WorldWideScience

Sample records for bio-shielding concrete samples

  1. Fractionation of plutonium in environmental and bio-shielding concrete samples using dynamic sequential extraction

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin

    2010-01-01

    Fractionation of plutonium isotopes (238Pu, 239,240Pu) in environmental samples (i.e. soil and sediment) and bio-shielding concrete from decommissioning of nuclear reactor were carried out by dynamic sequential extraction using an on-line sequential injection (SI) system combined with a specially...

  2. Activation of the concrete in the bio shield of ITER

    International Nuclear Information System (INIS)

    Kalcheva, S.

    2005-02-01

    Calculations of neutron spectra in different parts of the tokamak building of ITER are performed. A computational geometry model of the tokamak building is prepared using MCNP-4C. The model includes adequate material composition and geometry description of the main parts of the tokamak for PPCS plant model A: toroidal field coils, vacuum vessel, shield, blanket structure, first wall, divertor, 14.1 MeV neutron source. The design and the dimensions of the bio shield are taken from the current ITER design. MCNP calculations of the neutron spectra in the bio shield (concrete) of ITER are performed, using the neutron spectra in TF coils calculated at UKAEA as external neutron source. The neutron spectra in the concrete calculated by MCNP are used as input data in the code EASY99 for estimations of the activation of the concrete in the bio shield around the tokamak. The time evolutions of the maximum (in the bio shield floor) and minimum (in the bio shield side walls) specific activity (Bq/kg) and dose rate (Sv/h.) of the main dominant nuclides in the concrete are evaluated and compared for 3 different concrete types, used as biological shield in the PWR and BR3 reactors. (author)

  3. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  4. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  5. Evaluation of the performance of peridotite aggregates for radiation shielding concrete

    International Nuclear Information System (INIS)

    Wang, Jinjun; Li, Guofeng; Meng, Dechuan

    2014-01-01

    Highlights: • Using peridotite rich in crystal water as aggregates of radiation-shielding concrete. • Performance of peridotite concrete is simulated and compared with ordinary concrete. • Performance of concrete samples is tested. • Neutron shielding performance can be significantly enhanced by peridotite aggregates. - Abstract: Peridotite is a kind of material that is rich in crystal water. In this paper, peridotite is used as fine and coarse aggregates for radiation shielding concrete. The transmission data of different concrete thickness and different energy neutron are calculated using Monte-Carlo method. The neutron shielding performance of the peridotite concrete samples are tested using 241 Am-Be neutron source. The results show that the peridotite is an excellent neutron shielding material

  6. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  7. High-performance heavy concrete as a multi-purpose shield

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M. A.; Roshan-Shomal, P.; Raadpey, N.; Baradaran-Ghahfarokhi, M.

    2010-01-01

    Concrete has long been used as a shield against high-energy photons and neutrons. In this study, colemanite and galena minerals (CoGa) were used for the production of an economical high-performance heavy concrete. To measure the gamma radiation attenuation of the CoGa concrete samples, they were exposed to a narrow beam of gamma rays emitted from a 60 Co radiotherapy unit. An Am-Be neutron source was used for assessing the shielding properties of the samples against neutrons. The compression strengths of both types of concrete mixes (CoGa and reference concrete) were investigated. The range of the densities of the heavy concrete samples was 4100-4650 kg m -3 , whereas it was 2300-2600 kg m -3 in the ordinary concrete reference samples. The half-value layer of the CoGa concrete samples for 60 Co gamma rays was 2.49 cm; much less than that of ordinary concrete (6.0 cm). Moreover, CoGa concrete samples had a 10% greater neutron absorption compared with reference concrete. (authors)

  8. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Nakajima, Tadao; Okumura, Tadahiko; Saito, Tetsuo

    1983-01-01

    The nuclear ship ''Mutsu'' was constructed in 1970 as the fourth in the world. On September 1, 1974, during the power raising test in the Pacific Ocean, radiation leak was detected. As the result of investigation, it was found that the cause was the fast neutrons streaming through the gap between the reactor pressure vessel and the primary shield. In order to repair the shielding facility, the Japan Nuclear Ship Research Development Agency carried out research and development and shielding design. It was decided to adopt serpentine concrete for the primary shield, which is the excellent moderator of fast neutrons even at high temperature, and heavy concrete for the secondary shield, which is effective for shielding both gamma ray and neutron beam. The repair of shielding was carried out in the Sasebo Shipyard, and completed in August, 1982. The outline of the repair work is reported. The weight increase was about 300 t. The conditions of the shielding design, the method of shielding analysis, the performance required for the shielding concrete, the preliminary experiment on heavy concrete and the construction works of serpentine concrete and heavy concrete are described. (Kako, I.)

  9. Gamma radiation shielding analysis of lead-flyash concretes

    International Nuclear Information System (INIS)

    Singh, Kanwaldeep; Singh, Sukhpal; Dhaliwal, A.S.; Singh, Gurmel

    2015-01-01

    Six samples of lead-flyash concrete were prepared with lead as an admixture and by varying flyash content – 0%, 20%, 30%, 40%, 50% and 60% (by weight) by replacing cement and keeping constant w/c ratio. Different gamma radiation interaction parameters used for radiation shielding design were computed theoretically and measured experimentally at 662 keV, 1173 keV and 1332 keV gamma radiation energy using narrow transmission geometry. The obtained results were compared with ordinary-flyash concretes. The radiation exposure rate of gamma radiation sources used was determined with and without lead-flyash concretes. - Highlights: • Concrete samples with lead as admixture were casted with flyash replacing 0%, 20%, 30%, 40%, 50% and 60% of cement content (by weight). • Gamma radiation shielding parameters of concretes for different gamma ray sources were measured. • The attenuation results of lead-flyash concretes were compared with the results of ordinary flyash concretes

  10. Neutron activation measurements in research reactor concrete shield

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Bozic, M.

