something entirely different? There is a clear need for a sustainable normative framework that will have to answer three challenges: the indeterminateness of the autonomy paradigm, the need to acknowledge the future child as an interested stakeholder, and the prospect of broad-scope genomic prenatal screening with a double purpose: autonomy and prevention. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Science.gov (United States)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  4. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling | Office of Cancer Genomics

    Science.gov (United States)

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.

  5. Biochemical screening of 504,049 newborns in Denmark, the Faroe Islands and Greenland--experience and development of a routine program for expanded newborn screening

    DEFF Research Database (Denmark)

    Lund, Allan Meldgaard; Hougaard, David Michael; Simonsen, Henrik

    2012-01-01

    Expanded newborn screening for selected inborn errors of metabolism (IEM) in Denmark, the Faroe Islands and Greenland was introduced in 2002. We now present clinical, biochemical, and statistical results of expanded screening (excluding PKU) of 504,049 newborns during nine years as well as diagno......Expanded newborn screening for selected inborn errors of metabolism (IEM) in Denmark, the Faroe Islands and Greenland was introduced in 2002. We now present clinical, biochemical, and statistical results of expanded screening (excluding PKU) of 504,049 newborns during nine years as well...... as a pilot study during the first seven years, and the experience obtained during these years was used in the development of the routine neonatal screening program introduced in 2009. Methods for screening included tandem mass spectrometry and an assay for determination of biotinidase activity. A total...

  6. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  7. Screening synteny blocks in pairwise genome comparisons through integer programming.

    Science.gov (United States)

    Tang, Haibao; Lyons, Eric; Pedersen, Brent; Schnable, James C; Paterson, Andrew H; Freeling, Michael

    2011-04-18

    It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota

  8. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    Science.gov (United States)

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and posttranslational modifications; and the iron levels are influenced by iron import and expression of the iron/heme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated dataset opens new directions for studies of human trace element metabolism. PMID:24522796

  9. Genomic, proteomic and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans

    NARCIS (Netherlands)

    Kruse, T.; Pas, van de B.A.; Atteia, A.; Krab, K.; Hagen, W.R.; Goodwin, L.; Chain, P.; Boeren, S.; Maphosa, F.; Schraa, G.; Vos, de W.M.; Oost, van der J.; Smidt, H.; Stams, A.J.M.

    2015-01-01

    Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components and shotgun proteomics to study elements of the

  10. A comparison of the impact of screen-positive results obtained from ultrasound and biochemical screening for Down syndrome in the first trimester : a pilot study

    NARCIS (Netherlands)

    Weinans, M.J.; Kooij, L.; Muller, M.A.; Bilardo, K.M.; van Lith, J.M.; Tymstra, T.

    2004-01-01

    OBJECTIVE: To compare the experiences of women who received a screen-positive test result for Down syndrome after nuchal translucency screening or after biochemical screening in the first trimester of pregnancy in the Netherlands. METHOD: Semi-quantitative questionnaires were sent to 40 women with a

  11. From structure prediction to genomic screens for novel non-coding RNAs

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.

    2011-01-01

    Abstract: Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction....... This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early...... upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other....

  12. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders.

    Science.gov (United States)

    2012-04-06

    Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn

  13. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling.

    Science.gov (United States)

    Yu, Jiyang; Silva, Jose; Califano, Andrea

    2016-01-15

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives. Indeed, rigorous statistical analysis of high-throughput FG screening data remains challenging, particularly when integrative analyses are used to combine multiple sh/sgRNAs targeting the same gene in the library. We use large RNAi and CRISPR repositories that are publicly available to evaluate a novel meta-analysis approach for FG screens via Bayesian hierarchical modeling, Screening Bayesian Evaluation and Analysis Method (ScreenBEAM). Results from our analysis show that the proposed strategy, which seamlessly combines all available data, robustly outperforms classical algorithms developed for microarray data sets as well as recent approaches designed for next generation sequencing technologies. Remarkably, the ScreenBEAM algorithm works well even when the quality of FG screens is relatively low, which accounts for about 80-95% of the public datasets. R package and source code are available at: https://github.com/jyyu/ScreenBEAM. ac2248@columbia.edu, jose.silva@mssm.edu, yujiyang@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. From structure prediction to genomic screens for novel non-coding RNAs.

    Science.gov (United States)

    Gorodkin, Jan; Hofacker, Ivo L

    2011-08-01

    Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  15. "Is It Worth Knowing?" Focus Group Participants' Perceived Utility of Genomic Preconception Carrier Screening.

    Science.gov (United States)

    Schneider, Jennifer L; Goddard, Katrina A B; Davis, James; Wilfond, Benjamin; Kauffman, Tia L; Reiss, Jacob A; Gilmore, Marian; Himes, Patricia; Lynch, Frances L; Leo, Michael C; McMullen, Carmit

    2016-02-01

    As genome sequencing technology advances, research is needed to guide decision-making about what results can or should be offered to patients in different clinical settings. We conducted three focus groups with individuals who had prior preconception genetic testing experience to explore perceived advantages and disadvantages of genome sequencing for preconception carrier screening, compared to usual care. Using a discussion guide, a trained qualitative moderator facilitated the audio-recorded focus groups. Sixteen individuals participated. Thematic analysis of transcripts started with a grounded approach and subsequently focused on participants' perceptions of the value of genetic information. Analysis uncovered two orientations toward genomic preconception carrier screening: "certain" individuals desiring all possible screening information; and "hesitant" individuals who were more cautious about its value. Participants revealed valuable information about barriers to screening: fear/anxiety about results; concerns about the method of returning results; concerns about screening necessity; and concerns about partner participation. All participants recommended offering choice to patients to enhance the value of screening and reduce barriers. Overall, two groups of likely users of genome sequencing for preconception carrier screening demonstrated different perceptions of the advantages or disadvantages of screening, suggesting tailored approaches to education, consent, and counseling may be warranted with each group.

  16. Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening.

    Science.gov (United States)

    Lane, Andrew B; Strzelecka, Magdalena; Ettinger, Andreas; Grenfell, Andrew W; Wittmann, Torsten; Heald, Rebecca

    2015-08-10

    CRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. From structure prediction to genomic screens for novel non-coding RNAs.

    Directory of Open Access Journals (Sweden)

    Jan Gorodkin

    2011-08-01

    Full Text Available Non-coding RNAs (ncRNAs are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs. A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  18. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    Science.gov (United States)

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  19. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

    Science.gov (United States)

    Racher, Hilary; Phelps, Ian G.; Toedt, Grischa; Kennedy, Julie; Wunderlich, Kirsten A.; Sorusch, Nasrin; Abdelhamed, Zakia A.; Natarajan, Subaashini; Herridge, Warren; van Reeuwijk, Jeroen; Horn, Nicola; Boldt, Karsten; Parry, David A.; Letteboer, Stef J.F.; Roosing, Susanne; Adams, Matthew; Bell, Sandra M.; Bond, Jacquelyn; Higgins, Julie; Morrison, Ewan E.; Tomlinson, Darren C.; Slaats, Gisela G.; van Dam, Teunis J. P.; Huang, Lijia; Kessler, Kristin; Giessl, Andreas; Logan, Clare V.; Boyle, Evan A.; Shendure, Jay; Anazi, Shamsa; Aldahmesh, Mohammed; Al Hazzaa, Selwa; Hegele, Robert A.; Ober, Carole; Frosk, Patrick; Mhanni, Aizeddin A.; Chodirker, Bernard N.; Chudley, Albert E.; Lamont, Ryan; Bernier, Francois P.; Beaulieu, Chandree L.; Gordon, Paul; Pon, Richard T.; Donahue, Clem; Barkovich, A. James; Wolf, Louis; Toomes, Carmel; Thiel, Christian T.; Boycott, Kym M.; McKibbin, Martin; Inglehearn, Chris F.; Stewart, Fiona; Omran, Heymut; Huynen, Martijn A.; Sergouniotis, Panagiotis I.; Alkuraya, Fowzan S.; Parboosingh, Jillian S.; Innes, A Micheil; Willoughby, Colin E.; Giles, Rachel H.; Webster, Andrew R.; Ueffing, Marius; Blacque, Oliver; Gleeson, Joseph G.; Wolfrum, Uwe; Beales, Philip L.; Gibson, Toby

    2015-01-01

    Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and three pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localise to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1/CEP90 and C21orf2/LRRC76 as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2-variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease. PMID:26167768

  20. Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Teramura Kouhei

    2011-06-01

    Full Text Available Abstract Background Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. Results To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. Conclusion The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries.

  1. Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda.

    Science.gov (United States)

    Prasher, Bhavana; Negi, Sapna; Aggarwal, Shilpi; Mandal, Amit K; Sethi, Tav P; Deshmukh, Shailaja R; Purohit, Sudha G; Sengupta, Shantanu; Khanna, Sangeeta; Mohammad, Farhan; Garg, Gaurav; Brahmachari, Samir K; Mukerji, Mitali

    2008-09-09

    Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individual's basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates. Normal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types. Individuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A significant enrichment of

  2. Position statement on opportunistic genomic screening from the Association of Genetic Nurses and Counsellors (UK and Ireland)

    OpenAIRE

    Middleton, Anna; Patch, Chris; Wiggins, Jennifer; Barnes, Kathy; Crawford, Gill; Benjamin, Caroline; Bruce, Anita

    2014-01-01

    The American College of Medical Genetics and Genomics released recommendations for reporting incidental findings (IFs) in clinical exome and genome sequencing. These suggest ‘opportunistic genomic screening' should be available to both adults and children each time a sequence is done and would be undertaken without seeking preferences from the patient first. Should opportunistic genomic screening be implemented in the United Kingdom, the Association of Genetic Nurses and Counsellors (AGNC), w...

  3. A Biochemical Screen for Identification of Small-Molecule Regulators of the Wnt Pathway Using Xenopus Egg Extracts

    OpenAIRE

    Thorne, Curtis A.; Lafleur, Bonnie; Lewis, Michelle; Hanson, Alison J.; Jernigan, Kristin K.; Weaver, David C.; Huppert, Kari A.; Chen, Tony W.; Wichadiit, Chonlarat; Cselenyi, Christopher S.; Tahinci, Emilios; Meyers, Kelly C.; Waskow, Emily; Orton, Darren; Salic, Adrian

    2011-01-01

    Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the...

  4. Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micropropagated clones.

    Science.gov (United States)

    Venkatesh; Krishna, V; Kumar, K Girish; Pradeepa, K; Kumar, S R Santosh; Kumar, R Shashi

    2013-07-01

    An efficient protocol was standardized for screening of panama wilt resistant Musa paradisiaca cv. Puttabale clones, an endemic cultivar of Karnataka, India. The synergistic effect of 6-benzyleaminopurine (2 to 6 mg/L) and thidiazuron (0.1 to 0.5 mg/L) on MS medium provoked multiple shoot induction from the excised meristem. An average of 30.10 +/- 5.95 shoots was produced per propagule at 4 mg/L 6-benzyleaminopurine and 0.3 mg/L thidiazuron concentrations. Elongation of shoots observed on 5 mg/L BAP augmented medium with a mean length of 8.38 +/- 0.30 shoots per propagule. For screening of disease resistant clones, multiple shoot buds were mutated with 0.4% ethyl-methane-sulfonate and cultured on MS medium supplemented with Fusarium oxysporum f. sp. cubense (FOC) culture filtrate (5-15%). Two month old co-cultivated secondary hardened plants were used for screening of disease resistance against FOC by the determination of biochemical markers such as total phenol, phenylalanine ammonia lyase, oxidative enzymes like peroxidase, polyphenol oxidase, catalase and PR-proteins like chitinase, beta-1-3 glucanase activities. The mutated clones of M. paradisiaca cv. Puttabale cultured on FOC culture filtrate showed significant increase in the levels of biochemical markers as an indicative of acquiring disease resistant characteristics to FOC wilt.

  5. A plant-based chemical genomics screen for the identification of flowering inducers.

    Science.gov (United States)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  6. Lessons Learned From A Study Of Genomics-Based Carrier Screening For Reproductive Decision Making.

    Science.gov (United States)

    Wilfond, Benjamin S; Kauffman, Tia L; Jarvik, Gail P; Reiss, Jacob A; Richards, C Sue; McMullen, Carmit; Gilmore, Marian; Himes, Patricia; Kraft, Stephanie A; Porter, Kathryn M; Schneider, Jennifer L; Punj, Sumit; Leo, Michael C; Dickerson, John F; Lynch, Frances L; Clarke, Elizabeth; Rope, Alan F; Lutz, Kevin; Goddard, Katrina A B

    2018-05-01

    Genomics-based carrier screening is one of many opportunities to use genomic information to inform medical decision making, but clinicians, health care delivery systems, and payers need to determine whether to offer screening and how to do so in an efficient, ethical way. To shed light on this issue, we conducted a study in the period 2014-17 to inform the design of clinical screening programs and guide further health services research. Many of our results have been published elsewhere; this article summarizes the lessons we learned from that study and offers policy insights. Our experience can inform understanding of the potential impact of expanded carrier screening services on health system workflows and workforces-impacts that depend on the details of the screening approach. We found limited patient or health system harms from expanded screening. We also found that some patients valued the information they learned from the process. Future policy discussions should consider the value of offering such expanded carrier screening in health delivery systems with limited resources.

  7. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    Science.gov (United States)

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  8. Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway

    Science.gov (United States)

    2012-01-01

    Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens. PMID:23006893

  9. Screening for genomic rearrangements at BRCA1 locus in Iranian ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Journal of Genetics; Volume 92; Issue 1. Screening for genomic rearrangements at BRCA1 locus in Iranian women with breast cancer using multiplex ligation-dependent probe amplification. Vahid R. Yassaee Babak Emamalizadeh Mir Davood Omrani. Research Note Volume 92 Issue 1 ...

  10. Genome-wide screening and transcriptional profile analysis of desaturase genes in the European corn borer moth

    Institute of Scientific and Technical Information of China (English)

    Bingye Xue; Alejandro P. Rooney; Wendell L. Roelofs

    2012-01-01

    Acyl-coenzyme A (Acyl-CoA) desaturases play a key role in the biosynthesis of female moth sex pheromones.Desaturase genes are encoded by a large multigene family,and they have been divided into five subgroups on the basis of biochemical functionality and phylogenetic affinity.In this study both copy numbers and transcriptional levels of desaturase genes in the European corn borer (ECB),Ostrinia nubilalis,were investigated.The results from genome-wide screening of ECB bacterial artificial chromosome (BAC)library indicated there are many copies of some desaturase genes in the genome.An open reading frame (ORF) has been isolated for the novel desaturase gene ECB ezi-△11β from ECB gland complementary DNA and its functionality has been analyzed by two yeast expression systems.No functional activities have been detected for it.The expression levels of the four desaturase genes both in the pheromone gland and fat body of ECB and Asian corn borer (ACB),O.furnacalis,were determined by real-time polymerase chain reaction.In the ECB gland,△ 11 is the most abundant,although the amount of △14 is also considerable.In the ACB gland,△14 is the most abundant and is 100 times more abundant than all the other three combined.The results from the analysis of evolution of desaturase gene transcription in the ECB,ACB and other moths indicate that the pattern of △ 11 gene transcription is significantly different from the transcriptional patterns of other desaturase genes and this difference is tied to the underlying nucleotide composition bias of the genome.

  11. Cushing's syndrome: update on signs, symptoms and biochemical screening.

    Science.gov (United States)

    Nieman, Lynnette K

    2015-10-01

    Endogenous pathologic hypercortisolism, or Cushing's syndrome, is associated with poor quality of life, morbidity, and increased mortality. Early diagnosis may mitigate against this natural history of the disorder. The clinical presentation of Cushing's syndrome varies, in part related to the extent and duration of cortisol excess. When hypercortisolism is severe, its signs and symptoms are unmistakable. However, most of the signs and symptoms of Cushing's syndrome are common in the general population (e.g., hypertension and weight gain) and not all are present in every patient. In addition to classical features of glucocorticoid excess, such as proximal muscle weakness and wide purple striae, patients may present with the associated comorbidities that are caused by hypercortisolism. These include cardiovascular disease, thromboembolic disease, psychiatric and cognitive deficits, and infections. As a result, internists and generalists must consider Cushing's syndrome as a cause, and endocrinologists should search for and treat these comorbidities. Recommended tests to screen for Cushing's syndrome include 1  mg dexamethasone suppression, urine free cortisol, and late night salivary cortisol. These may be slightly elevated in patients with physiologic hypercortisolism, which should be excluded, along with exogenous glucocorticoid use. Each screening test has caveats and the choice of tests should be individualized based on each patient's characteristics and lifestyle. The objective of this review is to update the readership on the clinical and biochemical features of Cushing's syndrome that are useful when evaluating patients for this diagnosis. © 2015 European Society of Endocrinology.

  12. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    Science.gov (United States)

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  13. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  14. Design of a randomized controlled trial for genomic carrier screening in healthy patients seeking preconception genetic testing.

    Science.gov (United States)

    Kauffman, Tia L; Wilfond, Benjamin S; Jarvik, Gail P; Leo, Michael C; Lynch, Frances L; Reiss, Jacob A; Richards, C Sue; McMullen, Carmit; Nickerson, Deborah; Dorschner, Michael O; Goddard, Katrina A B

    2017-02-01

    Population-based carrier screening is limited to well-studied or high-impact genetic conditions for which the benefits may outweigh the associated harms and costs. As the cost of genome sequencing declines and availability increases, the balance of risks and benefits may change for a much larger number of genetic conditions, including medically actionable additional findings. We designed an RCT to evaluate genomic clinical sequencing for women and partners considering a pregnancy. All results are placed into the medical record for use by healthcare providers. Through quantitative and qualitative measures, including baseline and post result disclosure surveys, post result disclosure interviews, 1-2year follow-up interviews, and team journaling, we are obtaining data about the clinical and personal utility of genomic carrier screening in this population. Key outcomes include the number of reportable carrier and additional findings, and the comparative cost, utilization, and psychosocial impacts of usual care vs. genomic carrier screening. As the study progresses, we will compare the costs of genome sequencing and usual care as well as the cost of screening, pattern of use of genetic or mental health counseling services, number of outpatient visits, and total healthcare costs. This project includes novel investigation into human reactions and responses from would-be parents who are learning information that could both affect a future pregnancy and their own health. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Position statement on opportunistic genomic screening from the Association of Genetic Nurses and Counsellors (UK and Ireland).

    Science.gov (United States)

    Middleton, Anna; Patch, Chris; Wiggins, Jennifer; Barnes, Kathy; Crawford, Gill; Benjamin, Caroline; Bruce, Anita

    2014-08-01

    The American College of Medical Genetics and Genomics released recommendations for reporting incidental findings (IFs) in clinical exome and genome sequencing. These suggest 'opportunistic genomic screening' should be available to both adults and children each time a sequence is done and would be undertaken without seeking preferences from the patient first. Should opportunistic genomic screening be implemented in the United Kingdom, the Association of Genetic Nurses and Counsellors (AGNC), which represents British and Irish genetic counsellors and nurses, feels strongly that the following must be considered (see article for complete list): (1) Following appropriate genetic counselling, patients should be allowed to consent to or opt out of opportunistic genomic screening. (2) If true IFs are discovered the AGNC are guided by the report from the Joint Committee on Medical Genetics about the sharing of genetic testing results. (3) Children should not be routinely tested for adult-onset conditions. (4) The formation of a list of variants should involve a representative from the AGNC as well as a patient support group. (5) The variants should be for serious or life-threatening conditions for which there are treatments or preventative strategies available. (6) There needs to be robust evidence that the benefits of opportunistic screening outweigh the potential harms. (7) The clinical validity and utility of variants should be known. (8) There must be a quality assurance framework that operates to International standards for laboratory testing. (9) Psychosocial research is urgently needed in this area to understand the impact on patients.

  16. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.

    Science.gov (United States)

    Klann, Tyler S; Black, Joshua B; Chellappan, Malathi; Safi, Alexias; Song, Lingyun; Hilton, Isaac B; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2017-06-01

    Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein-coding elements in the genome as having a central role in various biological processes. However, decoding the functions of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR-Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR-Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. Using dCas9 KRAB repressor and dCas9 p300 activator constructs and lentiviral single guide RNA libraries to target DNase I hypersensitive sites surrounding a gene of interest, we carried out both loss- and gain-of-function screens to identify regulatory elements for the β-globin and HER2 loci in human cells. CERES readily identified known and previously unidentified regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.

  17. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    Science.gov (United States)

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  18. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  19. Multiplex Polymerase Chain Reaction for Identification of Shigellae and Four Shigella Species Using Novel Genetic Markers Screened by Comparative Genomics.

    Science.gov (United States)

    Kim, Hyun-Joong; Ryu, Ji-Oh; Song, Ji-Yeon; Kim, Hae-Yeong

    2017-07-01

    In the detection of Shigella species using molecular biological methods, previously known genetic markers for Shigella species were not sufficient to discriminate between Shigella species and diarrheagenic Escherichia coli. The purposes of this study were to screen for genetic markers of the Shigella genus and four Shigella species through comparative genomics and develop a multiplex polymerase chain reaction (PCR) for the detection of shigellae and Shigella species. A total of seven genomic DNA sequences from Shigella species were subjected to comparative genomics for the screening of genetic markers of shigellae and each Shigella species. The primer sets were designed from the screened genetic markers and evaluated using PCR with genomic DNAs from Shigella and other bacterial strains in Enterobacteriaceae. A novel Shigella quintuplex PCR, designed for the detection of Shigella genus, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, was developed from the evaluated primer sets, and its performance was demonstrated with specifically amplified results from each Shigella species. This Shigella multiplex PCR is the first to be reported with novel genetic markers developed through comparative genomics and may be a useful tool for the accurate detection of the Shigella genus and species from closely related bacteria in clinical microbiology and food safety.

  20. Development of a High-Throughput Screen for Inhibitors of Epstein-Barr Virus EBNA1

    Science.gov (United States)

    Thompson, Scott; Messick, Troy; Schultz, David C.; Reichman, Melvin; Lieberman, Paul M.

    2012-01-01

    Latent infection with Epstein-Barr Virus (EBV) is a carcinogenic cofactor in several lymphoid and epithelial cell malignancies. At present, there are no small molecule inhibitors that specifically target EBV latent infection or latency-associated oncoproteins. EBNA1 is an EBV-encoded sequence-specific DNA-binding protein that is consistently expressed in EBV-associated tumors and required for stable maintenance of the viral genome in proliferating cells. EBNA1 is also thought to provide cell survival function in latently infected cells. In this work we describe the development of a biochemical high-throughput screening (HTS) method using a homogenous fluorescence polarization (FP) assay monitoring EBNA1 binding to its cognate DNA binding site. An FP-based counterscreen was developed using another EBV-encoded DNA binding protein, Zta, and its cognate DNA binding site. We demonstrate that EBNA1 binding to a fluorescent labeled DNA probe provides a robust assay with a Z-factor consistently greater than 0.6. A pilot screen of a small molecule library of ~14,000 compounds identified 3 structurally related molecules that selectively inhibit EBNA1, but not Zta. All three compounds had activity in a cell-based assay specific for the disruption of EBNA1 transcription repression function. One of the compounds was effective in reducing EBV genome copy number in Raji Burkitt lymphoma cells. These experiments provide a proof-of-concept that small molecule inhibitors of EBNA1 can be identified by biochemical high-throughput screening of compound libraries. Further screening in conjunction with medicinal chemistry optimization may provide a selective inhibitor of EBNA1 and EBV latent infection. PMID:20930215

  1. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus genome

    Directory of Open Access Journals (Sweden)

    McGuire Michael J

    2012-01-01

    Full Text Available Abstract Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration

  2. Genomic screening for dissection of a complex disease: The multiple sclerosis phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.L.; Bazyk, A.; Gusella, J.F. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1994-09-01

    Application of positional cloning to diseases with a complex etiology is fraught with problems. These include undefined modes of inheritance, heterogeneity, and epistasis. Although microsatellite markers now make genotyping the genome a straightforward task, no single analytical method is available to efficiently and accurately use these data for a complex disease. We have developed a multi-stage genomic screening strategy which uses a combination of non-parametric approaches (Affected Pedigree Member (APM) linkage analysis and robust sib pair analysis (SP)), and the parametric lod score approach (using four different genetic models). To warrant follow-up, a marker must have two or more of: a nominal P value of 0.05 or less on the non-parametric tests, or a lod score greater than 1.0 for any model. Two adjacent markers each fulfilling one criterion are also considered for follow-up. These criteria were determined both by simulation studies and our empirical experience in screening a large number of other disorders. We applied this approach to multiple sclerosis (MS), a complex neurological disorder with a strong but ill-defined genetic component. Analysis of the first 91 markers from our screen of 55 multiplex families found 5 markers which met the SP criteria, 13 markers which met the APM criteria, and 8 markers which met the lod score criteria. Five regions (on chromosomes 2, 4, 7, 14, and 19) met our overall criteria. However, no single method identified all of these regions, suggesting that each method is sensitive to various (unknown) influences. The chromosome 14 results were not supported by follow-up typing and analysis of markers in that region, but the chromosome 19 results remain well supported. Updated screening results will be presented.

  3. STRP Screening Sets for the human genome at 5 cM density

    Directory of Open Access Journals (Sweden)

    Marth Gabor

    2003-02-01

    Full Text Available Abstract Background Short tandem repeat polymorphisms (STRPs are powerful tools for gene mapping and other applications. A STRP genome scan of 10 cM is usually adequate for mapping single gene disorders. However mapping studies involving genetically complex disorders and especially association (linkage disequilibrium often require higher STRP density. Results We report the development of two separate 10 cM human STRP Screening Sets (Sets 12 and 52 which span all chromosomes. When combined, the two Sets contain a total of 782 STRPs, with average STRP spacing of 4.8 cM, average heterozygosity of 0.72, and total sex-average coverage of 3535 cM. The current Sets are comprised almost entirely of STRPs based on tri- and tetranucleotide repeats. We also report correction of primer sequences for many STRPs used in previous Screening Sets. Detailed information for the new Screening Sets is available from our web site: http://research.marshfieldclinic.org/genetics. Conclusion Our new human STRP Screening Sets will improve the quality and cost effectiveness of genotyping for gene mapping and other applications.

  4. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra; van den Hoorn, Tineke; Jongsma, Marlieke L. M.; Bakker, Mark J.; Hengeveld, Rutger; Janssen, Lennert; Cresswell, Peter; Egan, David A.; van Ham, Marieke; ten Brinke, Anja; Ovaa, Huib; Beijersbergen, Roderick L.; Kuijl, Coenraad; Neefjes, Jacques

    2011-01-01

    MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and

  5. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  6. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jeroen Dobbelaere

    2008-09-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM. Here, we have performed a microscopy-based genome-wide RNA interference (RNAi screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1 nine are required for centriole duplication, (2 11 are required for centrosome maturation, (3 nine are required for both functions, and (4 three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.

  7. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    International Nuclear Information System (INIS)

    Fröhlich, Eleonore; Meindl, Claudia; Wagner, Karin; Leitinger, Gerd; Roblegg, Eva

    2014-01-01

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay

  8. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Meindl, Claudia; Wagner, Karin [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Leitinger, Gerd [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Institute for Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz (Austria); Roblegg, Eva [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, Universitätsplatz 1, 8010 Graz (Austria)

    2014-10-15

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.

  9. Biochemical verification of the self-reported smoking status of screened male smokers of the Dutch-Belgian randomized controlled lung cancer screening trial.

    Science.gov (United States)

    van der Aalst, Carlijn M; de Koning, Harry J

    2016-04-01

    Smoking is the main cause of lung cancer, so data linked to smoking behaviour are important in lung cancer screening trials. However, self-reporting data concerning smoking behaviour are mainly used. The aim of this study was to biochemically determine the validity and reliability of self-reported smoking status among smokers at high risk for developing lung cancer participating in the Dutch-Belgian lung cancer screening (NELSON) trial. For this sub study, a random sample of 475 men was selected who were scheduled for the fourth screening round in the NELSON trial. They were asked to complete a short questionnaire to verify the smoking behaviour for the previous seven days and a blood sample was collected to measure the cotinine level. The validity (sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV)) and reliability (Kappa) of the self-reported smoking status compared to the cotinine level (as golden standard) were determined. Both a completed questionnaire as well as a cotinine level were available for 199 (41.9%) participants. Based on these data, Se and Sp were respectively 98% (95%-Confidence Interval (CI): 91-99) and 98% (95%-CI: 93-100). PPV and NPV were 98% and 96% and Kappa was 0.96. In conclusion, the validity of the self-reported smoking status turned out to be reliable amongst men at high risk for developing lung cancer who participate in the NELSON lung cancer screening trial. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance.

    Science.gov (United States)

    Decousser, Jean-Winoc; Poirel, Laurent; Nordmann, Patrice

    2017-04-01

    The rapid detection of resistance is a challenge for clinical microbiologists who wish to prevent deleterious individual and collective consequences such as (i) delaying efficient antibiotic therapy, which worsens the survival rate of the most severely ill patients, or (ii) delaying the isolation of the carriers of multidrug-resistant bacteria and promoting outbreaks; this last consequence is of special concern, and there are an increasing number of approaches and market-based solutions in response. Areas covered: From simple, cheap biochemical tests to whole-genome sequencing, clinical microbiologists must select the most adequate phenotypic and genotypic tools to promptly detect and confirm β-lactam resistance from cultivated bacteria or from clinical specimens. Here, the authors review the published literature from the last 5 years about the primary technical approaches and commercial laboratory reagents for these purposes, including molecular, biochemical and immune assays. Furthermore, the authors discuss their intrinsic and relative performance, and we challenge their putative clinical impact. Expert commentary: Until the availability of fully automated wet and dry whole genome sequencing solutions, microbiologists should focus on inexpensive biochemical tests for cultured isolates or monomicrobial clinical specimen and on using the expensive molecular PCR-based strategies for the targeted screening of complex biological environments.

  11. Preimplantation genetic diagnosis and screening by array comparative genomic hybridisation: experience of more than 100 cases in a single centre.

    Science.gov (United States)

    Chow, J Fc; Yeung, W Sb; Lee, V Cy; Lau, E Yl; Ho, P C; Ng, E Hy

    2017-04-01

    Preimplantation genetic screening has been proposed to improve the in-vitro fertilisation outcome by screening for aneuploid embryos or blastocysts. This study aimed to report the outcome of 133 cycles of preimplantation genetic diagnosis and screening by array comparative genomic hybridisation. This study of case series was conducted in a tertiary assisted reproductive centre in Hong Kong. Patients who underwent preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening between 1 April 2012 and 30 June 2015 were included. They underwent in-vitro fertilisation and intracytoplasmic sperm injection. An embryo biopsy was performed on day-3 embryos and the blastomere was subject to array comparative genomic hybridisation. Embryos with normal copy numbers were replaced. The ongoing pregnancy rate, implantation rate, and miscarriage rate were studied. During the study period, 133 cycles of preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening were initiated in 94 patients. Overall, 112 cycles proceeded to embryo biopsy and 65 cycles had embryo transfer. The ongoing pregnancy rate per transfer cycle after preimplantation genetic screening was 50.0% and that after preimplantation genetic diagnosis was 34.9%. The implantation rates after preimplantation genetic screening and diagnosis were 45.7% and 41.1%, respectively and the miscarriage rates were 8.3% and 28.6%, respectively. There were 26 frozen-thawed embryo transfer cycles, in which vitrified and biopsied genetically transferrable embryos were replaced, resulting in an ongoing pregnancy rate of 36.4% in the screening group and 60.0% in the diagnosis group. The clinical outcomes of preimplantation genetic diagnosis and screening using comparative genomic hybridisation in our unit were comparable to those reported internationally. Genetically transferrable embryos replaced in a natural cycle may improve the ongoing pregnancy rate

  12. A mouse model of hereditary coproporphyria identified in an ENU mutagenesis screen

    Directory of Open Access Journals (Sweden)

    Ashlee J. Conway

    2017-08-01

    Full Text Available A genome-wide ethyl-N-nitrosourea (ENU mutagenesis screen in mice was performed to identify novel regulators of erythropoiesis. Here, we describe a mouse line, RBC16, which harbours a dominantly inherited mutation in the Cpox gene, responsible for production of the haem biosynthesis enzyme, coproporphyrinogen III oxidase (CPOX. A premature stop codon in place of a tryptophan at amino acid 373 results in reduced mRNA expression and diminished protein levels, yielding a microcytic red blood cell phenotype in heterozygous mice. Urinary and faecal porphyrins in female RBC16 heterozygotes were significantly elevated compared with that of wild-type littermates, particularly coproporphyrinogen III, whereas males were biochemically normal. Attempts to induce acute porphyric crises were made using fasting and phenobarbital treatment on females. While fasting had no biochemical effect on RBC16 mice, phenobarbital caused significant elevation of faecal coproporphyrinogen III in heterozygous mice. This is the first known investigation of a mutagenesis mouse model with genetic and biochemical parallels to hereditary coproporphyria.

  13. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    Science.gov (United States)

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  14. A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore.

    Science.gov (United States)

    Wybouw, N; Van Leeuwen, T; Dermauw, W

    2018-06-01

    A number of horizontal gene transfers (HGTs) have been identified in the spider mite Tetranychus urticae, a chelicerate herbivore. However, the genome of this mite species has at present not been thoroughly mined for the presence of HGT genes. Here, we performed a systematic screen for HGT genes in the T. urticae genome using the h-index metric. Our results not only validated previously identified HGT genes but also uncovered 25 novel HGT genes. In addition to HGT genes with a predicted biochemical function in carbohydrate, lipid and folate metabolism, we also identified the horizontal transfer of a ketopantoate hydroxymethyltransferase and a pantoate β-alanine ligase gene. In plants and bacteria, both genes are essential for vitamin B5 biosynthesis and their presence in the mite genome strongly suggests that spider mites, similar to Bemisia tabaci and nematodes, can synthesize their own vitamin B5. We further show that HGT genes were physically embedded within the mite genome and were expressed in different life stages. By screening chelicerate genomes and transcriptomes, we were able to estimate the evolutionary histories of these HGTs during chelicerate evolution. Our study suggests that HGT has made a significant and underestimated impact on the metabolic repertoire of plant-feeding spider mites. © 2018 The Royal Entomological Society.

  15. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  16. Genome screen in familial intracranial aneurysm

    Directory of Open Access Journals (Sweden)

    Langefeld Carl

    2009-01-01

    Full Text Available Abstract Background Individuals with 1st degree relatives harboring an intracranial aneurysm (IA are at an increased risk of IA, suggesting genetic variation is an important risk factor. Methods Families with multiple members having ruptured or unruptured IA were recruited and all available medical records and imaging data were reviewed to classify possible IA subjects as definite, probable or possible IA or not a case. A 6 K SNP genome screen was performed in 333 families, representing the largest linkage study of IA reported to date. A 'narrow' (n = 705 definite IA cases and 'broad' (n = 866 definite or probable IA disease definition were used in multipoint model-free linkage analysis and parametric linkage analysis, maximizing disease parameters. Ordered subset analysis (OSA was used to detect gene × smoking interaction. Results Model-free linkage analyses detected modest evidence of possible linkage (all LOD Conclusion These data suggest it is unlikely that there is a single common variant with a strong effect in the majority of the IA families. Rather, it is likely that multiple genetic and environmental risk factors contribute to the susceptibility for intracranial aneurysms.

  17. Design of a randomized controlled trial for genomic carrier screening in healthy patients seeking preconception genetic testing

    OpenAIRE

    Kauffman, Tia L.; Wilfond, Benjamin S.; Jarvik, Gail P.; Leo, Michael C.; Lynch, Frances L.; Reiss, Jacob A.; Richards, C. Sue; McMullen, Carmit; Nickerson, Deborah; Dorschner, Michael O.; Goddard, Katrina A.B.

    2016-01-01

    Population-based carrier screening is limited to well-studied or high-impact genetic conditions for which the benefits may outweigh the associated harms and costs. As the cost of genome sequencing declines and availability increases, the balance of risks and benefits may change for a much larger number of genetic conditions, including medically actionable additional findings. We designed an RCT to evaluate genomic clinical sequencing for women and partners considering a pregnancy. All results...

  18. Study on the Mitochondrial Genome of Sea Island Cotton (Gossypium barbadense) by BAC Library Screening

    Institute of Scientific and Technical Information of China (English)

    SU Ai-guo; LI Shuang-shuang; LIU Guo-zheng; LEI Bin-bin; KANG Ding-ming; LI Zhao-hu; MA Zhi-ying; HUA Jin-ping

    2014-01-01

    The plant mitochondrial genome displays complex features, particularly in terms of cytoplasmic male sterility (CMS). Therefore, research on the cotton mitochondrial genome may provide important information for analyzing genome evolution and exploring the molecular mechanism of CMS. In this paper, we present a preliminary study on the mitochondrial genome of sea island cotton (Gossypium barbadense) based on positive clones from the bacterial artiifcial chromosome (BAC) library. Thirty-ifve primers designed with the conserved sequences of functional genes and exons of mitochondria were used to screen positive clones in the genome library of the sea island cotton variety called Pima 90-53. Ten BAC clones were obtained and veriifed for further study. A contig was obtained based on six overlapping clones and subsequently laid out primarily on the mitochondrial genome. One BAC clone, clone 6 harbored with the inserter of approximate 115 kb mtDNA sequence, in which more than 10 primers fragments could be ampliifed, was sequenced and assembled using the Solexa strategy. Fifteen mitochondrial functional genes were revealed in clone 6 by gene annotation. The characteristics of the syntenic gene/exon of the sequences and RNA editing were preliminarily predicted.

  19. Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Glioblastoma Multiforme (GBM cells are highly invasive, infiltrating into the surrounding normal brain tissue, making it impossible to completely eradicate GBM tumors by surgery or radiation. Increasing evidence also shows that these migratory cells are highly resistant to cytotoxic reagents, but decreasing their migratory capability can re-sensitize them to chemotherapy. These evidences suggest that the migratory cell population may serve as a better therapeutic target for more effective treatment of GBM. In order to understand the regulatory mechanism underlying the motile phenotype, we carried out a genome-wide RNAi screen for genes inhibiting the migration of GBM cells. The screening identified a total of twenty-five primary hits; seven of them were confirmed by secondary screening. Further study showed that three of the genes, FLNA, KHSRP and HCFC1, also functioned in vivo, and knocking them down caused multifocal tumor in a mouse model. Interestingly, two genes, KHSRP and HCFC1, were also found to be correlated with the clinical outcome of GBM patients. These two genes have not been previously associated with cell migration.

  20. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    Science.gov (United States)

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  1. Genome-wide screen of Pseudomonas aeruginosa In Saccharomyces cerevisiae identifies new virulence factors

    Directory of Open Access Journals (Sweden)

    Rafat eZrieq

    2015-11-01

    Full Text Available Pseudomonas aeruginosa is a human opportunistic pathogen that causes mortality in cystic fibrosis and immunocompromised patients. While many virulence factors of this pathogen have already been identified, several remain to be discovered. In this respect we set an unprecedented genome-wide screen of a P. aeruginosa expression library based on a yeast growth phenotype. 51 candidates were selected in a three-round screening process. The robustness of the screen was validated by the selection of three well known secreted proteins including one demonstrated virulence factor, the protease LepA. Further in silico sorting of the 51 candidates highlighted three potential new Pseudomonas effector candidates (Pec. By testing the cytotoxicity of wild type P. aeruginosa vs pec mutants towards macrophages and the virulence in the Caenorhabditis elegans model, we demonstrated that the three selected Pecs are novel virulence factors of P. aeruginosa. Additional cellular localization experiments in the host revealed specific localization for Pec1 and Pec2 that could inform about their respective functions.

  2. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    Directory of Open Access Journals (Sweden)

    Pradeepkiran JA

    2015-03-01

    Full Text Available Jangampalli Adi Pradeepkiran,1* Sri Bhashyam Sainath,2,3* Konidala Kranthi Kumar,1 Matcha Bhaskar1 1Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, India; 2CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal, 3Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India *These authors contributed equally to this work Abstract: Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50% to Silicibacter pomeroyi DUF1285 family protein (2RE3. A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the

  3. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication

    Directory of Open Access Journals (Sweden)

    Julianna Han

    2018-04-01

    Full Text Available Summary: The emergence of influenza A viruses (IAVs from zoonotic reservoirs poses a great threat to human health. As seasonal vaccines are ineffective against zoonotic strains, and newly transmitted viruses can quickly acquire drug resistance, there remains a need for host-directed therapeutics against IAVs. Here, we performed a genome-scale CRISPR/Cas9 knockout screen in human lung epithelial cells with a human isolate of an avian H5N1 strain. Several genes involved in sialic acid biosynthesis and related glycosylation pathways were highly enriched post-H5N1 selection, including SLC35A1, a sialic acid transporter essential for IAV receptor expression and thus viral entry. Importantly, we have identified capicua (CIC as a negative regulator of cell-intrinsic immunity, as loss of CIC resulted in heightened antiviral responses and restricted replication of multiple viruses. Therefore, our study demonstrates that the CRISPR/Cas9 system can be utilized for the discovery of host factors critical for the replication of intracellular pathogens. : Using a genome-wide CRISPR/Cas9 screen, Han et al. demonstrate that the major hit, the sialic acid transporter SLC35A1, is an essential host factor for IAV entry. In addition, they identify the DNA-binding transcriptional repressor CIC as a negative regulator of cell-intrinsic immunity. Keywords: CRISPR/Cas9 screen, GeCKO, influenza virus, host factors, sialic acid pathway, SLC35A1, Capicua, CIC, cell-intrinsic immunity, H5N1

  4. High Throughput Screening in Duchenne Muscular Dystrophy: From Drug Discovery to Functional Genomics

    OpenAIRE

    Thomas J.J. Gintjee; Alvin S.H. Magh; Carmen Bertoni

    2014-01-01

    Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dyst...

  5. Identification and screening of potent antimicrobial peptides in arthropod genomes.

    Science.gov (United States)

    Duwadi, Deepesh; Shrestha, Anishma; Yilma, Binyam; Kozlovski, Itamar; Sa-Eed, Munaya; Dahal, Nikesh; Jukosky, James

    2018-05-01

    Using tBLASTn and BLASTp searches, we queried recently sequenced arthropod genomes and expressed sequence tags (ESTs) using a database of known arthropod cecropins, defensins, and attacins. We identified and synthesized 6 potential AMPs and screened them for antimicrobial activity. Using radial diffusion assays and microtiter antimicrobial assays, we assessed the in vitro antimicrobial effects of these peptides against several human pathogens including Gram-positive and Gram-negative bacteria and fungi. We also conducted hemolysis assays to examine the cytotoxicity of these peptides to mammalian cells. Four of the six peptides identified showed antimicrobial effects in these assays. We also created truncated versions of these four peptides to assay their antimicrobial activity. Two cecropins derived from the monarch butterfly genome (Danaus plexippus), DAN1 and DAN2, showed minimum inhibitory concentrations (MICs) in the range of 2-16 μg/ml when screened against Gram-negative bacteria. HOLO1 and LOUDEF1, two defensin-like peptides derived from red flour beetle (Tribolium castaneum) and human body louse (Pediculus humanus humanus), respectively, exhibited MICs in the range of 13-25 μg/ml against Gram-positive bacteria. Furthermore, HOLO1 showed an MIC less than 5 μg/ml against the fungal species Candida albicans. These peptides exhibited no hemolytic activity at concentrations up to 200 μg/ml. The truncated peptides derived from DAN2 and HOLO1 showed very little antimicrobial activity. Our experiments show that the peptides DAN1, DAN2, HOLO1, and LOUDEF1 showed potent antimicrobial activity in vitro against common human pathogens, did not lyse mammalian red blood cells, and indicates their potential as templates for novel therapeutic agents against microbial infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Characterizing Protein Interactions Employing a Genome-Wide siRNA Cellular Phenotyping Screen

    Science.gov (United States)

    Suratanee, Apichat; Schaefer, Martin H.; Betts, Matthew J.; Soons, Zita; Mannsperger, Heiko; Harder, Nathalie; Oswald, Marcus; Gipp, Markus; Ramminger, Ellen; Marcus, Guillermo; Männer, Reinhard; Rohr, Karl; Wanker, Erich; Russell, Robert B.; Andrade-Navarro, Miguel A.; Eils, Roland; König, Rainer

    2014-01-01

    Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database. We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for studying the detailed function of signaling pathways of the cellular system of interest. PMID:25255318

  7. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    Directory of Open Access Journals (Sweden)

    Zo Young-Gun

    2009-04-01

    Full Text Available Abstract Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx, the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic

  8. SCREEN FOR DOMINANT BEHAVIORAL MUTATIONS CAUSED BY GENOMIC INSERTION OF P-ELEMENT TRANSPOSONS IN DROSOPHILA: AN EXAMINATION OF THE INTEGRATION OF VIRAL VECTOR SEQUENCES

    OpenAIRE

    FOX, LYLE E.; GREEN, DAVID; YAN, ZIYING; ENGELHARDT, JOHN F.; WU, CHUN-FANG

    2007-01-01

    Here we report the development of a high-throughput screen to assess dominant mutation rates caused by P-element transposition within the Drosophila genome that is suitable for assessing the undesirable effects of integrating foreign regulatory sequences (viral cargo) into a host genome. Three different behavioral paradigms were used: sensitivity to mechanical stress, response to heat stress, and ability to fly. The results, from our screen of 35,000 flies, indicate that mutations caused by t...