    2001-01-01

    The results of activation measurement inside TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete together with gold and nickel foils were irradiated in the reactor body. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active longlived radioactive nuclides in ordinary concrete samples were found to be 60 Co and 152 Eu and in barytes concrete samples 60 Co, 152 Eu and 133 Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale.(author)

  11. Gamma ray and neutron shielding properties of some concrete materials

    International Nuclear Information System (INIS)

    Yilmaz, E.; Baltas, H.; Kiris, E.; Ustabas, I.; Cevik, U.; El-Khayatt, A.M.

    2011-01-01

    Highlights: → This study sheds light on the shielding properties of gamma-rays and neutrons for some concrete samples. → The experimental mass attenuation coefficients values were compared with theoretical values obtained using WinXCom. → Moreover, neutron shielding has been treated in terms of macroscopic removal cross-section (Σ R , cm -1 ) concept. → The NXcom program was employed to calculate the attenuation coefficients values of neutrons. → These values showed a change with energy and composition of the concrete samples. - Abstract: Shielding of gamma-rays and neutrons by 12 concrete samples with and without mineral additives has been studied. The total mass attenuation and linear attenuation coefficients, half-value thicknesses, effective atomic numbers, effective electron densities and atomic cross-sections at photons energies of 59.5 and 661 keV have been measured and calculated. The measured and calculated values were compared and a reasonable agreement has been observed. Also the recorded values showed a change with energy and composition of the concrete samples. In addition, neutron shielding has been treated in terms of macroscopic removal cross-section (Σ R , cm -1 ) concept. The WinXCom and NXcom programs were employed to calculate the attenuation coefficients of gamma-rays and neutrons, respectively.

  12. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Kamal, S.M.

    1994-01-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concrete shielding. Multiattribute utility theory is selected to accommodate decision maker's preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Illmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy weight heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Illmenite Serpentine concrete. (Author)

  13. Activation of concrete samples from the biological shield of the ASTRA reactor

    International Nuclear Information System (INIS)

    Smecka, F.

    2006-09-01

    Drill cores from the biological shield of the ASTRA reactor in Seibersdorf were taken and milled because of the different size of the Baryt crystals in the concrete in order to get homogenous samples. The powder samples were put into bore holes of a graphite block which was placed into the thermal column of the TRIGA Mark II reactor. The block was irradiated for 10 minutes at a reactor power of 25 kW. After one hour the dose rate was examined and the samples were ready for further save handling. The gamma spectrum was measured with a Ge detector and the results were compared with simulation data. (nevyjel)

  14. Concrete shielding exterior to iron

    International Nuclear Information System (INIS)

    Yurista, P.; Cossairt, D.

    1983-08-01

    A rule of thumb at Fermilab has been to use 3 feet of concrete exterior to iron shielding. A recent design of a shield with a severe dimensional constraint has prompted a re-evaluation of this rule of thumb and has led to the following calculations of the concrete thickness required to nullify this problem. 4 references, 4 figures

  15. Development of neutron shielding concrete containing iron content materials

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    Concrete is one of the most important construction materials which widely used as a neutron shielding. Neutron shield is obtained of interaction with matter depends on neutron energy and the density of the shielding material. Shielding properties of concrete could be improved by changing its composition and density. High density materials such as iron or high atomic number elements are added to concrete to increase the radiation resistance property. In this study, shielding properties of concrete were investigated by adding iron, FeB, Fe2B, stainless - steel at different ratios into concrete. Neutron dose distributions and shield design was obtained by using FLUKA Monte Carlo code. The determined shield thicknesses vary depending on the densities of the mixture formed by the additional material and ratio. It is seen that a combination of iron rich materials is enhanced the neutron shielding of capabilities of concrete. Also, the thicknesses of shield are reduced.

  16. Optimum concrete compression strength using bio-enzyme

    Directory of Open Access Journals (Sweden)

    Bagio Tony Hartono

    2017-01-01

    Full Text Available To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the concrete. Concrete with bio-enzyme 200 ml/m3, 400 ml/m3, 600 ml/m3, 800 ml/m3, 1000 ml/m3 and normal concrete. Refer to the crushing test result, its tends to the mathematical model using 4th degree polynomial regression (least quartic, as represent on the attached data series, which is for the design mix fc′ = 25 MPa generate optimum value for 33,98 MPa, on the bio-additive dosage of 509 ml bio enzymes.

  17. Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield

    International Nuclear Information System (INIS)

    Kansouh, W.A.