  9. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis.

    Science.gov (United States)

    Qin, Gaihua; Xu, Chunyan; Ming, Ray; Tang, Haibao; Guyot, Romain; Kramer, Elena M; Hu, Yudong; Yi, Xingkai; Qi, Yongjie; Xu, Xiangyang; Gao, Zhenghui; Pan, Haifa; Jian, Jianbo; Tian, Yinping; Yue, Zhen; Xu, Yiliu

    2017-09-01

    Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility.

    Science.gov (United States)

    Servienė, Elena; Lukša, Juliana; Orentaitė, Irma; Lafontaine, Denis L J; Urbonavičius, Jaunius

    2012-01-01

    Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.

  11. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...... and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition...... and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms...

  12. Incorporating Protein Biosynthesis into the Saccharomyces cerevisiae Genome-scale Metabolic Model

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto

    Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been construc......Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been...

  13. Expanded Newborn Screening Program in Saudi Arabia: Incidence of screened disorders.

    Science.gov (United States)

    Alfadhel, Majid; Al Othaim, Ali; Al Saif, Saif; Al Mutairi, Fuad; Alsayed, Moeenaldeen; Rahbeeni, Zuhair; Alzaidan, Hamad; Alowain, Mohammed; Al-Hassnan, Zuhair; Saeedi, Mohamad; Aljohery, Saeed; Alasmari, Ali; Faqeih, Eissa; Alwakeel, Mansour; AlMashary, Maher; Almohameed, Sulaiman; Alzahrani, Mohammed; Migdad, Abeer; Al-Dirbashi, Osama Y; Rashed, Mohamed; Alamoudi, Mohamed; Jacob, Minnie; Alahaidib, Lujane; El-Badaoui, Fahd; Saadallah, Amal; Alsulaiman, Ayman; Eyaid, Wafaa; Al-Odaib, Ali

    2017-06-01

    To address the implementation of the National Newborn Screening Program (NBS) in Saudi Arabia and stratify the incidence of the screened disorders. A retrospective study conducted between 1 August 2005 and 31 December 2012, total of 775 000 newborns were screened from 139 hospitals distributed among all regions of Saudi Arabia. The NBS Program screens for 16 disorders from a selective list of inborn errors of metabolism (IEM) and endocrine disorders. Heel prick dry blood spot samples were obtained from all newborns for biochemical and immunoassay testing. Recall screening testing was performed for Initial positive results and confirmed by specific biochemical assays. A total of 743 cases were identified giving an overall incidence of 1:1043. Frequently detected disorders nationwide were congenital hypothyroidism and congenital adrenal hyperplasia with an incidence of 1:7175 and 1:7908 correspondingly. The highest incidence among the IEM was propionic acidaemia with an incidence rate of 1:14 000. The article highlights the experience of the NBS Program in Saudi Arabia and providing data on specific regional incidences of all the screened disorders included in the programme; and showed that the incidence of these disorders is one of the highest reported so far world-wide. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  14. Segmenting the human genome based on states of neutral genetic divergence.

    Science.gov (United States)

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-03

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.

  15. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. | Office of Cancer Genomics

    Science.gov (United States)

    Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis.

  16. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    Science.gov (United States)

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.

  17. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Giaever Guri

    2009-01-01

    Full Text Available Abstract Background Single genome-wide screens for the effect of altered gene dosage on drug sensitivity in the model organism Saccharomyces cerevisiae provide only a partial picture of the mechanism of action of a drug. Results Using the example of the tumor cell invasion inhibitor dihydromotuporamine C, we show that a more complete picture of drug action can be obtained by combining different chemical genomics approaches – analysis of the sensitivity of ρ0 cells lacking mitochondrial DNA, drug-induced haploinsufficiency, suppression of drug sensitivity by gene overexpression and chemical-genetic synthetic lethality screening using strains deleted of nonessential genes. Killing of yeast by this chemical requires a functional mitochondrial electron-transport chain and cytochrome c heme lyase function. However, we find that it does not require genes associated with programmed cell death in yeast. The chemical also inhibits endocytosis and intracellular vesicle trafficking and interferes with vacuolar acidification in yeast and in human cancer cells. These effects can all be ascribed to inhibition of sphingolipid biosynthesis by dihydromotuporamine C. Conclusion Despite their similar conceptual basis, namely altering drug sensitivity by modifying gene dosage, each of the screening approaches provided a distinct set of information that, when integrated, revealed a more complete picture of the mechanism of action of a drug on cells.

  18. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  19. A re-assessment of biochemical marker distributions in T21 affected and unaffected twin pregnancies in the first trimester

    DEFF Research Database (Denmark)

    Madsen, Helen Nordahl; Ball, Susan; Wright, Dave

    2011-01-01

    OBJECTIVE: To estimate the difference between levels of the two biochemical markers pregnancy-associated plasma protein-A (PAPP-A) and maternal serum free β-human chorionic gonadotropin (free β-hCG) in twin pregnancies relative to singleton pregnancies and establish an improved screening procedure...... of the biochemical markers were calculated. Detection rates and false-positive rates were estimated for screening tests incorporating nuchal translucency and maternal age, with and without biochemistry. RESULTS: Medians for the two biochemical markers for monochorionic and dichorionic twins in unaffected pregnancies......-trimester screening for chromosomal abnormalities in twins to a level comparable with that in singleton pregnancies....

  20. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

    NARCIS (Netherlands)

    Wheway, Gabrielle; Schmidts, Miriam; Mans, Dorus A; Szymanska, Katarzyna; Nguyen, Thanh-Minh T; Racher, Hilary; Phelps, Ian G; Toedt, Grischa; Kennedy, Julie; Wunderlich, Kirsten A; Sorusch, Nasrin; Abdelhamed, Zakia A; Natarajan, Subaashini; Herridge, Warren; van Reeuwijk, Jeroen; Horn, Nicola; Boldt, Karsten; Parry, David A; Letteboer, Stef J F; Roosing, Susanne; Adams, Matthew; Bell, Sandra M; Bond, Jacquelyn; Higgins, Julie; Morrison, Ewan E; Tomlinson, Darren C; Slaats, Gisela G; van Dam, Teunis J P; Huang, Lijia; Kessler, Kristin; Giessl, Andreas; Logan, Clare V; Boyle, Evan A; Shendure, Jay; Anazi, Shamsa; Aldahmesh, Mohammed; Al Hazzaa, Selwa; Hegele, Robert A; Ober, Carole; Frosk, Patrick; Mhanni, Aizeddin A; Chodirker, Bernard N; Chudley, Albert E; Lamont, Ryan; Bernier, Francois P; Beaulieu, Chandree L; Gordon, Paul; Pon, Richard T; Donahue, Clem; Barkovich, A James; Wolf, Louis; Toomes, Carmel; Thiel, Christian T; Boycott, Kym M; McKibbin, Martin; Inglehearn, Chris F; Stewart, Fiona; Omran, Heymut; Huynen, Martijn A; Sergouniotis, Panagiotis I; Alkuraya, Fowzan S; Parboosingh, Jillian S; Innes, A Micheil; Willoughby, Colin E; Giles, Rachel H; Webster, Andrew R; Ueffing, Marius; Blacque, Oliver; Gleeson, Joseph G; Wolfrum, Uwe; Beales, Philip L; Gibson, Toby; Doherty, Dan; Mitchison, Hannah M; Roepman, Ronald; Johnson, Colin A

    Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis

  1. A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol

    NARCIS (Netherlands)

    Surakka, I.; Isaacs, A.; Karssen, L.C.; Laurila, P.P.P.; Middelberg, R.P.S.; Tikkanen, E.; Ried, J.S.; Lamina, C.; Mangino, M.; Igl, W.; Hottenga, J.J.; Lagou, V.; van der Harst, P.; Mateo Leach, I.; Esko, T.; Kutalik, Z.; Wainwright, N.W.; Struchalin, M.V.; Sarin, A.P.; Kangas, A.J.; Viikari, J.S.; Perola, M.; Rantanen, T.; Petersen, A.K.; Soininen, P.; Johansson, Å.; Soranzo, N.; Heath, A.C.; Papamarkou, T.; Prokopenko, I.; Tönjes, A.; Kronenberg, F.; Döring, A.; Rivadeneira, F.; Montgomery, GW; Whitfield, J.B.; Kähönen, M.; Lehtimäki, T.; Freimer, N.B.; Willemsen, G.; de Geus, E.J.C.; Palotie, A.; Sandhu, M.S.; Waterworth, D.; Metspalu, A.; Stumvoll, M.; Uitterlinden, A.G.; Navis, G.; Wijmenga, C.; Wolffenbuttel, B.H.R.; Taskinen, M.R.; Ala-Korpela, M.; Kaprio, J.; Kyvik, K.O.; Boomsma, D.I.; Pedersen, N.L.; Gyllensten, U.; Wilson, J.F.; Rudan, I.; Campbell, H.; Pramstaller, P.P.; Spector, T.D.; Witteman, J.C.M.; Eriksson, J.G.; Salomaa, V.; Oostra, B.A.; Raitakari, O.T.; Wichmann, H.E.; Gieger, C.; Järvelin, M.J.; Martin, N.G.; Hofman, A.; McCarthy, M.I.; Peltonen, L.; van Duijn, C.M.; Aulchenko, Y.S.; Ripatti, S.

    2011-01-01

    Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain ~25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for variants

  2. A genome-wide screen for interactions reveals a new locus on 4p15 modifying the effect of waist-to-hip ratio on total cholesterol

    NARCIS (Netherlands)

    I. Surakka (Ida); A.J. Isaacs (Aaron); L.C. Karssen (Lennart); P.-P.P. Laurila; R.P.S. Middelberg (Rita); E. Tikkanen (Emmi); J.S. Ried (Janina); C. Lamina (Claudia); M. Mangino (Massimo); W. Igl (Wilmar); J.J. Hottenga (Jouke Jan); V. Lagou (Vasiliki); P. van der Harst (Pim); I.M. Leach (Irene Mateo); T. Esko (Tõnu); Z. Kutalik (Zoltán); N.W. Wainwright (Nicholas); M.V. Struchalin (Maksim); A.-P. Sarin; A.J. Kangas (Antti); J. Viikari (Jorma); M. Perola (Markus); T. Rantanen (Taina); A.K. Petersen; P. Soininen (Pasi); A. Johansson (Åsa); N. Soranzo (Nicole); A.C. Heath (Andrew); T. Papamarkou (Theodore); I. Prokopenko (Inga); A. Tönjes (Anke); F. Kronenberg (Florian); A. Döring (Angela); F. Rivadeneira Ramirez (Fernando); G.W. Montgomery (Grant); J.B. Whitfield (John); M. Kähönen (Mika); T. Lehtimäki (Terho); N.B. Freimer (Nelson); G.A.H.M. Willemsen (Gonneke); E.J.C. de Geus (Eco); A. Palotie (Aarno); M.S. Sandhu (Manj); D. Waterworth (Dawn); A. Metspalu (Andres); M. Stumvoll (Michael); A.G. Uitterlinden (André); A. Jula (Antti); G. Navis (Gerjan); C. Wijmenga (Cisca); B.H.R. Wolffenbuttel (Bruce); M.-R. Taskinen; M. Ala-Korpela (Mika); J. Kaprio (Jaakko); K.O. Kyvik (Kirsten Ohm); D.I. Boomsma (Dorret); N.L. Pedersen (Nancy); U. Gyllensten (Ulf); J.F. Wilson (James); I. Rudan (Igor); H. Campbell (Harry); P.P. Pramstaller (Peter Paul); T.D. Spector (Timothy); J.C.M. Witteman (Jacqueline); J.G. Eriksson (Johan); V. Salomaa (Veikko); B.A. Oostra (Ben); O. Raitakari (Olli); H.E. Wichmann (Heinz Erich); C. Gieger (Christian); M.R. Järvelin; N.G. Martin (Nicholas); A. Hofman (Albert); M.I. McCarthy (Mark); Y.S. Aulchenko (Yurii); L. Peltonen (Leena Johanna); P. Tikka-Kleemola (Päivi); S. Ripatti (Samuli)

    2011-01-01

    textabstractRecent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain ~25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for

  3. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing...... interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV...... mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant a-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330...

  4. A genome-wide siRNA screen to identify modulators of insulin sensitivity and gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Ruojing Yang

    Full Text Available BACKGROUND: Hepatic insulin resistance impairs insulin's ability to suppress hepatic glucose production (HGP and contributes to the development of type 2 diabetes (T2D. Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC promoter (AH-G6PC cells. Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4 mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. CONCLUSIONS/SIGNIFICANCE: These results support the proposition that the proteins encoded by the genes identified in

  5. A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol

    NARCIS (Netherlands)

    Surakka, Ida; Isaacs, Aaron; Karssen, Lennart C.; Laurila, Pirkka-Pekka P.; Middelberg, Rita P. S.; Tikkanen, Emmi; Ried, Janina S.; Lamina, Claudia; Mangino, Massimo; Igl, Wilmar; Hottenga, Jouke-Jan; Lagou, Vasiliki; van der Harst, Pim; Mateo Leach, Irene; Esko, Tonu; Kutalik, Zoltan; Wainwright, Nicholas W.; Struchalin, Maksim V.; Sarin, Antti-Pekka; Kangas, Antti J.; Viikari, Jorma S.; Perola, Markus; Rantanen, Taina; Petersen, Ann-Kristin; Soininen, Pasi; Johansson, Asa; Soranzo, Nicole; Heath, Andrew C.; Papamarkou, Theodore; Prokopenko, Inga; Toenjes, Anke; Kronenberg, Florian; Doering, Angela; Rivadeneira, Fernando; Montgomery, Grant W.; Whitfield, John B.; Kahonen, Mika; Lehtimaki, Terho; Freimer, Nelson B.; Willemsen, Gonneke; de Geus, Eco J. C.; Palotie, Aarno; Sandhu, Manj S.; Waterworth, Dawn M.; Metspalu, Andres; Stumvoll, Michael; Uitterlinden, Andre G.; Navis, Gerjan; Wijmenga, Cisca; Wolffenbuttel, Bruce H. R.

    2011-01-01

    Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain similar to 25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for

  6. High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho

    2016-01-01

    for this is that advances in genome and transcriptome sequencing, together with associated bioinformatics tools allow for rapid identification of candidate CAZymes, but technology for determining an enzyme's biochemical characteristics has advanced more slowly. To address this technology gap, a novel high-throughput assay...... CPH and ICB substrates are provided in a 96-well high-throughput assay system. The CPH substrates can be made in four different colors, enabling them to be mixed together and thus increasing assay throughput. The protocol describes a 96-well plate assay and illustrates how this assay can be used...... for screening the activities of enzymes, enzyme cocktails, and broths....

  7. Genome-wide screen for universal individual identification SNPs based on the HapMap and 1000 Genomes databases.

    Science.gov (United States)

    Huang, Erwen; Liu, Changhui; Zheng, Jingjing; Han, Xiaolong; Du, Weian; Huang, Yuanjian; Li, Chengshi; Wang, Xiaoguang; Tong, Dayue; Ou, Xueling; Sun, Hongyu; Zeng, Zhaoshu; Liu, Chao

    2018-04-03

    Differences among SNP panels for individual identification in SNP-selecting and populations led to few common SNPs, compromising their universal applicability. To screen all universal SNPs, we performed a genome-wide SNP mining in multiple populations based on HapMap and 1000Genomes databases. SNPs with high minor allele frequencies (MAF) in 37 populations were selected. With MAF from ≥0.35 to ≥0.43, the number of selected SNPs decreased from 2769 to 0. A total of 117 SNPs with MAF ≥0.39 have no linkage disequilibrium with each other in every population. For 116 of the 117 SNPs, cumulative match probability (CMP) ranged from 2.01 × 10-48 to 1.93 × 10-50 and cumulative exclusion probability (CEP) ranged from 0.9999999996653 to 0.9999999999945. In 134 tested Han samples, 110 of the 117 SNPs remained within high MAF and conformed to Hardy-Weinberg equilibrium, with CMP = 4.70 × 10-47 and CEP = 0.999999999862. By analyzing the same number of autosomal SNPs as in the HID-Ion AmpliSeq Identity Panel, i.e. 90 randomized out of the 110 SNPs, our panel yielded preferable CMP and CEP. Taken together, the 110-SNPs panel is advantageous for forensic test, and this study provided plenty of highly informative SNPs for compiling final universal panels.

  8. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  9. A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol

    DEFF Research Database (Denmark)

    Surakka, I.; Isaacs, A.; Karssen, L. C.

    2011-01-01

    Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain similar to 25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened......, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR) on total cholesterol (TC) with a combined P-value of 4.79 x 10(-9). There were two potential candidate genes in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes...

  10. Screening strategies for gestational diabetes mellitus at the Aga ...

    African Journals Online (AJOL)

    Background: Universal screening strategy for gestational diabetes mellitus offers biochemical screening to all women irrespective of risk factor status while selective strategy screens only those with risk factors. The Aga Khan University Hospital adopted a selective screening protocol by consensus. This study compares both ...

  11. A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity.

    Science.gov (United States)

    Falkenberg, K J; Newbold, A; Gould, C M; Luu, J; Trapani, J A; Matthews, G M; Simpson, K J; Johnstone, R W

    2016-07-01

    Vorinostat is an FDA-approved histone deacetylase inhibitor (HDACi) that has proven clinical success in some patients; however, it remains unclear why certain patients remain unresponsive to this agent and other HDACis. Constitutive STAT (signal transducer and activator of transcription) activation, overexpression of prosurvival Bcl-2 proteins and loss of HR23B have been identified as potential biomarkers of HDACi resistance; however, none have yet been used to aid the clinical utility of HDACi. Herein, we aimed to further elucidate vorinostat-resistance mechanisms through a functional genomics screen to identify novel genes that when knocked down by RNA interference (RNAi) sensitized cells to vorinostat-induced apoptosis. A synthetic lethal functional screen using a whole-genome protein-coding RNAi library was used to identify genes that when knocked down cooperated with vorinostat to induce tumor cell apoptosis in otherwise resistant cells. Through iterative screening, we identified 10 vorinostat-resistance candidate genes that sensitized specifically to vorinostat. One of these vorinostat-resistance genes was GLI1, an oncogene not previously known to regulate the activity of HDACi. Treatment of vorinostat-resistant cells with the GLI1 small-molecule inhibitor, GANT61, phenocopied the effect of GLI1 knockdown. The mechanism by which GLI1 loss of function sensitized tumor cells to vorinostat-induced apoptosis is at least in part through interactions with vorinostat to alter gene expression in a manner that favored apoptosis. Upon GLI1 knockdown and vorinostat treatment, BCL2L1 expression was repressed and overexpression of BCL2L1 inhibited GLI1-knockdown-mediated vorinostat sensitization. Taken together, we present the identification and characterization of GLI1 as a new HDACi resistance gene, providing a strong rationale for development of GLI1 inhibitors for clinical use in combination with HDACi therapy.

  12. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Directory of Open Access Journals (Sweden)

    Queiroux Clothilde

    2012-05-01

    Full Text Available Abstract Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

  13. Nickel-resistance determinants in Acidiphilium sp. PM identified by genome-wide functional screening.

    Directory of Open Access Journals (Sweden)

    Patxi San Martin-Uriz

    Full Text Available Acidiphilium spp. are conspicuous dwellers of acidic, metal-rich environments. Indeed, they are among the most metal-resistant organisms; yet little is known about the mechanisms behind the metal tolerance in this genus. Acidiphilium sp. PM is an environmental isolate from Rio Tinto, an acidic, metal-laden river located in southwestern Spain. The characterization of its metal resistance revealed a remarkable ability to tolerate high Ni concentrations. Here we report the screening of a genomic library of Acidiphilium sp. PM to identify genes involved in Ni resistance. This approach revealed seven different genes conferring Ni resistance to E. coli, two of which form an operon encoding the ATP-dependent protease HslVU (ClpQY. This protease was found to enhance resistance to both Ni and Co in E. coli, a function not previously reported. Other Ni-resistance determinants include genes involved in lipopolysaccharide biosynthesis and the synthesis of branched amino acids. The diversity of molecular functions of the genes recovered in the screening suggests that Ni resistance in Acidiphilium sp. PM probably relies on different molecular mechanisms.

  14. Glucuronoyl Esterase Screening and Characterization Assays Utilizing Commercially Available Benzyl Glucuronic Acid Ester

    Directory of Open Access Journals (Sweden)

    Hampus Sunner

    2015-09-01

    Full Text Available Research on glucuronoyl esterases (GEs has been hampered by the lack of enzyme assays based on easily obtainable substrates. While benzyl d-glucuronic acid ester (BnGlcA is a commercially available substrate that can be used for GE assays, several considerations regarding substrate instability, limited solubility and low apparent affinities should be made. In this work we discuss the factors that are important when using BnGlcA for assaying GE activity and show how these can be applied when designing BnGlcA-based GE assays for different applications: a thin-layer chromatography assay for qualitative activity detection, a coupled-enzyme spectrophotometric assay that can be used for high-throughput screening or general activity determinations and a HPLC-based detection method allowing kinetic determinations. The three-level experimental procedure not merely facilitates routine, fast and simple biochemical characterizations but it can also give rise to the discovery of different GEs through an extensive screening of heterologous Genomic and Metagenomic expression libraries.

  15. Rumen microbial genomics

    International Nuclear Information System (INIS)

    Morrison, M.; Nelson, K.E.

    2005-01-01

    Improving microbial degradation of plant cell wall polysaccharides remains one of the highest priority goals for all livestock enterprises, including the cattle herds and draught animals of developing countries. The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria was created to promote the sequencing and comparative analysis of rumen microbial genomes, offering the potential to fully assess the genetic potential in a functional and comparative fashion. It has been found that the Fibrobacter succinogenes genome encodes many more endoglucanases and cellodextrinases than previously isolated, and several new processive endoglucanases have been identified by genome and proteomic analysis of Ruminococcus albus, in addition to a variety of strategies for its adhesion to fibre. The ramifications of acquiring genome sequence data for rumen microorganisms are profound, including the potential to elucidate and overcome the biochemical, ecological or physiological processes that are rate limiting for ruminal fibre degradation. (author)

  16. GenomeRNAi: a database for cell-based RNAi phenotypes.

    Science.gov (United States)

    Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael

    2007-01-01

    RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.

  17. Galactosemia: A strategy to identify new biochemical phenotypes and molecular genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Langley, S.; Steele, E.; Evinger, J.; Brown, A.; Singh, R.; Fernhoff, P.; Hjelm, L.N.; Dembure, P.P.; Fridovich-Keil, J.L. [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1995-03-01

    We describe a stratagem for identifying new mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. GALT enzyme activity and isoforms were defined in erythrocytes from probands and their first-degree relatives. If the biochemical phenotypes segregated in an autosomal recesssive pattern, we screened for common mutations by using multiplex PCR and restriction endonuclease digestions. If common mutant alleles were not present, the 11 exons of the GALT gene were amplified by PCR, and variations from the normal nucleotide sequences were identified by SSCP. The suspected region(s) was then analyzed by direct DNA sequencing. We identified 86 mutant GALT alleles that reduced erythrocyte GALT activity. Seventy-five of these GALT genomes had abnormal SSCP patterns, of which 41 were sequenced, yielding 12 new and 21 previously reported, rare mutations. Among the novel group of 12 new mutations, an unusual biochemical phenotype was found in a family whose newborn proband has classical galactosemia. He had inherited two mutations in cis (N314D-E204K) from his father, whose GALT activity was near normal, and an additional GALT mutation in the splice-acceptor site of intron C (IVSC) from his mother. The substitution of a positively charged E204K mutation created a unique isoform-banding pattern. An asymptomatic sister`s GALT genes carries three mutations (E203K-N314D/N314D) with eight distinct isoform bands. Surprisingly, her erythrocytes have normal GALT activity. We conclude that the synergism of pedigree, biochemical, SSCP, and direct GALT gene analyses is an efficient protocol for identifying new mutations and speculate that E203K and N314D codon changes produce intra-allelic complementation when in cis. 40 refs., 4 figs., 3 tabs.

  18. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  19. What’s old is new again: yeast mutant screens in the era of pooled segregant analysis by genome sequencing

    Directory of Open Access Journals (Sweden)

    Chris Curtin

    2016-04-01

    Full Text Available While once de-rigueur for identification of genes involved in biological processes, screening of chemically induced mutant populations is an approach that has largely been superseded for model organisms such as Saccharomyces cerevisiae. Availability of single gene deletion/overexpression libraries and combinatorial synthetic genetic arrays provide yeast researchers more structured ways to probe genetic networks. Furthermore, in the age of inexpensive DNA sequencing, methodologies such as mapping of quantitative trait loci (QTL by pooled segregant analysis and genome-wide association enable the identification of multiple naturally occurring allelic variants that contribute to polygenic phenotypes of interest. This is, however, contingent on the capacity to screen large numbers of individuals and existence of sufficient natural phenotypic variation within the available population. The latter cannot be guaranteed and non-selectable, industrially relevant phenotypes, such as production of volatile aroma compounds, pose severe limitations on the use of modern genetic techniques due to expensive and time-consuming downstream analyses. An interesting approach to overcome these issues can be found in Den Abt et al.[1] (this issue of Microbial Cell, where a combination of repeated rounds of chemical mutagenesis and pooled segregant analysis by whole genome sequencing was applied to identify genes involved in ethyl acetate formation, demonstrating a new path for industrial yeast strain development and bringing classical mutant screens into the 21st century.

  20. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  1. Diagnosis Of Inherited Neurometabolic Disorders : A Biochemical Approach

    Directory of Open Access Journals (Sweden)

    Christopher R

    1999-01-01

    Full Text Available The past two decades have witnessed a rapid increase in the knowledge of the inherited neurometabolic disorders. The precise diagnosis of these disorders which is a challenge to the physician can be best accomplished by biochemical methods. Screening of clinically selected patients with simple chemical urine tests and routine blood chemistry investigations followed by measurement of specific metabolites and assay of the relevant enzymes confirms the diagnosis in most cases. Biochemical diagnosis of inherited neurometabolic disorders although expensive is rapid and confirmatory and therefore aids in treatment and further prevention of these rare disorders.

  2. Biochemical and molecular diagnosis of tyrosinemia type I with two novel FAH mutations in a Hong Kong chinese patient: recommendation for expanded newborn screening in Hong Kong.

    Science.gov (United States)

    Mak, Chloe Miu; Lam, Ching-Wan; Chim, Stella; Siu, Tak-Shing; Ng, King-Fai; Tam, Sidney

    2013-01-01

    Tyrosinemia type I is an autosomal recessive disorder in tyrosine metabolism. In areas without expanded newborn screening, patients present with acute hepatorenal failure in early infancy. Diagnosis can be elusive when clinical presentation is non-specific and biochemical abnormalities are masked by secondary changes. This is the first Hong Kong Chinese report. A two-month-old Chinese male infant with unremarkable antenatal and postnatal history presented with progressive abdominal distension for three days. He suffered from end-stage liver failure, hypoglycemia and hepatic encephalopathy. Diagnostic work-up was complicated starting from rule-out sepsis, intestinal obstruction, volvulus, peritonitis, septic ileus, poisoning to metabolic diseases. Clinical, biochemical and genetic data was described. The patient showed increases in multiple plasma amino acids including tyrosine, phenylalanine and methionine, and hyper-excretions of 4-hydroxyphenyl-acetate, -pyruvate, and -lactate, as well as N-acetyltyrosine which could be seen in liver failure due to both tyrosinemia type I and non-metabolic conditions. Because of the volatile nature, succinylacetone was almost undetectable. The diagnosis was confirmed by genetic analysis of FAH with two novel mutations, viz. NM_000137.2:c.1063-1G>A and NM_000137.2:c.1035_1037del. Living-related liver transplantation was done. However, the patient still suffered many complications after the severe metabolic insult with hypoxic ischemic encephalopathy, cerebral atrophy, global developmental delay and cortical visual impairment. Because of the lack of expanded newborn screening in Hong Kong, this child unfortunately presented in the most severe form of tyrosinemia type I. Expanded newborn screening can save life and reduce the burden of diagnostic complexity. This illustrates the need for expanded newborn screening in Hong Kong. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights

  3. OS090. Performance of candidate clinical and biochemical markers in screening early in pregnancy to detect women at high risk to develop preeclampsia.

    Science.gov (United States)

    Forest, J-C; Massé, J; Bujold, E; Rousseau, F; Charland, M; Thériault, S; Lafond, J; Giguère, Y

    2012-07-01

    The advent of early preventive measures, such as low-dose aspirin targeting women at high risk of preeclampsia (PE), emphasizes the need for better detection. Despite the emergence of promising biochemical markers linked to the pathophysiological processes, systematic reviews have shown that, until now, no single tests fulfill the criteria set by WHO for biomarkers to screen for a disease. However, recent literature reveals that by combining various clinical, biophysical and biochemical markers into multivariate algorithms, one can envisage to estimate the risk of PE with a performance that would reach clinical utility and cost-effectiveness, but this remains to be demonstrated in various environments and health care settings. To investigate, in a prospective study, the clinical utility of candidate biomarkers and clinical data to detect, early in pregnancy, women at risk to develop PE and to propose a multivariate prediction algorithm combining clinical parameters to biochemical markers. 7929 pregnant women prospectively recruited at the first prenatal visit, provided blood samples, clinical and sociodemographic information. 214 pregnant women developed hypertensive disorders of pregnancy (HDP) of which 88 had PE (1.2%), including 44 with severe PE (0.6%). A nested case-control study was performed including for each case of HDP two normal pregnancies matched for maternal age, gestational age at recruitment, ethnicity, parity, and smoking status. Based on the literature we selected the most promising markers in a multivariate logistic regression model: mean arterial pressure (MAP), BMI, placental growth factor (PlGF), soluble Flt-1, inhibin A and PAPP-A. Biomarker results measured between 10-18 weeks gestation were expressed as multiples of the median. Medians were determined for each gestational week. When combined with MAP at the time of blood sampling and BMI at the beginning of pregnancy, the four biochemical markers discriminate normal pregnancies from those

  4. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.

    Science.gov (United States)

    Sen, Dilara; Keung, Albert J

    2018-01-01

    The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.

  5. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2016-06-01

    Full Text Available The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.

  6. Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae

    OpenAIRE

    Xiao, Han; Zhao, Huimin

    2014-01-01

    Background Furfural is a major growth inhibitor in lignocellulosic hydrolysates and improving furfural tolerance of microorganisms is critical for rapid and efficient fermentation of lignocellulosic biomass. In this study, we used the RNAi-Assisted Genome Evolution (RAGE) method to select for furfural resistant mutants of Saccharomyces cerevisiae, and identified a new determinant of furfural tolerance. Results By using a genome-wide RNAi (RNA-interference) screen in S. cerevisiae for genes in...

  7. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks.

    Science.gov (United States)

    Fleming, R M T; Maes, C M; Saunders, M A; Ye, Y; Palsson, B Ø

    2012-01-07

    We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary kinetic parameter when mass action kinetics is assumed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Dana-Farber Cancer Institute (DFCI): Computational Correction of Copy-number Effect in CRISPR-Cas9 Essentiality Screens of Cancer Cells | Office of Cancer Genomics

    Science.gov (United States)

    Genome-wide CRISPR-Cas9 screens were performed in 341 cell lines. The results were processed with the CERES algorithm to produce copy-number and guide-efficacy corrected gene knockout effect estimates.

  9. First-trimester screening for chromosomal abnormalities: advantages of an instant results approach.

    Science.gov (United States)

    Norton, Mary E

    2010-09-01

    Protocols that include first trimester screening for fetal chromosome abnormalities have become standard of care throughout the United States. Earlier screening allows for first trimester diagnostic testing in cases found to be at increased risk. However, first trimester screening requires coordination of the nuchal translucency ultrasound screening (NT) and biochemical screening, during early, specific, narrow, but slightly different gestational age ranges. Instant results can often be provided at the time of the NT ultrasound if preceded by the programs that perform the biochemical analyses; this optimizes the benefits of the first trimester approach while improving efficiency and communication with the patient. This article discusses the benefits and logistics of such an approach. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Affinity selection-mass spectrometry and its emerging application to the high throughput screening of G protein-coupled receptors.

    Science.gov (United States)

    Whitehurst, Charles E; Annis, D Allen

    2008-07-01

    Advances in combinatorial chemistry and genomics have inspired the development of novel affinity selection-based screening techniques that rely on mass spectrometry to identify compounds that preferentially bind to a protein target. Of the many affinity selection-mass spectrometry techniques so far documented, only a few solution-based implementations that separate target-ligand complexes away from unbound ligands persist today as routine high throughput screening platforms. Because affinity selection-mass spectrometry techniques do not rely on radioactive or fluorescent reporters or enzyme activities, they can complement traditional biochemical and cell-based screening assays and enable scientists to screen targets that may not be easily amenable to other methods. In addition, by employing mass spectrometry for ligand detection, these techniques enable high throughput screening of massive library collections of pooled compound mixtures, vastly increasing the chemical space that a target can encounter during screening. Of all drug targets, G protein coupled receptors yield the highest percentage of therapeutically effective drugs. In this manuscript, we present the emerging application of affinity selection-mass spectrometry to the high throughput screening of G protein coupled receptors. We also review how affinity selection-mass spectrometry can be used as an analytical tool to guide receptor purification, and further used after screening to characterize target-ligand binding interactions, enabling the classification of orthosteric and allosteric binders.

  11. St2-80: a new FISH marker for St genome and genome analysis in Triticeae.

    Science.gov (United States)

    Wang, Long; Shi, Qinghua; Su, Handong; Wang, Yi; Sha, Lina; Fan, Xing; Kang, Houyang; Zhang, Haiqin; Zhou, Yonghong

    2017-07-01

    The St genome is one of the most fundamental genomes in Triticeae. Repetitive sequences are widely used to distinguish different genomes or species. The primary objectives of this study were to (i) screen a new sequence that could easily distinguish the chromosome of the St genome from those of other genomes by fluorescence in situ hybridization (FISH) and (ii) investigate the genome constitution of some species that remain uncertain and controversial. We used degenerated oligonucleotide primer PCR (Dop-PCR), Dot-blot, and FISH to screen for a new marker of the St genome and to test the efficiency of this marker in the detection of the St chromosome at different ploidy levels. Signals produced by a new FISH marker (denoted St 2 -80) were present on the entire arm of chromosomes of the St genome, except in the centromeric region. On the contrary, St 2 -80 signals were present in the terminal region of chromosomes of the E, H, P, and Y genomes. No signal was detected in the A and B genomes, and only weak signals were detected in the terminal region of chromosomes of the D genome. St 2 -80 signals were obvious and stable in chromosomes of different genomes, whether diploid or polyploid. Therefore, St 2 -80 is a potential and useful FISH marker that can be used to distinguish the St genome from those of other genomes in Triticeae.

  12. Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem.

    Science.gov (United States)

    Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar

    2016-12-13

    Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design.

  13. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  14. Discovery of selective inhibitors against EBNA1 via high throughput in silico virtual screening.

    Directory of Open Access Journals (Sweden)

    Ning Li

    2010-04-01

    Full Text Available Epstein-Barr Virus (EBV latent infection is associated with several human malignancies and is a causal agent of lymphoproliferative diseases during immunosuppression. While inhibitors of herpesvirus DNA polymerases, like gancyclovir, reduce EBV lytic cycle infection, these treatments have limited efficacy for treating latent infection. EBNA1 is an EBV-encoded DNA-binding protein required for viral genome maintenance during latent infection.Here, we report the identification of a new class of small molecules that inhibit EBNA1 DNA binding activity. These compounds were identified by virtual screening of 90,000 low molecular mass compounds using computational docking programs with the solved crystal structure of EBNA1. Four structurally related compounds were found to inhibit EBNA1-DNA binding in biochemical assays with purified EBNA1 protein. Compounds had a range of 20-100 microM inhibition of EBNA1 in fluorescence polarization assays and were further validated for inhibition using electrophoresis mobility shift assays. These compounds exhibited no significant inhibition of an unrelated DNA binding protein. Three of these compounds inhibited EBNA1 transcription activation function in cell-based assays and reduced EBV genome copy number when incubated with a Burkitt lymphoma cell line.These experiments provide a proof-of-principle that virtual screening can be used to identify specific inhibitors of EBNA1 that may have potential for treatment of EBV latent infection.

  15. Elucidating the Molecular Basis and Regulation of Chromium (VI) Reduction by Shewanella oneidensis MR-1 Using Biochemical, Genomic, and Proteomic Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, Robert L.

    2006-10-30

    Although microbial metal reduction has been investigated intensively from physiological and biochemical perspectives, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform, detoxify, or immobilize a wide array of heavy metals contaminating DOE-relevant environments. The major goal of this work is to elucidate the molecular components comprising the chromium(VI) response pathway, with an emphasis on components involved in Cr(VI) detoxification and the enzyme complex catalyzing the terminal step in Cr(VI) reduction by Shewanella oneidensis MR-1. We have identified and characterized (in the case of DNA-binding response regulator [SO2426] and a putative azoreductase [SO3585]) the genes and gene products involved in the molecular response of MR-1 to chromium(VI) stress using whole-genome sequence information for MR-1 and recently developed proteomic technology, in particular liquid chromatographymass spectrometry (LC-MS), in conjunction with conventional protein purification and characterization techniques. The proteome datasets were integrated with information from whole-genome expression arrays for S. oneidensis MR-1 (as illustrated in Figure 1). The genes and their encoded products identified in this study are of value in understanding metal reduction and bacterial resistance to metal toxicity and in developing effective metal immobilization strategies.

  16. A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the Drosophila melanogaster autosomal genome.

    Science.gov (United States)

    Cuykendall, Tawny N; Satyaki, P; Ji, Shuqing; Clay, Derek M; Edelman, Nathaniel B; Kimchy, Alexandra; Li, Ling-Hei; Nuzzo, Erin A; Parekh, Neil; Park, Suna; Barbash, Daniel A

    2014-10-27

    Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality. Copyright © 2014 Cuykendall et al.

  17. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens

    DEFF Research Database (Denmark)

    Timms, Richard T.; Menzies, Sam A.; Tchasovnikarova, Iva A.

    2016-01-01

    The application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here, we...... compare the efficacy of genome-wide CRISPR/Cas9-mediated forward genetic screens versus gene-trap mutagenesis screens in haploid human cells, which represent the existing ‘gold standard’ method. This head-to-head comparison aimed to identify genes required for the endoplasmic reticulum....../3-associated disulphide reductase. Genome-wide CRISPR/Cas9-mediated screens together with haploid genetic screens provide a powerful addition to the forward genetic toolbox....

  18. Genome shuffling of Saccharomyces cerevisiae through recursive population mating to evolve tolerance to inhibitors of Spent Sulfite Liquor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.J.J.; Pinel, D.J.; D' aoust, F. [Concordia Univ., Montreal, PQ (Canada). Dept. of Biological Sciences; Bajwa, P.K.; Trevors, J.T.; Lee, H. [Guelph Univ., ON (Canada). Dept. of Environmental Biology

    2009-07-01

    The biochemical steps in the conversion of cellulosics to biofuels include the pretreatment, hydrolysis and fermentation of substrates into a final product. Fermentation of lignocellulosic substrates derived from waste biomass requires metabolic engineering. A biochemical flow chart from the Tembec Biorefinery plant was presented in which Spent Sulfite Liquor (SSL) was used to add value to the pulp and paper industry. The sugars contained in this carbohydrate-rich effluent from sulfite pulping were used to produce ethanol. A robust, ethanologenic microorganism that can withstand the substrate toxicity was needed. Saccharomyces cerevisiae is currently used for the production of ethanol from SSL. This yeast will succumb to toxicity and inhibition, particularly in the most inhibitor rich forms of SSL such as hardwood SSL (HWSSL). A genome shuffling method was therefore developed to create a better SSL fermenting strain. This method was designed to improve polygenic traits by generating pools of mutants with improved phenotypes, followed by iterative recombination between their genomes. Through 5 rounds of recursive mating and screening, 3 strains that could survive and grow in undiluted HWSSL were obtained. The study demonstrated that the tolerance of these strains to SSL translates into an increased capacity to produce ethanol over time using this substrate, due to continued viability of the yeast population. Phenotypic analysis of the three strains revealed that the genome shuffling approach successfully co-evolved tolerance to acetic acid, NaCl (osmotic) and HMF. A systems biology analysis of strain R57 was initiated in order to establish the genetic basis for HWSSL tolerance. tabs., figs.

  19. Towards Early Biochemical screening for Fetal Aneupliody in the First Trimester

    DEFF Research Database (Denmark)

    Tørring, Niels

    2011-01-01

    Objectives At Aarhus University Hospital, Denmark, the first trimester screening has been performed with the blood sample taken as early as gestational week 7 since 2003. We hereby present the status for the screening program. Methods: The study includes singleton pregnancies with complete first......: Screening for fetal aneuploidy can be performed with good results with the blood sample taken as early as the 7th week of gestation. Taking the blood sample before the 10th gestational week showed a high detection rate of fetal trisomy 21, with no difference in the detection of fetal trisomy 18, 13...

  20. A comprehensive platform for highly multiplexed mammalian functional genetic screens

    Directory of Open Access Journals (Sweden)

    Cheung-Ong Kahlin

    2011-05-01

    Full Text Available Abstract Background Genome-wide screening in human and mouse cells using RNA interference and open reading frame over-expression libraries is rapidly becoming a viable experimental approach for many research labs. There are a variety of gene expression modulation libraries commercially available, however, detailed and validated protocols as well as the reagents necessary for deconvolving genome-scale gene screens using these libraries are lacking. As a solution, we designed a comprehensive platform for highly multiplexed functional genetic screens in human, mouse and yeast cells using popular, commercially available gene modulation libraries. The Gene Modulation Array Platform (GMAP is a single microarray-based detection solution for deconvolution of loss and gain-of-function pooled screens. Results Experiments with specially constructed lentiviral-based plasmid pools containing ~78,000 shRNAs demonstrated that the GMAP is capable of deconvolving genome-wide shRNA "dropout" screens. Further experiments with a larger, ~90,000 shRNA pool demonstrate that equivalent results are obtained from plasmid pools and from genomic DNA derived from lentivirus infected cells. Parallel testing of large shRNA pools using GMAP and next-generation sequencing methods revealed that the two methods provide valid and complementary approaches to deconvolution of genome-wide shRNA screens. Additional experiments demonstrated that GMAP is equivalent to similar microarray-based products when used for deconvolution of open reading frame over-expression screens. Conclusion Herein, we demonstrate four major applications for the GMAP resource, including deconvolution of pooled RNAi screens in cells with at least 90,000 distinct shRNAs. We also provide detailed methodologies for pooled shRNA screen readout using GMAP and compare next-generation sequencing to GMAP (i.e. microarray based deconvolution methods.