    2012-01-01

    Highlights: ► New serpentine concrete was made and examined as a reactor biological shield. ► Ilmenite–limonite concrete is a better reactor biological shield. ► New serpentine concrete is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. ► Serpentine concrete has lower properties as a reactor total gamma rays shields. - Abstract: In the present work attempt has been made to estimate the shielding parameters of the new serpentine concrete (density = 2.4 g/cm 3 ) using local materials on the shielding parameters for two types of heat resistant concretes, namely hematite–serpentine (density = 2.5 g/cm 3 ) and ilmenite–limonite (density = 2.9 g/cm 3 ). Shielding parameters for ordinary concrete (density = 2.3 g/cm 3 ) were also discussed. These parameters were determined experimentally for serpentine concrete and compared with previously published values for other concretes, which had also been obtained using local materials. The leakage spectra of reactor fast neutrons and total gamma photon beams from cylindrical samples of these concrete shields were also investigated using a collimated beam from ET-RR-1 reactor. A neutron–gamma spectrometer was used in order to obtain pulse height spectra of reactor fast neutrons and the total gamma rays leakage through the investigated concrete samples. These spectra were utilized to obtain the energy spectra required in these investigations. Removal cross section Σ R (E n ) and linear attenuation coefficient μ(E g ) for reactor fast neutrons and total gamma rays and their relative coefficients were evaluated and presented. Measured results were compared with those previously measured for other concretes. The results show that ilmenite–limonite concrete is a better reactor biological shield than the other three concretes. Serpentine concrete under investigation is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. Serpentine concrete

  18. Production of a datolite-based heavy concrete for shielding nuclear reactors and megavoltage radiotherapy rooms

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M.A.; Baradaran-Ghahfarokhi, M.; Siavashpour, Z.; Farshadi, A.; Ghafoori, M.; Shahvar, A.

    2010-01-01

    Biological shielding of nuclear reactors has always been a great concern and decreasing the complexity and expense of these installations is of great interest. In this study, we used datolite and galena minerals for production of a high performance heavy concrete. Materials and Methods: Datolite and galena minerals which can be found in many parts of Iran were used in the concrete mix design. To measure the gamma radiation attenuation of the Datolite and galena concrete samples, they were exposed to both narrow and wide beams of gamma rays emitted from a cobalt-60 radiotherapy unit. An Am-Be neutron source was used for assessing the shielding properties of the samples against neutrons. To test the compression strengths, both types of concrete mixes (Datolite and galena and ordinary concrete) were investigated. Results: The concrete samples had a density of 4420-4650 kg/m 3 compared to that of ordinary concrete (2300-2500 kg/m 3 ) or barite high density concrete (up to 3500 kg/m 3 ). The measured half value layer thickness of the Datolite and galena concrete samples for cobalt-60 gamma rays was much less than that of ordinary concrete (2.56 cm compared to 6.0 cm). Furthermore, the galena concrete samples had a significantly higher compressive strength as well as 20% more neutron absorption. Conclusion: The Datolite and galena concrete samples showed good shielding/engineering properties in comparison with other reported samples made, using high-density materials other than depleted uranium. It is also more economic than the high-density concretes. Datolite and galena concrete may be a suitable option for shielding nuclear reactors and megavoltage radiotherapy rooms.

  19. Investigation of the use of Galena concrete in electromagnetic radiation shielding

    International Nuclear Information System (INIS)

    Egwuonwu, G. N.; Bukar, P. H.; Avaa, A.

    2011-01-01

    Galena samples, collected from Ishiagu, south-eastern Nigeria, were used to make high density concretes for experimental radiation shielding. The concretes were molded into cylindrical tablets of various densities and volumes in order to ascertain their attenuation capability to some electromagnetic radiations. Blue visible light and gamma-ray sourced from cobalt-60, were transmitted through the concretes and detected with the aid of Op-Amp and digital Geiger-Muller Counter respectively. The absorption coefficients of the samples of thicknesses in the range of 1.00 - 5.00 cm were determined. Results show that for a typical galena concrete of average density 2.33gcm -3 , the absorption coefficient is about 1.186 cm -1 for the blue light and 0.495cm -1 for gamma-ray. For this density, 4.45cm of the galena concrete reduces the gamma-ray intensity by 90% and its half value layer thickness is 1.40cm. The investigation however, suggests the shielding properties of the galena sourced from Ishiagu. A database of shielding strength for the in situ galena was established hence, can serve as suitable platform for quality and quantity control in radiation shielding technology in radiotherapy treatment rooms and nuclear reactors.

  20. Beta Bremsstrahlung dose in concrete shielding

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C., E-mail: manjunatha@rediffmail.com [Department of Physics, Government college for women, Kolar 563101, Karnataka (India); Chandrika, B.M. [Shravana, 592, Ist Cross, Behind St.Anne s School, PC Extension, Kolar 563101, Karnataka (India); Rudraswamy, B. [Department of Physics, Bangalore University, Bangalore 560056, Karnataka (India); Sankarshan, B.M. [Shravana, 592, Ist Cross, Behind St.Anne s School, PC Extension, Kolar 563101, Karnataka (India)

    2012-05-11

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides ({sup 32}P, {sup 89}Sr, {sup 90}Sr-{sup 90}Y, {sup 90}Y, {sup 91}Y, {sup 208}Tl, {sup 210}Bi, {sup 234}Pa and {sup 40}K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to {sup 90}Sr-{sup 90}Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Z{sub mod}) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study. - Highlights: Black-Right-Pointing-Pointer Betas released in a nuclear reactor interact with shielding concrete and produces Bremsstrahlung. Black-Right-Pointing-Pointer The present work formulated a new method to evaluate the Bremsstrahlung spectrum and dose in concrete. Black-Right-Pointing-Pointer Presented data in concrete provide a quick and convenient reference for radiation protection.