  1. A Class of Diacylglycerol Acyltransferase 1 Inhibitors Identified by a Combination of Phenotypic High-throughput Screening, Genomics, and Genetics

    Directory of Open Access Journals (Sweden)

    Kirsten Tschapalda

    2016-06-01

    Full Text Available Excess lipid storage is an epidemic problem in human populations. Thus, the identification of small molecules to treat or prevent lipid storage-related metabolic complications is of great interest. Here we screened >320.000 compounds for their ability to prevent a cellular lipid accumulation phenotype. We used fly cells because the multifarious tools available for this organism should facilitate unraveling the mechanism-of-action of active small molecules. Of the several hundred lipid storage inhibitors identified in the primary screen we concentrated on three structurally diverse and potent compound classes active in cells of multiple species (including human and negligible cytotoxicity. Together with Drosophila in vivo epistasis experiments, RNA-Seq expression profiles suggested that the target of one of the small molecules was diacylglycerol acyltransferase 1 (DGAT1, a key enzyme in the production of triacylglycerols and prominent human drug target. We confirmed this prediction by biochemical and enzymatic activity tests.

  2. High Throughput Screening in Duchenne Muscular Dystrophy: From Drug Discovery to Functional Genomics

    Directory of Open Access Journals (Sweden)

    Thomas J.J. Gintjee

    2014-11-01

    Full Text Available Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD, the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.

  3. High throughput screening in duchenne muscular dystrophy: from drug discovery to functional genomics.

    Science.gov (United States)

    Gintjee, Thomas J J; Magh, Alvin S H; Bertoni, Carmen

    2014-11-14

    Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD), the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS) technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.

  4. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE and Sanger Cancer Genome Project (CGP. The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a evaluate drug responses of compounds with similar mechanism of action (MOA, b examine measures of gene expression (GE, copy number (CN and mutation status (MUT biomarkers, combined with gene set enrichment analysis (GSEA, for hypothesizing biological processes important for drug response, c conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  5. Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening.

    Science.gov (United States)

    Xia, Pu; Zhang, Xiaowei; Xie, Yuwei; Guan, Miao; Villeneuve, Daniel L; Yu, Hongxia

    2016-10-04

    There are thousands of chemicals used by humans and detected in the environment for which limited or no toxicological data are available. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify the potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes at IC50 (the concentration causing a 50% reduction in cell viability) were significantly enriched in the adherens junction pathway, MAPK signaling pathway, and PPAR signaling pathway, suggesting a potential role in the molecular mechanism of TCS-induced cytotoxicity. Evaluation of the top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with transcriptomic profiling of TCS at concentrations of CRISPR-Cas9 fingerprint may reveal the patterns of TCS toxicity at low concentration levels. Moreover, we retrieved the potential connection between CRISPR-Cas9 fingerprint and disease terms, obesity, and breast cancer from an existing chemical-gene-disease database. Overall, CRISPR-Cas9 functional genomic screening offers an alternative approach for chemical toxicity testing.

  6. Population-Based in Vitro Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study

    Science.gov (United States)

    Abdo, Nour; Xia, Menghang; Brown, Chad C.; Kosyk, Oksana; Huang, Ruili; Sakamuru, Srilatha; Zhou, Yi-Hui; Jack, John R.; Gallins, Paul; Xia, Kai; Li, Yun; Chiu, Weihsueh A.; Motsinger-Reif, Alison A.; Austin, Christopher P.; Tice, Raymond R.

    2015-01-01

    Background: Understanding of human variation in toxicity to environmental chemicals remains limited, so human health risk assessments still largely rely on a generic 10-fold factor (10½ each for toxicokinetics and toxicodynamics) to account for sensitive individuals or subpopulations. Objectives: We tested a hypothesis that population-wide in vitro cytotoxicity screening can rapidly inform both the magnitude of and molecular causes for interindividual toxicodynamic variability. Methods: We used 1,086 lymphoblastoid cell lines from the 1000 Genomes Project, representing nine populations from five continents, to assess variation in cytotoxic response to 179 chemicals. Analysis included assessments of population variation and heritability, and genome-wide association mapping, with attention to phenotypic relevance to human exposures. Results: For about half the tested compounds, cytotoxic response in the 1% most “sensitive” individual occurred at concentrations within a factor of 10½ (i.e., approximately 3) of that in the median individual; however, for some compounds, this factor was > 10. Genetic mapping suggested important roles for variation in membrane and transmembrane genes, with a number of chemicals showing association with SNP rs13120371 in the solute carrier SLC7A11, previously implicated in chemoresistance. Conclusions: This experimental approach fills critical gaps unaddressed by recent large-scale toxicity testing programs, providing quantitative, experimentally based estimates of human toxicodynamic variability, and also testable hypotheses about mechanisms contributing to interindividual variation. Citation: Abdo N, Xia M, Brown CC, Kosyk O, Huang R, Sakamuru S, Zhou YH, Jack JR, Gallins P, Xia K, Li Y, Chiu WA, Motsinger-Reif AA, Austin CP, Tice RR, Rusyn I, Wright FA. 2015. Population-based in vitro hazard and concentration–response assessment of chemicals: the 1000 Genomes high-throughput screening study. Environ Health Perspect 123:458

  7. Figure 5 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Science.gov (United States)

    Split-Screen View. The split-screen view is useful for exploring relationships of genomic features that are independent of chromosomal location. Color is used here to indicate mate pairs that map to different chromosomes, chromosomes 1 and 6, suggesting a translocation event. Adapted from Figure 8; Thorvaldsdottir H et al. 2012

  8. Fungal Screening on Olive Oil for Extracellular Triacylglycerol Lipases: Selection of a Trichoderma harzianum Strain and Genome Wide Search for the Genes

    Science.gov (United States)

    Canseco-Pérez, Miguel Angel; Castillo-Avila, Genny Margarita; Islas-Flores, Ignacio; Apolinar-Hernández, Max M.; Rivera-Muñoz, Gerardo; Gamboa-Angulo, Marcela; Couoh-Uicab, Yeny

    2018-01-01

    A lipolytic screening with fungal strains isolated from lignocellulosic waste collected in banana plantation dumps was carried out. A Trichoderma harzianum strain (B13-1) showed good extracellular lipolytic activity (205 UmL−1). Subsequently, functional screening of the lipolytic activity on Rhodamine B enriched with olive oil as the only carbon source was performed. The successful growth of the strain allows us to suggest that a true lipase is responsible for the lipolytic activity in the B13-1 strain. In order to identify the gene(s) encoding the protein responsible for the lipolytic activity, in silico identification and characterization of triacylglycerol lipases from T. harzianum is reported for the first time. A survey in the genome of this fungus retrieved 50 lipases; however, bioinformatic analyses and putative functional descriptions in different databases allowed us to choose seven lipases as candidates. Suitability of the bioinformatic screening to select the candidates was confirmed by reverse transcription polymerase chain reaction (RT-PCR). The gene codifying 526309 was expressed when the fungus grew in a medium with olive oil as carbon source. This protein shares homology with commercial lipases, making it a candidate for further applications. The success in identifying a lipase gene inducible with olive oil and the suitability of the functional screening and bioinformatic survey carried out herein, support the premise that the strategy can be used in other microorganisms with sequenced genomes to search for true lipases, or other enzymes belonging to large protein families. PMID:29370083

  9. Genomic screening for blood-borne viruses in transfusion settings.

    Science.gov (United States)

    Allain, J P

    2000-02-01

    The residual risk of post-transfusion human immunodeficiency virus (HIV) infection is low but slightly higher for hepatitis B virus (HBV) and hepatitis C virus (HCV), the main reason being viraemia during the window period preceding antibody or antigen detection by enzyme immunoassays. Immunosilent-infected individuals and carriers of distant viral variants also play an unquantifiable role. Multiple techniques, e.g. reverse transcription-polymerase chain reaction (RT-PCR), PCR, ligase-chain reaction, nucleic acid sequence-based amplification (NASBA) and transcription-mediated amplification (TMA) have been developed to amplify and detect viral genomes as single or multiplex assays. Equipment providing various degrees of automation has been adapted to these techniques. Applying nucleic acid amplification techniques (NAT) to blood screening, two main approaches have been advocated: plasma pool and single-donation testing. Pool testing presents the advantage of lower cost and readily available equipment although it is prone to false negative and positive reactions. The time required to identify infected donations is incompatible with blood component release, and may lead to product waste. Single-unit testing, although appealing, is not yet fully automated and potentially very costly unless a systematic multiplex approach is taken. Although technically feasible, NAT applied to the blood supply needs to be clinically evaluated and its cost efficiency assessed in the general public health context. However, pool NAT is currently implemented in continental Europe and the USA.

  10. Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature.

    Science.gov (United States)

    Voorink-Moret, M; Goorden, S M I; van Kuilenburg, A B P; Wijburg, F A; Ghauharali-van der Vlugt, J M M; Beers-Stet, F S; Zoetekouw, A; Kulik, W; Hollak, C E M; Vaz, F M

    2018-02-01

    In patients suspected of a lipid storage disorder (sphingolipidoses, lipidoses), confirmation of the diagnosis relies predominantly on the measurement of specific enzymatic activities and genetic studies. New UPLC-MS/MS methods have been developed to measure lysosphingolipids and oxysterols, which, combined with chitotriosidase activity may represent a rapid first tier screening for lipid storage disorders. A lysosphingolipid panel consisting of lysoglobotriaosylceramide (LysoGb3), lysohexosylceramide (LysoHexCer: both lysoglucosylceramide and lysogalactosylceramide), lysosphingomyelin (LysoSM) and its carboxylated analogue lysosphingomyelin-509 (LysoSM-509) was measured in control subjects and plasma samples of predominantly untreated patients affected with lipid storage disorders (n=74). In addition, the oxysterols cholestane-3β,5α,6β-triol and 7-ketocholesterol were measured in a subset of these patients (n=36) as well as chitotriosidase activity (n=43). A systematic review of the literature was performed to assess the usefulness of these biochemical markers. Specific elevations of metabolites, i.e. without overlap between controls and other lipid storage disorders, were found for several lysosomal storage diseases: increased LysoSM levels in acid sphingomyelinase deficiency (Niemann-Pick disease type A/B), LysoGb3 levels in males with classical phenotype Fabry disease and LysoHexCer (i.e. lysoglucosylceramide/lysogalactosylceramide) in Gaucher and Krabbe diseases. While elevated levels of LysoSM-509 and cholestane-3β,5α,6β-triol did not discriminate between Niemann Pick disease type C and acid sphingomyelinase deficiency, LysoSM-509/LysoSM ratio was specifically elevated in Niemann-Pick disease type C. In Gaucher disease type I, mild increases in several lysosphingolipids were found including LysoGb3 with levels in the range of non-classical Fabry males and females. Chitotriosidase showed specific elevations in symptomatic Gaucher disease, and was mildly

  11. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    Science.gov (United States)

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  12. Chromoanasynthetic Genomic Rearrangement Identified in a N-Ethyl-N-Nitrosourea (ENU Mutagenesis Screen in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Omar A. Itani

    2016-02-01

    Full Text Available Chromoanasynthesis is a recently discovered phenomenon in humans with congenital diseases that is characterized by complex genomic rearrangements (CGRs resulting from aberrant repair of catastrophic chromosomal damage. How these CGRs are induced is not known. Here, we describe the structure and function of dpDp667, a causative CGR that emerged from a Caenorhabditis elegans dauer suppressor screen in which animals were treated with the point mutagen N-ethyl-N-nitrosourea (ENU. dpDp667 comprises nearly 3 Mb of sequence on the right arm of the X chromosome, contains three duplications and one triplication, and is devoid of deletions. Sequences from three out of the four breakpoint junctions in dpDp667 reveal microhomologies that are hallmarks of chromoanasynthetic CGRs. Our findings suggest that environmental insults and physiological processes that cause point mutations may give rise to chromoanasynthetic rearrangements associated with congenital disease. The relatively subtle phenotype of animals harboring dpDp667 suggests that the prevalence of CGRs in the genomes of mutant and/or phenotypically unremarkable animals may be grossly underestimated.

  13. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  14. Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.

    Science.gov (United States)

    Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin

    2016-01-01

    ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including

  15. A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion

    Science.gov (United States)

    Toret, Christopher P.; D’Ambrosio, Michael V.; Vale, Ronald D.; Simon, Michael A.

    2014-01-01

    Cadherins and associated catenins provide an important structural interface between neighboring cells, the actin cytoskeleton, and intracellular signaling pathways in a variety of cell types throughout the Metazoa. However, the full inventory of the proteins and pathways required for cadherin-mediated adhesion has not been established. To this end, we completed a genome-wide (∼14,000 genes) ribonucleic acid interference (RNAi) screen that targeted Ca2+-dependent adhesion in DE-cadherin–expressing Drosophila melanogaster S2 cells in suspension culture. This novel screen eliminated Ca2+-independent cell–cell adhesion, integrin-based adhesion, cell spreading, and cell migration. We identified 17 interconnected regulatory hubs, based on protein functions and protein–protein interactions that regulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion. Representative proteins from these hubs were analyzed further in Drosophila oogenesis, using targeted germline RNAi, and adhesion was analyzed in Madin–Darby canine kidney mammalian epithelial cell–cell adhesion. These experiments reveal roles for a diversity of cellular pathways that are required for cadherin function in Metazoa, including cytoskeleton organization, cell–substrate interactions, and nuclear and cytoplasmic signaling. PMID:24446484

  16. Controversy and debate on clinical genomics sequencing-paper 1: genomics is not exceptional: rigorous evaluations are necessary for clinical applications of genomic sequencing.

    Science.gov (United States)

    Wilson, Brenda J; Miller, Fiona Alice; Rousseau, François

    2017-12-01

    Next generation genomic sequencing (NGS) technologies-whole genome and whole exome sequencing-are now cheap enough to be within the grasp of many health care organizations. To many, NGS is symbolic of cutting edge health care, offering the promise of "precision" and "personalized" medicine. Historically, research and clinical application has been a two-way street in clinical genetics: research often driven directly by the desire to understand and try to solve immediate clinical problems affecting real, identifiable patients and families, accompanied by a low threshold of willingness to apply research-driven interventions without resort to formal empirical evaluations. However, NGS technologies are not simple substitutes for older technologies and need careful evaluation for use as screening, diagnostic, or prognostic tools. We have concerns across three areas. First, at the moment, analytic validity is unknown because technical platforms are not yet stable, laboratory quality assurance programs are in their infancy, and data interpretation capabilities are badly underdeveloped. Second, clinical validity of genomic findings for patient populations without pre-existing high genetic risk is doubtful, as most clinical experience with NGS technologies relates to patients with a high prior likelihood of a genetic etiology. Finally, we are concerned that proponents argue not only for clinically driven approaches to assessing a patient's genome, but also for seeking out variants associated with unrelated conditions or susceptibilities-so-called "secondary targets"-this is screening on a genomic scale. We argue that clinical uses of genomic sequencing should remain limited to specialist and research settings, that screening for secondary findings in clinical testing should be limited to the maximum extent possible, and that the benefits, harms, and economic implications of their routine use be systematically evaluated. All stakeholders have a responsibility to ensure that

  17. CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening

    DEFF Research Database (Denmark)

    Wang, M.J.; Lamberth, K.; Harndahl, M.

    2007-01-01

    are present in the emerging bird flu isolates. Our study demonstrates that present technology enables a fast global screening for T cell immune epitopes of potential diagnostics and vaccine interest. This technology includes immuno-bioinformatics predictors with the capacity to perform fast genome-, pathogen......-, and HLA-wide searches for immune targets. To exploit this new potential, a coordinated international effort to analyze the precious source of information represented by rare patients, such as the current victims of bird flu, would be essential....

  18. A genome-wide screen for interactions reveals a new locus on 4p15 modifying the effect of waist-to-hip ratio on total cholesterol.

    Directory of Open Access Journals (Sweden)

    Ida Surakka

    2011-10-01

    Full Text Available Recent genome-wide association (GWA studies described 95 loci controlling serum lipid levels. These common variants explain ∼25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for variants that modify the relationship between known epidemiological risk factors and circulating lipid levels in a meta-analysis of genome-wide association (GWA data from 18 population-based cohorts with European ancestry (maximum N = 32,225. We collected 8 further cohorts (N = 17,102 for replication, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR on total cholesterol (TC with a combined P-value of 4.79×10(-9. There were two potential candidate genes in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes in adipose tissue. The effect of WHR on TC was strongest for individuals carrying two copies of G allele, for whom a one standard deviation (sd difference in WHR corresponds to 0.19 sd difference in TC concentration, while for A allele homozygous the difference was 0.12 sd. Our findings may open up possibilities for targeted intervention strategies for people characterized by specific genomic profiles. However, more refined measures of both body-fat distribution and metabolic measures are needed to understand how their joint dynamics are modified by the newly found locus.

  19. HTS-DB: an online resource to publish and query data from functional genomics high-throughput siRNA screening projects.

    Science.gov (United States)

    Saunders, Rebecca E; Instrell, Rachael; Rispoli, Rossella; Jiang, Ming; Howell, Michael

    2013-01-01

    High-throughput screening (HTS) uses technologies such as RNA interference to generate loss-of-function phenotypes on a genomic scale. As these technologies become more popular, many research institutes have established core facilities of expertise to deal with the challenges of large-scale HTS experiments. As the efforts of core facility screening projects come to fruition, focus has shifted towards managing the results of these experiments and making them available in a useful format that can be further mined for phenotypic discovery. The HTS-DB database provides a public view of data from screening projects undertaken by the HTS core facility at the CRUK London Research Institute. All projects and screens are described with comprehensive assay protocols, and datasets are provided with complete descriptions of analysis techniques. This format allows users to browse and search data from large-scale studies in an informative and intuitive way. It also provides a repository for additional measurements obtained from screens that were not the focus of the project, such as cell viability, and groups these data so that it can provide a gene-centric summary across several different cell lines and conditions. All datasets from our screens that can be made available can be viewed interactively and mined for further hit lists. We believe that in this format, the database provides researchers with rapid access to results of large-scale experiments that might facilitate their understanding of genes/compounds identified in their own research. DATABASE URL: http://hts.cancerresearchuk.org/db/public.

  20. Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity

    NARCIS (Netherlands)

    Goosen, C.; Yuan, X.L.; Munster, J.M. van; Ram, A.F.J.; Maarel, M.J.E.C. van der; Dijkhuizen, L.

    2007-01-01

    A novel subfamily of putative intracellular invertase enzymes (glycoside hydrolase family 32) has previously been identified in fungal genomes. Here, we report phylogenetic, molecular, and biochemical characteristics of SucB, one of two novel intracellular invertases identified in Aspergillus niger.

  1. Early Biochemical Screening for Fetal Aneuploidy in the First Trimester

    DEFF Research Database (Denmark)

    Tørring, Niels

    2013-01-01

    Background Screening for fetal trisomy 21 in the first trimester includes analysis of the serological markers pregnancy-associated plasma protein A (PAPP-A) and free beta human choriogonadotropin (free βhCG). With the recent launch of the PAPP-A free βhCG and assays on the Roche Cobas and Elecsys...... assays showed slopes of 0.94 and 0.95 and Pearson’s correlation of r = 0.981 and r = 0.987 respectively. Similar comparison to AutoDELFIA PerkinElmer Perkin gave slopes of 0,83 (free βhCG) and 1.20 (PAPP-A). With a cut off at 1:300 the overall sensitivity of the first trimester screening including nuchal...

  2. Comprehensive Screening of Some West and Central African Sesame Genotypes for Drought Resistance Probing by Agromorphological, Physiological, Biochemical and Seed Quality Traits

    Directory of Open Access Journals (Sweden)

    Komivi Dossa

    2017-12-01

    Full Text Available Sesame is an important crop in West and Central Africa playing a role of an alternative cash crop for smallholders. However, sesame productivity is highly impaired by drought. This study aimed at identifying some drought-resistant genotypes and efficient screening traits in large sesame germplasm. Ten genotypes were examined based on 21 biochemical, physiological, agromorphological and seed quality traits under three weeks of water stress. A high variability for drought resistance was observed among the genotypes. The genotypes WC17, WC18 and WC14 were drought resistant, WC12, WC13, WC06 and WC03 were moderately drought resistant while, WC02, WC10 and WC08 were drought sensitive, based on principal component analysis. The resistant genotypes exhibited both avoidance and tolerance features including increase of the root system, reduced water loss, highest activity of antioxidative enzymes and accumulation of proline. They produced higher biomass and had higher ability to maintain seed quality under drought stress compared with the sensitive genotypes. Strong accumulation (~200% ratio stress/control of biochemical markers including superoxide dismutase, ascorbate peroxidase, catalase and proline could be regarded as an important indicator for selecting drought resistant genotypes. This study represents a reference for future research towards developing new varieties with improved drought resistance in West and Central Africa.

  3. Potential biochemical markers for selection of disease resistance in Vigna radiata

    International Nuclear Information System (INIS)

    Badere, R.S.; Koche, D.K.; Choudhary, A.D.; Pawar, S.E.

    2001-01-01

    The Vigna radiata (L.) Wilczek (Green gram), a major pulse crop is prone to damaging diseases caused by Erysiphe polygoni, Cercospora canescens and Rhizoctonia sp. Therefore, the development of multiple resistance is a major breeding objective in green gram. Resistance to powdery mildew has already been developed, however, there are no reports on the development of resistance to Cercospora in green gram. Owing to limitation of conventional screening methods, the improvement for multiple disease resistance is inadequate, in this crop. It needs an efficient and quick selection method, for screening the plant population at an early stage. It is well established that the resistant interaction, in plants, involves accumulation of antibiotic compound phytoalexin (Genestein in Vigna radiata) and induction of enzymes such as β-1,3 gulcanase and Chitinases. These compounds are not only induced by pathogens but also pathogen-derived elicitors. These biochemical compounds can be used as resistance indicative biochemical markers for screening the natural or mutagen induced genetic diversity in populations of Vigna radiata in non-destructive manner. It, however, needs a systematic study of plant defense response. This paper deals with the response of resistant and susceptible cultivars of vigna radiata to Cercospora elicitor and development of non-destructive selection method for disease resistance. (author)

  4. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions.

  5. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  6. Lipoprotein (a) and biochemical parameters in elderly

    OpenAIRE

    Yuttana Sudjaroen

    2016-01-01

    Background: Lipoprotein (a) [Lp(a)] is an low-density lipoprotein like particle and is an important independent risk factor for coronary artery diseases (CAD). Few studies on Lp(a) level in Thai elderly to screening risk of CAD may concerned. Aims: To study the relation of Lp(a) level and routine biochemical parameters including lipid profiles and fasting blood glucose in elderly and to determine risk of subclinical symptoms by using Lp(a) levels as early risk predictor. Settings and Design: ...

  7. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments...

  8. Darwinism for the Genomic Age: Connecting Mutation to Diversification

    OpenAIRE

    Hua, Xia; Bromham, Lindell

    2017-01-01

    A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there...

  9. An analysis of normalization methods for Drosophila RNAi genomic screens and development of a robust validation scheme

    Science.gov (United States)

    Wiles, Amy M.; Ravi, Dashnamoorthy; Bhavani, Selvaraj; Bishop, Alexander J.R.

    2010-01-01

    Genome-wide RNAi screening is a powerful, yet relatively immature technology that allows investigation into the role of individual genes in a process of choice. Most RNAi screens identify a large number of genes with a continuous gradient in the assessed phenotype. Screeners must then decide whether to examine just those genes with the most robust phenotype or to examine the full gradient of genes that cause an effect and how to identify the candidate genes to be validated. We have used RNAi in Drosophila cells to examine viability in a 384-well plate format and compare two screens, untreated control and treatment. We compare multiple normalization methods, which take advantage of different features within the data, including quantile normalization, background subtraction, scaling, cellHTS2 1, and interquartile range measurement. Considering the false-positive potential that arises from RNAi technology, a robust validation method was designed for the purpose of gene selection for future investigations. In a retrospective analysis, we describe the use of validation data to evaluate each normalization method. While no normalization method worked ideally, we found that a combination of two methods, background subtraction followed by quantile normalization and cellHTS2, at different thresholds, captures the most dependable and diverse candidate genes. Thresholds are suggested depending on whether a few candidate genes are desired or a more extensive systems level analysis is sought. In summary, our normalization approaches and experimental design to perform validation experiments are likely to apply to those high-throughput screening systems attempting to identify genes for systems level analysis. PMID:18753689

  10. Parents are interested in newborn genomic testing during the early postpartum period.

    Science.gov (United States)

    Waisbren, Susan E; Bäck, Danielle K; Liu, Christina; Kalia, Sarah S; Ringer, Steven A; Holm, Ingrid A; Green, Robert C

    2015-06-01

    We surveyed parents to ascertain interest in newborn genomic testing and determine whether these queries would provoke refusal of conventional state-mandated newborn screening. After a brief genetics orientation, parents rated their interest in receiving genomic testing for their healthy newborn on a 5-point Likert scale and answered questions about demographics and health history. We used logistic regression to explore factors associated with interest in genomic testing and tracked any subsequent rejection of newborn screening. We queried 514 parents within 48 hours after birth while still in hospital (mean age (SD) 32.7 (6.4) years, 65.2% female, 61.2% white, 79.3% married). Parents reported being not at all (6.4%), a little (10.9%), somewhat (36.6%), very (28.0%), or extremely (18.1%) interested in genomic testing for their newborns. None refused state-mandated newborn screening. Married participants and those with health concerns about their infant were less interested in newborn genomic testing (P = 0.012 and P = 0.030, respectively). Degree of interest for mothers and fathers was discordant (at least two categories different) for 24.4% of couples. Interest in newborn genomic testing was high among parents of healthy newborns, and the majority of couples had similar levels of interest. Surveying parents about genomic sequencing did not prompt rejection of newborn screening.Genet Med 17 6, 501-504.

  11. Genome-Wide Screening of Cytogenetic Abnormalities in Multiple Myeloma Patients Using Array-CGH Technique: A Czech Multicenter Experience

    Directory of Open Access Journals (Sweden)

    Jan Smetana

    2014-01-01

    Full Text Available Characteristic recurrent copy number aberrations (CNAs play a key role in multiple myeloma (MM pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91. Incidence of hyperdiploidy was 49.5% (45/91; del(13(q14 was detected in 57.1% (52/91; gain(1(q21 occurred in 58.2% (53/91; del(17(p13 was observed in 15.4% (14/91; and t(4;14(p16;q32 was found in 18.6% (16/86. Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91. Most common deletions were found at 13q (58.9%, 1p (39.6%, and 8p (31.1%, whereas gain of whole 1q was the most often duplicated region (50.6%. Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.

  12. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast

    Directory of Open Access Journals (Sweden)

    Kozmin Stanislav G

    2005-06-01

    Full Text Available Abstract Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP and 2-amino-6-hydroxylaminopurine (AHA, are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.

  13. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications.

    Science.gov (United States)

    Lucas-Herald, Angela K; Alves-Lopes, Rheure; Montezano, Augusto C; Ahmed, S Faisal; Touyz, Rhian M

    2017-07-01

    The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca 2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    Directory of Open Access Journals (Sweden)

    Nagesh A. Kuravadi

    2015-08-01

    Full Text Available Neem (Azadirachta indica A. Juss is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC. Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways.

  15. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    Science.gov (United States)

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  16. An evaluation of the Oxoid Biochemical Identification System Campy rapid screening test for Campylobacteraceae and Helicobacter spp.

    Science.gov (United States)

    Hoosain, N; Lastovica, A J

    2009-06-01

    To evaluate the Oxoid Biochemical Identification System (OBIS) Campy test (ID0800M) against Campylobacter; Arcobacter; and other micro-organisms, with similar colonial morphology, for the detection of l-alanine aminopeptidase (l-ALA). The KOH and l-ALA (OBIS and Fluka) tests were carried out on every isolate. The procedures were followed as indicated in the OBIS and Fluka kit instructions. A total of 146 strains of 19 species of Campylobacter, seven strains of Arcobacter butzleri, four Arcobacter butzleri-like strains, 42 strains of 10 species of Helicobacter, 96 Gram-negative and 49 Gram-positive clinical isolates were tested. As expected, Campylobacter and Arcobacter strains were negative, while other Gram-negative bacteria were positive for the l-ALA test. An unexpected finding was that Helicobacter strains, although Gram-negative, were all negative for the l-ALA tests suggesting the absence of l-ALA within this genus. This is a novel finding. The absence of l-ALA was confirmed upon comparison with the available full genomic sequences of Helicobacter on the NCBI database. The OBIS Campy (ID0800M) test kit proved to be rapid and accurate for the presumptive characterization of Campylobacter and Arcobacter. A novel finding was that Helicobacter species also did not have the l-ALA enzyme. The OBIS kit will be useful in diagnostic laboratories for the presumptive diagnosis of Campylobacter, Arcobacter and Helicobacter strains.

  17. Seroprevalence of brucellosis and associated hemato-biochemical changes in pakistani horses

    International Nuclear Information System (INIS)

    Gul, S.T.; Khan, A.; Ahmad, M.

    2013-01-01

    The aim of this study was to determine the seroprevalence and hemato-biochemical manifestations of brucellosis in horses. Serum samples were screened for Brucella antibodies by Rose Bengal plate test (RBPT) and serum agglutination test (SAT). Blood samples were evaluated for hemato-biochemical parameters following standard procedures. Results indicated seroprevalence of brucellosis 20.13 and 16.23% in horses by RBPT and SAT, respectively. Brucellosis does not lead to any significant change in hematological and biochemical parameters in relation to age, sex, body condition and lactation except few parameters. The values of erythrocyte sedimentation rate, neutrophil, basophil and alkaline phosphatase significantly decreased in brucellosis positive animals as compared to healthy animals whereas lymphocytes and alanine aminotransferase were in opposite order. It was concluded from the results that prevalence of brucellosis in horse population is of concern; therefore, control measures should be opted so that its zoonotic threat is curtailed. (author)

  18. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  19. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    Science.gov (United States)

    Rönnberg, Tuomas; Jääskeläinen, Kirsi; Blot, Guillaume; Parviainen, Ville; Vaheri, Antti; Renkonen, Risto; Bouloy, Michele; Plyusnin, Alexander

    2012-01-01

    Hantaviruses (Bunyaviridae) are negative-strand RNA viruses with a tripartite genome. The small (S) segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs). The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H) screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  20. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Hye-Ran Yoon

    2015-09-01

    Full Text Available The main purpose of newborn screening is to diagnose genetic, metabolic, and other inherited disorders, at their earliest to start treatment before the clinical manifestations become evident. Understanding and tracing the biochemical data obtained from tandem mass spectrometry is vital for early diagnosis of metabolic diseases associated with such disorders. Accordingly, it is important to focus on the entire diagnostic process, including differential and confirmatory diagnostic options, and the major factors that influence the results of biochemical analysis. Compared to regular biochemical testing, this is a complex process carried out by a medical physician specialist. It is comprised of an integrated program requiring multidisciplinary approach such as, pediatric specialist, expert scientist, clinical laboratory technician, and nutritionist. Tandem mass spectrometry is a powerful tool to improve screening of newborns for diverse metabolic diseases. It is likely to be used to analyze other treatable disorders or significantly improve existing newborn tests to allow broad scale and precise testing. This new era of various screening programs, new treatments, and the availability of detection technology will prove to be beneficial for the future generations.

  1. Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry.

    Directory of Open Access Journals (Sweden)

    Yaw Shin Ooi

    Full Text Available The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ, a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy.

  2. A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1-like dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Jason M Meyer

    2012-01-01

    Full Text Available BACKGROUND: Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides. METHODOLOGY/PRINCIPAL FINDINGS: We describe a "genome-to-lead" approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2 from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D(1-like (Gα(s-coupled receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC(50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM. Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC(50 = 5.8±1.5 nM and norepinephrine (EC(50 = 760±180 nM, while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as "hits," and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D(1 dopamine receptor (hD(1 revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2

  3. Chemical and biochemical tools to assess pollution exposure in cultured fish

    International Nuclear Information System (INIS)

    Fernandes, Denise; Zanuy, Silvia; Bebianno, Maria Joao; Porte, Cinta

    2008-01-01

    There is little information regarding pollutant levels in farmed fish, and the risks associated to consumption. This study was designed to assess levels of exposure to metals, organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APEs) in farmed sea bass Dicentrarchus labrax from five aquacultures located in Southern Europe. Additionally, several biochemical responses (metallothionein, 7-ethoxyresorufin O-deethylase, vitellogenin) were determined as complementary tools. The obtained data indicate that pollutants exposure in farmed fish is similar to the levels reported in wild specimens from the area. Nonetheless, some biochemical responses were observed in the studied organisms, viz. metallothionein induction in Cu exposed organisms, and 7-ethoxyresorufin O-deethylase (EROD) and vitellogenin induction in PAHs and APEs exposed ones. The study further supports the usefulness of the biomarker approach as a first screening method to discriminate between basal and high levels of exposure in cultured fish. - Pollution assessment in cultured fish: chemical and biochemical tools

  4. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  5. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  6. Genome shuffling of Lactobacillus plantarum C88 improves adhesion.

    Science.gov (United States)

    Zhao, Yujuan; Duan, Cuicui; Gao, Lei; Yu, Xue; Niu, Chunhua; Li, Shengyu

    2017-01-01

    Genome shuffling is an important method for rapid improvement in microbial strains for desired phenotypes. In this study, ultraviolet irradiation and nitrosoguanidine were used as mutagens to enhance the adhesion of the wild-type Lactobacillus plantarum C88. Four strains with better property were screened after mutagenesis to develop a library of parent strains for three rounds of genome shuffling. Fusants F3-1, F3-2, F3-3, and F3-4 were screened as the improved strains. The in vivo and in vitro tests results indicated that the population after three rounds of genome shuffling exhibited improved adhesive property. Random Amplified Polymorphic DNA results showed significant differences between the parent strain and recombinant strains at DNA level. These results suggest that the adhesive property of L. plantarum C88 can be significantly improved by genome shuffling. Improvement in the adhesive property of bacterial cells by genome shuffling enhances the colonization of probiotic strains which further benefits to exist probiotic function.

  7. Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    Science.gov (United States)

    Black, S. Lucas; Dawson, Angela; Ward, F. Bruce; Allen, Rosalind J.

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure. PMID:24040140

  8. The Sheffield RNAi Screening Facility (SRSF): portfolio growth and technology development.

    Science.gov (United States)

    Brown, Stephen

    2014-05-01

    The Sheffield RNAi Screening Facility (SRSF) (www.rnai.group.shef.ac.uk) was established in 2008 with Wellcome Trust and University of Sheffield funding, with the task to provide the first UK RNAi screening resource for academic groups interested in identifying genes required in a diverse range of biological processes using Drosophila cell culture. The SRSF has carried out a wide range of screens varying in sizes from bespoke small-scale libraries, targeting a few hundred genes, to high-throughput, genome-wide studies. The SRSF has grown and improved with a dedicated partnership of its academic customers based mainly in the UK. We are part of the UK Academics Functional Genomics Network, participating in organizing an annual meeting in London and are part of the University of Sheffield's D3N (www.d3n.org.uk), connecting academics, biotech and pharmaceutical companies with a multidisciplinary network in Drug Discovery and Development. Recently, the SRSF has been funded by the Yorkshire Cancer Research Fund to perform genome-wide RNAi screens using human cells as part of a core facility for regional Yorkshire Universities and screens are now underway. Overall the SRSF has carried out more than 40 screens from Drosophila and human cell culture experiments.

  9. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  10. A genome-scale RNA-interference screen identifies RRAS signaling as a pathologic feature of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    John P Miller

    Full Text Available A genome-scale RNAi screen was performed in a mammalian cell-based assay to identify modifiers of mutant huntingtin toxicity. Ontology analysis of suppressor data identified processes previously implicated in Huntington's disease, including proteolysis, glutamate excitotoxicity, and mitochondrial dysfunction. In addition to established mechanisms, the screen identified multiple components of the RRAS signaling pathway as loss-of-function suppressors of mutant huntingtin toxicity in human and mouse cell models. Loss-of-function in orthologous RRAS pathway members also suppressed motor dysfunction in a Drosophila model of Huntington's disease. Abnormal activation of RRAS and a down-stream effector, RAF1, was observed in cellular models and a mouse model of Huntington's disease. We also observe co-localization of RRAS and mutant huntingtin in cells and in mouse striatum, suggesting that activation of R-Ras may occur through protein interaction. These data indicate that mutant huntingtin exerts a pathogenic effect on this pathway that can be corrected at multiple intervention points including RRAS, FNTA/B, PIN1, and PLK1. Consistent with these results, chemical inhibition of farnesyltransferase can also suppress mutant huntingtin toxicity. These data suggest that pharmacological inhibition of RRAS signaling may confer therapeutic benefit in Huntington's disease.

  11. Exploratory analysis of genomic segmentations with Segtools

    Directory of Open Access Journals (Sweden)

    Buske Orion J

    2011-10-01

    Full Text Available Abstract Background As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segments, such that segments sharing the same label exhibit one or more biochemical or functional traits. For example, a collection of ChlP-seq experiments yields a compendium of peaks, each labeled with one or more associated DNA-binding proteins. Similarly, manually or automatically generated annotations of functional genomic elements, including cis-regulatory modules and protein-coding or RNA genes, can also be summarized as genomic segmentations. Results We present a software toolkit called Segtools that simplifies and automates the exploration of genomic segmentations. The software operates as a series of interacting tools, each of which provides one mode of summarization. These various tools can be pipelined and summarized in a single HTML page. We describe the Segtools toolkit and demonstrate its use in interpreting a collection of human histone modification data sets and Plasmodium falciparum local chromatin structure data sets. Conclusions Segtools provides a convenient, powerful means of interpreting a genomic segmentation.

  12. Discovery of novel inhibitors for DHODH via virtual screening and X-ray crystallographic structures

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Larry R.; Zhang, Ying; Degnen, William; Peppard, Jane; Cabel, Dasha; Zou, Chao; Tsay, Joseph T.; Subramaniam, Arun; Vaz, Roy J.; Li, Yi (Sanofi)

    2010-10-28

    Amino-benzoic acid derivatives 1-4 were found to be inhibitors for DHODH by virtual screening, biochemical, and X-ray crystallographic studies. X-ray structures showed that 1 and 2 bind to DHODH as predicted by virtual screening, but 3 and 4 were found to be structurally different from the corresponding compounds initially identified by virtual screening.

  13. In Vivo RNAi-Based Screens: Studies in Model Organisms

    Directory of Open Access Journals (Sweden)

    Miki Yamamoto-Hino

    2013-11-01

    Full Text Available RNA interference (RNAi is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.

  14. CRISPR-FOCUS: A web server for designing focused CRISPR screening experiments

    OpenAIRE

    Cao, Qingyi; Ma, Jian; Chen, Chen-Hao; Xu, Han; Chen, Zhi; Li, Wei; Liu, X. Shirley

    2017-01-01

    The recently developed CRISPR screen technology, based on the CRISPR/Cas9 genome editing system, enables genome-wide interrogation of gene functions in an efficient and cost-effective manner. Although many computational algorithms and web servers have been developed to design single-guide RNAs (sgRNAs) with high specificity and efficiency, algorithms specifically designed for conducting CRISPR screens are still lacking. Here we present CRISPR-FOCUS, a web-based platform to search and prioriti...

  15. Biochemical fingerprinting of Vibrio parahaemolyticus by the PhenePlate system: comparison between pandemic and non-pandemic serotypes.

    Science.gov (United States)

    Rahman, Mokhlasur; Bhuiyan, N A; Kuhn, I; Ramamurthy, T; Rahman, M; Mollby, R; Nair, G Balakrish

    2006-10-01

    During recent years a pandemic clone of Vibrio parahaemolyticus has emerged. Isolates of this clone are distributed among several serotypes, but are genotypically related. In the present study, a phenotyping method (biochemical fingerprinting) was used to characterize pandemic and non-pandemic isolates belonging to V. parahaemolyticus. It was found that the pandemic isolates showed a high level of phenotypic homogeneity and a majority of the pandemic isolates belonged to the same biochemical phenotype, whereas non-pandemic V. parahemolyticus isolates were more heterogeneous. In conclusion, biochemical fingerprinting of V. parahaemolyticus can be used as a first screening method to differentiate between pandemic and non-pandemic isolates of V. parahaemolyticus.

  16. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    Science.gov (United States)

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  17. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD by newborn screening ontario

    Directory of Open Access Journals (Sweden)

    Fisher Lawrence

    2010-11-01

    identified by other newborn screening programs internationally. We observed some evidence of correlation between genotype and biochemical phenotype (C8 levels, and between C8 screening levels and eventual diagnosis. Current research priorities include further examining the relationships among genotype, biochemical phenotype, and clinical phenotype, with the ultimate goal of improving clinical risk prediction in order to provide tailored disease management advice and genetic counselling to families.

  18. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  19. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity.

    Science.gov (United States)

    Misas, Elizabeth; Muñoz, José Fernando; Gallo, Juan Esteban; McEwen, Juan Guillermo; Clay, Oliver Keatinge

    2016-04-01

    The presence of repetitive or non-unique DNA persisting over sizable regions of a eukaryotic genome can hinder the genome's successful de novo assembly from short reads: ambiguities in assigning genome locations to the non-unique subsequences can result in premature termination of contigs and thus overfragmented assemblies. Fungal mitochondrial (mtDNA) genomes are compact (typically less than 100 kb), yet often contain short non-unique sequences that can be shown to impede their successful de novo assembly in silico. Such repeats can also confuse processes in the cell in vivo. A well-studied example is ectopic (out-of-register, illegitimate) recombination associated with repeat pairs, which can lead to deletion of functionally important genes that are located between the repeats. Repeats that remain conserved over micro- or macroevolutionary timescales despite such risks may indicate functionally or structurally (e.g., for replication) important regions. This principle could form the basis of a mining strategy for accelerating discovery of function in genome sequences. We present here our screening of a sample of 11 fully sequenced fungal mitochondrial genomes by observing where exact k-mer repeats occurred several times; initial analyses motivated us to focus on 17-mers occurring more than three times. Based on the diverse repeats we observe, we propose that such screening may serve as an efficient expedient for gaining a rapid but representative first insight into the repeat landscapes of sparsely characterized mitochondrial chromosomes. Our matching of the flagged repeats to previously reported regions of interest supports the idea that systems of persisting, non-trivial repeats in genomes can often highlight features meriting further attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biochemical reasoning for radiation protection and screening methods for radiation sensitivity and potential carcinogenicity

    International Nuclear Information System (INIS)

    Riklis, Emanuel; Emerit, Ingrid

    1994-01-01

    Cells of different genetic characteristics respond differently to agents that modify radiation effects. When the modification is a result of chemical repair, reduction of the amount of damage by radical scavenging, production of hypoxia, or any other such mechanism, then the modification of the response will be the same for all types of cells, but not the same when biological or biochemical parameters are involved, because the differences between the cells affect the final outcome, and the genetic traits obviously become affected by chemical modifying agents. Some of these agents directly affect the repair of deoxyribonucleic acid (DNA) by mechanisms not yet understood. Another agent nicotinamide (NA), is directly linked to a repair pathway. Thus, a system that uses NA as a precursor of nicotinamide adenine dinucleotide (NAD) + , and uses NAD + to produce the polymer polyadenosine diphosphate ribose (PADPR) appears to be an interesting and important factor in the biochemical events that may be linked to improved radioprotection. (author). 36 refs., 5 figs

  1. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  2. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    Directory of Open Access Journals (Sweden)

    Walker Susan

    2009-09-01

    Full Text Available Abstract Background Copy number variation (CNV in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH" that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  3. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  4. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  5. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses

    DEFF Research Database (Denmark)

    Prangishvili, D; Garrett, R A

    2004-01-01

    and Rudiviridae. They all have double-stranded DNA genomes and infect hyperthermophilic crenarchaea of the orders Sulfolobales and Thermoproteales. Representatives of the different viral families share a few homologous ORFs (open reading frames). However, about 90% of all ORFs in the seven sequenced genomes show...... no significant matches to sequences in public databases. This suggests that these hyperthermophilic viruses have exceptional biochemical solutions for biological functions. Specific features of genome organization, as well as strategies for DNA replication, suggest that phylogenetic relationships exist between...... crenarchaeal rudiviruses and the large eukaryal DNA viruses: poxviruses, the African swine fever virus and Chlorella viruses. Sequence patterns at the ends of the linear genome of the lipothrixvirus AFV1 are reminiscent of the telomeric ends of linear eukaryal chromosomes and suggest that a primitive telomeric...

  6. Preimplantation genetic screening.

    Science.gov (United States)

    Harper, Joyce C

    2018-03-01

    Preimplantation genetic diagnosis was first successfully performed in 1989 as an alternative to prenatal diagnosis for couples at risk of transmitting a genetic or chromosomal abnormality, such as cystic fibrosis, to their child. From embryos generated in vitro, biopsied cells are genetically tested. From the mid-1990s, this technology has been employed as an embryo selection tool for patients undergoing in vitro fertilisation, screening as many chromosomes as possible, in the hope that selecting chromosomally normal embryos will lead to higher implantation and decreased miscarriage rates. This procedure, preimplantation genetic screening, was initially performed using fluorescent in situ hybridisation, but 11 randomised controlled trials of screening using this technique showed no improvement in in vitro fertilisation delivery rates. Progress in genetic testing has led to the introduction of array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing for preimplantation genetic screening, and three small randomised controlled trials of preimplantation genetic screening using these new techniques indicate a modest benefit. Other trials are still in progress but, regardless of their results, preimplantation genetic screening is now being offered globally. In the near future, it is likely that sequencing will be used to screen the full genetic code of the embryo.

  7. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  8. Mass spectrometry for fragment screening.

    Science.gov (United States)

    Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris

    2017-11-08

    Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    Science.gov (United States)

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  10. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha; Mkaouar-Rebai, Emna; Hadj Salem, Ikhlass; Kallel, Nozha; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNA Val gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA Val . This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  11. Large scale meta-analysis of fragment-based screening campaigns: privileged fragments and complementary technologies.

    Science.gov (United States)

    Kutchukian, Peter S; Wassermann, Anne Mai; Lindvall, Mika K; Wright, S Kirk; Ottl, Johannes; Jacob, Jaison; Scheufler, Clemens; Marzinzik, Andreas; Brooijmans, Natasja; Glick, Meir

    2015-06-01

    A first step in fragment-based drug discovery (FBDD) often entails a fragment-based screen (FBS) to identify fragment "hits." However, the integration of conflicting results from orthogonal screens remains a challenge. Here we present a meta-analysis of 35 fragment-based campaigns at Novartis, which employed a generic 1400-fragment library against diverse target families using various biophysical and biochemical techniques. By statistically interrogating the multidimensional FBS data, we sought to investigate three questions: (1) What makes a fragment amenable for FBS? (2) How do hits from different fragment screening technologies and target classes compare with each other? (3) What is the best way to pair FBS assay technologies? In doing so, we identified substructures that were privileged for specific target classes, as well as fragments that were privileged for authentic activity against many targets. We also revealed some of the discrepancies between technologies. Finally, we uncovered a simple rule of thumb in screening strategy: when choosing two technologies for a campaign, pairing a biochemical and biophysical screen tends to yield the greatest coverage of authentic hits. © 2014 Society for Laboratory Automation and Screening.

  12. Event-based text mining for biology and functional genomics

    Science.gov (United States)

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  13. Comparative genomic characterization of three Streptococcus parauberis strains in fish pathogen, as assessed by wide-genome analyses.

    Directory of Open Access Journals (Sweden)

    Seong-Won Nho

    Full Text Available Streptococcus parauberis, which is the main causative agent of streptococcosis among olive flounder (Paralichthys olivaceus in northeast Asia, can be distinctly divided into two groups (type I and type II by an agglutination test. Here, the whole genome sequences of two Japanese strains (KRS-02083 and KRS-02109 were determined and compared with the previously determined genome of a Korean strain (KCTC 11537. The genomes of S. parauberis are intermediate in size and have lower GC contents than those of other streptococci. We annotated 2,236 and 2,048 genes in KRS-02083 and KRS-02109, respectively. Our results revealed that the three S. parauberis strains contain different genomic insertions and deletions. In particular, the genomes of Korean and Japanese strains encode different factors for sugar utilization; the former encodes the phosphotransferase system (PTS for sorbose, whereas the latter encodes proteins for lactose hydrolysis, respectively. And the KRS-02109 strain, specifically, was the type II strain found to be able to resist phage infection through the clustered regularly interspaced short palindromic repeats (CRISPR/Cas system and which might contribute valuably to serologically distribution. Thus, our genome-wide association study shows that polymorphisms can affect pathogen responses, providing insight into biological/biochemical pathways and phylogenetic diversity.

  14. A mechanism misregulating p27 in tumors discovered in a functional genomic screen.

    Directory of Open Access Journals (Sweden)

    Carrie M Garrett-Engele

    2007-12-01

    Full Text Available The cyclin-dependent kinase inhibitor p27(KIP1 is a tumor suppressor gene in mice, and loss of p27 protein is a negative prognostic indicator in human cancers. Unlike other tumor suppressors, the p27 gene is rarely mutated in tumors. Therefore misregulation of p27, rather than loss of the gene, is responsible for tumor-associated decreases in p27 protein levels. We performed a functional genomic screen in p27(+/- mice to identify genes that regulate p27 during lymphomagenesis. This study demonstrated that decreased p27 expression in tumors resulted from altered transcription of the p27 gene, and the retroviral tagging strategy enabled us to pinpoint relevant transcription factors. inhibitor of DNA binding 3 (Id3 was isolated and validated as a transcriptional repressor of p27. We further demonstrated that p27 was a downstream target of Id3 in src-family kinase Lck-driven thymic lymphomagenesis and that p27 was an essential regulator of Lck-dependent thymic maturation during normal T-cell development. Thus, we have identified and characterized transcriptional repression of p27 by Id3 as a new mechanism decreasing p27 protein in tumors.

  15. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    Science.gov (United States)

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  16. An orphan gyrB in the Mycobacterium smegmatis genome ...

    Indian Academy of Sciences (India)

    Unknown

    2002-12-13

    Dec 13, 2002 ... ... respect to gene organization and regulation, biochemical characterization, ... marin class of drugs, resides in GyrB, providing essential energetics for the ... Materials and methods ... analysis of the M. smegmatis genome revealed presence of a gene .... outs of either one of the gyrB alleles to evaluate their.

  17. Use of laminar flow patterning for miniaturised biochemical assays

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Krühne, Ulrich; Beyer, M.

    2004-01-01

    Laminar flow in microfluidic chambers was used to construct low (one dimensional) density arrays suitable for miniaturized biochemical assays. By varying the ratio of flows of two guiding streams flanking a sample stream, precise focusing and positioning of the latter was achieved, and reactive s...... species carried in the sample stream were deposited on functionalized chip surfaces as discrete 50 mm wide lanes. Using different model systems we have confirmed the method's suitability for qualitative screening and quantification tasks in receptor-ligand assays, recording biotin...

  18. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  19. Data Mining Supercomputing with SAS JMP® Genomics

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2011-02-01

    Full Text Available JMP® Genomics is statistical discovery software that can uncover meaningful patterns in high-throughput genomics and proteomics data. JMP® Genomics is designed for biologists, biostatisticians, statistical geneticists, and those engaged in analyzing the vast stores of data that are common in genomic research (SAS, 2009. Data mining was performed using JMP® Genomics on the two collections of microarray databases available from National Center for Biotechnology Information (NCBI for lung cancer and breast cancer. The Gene Expression Omnibus (GEO of NCBI serves as a public repository for a wide range of highthroughput experimental data, including the two collections of lung cancer and breast cancer that were used for this research. The results for applying data mining using software JMP® Genomics are shown in this paper with numerous screen shots.

  20. Biases in Drosophila melanogaster protein trap screens

    Directory of Open Access Journals (Sweden)

    Müller Ilka

    2009-05-01

    Full Text Available Abstract Background The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. Results We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p -4. Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Conclusion Our analyses suggest that the

  1. MIPS: a database for protein sequences and complete genomes.

    Science.gov (United States)

    Mewes, H W; Hani, J; Pfeiffer, F; Frishman, D

    1998-01-01

    The MIPS group [Munich Information Center for Protein Sequences of the German National Center for Environment and Health (GSF)] at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, is involved in a number of data collection activities, including a comprehensive database of the yeast genome, a database reflecting the progress in sequencing the Arabidopsis thaliana genome, the systematic analysis of other small genomes and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). Through its WWW server (http://www.mips.biochem.mpg.de ) MIPS provides access to a variety of generic databases, including a database of protein families as well as automatically generated data by the systematic application of sequence analysis algorithms. The yeast genome sequence and its related information was also compiled on CD-ROM to provide dynamic interactive access to the 16 chromosomes of the first eukaryotic genome unraveled. PMID:9399795

  2. 1001 Ways to run AutoDock Vina for virtual screening

    NARCIS (Netherlands)

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.

    2016-01-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides

  3. Enumeration of smallest intervention strategies in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Axel von Kamp

    2014-01-01

    Full Text Available One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions in genome-scale metabolic network models. For this we combine two approaches, namely (i the mapping of MCSs to EMs in a dual network, and (ii a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth than reported previously. The strength of the presented approach is that smallest intervention strategies can be

  4. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C.; Nielsen, Morten; Lamberth, K.

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly, from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...

  5. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR

    DEFF Research Database (Denmark)

    Jakočiūnas, Tadas; Jensen, Emil D.; Jensen, Michael Krogh

    2018-01-01

    and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking......Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome...... engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. Cas...

  6. Fostering caring relationships: Suggestions to rethink liberal perspectives on the ethics of newborn screening

    NARCIS (Netherlands)

    Burg, S. van der; Oerlemans, A.J.M.

    2018-01-01

    Newborn screening (NBS) involves the collection of blood from the heel of a newborn baby and testing it for a list of rare and inheritable disorders. New biochemical screening technologies led to expansions of NBS programs in the first decade of the 21st century. It is expected that they will in

  7. Newborn Screening in the Era of Precision Medicine.

    Science.gov (United States)

    Yang, Lan; Chen, Jiajia; Shen, Bairong

    2017-01-01

    As newborn screening success stories gained general confirmation during the past 50 years, scientists quickly discovered diagnostic tests for a host of genetic disorders that could be treated at birth. Outstanding progress in sequencing technologies over the last two decades has made it possible to comprehensively profile newborn screening (NBS) and identify clinically relevant genomic alterations. With the rapid developments in whole-genome sequencing (WGS) and whole-exome sequencing (WES) recently, we can detect newborns at the genomic level and be able to direct the appropriate diagnosis to the different individuals at the appropriate time, which is also encompassed in the concept of precision medicine. Besides, we can develop novel interventions directed at the molecular characteristics of genetic diseases in newborns. The implementation of genomics in NBS programs would provide an effective premise for the identification of the majority of genetic aberrations and primarily help in accurate guidance in treatment and better prediction. However, there are some debate correlated with the widespread application of genome sequencing in NBS due to some major concerns such as clinical analysis, result interpretation, storage of sequencing data, and communication of clinically relevant mutations to pediatricians and parents, along with the ethical, legal, and social implications (so-called ELSI). This review is focused on these critical issues and concerns about the expanding role of genomics in NBS for precision medicine. If WGS or WES is to be incorporated into NBS practice, considerations about these challenges should be carefully regarded and tackled properly to adapt the requirement of genome sequencing in the era of precision medicine.

  8. Fluorescence-based assay as a new screening tool for toxic chemicals

    Science.gov (United States)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  9. Enhancing Reproducibility in Cancer Drug Screening: How Do We Move Forward?

    DEFF Research Database (Denmark)

    Shi, Leming; Haibe-Kains, Benjamin; Birkbak, Nicolai Juul

    2014-01-01

    Large-scale pharmacogenomic high-throughput screening (HTS) studies hold great potential for generating robust genomic predictors of drug response. Two recent large-scale HTS studies have reported results of such screens, revealing several known and novel drug sensitivities and biomarkers...

  10. Breast Cancer in Africa: Limitations and Opportunities for Application of Genomic Medicine

    Directory of Open Access Journals (Sweden)

    Allison Silverstein

    2016-01-01

    Full Text Available As genomic medicine gains clinical applicability across a spectrum of diseases, insufficient application in low-income settings stands to increase health disparity. Breast cancer screening, diagnosis, and treatment have benefited greatly from genomic medicine in high-income settings. As breast cancer is a leading cause of both cancer incidence and mortality in Africa, attention and resources must be applied to research and clinical initiatives to integrate genomic medicine into breast cancer care. In terms of research, there is a paucity of investigations into genetic determinants of breast cancer specific to African populations, despite consensus in the literature that predisposition and susceptibility genes vary between populations. Therefore, we need targeted strengthening of existing research efforts and support of new initiatives. Results will improve clinical care through screening and diagnosis with genetic testing specific to breast cancer in African populations. Clinically, genomic medicine can provide information capable of improving resource allocation to the population which most stands to benefit from increased screening or tailored treatment modalities. In situations where mammography or chemotherapy options are limited, this information will allow for the greatest impact. Implementation of genomic medicine will face numerous systemic barriers but is essential to improve breast cancer outcomes and survival.

  11. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe

    NARCIS (Netherlands)

    Slawiak, M.; Beckhoven, van J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.L.; Grabe, G.; Wolf, van der J.M.

    2009-01-01

    Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing

  12. Activity profiles of 309 ToxCastTM chemicals evaluated across 292 biochemical targets

    International Nuclear Information System (INIS)

    Knudsen, Thomas B.; Houck, Keith A.; Sipes, Nisha S.; Singh, Amar V.; Judson, Richard S.; Martin, Matthew T.; Weissman, Arthur; Kleinstreuer, Nicole C.; Mortensen, Holly M.; Reif, David M.; Rabinowitz, James R.; Setzer, R. Woodrow; Richard, Ann M.; Dix, David J.; Kavlock, Robert J.

    2011-01-01

    Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The present study is a performance evaluation and critical analysis of assay results for an array of 292 high-throughput cell-free assays aimed at preliminary toxicity evaluation of 320 environmental chemicals in EPA's ToxCast TM project (Phase I). The chemicals (309 unique, 11 replicates) were mainly precursors or the active agent of commercial pesticides, for which a wealth of in vivo toxicity data is available. Biochemical HTS (high-throughput screening) profiled cell and tissue extracts using semi-automated biochemical and pharmacological methodologies to evaluate a subset of G-protein coupled receptors (GPCRs), CYP450 enzymes (CYPs), kinases, phosphatases, proteases, HDACs, nuclear receptors, ion channels, and transporters. The primary screen tested all chemicals at a relatively high concentration 25 μM concentration (or 10 μM for CYP assays), and a secondary screen re-tested 9132 chemical-assay pairs in 8-point concentration series from 0.023 to 50 μM (or 0.009-20 μM for CYPs). Mapping relationships across 93,440 chemical-assay pairs based on half-maximal activity concentration (AC50) revealed both known and novel targets in signaling and metabolic pathways. The primary dataset, summary data and details on quality control checks are available for download at (http://www.epa.gov/ncct/toxcast/).

  13. Clinical biochemistry and laboratory medicine in the post-genome era

    International Nuclear Information System (INIS)

    Efremov, Georgi D.

    2001-01-01

    , modification, and regulation of every encoded protein. Much information about protein function can be derived from the analysis of biochemical activities (Martzen, M. R. et al., 1999). In principle, the biochemical activities of proteins can be probed by producing proteins in a high-throughput fashion and analysing the functions of hundreds or thousands of protein samples in parallel using protein micro arrays (MacBeath,G. and Schreiber, S. L., 2000). Major problems in screening an entire proteome array have been the ability to generate the necessary expression clones and also the expression and purification of proteins in a high-throughput fashion. This endeavour has been advanced by creating micro arrays on glass slides that display purified proteins. In the last part of this article I have presented our interest in the study of the molecular basis of the most common monogenic diseases. (Author)

  14. How resilient is the soybean genome? Insights from fast neutron mutagenesis

    Science.gov (United States)

    Previously, we described the development of a fast neutron mutant population resource in soybean and identified mutations of interest through phenotypic screening. Here, we consider the resiliency of the soybean genome by examining genomic rearrangements and mutations that arise from fast neutron ra...

  15. Screening on Gibberellic Acid Producing Activity of Azospirillum Isolates

    International Nuclear Information System (INIS)

    Shun Lai Ei; Khin Mya Lwin; Myo Myint

    2010-12-01

    Six strains of Azopirillum spp were isolated from rice, sugarcane, corn, maize, sunflower and pepper roots and screened the gibberellic acid productivity. Only three strains of Azospirillum species showed the activity and were indentified by cultural, biochemical and drug sensitivity patterns. Among them,one strain isolated from rice root can produce microbial gibberellic acid. It showed greenish yellow colour in chromatogram under UV absorption. This screening method was studied from 1 to 14 days incubation. Qualitative measurement of GA productivity was determined by thin layer chromatography.

  16. New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Lorena Rodrigo

    2014-01-01

    Full Text Available The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS using array comparative genomic hybridization (aCGH. The study included 1420 CCS cycles for recurrent miscarriage (n=203; repetitive implantation failure (n=188; severe male factor (n=116; previous trisomic pregnancy (n=33; and advanced maternal age (n=880. CCS was performed in cycles with fresh oocytes and embryos (n=774; mixed cycles with fresh and vitrified oocytes (n=320; mixed cycles with fresh and vitrified day-2 embryos (n=235; and mixed cycles with fresh and vitrified day-3 embryos (n=91. Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2% and pregnancy rates per transfer (range: 46.0–62.9% were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1% due to the higher percentage of aneuploid embryos (85.3% and lower number of cycles with at least one euploid embryo available per transfer (40.3%. We concluded that aneuploidy is one of the major factors which affect embryo implantation.

  17. Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

    Directory of Open Access Journals (Sweden)

    Nazeh M. Al-Abd

    2013-01-01

    Full Text Available Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.

  18. Cross-trimester repeated measures testing for Down's syndrome screening: an assessment.

    LENUS (Irish Health Repository)

    Wright, D

    2010-07-01

    To provide estimates and confidence intervals for the performance (detection and false-positive rates) of screening for Down\\'s syndrome using repeated measures of biochemical markers from first and second trimester maternal serum samples taken from the same woman.

  19. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  20. A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reid Aikin

    Full Text Available Hedgehog (Hh proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

  1. Screening for novel laccase-producing microbes.

    Science.gov (United States)

    Kiiskinen, L-L; Rättö, M; Kruus, K

    2004-01-01

    To discover novel laccases potential for industrial applications. Fungi were cultivated on solid media containing indicator compounds that enabled the detection of laccases as specific colour reactions. The indicators used were Remazol Brilliant Blue R (RBBR), Poly R-478, guaiacol and tannic acid. The screening work resulted in isolation of 26 positive fungal strains. Liquid cultivations of positive strains confirmed that four efficient laccase producers were found in the screening. Biochemical characteristics of the four novel laccases were typical for fungal laccases in terms of molecular weight, pH optima and pI. The laccases showed good thermal stability at 60 degrees C. Plate-test screening based on polymeric dye compounds, guaiacol and tannic acid is an efficient way to discover novel laccase producers. The results indicated that screening for laccase activity can be performed with guaiacol and RBBR or Poly R-478. Laccases have many potential industrial applications including textile dye decolourization, delignification of pulp and effluent detoxification. It is essential to find novel, efficient enzymes to further develop these applications. This study showed that relatively simple plate test screening method can be used for discovery of novel laccases. Copyright 2004 The Society for Applied Microbiology

  2. Preimplantation Genetic Screening and Preimplantation Genetic Diagnosis.

    Science.gov (United States)

    Sullivan-Pyke, Chantae; Dokras, Anuja

    2018-03-01

    Preimplantation genetic testing encompasses preimplantation genetic screening (PGS) and preimplantation genetic diagnosis (PGD). PGS improves success rates of in vitro fertilization by ensuring the transfer of euploid embryos that have a higher chance of implantation and resulting in a live birth. PGD enables the identification of embryos with specific disease-causing mutations and transfer of unaffected embryos. The development of whole genome amplification and genomic tools, including single nucleotide polymorphism microarrays, comparative genomic hybridization microarrays, and next-generation sequencing, has led to faster, more accurate diagnoses that translate to improved pregnancy and live birth rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology.

    Directory of Open Access Journals (Sweden)

    Florante Ricarte

    Full Text Available Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY. Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.

  4. LeishCyc: a biochemical pathways database for Leishmania major

    Directory of Open Access Journals (Sweden)

    Doyle Maria A

    2009-06-01

    Full Text Available Abstract Background Leishmania spp. are sandfly transmitted protozoan parasites that cause a spectrum of diseases in more than 12 million people worldwide. Much research is now focusing on how these parasites adapt to the distinct nutrient environments they encounter in the digestive tract of the sandfly vector and the phagolysosome compartment of mammalian macrophages. While data mining and annotation of the genomes of three Leishmania species has provided an initial inventory of predicted metabolic components and associated pathways, resources for integrating this information into metabolic networks and incorporating data from transcript, protein, and metabolite profiling studies is currently lacking. The development of a reliable, expertly curated, and widely available model of Leishmania metabolic networks is required to facilitate systems analysis, as well as discovery and prioritization of new drug targets for this important human pathogen. Description The LeishCyc database was initially built from the genome sequence of Leishmania major (v5.2, based on the annotation published by the Wellcome Trust Sanger Institute. LeishCyc was manually curated to remove errors, correct automated predictions, and add information from the literature. The ongoing curation is based on public sources, literature searches, and our own experimental and bioinformatics studies. In a number of instances we have improved on the original genome annotation, and, in some ambiguous cases, collected relevant information from the literature in order to help clarify gene or protein annotation in the future. All genes in LeishCyc are linked to the corresponding entry in GeneDB (Wellcome Trust Sanger Institute. Conclusion The LeishCyc database describes Leishmania major genes, gene products, metabolites, their relationships and biochemical organization into metabolic pathways. LeishCyc provides a systematic approach to organizing the evolving information about Leishmania

  5. RNA interactions in the 5' region of the HIV-1 genome

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Andersen, Ebbe Sloth; Knudsen, Bjarne

    2004-01-01

    The untranslated leader of the dimeric HIV-1 RNA genome is folded into a complex structure that plays multiple and essential roles in the viral replication cycle. Here, we have investigated secondary and tertiary structural elements within the 5' 744 nucleotides of the HIV-1 genome using...... a combination of bioinformatics, enzymatic probing, native gel electrophoresis, and UV-crosslinking experiments. We used a recently developed RNA folding algorithm (Pfold) to predict the common secondary structure of an alignment of 20 divergent HIV-1 sequences. Combining this analysis with biochemical data, we...

  6. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  7. Screening of whole genome sequences identified high-impact variants for stallion fertility.

    Science.gov (United States)

    Schrimpf, Rahel; Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2016-04-14

    Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant

  8. Endogenous viral elements in animal genomes.

    Directory of Open Access Journals (Sweden)

    Aris Katzourakis

    2010-11-01

    Full Text Available Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.

  9. RNAi Screening in Spodoptera frugiperda.

    Science.gov (United States)

    Ghosh, Subhanita; Singh, Gatikrushna; Sachdev, Bindiya; Kumar, Ajit; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-01-01

    RNA interference is a potent and precise reverse genetic approach to carryout large-scale functional genomic studies in a given organism. During the past decade, RNAi has also emerged as an important investigative tool to understand the process of viral pathogenesis. Our laboratory has successfully generated transgenic reporter and RNAi sensor line of Spodoptera frugiperda (Sf21) cells and developed a reversal of silencing assay via siRNA or shRNA guided screening to investigate RNAi factors or viral pathogenic factors with extraordinary fidelity. Here we describe empirical approaches and conceptual understanding to execute successful RNAi screening in Spodoptera frugiperda 21-cell line.

  10. Complementary Information Derived from CRISPR Cas9 Mediated Gene Deletion and Suppression. | Office of Cancer Genomics

    Science.gov (United States)

    CRISPR-Cas9 provides the means to perform genome editing and facilitates loss-of-function screens. However, we and others demonstrated that expression of the Cas9 endonuclease induces a gene-independent response that correlates with the number of target sequences in the genome. An alternative approach to suppressing gene expression is to block transcription using a catalytically inactive Cas9 (dCas9). Here we directly compare genome editing by CRISPR-Cas9 (cutting, CRISPRc) and gene suppression using KRAB-dCas9 (CRISPRi) in loss-of-function screens to identify cell essential genes.

  11. Biochemical signatures mimicking multiple carboxylase deficiency in children with mutations in MT-ATP6.

    Science.gov (United States)

    Larson, Austin A; Balasubramaniam, Shanti; Christodoulou, John; Burrage, Lindsay C; Marom, Ronit; Graham, Brett H; Diaz, George A; Glamuzina, Emma; Hauser, Natalie; Heese, Bryce; Horvath, Gabriella; Mattman, Andre; van Karnebeek, Clara; Lane Rutledge, S; Williamson, Amy; Estrella, Lissette; Van Hove, Johan K L; Weisfeld-Adams, James D

    2018-01-04

    Elevations of specific acylcarnitines in blood reflect carboxylase deficiencies, and have utility in newborn screening for life-threatening organic acidemias and other inherited metabolic diseases. In this report, we describe a newly-identified association of biochemical features of multiple carboxylase deficiency in individuals harboring mitochondrial DNA (mtDNA) mutations in MT-ATP6 and in whom organic acidemias and multiple carboxylase deficiencies were excluded. Using retrospective chart review, we identified eleven individuals with abnormally elevated propionylcarnitine (C3) or hydroxyisovalerylcarnitine (C5OH) with mutations in MT-ATP6, most commonly m.8993T>G in high heteroplasmy or homoplasmy. Most patients were ascertained on newborn screening; most had normal enzymatic or molecular genetic testing to exclude biotinidase and holocarboxylase synthetase deficiencies. MT-ATP6 is associated with some cases of Leigh disease; clinical outcomes in our cohort ranged from death from neurodegenerative disease in early childhood to clinically and developmentally normal after several years of follow-up. These cases expand the biochemical phenotype associated with MT-ATP6 mutations, especially m.8993T>G, to include acylcarnitine abnormalities mimicking carboxylase deficiency states. Clinicians should be aware of this association and its implications for newborn screening, and consider mtDNA sequencing in patients exhibiting similar acylcarnitine abnormalities that are biotin-unresponsive and in whom other enzymatic deficiencies have been excluded. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  12. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    Science.gov (United States)

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  13. Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model.

    Science.gov (United States)

    Gürsoy, Gamze; Xu, Yun; Liang, Jie

    2017-07-01

    Nuclear landmarks and biochemical factors play important roles in the organization of the yeast genome. The interaction pattern of budding yeast as measured from genome-wide 3C studies are largely recapitulated by model polymer genomes subject to landmark constraints. However, the origin of inter-chromosomal interactions, specific roles of individual landmarks, and the roles of biochemical factors in yeast genome organization remain unclear. Here we describe a multi-chromosome constrained self-avoiding chromatin model (mC-SAC) to gain understanding of the budding yeast genome organization. With significantly improved sampling of genome structures, both intra- and inter-chromosomal interaction patterns from genome-wide 3C studies are accurately captured in our model at higher resolution than previous studies. We show that nuclear confinement is a key determinant of the intra-chromosomal interactions, and centromere tethering is responsible for the inter-chromosomal interactions. In addition, important genomic elements such as fragile sites and tRNA genes are found to be clustered spatially, largely due to centromere tethering. We uncovered previously unknown interactions that were not captured by genome-wide 3C studies, which are found to be enriched with tRNA genes, RNAPIII and TFIIS binding. Moreover, we identified specific high-frequency genome-wide 3C interactions that are unaccounted for by polymer effects under landmark constraints. These interactions are enriched with important genes and likely play biological roles.

  14. The complete genome sequence of Haloferax volcanii DS2, a model archaeon.

    Directory of Open Access Journals (Sweden)

    Amber L Hartman

    2010-03-01

    Full Text Available Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in general.We report here the sequencing and analysis of the genome of Hfx. volcanii DS2, the type strain of this species. The genome contains a main 2.848 Mb chromosome, three smaller chromosomes pHV1, 3, 4 (85, 438, 636 kb, respectively and the pHV2 plasmid (6.4 kb.The completed genome sequence, presented here, provides an invaluable tool for further in vivo and in vitro studies of Hfx. volcanii.

  15. UO{sub 2}{sup 2+}/protein complexation sites screening

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, P.; Pible, O

    2004-07-01

    Uranium(VI) is likely to make strong coordination with some proteins in the plasma and in targeted cells. In the frame of a nuclear toxicology program, a biochemical strategy has been developed to identify these targets in complex biological media. The present work focuses on an approach based on the screening of 3D protein structures in order to identify proteins able to bind UO{sub 2}{sup 2+} and the corresponding complexation sites in these proteins. Our preliminary results show that indeed a few proteins display a high affinity to uranyl salt. The site of interaction may be mapped using molecular modeling, providing coherent results with the biochemical data. (authors)

  16. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  17. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis

    Science.gov (United States)

    Bacterial mutualists can increase the biochemical capacity of animals. Highly co-evolved nutritional mutualists do this by synthesizing nutrients missing from the host's diet. Genomics tools have recently advanced the study of these partnerships. Here we examined the endosymbiont Xiphinematobacter (...

  18. Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru.

    Science.gov (United States)

    van Zonneveld, Maarten; Ramirez, Marleni; Williams, David E; Petz, Michael; Meckelmann, Sven; Avila, Teresa; Bejarano, Carlos; Ríos, Llermé; Peña, Karla; Jäger, Matthias; Libreros, Dimary; Amaya, Karen; Scheldeman, Xavier

    2015-01-01

    For most crops, like Capsicum, their diversity remains under-researched for traits of interest for food, nutrition and other purposes. A small investment in screening this diversity for a wide range of traits is likely to reveal many traditional varieties with distinguished values. One objective of this study was to demonstrate, with Capsicum as model crop, the application of indicators of phenotypic and geographic diversity as effective criteria for selecting promising genebank accessions for multiple uses from crop centers of diversity. A second objective was to evaluate the expression of biochemical and agromorphological properties of the selected Capsicum accessions in different conditions. Four steps were involved: 1) Develop the necessary diversity by expanding genebank collections in Bolivia and Peru; 2) Establish representative subsets of ~100 accessions for biochemical screening of Capsicum fruits; 3) Select promising accessions for different uses after screening; and 4) Examine how these promising accessions express biochemical and agromorphological properties when grown in different environmental conditions. The Peruvian Capsicum collection now contains 712 accessions encompassing all five domesticated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens). The collection in Bolivia now contains 487 accessions, representing all five domesticates plus four wild taxa (C. baccatum var. baccatum, C. caballeroi, C. cardenasii, and C. eximium). Following the biochemical screening, 44 Bolivian and 39 Peruvian accessions were selected as promising, representing wide variation in levels of antioxidant capacity, capsaicinoids, fat, flavonoids, polyphenols, quercetins, tocopherols, and color. In Peru, 23 promising accessions performed well in different environments, while each of the promising Bolivian accessions only performed well in a certain environment. Differences in Capsicum diversity and local contexts led to distinct outcomes in

  19. Novel biochemical markers of psychosocial stress in women.

    Directory of Open Access Journals (Sweden)

    Marie Asberg

    Full Text Available BACKGROUND: Prolonged psychosocial stress is a condition assessed through self-reports. Here we aimed to identify biochemical markers for screening and early intervention in women. METHODS: Plasma concentrations of interleukin (IL 1-alpha, IL1-beta, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-gamma (INF-gamma, tumor necrosis factor-alpha (TNF-alpha, monocyte chemotactic protein-1 (MCP-1, epidermal growth factor (EGF, vascular endothelial growth factor (VEGF, thyroid stimulating hormone (TSH, total tri-iodothyronine (TT3, total thyroxine (TT4, prolactin, and testosterone were measured in: 195 women on long-term sick-leave for a stress-related affective disorder, 45 women at risk for professional burnout, and 84 healthy women. RESULTS: We found significantly increased levels of MCP-1, VEGF and EGF in women exposed to prolonged psychosocial stress. Statistical analysis indicates that they independently associate with a significant risk for being classified as ill. CONCLUSIONS: MCP-1, EGF, and VEGF are potential markers for screening and early intervention in women under prolonged psychosocial stress.

  20. Biochemical and genetic improvement of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L O; Carey, V C; Dombek, K M; Holt, A S; Holt, W A; Osman, Y A; Walia, S K

    1984-01-01

    Zymomonas mobilis offers many advantages for alcohol production including three- to five-fold higher rates of substrate conversion. Current progress and approaches are discussed for the biochemical and genetic improvement of this organism. These include the isolation of salt-resistant mutants and low pH-tolerant mutants. Gene banks of Lactobacillus heterohiochi are being screened for genes encoding alcohol resistance which can be subsequently introduced into Zymomonas mobilis. In addition, an enteric lactose operon has been inserted into Zymomonas mobilis and is expressed. These new strains are being further modified to increase the substrate range of Zymomonas mobilis to include lactose. This lactose operon serves as a model system to investigate the expression of foreign genes in Zymomonas mobilis. 25 references.

  1. Partnering for functional genomics research conference: Abstracts of poster presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  2. High content screening in microfluidic devices

    Science.gov (United States)

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  3. Screensaver: an open source lab information management system (LIMS for high throughput screening facilities

    Directory of Open Access Journals (Sweden)

    Nale Jennifer

    2010-05-01

    Full Text Available Abstract Background Shared-usage high throughput screening (HTS facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS, to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  4. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities.

    Science.gov (United States)

    Tolopko, Andrew N; Sullivan, John P; Erickson, Sean D; Wrobel, David; Chiang, Su L; Rudnicki, Katrina; Rudnicki, Stewart; Nale, Jennifer; Selfors, Laura M; Greenhouse, Dara; Muhlich, Jeremy L; Shamu, Caroline E

    2010-05-18

    Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  5. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium.

    Science.gov (United States)

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž; Shaulsky, Gad

    2016-09-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  6. CRISPR/Cas9 for Human Genome Engineering and Disease Research.

    Science.gov (United States)

    Xiong, Xin; Chen, Meng; Lim, Wendell A; Zhao, Dehua; Qi, Lei S

    2016-08-31

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.

  7. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells

    Science.gov (United States)

    Petrocca, Fabio; Altschuler, Gabriel; Tan, Shen Mynn; Mendillo, Marc L.; Yan, Haoheng; Jerry, D. Joseph; Kung, Andrew L.; Hide, Winston; Ince, Tan A.; Lieberman, Judy

    2013-01-01

    Summary Basal-like triple negative breast cancers (TNBC) have poor prognosis. To identify basal-like TNBC dependencies, a genome-wide siRNA lethality screen compared two human breast epithelial cell lines transformed with the same genes - basal-like BPLER and myoepithelial HMLER. Expression of the screen’s 154 BPLER dependency genes correlated with poor prognosis in breast, but not lung or colon, cancer. Proteasome genes were overrepresented hits. Basal-like TNBC lines were selectively sensitive to proteasome inhibitor drugs relative to normal epithelial, luminal and mesenchymal TNBC lines. Proteasome inhibition reduced growth of established basal-like TNBC tumors in mice and blocked tumor-initiating cell function and macrometastasis. Proteasome addiction in basal-like TNBCs was mediated by NOXA and linked to MCL-1 dependence. PMID:23948298

  8. An efficient method for qualitative screening of phosphate-solubilizing bacteria.

    Science.gov (United States)

    Mehta, S; Nautiyal, C S

    2001-07-01

    An efficient protocol was developed for qualitative screening of phosphate-solubilizing bacteria, based upon visual observation. Our results indicate that, by using our formulation containing bromophenol blue, it is possible to quickly screen on a qualitative basis the phosphate-solubilizing bacteria. Qualitative analysis of the phosphate solubilized by various groups correlated well with grouping based upon quantitative analysis of bacteria isolated from soil, effect of carbon, nitrogen, salts, and phosphate solubilization-defective transposon mutants. However, unlike quantitative analysis methods that involve time-consuming biochemical procedures, the time for screening phosphate-solubilizing bacteria is significantly reduced by using our simple protocol. Therefore, it is envisaged that usage of this formulation based upon qualitative analysis will be salutary for the quick screening of phosphate-solubilizing bacteria. Our results indicate that the formulation can also be used as a quality control test for expeditiously screening the commercial bioinoculant preparations, based on phosphate solubilizers.

  9. A single-tube screen for Salmonella and Shigella.

    Science.gov (United States)

    Procop, Gary W; Wallace, Jacqueline D; Tuohy, Marion J; Lasalvia, Margret M; Addison, Rachel M; Reller, L Barth

    2008-08-01

    Salmonella and Shigella species are routinely sought in stool specimens submitted for culture. It is a common practice to screen lactose-negative colonies by using triple sugar iron agar, lysine iron agar, and Christensen urea agar to determine if further identification is necessary. We designed and evaluated a novel combination of media, which are layered in a single tube, for screening isolates suspected to possibly represent Salmonella or Shigella. We tested this media combination with 106 Salmonella, 56 Shigella, and 56 other gram-negative bacilli. All Salmonella and Shigella isolates tested were appropriately characterized as possible Salmonella or Shigella by using an algorithm developed for use with this media combination. Similarly, 53 (95%) of 56 other gram-negative bacilli were appropriately screened as non -Salmonella and non -Shigella isolates. This unique media combination provides the most important biochemical reactions needed to screen for Salmonella and Shigella in a single-tube format, which decreases labor by two thirds (ie, 1 tube is inoculated vs 3).

  10. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  11. Text-based phenotypic profiles incorporating biochemical phenotypes of inborn errors of metabolism improve phenomics-based diagnosis.

    Science.gov (United States)

    Lee, Jessica J Y; Gottlieb, Michael M; Lever, Jake; Jones, Steven J M; Blau, Nenad; van Karnebeek, Clara D M; Wasserman, Wyeth W

    2018-05-01

    Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contributions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.

  12. Genome Editing in Sugarcane: Challenges ahead

    Directory of Open Access Journals (Sweden)

    Chakravarthi Mohan

    2016-10-01

    Full Text Available Genome editing opens new and unique opportunities for researchers to enhance crop production. Until 2013, the zinc finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs were the key tools used for genome editing applications. The advent of RNA-guided engineered nucleases - the type II clustered regularly interspaced short palindromic repeat (CRISPR/Cas9 (CRISPR-associated system from Streptococcus pyogenes holds great potential since it is simple, effective and more versatile than ZFNs and TALENs. CRISPR/Cas9 system has already been successfully employed in several crop plants. Use of these techniques is in its infant stage in sugarcane. Jung and Altpeter (2016 have reported TALEN mediated approach for the first time to reduce lignin content in sugarcane to make it amenable for biofuel production. This is so far the only report describing genome editing in sugarcane. Large genome size, polyploidy, low transformation efficiency, transgene silencing and lack of high throughput screening techniques are certainly great challenges for genome editing in sugarcane which would be discussed in detail in this review.

  13. The Front Line of Genomic Translation

    International Nuclear Information System (INIS)

    O'Neill, C. S.; McBride, C. M.; Koehly, L. M.; Bryan, A. D.; Wideroff, L.

    2012-01-01

    Cancer prevention, detection, and treatment represent the front line of genomic translation. Increasingly, new genomic knowledge is being used to inform personalized cancer prevention recommendations and treatment [1-3]. Genomic applications proposed and realized span the full cancer continuum, from cancer prevention and early detection vis a vis genomic risk profiles to motivate behavioral risk reduction and adherence [4] to screening and prophylactic prevention recommendations for high-risk families [5-7], to enhancing cancer survivorship by using genomic tumor profiles to inform treatment decisions and targeted cancer therapies [8, 9]. Yet the utility for many of these applications is as yet unclear and will be influenced heavily by the public’s, patients’, and health care providers’ responses and in numerous other factors, such as health care delivery models [3]. The contributors to this special issue consider various target groups’ responses and contextual factors. To reflect the cancer continuum, the special issue is divided into three broad, overlapping themes-primary prevention, high risk families and family communication and clinical translation.

  14. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species

    Directory of Open Access Journals (Sweden)

    Gupta Radhey S

    2006-01-01

    Full Text Available Abstract Background Chlamydiae species are of much importance from a clinical viewpoint. Their diversity both in terms of their numbers as well as clinical involvement are presently believed to be significantly underestimated. The obligate intracellular nature of chlamydiae has also limited their genetic and biochemical studies. Thus, it is of importance to develop additional means for their identification and characterization. Results We have carried out analyses of available chlamydiae genomes to identify sets of unique proteins that are either specific for all Chlamydiales genomes, or different Chlamydiaceae family members, or members of the Chlamydia and Chlamydophila genera, or those unique to Protochlamydia amoebophila, but which are not found in any other bacteria. In total, 59 Chlamydiales-specific proteins, 79 Chlamydiaceae-specific proteins, 20 proteins each that are specific for both Chlamydia and Chlamydophila and 445 ORFs that are Protochlamydia-specific were identified. Additionally, 33 cases of possible gene loss or lateral gene transfer were also detected. Conclusion The identified chlamydiae-lineage specific proteins, many of which are highly conserved, provide novel biomarkers that should prove of much value in the diagnosis of these bacteria and in exploration of their prevalence and diversity. These conserved protein sequences (CPSs also provide novel therapeutic targets for drugs that are specific for these bacteria. Lastly, functional studies on these chlamydiae or chlamydiae subgroup-specific proteins should lead to important insights into lineage-specific adaptations with regards to development, infectivity and pathogenicity.

  15. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    Science.gov (United States)

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies

    OpenAIRE

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H.; Michel, Jennifer Carlisle; Claxton, Derek P.; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K. Christopher; Gouaux, Eric

    2014-01-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in over-expression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient productio...

  17. Automated microscopy for high-content RNAi screening

    Science.gov (United States)

    2010-01-01

    Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs. PMID:20176920

  18. Molecular basis for the genome engagement by Sox proteins.

    Science.gov (United States)

    Hou, Linlin; Srivastava, Yogesh; Jauch, Ralf

    2017-03-01

    The Sox transcription factor family consists of 20 members in the human genome. Many of them are key determinants of cellular identities and possess the capacity to reprogram cell fates by pioneering the epigenetic remodeling of the genome. This activity is intimately tied to their ability to specifically bind and bend DNA alone or with other proteins. Here we discuss our current knowledge on how Sox transcription factors such as Sox2, Sox17, Sox18 and Sox9 'read' the genome to find and regulate their target genes and highlight the roles of partner factors including Pax6, Nanog, Oct4 and Brn2. We integrate insights from structural and biochemical studies as well as high-throughput assays to probe DNA specificity in vitro as well as in cells and tissues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  20. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease.

    Science.gov (United States)

    Zhao, Ying-Yong; Miao, Hua; Cheng, Xian-Long; Wei, Feng

    2015-10-05

    The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening.

    Science.gov (United States)

    Turk, Samo; Kovac, Andreja; Boniface, Audrey; Bostock, Julieanne M; Chopra, Ian; Blanot, Didier; Gobec, Stanislav

    2009-03-01

    The ATP-dependent Mur ligases (MurC, MurD, MurE and MurF) successively add L-Ala, D-Glu, meso-A(2)pm or L-Lys, and D-Ala-D-Ala to the nucleotide precursor UDP-MurNAc, and they represent promising targets for antibacterial drug discovery. We have used the molecular docking programme eHiTS for the virtual screening of 1990 compounds from the National Cancer Institute 'Diversity Set' on MurD and MurF. The 50 top-scoring compounds from screening on each enzyme were selected for experimental biochemical evaluation. Our approach of virtual screening and subsequent in vitro biochemical evaluation of the best ranked compounds has provided four novel MurD inhibitors (best IC(50)=10 microM) and one novel MurF inhibitor (IC(50)=63 microM).