  1. Activation of TRIGA Mark II research reactor concrete shield

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz; Bozic, Matjaz

    2002-01-01

    To determine neutron activation inside the TRIGA research reactor concrete body a special sample-holder for irradiation inside horizontal channel was developed and tested. In the sample-holder various samples can be irradiated at different concrete shielding depths. In this paper the description of the sample-holder, experiment conditions and results of long-lived activation measurements are given. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active long-lived radioactive nuclides in ordinary concrete samples were found to be 60 Co and 152 Eu and in barytes concrete samples 60 Co, 152 Eu and 133 Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale. (author)

  2. Work for radiation shielding concrete in large-scaled radiation facilities

    International Nuclear Information System (INIS)

    Konomi, Shinzo; Sato, Shoni; Otake, Takao.

    1980-01-01

    This paper reports the radiation shielding concrete work in the construction of radiation laboratory facilities of Electrotechnical Laboratory, a Japanese Government agency for the research and development of electronic technology. The radiation shielding walls of the facilities are made of ordinary concrete, heavy weight concrete and raw iron ore. This paper particularly relates the use of ordinary concrete which constitutes the majority of such concretes. The concrete mix was determined so as to increase its specific gravity for better shielding effect, to improve mass concrete effect and to advance good workability. The tendency of the concrete to decrease its specific gravity and the temperature variations were also made on how to place concrete to secure good shielding effect and uniform quality. (author)

  3. Study and application of construction technology of shielding concrete

    International Nuclear Information System (INIS)

    Wu Chongming; Ding Dexin; Chen Liangzhu; Zhao Jingfa; Li Shilong

    2008-01-01

    Process and techniques such as mixing,transportation and pouring have been studied. The construction technology for the shielding concrete with different densities has been summarized. The technology for the common concrete is quite different from that of shielding concrete, especially when its density is more than 4000 kg/m3. Application and practices have shown that different construction technologies shall be used for shielding concretes with different densities, and thus to ensure its uniformity and construction quality. (authors)

  4. Optimum concrete compression strength using bio-enzyme

    OpenAIRE

    Bagio Tony Hartono; Basoeki Makno; Tistogondo Julistyana; Pradana Sofyan Ali

    2017-01-01

    To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the con...

  5. Using natural local materials for developing special radiation shielding concretes, and deduction of its shielding characteristics

    International Nuclear Information System (INIS)

    Kharita, M. H.; Takeyeddin, M.; Al-Nassar, M.; Yousef, S.

    2006-06-01

    Concrete is considered as the most important material to be used for radiation shielding in facilities contain radioactive sources and radiation generating machines. The concrete shielding properties may vary depending on the construction of the concrete, which is highly relative to the composing aggregates i.e. aggregates consist about 70 - 80% of the total weight of normal concrete. In this project tow types of concrete used in Syria (in Damascus and Aleppo) had been studied and their shielding properties were defined for gamma ray from Cs-137 and Co-60 sources, and for neutrons from Am-Be source. About 10% reduction in HVL was found in the comparison between the tow concrete types for both neutrons and gammas. Some other types of concrete were studied using aggregates from different regions in Syria, to improve the shielding properties of concrete, and another 10% of reduction was achieved in comparison with Damascene concrete (20% in comparison with the concrete from Aleppo) for both neutrons and gamma rays. (author)

  6. Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics

    International Nuclear Information System (INIS)

    Kharita, M. H.; Takeyeddin, M.; Al-Nassri, M.; Yousef, S.

    2008-01-01

    Concrete is one of the most important materials used for radiation shielding in facilities containing radioactive sources and radiation generating machines. The concrete shielding properties may vary depending on the composite of the concrete. Aggregates is the largest constituent (about 70-80% of the total weight of normal concrete). The aim of this work is to develop special concrete with good shielding properties for gamma and neutrons, using natural local materials. For this reason two types of typical concrete widely used in Syria (in Damascus and Aleppo) and four other types of concrete, using aggregates from different regions, have been prepared. The shielding properties of these six types were studied for gamma ray (from Cs-137 and Co-60 sources)and for neutrons (from am-Be source). A reduction of about 10% in the HVL was obtained for the concrete from Damascus in comparison with that from Aleppo, for both neutrons and gammas. One of the other four types of concrete (from Rajo site, mostly Hematite), was found to further reduce the HVL by about 10% for both neutrons and gamma rays.(author)

  7. Slipforming of reinforced concrete shield building

    International Nuclear Information System (INIS)

    Hsieh, M.C.; King, J.R.

    1982-01-01

    The unique design and construction features of slipforming the heavily reinforced concrete cylindrical shield walls at the Satsop nuclear plant in Washington, D.C. site are presented. The shield walls were designed in compliance with seismic requirements which resulted in the need for reinforcing steel averaging 326 kg/m/sup 3/. A 7.6 m high, three-deck moving platform was designed to permit easy installation of the reinforcing steel, embedments, and blockouts, and to facilitate concrete placement and finishing. Two circular box trusses, one on each side of the shield wall, were used in combination with a spider truss to meet both the tolerance and strength requirements for the slipform assembly

  8. Optimization of thermal neutron shield concrete mixture using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Yadollahi, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Nazemi, E., E-mail: nazemi.ehsan@yahoo.com [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Zolfaghari, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Ajorloo, A.M. [Water and Environmental Engineering Department, Shahid Beheshti University, P.O. Box: 167651719, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m{sup 3}, a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  9. Optimization of thermal neutron shield concrete mixture using artificial neural network

    International Nuclear Information System (INIS)

    Yadollahi, A.; Nazemi, E.; Zolfaghari, A.; Ajorloo, A.M.