  2. A genome-wide RNAi screen identifies novel targets of neratinib resistance leading to identification of potential drug resistant genetic markers.

    Science.gov (United States)

    Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Wei; Ryan, Terence E

    2012-04-01

    Neratinib (HKI-272) is a small molecule tyrosine kinase inhibitor of the ErbB receptor family currently in Phase III clinical trials. Despite its efficacy, the mechanism of potential cellular resistance to neratinib and genes involved with it remains unknown. We have used a pool-based lentiviral genome-wide functional RNAi screen combined with a lethal dose of neratinib to discover chemoresistant interactions with neratinib. Our screen has identified a collection of genes whose inhibition by RNAi led to neratinib resistance including genes involved in oncogenesis (e.g. RAB33A, RAB6A and BCL2L14), transcription factors (e.g. FOXP4, TFEC, ZNF), cellular ion transport (e.g. CLIC3, TRAPPC2P1, P2RX2), protein ubiquitination (e.g. UBL5), cell cycle (e.g. CCNF), and genes known to interact with breast cancer-associated genes (e.g. CCNF, FOXP4, TFEC, several ZNF factors, GNA13, IGFBP1, PMEPA1, SOX5, RAB33A, RAB6A, FXR1, DDO, TFEC, OLFM2). The identification of novel mediators of cellular resistance to neratinib could lead to the identification of new or neoadjuvant drug targets. Their use as patient or treatment selection biomarkers could make the application of anti-ErbB therapeutics more clinically effective.

  3. Assessing the Effectiveness of Functional Genetic Screens for the Identification of Bioactive Metabolites

    Directory of Open Access Journals (Sweden)

    Staffan Kjelleberg

    2012-12-01

    Full Text Available A common limitation for the identification of novel activities from functional (meta genomic screens is the low number of active clones detected relative to the number of clones screened. Here we demonstrate that constructing libraries with strains known to produce bioactives can greatly enhance the screening efficiency, by increasing the “hit-rate” and unmasking multiple activities from the same bacterial source.

  4. A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Schmid-Burgk, Jonathan L; Chauhan, Dhruv; Schmidt, Tobias; Ebert, Thomas S; Reinhardt, Julia; Endl, Elmar; Hornung, Veit

    2016-01-01

    Inflammasomes are high molecular weight protein complexes that assemble in the cytosol upon pathogen encounter. This results in caspase-1-dependent pro-inflammatory cytokine maturation, as well as a special type of cell death, known as pyroptosis. The Nlrp3 inflammasome plays a pivotal role in pathogen defense, but at the same time, its activity has also been implicated in many common sterile inflammatory conditions. To this effect, several studies have identified Nlrp3 inflammasome engagement in a number of common human diseases such as atherosclerosis, type 2 diabetes, Alzheimer disease, or gout. Although it has been shown that known Nlrp3 stimuli converge on potassium ion efflux upstream of Nlrp3 activation, the exact molecular mechanism of Nlrp3 activation remains elusive. Here, we describe a genome-wide CRISPR/Cas9 screen in immortalized mouse macrophages aiming at the unbiased identification of gene products involved in Nlrp3 inflammasome activation. We employed a FACS-based screen for Nlrp3-dependent cell death, using the ionophoric compound nigericin as a potassium efflux-inducing stimulus. Using a genome-wide guide RNA (gRNA) library, we found that targeting Nek7 rescued macrophages from nigericin-induced lethality. Subsequent studies revealed that murine macrophages deficient in Nek7 displayed a largely blunted Nlrp3 inflammasome response, whereas Aim2-mediated inflammasome activation proved to be fully intact. Although the mechanism of Nek7 functioning upstream of Nlrp3 yet remains elusive, these studies provide a first genetic handle of a component that specifically functions upstream of Nlrp3. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200.

    Science.gov (United States)

    Tuveng, Tina R; Hagen, Live Heldal; Mekasha, Sophanit; Frank, Jeremy; Arntzen, Magnus Øverlie; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2017-04-01

    The chitinolytic machinery of Serratia marcescens BJL200 has been studied in detail over the last couple of decades, however, the proteome secreted by this Gram-negative bacterium during growth on chitin has not been studied in depth. In addition, the genome of this most studied chitinolytic Serratia strain has until now, not been sequenced. We report a draft genome sequence for S. marcescens BJL200. Using label-free quantification (LFQ) proteomics and a recently developed plate-method for assessing secretomes during growth on solid substrates, we find that, as expected, the chitin-active enzymes (ChiA, B, C, and CBP21) are produced in high amounts when the bacterium grows on chitin. Other proteins produced in high amounts after bacterial growth on chitin provide interesting targets for further exploration of the proteins involved in degradation of chitin-rich biomasses. The genome encodes a fourth chitinase (ChiD), which is produced in low amounts during growth on chitin. Studies of chitin degradation with mixtures of recombinantly produced chitin-degrading enzymes showed that ChiD does not contribute to the overall efficiency of the process. ChiD is capable of converting N,N'-diacetyl chitobiose to N-acetyl glucosamine, but is less efficient than another enzyme produced for this purpose, the Chitobiase. Thus, the role of ChiD in chitin degradation, if any, remains unclear. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Role of Untimed Blood Glucose in Screening for Gestational Diabetes Mellitus in a High Prevalent Diabetic Population

    Directory of Open Access Journals (Sweden)

    Sarah Cuschieri

    2016-01-01

    Full Text Available Global prevalence increase of diabetes type 2 and gestational diabetes (GDM has led to increased awareness and screening of pregnant women for GDM. Ideally screening for GDM should be done by an oral glucose tolerance test (oGTT, which is laborious and time consuming. A randomized glucose test incorporated with anthropomorphic characteristics may be an appropriate cost-effective combined clinical and biochemical screening protocol for clinical practice as well as cutting down on oGTTs. A retrospective observational study was performed on a randomized sample of pregnant women who required an OGTT during their pregnancy. Biochemical and anthropomorphic data along with obstetric outcomes were statistically analyzed. Backward stepwise logistic regression and receiver operating characteristics curves were used to obtain a suitable predictor for GDM without an oGTT and formulate a screening protocol. Significant GDM predictive variables were fasting blood glucose (p=0.0001 and random blood glucose (p=0.012. Different RBG and FBG cutoff points with anthropomorphic characteristics were compared to carbohydrate metabolic status to diagnose GDM without oGTT, leading to a screening protocol. A screening protocol incorporating IADPSG diagnostic criteria, BMI, and different RBG and FBG criteria would help predict GDM among high-risk populations earlier and reduce the need for oGTT test.

  7. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Nielsen, M; Lamberth, K

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...... of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design....

  8. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C.; Nielsen, Morten; Lamberth, K.

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly, from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...... of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design....

  9. University of Texas Southwestern Medical Center: High-Throughput siRNA Screening of a Non-Small Cell Lung Cancer (NSCLC) Cell Line Panel | Office of Cancer Genomics

    Science.gov (United States)

    The goal of this project is to use siRNA screens to identify NSCLC-selective siRNAs from two genome-wide libraries that will allow us to functionally define genetic dependencies of subtypes of NSCLC. Using bioinformatics tools, the CTD2 center at the University of Texas Southwestern Medical Center are discovering associations between this functional data (siRNAs) and NSCLC mutational status, methylation arrays, gene expression arrays, and copy number variation data that will help us identify new targets and enrollment biomarkers. 

  10. Biochemical Markers in Neurocritical Care

    Directory of Open Access Journals (Sweden)

    Omidvar Rezae

    2016-07-01

    Full Text Available During the past two decades, a variety of serum or cerebrospinal fluid (CSF biochemical markers in daily clinical practice have been recommended to diagnose and monitor diverse diseases or pathologic situations. It will be essential to develop a panel of biomarkers, to be suitable for evaluation of treatment efficacy, representing distinct phases of injury and recovery and consider the temporal profile of those. Among the possible and different biochemical markers, S100b appeared to fulfill many of optimized criteria of an ideal marker. S100b, a cytosolic low molecular weight dimeric calciumbinding protein from chromosome 21, synthesized in glial cells throughout the CNS, an homodimeric diffusible, belongs to a family of closely related protein, predominantly expressed by astrocytes and Schwann cells and a classic immunohistochemical marker for these cells, is implicated in brain development and neurophysiology. Of the 3 isoforms of S-100, the BB subunit (S100B is present in high concentrations in central and peripheral glial and Schwann cells, Langerhans and anterior pituitary cells, fat, muscle, and bone marrow tissues. The biomarker has shown to be a sensitive marker of clinical and subclinical cerebral damage, such as stroke, traumatic brain injury, and spinal cord injury. Increasing evidence suggests that the biomarker plays a double function as an intracellular regulator and an extracellular signal of the CNS. S100b is found in the cytoplasm in a soluble form and also is associated with intracellular membranes, centrosomes, microtubules, and type III intermediate filaments. Their genomic organization now is known, and many of their target proteins have been identified, although the mechanisms of regulating S100b secretion are not completely understood and appear to be related to many factors, such as the proinflammatory cytokines, tumor necrosis factor alpha (TNF-a, interleukin (IL-1b, and metabolic stress. 

  11. Cancer Screening and Genetics: A Tale of Two Paradigms

    OpenAIRE

    Hamilton, Jada G.; Edwards, Heather M.; Khoury, Muin J.; Taplin, Stephen H.

    2014-01-01

    The long-standing medical tradition to “first do no harm” is reflected in population-wide evidence-based recommendations for cancer screening tests that focus primarily on reducing morbidity and mortality. The conventional cancer screening process is predicated on finding early-stage disease that can be treated effectively; yet emerging genetic and genomic testing technologies have moved the target earlier in the disease development process to identify a probabilistic predisposition to diseas...

  12. Tandemly Arrayed Genes in Vertebrate Genomes

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2008-01-01

    Full Text Available Tandemly arrayed genes (TAGs are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72–94% have parallel transcription orientation (i.e., they are encoded on the same strand in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.

  13. Personal Genomic Testing for Cancer Risk: Results From the Impact of Personal Genomics Study.

    Science.gov (United States)

    Gray, Stacy W; Gollust, Sarah E; Carere, Deanna Alexis; Chen, Clara A; Cronin, Angel; Kalia, Sarah S; Rana, Huma Q; Ruffin, Mack T; Wang, Catharine; Roberts, J Scott; Green, Robert C

    2017-02-20

    Purpose Significant concerns exist regarding the potential for unwarranted behavior changes and the overuse of health care resources in response to direct-to-consumer personal genomic testing (PGT). However, little is known about customers' behaviors after PGT. Methods Longitudinal surveys were given to new customers of 23andMe (Mountain View, CA) and Pathway Genomics (San Diego, CA). Survey data were linked to individual-level PGT results through a secure data transfer process. Results Of the 1,042 customers who completed baseline and 6-month surveys (response rate, 71.2%), 762 had complete cancer-related data and were analyzed. Most customers reported that learning about their genetic risk of cancers was a motivation for testing (colorectal, 88%; prostate, 95%; breast, 94%). No customers tested positive for pathogenic mutations in highly penetrant cancer susceptibility genes. A minority of individuals received elevated single nucleotide polymorphism-based PGT cancer risk estimates (colorectal, 24%; prostate, 24%; breast, 12%). At 6 months, customers who received elevated PGT cancer risk estimates were not significantly more likely to change their diet, exercise, or advanced planning behaviors or engage in cancer screening, compared with individuals at average or reduced risk. Men who received elevated PGT prostate cancer risk estimates changed their vitamin and supplement use more than those at average or reduced risk (22% v 7.6%, respectively; adjusted odds ratio, 3.41; 95% CI, 1.44 to 8.18). Predictors of 6-month behavior include baseline behavior (exercise, vitamin or supplement use, and screening), worse health status (diet and vitamin or supplement use), and older age (advanced planning, screening). Conclusion Most adults receiving elevated direct-to-consumer PGT single nucleotide polymorphism-based cancer risk estimates did not significantly change their diet, exercise, advanced care planning, or cancer screening behaviors.

  14. Genomic and functional features of the biosurfactant producing Bacillus sp. AM13.

    Science.gov (United States)

    Shaligram, Shraddha; Kumbhare, Shreyas V; Dhotre, Dhiraj P; Muddeshwar, Manohar G; Kapley, Atya; Joseph, Neetha; Purohit, Hemant P; Shouche, Yogesh S; Pawar, Shrikant P

    2016-09-01

    Genomic studies provide deeper insights into secondary metabolites produced by diverse bacterial communities, residing in various environmental niches. This study aims to understand the potential of a biosurfactant producing Bacillus sp. AM13, isolated from soil. An integrated approach of genomic and chemical analysis was employed to characterize the antibacterial lipopeptide produced by the strain AM13. Genome analysis revealed that strain AM13 harbors a nonribosomal peptide synthetase (NRPS) cluster; highly similar with known biosynthetic gene clusters from surfactin family: lichenysin (85 %) and surfactin (78 %). These findings were substantiated with supplementary experiments of oil displacement assay and surface tension measurements, confirming the biosurfactant production. Further investigation using LCMS approach exhibited similarity of the biomolecule with biosurfactants of the surfactin family. Our consolidated effort of functional genomics provided chemical as well as genetic leads for understanding the biochemical characteristics of the bioactive compound.

  15. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success

    International Nuclear Information System (INIS)

    Choi, Ryan; Kelley, Angela; Leibly, David; Nakazawa Hewitt, Stephen; Napuli, Alberto; Van Voorhis, Wesley

    2011-01-01

    An overview of the methods used for high-throughput cloning and protein-expression screening of SSGCID hexahistidine recombinant proteins is provided. It is demonstrated that screening for recombinant proteins that are highly recoverable from immobilized metal-affinity chromatography improves the likelihood that a protein will produce a structure. The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure

  16. A genome-wide screen for genetic variants that modify the recruitment of REST to its target genes.

    Directory of Open Access Journals (Sweden)

    Rory Johnson

    Full Text Available Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies-various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation-these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP-seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism.

  17. A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes

    Science.gov (United States)

    Johnson, Rory; Richter, Nadine; Bogu, Gireesh K.; Bhinge, Akshay; Teng, Siaw Wei; Choo, Siew Hua; Andrieux, Lise O.; de Benedictis, Cinzia; Jauch, Ralf; Stanton, Lawrence W.

    2012-01-01

    Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism. PMID:22496669

  18. Exploiting PubChem for Virtual Screening.

    Science.gov (United States)

    Xie, Xiang-Qun

    2010-12-01

    IMPORTANCE OF THE FIELD: PubChem is a public molecular information repository, a scientific showcase of the NIH Roadmap Initiative. The PubChem database holds over 27 million records of unique chemical structures of compounds (CID) derived from nearly 70 million substance depositions (SID), and contains more than 449,000 bioassay records with over thousands of in vitro biochemical and cell-based screening bioassays established, with targeting more than 7000 proteins and genes linking to over 1.8 million of substances. AREAS COVERED IN THIS REVIEW: This review builds on recent PubChem-related computational chemistry research reported by other authors while providing readers with an overview of the PubChem database, focusing on its increasing role in cheminformatics, virtual screening and toxicity prediction modeling. WHAT THE READER WILL GAIN: These publicly available datasets in PubChem provide great opportunities for scientists to perform cheminformatics and virtual screening research for computer-aided drug design. However, the high volume and complexity of the datasets, in particular the bioassay-associated false positives/negatives and highly imbalanced datasets in PubChem, also creates major challenges. Several approaches regarding the modeling of PubChem datasets and development of virtual screening models for bioactivity and toxicity predictions are also reviewed. TAKE HOME MESSAGE: Novel data-mining cheminformatics tools and virtual screening algorithms are being developed and used to retrieve, annotate and analyze the large-scale and highly complex PubChem biological screening data for drug design.

  19. Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals.

    Science.gov (United States)

    Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V

    2016-05-14

    Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.

  20. Rapid Biochemical Mixture Screening by Three-Dimensional Patterned Multifunctional Substrate with Ultra-Thin Layer Chromatography (UTLC) and Surface Enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Lee, Bi-Shen; Lin, Pi-Chen; Lin, Ding-Zheng; Yen, Ta-Jen

    2018-01-11

    We present a three-dimensional patterned (3DP) multifunctional substrate with the functions of ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS), which simultaneously enables mixture separation, target localization and label-free detection. This multifunctional substrate is comprised of a 3DP silicon nanowires array (3DP-SiNWA), decorated with silver nano-dendrites (AgNDs) atop. The 3DP-SiNWA is fabricated by a facile photolithographic process and low-cost metal assisted chemical etching (MaCE) process. Then, the AgNDs are decorated onto 3DP-SiNWA by a wet chemical reduction process, obtaining 3DP-AgNDs@SiNWA multifunctional substrates. With various patterns designed on the substrates, the signal intensity could be maximized by the excellent confinement and concentrated effects of patterns. By using this 3DP-AgNDs@SiNWA substrate to scrutinize the mixture of two visible dyes, the individual target could be recognized and further boosted the Raman signal of target 15.42 times comparing to the un-patterned AgNDs@SiNWA substrate. Therefore, such a three-dimensional patterned multifunctional substrate empowers rapid mixture screening, and can be readily employed in practical applications for biochemical assays, food safety and other fields.

  1. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications.

    Science.gov (United States)

    Huang, Lei; Ma, Fei; Chapman, Alec; Lu, Sijia; Xie, Xiaoliang Sunney

    2015-01-01

    We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.

  2. Genome Defense Mechanisms in Neurospora and Associated Specialized Proteins

    Directory of Open Access Journals (Sweden)

    Ranjan Tamuli

    2010-06-01

    Full Text Available Neurospora crassa, the filamentous fungus possesses widest array of genome defense mechanisms known to any eukaryotic organism, including a process called repeat-induced point mutation (RIP. RIP is a genome defense mechanism that hypermutates repetitive DNA sequences; analogous to genomic imprinting in mammals. As an impact of RIP, Neurospora possesses many fewer genes in multigene families than expected. A DNA methyltransferase homologue, RID was shown to be essential for RIP. Recently, a variant catalytic subunit of translesion DNA polymerase zeta (Pol zeta has been found to be essential for dominant RIP suppressor phenotype. Meiotic silencing and quelling are two other genome defense mechanisms in Neurospora, and proteins required for these two processes have been identified through genetic screens.

  3. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Science.gov (United States)

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  4. On causal roles and selected effects: our genome is mostly junk.

    Science.gov (United States)

    Doolittle, W Ford; Brunet, Tyler D P

    2017-12-05

    The idea that much of our genome is irrelevant to fitness-is not the product of positive natural selection at the organismal level-remains viable. Claims to the contrary, and specifically that the notion of "junk DNA" should be abandoned, are based on conflating meanings of the word "function". Recent estimates suggest that perhaps 90% of our DNA, though biochemically active, does not contribute to fitness in any sequence-dependent way, and possibly in no way at all. Comparisons to vertebrates with much larger and smaller genomes (the lungfish and the pufferfish) strongly align with such a conclusion, as they have done for the last half-century.

  5. Genome-Based Microbial Taxonomy Coming of Age.

    Science.gov (United States)

    Hugenholtz, Philip; Skarshewski, Adam; Parks, Donovan H

    2016-06-01

    Reconstructing the complete evolutionary history of extant life on our planet will be one of the most fundamental accomplishments of scientific endeavor, akin to the completion of the periodic table, which revolutionized chemistry. The road to this goal is via comparative genomics because genomes are our most comprehensive and objective evolutionary documents. The genomes of plant and animal species have been systematically targeted over the past decade to provide coverage of the tree of life. However, multicellular organisms only emerged in the last 550 million years of more than three billion years of biological evolution and thus comprise a small fraction of total biological diversity. The bulk of biodiversity, both past and present, is microbial. We have only scratched the surface in our understanding of the microbial world, as most microorganisms cannot be readily grown in the laboratory and remain unknown to science. Ground-breaking, culture-independent molecular techniques developed over the past 30 years have opened the door to this so-called microbial dark matter with an accelerating momentum driven by exponential increases in sequencing capacity. We are on the verge of obtaining representative genomes across all life for the first time. However, historical use of morphology, biochemical properties, behavioral traits, and single-marker genes to infer organismal relationships mean that the existing highly incomplete tree is riddled with taxonomic errors. Concerted efforts are now needed to synthesize and integrate the burgeoning genomic data resources into a coherent universal tree of life and genome-based taxonomy. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Science.gov (United States)

    Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D

    2010-07-15

    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  7. Draft genome of the American Eel (Anguilla rostrata).

    Science.gov (United States)

    Pavey, Scott A; Laporte, Martin; Normandeau, Eric; Gaudin, Jérémy; Letourneau, Louis; Boisvert, Sébastien; Corbeil, Jacques; Audet, Céline; Bernatchez, Louis

    2017-07-01

    Freshwater eels (Anguilla sp.) have large economic, cultural, ecological and aesthetic importance worldwide, but they suffered more than 90% decline in global stocks over the past few decades. Proper genetic resources, such as sequenced, assembled and annotated genomes, are essential to help plan sustainable recoveries by identifying physiological, biochemical and genetic mechanisms that caused the declines or that may lead to recoveries. Here, we present the first sequenced genome of the American eel. This genome contained 305 043 contigs (N50 = 7397) and 79 209 scaffolds (N50 = 86 641) for a total size of 1.41 Gb, which is in the middle of the range of previous estimations for this species. In addition, protein-coding regions, including introns and flanking regions, are very well represented in the genome, as 95.2% of the 458 core eukaryotic genes and 98.8% of the 248 ultra-conserved subset were represented in the assembly and a total of 26 564 genes were annotated for future functional genomics studies. We performed a candidate gene analysis to compare three genes among all three freshwater eel species and, congruent with the phylogenetic relationships, Japanese eel (A. japanica) exhibited the most divergence. Overall, the sequenced genome presented in this study is a crucial addition to the presently available genetic tools to help guide future conservation efforts of freshwater eels. © 2016 John Wiley & Sons Ltd.

  8. Atherogenic dyslipidemia in children: evaluation of clinical, biochemical and genetic aspects.

    Science.gov (United States)

    Montali, Anna; Truglio, Gessica; Martino, Francesco; Ceci, Fabrizio; Ferraguti, Giampiero; Ciociola, Ester; Maranghi, Marianna; Gianfagna, Francesco; Iacoviello, Licia; Strom, Roberto; Lucarelli, Marco; Arca, Marcello

    2015-01-01

    The precursors of atherogenic dyslipidemia (AD) are not well defined. Therefore, we investigated 62 non-obese, non-diabetic AD and 221 normolipemic children. Anthropometric parameters, blood pressure and biochemical measures were obtained in index children, their parents and all available siblings. The heritability (h(2)) of anthropometric and biochemical traits was estimated by SOLAR. Rare and common variants in APOA1 and LPL genes were screened by re-sequencing. Compared to normolipemic, AD children showed increased body mass index, waist circumference, plasma glucose, insulin, ApoB, HOMA-IR, hs-CRP and lower adiponectin (pchildren (0.073 vs. 0.026; P=0.038). The LPL p.S447* gain-of-function mutation, resulted to be less frequent in AD than in control children (0.064 vs. 0.126; P=0.082). No variant in the APOA1 gene was found. Our data indicate that AD is a rather common dyslipidemia in childhood; it associates with metabolic abnormalities typical of insulin resistant state and shows a strong familial aggregation. LPL variants may contribute to the development of AD phenotype.

  9. Genome-wide functional divergence after the symbiosis of proteobacteria with insects unraveled through a novel computational approach.

    Directory of Open Access Journals (Sweden)

    Christina Toft

    2009-04-01

    Full Text Available Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote provides the endosymbiont (prokaryote with a stable cellular environment while the endosymbiont supplements the host's diet with essential metabolites. For such communication to take place, endosymbionts' genomes have suffered dramatic modifications and reconfigurations of proteins' functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes. Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes are directly involved in supplementing the host's diet with essential metabolites. A test of functional divergence supports a strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides insights on the role of symbiosis in generating species diversity.

  10. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Gunnarsson, Rebeqa; Mansouri, Larry; Isaksson, Anders

    2011-01-01

    High-resolution genomic microarrays enable simultaneous detection of copy-number aberrations such as the known recurrent aberrations in chronic lymphocytic leukemia [del(11q), del(13q), del(17p) and trisomy 12], and copy-number neutral loss of heterozygosity. Moreover, comparison of genomic...

  11. Finding the needles in the meta-genome haystack

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Speksnijder, A.G.C.L.; Zhang, K.; Goodman, R.M.; Veen, van J.A.

    2007-01-01

    In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth's diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and

  12. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    Science.gov (United States)

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  13. Drosophila as a Screening Platform for Novel Lung Cancer Therapeutics

    Science.gov (United States)

    2016-09-01

    Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila. Dev. Cell 9, 831–842. Cancer Genome Atlas Research...Ras isoprenylation and pAkt inhibition by zole- dronic acid and fluvastatin enhances paclitaxel activity in T24 bladder cancer cells. Cancers (Basel...PKB signaling via P2X7 receptor in pancreatic cancer cells. Biochem. Pharmacol. 78, 1115–1126. Mo, H., and Elson, C.E. (2004). Studies of the

  14. CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening.

    Science.gov (United States)

    Köferle, Anna; Worf, Karolina; Breunig, Christopher; Baumann, Valentin; Herrero, Javier; Wiesbeck, Maximilian; Hutter, Lukas H; Götz, Magdalena; Fuchs, Christiane; Beck, Stephan; Stricker, Stefan H

    2016-11-14

    The bacterial CRISPR system is fast becoming the most popular genetic and epigenetic engineering tool due to its universal applicability and adaptability. The desire to deploy CRISPR-based methods in a large variety of species and contexts has created an urgent need for the development of easy, time- and cost-effective methods enabling large-scale screening approaches. Here we describe CORALINA (comprehensive gRNA library generation through controlled nuclease activity), a method for the generation of comprehensive gRNA libraries for CRISPR-based screens. CORALINA gRNA libraries can be derived from any source of DNA without the need of complex oligonucleotide synthesis. We show the utility of CORALINA for human and mouse genomic DNA, its reproducibility in covering the most relevant genomic features including regulatory, coding and non-coding sequences and confirm the functionality of CORALINA generated gRNAs. The simplicity and cost-effectiveness make CORALINA suitable for any experimental system. The unprecedented sequence complexities obtainable with CORALINA libraries are a necessary pre-requisite for less biased large scale genomic and epigenomic screens.

  15. The impact of genomics on research in diversity and evolution of archaea.

    Science.gov (United States)

    Mardanov, A V; Ravin, N V

    2012-08-01

    Since the definition of archaea as a separate domain of life along with bacteria and eukaryotes, they have become one of the most interesting objects of modern microbiology, molecular biology, and biochemistry. Sequencing and analysis of archaeal genomes were especially important for studies on archaea because of a limited availability of genetic tools for the majority of these microorganisms and problems associated with their cultivation. Fifteen years since the publication of the first genome of an archaeon, more than one hundred complete genome sequences of representatives of different phylogenetic groups have been determined. Analysis of these genomes has expanded our knowledge of biology of archaea, their diversity and evolution, and allowed identification and characterization of new deep phylogenetic lineages of archaea. The development of genome technologies has allowed sequencing the genomes of uncultivated archaea directly from enrichment cultures, metagenomic samples, and even from single cells. Insights have been gained into the evolution of key biochemical processes in archaea, such as cell division and DNA replication, the role of horizontal gene transfer in the evolution of archaea, and new relationships between archaea and eukaryotes have been revealed.

  16. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  17. A genome-wide RNAi screen identifies novel targets of neratinib sensitivity leading to neratinib and paclitaxel combination drug treatments.

    Science.gov (United States)

    Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Yan; McGraw, John; Woods, Matthew; Murray, Stuart; Eckert, Amy; Liu, Wei; Ryan, Terence E

    2011-06-01

    ErbB2 is frequently activated in tumors, and influences a wide array of cellular functions, including proliferation, apoptosis, cell motility and adhesion. HKI-272 (neratinib) is a small molecule pan-kinase inhibitor of the ErbB family of receptor tyrosine kinases, and shows strong antiproliferative activity in ErbB2-overexpressing breast cancer cells. We undertook a genome-wide pooled lentiviral RNAi screen to identify synthetic lethal or enhancer (synthetic modulator screen) genes that interact with neratinib in a human breast cancer cell line (SKBR-3). These genes upon knockdown would modulate cell viability in the presence of subeffective concentrations of neratinib. We discovered a diverse set of genes whose depletion selectively impaired or enhanced the viability of SKBR-3 cells in the presence of neratinib. We observed diverse pathways including EGFR, hypoxia, cAMP, and protein ubiquitination that, when co-treated with RNAi and neratinib, resulted in arrest of cell proliferation. Examining the changes of these genes and their protein products also led to a rationale for clinically relevant drug combination treatments. Treatment of cells with either paclitaxel or cytarabine in combination with neratinib resulted in a strong antiproliferative effect. The identification of novel mediators of cellular response to neratinib and the development of potential drug combination treatments have expanded our understanding of neratinib's mode-of-action for the development of more effective therapeutic regimens. Notably, our findings support a paclitaxel and neratinib phase III clinical trial in breast cancer patients.

  18. Public health genomics and personalized prevention: lessons from the COGS project.

    Science.gov (United States)

    Pashayan, N; Hall, A; Chowdhury, S; Dent, T; Pharoah, P D P; Burton, H

    2013-11-01

    Using the principles of public health genomics, we examined the opportunities and challenges of implementing personalized prevention programmes for cancer at the population level. Our model-based estimates indicate that polygenic risk stratification can potentially improve the effectiveness and cost-effectiveness of screening programmes. However, compared with 'one-size-fits-all' screening programmes, personalized screening adds further layers of complexity to the organization of screening services and raises ethical, legal and social challenges. Before polygenic inheritance is translated into population screening strategy, evidence from empirical research and engagement with and education of the public and the health professionals are needed. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  19. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR.

    Science.gov (United States)

    Jakočiūnas, Tadas; Jensen, Emil D; Jensen, Michael K; Keasling, Jay D

    2018-01-01

    Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.

  20. Development of electronic barcodes for use in plant pathology and functional genomics.

    Science.gov (United States)

    Kumagai, Monto H; Miller, Philip

    2006-06-01

    We have developed a novel 'electronic barcode' system that uses radio frequency identification (RFID) tags, cell phones, and portable computers to link phenotypic, environmental, and genomic data. We describe a secure, inexpensive system to record and retrieve data from plant samples. It utilizes RFID tags, computers, PDAs, and cell phones to link, record, and retrieve positional, and functional genomic data. Our results suggest that RFID tags can be used in functional genomic screens to record information that is involved in plant development or disease.

  1. Genome editing in pluripotent stem cells: research and therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Deleidi, Michela, E-mail: michela.deleidi@dzne.de [German Center for Neurodegenerative Diseases (DZNE) Tübingen within the Helmholtz Association, Tübingen (Germany); Hertie Institute for Clinical Brain Research, University of Tübingen (Germany); Yu, Cong [Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, New York (United States)

    2016-05-06

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  2. Genome editing in pluripotent stem cells: research and therapeutic applications

    International Nuclear Information System (INIS)

    Deleidi, Michela; Yu, Cong

    2016-01-01

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  3. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  4. Genetics and Genomics: Discovery, Validation, and Utility of Novel Tools for management of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Alan W. Shindel

    2017-01-01

    Full Text Available Genomics is the science of how genes influence human health and disease states. It differs from traditional genetic screening in that the transcriptional activity (or other markers in full panels of related genes are studied. Compared to simple genetic testing, assessment of expression levels in a panel of genes provides a more nuanced and holistic understanding of genetic modulation of human disease. Genomic testing may be used to great effect in resolving controversial questions on detection and treatment of prostate cancer. Genomic tests are currently in use for numerous facets of prostate cancer care, including screening, biopsy, and treatment planning. The clinical validity (predictive capacity of these assays has been well established; studies on clinical utility (i.e. usefulness of these tests in guiding patient/provider decisions have shown promising results. Men’s health specialists should be familiar with the role genomic testing will play in contemporary management of prostate cancer.

  5. Screening of Gibberellic Acid Production by Pseudomonas SPP

    International Nuclear Information System (INIS)

    Khine Zar Wynn Myint; Khin Mya Lwin; Myo Myint

    2010-12-01

    The microbial gibberellic acid (GA3) production of Pseudomonas spp., was studied and qualitatively indentified by UV spectrophotometer. 20 strains of Pseudomonas spp., were isolated and screened the gibberellic acid productivily in King's B medium. Among them, only four strains can produce microbial gibberellic acid. The Rf values and colour appearance under UV were the same as authentic gibberellic acid. Moreover, the gibberellic acid producer strains were identified as Pseudomonas spp., by cultural, biochemical and drug sensitivity pattern.

  6. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Gunnarsson, Rebeqa; Mansouri, Larry; Isaksson, Anders

    2011-01-01

    High-resolution genomic microarrays enable simultaneous detection of copy-number aberrations such as the known recurrent aberrations in chronic lymphocytic leukemia [del(11q), del(13q), del(17p) and trisomy 12], and copy-number neutral loss of heterozygosity. Moreover, comparison of genomic...... profiles from sequential patients' samples allows detection of clonal evolution....

  7. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Whole-genome sequencing of a laboratory-evolved yeast strain

    Directory of Open Access Journals (Sweden)

    Dunham Maitreya J

    2010-02-01

    Full Text Available Abstract Background Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined. Results We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28× depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5× gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement. Conclusions This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.

  9. Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

    Science.gov (United States)

    Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

    2014-01-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

  10. Screening for genomic rearrangements at BRCA1 locus in Iranian ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. RESEARCH NOTE. Screening ... women with breast cancer using multiplex ligation-dependent probe amplification .... In addition, one normal peak in the left side and two in the right side are shown with equal ...

  11. [Analysis of clinical outcomes of different embryo stage biopsy in array comparative genomic hybridization based preimplantation genetic diagnosis and screening].

    Science.gov (United States)

    Shen, J D; Wu, W; Shu, L; Cai, L L; Xie, J Z; Ma, L; Sun, X P; Cui, Y G; Liu, J Y

    2017-12-25

    Objective: To evaluate the efficiency of the application of array comparative genomic hybridization (array-CGH) in preimplantation genetic diagnosis or screening (PGD/PGS), and compare the clinical outcomes of different stage embryo biopsy. Methods: The outcomes of 381 PGD/PGS cycles referred in the First Affiliated Hospital of Nanjing Medical University from July 2011 to August 2015 were retrospectively analyzed. There were 320 PGD cycles with 156 cleavage-stage-biopsy cycles and 164 trophectoderm-biopsy cycles, 61 PGS cycles with 23 cleavage-stage-biopsy cycles and 38 trophectoderm-biopsy cycles. Chromosomal analysis was performed by array-CGH technology combined with whole genome amplification. Single embryo transfer was performed in all transfer cycles. Live birth rate was calculated as the main clinical outcomes. Results: The embryo diagnosis rate of PGD/PGS by array-CGH were 96.9%-99.1%. In PGD biopsy cycles, the live birth rate per embryo transfer cycle and live birth rate per embryo biopsy cycle were 50.0%(58/116) and 37.2%(58/156) in cleavage-stage-biopsy group, 67.5%(85/126) and 51.8%(85/164) in trophectoderm-biopsy group (both P 0.05). Conclusions: High diagnosis rate and idea live birth rate are achieved in PGD/PGS cycles based on array-CGH technology. The live birth rate of trophectoderm-biopsy group is significantly higher than that of cleavage-stage-biopsy group in PGD cycles; the efficiency of trophectoderm-biopsy is better.

  12. Environmental whole-genome amplification to access microbial populations in contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, Carl B [Diversa Corporation; Wyborski, Denise L. [Diversa Corporation; Garcia, Joseph A. [Diversa Corporation; Podar, Mircea [ORNL; Chen, Wenqiong [Diversa Corporation; Chang, Sherman H. [Diversa Corporation; Chang, Hwai W. [Diversa Corporation; Watson, David B [ORNL; Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hazen, Terry [Lawrence Berkeley National Laboratory (LBNL); Keller, Martin [ORNL

    2006-05-01

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using {phi}29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and 'clusters of orthologous groups' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  13. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  14. Genome Editing Redefines Precision Medicine in the Cardiovascular Field

    Directory of Open Access Journals (Sweden)

    Elda Dzilic

    2018-01-01

    Full Text Available Genome editing is a powerful tool to study the function of specific genes and proteins important for development or disease. Recent technologies, especially CRISPR/Cas9 which is characterized by convenient handling and high precision, revolutionized the field of genome editing. Such tools have enormous potential for basic science as well as for regenerative medicine. Nevertheless, there are still several hurdles that have to be overcome, but patient-tailored therapies, termed precision medicine, seem to be within reach. In this review, we focus on the achievements and limitations of genome editing in the cardiovascular field. We explore different areas of cardiac research and highlight the most important developments: (1 the potential of genome editing in human pluripotent stem cells in basic research for disease modelling, drug screening, or reprogramming approaches and (2 the potential and remaining challenges of genome editing for regenerative therapies. Finally, we discuss social and ethical implications of these new technologies.

  15. PIERO ontology for analysis of biochemical transformations: effective implementation of reaction information in the IUBMB enzyme list.

    Science.gov (United States)

    Kotera, Masaaki; Nishimura, Yosuke; Nakagawa, Zen-ichi; Muto, Ai; Moriya, Yuki; Okamoto, Shinobu; Kawashima, Shuichi; Katayama, Toshiaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2014-12-01

    Genomics is faced with the issue of many partially annotated putative enzyme-encoding genes for which activities have not yet been verified, while metabolomics is faced with the issue of many putative enzyme reactions for which full equations have not been verified. Knowledge of enzymes has been collected by IUBMB, and has been made public as the Enzyme List. To date, however, the terminology of the Enzyme List has not been assessed comprehensively by bioinformatics studies. Instead, most of the bioinformatics studies simply use the identifiers of the enzymes, i.e. the Enzyme Commission (EC) numbers. We investigated the actual usage of terminology throughout the Enzyme List, and demonstrated that the partial characteristics of reactions cannot be retrieved by simply using EC numbers. Thus, we developed a novel ontology, named PIERO, for annotating biochemical transformations as follows. First, the terminology describing enzymatic reactions was retrieved from the Enzyme List, and was grouped into those related to overall reactions and biochemical transformations. Consequently, these terms were mapped onto the actual transformations taken from enzymatic reaction equations. This ontology was linked to Gene Ontology (GO) and EC numbers, allowing the extraction of common partial reaction characteristics from given sets of orthologous genes and the elucidation of possible enzymes from the given transformations. Further future development of the PIERO ontology should enhance the Enzyme List to promote the integration of genomics and metabolomics.

  16. Characterization of noncoding regulatory DNA in the human genome.

    Science.gov (United States)

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  17. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection.

    Directory of Open Access Journals (Sweden)

    Celine Deffrasnes

    2016-03-01

    Full Text Available Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections.

  18. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen.

    Directory of Open Access Journals (Sweden)

    Malene Hansen

    2005-07-01

    Full Text Available Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.

  19. New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.

  20. Alignment-free comparative genomic screen for structured RNAs using coarse-grained secondary structure dot plots

    DEFF Research Database (Denmark)

    Kato, Yuki; Gorodkin, Jan; Havgaard, Jakob Hull

    2017-01-01

    . Methods: Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows us to perform an all-against-all scan of all window pairs from two genomes...... without alignment. Results: Our computational experiments with simulated data and real chromosomes demonstrate that the presented method has good sensitivity. Conclusions: DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs....

  1. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    NARCIS (Netherlands)

    Chagné, D.; Crowhurst, R.N.; Troggio, M.; Davey, M.W.; Gilmore, B.; Lawley, C.; Vanderzande, S.; Hellens, R.P.; Kumar, S.; Cestaro, A.; Velasco, R.; Main, D.; Rees, J.D.; Iezzoni, A.F.; Mockler, T.; Wilhelm, L.; Weg, van de W.E.; Gardiner, S.E.; Bassil, N.; Peace, C.

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide

  2. Screening for Inborn Errors of Metabolism

    Directory of Open Access Journals (Sweden)

    F.A. Elshaari

    2013-09-01

    Full Text Available Inborn errors of metabolism (IEM are a heterogeneous group of monogenic diseases that affect the metabolic pathways. The detection of IEM relies on a high index of clinical suspicion and co-ordinated access to specialized laboratory services. Biochemical analysis forms the basis of the final confirmed diagnosis in several of these disorders. The investigations fall into four main categories1.General metabolic screening tests2.Specific metabolite assays3.Enzyme studies4.DNA analysis The first approach to the diagnosis is by a multi-component analysis of body fluids in clinically selected patients, referred to as metabolic screening tests. These include simple chemical tests in the urine, blood glucose, acid-base profile, lactate, ammonia and liver function tests. The results of these tests can help to suggest known groups of metabolic disorders so that specific metabolites such as amino acids, organic acids, etc. can be estimated. However, not all IEM needs the approach of general screening. Lysosomal, peroxisomal, thyroid and adrenal disorders are suspected mainly on clinical grounds and pertinent diagnostic tests can be performed. The final diagnosis relies on the demonstration of the specific enzyme defect, which can be further confirmed by DNA studies.

  3. Inborn errors of metabolism and expanded newborn screening: review and update.

    Science.gov (United States)

    Mak, Chloe Miu; Lee, Han-Chih Hencher; Chan, Albert Yan-Wo; Lam, Ching-Wan

    2013-11-01

    Inborn errors of metabolism (IEM) are a phenotypically and genetically heterogeneous group of disorders caused by a defect in a metabolic pathway, leading to malfunctioning metabolism and/or the accumulation of toxic intermediate metabolites. To date, more than 1000 different IEM have been identified. While individually rare, the cumulative incidence has been shown to be upwards of 1 in 800. Clinical presentations are protean, complicating diagnostic pathways. IEM are present in all ethnic groups and across every age. Some IEM are amenable to treatment, with promising outcomes. However, high clinical suspicion alone is not sufficient to reduce morbidities and mortalities. In the last decade, due to the advent of tandem mass spectrometry, expanded newborn screening (NBS) has become a mandatory public health strategy in most developed and developing countries. The technology allows inexpensive simultaneous detection of more than 30 different metabolic disorders in one single blood spot specimen at a cost of about USD 10 per baby, with commendable analytical accuracy and precision. The sensitivity and specificity of this method can be up to 99% and 99.995%, respectively, for most amino acid disorders, organic acidemias, and fatty acid oxidation defects. Cost-effectiveness studies have confirmed that the savings achieved through the use of expanded NBS programs are significantly greater than the costs of implementation. The adverse effects of false positive results are negligible in view of the economic health benefits generated by expanded NBS and these could be minimized through increased education, better communication, and improved technologies. Local screening agencies should be given the autonomy to develop their screening programs in order to keep pace with international advancements. The development of biochemical genetics is closely linked with expanded NBS. With ongoing advancements in nanotechnology and molecular genomics, the field of biochemical genetics

  4. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Directory of Open Access Journals (Sweden)

    Paola Fabrizio

    2010-07-01

    Full Text Available The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  5. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

    Science.gov (United States)

    Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J

    2016-08-19

    Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Complete genome sequence of the actinobacterium Amycolatopsis japonica MG417-CF17T (=DSM 44213T) producing (S,S)-N,N′-ethylenediaminedisuccinic acid

    DEFF Research Database (Denmark)

    Stegmann, Evi; Albersmeier, Andreas; Spohn, Marius

    2014-01-01

    We report the complete genome sequence of Amycolatopsis japonica MG417-CF17T (=DSM 44213T) which was identified as the producer of (S,S)-N,N′-ethylenediaminedisuccinic acid during a screening for phospholipase C inhibitors. The genome of A. japonica MG417-CF17T consists of two replicons: the chro......We report the complete genome sequence of Amycolatopsis japonica MG417-CF17T (=DSM 44213T) which was identified as the producer of (S,S)-N,N′-ethylenediaminedisuccinic acid during a screening for phospholipase C inhibitors. The genome of A. japonica MG417-CF17T consists of two replicons...

  7. Context-dependent effects of genome-wide association study genotypes and macroenvironment on time to biochemical (prostate specific antigen) failure after prostatectomy.

    Science.gov (United States)

    Rebbeck, Timothy R; Weber, Anita L; Walker, Amy H; Stefflova, Klara; Tran, Teo V; Spangler, Elaine; Chang, Bao-Li; Zeigler-Johnson, Charnita M

    2010-09-01

    Disparities in cancer defined by race, age, or gender are well established. However, demographic metrics are surrogates for the complex contributions of genotypes, exposures, health care, socioeconomic and sociocultural environment, and many other factors. Macroenvironmental factors represent novel surrogates for exposures, lifestyle, and other factors that are difficult to measure but might influence cancer outcomes. We applied a "multilevel molecular epidemiology" approach using a prospective cohort of 444 White prostate cancer cases who underwent prostatectomy and were followed until biochemical failure (BF) or censoring without BF. We applied Cox regression models to test for joint effects of 86 genome-wide association study-identified genotypes and macroenvironment contextual effects after geocoding all cases to their residential census tracts. All analyses were adjusted for age at diagnosis and tumor aggressiveness. Residents living in census tracts with a high proportion of older single heads of household, high rates of vacant housing, or high unemployment had shorter time until BF postsurgery after adjustment for patient age and tumor aggressiveness. After correction for multiple testing, genotypes alone did not predict time to BF, but interactions predicting time to BF were observed for MSMB (rs10993994) and percentage of older single heads of households (P = 0.0004), and for HNF1B/TCF2 (rs4430796) and census tract per capita income (P = 0.0002). The context-specific macroenvironmental effects of genotype might improve the ability to identify groups that might experience poor prostate cancer outcomes. Risk estimation and clinical translation of genotype information might require an understanding of both individual- and macroenvironment-level context. (c) 2010 AACR.

  8. Staged anticonvulsant screening for chronic epilepsy.

    Science.gov (United States)

    Berdichevsky, Yevgeny; Saponjian, Yero; Park, Kyung-Il; Roach, Bonnie; Pouliot, Wendy; Lu, Kimberly; Swiercz, Waldemar; Dudek, F Edward; Staley, Kevin J

    2016-12-01

    Current anticonvulsant screening programs are based on seizures evoked in normal animals. One-third of epileptic patients do not respond to the anticonvulsants discovered with these models. We evaluated a tiered program based on chronic epilepsy and spontaneous seizures, with compounds advancing from high-throughput in vitro models to low-throughput in vivo models. Epileptogenesis in organotypic hippocampal slice cultures was quantified by lactate production and lactate dehydrogenase release into culture media as rapid assays for seizure-like activity and cell death, respectively. Compounds that reduced these biochemical measures were retested with in vitro electrophysiological confirmation (i.e., second stage). The third stage involved crossover testing in the kainate model of chronic epilepsy, with blinded analysis of spontaneous seizures after continuous electrographic recordings. We screened 407 compound-concentration combinations. The cyclooxygenase inhibitor, celecoxib, had no effect on seizures evoked in normal brain tissue but demonstrated robust antiseizure activity in all tested models of chronic epilepsy. The use of organotypic hippocampal cultures, where epileptogenesis occurs on a compressed time scale, and where seizure-like activity and seizure-induced cell death can be easily quantified with biomarker assays, allowed us to circumvent the throughput limitations of in vivo chronic epilepsy models. Ability to rapidly screen compounds in a chronic model of epilepsy allowed us to find an anticonvulsant that would be missed by screening in acute models.

  9. Gene Expression Analysis of Escherichia Coli Grown in Miniaturized Bioreactor Platforms for High-Throughput Analysis of Growth and genomic Data

    DEFF Research Database (Denmark)

    Boccazzi, P.; Zanzotto, A.; Szita, Nicolas

    2005-01-01

    Combining high-throughput growth physiology and global gene expression data analysis is of significant value for integrating metabolism and genomics. We compared global gene expression using 500 ng of total RNA from Escherichia coli cultures grown in rich or defined minimal media in a miniaturize...... cultures using just 500 ng of total RNA indicate that high-throughput integration of growth physiology and genomics will be possible with novel biochemical platforms and improved detection technologies....

  10. Thyroid dysfunction in Down's syndrome and screening for hypothyroidism in children and adolescents using capillary TSH measurement.

    LENUS (Irish Health Repository)

    Murphy, J

    2008-02-01

    Thyroid dysfunction is more common in individuals with Down\\'s syndrome (DS) than in the general population, whose clinical features can mask the presenting signs and symptoms of hypothyroidism. Biochemical screening is necessary; however, venepuncture may be difficult.

  11. Combined amplification and hybridization techniques for genome scanning in vegetatively propagated crops

    International Nuclear Information System (INIS)

    Kahl, G.; Ramser, J.; Terauchi, R.; Lopez-Peralta, C.; Asemota, H.N.; Weising, K.

    1998-01-01

    A combination of PCR- and hybridization-based genome scanning techniques and sequence comparisons between non-coding chloroplast DNA flanking tRNA genes has been employed to screen Dioscorea species for intra- and interspecific genetic diversity. This methodology detected extensive polymorphisms within Dioscorea bulbifera L., and revealed taxonomic and phylogenetic relationships among cultivated Guinea yams varieties and their potential wild progenitors. Finally, screening of yam germplasm grown in Jamaica permitted reliable discrimination between all major cultivars. Genome scanning by micro satellite-primed PCR (MP-PCR) and random amplified polymorphic DNA (RAPD) analysis in combination with the novel random amplified micro satellite polymorphisms (RAMPO) hybridization technique has shown high potential for the genetic analysis of yams, and holds promise for other vegetatively propagated orphan crops. (author)

  12. Milder clinical and biochemical phenotypes associated with the c.482G>A (p.Arg161Gln) pathogenic variant in cobalamin C disease: Implications for management and screening.

    Science.gov (United States)

    Almannai, Mohammed; Marom, Ronit; Divin, Kristian; Scaglia, Fernando; Sutton, V Reid; Craigen, William J; Lee, Brendan; Burrage, Lindsay C; Graham, Brett H

    2017-09-01

    Cobalamin C disease is a multisystemic disease with variable manifestations and age of onset. Genotype-phenotype correlations are well-recognized in this disorder. Here, we present a large cohort of individuals with cobalamin C disease, several of whom are heterozygous for the c.482G>A pathogenic variant (p.Arg161Gln). We compared clinical characteristics of individuals with this pathogenic variant to those who do not have this variant. To our knowledge, this study represents the largest single cohort of individuals with the c.482G>A (p.Arg161Gln) pathogenic variant. A retrospective chart review of 27 individuals from 21 families with cobalamin C disease who are followed at our facility was conducted. 13 individuals (48%) are compound heterozygous with the c.482G>A (p.Arg161Gln) on one allele and a second pathogenic variant on the other allele. Individuals with the c.482G>A (p.Arg161Gln) pathogenic variant had later onset of symptoms and easier metabolic control. Moreover, they had milder biochemical abnormalities at presentation which likely contributed to the observation that 4 individuals (31%) in this group were missed by newborn screening. The c.482G>A (p.Arg161Gln) pathogenic variant is associated with milder disease. These individuals may not receive a timely diagnosis as they may not be identified on newborn screening or because of unrecognized, late onset symptoms. Despite the milder presentation, significant complications can occur, especially if treatment is delayed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Toward forward genetic screens in malaria-causing parasites using the piggyBac transposon

    Directory of Open Access Journals (Sweden)

    de Koning-Ward Tania F

    2011-03-01

    Full Text Available Abstract The ability to analyze gene function in malaria-causing Plasmodium parasites has received a boost with a recent paper in BMC Genomics that describes a genome-wide mutagenesis system in the rodent malaria species Plasmodium berghei using the transposon piggyBac. This advance holds promise for identifying and validating new targets for intervention against malaria. But further improvements are still needed for the full power of genome-wide molecular genetic screens to be utilized in this organism. See research article: http://www.biomedcentral.com/1471-2164/12/155

  14. Inexpensive multiplexed library preparation for megabase-sized genomes.

    Directory of Open Access Journals (Sweden)

    Michael Baym

    Full Text Available Whole-genome sequencing has become an indispensible tool of modern biology. However, the cost of sample preparation relative to the cost of sequencing remains high, especially for small genomes where the former is dominant. Here we present a protocol for rapid and inexpensive preparation of hundreds of multiplexed genomic libraries for Illumina sequencing. By carrying out the Nextera tagmentation reaction in small volumes, replacing costly reagents with cheaper equivalents, and omitting unnecessary steps, we achieve a cost of library preparation of $8 per sample, approximately 6 times cheaper than the standard Nextera XT protocol. Furthermore, our procedure takes less than 5 hours for 96 samples. Several hundred samples can then be pooled on the same HiSeq lane via custom barcodes. Our method will be useful for re-sequencing of microbial or viral genomes, including those from evolution experiments, genetic screens, and environmental samples, as well as for other sequencing applications including large amplicon, open chromosome, artificial chromosomes, and RNA sequencing.

  15. Physiological and biochemical response to high temperature stress in Okra (Abelmoschus esculentus L. Moench)

    Science.gov (United States)

    Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard

    2016-04-01

    High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.

  16. High-throughput screening of small molecule libraries using SAMDI mass spectrometry.

    Science.gov (United States)

    Gurard-Levin, Zachary A; Scholle, Michael D; Eisenberg, Adam H; Mrksich, Milan

    2011-07-11

    High-throughput screening is a common strategy used to identify compounds that modulate biochemical activities, but many approaches depend on cumbersome fluorescent reporters or antibodies and often produce false-positive hits. The development of "label-free" assays addresses many of these limitations, but current approaches still lack the throughput needed for applications in drug discovery. This paper describes a high-throughput, label-free assay that combines self-assembled monolayers with mass spectrometry, in a technique called SAMDI, as a tool for screening libraries of 100,000 compounds in one day. This method is fast, has high discrimination, and is amenable to a broad range of chemical and biological applications.

  17. DISIS: prediction of drug response through an iterative sure independence screening.

    Directory of Open Access Journals (Sweden)

    Yun Fang

    Full Text Available Prediction of drug response based on genomic alterations is an important task in the research of personalized medicine. Current elastic net model utilized a sure independence screening to select relevant genomic features with drug response, but it may neglect the combination effect of some marginally weak features. In this work, we applied an iterative sure independence screening scheme to select drug response relevant features from the Cancer Cell Line Encyclopedia (CCLE dataset. For each drug in CCLE, we selected up to 40 features including gene expressions, mutation and copy number alterations of cancer-related genes, and some of them are significantly strong features but showing weak marginal correlation with drug response vector. Lasso regression based on the selected features showed that our prediction accuracies are higher than those by elastic net regression for most drugs.

  18. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  19. Including ethical considerations in models for first-trimester screening for pre-eclampsia

    DEFF Research Database (Denmark)

    Jørgensen, Jennifer Maureen; Hedley, Paula L.; Gjerris, Mickey

    2014-01-01

    Recent efforts to develop reliable and efficient early pregnancy screening programmes for pre-eclampsia have focused on com-bining clinical, biochemical and biophysical markers. The same model has been used for first-trimester screening for fetal aneuploidies i.e. prenatal diagnosis (PD), which...... is routinely offered to all pregnant women in many developed countries. Some studies suggest combining PD and pre-eclampsia screening, so women can be offered testing for a number of conditions at the same clinical visit. A combination of these tests may be practical in terms of saving time and resources......; however, the combination raises ethical issues. First-trimester PD and pre-eclampsia screening entail qualitative differences which alter the requirements for disclosure, non-directedness and consent with regard to the informed consent process. This article explores the differences related to the ethical...

  20. [Current advances and future prospects of genome editing technology in the field of biomedicine.

    Science.gov (United States)

    Sakuma, Tetsushi

    Genome editing technology can alter the genomic sequence at will, contributing the creation of cellular and animal models of human diseases including hereditary disorders and cancers, and the generation of the mutation-corrected human induced pluripotent stem cells for ex vivo regenerative medicine. In addition, novel approaches such as drug development using genome-wide CRISPR screening and cancer suppression using epigenome editing technology, which can change the epigenetic modifications in a site-specific manner, have also been conducted. In this article, I summarize the current advances and future prospects of genome editing technology in the field of biomedicine.

  1. Statistical removal of background signals from high-throughput 1H NMR line-broadening ligand-affinity screens

    International Nuclear Information System (INIS)

    Worley, Bradley; Sisco, Nicholas J.; Powers, Robert

    2015-01-01

    NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of protein–ligand interaction at their binding interfaces. While simple one-dimensional 1 H NMR experiments are capable of indicating binding through a change in ligand line shape, they are plagued by broad, ill-defined background signals from protein 1 H resonances. We present an uncomplicated method for subtraction of protein background in high-throughput ligand-based affinity screens, and show that its performance is maximized when phase-scatter correction is applied prior to subtraction

  2. A microscale protein NMR sample screening pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Swapna, G. V. T.; Huang, Yuanpeng J.; Aramini, James M. [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States); Anklin, Clemens [Bruker Biospin Corporation (United States); Conover, Kenith; Hamilton, Keith; Xiao, Rong; Acton, Thomas B.; Ertekin, Asli; Everett, John K.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.ed [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States)

    2010-01-15

    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 {mu}g in 8-35 {mu}l volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.

  3. CRISPR/Cas9 in Genome Editing and Beyond.

    Science.gov (United States)

    Wang, Haifeng; La Russa, Marie; Qi, Lei S

    2016-06-02

    The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.

  4. The Rise of CRISPR/Cas for Genome Editing in Stem Cells

    Directory of Open Access Journals (Sweden)

    Bing Shui

    2016-01-01

    Full Text Available Genetic manipulation is a powerful tool to establish the causal relationship between a genetic lesion and a particular pathological phenotype. The rise of CRISPR/Cas9 genome-engineering tools overcame the traditional technical bottleneck for routine site-specific genetic manipulation in cells. To create the perfect in vitro cell model, there is significant interest from the stem cell research community to adopt this fast evolving technology. This review addresses this need directly by providing both the up-to-date biochemical rationale of CRISPR-mediated genome engineering and detailed practical guidelines for the design and execution of CRISPR experiments in cell models. Ultimately, this review will serve as a timely and comprehensive guide for this fast developing technology.

  5. Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger.

    Science.gov (United States)

    Reilly, Morgann C; Kim, Joonhoon; Lynn, Jed; Simmons, Blake A; Gladden, John M; Magnuson, Jon K; Baker, Scott E

    2018-02-01

    Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.

  6. Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Morgann C. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Joonhoon [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lynn, Jed [Joint BioEnergy Institute, Emeryville, CA (United States); Wright-Patterson Air Force Base, Dayton, OH (United States); Simmons, Blake A. [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gladden, John M. [Joint BioEnergy Institute, Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Magnuson, Jon K. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-06

    Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.

  7. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Energy Technology Data Exchange (ETDEWEB)

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J. (UWASH); (Emerald)

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  8. Application of genomic tools in plant breeding.

    Science.gov (United States)

    Pérez-de-Castro, A M; Vilanova, S; Cañizares, J; Pascual, L; Blanca, J M; Díez, M J; Prohens, J; Picó, B

    2012-05-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, 'breeding by design', or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the 'superdomestication' of crops and the genetic dissection and breeding for complex traits.

  9. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Toledo

    2015-12-01

    Full Text Available To identify therapeutic targets for glioblastoma (GBM, we performed genome-wide CRISPR-Cas9 knockout (KO screens in patient-derived GBM stem-like cells (GSCs and human neural stem/progenitors (NSCs, non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers. In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.

  10. Clustering patterns of LOD scores for asthma-related phenotypes revealed by a genome-wide screen in 295 French EGEA families.

    Science.gov (United States)

    Bouzigon, Emmanuelle; Dizier, Marie-Hélène; Krähenbühl, Christine; Lemainque, Arnaud; Annesi-Maesano, Isabella; Betard, Christine; Bousquet, Jean; Charpin, Denis; Gormand, Frédéric; Guilloud-Bataille, Michel; Just, Jocelyne; Le Moual, Nicole; Maccario, Jean; Matran, Régis; Neukirch, Françoise; Oryszczyn, Marie-Pierre; Paty, Evelyne; Pin, Isabelle; Rosenberg-Bourgin, Myriam; Vervloet, Daniel; Kauffmann, Francine; Lathrop, Mark; Demenais, Florence

    2004-12-15

    A genome-wide scan for asthma phenotypes was conducted in the whole sample of 295 EGEA families selected through at least one asthmatic subject. In addition to asthma, seven phenotypes involved in the main asthma physiopathological pathways were considered: SPT (positive skin prick test response to at least one of 11 allergens), SPTQ score being the number of positive skin test responses to 11 allergens, Phadiatop (positive specific IgE response to a mixture of allergens), total IgE levels, eosinophils, bronchial responsiveness (BR) to methacholine challenge and %predicted FEV(1). Four regions showed evidence for linkage (Pscreens, 6q14 appears to be a new region potentially linked to %FEV(1). To determine which of these various asthma phenotypes are more likely to share common genetic determinants, a principal component analysis was applied to the genome-wide LOD scores. This analysis revealed clustering of LODs for asthma, SPT and Phadiatop on one axis and clustering of LODs for %FEV(1), BR and SPTQ on the other, while LODs for IgE and eosinophils appeared to be independent from all other LODs. These results provide new insights into the potential sharing of genetic determinants by asthma-related phenotypes.

  11. Haematological and biochemical reference values for healthy adults in the middle belt of Ghana.

    Directory of Open Access Journals (Sweden)

    David K Dosoo

    Full Text Available Reference values are very important in clinical management of patients, screening participants for enrollment into clinical trials and for monitoring the onset of adverse events during these trials. The aim of this was to establish gender-specific haematological and biochemical reference values for healthy adults in the central part of Ghana.A total of 691 adults between 18 and 59 years resident in the Kintampo North Municipality and South District in the central part of Ghana were randomly selected using the Kintampo Health and Demographic Surveillance System and enrolled in this cross-sectional survey. Out of these, 625 adults made up of 316 males and 309 females were assessed by a clinician to be healthy. Median values and nonparametric 95% reference values for 16 haematology and 22 biochemistry parameters were determined for this population based on the Clinical Laboratory and Standards Institute guidelines. Values established in this study were compared with the Caucasian values being used currently by our laboratory as reference values and also with data from other African and western countries.REFERENCE VALUES ESTABLISHED INCLUDE: haemoglobin 113-164 g/L for males and 88-144 g/L for females; total white blood cell count 3.4-9.2 × 10(9/L; platelet count 88-352 × 10(9/L for males and 89-403 × 10(9/L for females; alanine aminotransferase 8-54 U/L for males and 6-51 U/L for females; creatinine 56-119 µmol/L for males and 53-106 µmol/L for females. Using the haematological reference values based on the package inserts would have screened out up to 53% of potential trial participants and up to 25% of the population using the biochemical parameters.We have established a panel of locally relevant reference parameters for commonly used haematological and biochemical tests. This is important as it will help in the interpretation of laboratory results both for clinical management of patients and safety monitoring during a trial.

  12. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    Directory of Open Access Journals (Sweden)

    Francesca Taranto

    2017-02-01

    Full Text Available Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs, following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.

  13. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2014-01-01

    Full Text Available Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains and one time-series transcriptome dataset for triacylglycerol (TAG synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2 in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.

  14. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    OpenAIRE

    Raabe, T; Olivier, J P; Dickson, B J; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-01-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is r...

  15. High-throughput screening to enhance oncolytic virus immunotherapy

    Directory of Open Access Journals (Sweden)

    Allan KJ

    2016-04-01

    Full Text Available KJ Allan,1,2 David F Stojdl,1–3 SL Swift1 1Children’s Hospital of Eastern Ontario (CHEO Research Institute, 2Department of Biology, Microbiology and Immunology, 3Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada Abstract: High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. Keywords: oncolytic, virus, screen, high-throughput, cancer, chemical, genomic, immunotherapy

  16. Combined amplification and hybridization techniques for genome scanning in vegetatively propagated crops

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, G; Ramser, J; Terauchi, R [Biocentre, University of Frankfurt, Frankfurt am Main (Germany); Lopez-Peralta, C [IRGP, Colegio de Postgraduados, Montecillo, Edo. de Mexico, Texcoco (Mexico); Asemota, H N [Biotechnology Centre, University of the West Indies, Mona, Kingston (Jamaica); Weising, K [School of Biological Sciences, University of Auckland, Auckland (New Zealand)

    1998-10-01

    A combination of PCR- and hybridization-based genome scanning techniques and sequence comparisons between non-coding chloroplast DNA flanking tRNA genes has been employed to screen Dioscorea species for intra- and interspecific genetic diversity. This methodology detected extensive polymorphisms within Dioscorea bulbifera L., and revealed taxonomic and phylogenetic relationships among cultivated Guinea yams varieties and their potential wild progenitors. Finally, screening of yam germplasm grown in Jamaica permitted reliable discrimination between all major cultivars. Genome scanning by micro satellite-primed PCR (MP-PCR) and random amplified polymorphic DNA (RAPD) analysis in combination with the novel random amplified micro satellite polymorphisms (RAMPO) hybridization technique has shown high potential for the genetic analysis of yams, and holds promise for other vegetatively propagated orphan crops. (author) 46 refs, 3 figs, 3 tabs

  17. Budding off: bringing functional genomics to Candida albicans

    Science.gov (United States)

    Anderson, Matthew Z.

    2016-01-01

    Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein–DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species. PMID:26424829

  18. Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Larry R.; Zhang, Ying; Li, Hua; Li, Ziyu; Lukasczyk, Ulrike; Choi, Yong-Mi; Han, Zuoning; Prisco, Joy; Fordham, Jeremy; Tsay, Joseph T.; Reiling, Stephan; Vaz, Roy J.; Li, Yi; (Sanofi)

    2010-10-28

    Biochemical and X-ray crystallographic studies confirmed that hydroxyquinoline derivatives identified by virtual screening were actually covalent inhibitors of the MIF tautomerase. Adducts were formed by N-alkylation of the Pro-1 at the catalytic site with a loss of an amino group of the inhibitor.

  19. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants.

    Science.gov (United States)

    Reuter, Miriam S; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K C; Trost, Brett; Paton, Tara A; Pereira, Sergio L; Herbrick, Jo-Anne; Wintle, Richard F; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W L; Wang, Zhuozhi; Patel, Rohan V; Pellecchia, Giovanna; Wei, John; Strug, Lisa J; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M; Bassett, Anne S; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D; Stavropoulos, Dimitri J; Bowdin, Sarah; Hildebrandt, Matthew R; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M Stephen; Monfared, Nasim; Hosseini, S Mohsen; Joseph-George, Ann M; Keeley, Fred W; Cook, Ryan A; Fiume, Marc; Lee, Hin C; Marshall, Christian R; Davies, Jill; Hazell, Allison; Buchanan, Janet A; Szego, Michael J; Scherer, Stephen W

    2018-02-05

    The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set ( n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. © 2018 Joule Inc. or its licensors.

  20. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Færgeman, Nils J.

    2012-01-01

    and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster,Caenorhabditis elegans...... critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...

  1. Screening vaccine formulations for biological activity using fresh human whole blood.

    OpenAIRE

    Brookes, RH; Hakimi, J; Ha, Y; Aboutorabian, S; Ausar, SF; Hasija, M; Smith, SG; Todryk, SM; Dockrell, HM; Rahman, N

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it rem...

  2. Context-Dependent Effects of Genome-Wide Association Study Genotypes and Macro-Environmental Factors on Time to Biochemical (PSA) Failure after Prostatectomy

    Science.gov (United States)

    Rebbeck, Timothy R.; Weber, Anita L.; Walker, Amy H.; Stefflova, Klara; Tran, Teo V.; Spangler, Elaine; Chang, Bao-Li; Zeigler-Johnson, Charnita M.

    2010-01-01

    Background Disparities in cancer defined by race, age, or gender are well established. However, demographic metrics are surrogates for the complex contributions of genotypes, exposures, health care, socioeconomic and sociocultural environment, and many other factors. Macro-environmental factors represent novel surrogates for exposures, lifestyle and other factors that are difficult to measure but may influence cancer outcomes. Methods We applied a “multilevel molecular epidemiology” approach using a prospective cohort of 444 White prostate cancer cases who underwent prostatectomy and were followed until biochemical failure (BF) or censoring without BF. We applied Cox regression models to test for joint effects of 86 genome-wide association study-identified genotypes and macro-environmental contextual effects after geocoding all cases to their residential census tracts. All analyses were adjusted for age at diagnosis and tumor aggressiveness. Results Residents living in macroenvironments with a high proportion of older single heads of household, high rates of vacant housing, or high unemployment had shorter time until BF post-surgery after adjustment for patient age and tumor aggressiveness. After correction for multiple testing, genotypes alone did not predict time to BF, but interactions predicting time to BF were observed for MSMB (rs10993994) and percent of older single head of households (p=0.0004), and for HNF1B/TCF2 (rs4430796) and macroenvironment per capita income (p=0.0002). Conclusions Context-specific macro-environmental effects of genotype may improve the ability to identify groups that may experience poor prostate cancer outcomes. Impact Risk estimation and clinical translation of genotype information may require an understanding of both individual-level and macroenvironmental context. PMID:20826827

  3. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  4. Creation of Novel Protein Variants with CRISPR/Cas9-Mediated Mutagenesis: Turning a Screening By-Product into a Discovery Tool.

    Directory of Open Access Journals (Sweden)

    Katherine F Donovan

    Full Text Available CRISPR/Cas9 screening has proven to be a versatile tool for genomics research. Based on unexpected results from a genome-wide screen, we developed a CRISPR/Cas9-mediated approach to mutagenesis, exploiting the allelic diversity generated by error-prone non-homologous end-joining (NHEJ to identify novel gain-of-function and drug resistant alleles of the MAPK signaling pathway genes MEK1 and BRAF. We define the parameters of a scalable technique to easily generate cell populations containing thousands of endogenous allelic variants to map gene functions. Further, these results highlight an unexpected but important phenomenon, that Cas9-induced gain-of-function alleles are an inherent by-product of normal Cas9 loss-of-function screens and should be investigated during analysis of data from large-scale positive selection screens.

  5. High-performance liquid chromatography-mass spectrometry-based acetylcholinesterase assay for the screening of inhibitors in natural extracts

    NARCIS (Netherlands)

    de Jong, C.F.; Derks, R.J.E.; Bruyneel, B.; Niessen, W.M.A.; Irth, H.

    2006-01-01

    The present paper describes a High-performance liquid chromatography-mass spectrometry (LC-MS) methodology for the screening of acetylcholinesterase (AChE) inhibitors in natural extracts. AChE activity of sample components is monitored by a post-column biochemical assay that is based on the

  6. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  7. Metastatic prostate cancer in the modern era of PSA screening

    Directory of Open Access Journals (Sweden)

    Philip A. Fontenot Jr

    Full Text Available ABSTRACT Introduction To characterize initial presentation and PSA screening status in a contemporary cohort of men treated for metastatic prostate cancer at our institution. Materials and methods We reviewed records of 160 men treated for metastatic prostate cancer between 2008-2014 and assessed initial presentation, categorizing patients into four groups. Groups 1 and 2 presented with localized disease and received treatment. These men suffered biochemical recurrence late (>1 year or earlier (<1 year, respectively, and developed metastases. Groups 3 and 4 had asymptomatic and symptomatic metastases at the outset of their diagnosis. Patients with a first PSA at age 55 or younger were considered to have guideline-directed screening. Results Complete records were available on 157 men for initial presentation and 155 men for PSA screening. Groups 1, 2, 3 and 4 included 27 (17%, 7 (5%, 69 (44% and 54 (34% patients, respectively. Twenty (13% patients received guideline-directed PSA screening, 5/155 (3% patients presented with metastases prior to age 55 with their first PSA, and 130/155 (84% had their first PSA after age 55, of which 122/130 (94% had metastasis at the time of diagnosis. Conclusion Despite widespread screening, most men treated for metastatic prostate cancer at our institution presented with metastases rather than progressed after definitive treatment. Furthermore, 25 (16% patients received guideline-directed PSA screening at or before age 55. These data highlight that, despite mass screening efforts, patients treated for incurable disease at our institution may not have been a result of a failed screening test, but a failure to be screened.

  8. Metastatic prostate cancer in the modern era of PSA screening

    Science.gov (United States)

    Fontenot, Philip A.; Nehra, Avinash; Parker, William; Wyre, Hadley; Mirza, Moben; Duchene, David A.; Holzbeierlein, Jeffrey; Thrasher, James Brantley; Veldhuizen, Peter Van; Lee, Eugene K.

    2017-01-01

    ABSTRACT Introduction To characterize initial presentation and PSA screening status in a contemporary cohort of men treated for metastatic prostate cancer at our institution. Materials and methods We reviewed records of 160 men treated for metastatic prostate cancer between 2008-2014 and assessed initial presentation, categorizing patients into four groups. Groups 1 and 2 presented with localized disease and received treatment. These men suffered biochemical recurrence late (>1 year) or earlier (<1 year), respectively, and developed metastases. Groups 3 and 4 had asymptomatic and symptomatic metastases at the outset of their diagnosis. Patients with a first PSA at age 55 or younger were considered to have guideline-directed screening. Results Complete records were available on 157 men for initial presentation and 155 men for PSA screening. Groups 1, 2, 3 and 4 included 27 (17%), 7 (5%), 69 (44%) and 54 (34%) patients, respectively. Twenty (13%) patients received guideline-directed PSA screening, 5/155 (3%) patients presented with metastases prior to age 55 with their first PSA, and 130/155 (84%) had their first PSA after age 55, of which 122/130 (94%) had metastasis at the time of diagnosis. Conclusion Despite widespread screening, most men treated for metastatic prostate cancer at our institution presented with metastases rather than progressed after definitive treatment. Furthermore, 25 (16%) patients received guideline-directed PSA screening at or before age 55. These data highlight that, despite mass screening efforts, patients treated for incurable disease at our institution may not have been a result of a failed screening test, but a failure to be screened. PMID:28338310

  9. [Risk assessment for fetal trisomy 21 based on nuchal translucency measurement and biochemical screening at 11-13 weeks.].

    Science.gov (United States)

    Harðardóttir, H

    2001-05-01

    Screening for fetal aneuploidy during the first trimester using fetal nuchal translucency measurement and maternal serum free ss-hCG (ss-human chorionic gonadotropin) and PAPP-A (pregnancy associated plasma protein A) is commonly practised. An approach with a one stop clinic for assessment of risk for fetal anomalies, where pre-test counseling, blood test, ultrasound and post-test counseling is offered in one hour visit is described. Based on maternal age, biochemistry and fetal nuchal translucency measurement an estimated risk for fetal trisomies 13,18 and 21 is calculated. The main benefit of this approach in screening for fetal aneuploidy is the short turnaround time, with immediate results and a low screen positive rate. This approach leads to diagnosis of the majority (95%) of fetal aneuploidy cases. If screening is positive a diagnostic test is available with chorionic villous sampling or amniocentesis. In Iceland, fetal karyotyping is offered to women 35 years and older and performed during the second trimester, but by using this approach prenatal diagnosis can be moved to the first trimester and also offered to women of all ages. A screening approach with a series of steps from 10-15 weeks, including maternal blood test at 10 and again at 15 weeks, as well as an ultrasound and nuchal translucency measurement at 11-13 weeks, with integrated results at 15+ weeks has been proposed. This method offers even lower screen positive rate (1%) while detection rates of fetal aneuploides are high (>90%) but it requires four visits instead of one and the prolonged approach is likely to cause excess anxiety for the parents to be. If all women are to be offered prenatal sreening in the first trimester the structure of prenatal care in Iceland needs some modifications including scheduling the first prenatal visit at 8-10 weeks and teaching healthcare providers counseling regarding prenatal testing.

  10. Genomic alterations detected by comparative genomic hybridization in ovarian endometriomas

    Directory of Open Access Journals (Sweden)

    L.C. Veiga-Castelli

    2010-08-01

    Full Text Available Endometriosis is a complex and multifactorial disease. Chromosomal imbalance screening in endometriotic tissue can be used to detect hot-spot regions in the search for a possible genetic marker for endometriosis. The objective of the present study was to detect chromosomal imbalances by comparative genomic hybridization (CGH in ectopic tissue samples from ovarian endometriomas and eutopic tissue from the same patients. We evaluated 10 ovarian endometriotic tissues and 10 eutopic endometrial tissues by metaphase CGH. CGH was prepared with normal and test DNA enzymatically digested, ligated to adaptors and amplified by PCR. A second PCR was performed for DNA labeling. Equal amounts of both normal and test-labeled DNA were hybridized in human normal metaphases. The Isis FISH Imaging System V 5.0 software was used for chromosome analysis. In both eutopic and ectopic groups, 4/10 samples presented chromosomal alterations, mainly chromosomal gains. CGH identified 11q12.3-q13.1, 17p11.1-p12, 17q25.3-qter, and 19p as critical regions. Genomic imbalances in 11q, 17p, 17q, and 19p were detected in normal eutopic and/or ectopic endometrium from women with ovarian endometriosis. These regions contain genes such as POLR2G, MXRA7 and UBA52 involved in biological processes that may lead to the establishment and maintenance of endometriotic implants. This genomic imbalance may affect genes in which dysregulation impacts both eutopic and ectopic endometrium.

  11. The promises of genomic screening: building a governance infrastructure. Special issue: genetics and democracy

    NARCIS (Netherlands)

    Cornel, M.C.; van El, C.G.; Dondorp, W.J.

    2012-01-01

    New screening possibilities become available at a high rate, both useful and unsound possibilities. All screening programmes do harm, and only few have more advantages than disadvantages at reasonable cost. Horizon scanning is needed to identify those few possibilities with more pros than cons.

  12. Genomic consequences of selection and genome-wide association mapping in soybean.

    Science.gov (United States)

    Wen, Zixiang; Boyse, John F; Song, Qijian; Cregan, Perry B; Wang, Dechun

    2015-09-03

    Crop improvement always involves selection of specific alleles at genes controlling traits of agronomic importance, likely resulting in detectable signatures of selection within the genome of modern soybean (Glycine max L. Merr.). The identification of these signatures of selection is meaningful from the perspective of evolutionary biology and for uncovering the genetic architecture of agronomic traits. To this end, two populations of soybean, consisting of 342 landraces and 1062 improved lines, were genotyped with the SoySNP50K Illumina BeadChip containing 52,041 single nucleotide polymorphisms (SNPs), and systematically phenotyped for 9 agronomic traits. A cross-population composite likelihood ratio (XP-CLR) method was used to screen the signals of selective sweeps. A total of 125 candidate selection regions were identified, many of which harbored genes potentially involved in crop improvement. To further investigate whether these candidate regions were in fact enriched for genes affected by selection, genome-wide association studies (GWAS) were conducted on 7 selection traits targeted in soybean breeding (grain yield, plant height, lodging, maturity date, seed coat color, seed protein and oil content) and 2 non-selection traits (pubescence and flower color). Major genomic regions associated with selection traits overlapped with candidate selection regions, whereas no overlap of this kind occurred for the non-selection traits, suggesting that the selection sweeps identified are associated with traits of agronomic importance. Multiple novel loci and refined map locations of known loci related to these traits were also identified. These findings illustrate that comparative genomic analyses, especially when combined with GWAS, are a promising approach to dissect the genetic architecture of complex traits.

  13. EchoBASE: an integrated post-genomic database for Escherichia coli.

    Science.gov (United States)

    Misra, Raju V; Horler, Richard S P; Reindl, Wolfgang; Goryanin, Igor I; Thomas, Gavin H

    2005-01-01

    EchoBASE (http://www.ecoli-york.org) is a relational database designed to contain and manipulate information from post-genomic experiments using the model bacterium Escherichia coli K-12. Its aim is to collate information from a wide range of sources to provide clues to the functions of the approximately 1500 gene products that have no confirmed cellular function. The database is built on an enhanced annotation of the updated genome sequence of strain MG1655 and the association of experimental data with the E.coli genes and their products. Experiments that can be held within EchoBASE include proteomics studies, microarray data, protein-protein interaction data, structural data and bioinformatics studies. EchoBASE also contains annotated information on 'orphan' enzyme activities from this microbe to aid characterization of the proteins that catalyse these elusive biochemical reactions.

  14. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  15. Complete Genome Sequence of the Probiotic Lactic Acid Bacterium Lactobacillus Rhamnosus

    Directory of Open Access Journals (Sweden)

    Samat Kozhakhmetov

    2014-01-01

    Full Text Available Introduction: Lactobacilli are a bacteria commonly found in the gastrointestinal tract. Some species of this genus have probiotic properties. The most common of these is Lactobacillus rhamnosus, a microoganism, generally regarded as safe (GRAS. It is also a homofermentative L-(+-lactic acid producer. The genus Lactobacillus is characterized by an extraordinary degree of the phenotypic and genotypic diversity. However, the studies of the genus were conducted mostly with the unequally distributed, non-random choice of species for sequencing; thus, there is only one representative genome from the Lactobacillus rhamnosus clade available to date. The aim of this study was to characterize the genome sequencing of selected strains of Lactobacilli. Methods: 109 samples were isolated from national domestic dairy products in the laboratory of Center for life sciences. After screaning isolates for probiotic properties, a highly active Lactobacillus spp strain was chosen. Genomic DNA was extracted according to the manufacturing protocol (Wizard® Genomic DNA Purification Kit. The Lactobacillus rhamnosus strain was identified as the highly active Lactobacillus strain accoridng to its morphological, cultural, physiological, and biochemical properties, and a genotypic analysis. Results: The genome of Lactobacillus rhamnosus was sequenced using the Roche 454 GS FLX (454 GS FLX platforms. The initial draft assembly was prepared from 14 large contigs (20 all contigs by the Newbler gsAssembler 2.3 (454 Life Sciences, Branford, CT. Conclusion: A full genome-sequencing of selected strains of lactic acid bacteria was made during the study.

  16. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    Science.gov (United States)

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  17. Genome-wide assessment in Escherichia coli reveals time-dependent nanotoxicity paradigms.

    Science.gov (United States)

    Reyes, Vincent C; Li, Minghua; Hoek, Eric M V; Mahendra, Shaily; Damoiseaux, Robert

    2012-11-27

    The use of engineered nanomaterials (eNM) in consumer and industrial products is increasing exponentially. Our ability to rapidly assess their potential effects on human and environmental health is limited by our understanding of nanomediated toxicity. High-throughput screening (HTS) enables the investigation of nanomediated toxicity on a genome-wide level, thus uncovering their novel mechanisms and paradigms. Herein, we investigate the toxicity of zinc-containing nanomaterials (Zn-eNMs) using a time-resolved HTS methodology in an arrayed Escherichia coli genome-wide knockout (KO) library. The library was screened against nanoscale zerovalent zinc (nZn), nanoscale zinc oxide (nZnO), and zinc chloride (ZnCl(2)) salt as reference. Through sequential screening over 24 h, our method identified 173 sensitive clones from diverse biological pathways, which fell into two general groups: early and late responders. The overlap between these groups was small. Our results suggest that bacterial toxicity mechanisms change from pathways related to general metabolic function, transport, signaling, and metal ion homeostasis to membrane synthesis pathways over time. While all zinc sources shared pathways relating to membrane damage and metal ion homeostasis, Zn-eNMs and ZnCl(2) displayed differences in their sensitivity profiles. For example, ZnCl(2) and nZnO elicited unique responses in pathways related to two-component signaling and monosaccharide biosynthesis, respectively. Single isolated measurements, such as MIC or IC(50), are inadequate, and time-resolved approaches utilizing genome-wide assays are therefore needed to capture this crucial dimension and illuminate the dynamic interplay at the nano-bio interface.

  18. Detection of anoxia-reponsive genes in cultured cells of the rainbow trout Oncorhynchus mykiss (Walbaum), using an optimized, genome-wide oligoarray

    DEFF Research Database (Denmark)

    Olohan, L.A.; Li, W; Wulff, Tune

    2008-01-01

    The breadth of mechanistic analyses of environmental stress responses is greatly enhanced by the use of contemporary post-genomic screening technologies, notably including massively parallel transcript analysis by microarray. These genome-wide investigations are entirely dependent upon the creati...

  19. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    Science.gov (United States)

    Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2014-01-01

    Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger. PMID:24608928

  20. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives

    DEFF Research Database (Denmark)

    Lee, Jae Seong; Grav, Lise Marie; Lewis, Nathan E.

    2015-01-01

    repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system enables rapid,easy and efficient engineering of mammalian genomes. It has a wide range of applications frommodification of individual genes to genome-wide screening or regulation of genes. Facile genomeediting using CRISPR/Cas9 empowers...... researchers in the CHO community to elucidate the mechanisticbasis behind high level production of proteins and product quality attributes of interest. Inthis review, we describe the basis of CRISPR/Cas9-mediated genome editing and its applicationfor development of next generation CHO cell factories while...... highlighting both future perspectivesand challenges. As one of the main drivers for the CHO systems biology era, genome engineeringwith CRISPR/Cas9 will pave the way for rational design of CHO cell factories....

  1. Prenatal screening for fetal aneuploidy in singleton pregnancies.

    Science.gov (United States)

    Chitayat, David; Langlois, Sylvie; Douglas Wilson, R

    2011-07-01

    To develop a Canadian consensus document on maternal screening for fetal aneuploidy (e.g., Down syndrome and trisomy 18) in singleton pregnancies. Pregnancy screening for fetal aneuploidy started in the mid 1960s, using maternal age as the screening test. New developments in maternal serum and ultrasound screening have made it possible to offer all pregnant patients a non-invasive screening test to assess their risk of having a fetus with aneuploidy to determine whether invasive prenatal diagnostic testing is necessary. This document reviews the options available for non-invasive screening and makes recommendations for Canadian patients and health care workers. To offer non-invasive screening for fetal aneuploidy (trisomy 13, 18, 21) to all pregnant women. Invasive prenatal diagnosis would be offered to women who screen above a set risk cut-off level on non-invasive screening or to pregnant women whose personal, obstetrical, or family history places them at increased risk. Currently available non-invasive screening options include maternal age combined with one of the following: (1) first trimester screening (nuchal translucency, maternal age, and maternal serum biochemical markers), (2) second trimester serum screening (maternal age and maternal serum biochemical markers), or (3) 2-step integrated screening, which includes first and second trimester serum screening with or without nuchal translucency (integrated prenatal screen, serum integrated prenatal screening, contingent, and sequential). These options are reviewed, and recommendations are made. Studies published between 1982 and 2009 were retrieved through searches of PubMed or Medline and CINAHL and the Cochrane Library, using appropriate controlled vocabulary and key words (aneuploidy, Down syndrome, trisomy, prenatal screening, genetic health risk, genetic health surveillance, prenatal diagnosis). Results were restricted to systematic reviews, randomized controlled trials, and relevant observational

  2. High-throughput screening for industrial enzyme production hosts by droplet microfluidics

    DEFF Research Database (Denmark)

    Sjostrom, Staffan L.; Bai, Yunpeng; Huang, Mingtao

    2014-01-01

    A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its α......-amylase production, close to the theoretical maximum enrichment. Furthermore, a 105 member yeast cell library is screened yielding a clone with a more than 2-fold increase in α-amylase production. The increase in enzyme production results from an improvement of the cellular functions of the production host...