    2016-01-01

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m 3 , a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  10. Special concrete shield selection using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.

    1994-01-01

    Special types of concrete radiation shields that depend on locally available materials and have improved properties for both neutron and gamma-ray attenuation were developed by using plastic materials and heavy ores. The analytic hierarchy process (AHP) is implemented to evaluate these types for selecting the best biological radiation shield for nuclear reactors. Factors affecting the selection decision are degree of protection against neutrons, degree of protection against gamma rays, suitability of the concrete as building material, and economic considerations. The seven concrete alternatives are barite-polyethylene concrete, barite-polyvinyl chloride (PVC) concrete, barite-portland cement concrete, pyrite-polyethylene concrete, pyrite-PVC concrete, pyrite-portland cement concrete, and ordinary concrete. The AHP analysis shows the superiority of pyrite-polyethylene concrete over the others

  11. The effect of some organic and non-organic additions on the shielding and mechanical properties of radiation shielding concrete

    International Nuclear Information System (INIS)

    Kharita, M. H.; Yousef, S.; Al-Nassar, M.

    2011-04-01

    Few studies on the effect of some additives on the shielding properties of concrete have been carried out in this research. These studies included the effect of carbon powder, boron compounds, and waste polyethylene. The effect of water to cement ratio has been studied too. The research results showed that carbon powder and some boron compounds could be used to improve shielding concrete properties, and the possibility to add waste polyethylene in shielding concrete without effects on shielding properties. No significant effect for water to cement ratio on shielding properties of concrete. (author)

  12. Study on Basic Characteristics for the Development of Radiation Shielding High-Weight Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Young Bum; Lee, Jea Hyung; Choi, Hyun Kook [Sungshin Cement CO., Sejong (Korea, Republic of); Oh, Jeong Hwan; Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of)

    2016-05-15

    It is planned to build a power plant more than 6 units. Although the demand of a nuclear power plant is going to increase, the attention for radiation shielding is relatively in a low level. Concrete is one of the excellent and widely used shielding materials. Since the radiation shielding of a given material is proportional to density and thickness, a high-weight concrete with high-weight aggregate which is higher than normal concrete is used for radiation shielding. However, there are a few studies and references about radiation shielding concrete. Therefore, it is required to find a high-weight aggregate. The purpose of this paper is the development of a highweight concrete to improve radiation shielding capability. The radiation shielding rate of high-weight concrete is higher than that of reference concrete. It is confirmed that the density of aggregate and the unit weight of concreate is proportional to the radiation shielding rate. In addition, the chemical composition of aggregate has also has an important effect on γ-ray shielding. Therefore, high weight aggregates of higher density are essentially required to improve radiation shielding capability. The compressive strength of a high weight concrete is better than that of reference concrete. Slump and air contents, however, are slightly increased with by-product aggregates.

  13. Radiation shielding structure for concrete structure

    International Nuclear Information System (INIS)

    Oya, Hiroshi

    1998-01-01

    Crack inducing members for inducing cracks in a predetermined manner are buried in a concrete structure. Namely, a crack-inducing member comprises integrally a shielding plate and extended plates situated at the center of a wall and inducing plates vertically disposed to the boundary portion between them with the inducing plates being disposed each in a direction perforating the wall. There are disposed integrally a pair of the inducing plate spaced at a predetermined horizontal distance on both sides of the shielding plate so as to form a substantially crank-shaped cross section and extended plates formed in the extending direction of the shielding plate, and the inducing plates are disposed each in a direction perforating the wall. Then, cracks generated when stresses are exerted can be controlled, and generation of cracks passing through the concrete structure can be prevented reliably. The reliability of a radiation shielding effect can be enhanced remarkably. (N.H.)

  14. Mechanical properties of JPDR biological shield concrete

    International Nuclear Information System (INIS)

    Idei, Yoshio; Kamata, Hiroshi; Akutsu, Youichi; Onizawa, Kunio; Nakajima, Nobuya; Sukegawa, Takenori; Kakizaki, Masayoshi.

    1990-11-01

    Plant life of nuclear power plant will be determined by the aging degradation of main components and structures because of the difficulty and the cost of the replacement. These components are the reactor pressure vessel, concrete structures and cables. Authors have performed the investigation of JPDR biological shield which was the succeeded in first generating electricity in Japan and is now being decommissioned in JAERI. The test core samples were bored from the shield concrete and tested to obtain the mechanical properties. Test results are summarized as below, (1) Peak value of fast neutron dose was estimated as 1 x 10 18 n/cm 2 which is equivalent to the dose at the end of life for commercial power reactor. (2) Averaged compressive strength of all specimens had been increased about 20 % compared with initial design strength. (3) It was identified that the compressive strength had a little trend to increase with the increase of neutron dose within the dose range obtained in this study. (4) Tensile strength, Elastic modulus and Poisson's ratio showed little effect of neutron dose. (5) It was suggested that the inside and the mid-section liners were effective to keep the water in concrete and to avoid the reduction in strength. (author)

  15. Investigation and assessment of lead slag concrete as nuclear shields

    International Nuclear Information System (INIS)

    Zaghloul, Y.R.

    2009-01-01

    The present work is concerned with the efficiency of heavy weight concrete as a shielding material in constructing nuclear installations as well as for radioactive wastes disposal facilities.In this context, lead slag was used as a replacement for fine aggregates in heavy concrete shields that include local heavy weight aggregates (namely; barite and ilmenite) as well as normal concrete includes dolomite and sand as coarse and fine aggregates, as a reference. The effect of different percentages of lead slag was investigated to assess the produced lead slag concrete as a nuclear shielding material. The different properties (physical, mechanical and nuclear) of the produced lead slag concrete were investigated. The results obtained showed that increasing the lead slag percentage improving the investigated properties of the different concrete mixes. In addition, ilmenite concrete with 20% lead slag showed the best results for all the investigated properties.

  16. Rapid detailed characterization of concrete shielding blocks utilizing internal natural radionuclides for calibration

    International Nuclear Information System (INIS)

    McDonald, R.J.; Smith, A.R.; Norman, E.B.; Cowles, D.

    1995-10-01

    Following many years of productive work, the SuperHILAC and Bevalac accelerators at Lawrence Berkeley National Laboratory were closed, leaving thousands of concrete shielding blocks available for reuse or disposal. The process history of these blocks as shielding precludes free release pending radiological characterization. This paper presents a method for the rapid characterization of gamma-ray-emitting radioisotopes in large samples of earth-like materials: concrete shielding blocks in this case. Active regions are identified with a sensitive radiation-survey instrument and then examined in detail with a high-efficiency lead-shielded Ge spectrometer. Naturally-occurring gamma-ray emissions from the decays of uranium, thorium, and potassium are used to calibrate the spectrometer. A simple relationship exists between the observed counting rate in a characteristic gamma ray and the activity in the block. This method, taking only tens of minutes per sample at the nano-Curie/gram sensitivity level, replaces much of the expensive coring and laboratory analysis methods needed otherwise

  17. Concrete mix design for X-and gamma shielding

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Abdul Bakhri Muhammad; Mohd Kamal Shah Shamsuddin; Rahmad Abd Rashid

    2012-01-01

    The design of X-ray or gamma ray radiographic exposure room requires some calculations on shielding to provide safe operation of the facility and minimum exposure to radiation workers. Careful design can lead to economical installations with minimal barriers. The design depends on such factors as: maximum energy, maximum intensity, permitted full-body dosage, workload, use factor, occupancy factor, maximum dose output and shielding materials. Choice of material for a barrier depends on convenience and cost. The radiographic exposure room is usually made of normal concrete with density of about 2.3 - 2.4 g/ cc. Normal concrete is often used for construction of exposure room because of cheap and ease of construction. This paper explained and discussed the optimum mix design for normal concrete used for X-and gamma shielding. (author)

  18. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    Science.gov (United States)

    Basyigit, Celalettin; Uysal, Volkan; Kilinçarslan, Şemsettin; Mavi, Betül; Günoǧlu, Kadir; Akkurt, Iskender; Akkaş, Ayşe

    2011-12-01

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  19. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    International Nuclear Information System (INIS)

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-01-01

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  20. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com [Department of Physics, Punjabi University, Patiala (India); Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present in Bi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely {sup 241}Am and {sup 137}Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  1. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present inBi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely 241Am and 137Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  2. Modelling the electrical properties of concrete for shielding effectiveness prediction

    International Nuclear Information System (INIS)

    Sandrolini, L; Reggiani, U; Ogunsola, A

    2007-01-01

    Concrete is a porous, heterogeneous material whose abundant use in numerous applications demands a detailed understanding of its electrical properties. Besides experimental measurements, material theoretical models can be useful to investigate its behaviour with respect to frequency, moisture content or other factors. These models can be used in electromagnetic compatibility (EMC) to predict the shielding effectiveness of a concrete structure against external electromagnetic waves. This paper presents the development of a dispersive material model for concrete out of experimental measurement data to take account of the frequency dependence of concrete's electrical properties. The model is implemented into a numerical simulator and compared with the classical transmission-line approach in shielding effectiveness calculations of simple concrete walls of different moisture content. The comparative results show good agreement in all cases; a possible relation between shielding effectiveness and the electrical properties of concrete and the limits of the proposed model are discussed

  3. Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M. A.; Maheri, M. R.; Haji-pour, A.; Yousefnia, H.; Zolghadri, S.

    2007-01-01

    In megavoltage radiotherapy rooms, ordinary concrete is usually used due to its low construction costs, although higher density concrete are sometimes used, as well. The use of high-density concrete decreases the required thickness of the concrete barrier; hence, its disadvantage is its high cost. In a nuclear reactor, neutron radiation is the most difficult to shield. A method for production of economic high-density concrete witt, appropriate engineering properties would be very useful. Materials and Methods: Galena (Pb S) mineral was used to produce of a high-density concrete. Galena can be found in many parts of Iran. Two types of concrete mixes were produced. The water-to-concrete (w/c) ratios of the reference and galena concrete mixes were 0.53 and 0.25, respectively. To measure the gamma radiation attenuation of Galena concrete samples, they were exposed to a narrow beam of gamma rays emitted from a cobalt-60 therapy unit. Results: The Galena mineral used in this study had a density of 7400 kg/m 3 . The concrete samples had a density of 4800 kg/m 3 . The measured half value layer thickness of the Galena concrete samples for cobalt 60 gamma rays was much less than that of ordinary concrete (2.6 cm compared to 6.0 cm). Furthermore, the galena concrete samples had significantly higher compressive strength (500 kg/cm 2 compared to 300 kg/cm 2 ). Conclusion: The Galena concrete samples made in our laboratories had showed good shielding/engineering properties in comparison with all samples made by using high-density materials other than depleted uranium. Based on the preliminary results, Galena concrete is maybe a suitable option where high-density concrete is required in megavoltage radiotherapy rooms as well as nuclear reactors

  4. Neutron shielding properties of a new high-density concrete

    International Nuclear Information System (INIS)

    Lorente, A.; Gallego, E.; Vega Carrillo, H.R.; Mendez, R.