  3. Visual screening for localized RNAs in yeast revealed novel RNAs at the bud-tip

    International Nuclear Information System (INIS)

    Andoh, Tomoko; Oshiro, Yukiko; Hayashi, Sachiko; Takeo, Hideki; Tani, Tokio

    2006-01-01

    Several RNAs, including rRNAs, snRNAs, snoRNAs, and some mRNAs, are known to be localized at specific sites in a cell. Although methods have been established to visualize RNAs in a living cell, no large-scale visual screening of localized RNAs has been performed. In this study, we constructed a genomic library in which random genomic fragments were inserted downstream of U1A-tag sequences under a GAL1 promoter. In a living yeast cell, transcribed U1A-tagged RNAs were visualized by U1A-GFP that binds the RNA sequence of the U1A-tag. In this screening, many RNAs showed nuclear signals. Since the nuclear signals of some RNAs were not seen when the U1A-tag was connected to the 3' ends of the RNAs, it is suggested that their nuclear signals correspond to nascent transcripts on GAL1 promoter plasmids. Using this screening method, we successfully identified two novel localized mRNAs, CSR2 and DAL81, which showed bud-tip localization

  4. Genome-wide analysis of the human Alu Yb-lineage

    Directory of Open Access Journals (Sweden)

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  5. Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling.

    Science.gov (United States)

    Wang, Shenghai; Duan, Mengjie; Liu, Yalan; Fan, Sen; Lin, Xiaoshan; Zhang, Yi

    2017-03-01

    To breed Aspergillus oryzae strains with high fructosyltransferase (FTase) activity using intraspecific protoplast fusion via genome-shuffling. A candidate library was developed using UV/LiCl of the conidia of A. oryzae SBB201. By screening for enzyme activity and cell biomass, two mutants (UV-11 and UV-76) were chosen for protoplast fusion and subsequent genome shuffling. After three rounds of genome recombination, a fusion mutant RIII-7 was obtained. Its FTase activity was 180 U g -1 , approximately double that of the original strain, and RIII-7 was genetically stable. In fermentation culture, FTase activity of the genome-shuffled strain reached a maximum of 353 U g -1 using substrate-feeding method, and this value was approximately 3.4-times higher than that of the original strain A. oryzae SBB201. Intraspecific protoplast fusion of A. oryzae significantly enhanced FTase activity and generated a potentially useful strain for industrial production.

  6. Mining and characterization of microsatellites from a genome of Venturia carpophila

    Science.gov (United States)

    A total of 4,021 microsatellites were mined from a genome of Venturia carpophila and 192 were selected to screen 39 isolates of the fungus collected from peach and nectarine in the southeastern USA. Of the 192 selected, 32 primers consistently and reliably produced polymorphic amplicons. Subsequentl...

  7. Genomic characterization of Burkholderia pseudomallei isolates selected for medical countermeasures testing: comparative genomics associated with differential virulence.

    Directory of Open Access Journals (Sweden)

    Jason W Sahl

    Full Text Available Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics.

  8. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  9. Molecular cloning and genomic organization of an allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    The insect allatostatins are neurohormones, acting on the corpora allata (where they block the release of juvenile hormone) and on the insect gut (where they block smooth muscle contraction). We screened the "Drosophila Genome Project" database with electronic sequences corresponding to various i...

  10. Genomic Biomarkers for Personalized Medicine: Development and Validation in Clinical Studies

    Directory of Open Access Journals (Sweden)

    Shigeyuki Matsui

    2013-01-01

    Full Text Available The establishment of high-throughput technologies has brought substantial advances to our understanding of the biology of many diseases at the molecular level and increasing expectations on the development of innovative molecularly targeted treatments and molecular biomarkers or diagnostic tests in the context of clinical studies. In this review article, we position the two critical statistical analyses of high-dimensional genomic data, gene screening and prediction, in the framework of development and validation of genomic biomarkers or signatures, through taking into consideration the possible different strategies for developing genomic signatures. A wide variety of biomarker-based clinical trial designs to assess clinical utility of a biomarker or a new treatment with a companion biomarker are also discussed.

  11. Waist-to-height ratio is as reliable as biochemical markers to discriminate pediatric insulin resistance.

    Science.gov (United States)

    Alvim, Rafael de Oliveira; Zaniqueli, Divanei; Neves, Felipe Silva; Pani, Virgilia Oliveira; Martins, Caroline Resende; Peçanha, Marcos Alves de Souza; Barbosa, Míriam Carmo Rodrigues; Faria, Eliane Rodrigues de; Mill, José Geraldo

    2018-05-07

    Given the importance of incorporating simple and low-cost tools into the pediatric clinical setting to provide screening for insulin resistance, the present study sought to investigate whether waist-to-height ratio is comparable to biochemical markers for the discrimination of insulin resistance in children and adolescents. This cross-sectional study involved students from nine public schools. In total, 296 children and adolescents of both sexes, aged 8-14 years, composed the sample. Waist-to-height ratio, triglycerides/glucose index, and triglycerides-to-HDL-C ratio were determined according to standard protocols. Insulin resistance was defined as homeostatic model assessment for insulin resistance with cut-off point ≥3.16. Age, body mass index, frequency of overweight, waist circumference, waist-to-height ratio, insulin, glucose, homeostatic model assessment for insulin resistance, triglycerides, triglycerides/glucose index, and triglycerides-to-HDL-C were higher among insulin-resistant boys and girls. Moderate correlation of all indicators (waist-to-height ratio, triglycerides/glucose index, and triglycerides-to-HDL-C ratio) with homeostatic model assessment for insulin resistance was observed for both sexes. The areas under the receiver operational characteristic curves were similar between waist-to-height ratio and biochemical markers. The indicators provided similar discriminatory power for insulin resistance. However, taking into account the cost-benefit ratio, the authors suggest that waist-to-height ratio may be a useful tool to provide screening for insulin resistance in pediatric populations. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  12. Translational and functional oncogenomics. From cancer-oriented genomic screenings to new diagnostic tools and improved cancer treatment.

    Science.gov (United States)

    Medico, Enzo

    2008-01-01

    We present here an experimental pipeline for the systematic identification and functional characterization of genes with high potential diagnostic and therapeutic value in human cancer. Complementary competences and resources have been brought together in the TRANSFOG Consortium to reach the following integrated research objectives: 1) execution of cancer-oriented genomic screenings on tumor tissues and experimental models and merging of the results to generate a prioritized panel of candidate genes involved in cancer progression and metastasis; 2) setup of systems for high-throughput delivery of full-length cDNAs, for gain-of-function analysis of the prioritized candidate genes; 3) collection of vectors and oligonucleotides for systematic, RNA interference-mediated down-regulation of the candidate genes; 4) adaptation of existing cell-based and model organism assays to a systematic analysis of gain and loss of function of the candidate genes, for identification and preliminary validation of novel potential therapeutic targets; 5) proteomic analysis of signal transduction and protein-protein interaction for better dissection of aberrant cancer signaling pathways; 6) validation of the diagnostic potential of the identified cancer genes towards the clinical use of diagnostic molecular signatures; 7) generation of a shared informatics platform for data handling and gene functional annotation. The results of the first three years of activity of the TRANSFOG Consortium are also briefly presented and discussed.

  13. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes.

    Science.gov (United States)

    Richardson, Sandra R; Doucet, Aurélien J; Kopera, Huira C; Moldovan, John B; Garcia-Perez, José Luis; Moran, John V

    2015-04-01

    Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.

  14. Genome reorganization in Nicotiana asymmetric somatic hybrids analysed by in situ hybridization

    International Nuclear Information System (INIS)

    Parokonny, A.S.; Kenton, A.Y.; Gleba, Y.Y.; Bennett, M.D.

    1992-01-01

    In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro

  15. Balanced into array : genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis

    NARCIS (Netherlands)

    Feenstra, Ilse; Hanemaaijer, Nicolien; Sikkema-Raddatz, Birgit; Yntema, Helger; Dijkhuizen, Trijnie; Lugtenberg, Dorien; Verheij, Joke; Green, Andrew; Hordijk, Roel; Reardon, William; de Vries, Bert; Brunner, Han; Bongers, Ernie; de Leeuw, Nicole; van Ravenswaaij-Arts, Conny

    2011-01-01

    High-resolution genome-wide array analysis enables detailed screening for cryptic and submicroscopic imbalances of microscopically balanced de novo rearrangements in patients with developmental delay and/or congenital abnormalities. In this report, we added the results of genome-wide array analysis

  16. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

    Directory of Open Access Journals (Sweden)

    David Chagné

    Full Text Available As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional, and genomic selection in apple.

  17. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    Science.gov (United States)

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  18. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido-Sanz

    Full Text Available The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as

  19. De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2017-10-01

    Full Text Available Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV, infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

  20. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    Directory of Open Access Journals (Sweden)

    Adam Alexander Thil Smith

    2012-05-01

    Full Text Available Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes, a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short. The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  1. Genome-wide analyses reveal a role for peptide hormones in planarian germline development.

    Directory of Open Access Journals (Sweden)

    James J Collins

    Full Text Available Bioactive peptides (i.e., neuropeptides or peptide hormones represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites.

  2. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence.

    Directory of Open Access Journals (Sweden)

    Subhash C Verma

    Full Text Available Kaposi's sarcoma associated herpesvirus is tightly linked to multiple human malignancies including Kaposi's sarcoma (KS, Primary Effusion Lymphoma (PEL and Multicentric Castleman's Disease (MCD. KSHV like other herpesviruses establishes life-long latency in the infected host by persisting as chromatin and tethering to host chromatin through the virally encoded protein Latency Associated Nuclear Antigen (LANA. LANA, a multifunctional protein, is capable of binding to a large number of cellular proteins responsible for transcriptional regulation of various cellular and viral pathways involved in blocking cell death and promoting cell proliferation. This leads to enhanced cell division and replication of the viral genome, which segregates faithfully in the dividing tumor cells. The mechanism of genome segregation is well known and the binding of LANA to nucleosomal proteins, throughout the cell cycle, suggests that these interactions play an important role in efficient segregation. Various biochemical methods have identified a large number of LANA binding proteins, including histone H2A/H2B, histone H1, MeCP2, DEK, CENP-F, NuMA, Bub1, HP-1, and Brd4. These nucleosomal proteins may have various functions in tethering of the viral genome during specific phases of the viral life cycle. Therefore, we performed a comprehensive analysis of their interaction with LANA using a number of different assays. We show that LANA binds to core nucleosomal histones and also associates with other host chromatin proteins including histone H1 and high mobility group proteins (HMGs. We used various biochemical assays including co-immunoprecipitation and in-vivo localization by split GFP and fluorescence resonance energy transfer (FRET to demonstrate their association.

  3. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    Directory of Open Access Journals (Sweden)

    David S. Shin

    2014-01-01

    Full Text Available As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.

  4. Comparative Analyses of Nonpathogenic, Opportunistic, and Totally Pathogenic Mycobacteria Reveal Genomic and Biochemical Variabilities and Highlight the Survival Attributes of Mycobacterium tuberculosis

    Science.gov (United States)

    Singh, Yadvir; Kohli, Sakshi; Ahmad, Javeed; Ehtesham, Nasreen Z.; Tyagi, Anil K.

    2014-01-01

    ABSTRACT Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size—their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. PMID:25370496

  5. HPLC-MS/MS investigation of biochemical markers for the disclosure of erythropoietin abuse in sports

    Science.gov (United States)

    Appolonova, S. A.; Dikunets, M. A.; Rodchenkov, G. M.

    2009-04-01

    The polypeptide hormone erythropoietin (EPO), which is a forbidden doping drug, was determined by high-performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). The hypothesis about the influence of EPO on the asymmetric dimethylarginine (ADMA)-dimethylargininedime-thylaminohydrolase (DDAH)-NO-synthase system was verified. Changes in this system can serve as indirect biochemical markers of the presence of the forbidden EPO drug in the organism. In the test group, the concentrations of biochemical markers varied from 10 to 40 μg/ml for ADMA and symmetrical DMA (SDMA) and from 0.5 to 10 μg/ml for arginine and citrulline. A single intravenous administration of r-HuEPO (Epocrin, 2000 ME/day) for two volunteers reliably increased ADMA, SDMA, arginine, and citrulline concentrations to 40-270 μg/ml, 40-240μg/ml, 10-60 μg/ml, and 12-140 μg/ml, respectively, with respect to the reference values. The simultaneous increase in arginine, methylarginines, and citrulline contents could be an indirect marker of EPO abuse. The method is recommended for fast screening analysis.

  6. Oxford Nanopore MinION Sequencing and Genome Assembly

    Directory of Open Access Journals (Sweden)

    Hengyun Lu

    2016-10-01

    Full Text Available The revolution of genome sequencing is continuing after the successful second-generation sequencing (SGS technology. The third-generation sequencing (TGS technology, led by Pacific Biosciences (PacBio, is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that promises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT. MinION identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MinION has thus generated much excitement and interest in the genomics community. While de novo genome assemblies can be cheaply produced from SGS data, assembly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in genome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.

  7. Screening for nutritional rickets in a community.

    Science.gov (United States)

    Pettifor, John M

    2016-11-01

    Concern has been expressed about the rising incidence of nutritional rickets with its associated long-term sequelae in children globally. In order to address the condition worldwide, it is imperative that accurate figures of its incidence are available particularly in at-risk communities. In order to obtain these figures, various screening tools and diagnostic criteria have been used with no standardization of methodologies, resulting in varying prevalences which may under- or over-estimate the prevalence depending of the techniques used. This review discusses the advantages and disadvantages of various screening tests used to diagnose rickets in communities. Clinical signs characteristic of rachitic deformities have been used extensively, but are likely to over-estimate the prevalence and are dependent on the clinical skills of the observer. Biochemical tests such as alkaline phosphatase and 25-hydroxyvitamin D have also been proposed. There is no consensus on the usefulness of alkaline phosphatase as a screening tool, while there is general agreement that the measurement of vitamin D status is unhelpful in screening for rickets. Finally, the confirmation of the presence of active rickets in suspected infants and children is dependent on radiographic findings, although these may be less helpful in adolescents whose growth plates might be closed or nearly so. In order to obtain uniformity in screening for rickets globally, the is a need for consensus among public health specialists, paediatric endocrinologists and those interested in paediatric bone disease as to the best methods to be employed to determine the prevalence of rickets, particularly in communities with limited resources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    Directory of Open Access Journals (Sweden)

    Changqing Liu

    2014-03-01

    Full Text Available Bacterial artificial chromosome (BAC libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12, consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger.

  9. A BAC-based physical map of the Drosophila buzzatii genome

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Josefa; Nefedov, Michael; Bosdet, Ian; Casals, Ferran; Calvete, Oriol; Delprat, Alejandra; Shin, Heesun; Chiu, Readman; Mathewson, Carrie; Wye, Natasja; Hoskins, Roger A.; Schein, JacquelineE.; de Jong, Pieter; Ruiz, Alfredo

    2005-03-18

    Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps and provide useful resources for sequencing entire genomes. Drosophilabuzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and a {approx}18X expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be {approx}23X. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9,555 clones, and assembled them using Finger Printed Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670singletons. Finally, we anchored 181 large contigs (containing 7,788clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available to the research community.

  10. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry

    OpenAIRE

    Yoon, Hye-Ran

    2015-01-01

    The main purpose of newborn screening is to diagnose genetic, metabolic, and other inherited disorders, at their earliest to start treatment before the clinical manifestations become evident. Understanding and tracing the biochemical data obtained from tandem mass spectrometry is vital for early diagnosis of metabolic diseases associated with such disorders. Accordingly, it is important to focus on the entire diagnostic process, including differential and confirmatory diagnostic options, and ...

  11. In silico method for modelling metabolism and gene product expression at genome scale

    Energy Technology Data Exchange (ETDEWEB)

    Lerman, Joshua A.; Hyduke, Daniel R.; Latif, Haythem; Portnoy, Vasiliy A.; Lewis, Nathan E.; Orth, Jeffrey D.; Rutledge, Alexandra C.; Smith, Richard D.; Adkins, Joshua N.; Zengler, Karsten; Palsson, Bernard O.

    2012-07-03

    Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome and transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.

  12. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  13. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  14. Genome-wide search for gene-gene interactions in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shuo Jiao

    Full Text Available Genome-wide association studies (GWAS have successfully identified a number of single-nucleotide polymorphisms (SNPs associated with colorectal cancer (CRC risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI. With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4. For the known locus rs10795668 (10p14, we found an interacting SNP rs367615 (5q21 with replication p = 0.01 and combined p = 4.19×10(-8. Among the top marginal SNPs after LD pruning (n = 163, we identified an interaction between rs1571218 (20p12.3 and rs10879357 (12q21.1 (nominal combined p = 2.51×10(-6; Bonferroni adjusted p = 0.03. Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.

  15. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  16. DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Václav; Schimer, Jiří; Tykvart, Jan; Knedlík, Tomáš; Vik, V.; Majer, Pavel; Konvalinka, Jan; Šácha, Pavel

    2017-01-01

    Roč. 45, č. 2 (2017), č. článku e10. ISSN 0305-1048 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : quantitative PCR * enzyme detection * inhibitor screening Subject RIV: CE - Biochemistry OBOR OECD: Biochemical research methods Impact factor: 10.162, year: 2016 https:// academic .oup.com/nar/article-lookup/doi/10.1093/nar/gkw853

  17. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    M. Michelle Malmberg

    2018-04-01

    Full Text Available Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD. Complexity reduction genotyping-by-sequencing (GBS methods, including GBS-transcriptomics (GBS-t, enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs, and identify structural variants (SVs. Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  18. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  19. [The influence of N-, S-containing chinasolone derivatives (NC-224) on the biochemical and physicochemical parameters of membrane endoplasmatic reticulum and nuclear chromatine fractions of rats liver cells in conditions of its injury by tetrachloromethane].

    Science.gov (United States)

    Gubs'kyî, Iu I; Goriushko, G G; Belenichev, I F; Kovalenko, S I; Litvinova, N V; Marchenko, O M; Kurapova, T M; Babenko, L P; Velychko, O M

    2010-01-01

    Using biochemical and physicochemical methods of investigation in vivo, the effect of the substance NC-224, N-, S-chinasolone-derivative, on the lipoperoxidation activity in rat liver endoplasmatic reticulum membranes and nuclear chromatin fractions under tetrachloromethane intoxication have been studied. It was shown that NC-224 has pronounced antioxidant activity which is the biochemical basis of the substance membrane- and genome-protective effects and its ability to restore physicochemical properties of the surface and hydrophobic zones of hepatocyte membranes and structural parameter nuclear chromatin fractions in the conditions of chemical liver injury.

  20. Biochemical and genetic characterization of a novel metallo-β-lactamase from marine bacterium Erythrobacter litoralis HTCC 2594.

    Science.gov (United States)

    Jiang, Xia-Wei; Cheng, Hong; Huo, Ying-Yi; Xu, Lin; Wu, Yue-Hong; Liu, Wen-Hong; Tao, Fang-Fang; Cui, Xin-Jie; Zheng, Bei-Wen

    2018-01-16

    Metallo-β-lactamases (MBLs) are a group of enzymes that can inactivate most commonly used β-lactam-based antibiotics. Among MBLs, New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an urgent threat to public health as evidenced by its success in rapidly disseminating worldwide since its first discovery. Here we report the biochemical and genetic characteristics of a novel MBL, ElBla2, from the marine bacterium Erythrobacter litoralis HTCC 2594. This enzyme has a higher amino acid sequence similarity to NDM-1 (56%) than any previously reported MBL. Enzymatic assays and secondary structure alignment also confirmed the high similarity between these two enzymes. Whole genome comparison of four Erythrobacter species showed that genes located upstream and downstream of elbla2 were highly conserved, which may indicate that elbla2 was lost during evolution. Furthermore, we predicted two prophages, 13 genomic islands and 25 open reading frames related to insertion sequences in the genome of E. litoralis HTCC 2594. However, unlike NDM-1, the chromosome encoded ElBla2 did not locate in or near these mobile genetic elements, indicating that it cannot transfer between strains. Finally, following our phylogenetic analysis, we suggest a reclassification of E. litoralis HTCC 2594 as a novel species: Erythrobacter sp. HTCC 2594.

  1. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  2. Design of Genomic Signatures of Pathogen Identification & Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Gardner, S; Allen, J; Vitalis, E; Jaing, C

    2010-02-09

    This chapter will address some of the many issues associated with the identification of signatures based on genomic DNA/RNA, which can be used to identify and characterize pathogens for biodefense and microbial forensic goals. For the purposes of this chapter, we define a signature as one or more strings of contiguous genomic DNA or RNA bases that are sufficient to identify a pathogenic target of interest at the desired resolution and which could be instantiated with particular detection chemistry on a particular platform. The target may be a whole organism, an individual functional mechanism (e.g., a toxin gene), or simply a nucleic acid indicative of the organism. The desired resolution will vary with each program's goals but could easily range from family to genus to species to strain to isolate. The resolution may not be taxonomically based but rather pan-mechanistic in nature: detecting virulence or antibiotic-resistance genes shared by multiple microbes. Entire industries exist around different detection chemistries and instrument platforms for identification of pathogens, and we will only briefly mention a few of the techniques that we have used at Lawrence Livermore National Laboratory (LLNL) to support our biosecurity-related work since 2000. Most nucleic acid based detection chemistries involve the ability to isolate and amplify the signature target region(s), combined with a technique to detect the amplification. Genomic signature based identification techniques have the advantage of being precise, highly sensitive and relatively fast in comparison to biochemical typing methods and protein signatures. Classical biochemical typing methods were developed long before knowledge of DNA and resulted in dozens of tests (Gram's stain, differential growth characteristics media, etc.) that could be used to roughly characterize the major known pathogens (of course some are uncultivable). These tests could take many days to complete and precise resolution

  3. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias; Sippel, Josefine; Hodemaekers, Hennie M. [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Brandhof, Evert-Jan van den [Center for Environmental Quality, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Pennings, Jeroen L.A. [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Kamstra, Jorke H. [Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Jelinek, Jaroslav [Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA (United States); Issa, Jean-Pierre J. [Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA (United States); Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Legler, Juliette [Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Ven, Leo T.M. van der, E-mail: leo.van.der.ven@rivm.nl [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands)

    2016-01-15

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal genome

  4. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    International Nuclear Information System (INIS)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias; Sippel, Josefine; Hodemaekers, Hennie M.; Brandhof, Evert-Jan van den; Pennings, Jeroen L.A.; Kamstra, Jorke H.; Jelinek, Jaroslav; Issa, Jean-Pierre J.; Legler, Juliette; Ven, Leo T.M. van der

    2016-01-01

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal genome

  5. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    2010-04-01

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  6. In Silico Genome-Scale Reconstruction and Validation of the Corynebacterium glutamicum Metabolic Network

    DEFF Research Database (Denmark)

    Kjeldsen, Kjeld Raunkjær; Nielsen, J.

    2009-01-01

    A genome-scale metabolic model of the Gram-positive bacteria Corynebacterium glutamicum ATCC 13032 was constructed comprising 446 reactions and 411 metabolite, based on the annotated genome and available biochemical information. The network was analyzed using constraint based methods. The model...... was extensively validated against published flux data, and flux distribution values were found to correlate well between simulations and experiments. The split pathway of the lysine synthesis pathway of C. glutamicum was investigated, and it was found that the direct dehydrogenase variant gave a higher lysine...... yield than the alternative succinyl pathway at high lysine production rates. The NADPH demand of the network was not found to be critical for lysine production until lysine yields exceeded 55% (mmol lysine (mmol glucose)(-1)). The model was validated during growth on the organic acids acetate...

  7. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    DEFF Research Database (Denmark)

    Taylor, Jenny C; Martin, Hilary C; Lise, Stefano

    2015-01-01

    To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the numb...

  8. Depauperate genetic variability detected in the American and European bison using genomic techniques

    DEFF Research Database (Denmark)

    Pertoldi, Cino; Tokarska, Magorzata; Wójcik, Jan M

    2009-01-01

    , likely reflecting drift overwhelming selection. We suggest that utilization of genome-wide screening technologies, followed by utilization of less expensive techniques (e.g. VeraCode and Fluidigm EP1), holds large potential for genetic monitoring of populations. Additionally, these techniques will allow...

  9. Simulation studies in biochemical signaling and enzyme reactions

    Science.gov (United States)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  10. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome.

    Directory of Open Access Journals (Sweden)

    Concetta De Santi

    Full Text Available The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15 form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs.MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.

  11. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Bruce A.; Tanifuji, Goro; Burki, Fabien; Gruber, Ansgar; Irimia, Manuuel; Maruyama, Shinichiro; Arias, Maria C.; Ball, Steven G.; Gile, Gillian H.; Hirakawa, Yoshihisa; Hopkins, Julia F.; Kuo, Alan; Rensing, Stefan A.; Schmutz, Jeremy; Symeonidi, Aikaterini; Elias, Marek; Eveleigh, Robert J. M.; Herman, Emily K.; Klute, Mary J.; Nakayama, Takuro; Obornik, Miroslav; Reyes-Prieto, Adrian; Armbrust, E. Virginia; Aves, Stephen J.; Beiko, Robert G.; Coutinho, Pedro; Dacks, Joel B.; Durnford, Dion G.; Fast, Naomi M.; Green, Beverley R.; Grisdale, Cameron J.; Hempel, Franziska; Henrissat, Bernard; Hoppner, Marc P.; Ishida, Ken-Ichiro; Kim, Eunsoo; Koreny, Ludek; Kroth, Peter G.; Liu, Yuan; Malik, Shehre-Banoo; Maier, Uwe G.; McRose, Darcy; Mock, Thomas; Neilson, Jonathan A. D.; Onodera, Naoko T.; Poole, Anthony M.; Pritham, Ellen J.; Richards, Thomas A.; Rocap, Gabrielle; Roy, Scott W.; Sarai, Chihiro; Schaack, Sarah; Shirato, Shu; Slamovits, Claudio H.; Spencer, Davie F.; Suzuki, Shigekatsu; Worden, Alexandra Z.; Zauner, Stefan; Barry, Kerrie; Bell, Callum; Bharti, Arvind K.; Crow, John A.; Grimwood, Jane; Kramer, Robin; Lindquist, Erika; Lucas, Susan; Salamov, Asaf; McFadden, Geoffrey I.; Lane, Christopher E.; Keeling, Patrick J.; Gray, Michael W.; Grigoriev, Igor V.; Archibald, John M.

    2012-08-10

    Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have 21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.

  12. Newborn Screening for Primary Immunodeficiency Diseases: The Past, the Present and the Future

    Directory of Open Access Journals (Sweden)

    Jovanka King

    2017-08-01

    Full Text Available Primary immunodeficiency diseases (PID are a heterogeneous group of disorders caused by inborn errors of immunity, with affected children presenting with severe, recurrent or unusual infections. Over 300 distinct genetic molecular abnormalities resulting in PID have been identified, and this number continues to rise. Newborn screening for PID has been established in many countries, with the majority of centers using a PCR-based T cell receptor excision circle (TREC assay to screen for severe combined immunodeficiency (SCID and other forms of T cell lymphopenia. Multiplexed screening including quantitation of kappa-recombining exclusion circles (KREC has also been described, offering advantages over TREC screening alone. Screening technologies are also expanding to include protein-based assays to identify complement deficiencies and granulocyte disorders. Given the rapid advances in genomic medicine, a potential future direction is the application of next-generation sequencing (NGS technologies to screen infants for a panel of genetic mutations, which would enable identification of a wide range of diseases. However, several ethical and economic issues must be considered before moving towards this screening strategy.

  13. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells.

    Directory of Open Access Journals (Sweden)

    Anand K Ganesan

    2008-12-01

    Full Text Available Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo, neurologic disorders (Parkinson's disease, auditory disorders (Waardenburg's syndrome, and opthalmologic disorders (age related macular degeneration. Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype

  14. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  15. International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates

    DEFF Research Database (Denmark)

    Diez-Perez, Adolfo; Naylor, K E; Abrahamsen, B

    2017-01-01

    Adherence to oral bisphosphonates is low. A screening strategy is proposed based on the response of biochemical markers of bone turnover after 3 months of therapy. If no change is observed, the clinician should reassess the adherence to the treatment and also other potential issues with the drug....

  16. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia.

    Science.gov (United States)

    Barry, Elizabeth G; Witherspoon, David J; Lampe, David J

    2004-02-01

    Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.

  17. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery.

    Science.gov (United States)

    Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte

    2017-07-13

    Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.

  18. Development and validation of concurrent preimplantation genetic diagnosis for single gene disorders and comprehensive chromosomal aneuploidy screening without whole genome amplification.

    Science.gov (United States)

    Zimmerman, Rebekah S; Jalas, Chaim; Tao, Xin; Fedick, Anastasia M; Kim, Julia G; Pepe, Russell J; Northrop, Lesley E; Scott, Richard T; Treff, Nathan R

    2016-02-01

    To develop a novel and robust protocol for multifactorial preimplantation genetic testing of trophectoderm biopsies using quantitative polymerase chain reaction (qPCR). Prospective and blinded. Not applicable. Couples indicated for preimplantation genetic diagnosis (PGD). None. Allele dropout (ADO) and failed amplification rate, genotyping consistency, chromosome screening success rate, and clinical outcomes of qPCR-based screening. The ADO frequency on a single cell from a fibroblast cell line was 1.64% (18/1,096). When two or more cells were tested, the ADO frequency dropped to 0.02% (1/4,426). The rate of amplification failure was 1.38% (55/4,000) overall, with 2.5% (20/800) for single cells and 1.09% (35/3,200) for samples that had two or more cells. Among 152 embryos tested in 17 cases by qPCR-based PGD and CCS, 100% were successfully given a diagnosis, with 0% ADO or amplification failure. Genotyping consistency with reference laboratory results was >99%. Another 304 embryos from 43 cases were included in the clinical application of qPCR-based PGD and CCS, for which 99.7% (303/304) of the embryos were given a definitive diagnosis, with only 0.3% (1/304) having an inconclusive result owing to recombination. In patients receiving a transfer with follow-up, the pregnancy rate was 82% (27/33). This study demonstrates that the use of qPCR for PGD testing delivers consistent and more reliable results than existing methods and that single gene disorder PGD can be run concurrently with CCS without the need for additional embryo biopsy or whole genome amplification. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Development of On-Line High Performance Liquid Chromatography (HPLC)-Biochemical Detection Methods as Tools in the Identification of Bioactives

    Science.gov (United States)

    Malherbe, Christiaan J.; de Beer, Dalene; Joubert, Elizabeth

    2012-01-01

    Biochemical detection (BCD) methods are commonly used to screen plant extracts for specific biological activities in batch assays. Traditionally, bioactives in the most active extracts were identified through time-consuming bio-assay guided fractionation until single active compounds could be isolated. Not only are isolation procedures often tedious, but they could also lead to artifact formation. On-line coupling of BCD assays to high performance liquid chromatography (HPLC) is gaining ground as a high resolution screening technique to overcome problems associated with pre-isolation by measuring the effects of compounds post-column directly after separation. To date, several on-line HPLC-BCD assays, applied to whole plant extracts and mixtures, have been published. In this review the focus will fall on enzyme-based, receptor-based and antioxidant assays. PMID:22489144

  20. PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens.

    Science.gov (United States)

    Spahn, Philipp N; Bath, Tyler; Weiss, Ryan J; Kim, Jihoon; Esko, Jeffrey D; Lewis, Nathan E; Harismendy, Olivier

    2017-11-20

    Large-scale genetic screens using CRISPR/Cas9 technology have emerged as a major tool for functional genomics. With its increased popularity, experimental biologists frequently acquire large sequencing datasets for which they often do not have an easy analysis option. While a few bioinformatic tools have been developed for this purpose, their utility is still hindered either due to limited functionality or the requirement of bioinformatic expertise. To make sequencing data analysis of CRISPR/Cas9 screens more accessible to a wide range of scientists, we developed a Platform-independent Analysis of Pooled Screens using Python (PinAPL-Py), which is operated as an intuitive web-service. PinAPL-Py implements state-of-the-art tools and statistical models, assembled in a comprehensive workflow covering sequence quality control, automated sgRNA sequence extraction, alignment, sgRNA enrichment/depletion analysis and gene ranking. The workflow is set up to use a variety of popular sgRNA libraries as well as custom libraries that can be easily uploaded. Various analysis options are offered, suitable to analyze a large variety of CRISPR/Cas9 screening experiments. Analysis output includes ranked lists of sgRNAs and genes, and publication-ready plots. PinAPL-Py helps to advance genome-wide screening efforts by combining comprehensive functionality with user-friendly implementation. PinAPL-Py is freely accessible at http://pinapl-py.ucsd.edu with instructions and test datasets.

  1. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  2. Efficient genome-wide genotyping strategies and data integration in crop plants.

    Science.gov (United States)

    Torkamaneh, Davoud; Boyle, Brian; Belzile, François

    2018-03-01

    Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.

  3. Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study.

    Science.gov (United States)

    Feichtinger, Michael; Vaccari, Enrico; Carli, Luca; Wallner, Elisabeth; Mädel, Ulrike; Figl, Katharina; Palini, Simone; Feichtinger, Wilfried

    2017-06-01

    The aim of this pilot study was to assess if array comparative genomic hybridization (aCGH), non-invasive preimplantation genetic screening (PGS) on blastocyst culture media is feasible. Therefore, aCGH analysis was carried out on 22 spent blastocyst culture media samples after polar body PGS because of advanced maternal age. All oocytes were fertilized by intracytoplasmic sperm injection and all embryos underwent assisted hatching. Concordance of polar body analysis and culture media genetic results was assessed. Thirteen out of 18 samples (72.2%) revealed general concordance of ploidy status (euploid or aneuploid). At least one chromosomal aberration was found concordant in 10 out of 15 embryos found to be aneuploid by both polar body and culture media analysis. Overall, 17 out of 35 (48.6%) single chromosomal aneuploidies were concordant between the culture media and polar body analysis. By analysing negative controls (oocytes with fertilization failure), notable maternal contamination was observed. Therefore, non-invasive PGS could serve as a second matrix after polar body or cleavage stage PGS; however, in euploid results, maternal contamination needs to be considered and results interpreted with caution. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    Science.gov (United States)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  5. Stakeholder consultation insights on the future of genomics at the clinical-public health interface.

    Science.gov (United States)

    Modell, Stephen M; Kardia, Sharon L R; Citrin, Toby

    2014-05-01

    In summer 2011, the Centers for Disease Control and Prevention Office of Public Health Genomics conducted a stakeholder consultation, administered by the University of Michigan Center for Public Health and Community Genomics, and Genetic Alliance, to recommend priorities for public health genomics from 2012 through 2017. Sixty-two responses from health professionals, administrators, and members of the public were pooled with 2 sets of key informant interviews and 3 discussion groups. NVivo 9 and manual methods were used to organize themes. This review offers an interim analysis of progress with respect to the final recommendations, which demonstrated a strong interest in moving genomic discoveries toward implementation and comparative effectiveness (T3/T4) translational research. A translational research continuum exists with familial breast and ovarian cancer at one end and prostate cancer at the other. Cascade screening for inherited arrhythmia syndromes and hypercholesterolemia lags stakeholder recommendations in the United States but not in Europe; implementation of health service-based screening for Lynch syndrome, and integration into electronic health information systems, is on pace with the recommended timeline. A number of options exist to address deficits in the funding of translational research, particularly for oncogenomic gene expression profiling. The goal of personalized risk assessment necessitates both research progress (eg, in whole genome sequencing, as well as provider education in the differentiation of low- vs high-risk status. The public health approach supports an emphasis on genetic test validation while endorsing clinical translation research inclusion of an environmental and population-based perspective. Copyright © 2014 Mosby, Inc. All rights reserved.

  6. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.

    Directory of Open Access Journals (Sweden)

    Shilpa Aggarwal

    2010-04-01

    Full Text Available It is widely accepted that the highly error prone replication process of influenza A virus (IAV, together with viral genome assortment, facilitates the efficient evolutionary capacity of IAV. Therefore, it has been logically assumed that the enzyme responsible for viral RNA replication process, influenza virus type A RNA polymerase (IAV Pol, is a highly error-prone polymerase which provides the genomic mutations necessary for viral evolution and host adaptation. Importantly, however, the actual enzyme fidelity of IAV RNA polymerase has never been characterized.Here we established new biochemical assay conditions that enabled us to assess both polymerase activity with physiological NTP pools and enzyme fidelity of IAV Pol. We report that IAV Pol displays highly active RNA-dependent RNA polymerase activity at unbiased physiological NTP substrate concentrations. With this robust enzyme activity, for the first time, we were able to compare the enzyme fidelity of IAV Pol complex with that of bacterial phage T7 RNA polymerase and the reverse transcriptases (RT of human immunodeficiency virus (HIV-1 and murine leukemia virus (MuLV, which are known to be low and high fidelity enzymes, respectively. We observed that IAV Pol displayed significantly higher fidelity than HIV-1 RT and T7 RNA polymerase and equivalent or higher fidelity than MuLV RT. In addition, the IAV Pol complex showed increased fidelity at lower temperatures. Moreover, upon replacement of Mg(++ with Mn(++, IAV Pol displayed increased polymerase activity, but with significantly reduced processivity, and misincorporation was slightly elevated in the presence of Mn(++. Finally, when the IAV nucleoprotein (NP was included in the reactions, the IAV Pol complex exhibited enhanced polymerase activity with increased fidelity.Our study indicates that IAV Pol is a high fidelity enzyme. We envision that the high fidelity nature of IAV Pol may be important to counter-balance the multiple rounds of

  7. Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridisation.

    Science.gov (United States)

    Rey, María-Dolores; Prieto, Pilar

    2017-01-01

    Simple, reliable methods for the identification of alien genetic introgressions are required in plant breeding programmes. The use of genomic dot-blot hybridisation allows the detection of small Hordeum chilense genomic introgressions in the descendants of genetic crosses between wheat and H. chilense addition or substitution lines in wheat when molecular markers are difficult to use. Based on genomic in situ hybridisation, DNA samples from wheat lines carrying putatively H. chilense introgressions were immobilised on a membrane, blocked with wheat genomic DNA and hybridised with biotin-labelled H. chilense genomic DNA as a probe. This dot-blot screening reduced the number of plants necessary to be analysed by molecular markers or in situ hybridisation, saving time and money. The technique was sensitive enough to detect a minimum of 5 ng of total genomic DNA immobilised on the membrane or about 1/420 dilution of H. chilense genomic DNA in the wheat background. The robustness of the technique was verified by in situ hybridisation. In addition, the detection of other wheat relative species such as Hordeum vulgare , Secale cereale and Agropyron cristatum in the wheat background was also reported .

  8. Implementing a screening program for acromegaly in Latin America: necessity versus feasibility.

    Science.gov (United States)

    Danilowicz, Karina; Fainstein Day, Patricia; Manavela, Marcos P; Herrera, Carlos Javier; Deheza, María Laura; Isaac, Gabriel; Juri, Ariel; Katz, Debora; Bruno, Oscar D

    2016-08-01

    Acromegaly is a rare disease with a large burden due its associated comorbidities and the life-long management required. Since the occurrence and severity of associated complications are related to length of exposure to the excess growth hormone seen in acromegaly, early diagnosis is imperative. The delay in diagnosis, however, can be long, and may be the result of a lack of disease awareness and screening programs. Since acromegaly is an uncommon disease, finding ways to increase recognition and diagnosis that would permit early detection in a logical and cost-effective manner could be a challenge. We conducted a retrospective literature review for information relating to the screening and diagnosis of acromegaly using PubMed. The aim was to assess whether an acromegaly-screening program in Latin America (and elsewhere) would be both of use and be feasible. An earlier diagnosis allows earlier initiation of treatment, such as surgery and/or drugs, which leads to more successful disease management (biochemical control) and better outcomes. Since the delay in diagnosis can be long, we believe that clear opportunities exist for earlier (and increased) detection of acromegaly. This can be achieved by increasing disease awareness for earlier recognition of symptoms and by using targeted screening (rather than mass screening) programs.

  9. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus.

    Science.gov (United States)

    Han, Yejun; Agarwal, Vinayak; Dodd, Dylan; Kim, Jason; Bae, Brian; Mackie, Roderick I; Nair, Satish K; Cann, Isaac K O

    2012-10-12

    Hemicellulose is the next most abundant plant cell wall component after cellulose. The abundance of hemicellulose such as xylan suggests that their hydrolysis and conversion to biofuels can improve the economics of bioenergy production. In an effort to understand xylan hydrolysis at high temperatures, we sequenced the genome of the thermophilic bacterium Caldanaerobius polysaccharolyticus. Analysis of the partial genome sequence revealed a gene cluster that contained both hydrolytic enzymes and also enzymes key to the pentose-phosphate pathway. The hydrolytic enzymes in the gene cluster were demonstrated to convert products from a large endoxylanase (Xyn10A) predicted to anchor to the surface of the bacterium. We further use structural and calorimetric studies to demonstrate that the end products of Xyn10A hydrolysis of xylan are recognized and bound by XBP1, a putative solute-binding protein, likely for transport into the cell. The XBP1 protein showed preference for xylo-oligosaccharides as follows: xylotriose > xylobiose > xylotetraose. To elucidate the structural basis for the oligosaccharide preference, we solved the co-crystal structure of XBP1 complexed with xylotriose to a 1.8-Å resolution. Analysis of the biochemical data in the context of the co-crystal structure reveals the molecular underpinnings of oligosaccharide length specificity.

  10. A functional genomics screen in planarians reveals regulators of whole-brain regeneration

    Science.gov (United States)

    Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A

    2016-01-01

    Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI: http://dx.doi.org/10.7554/eLife.17002.001 PMID:27612384

  11. Making Personalized Health Care Even More Personalized: Insights From Activities of the IOM Genomics Roundtable.

    Science.gov (United States)

    David, Sean P; Johnson, Samuel G; Berger, Adam C; Feero, W Gregory; Terry, Sharon F; Green, Larry A; Phillips, Robert L; Ginsburg, Geoffrey S

    2015-01-01

    Genomic research has generated much new knowledge into mechanisms of human disease, with the potential to catalyze novel drug discovery and development, prenatal and neonatal screening, clinical pharmacogenomics, more sensitive risk prediction, and enhanced diagnostics. Genomic medicine, however, has been limited by critical evidence gaps, especially those related to clinical utility and applicability to diverse populations. Genomic medicine may have the greatest impact on health care if it is integrated into primary care, where most health care is received and where evidence supports the value of personalized medicine grounded in continuous healing relationships. Redesigned primary care is the most relevant setting for clinically useful genomic medicine research. Taking insights gained from the activities of the Institute of Medicine (IOM) Roundtable on Translating Genomic-Based Research for Health, we apply lessons learned from the patient-centered medical home national experience to implement genomic medicine in a patient-centered, learning health care system. © 2015 Annals of Family Medicine, Inc.

  12. Discovery of novel targets for multi-epitope vaccines: Screening of HIV-1 genomes using association rule mining

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2009-07-01

    Full Text Available Abstract Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1 regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007, we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms. The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges

  13. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation

    Science.gov (United States)

    Tsai, Chia-Ti; Hsieh, Chia-Shan; Chang, Sheng-Nan; Chuang, Eric Y.; Ueng, Kwo-Chang; Tsai, Chin-Feng; Lin, Tsung-Hsien; Wu, Cho-Kai; Lee, Jen-Kuang; Lin, Lian-Yu; Wang, Yi-Chih; Yu, Chih-Chieh; Lai, Ling-Ping; Tseng, Chuen-Den; Hwang, Juey-Jen; Chiang, Fu-Tien; Lin, Jiunn-Lee

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10−24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. PMID:26831368

  14. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    Science.gov (United States)

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  15. Stakeholder engagement in policy development: challenges and opportunities for human genomics.

    Science.gov (United States)

    Lemke, Amy A; Harris-Wai, Julie N

    2015-12-01

    Along with rapid advances in human genomics, policies governing genomic data and clinical technologies have proliferated. Stakeholder engagement is widely lauded as an important methodology for improving clinical, scientific, and public health policy decision making. The purpose of this paper is to examine how stakeholder engagement is used to develop policies in genomics research and public health areas, as well as to identify future priorities for conducting evidence-based stakeholder engagements. We focus on exemplars in biobanking and newborn screening to illustrate a variety of current stakeholder engagement in policy-making efforts. Each setting provides an important context for examining the methods of obtaining and integrating informed stakeholder voices into the policy-making process. While many organizations have an interest in engaging stakeholders with regard to genomic policy issues, there is broad divergence with respect to the stakeholders involved, the purpose of engagements, when stakeholders are engaged during policy development, methods of engagement, and the outcomes reported. Stakeholder engagement in genomics policy development is still at a nascent stage. Several challenges of using stakeholder engagement as a tool for genomics policy development remain, and little evidence regarding how to best incorporate stakeholder feedback into policy-making processes is currently available.