    2008-01-01

    The neutron shielding properties of a new high-density concrete (commercially available under the name Hormirad TM , developed in Spain by the company CT-RAD) have been characterized both experimentally and by Monte Carlo calculations. The shielding properties of this concrete against photons were previously studied and the material is being used to build bunkers, mazes and doors in medical accelerator facilities with good overall results. In this work, the objective was to characterize the material behaviour against neutrons, as well as to test alternative mixings including boron compounds in an effort to improve neutron shielding efficiency. With that purpose, Hormirad TM slabs of different thicknesses were exposed to an 241 Am-Be neutron source under controlled conditions in the neutron measurements laboratory of the Nuclear Engineering Department at UPM. The original mix, which includes a high fraction of magnetite, was then modified by adding different proportions of anhydrous borax (Na 2 B 4 O 7 ). In order to have a reference against common concrete used to shield medical accelerator facilities, the same experiment was repeated with ordinary (HA-25) concrete slabs. In parallel to the experiments, Monte Carlo calculations of the experiments were performed with MCNP5. The experimental results agree reasonably well with the Monte Carlo calculations. Therefore, the first and equilibrium tenth-value layers have been determined for the different types of concrete tested. The results show an advantageous behaviour of the Hormirad TM concrete, in terms of neutron attenuation against real thickness of the shielding. Borated concretes seem less practical since they did not show better neutron attenuation with respect to real thickness and their structural properties are worse. The neutron attenuation properties of Hormirad TM for typical neutron spectra in clinical LINAC accelerators rooms have been also characterized by Monte Carlo calculation. (author)

  5. Radiation shielding performance of some concrete

    International Nuclear Information System (INIS)

    Akkurt, I.; Akyildirim, H.; Mavi, B.; Kilincarslan, S.; Basyigit, C.

    2007-01-01

    The energy consumption is increasing with the increased population of the world and thus new energy sources were discovered such as nuclear energy. Besides using nuclear energy, nuclear techniques are being used in a variety of fields such as medical hospital, industry, agriculture or military issue, the radiation protection becomes one of the important research fields. In radiation protection, the main rules are time, distance and shielding. The most effective radiation shields are materials which have a high density and high atomic number such as lead, tungsten which are expensive. Alternatively the concrete which produced using different aggregate can be used. The effectiveness of radiation shielding is frequently described in terms of the half value layer (HVL) or the tenth value layer (TVL). These are the thicknesses of an absorber that will reduce the radiation to half, and one tenth of its intensity respectively. In this study the radiation protection properties of different types of concrete will be discussed

  6. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    International Nuclear Information System (INIS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-01-01

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present in Bi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely "2"4"1Am and "1"3"7Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  7. Radiological characterization of the concrete biological shield of the APSARA reactor

    OpenAIRE

    Srinivasan Priya; Srinivasan Panchapakesan; Thomas Shibu; Gopalakrishnan R.K.; Goswami A.

    2013-01-01

    The first Indian research reactor, APSARA, was utilized for various R&D programmes from 1956 until its shutdown in 2009. The biological shield of the reactor developed residual activity due to neutron irradiation during the operation of the reactor. Dose rate mapping and in-situ gamma spectrometry of the concrete structures of the reactor pool were carried out. Representative concrete samples collected from various locations were subjected to high-resolution gamma spectrometry analysis....

  8. Construction of concrete hot cells; requirements for shielding windows for concrete walls with different densities

    International Nuclear Information System (INIS)

    1987-10-01

    The shielding windows form part of the basic equipment of hot cells for remote handling, as defined in standard DIN 25 420 part 1. The draft standard in hand is intended to specify the design and manufacture requirements, especially with regard to main dimensions, sight quality, shielding effects, and radiation resistance. The standard refers to three types of shielding window with surface area design (product of density and wall thickness) corresponding to concrete walls of the densities 2.4, 3.4, and 4.0 g/cm 3 . The windows fit to three types of concrete of common usage, and the design is made for Co-60 radiation, with attenuation factors of about 10 4 , 10 6 , or 10 7 . For concrete walls with densities between these data, a shielding window suitable to the next higher density data is to be chosen. (orig./HP) [de

  9. Heavy concrete shieldings made of recycled radio-active steel

    International Nuclear Information System (INIS)

    Holland, D.; Quade, U.; Sappok, M.; Heim, H.