  16. Roegneria alashanica Keng: a species with the StStStYStY genome constitution.

    Science.gov (United States)

    Wang, Richard R-C; Jensen, Kevin B

    2017-06-01

    The genome constitution of tetraploid Roegneria alashanica Keng has been in question for a long time. Most scientific studies have suggested that R. alashanica had two versions of the St genome, St 1 St 2 , similar to that of Pseudoroegneria elytrigioides (C. Yen & J.L. Yang) B.R. Lu. A study, however, concluded that R. alashanica had the StY genome formula typical for tetraploid species of Roegneria. For the present study, R. alashanica, Elymus longearistatus (Bioss.) Tzvelev (StY genomes), Pseudoroegneria strigosa (M. Bieb.) Á. Löve (St), Pseudoroegneria libanoctica (Hackel) D.R. Dewey (St), and Pseudoroegneria spicata (Pursh) Á. Löve (St) were screened for the Y-genome specific marker B14(F+R) 269 . All E. longearistatus plants expressed intense bands specific to the Y genome. Only 6 of 10 R. alashanica plants exhibited relatively faint bands for the STS marker. Previously, the genome in species of Pseudoroegneria exhibiting such faint Y-genome specific marker was designated as St Y . Based on these results, R. alashanica lacks the Y genome in E. longearistatus but likely possess two remotely related St genomes, St and St Y . According to its genome constitution, R. alashanica should be classified in the genus Pseudoroenera and given the new name Pseudoroegneria alashanica (Keng) R.R.-C. Wang and K.B. Jensen.

  17. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov (United States)

    Biochemical Process Development and Integration Biochemical Process Development and Integration Our conversion and separation processes to pilot-scale integrated process development and scale up. We also Publications Accounting for all sugar produced during integrated production of ethanol from lignocellulosic

  18. A method for accurate detection of genomic microdeletions using real-time quantitative PCR

    Directory of Open Access Journals (Sweden)

    Bassett Anne S

    2005-12-01

    Full Text Available Abstract Background Quantitative Polymerase Chain Reaction (qPCR is a well-established method for quantifying levels of gene expression, but has not been routinely applied to the detection of constitutional copy number alterations of human genomic DNA. Microdeletions or microduplications of the human genome are associated with a variety of genetic disorders. Although, clinical laboratories routinely use fluorescence in situ hybridization (FISH to identify such cryptic genomic alterations, there remains a significant number of individuals in which constitutional genomic imbalance is suspected, based on clinical parameters, but cannot be readily detected using current cytogenetic techniques. Results In this study, a novel application for real-time qPCR is presented that can be used to reproducibly detect chromosomal microdeletions and microduplications. This approach was applied to DNA from a series of patient samples and controls to validate genomic copy number alteration at cytoband 22q11. The study group comprised 12 patients with clinical symptoms of chromosome 22q11 deletion syndrome (22q11DS, 1 patient trisomic for 22q11 and 4 normal controls. 6 of the patients (group 1 had known hemizygous deletions, as detected by standard diagnostic FISH, whilst the remaining 6 patients (group 2 were classified as 22q11DS negative using the clinical FISH assay. Screening of the patients and controls with a set of 10 real time qPCR primers, spanning the 22q11.2-deleted region and flanking sequence, confirmed the FISH assay results for all patients with 100% concordance. Moreover, this qPCR enabled a refinement of the region of deletion at 22q11. Analysis of DNA from chromosome 22 trisomic sample demonstrated genomic duplication within 22q11. Conclusion In this paper we present a qPCR approach for the detection of chromosomal microdeletions and microduplications. The strategic use of in silico modelling for qPCR primer design to avoid regions of repetitive

  19. Biochemical and genetic analyses of the oomycete Pythium insidiosum provide new insights into clinical identification and urease-based evolution of metabolism-related traits

    Directory of Open Access Journals (Sweden)

    Theerapong Krajaejun

    2018-06-01

    Full Text Available The oomycete microorganism, Pythium insidiosum, causes the life-threatening infectious condition, pythiosis, in humans and animals worldwide. Affected individuals typically endure surgical removal of the infected organ(s. Detection of P. insidiosum by the established microbiological, immunological, or molecular methods is not feasible in non-reference laboratories, resulting in delayed diagnosis. Biochemical assays have been used to characterize P. insidiosum, some of which could aid in the clinical identification of this organism. Although hydrolysis of maltose and sucrose has been proposed as the key biochemical feature useful in discriminating P. insidiosum from other oomycetes and fungi, this technique requires a more rigorous evaluation involving a wider selection of P. insidiosum strains. Here, we evaluated 10 routinely available biochemical assays for characterization of 26 P. insidiosum strains, isolated from different hosts and geographic origins. Initial assessment revealed diverse biochemical characteristics across the P. insidiosum strains tested. Failure to hydrolyze sugars is observed, especially in slow-growing strains. Because hydrolysis of maltose and sucrose varied among different strains, use of the biochemical assays for identification of P. insidiosum should be cautioned. The ability of P. insidiosum to hydrolyze urea is our focus, because this metabolic process relies on the enzyme urease, an important virulence factor of other pathogens. The ability to hydrolyze urea varied among P. insidiosum strains and was not associated with growth rates. Genome analyses demonstrated that urease- and urease accessory protein-encoding genes are present in both urea-hydrolyzing and non-urea-hydrolyzing strains of P. insidiosum. Urease genes are phylogenetically conserved in P. insidiosum and related oomycetes, while the presence of urease accessory protein-encoding genes is markedly diverse in these organisms. In summary, we dissected

  20. Incorporating DNA sequencing into current prenatal screening practice for Down's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas J Wald

    Full Text Available BACKGROUND: Prenatal screening for Down's syndrome is performed using biochemical and ultrasound markers measured in early pregnancy such as the Integrated test using first and second trimester markers. Recently, DNA sequencing methods have been introduced on free DNA in maternal plasma, yielding a high screening performance. These methods are expensive and there is a test failure rate. We determined the screening performance of merging the Integrated test with the newer DNA techniques in a protocol that substantially reduces the cost compared with universal DNA testing and still achieves high screening performance with no test failures. METHODS: Published data were used to model screening performance of a protocol in which all women receive the first stage of the Integrated test at about 11 weeks of pregnancy. On the basis of this higher risk women have reflex DNA testing and lower risk women as well as those with a failed DNA test complete the Integrated test at about 15 weeks. RESULTS: The overall detection rate was 95% with a 0.1% false-positive rate if 20% of women were selected to receive DNA testing. If all women had DNA testing the detection rate would be 3 to 4 percentage points higher with a false-positive rate 30 times greater if women with failed tests were treated as positive and offered a diagnostic amniocentesis, or 3 times greater if they had a second trimester screening test (Quadruple test and treated as positive only if this were positive. The cost per women screened would be about one-fifth, compared with universal DNA testing, if the DNA test were 20 times the cost of the Integrated test. CONCLUSION: The proposed screening protocol achieves a high screening performance without programme test failures and at a substantially lower cost than offering all women DNA testing.

  1. The first insight into the salvia (lamiaceae) genome via bac library construction and high-throughput sequencing of target bac clones

    International Nuclear Information System (INIS)

    Hao, D.C.; Vautrin, S.; Berges, H.; Chen, S.L.

    2015-01-01

    Salvia is a representative genus of Lamiaceae, a eudicot family with significant species diversity and population adaptibility. One of the key goals of Salvia genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of medicinal plants to increase their health and productivity. Large-insert genomic libraries are a fundamental tool for achieving this purpose. We report herein the construction, characterization and screening of a gridded BAC library for Salvia officinalis (sage). The S. officinalis BAC library consists of 17,764 clones and the average insert size is 107 Kb, corresponding to 3 haploid genome equivalents. Seventeen positive clones (average insert size 115 Kb) containing five terpene synthase (TPS) genes were screened out by PCR and 12 of them were subject to Illumina HiSeq 2000 sequencing, which yielded 28,097,480 90-bp raw reads (2.53 Gb). Scaffolds containing sabinene synthase (Sab), a Sab homolog, TPS3 (kaurene synthase-like 2), copalyl diphosphate synthase 2 and one cytochrome P450 gene were retrieved via de novo assembly and annotation, which also have flanking noncoding sequences, including predicted promoters and repeat sequences. Among 2,638 repeat sequences, there are 330 amplifiable microsatellites. This BAC library provides a new resource for Lamiaceae genomic studies, including microsatellite marker development, physical mapping, comparative genomics and genome sequencing. Characterization of positive clones provided insights into the structure of the Salvia genome. These sequences will be used in the assembly of a future genome sequence for S. officinalis. (author)

  2. Functional Insights from Structural Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  3. A genome-wide siRNA screen in mammalian cells for regulators of S6 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Angela Papageorgiou

    Full Text Available mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers. We performed a genome-wide RNAi screen in a human cancer cell line, seeking genes that regulate S6 phosphorylation, readout of mTORC1 activity. Applying a stringent selection, we retrieved nearly 600 genes wherein at least two RNAis gave significant reduction in S6-P. This cohort contains known regulators of mTOR complex 1 and is significantly enriched in genes whose depletion affects the proliferation/viability of the large set of cancer cell lines in the Achilles database in a manner paralleling that caused by mTOR depletion. We next examined the effect of RNAi pools directed at 534 of these gene products on S6-P in TSC1 null mouse embryo fibroblasts. 76 RNAis reduced S6 phosphorylation significantly in 2 or 3 replicates. Surprisingly, among this cohort of genes the only elements previously associated with the maintenance of mTORC1 activity are two subunits of the vacuolar ATPase and the CUL4 subunit DDB1. RNAi against a second set of 84 targets reduced S6-P in only one of three replicates. However, an indication that this group also bears attention is the presence of rpS6KB1 itself, Rac1 and MAP4K3, a protein kinase that supports amino acid signaling to rpS6KB1. The finding that S6 phosphorylation requires a previously unidentified, functionally diverse cohort of genes that participate in fundamental cellular processes such as mRNA translation, RNA processing, DNA repair and metabolism suggests the operation of feedback pathways in the regulation of mTORC1 operating through novel mechanisms.

  4. IspE inhibitors identified by a combination of in silico and in vitro high-throughput screening.

    Directory of Open Access Journals (Sweden)

    Naomi Tidten-Luksch

    Full Text Available CDP-ME kinase (IspE contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens.

  5. Comparative Genomic Analysis of Neutrophilic Iron(II Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer

    Directory of Open Access Journals (Sweden)

    Shaomei He

    2017-08-01

    Full Text Available Extracellular electron transfer (EET is recognized as a key biochemical process in circumneutral pH Fe(II-oxidizing bacteria (FeOB. In this study, we searched for candidate EET genes in 73 neutrophilic FeOB genomes, among which 43 genomes are complete or close-to-complete and the rest have estimated genome completeness ranging from 5 to 91%. These neutrophilic FeOB span members of the microaerophilic, anaerobic phototrophic, and anaerobic nitrate-reducing FeOB groups. We found that many microaerophilic and several anaerobic FeOB possess homologs of Cyc2, an outer membrane cytochrome c originally identified in Acidithiobacillus ferrooxidans. The “porin-cytochrome c complex” (PCC gene clusters homologous to MtoAB/PioAB are present in eight FeOB, accounting for 19% of complete and close-to-complete genomes examined, whereas PCC genes homologous to OmbB-OmaB-OmcB in Geobacter sulfurreducens are absent. Further, we discovered gene clusters that may potentially encode two novel PCC types. First, a cluster (tentatively named “PCC3” encodes a porin, an extracellular and a periplasmic cytochrome c with remarkably large numbers of heme-binding motifs. Second, a cluster (tentatively named “PCC4” encodes a porin and three periplasmic multiheme cytochromes c. A conserved inner membrane protein (IMP encoded in PCC3 and PCC4 gene clusters might be responsible for translocating electrons across the inner membrane. Other bacteria possessing PCC3 and PCC4 are mostly Proteobacteria isolated from environments with a potential niche for Fe(II oxidation. In addition to cytochrome c, multicopper oxidase (MCO genes potentially involved in Fe(II oxidation were also identified. Notably, candidate EET genes were not found in some FeOB, especially the anaerobic ones, probably suggesting EET genes or Fe(II oxidation mechanisms are different from the searched models. Overall, based on current EET models, the search extends our understanding of bacterial EET and

  6. Polyglutamine Disease Modeling: Epitope Based Screen for Homologous Recombination using CRISPR/Cas9 System.

    Science.gov (United States)

    An, Mahru C; O'Brien, Robert N; Zhang, Ningzhe; Patra, Biranchi N; De La Cruz, Michael; Ray, Animesh; Ellerby, Lisa M

    2014-04-15

    We have previously reported the genetic correction of Huntington's disease (HD) patient-derived induced pluripotent stem cells using traditional homologous recombination (HR) approaches. To extend this work, we have adopted a CRISPR-based genome editing approach to improve the efficiency of recombination in order to generate allelic isogenic HD models in human cells. Incorporation of a rapid antibody-based screening approach to measure recombination provides a powerful method to determine relative efficiency of genome editing for modeling polyglutamine diseases or understanding factors that modulate CRISPR/Cas9 HR.

  7. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  8. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase

    Directory of Open Access Journals (Sweden)

    Kim Chan-Mi

    2007-07-01

    Full Text Available Abstract Background Japanese encephalitis virus (JEV NS5 is a viral nonstructural protein that carries both methyltransferase and RNA-dependent RNA polymerase (RdRp domains. It is a key component of the viral RNA replicase complex that presumably includes other viral nonstructural and cellular proteins. The biochemical properties of JEV NS5 have not been characterized due to the lack of a robust in vitro RdRp assay system, and the molecular mechanisms for the initiation of RNA synthesis by JEV NS5 remain to be elucidated. Results To characterize the biochemical properties of JEV RdRp, we expressed in Escherichia coli and purified an enzymatically active full-length recombinant JEV NS5 protein with a hexahistidine tag at the N-terminus. The purified NS5 protein, but not the mutant NS5 protein with an Ala substitution at the first Asp of the RdRp-conserved GDD motif, exhibited template- and primer-dependent RNA synthesis activity using a poly(A RNA template. The NS5 protein was able to use both plus- and minus-strand 3'-untranslated regions of the JEV genome as templates in the absence of a primer, with the latter RNA being a better template. Analysis of the RNA synthesis initiation site using the 3'-end 83 nucleotides of the JEV genome as a minimal RNA template revealed that the NS5 protein specifically initiates RNA synthesis from an internal site, U81, at the two nucleotides upstream of the 3'-end of the template. Conclusion As a first step toward the understanding of the molecular mechanisms for JEV RNA replication and ultimately for the in vitro reconstitution of viral RNA replicase complex, we for the first time established an in vitro JEV RdRp assay system with a functional full-length recombinant JEV NS5 protein and characterized the mechanisms of RNA synthesis from nonviral and viral RNA templates. The full-length recombinant JEV NS5 will be useful for the elucidation of the structure-function relationship of this enzyme and for the

  9. A protocol for generating a high-quality genome-scale metabolic reconstruction.

    Science.gov (United States)

    Thiele, Ines; Palsson, Bernhard Ø

    2010-01-01

    Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.

  10. ESHRE Task Force on Ethics and Law 21: genetic screening of gamete donors: ethical issues.

    Science.gov (United States)

    Dondorp, W; De Wert, G; Pennings, G; Shenfield, F; Devroey, P; Tarlatzis, B; Barri, P; Diedrich, K; Eichenlaub-Ritter, U; Tüttelmann, F; Provoost, V

    2014-07-01

    This Task Force document explores the ethical issues involved in the debate about the scope of genetic screening of gamete donors. Calls for expanded donor screening arise against the background of both occasional findings of serious but rare genetic conditions in donors or donor offspring that were not detected through present screening procedures and the advent of new genomic technologies promising affordable testing of donors for a wide range of conditions. Ethical principles require that all stakeholders' interests are taken into account, including those of candidate donors. The message of the profession should be that avoiding all risks is impossible and that testing should remain proportional.

  11. Identification of a novel splice acceptor in the HIV-1 genome: independent expression of the cytoplasmic tail of the envelope protein

    NARCIS (Netherlands)

    Berkhout, B.; van Wamel, J. L.

    1996-01-01

    Multiple splicing sites exist in the RNA genome of the human immunodeficiency virus type 1 (HIV-1). In a screen for subgenomic forms of the HIV-1 genome that could be transferred to fresh cells by virus infection, we identified a novel spliced variant of HIV-1 RNA that uses a hitherto unknown splice

  12. Morpho- biochemical evaluation of Brassica rapa sub-species for salt tolerance

    Directory of Open Access Journals (Sweden)

    Jan Sohail Ahmad

    2016-01-01

    Full Text Available Salt stress is one of the key abiotic stresses that affect both the qualitative and quantitative characters of many Brassica rapa sub-species by disturbing its normal morphobiochemical processes. Therefore, the present research work was designed to study the effect of different NaCl events (0, 50,100 and 150 mmol on morphological and biochemical characters and to screen salt tolerant genotypes among brown, yellow and toria types of B. rapa sub-species. The plants were grown in test tubes with addition of four level of NaCl (0, 50,100 and 150 mmol. The effect of salinity on shoot and root length, shoot/ root fresh and dry weight, relative water content (RWC, proline and chlorophyll a, b, a+b contents was recorded after 4 weeks of sowing. The genotype 22861 (brown type showed excellent morphological and biochemical performance at all stress levels followed by Toria-Sathi and Toria-A respectively as compared to Check variety TS-1. The genotype 26158 (yellow type gave very poor performance and retard growth. The %RWC values and chlorophyll a, b and a+b contents were decreased several folds with the increase of salt concentration. While, the proline contents was increased with raising of salt stress. The brown and toria types showed maximum tolerance to salt stress at early germination stages as compare to yellows one. The present study will serve as model to develop quick salt tolerant genotypes among different plant sub-species against salt stress.

  13. Biochemical transformation of deoxythymidine kinase-deficient mouse cells with uv-irradiated equine herpesvirus type 1

    International Nuclear Information System (INIS)

    Allen, G.P.; McGowan, J.J.; Gentry, G.A.; Randall, C.C.

    1978-01-01

    A line of 3T3 mouse cells lacking deoxythymidine kinase (dTK - ) was stably transformed to the dTK + phenotype after exposure to uv-irradiated equine herpesvirus type 1 (EHV-1). Biochemical transformants were isolated in a system selective for the dTK + phenotype (Eagle minimal essential medium containing 10 -4 M hypoxanthine, 6 x 10 -7 M aminopterin, and 2 x 10 -5 M deoxythymidine). Transformation was accompanied by the acquisition of a dTK activity with immunological, electrophoretic, and biochemical characteristics identical to those of the dTK induced by EHV-1 during productive infection. The transformed cells have been maintained in selective culture medium for more than 50 passages and have retained the capacity to express EHV-1-specific antigens. Spontaneous release of infectious virus has not been detected in the transformed lines, and the cells were not oncogenic for athymic nude mice. In contrast to normal dTK + 3T3 cells, EHV-1 transformants were unable to grow in the presence of arabinosylthymine, a drug selectively phosphorylated by herpesvirus-coded dTK's. These results indicate that a portion of the EHV-1 genome is able to persist in the transformed cells for many generations and be expressed as an enzymatically active viral gene product

  14. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart.

    Science.gov (United States)

    Angstadt, Andrea Y; Motsinger-Reif, Alison; Thomas, Rachael; Kisseberth, William C; Guillermo Couto, C; Duval, Dawn L; Nielsen, Dahlia M; Modiano, Jaime F; Breen, Matthew

    2011-11-01

    Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor in humans and dogs, characterized in both species by extremely complex karyotypes exhibiting high frequencies of genomic imbalance. Evaluation of genomic signatures in human OS using array comparative genomic hybridization (aCGH) has assisted in uncovering genetic mechanisms that result in disease phenotype. Previous low-resolution (10-20 Mb) aCGH analysis of canine OS identified a wide range of recurrent DNA copy number aberrations, indicating extensive genomic instability. In this study, we profiled 123 canine OS tumors by 1 Mb-resolution aCGH to generate a dataset for direct comparison with current data for human OS, concluding that several high frequency aberrations in canine and human OS are orthologous. To ensure complete coverage of gene annotation, we identified the human refseq genes that map to these orthologous aberrant dog regions and found several candidate genes warranting evaluation for OS involvement. Specifically, subsequenct FISH and qRT-PCR analysis of RUNX2, TUSC3, and PTEN indicated that expression levels correlated with genomic copy number status, showcasing RUNX2 as an OS associated gene and TUSC3 as a possible tumor suppressor candidate. Together these data demonstrate the ability of genomic comparative oncology to identify genetic abberations which may be important for OS progression. Large scale screening of genomic imbalance in canine OS further validates the use of the dog as a suitable model for human cancers, supporting the idea that dysregulation discovered in canine cancers will provide an avenue for complementary study in human counterparts. Copyright © 2011 Wiley-Liss, Inc.

  15. Using iterative learning to improve understanding during the informed consent process in a South African psychiatric genomics study.

    Science.gov (United States)

    Campbell, Megan M; Susser, Ezra; Mall, Sumaya; Mqulwana, Sibonile G; Mndini, Michael M; Ntola, Odwa A; Nagdee, Mohamed; Zingela, Zukiswa; Van Wyk, Stephanus; Stein, Dan J

    2017-01-01

    Obtaining informed consent is a great challenge in global health research. There is a need for tools that can screen for and improve potential research participants' understanding of the research study at the time of recruitment. Limited empirical research has been conducted in low and middle income countries, evaluating informed consent processes in genomics research. We sought to investigate the quality of informed consent obtained in a South African psychiatric genomics study. A Xhosa language version of the University of California, San Diego Brief Assessment of Capacity to Consent Questionnaire (UBACC) was used to screen for capacity to consent and improve understanding through iterative learning in a sample of 528 Xhosa people with schizophrenia and 528 controls. We address two questions: firstly, whether research participants' understanding of the research study improved through iterative learning; and secondly, what were predictors for better understanding of the research study at the initial screening? During screening 290 (55%) cases and 172 (33%) controls scored below the 14.5 cut-off for acceptable understanding of the research study elements, however after iterative learning only 38 (7%) cases and 13 (2.5%) controls continued to score below this cut-off. Significant variables associated with increased understanding of the consent included the psychiatric nurse recruiter conducting the consent screening, higher participant level of education, and being a control. The UBACC proved an effective tool to improve understanding of research study elements during consent, for both cases and controls. The tool holds utility for complex studies such as those involving genomics, where iterative learning can be used to make significant improvements in understanding of research study elements. The UBACC may be particularly important in groups with severe mental illness and lower education levels. Study recruiters play a significant role in managing the quality of

  16. Using iterative learning to improve understanding during the informed consent process in a South African psychiatric genomics study.

    Directory of Open Access Journals (Sweden)

    Megan M Campbell

    Full Text Available Obtaining informed consent is a great challenge in global health research. There is a need for tools that can screen for and improve potential research participants' understanding of the research study at the time of recruitment. Limited empirical research has been conducted in low and middle income countries, evaluating informed consent processes in genomics research. We sought to investigate the quality of informed consent obtained in a South African psychiatric genomics study. A Xhosa language version of the University of California, San Diego Brief Assessment of Capacity to Consent Questionnaire (UBACC was used to screen for capacity to consent and improve understanding through iterative learning in a sample of 528 Xhosa people with schizophrenia and 528 controls. We address two questions: firstly, whether research participants' understanding of the research study improved through iterative learning; and secondly, what were predictors for better understanding of the research study at the initial screening? During screening 290 (55% cases and 172 (33% controls scored below the 14.5 cut-off for acceptable understanding of the research study elements, however after iterative learning only 38 (7% cases and 13 (2.5% controls continued to score below this cut-off. Significant variables associated with increased understanding of the consent included the psychiatric nurse recruiter conducting the consent screening, higher participant level of education, and being a control. The UBACC proved an effective tool to improve understanding of research study elements during consent, for both cases and controls. The tool holds utility for complex studies such as those involving genomics, where iterative learning can be used to make significant improvements in understanding of research study elements. The UBACC may be particularly important in groups with severe mental illness and lower education levels. Study recruiters play a significant role in managing

  17. Biochemical basis for the action of radioprotective drugs

    International Nuclear Information System (INIS)

    Romantsev, E.F.; Blokhina, V.D.; Zhulanova, Z.I.; Koshcheenko, N.N.; Filippovich, I.V.

    1977-01-01

    The hypothesis of complex biochemical mechanism of action of radioprotective drugs is described. Shortly after injection of radioprotective aminothiols into animals the inhibition of radiosensitive biochemical processes: DNA and RNA synthesis, protein synthesis and oxidative phosphorylation has been observed. The molecular mechanism of these phenomena consists of radioprotectors ability to form adsorption, thioester, amide, and disulphide bonds with appropriate enzymes. The curve reflecting the formation and breakdown of mixed disulphides between radioprotectors and proteins coincides well with that reflecting the radioprotective effect dependence on time. The radiobiological significance of molecular interactions observed may be interpreted as the diminution in ''spoiled'' molecules formation (inhibition of replication) and elevation in repartion rate. The inhibition of biochemical processes has the reversible nature and last for short time. The drugs acting according to so-called oxygen effect protect also by means of biochemical mechanisms. The molecular mechanism is mediated through their ability to bind to receptors, and biologically important molecules and macromolecules. As a result the inhibition of radiosensitive processes occurs, the ''spoiled'' molecules number is diminished and reparation takes place more easily. The idea on the complex biochemical mechanism of action of radioprotectors correlates with the proposal on complex biochemical mechanism responsible for interphase death occured after irradiation

  18. Biochemical Characterization of Mycobacterium tuberculosis DNA Repair Enzymes – Nfo, XthA and Nei2

    Directory of Open Access Journals (Sweden)

    Sailau Abeldenov

    2014-01-01

    Full Text Available Introduction: Tuberculosis (TB is a human disease caused by Mycobacterium tuberculosis (Mtb. Treatment of TB requires long-term courses of multi-drug therapies to eliminate subpopulations of bacteria, which sometimes persist against antibiotics. Therefore, understanding of the mechanism of Mtb antibiotic-resistance is extremely important. During infection, Mtb overcomes a variety of body defense mechanisms, including treatment with the reactive species of oxygen and nitrogen. The bases in DNA molecule are susceptible to the damages caused by reactive forms of intermediate compounds of oxygen and nitrogen. Most of this damage is repaired by the base excision repair (BER pathway. In this study, we aimed to biochemically characterize three Mtb DNA repair enzymes of BER pathway. Methods: XthA, nfo, and nei genes were identified in mycobacteria by homology search of genomic sequences available in the GenBank database. We used standard methods of genetic engineering  to clone and sequence Mtb genes, which coded Nfo, XthA and Nei2 repair enzymes. The protein products of Mtb genes were expressed and purified in Escherichia coli using affinity tags. The enzymatic activity of purified Nfo, XthA, and Nei2 proteins were measured using radioactively labeled DNA substrates containing various modified residues. Results: The genes end (Rv0670, xthA (Rv0427c, and nei (Rv3297 were PCR amplified using genomic DNA of Mtb H37Rv with primers that contain specific restriction sites. The amplified products were inserted into pET28c(+ expression vector in such a way that the recombinant proteins contain C-terminal histidine tags. The plasmid constructs were verified by sequencing and then transformed into the Escherichia coli BL21 (DE3 strain. Purification of recombinant proteins was performed using Ni2+ ions immobilized affinity column, coupled with the fast performance liquid chromatography machine AKTA. Identification of the isolated proteins was performed by

  19. Pathway-based analysis of genome-wide siRNA screens reveals the regulatory landscape of APP processing.

    Directory of Open Access Journals (Sweden)

    Luiz Miguel Camargo

    Full Text Available The progressive aggregation of Amyloid-β (Aβ in the brain is a major trait of Alzheimer's Disease (AD. Aβ is produced as a result of proteolytic processing of the β-amyloid precursor protein (APP. Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPβ, Aβ40, and Aβ42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aβ40 production over Aβ42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPβ production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A recently implicated with AD through genome wide association studies (GWAS and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the "regulatory landscape" of APP.

  20. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Science.gov (United States)

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  1. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  2. Biochemical reactions of the organism

    International Nuclear Information System (INIS)

    Fedorova, A.V.

    1984-01-01

    Effects of mercury, strontium chloride, GMDA, trichlorfon as well as some radionuclides ( 89 Sr, 137 Cs, 203 Hg) were studied on rats. Changes in biochemical parameters (histamine content, activity of cholinesterase and histaminase) are noted. Most noticeable changes were observed in enzymatic activity. Distortion of enzymatic systems and accumulation of intermediate exchange and decay products of tissues in excess quantities affecting other systems can be the reason for changes in the organism. The observed changes in biochemical parameters should be necessarily taken into account at hygienic regulations of harmful effects of enviroment

  3. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  4. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.

    Science.gov (United States)

    Gérando, H Máté de; Fayolle-Guichard, F; Rudant, L; Millah, S K; Monot, F; Ferreira, Nicolas Lopes; López-Contreras, A M

    2016-06-01

    Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.

  5. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.

    Science.gov (United States)

    Bradley, Anthony R; Echalier, Aude; Fairhead, Michael; Strain-Damerell, Claire; Brennan, Paul; Bullock, Alex N; Burgess-Brown, Nicola A; Carpenter, Elisabeth P; Gileadi, Opher; Marsden, Brian D; Lee, Wen Hwa; Yue, Wyatt; Bountra, Chas; von Delft, Frank

    2017-11-08

    The ongoing explosion in genomics data has long since outpaced the capacity of conventional biochemical methodology to verify the large number of hypotheses that emerge from the analysis of such data. In contrast, it is still a gold-standard for early phenotypic validation towards small-molecule drug discovery to use probe molecules (or tool compounds), notwithstanding the difficulty and cost of generating them. Rational structure-based approaches to ligand discovery have long promised the efficiencies needed to close this divergence; in practice, however, this promise remains largely unfulfilled, for a host of well-rehearsed reasons and despite the huge technical advances spearheaded by the structural genomics initiatives of the noughties. Therefore the current, fourth funding phase of the Structural Genomics Consortium (SGC), building on its extensive experience in structural biology of novel targets and design of protein inhibitors, seeks to redefine what it means to do structural biology for drug discovery. We developed the concept of a Target Enabling Package (TEP) that provides, through reagents, assays and data, the missing link between genetic disease linkage and the development of usefully potent compounds. There are multiple prongs to the ambition: rigorously assessing targets' genetic disease linkages through crowdsourcing to a network of collaborating experts; establishing a systematic approach to generate the protocols and data that comprise each target's TEP; developing new, X-ray-based fragment technologies for generating high quality chemical matter quickly and cheaply; and exploiting a stringently open access model to build multidisciplinary partnerships throughout academia and industry. By learning how to scale these approaches, the SGC aims to make structures finally serve genomics, as originally intended, and demonstrate how 3D structures systematically allow new modes of druggability to be discovered for whole classes of targets. © 2017 The

  6. Saúde pública e ética na era da medicina genômica: rastreamentos genéticos Public health and ethics in the age of genomic medicine: genetic screening

    Directory of Open Access Journals (Sweden)

    Flavia Miranda Gomes de Constantino Bandeira

    2006-03-01

    Full Text Available O presente artigo tem como objetivo contextualizar o campo da saúde pública diante dos grandes avanços da biotecnologia e genética aplicada, destacando elementos para a problematização do tema tais como benefícios e questões éticas relacionados aos rastreamentos genéticos. O Projeto Genoma Humano gerou várias expectativas, dentre elas, a possibilidade de rastrear genes associados a doenças e comportamentos, e mais ainda, de intervir geneticamente no ser humano, levantando preocupações relativas ao renascimento da eugenia, ao aconselhamento genético, e ao uso da informação genética como critério de acesso aos planos de saúde e postos de trabalho. Uma discussão de todos esses tópicos é essencial para que a saúde pública seja beneficiada com as informações obtidas através da análise genômica das populações.This article has the objective to bring the field of public health into context in the face of the great advances of biotechnology and applied genetics, focusing on issues related to the theme such as benefits and ethics concerning genetic screening. The Human Genome Project has generated many expectations among which the possibility of screening genes associated to diseases and behaviors, moreover, the possibility of genetic interventions on humans, creating concerns related to the resurgence of Eugenia, of genetic counseling and the use of genetic information as a standard for access to healthcare clinics and jobs. The discussion of all these issues is essential to benefit public health with information obtained through population genomic analysis.

  7. From genomes to vaccines: Leishmania as a model.

    Science.gov (United States)

    Almeida, Renata; Norrish, Alan; Levick, Mark; Vetrie, David; Freeman, Tom; Vilo, Jaak; Ivens, Alasdair; Lange, Uta; Stober, Carmel; McCann, Sharon; Blackwell, Jenefer M

    2002-01-01

    The 35 Mb genome of Leishmania should be sequenced by late 2002. It contains approximately 8500 genes that will probably translate into more than 10 000 proteins. In the laboratory we have been piloting strategies to try to harness the power of the genome-proteome for rapid screening of new vaccine candidate. To this end, microarray analysis of 1094 unique genes identified using an EST analysis of 2091 cDNA clones from spliced leader libraries prepared from different developmental stages of Leishmania has been employed. The plan was to identify amastigote-expressed genes that could be used in high-throughput DNA-vaccine screens to identify potential new vaccine candidates. Despite the lack of transcriptional regulation that polycistronic transcription in Leishmania dictates, the data provide evidence for a high level of post-transcriptional regulation of RNA abundance during the developmental cycle of promastigotes in culture and in lesion-derived amastigotes of Leishmania major. This has provided 147 candidates from the 1094 unique genes that are specifically upregulated in amastigotes and are being used in vaccine studies. Using DNA vaccination, it was demonstrated that pooling strategies can work to identify protective vaccines, but it was found that some potentially protective antigens are masked by other disease-exacerbatory antigens in the pool. A total of 100 new vaccine candidates are currently being tested separately and in pools to extend this analysis, and to facilitate retrospective bioinformatic analysis to develop predictive algorithms for sequences that constitute potentially protective antigens. We are also working with other members of the Leishmania Genome Network to determine whether RNA expression determined by microarray analyses parallels expression at the protein level. We believe we are making good progress in developing strategies that will allow rapid translation of the sequence of Leishmania into potential interventions for disease

  8. Genome-scale regression analysis reveals a linear relationship for promoters and enhancers after combinatorial drug treatment

    KAUST Repository

    Rapakoulia, Trisevgeni

    2017-08-09

    Motivation: Drug combination therapy for treatment of cancers and other multifactorial diseases has the potential of increasing the therapeutic effect, while reducing the likelihood of drug resistance. In order to reduce time and cost spent in comprehensive screens, methods are needed which can model additive effects of possible drug combinations. Results: We here show that the transcriptional response to combinatorial drug treatment at promoters, as measured by single molecule CAGE technology, is accurately described by a linear combination of the responses of the individual drugs at a genome wide scale. We also find that the same linear relationship holds for transcription at enhancer elements. We conclude that the described approach is promising for eliciting the transcriptional response to multidrug treatment at promoters and enhancers in an unbiased genome wide way, which may minimize the need for exhaustive combinatorial screens.

  9. Applying Shannon's information theory to bacterial and phage genomes and metagenomes

    Science.gov (United States)

    Akhter, Sajia; Bailey, Barbara A.; Salamon, Peter; Aziz, Ramy K.; Edwards, Robert A.

    2013-01-01

    All sequence data contain inherent information that can be measured by Shannon's uncertainty theory. Such measurement is valuable in evaluating large data sets, such as metagenomic libraries, to prioritize their analysis and annotation, thus saving computational resources. Here, Shannon's index of complete phage and bacterial genomes was examined. The information content of a genome was found to be highly dependent on the genome length, GC content, and sequence word size. In metagenomic sequences, the amount of information correlated with the number of matches found by comparison to sequence databases. A sequence with more information (higher uncertainty) has a higher probability of being significantly similar to other sequences in the database. Measuring uncertainty may be used for rapid screening for sequences with matches in available database, prioritizing computational resources, and indicating which sequences with no known similarities are likely to be important for more detailed analysis.

  10. CrossCheck: an open-source web tool for high-throughput screen data analysis.

    Science.gov (United States)

    Najafov, Jamil; Najafov, Ayaz

    2017-07-19

    Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.

  11. Advancing Crop Transformation in the Era of Genome Editing[OPEN

    Science.gov (United States)

    Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.

    2016-01-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450

  12. Defining a Cancer Dependency Map | Office of Cancer Genomics

    Science.gov (United States)

    Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean.

  13. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic hybridizat......Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic...... deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...... from several 100 kb, including large flanking regions, to rearrangements, allowing convenient design...

  14. Genome Sequencing and Comparative Analysis of the Biocontrol Agent Trichoderma harzianum sensu stricto TR274

    Energy Technology Data Exchange (ETDEWEB)

    Steindorff, Andrei S.; Noronha, Elilane F.; Ulhoa, Cirano J.; Kuo, Alan; Salamov, Asaf A.; Haridas, Sajeet; Riley, Robert W.; Druzhinina, Irina S.; Kubicek, Christian P.; Grigoriev, Igor V.

    2015-03-17

    Biological control is a complex process which requires many mechanisms and a high diversity of biochemical pathways. The species of Trichoderma harzianum are well known for their biocontrol activity against many plant pathogens. To gain new insights into the biocontrol mechanism used by T. harzianum, we sequenced the isolate TR274 genome using Illumina. The assembly was performed using AllPaths-LG with a maximum coverage of 100x. The assembly resulted in 2282 contigs with a N50 of 37033bp. The genome size generated was 40.8 Mb and the GC content was 47.7%, similar to other Trichoderma genomes. Using the JGI Annotation Pipeline we predicted 13,932 genes with a high transcriptome support. CEGMA tests suggested 100% genome completeness and 97.9% of RNA-SEQ reads were mapped to the genome. The phylogenetic comparison using orthologous proteins with all Trichoderma genomes sequenced at JGI, corroborates the Trichoderma (T. asperellum and T. atroviride), Longibrachiatum (T. reesei and T. longibrachiatum) and Pachibasium (T. harzianum and T. virens) section division described previously. The comparison between two Trichoderma harzianum species suggests a high genome similarity but some strain-specific expansions. Analyses of the secondary metabolites, CAZymes, transporters, proteases, transcription factors were performed. The Pachybasium section expanded virtually all categories analyzed compared with the other sections, specially Longibrachiatum section, that shows a clear contraction. These results suggests that these proteins families have an important role in their respective phenotypes. Future analysis will improve the understanding of this complex genus and give some insights about its lifestyle and the interactions with the environment.

  15. Prevalence of biochemical and immunological abnormalities in ...

    African Journals Online (AJOL)

    Tile prevalence of biochemical and immunological abnormalities was studied in a group of 256 patients with rheumatoid arthritis (104 coloureds, 100 whites and 52 blacks). The most common biochemical abnormalities detected were a reduction in the serum creatinine value (43,4%), raised globulins (39,7%), raised serum ...

  16. [Biochemical diagnostics of fatal opium intoxication].

    Science.gov (United States)

    Papyshev, I P; Astashkina, O G; Tuchik, E S; Nikolaev, B S; Cherniaev, A L

    2013-01-01

    Biochemical diagnostics of fatal opium intoxication remains a topical problem in forensic medical science and practice. We investigated materials obtained in the course of forensic medical expertise of the cases of fatal opium intoxication. The study revealed significant differences between myoglobin levels in blood, urine, myocardium, and skeletal muscles. The proposed approach to biochemical diagnostics of fatal opium intoxication enhances the accuracy and the level of evidence of expert conclusions.

  17. Molecular screening in galactosemia

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Singh, R.; Fernhoff, P.M. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    Classical galactosemia (G/G) is caused by the absence of galactose-1-phosphate uridyl transferase (GALT) activity while the Duarte allele produces partial impairment and a specific biochemical phenotype. Cloning and sequencing of the human GALT gene has enabled the identification of prevalent mutations for both Classical and Duarte alleles. The G allele is caused by a Q188R codon mutation in exon 6 in 70% of a Caucasian population while the D allele is caused by an N134D codon mutation in exon 10. Since the Q188R sequence creates a new Hpa II site and the N314D sequence creates a new Sin I site, it is relatively easy to screen for both mutations by multiplex PCR and restriction digest. Here we describe a method for detection of new mutations producing impaired GALT. Patient DNAs are subjected to SSCP (single strand conformational polymorphism) analysis of their 11 GALT exons. Direct sequencing of the exons targeted by SSCP has revealed many codon changes: IVSC 956 (a splice acceptor site loss), S135L, V151A, E203K, A320T, and Y323D. Two of these codon changes, V151A and S135L, have been confirmed as mutations by finding impaired GALT activity in a yeast expression system. We conclude that molecular screening of GALT DNA will clarify the structural biology of GALT and the pathophysiology of galactosemia.

  18. Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes

    International Nuclear Information System (INIS)

    Kaup, Sahana; Grandjean, Valerie; Mukherjee, Rajarshi; Kapoor, Aparna; Keyes, Edward; Seymour, Colin B.; Mothersill, Carmel E.; Schofield, Paul N.

    2006-01-01

    The mechanism by which radiation-induced genomic instability is initiated, propagated and effected is currently under intense scrutiny. We have investigated the potential role of altered genomic methylation patterns in the cellular response to irradiation and have found evidence for widespread dysregulation of CpG methylation persisting up to 20 population doublings post-irradiation. Similar effects are seen with cells treated with medium from irradiated cells (the 'bystander effect') rather than subjected to direct irradiation. Using an arbitrarily primed methylation sensitive PCR screening method we have demonstrated that irradiation causes reproducible alterations in the methylation profile of a human keratinocyte cell line, HPV-G, and have further characterised one of these sequences as being a member of a retrotransposon element derived sequence family on chromosome 7; MLT1A. Multiple changes were also detected in the screen, which indicate that although the response of cells is predominantly hypermethylation, specific hypomethylation occurs as well. Sequence specific changes are also reported in the methylation of the pericentromeric SAT2 satellite sequence. This is the first demonstration that irradiation results in the induction of heritable methylation changes in mammalian cells, and provides a link between the various non-radiological instigators of genomic instability, the perpetuation of the unstable state and several of its manifestations

  19. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology.

    Science.gov (United States)

    Hashemi, Atieh

    2018-01-01

    Genome editing mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated proteins (Cas) has recently been considered to be used as efficient, rapid and site-specific tool in the modification of endogenous genes in biomedically important cell types and whole organisms. It has become a predictable and precise method of choice for genome engineering by specifying a 20-nt targeting sequence within its guide RNA. Firstly, this review aims to describe the biology of CRISPR system. Next, the applications of CRISPR-Cas9 in various ways, such as efficient generation of a wide variety of biomedically important cellular models as well as those of animals, modifying epigenomes, conducting genome-wide screens, gene therapy, labelling specific genomic loci in living cells, metabolic engineering of yeast and bacteria and endogenous gene expression regulation by an altered version of this system were reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Combined Screening for Early Detection of Pre-Eclampsia

    Directory of Open Access Journals (Sweden)

    Hee Jin Park

    2015-08-01

    Full Text Available Although the precise pathophysiology of pre-eclampsia remains unknown, this condition continues to be a major cause of maternal and fetal mortality. Early prediction of pre-eclampsia would allow for timely initiation of preventive therapy. A combination of biophysical and biochemical markers are superior to other tests for early prediction of the development of pre-eclampsia. Apart from the use of parameters in first-trimester aneuploidy screening, cell-free fetal DNA quantification is emerging as a promising marker for prediction of pre-eclampsia. This article reviews the current research of the most important strategies for prediction of pre-eclampsia, including the use of maternal risk factors, mean maternal arterial pressure, ultrasound parameters, and biomarkers.