    1998-01-01

    Maintenance and decommissioning of nuclear installations will generate increasing quantities of radioactively contaminated metallic residues. For many years, Siempelkamp has been melting low-level radioactive scrap in order to re-use it for containers of nuclear industry. Another new recycling path has recently been developed by producing steel granules from the melt. These granules are used as replacement for hematite (iron ore) in the production of heavy concrete shieldings. In the CARLA plant (central plant for the recycling of low-level radioactive waste) of Siempelkamp Nuklear- und Umwelttechnik GmbH and Co., the scrap is melted in a medium frequency induction furnace. The liquid iron is poured into a cooling basin through a water jet, which splits the iron into granules. The shape of these granules is determined by various factors, such as water jet speed, pouring rate of the liquid iron and different additives to the melt. In this process, massive spheres with diameters ranging from 1 to 8 mm can be produced which add to the density of heavy concrete elements for optimum shielding. In close cooperation with Boschert, which indeed is an expert for the production of concrete shieldings, a new technology for manufacturing heavy concrete shieldings, containing low-level radioactive steel granules, has been developed. The portion of steel granules in the concrete is approx. 50 weight-%. A concrete density between 2.4 kg/dm 3 and 4.0 kg/dm 3 is available. The compressive strength for the concrete reaches values up to 65 MPa. Different types of Granulate Shielding Casks (GSC) are offered by Siempelkamp. The most famous one is the GSC 200 for 200 1 drums, which has already been qualified for final storage of radioactive wastes at the German Morsleben final repository (ERAM). This newly developed recycling process further increases the quantities of low-level radioactive metallic wastes available for recycling. Expensive storage area can thus be saved respectively

  10. Development of heat resistant concrete and its application to concrete casks. Improvement of neutron shielding performance of concrete in high temperature environment

    International Nuclear Information System (INIS)

    Owaki, Eiji; Hata, Akihito; Sugihara, Yutaka; Shimojo, Jun; Taniuchi, Hiroaki; Mantani, Kenichi

    2003-01-01

    Heat resistant concrete with hydrogen, which is able to shield neutron at more than 100degC, was developed. Using this new type concrete, a safety concrete cask having the same concept of metal casks was designed and produced. The new type cask omitted the inhalation and exhaust vent of the conventional type concrete casks. The new concrete consists of Portland cement added calcium hydroxide, iron powder and iron fiber. It showed 2.17 g/cm 3 density, 10.8 mass% water content, 1.4 W/(m·K) thermal conductivity at 150degC. Increasing of heat resistance made possible to produce the perfect sealing type structure, which had high shielding performance of radiation no consideration for streaming of radiation. Moreover, a monitor of sealing can be set. General view of concrete casks, outer view of 1/3 scaled model, cask storage system in the world, properties of new developed heat resistant concrete, results of shielding calculation are contained. (S.Y.)

  11. Measurement of concentrations of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kawasaki, Katsuya; Kikuchi, Masamitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Harada, Yasunori

    1997-07-01

    Measurement has been made to study distributions of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility. Core boring was carried out at seven positions to take samples from the concrete shield, and {gamma}-ray counting rates and {gamma}-ray spectra of these samples were measured with a NaI(Tl) detector and a Ge semiconductor detector, respectively. The following radionuclides were detected in the concrete samples: {sup 60}Co, {sup 134}Cs, {sup 152}Eu and {sup 154}Eu generated through thermal neutron capture reaction, and {sup 22}Na and {sup 54}Mn generated through nuclear reactions by bremsstrahlung and fast neutrons. The relation between the distributions of {gamma}-ray emitters, as a function of the depth of concrete, and the positions of core boring is discussed. (author)

  12. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  13. Numerical simulation of a reinforced concrete shield around a nuclear reactor

    International Nuclear Information System (INIS)

    Mahama, Mumuni Salifu

    1996-02-01

    Ghana currently operates a Research Reactor and other nuclear facilities including a Gamma Irradiation Facility, a Radiographic Non-Destructive Testing laboratory and would be operating in the nearest future a Radiotherapy Centre. Each of these has a concrete radiation shield as a major safety device. In carrying out its functions, a concrete radiation shield may be subjected to thermal and mechanical stresses. A facility for analysing these stresses is desirable. Two computer codes have been developed under this programme for radiation shielding computation and stress analysis of cylindrical reactor shields. (au)

  14. Calculation of a concrete shielding for an ILU-8 D electron accelerator

    International Nuclear Information System (INIS)

    Helal, A.; Imam, A.

    1996-01-01

    A concrete shielding for an electron accelerator of 1 MeV is suggested to replace its structural steel shielding. The thickness of such a shield is calculated. The calculational model used is based on standard and transmission curves given in the literature. The calculated concrete shielding is generally adequate to attenuate the accelerator produced radiation to a level 1 μ Gy/h or less at any point outside of the vault enclosure. 5 figs

  15. Calculation of a concrete shielding for an ILU-8 D electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Helal, A [Nuclear Research Center, AEA, Cairo (Egypt); Imam, A [National Center for Nuclear Safety and Radiation Control, AEA, Cairo (Egypt)

    1997-12-31

    A concrete shielding for an electron accelerator of 1 MeV is suggested to replace its structural steel shielding. The thickness of such a shield is calculated. The calculational model used is based on standard and transmission curves given in the literature. The calculated concrete shielding is generally adequate to attenuate the accelerator produced radiation to a level 1 {mu} Gy/h or less at any point outside of the vault enclosure. 5 figs.

  16. Recycling radioactive scrap metal by producing concrete shielding with steel granules

    International Nuclear Information System (INIS)

    Sappok, M.

    1996-01-01

    Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel and chromium especially, does not allow for the recycling of stainless steel in a percentage to make this process economical. In Germany, the state of the art is to use shielded concrete containers for the transport of low active waste; this concrete is produced by using hematite as an additive for increasing shielding efficiency. The plan was to produce steel granules from radioactive scrap metal as a substitute for hematite in shielding concrete

  17. Study and application of high-density concrete in radiation-shielding experiment

    International Nuclear Information System (INIS)

    Wu Chongming; Ding Dexin; Xiao Xuefu; Wang Shaolin; Lin Xingjun; Shen Yuanyuan

    2008-01-01

    According to the demand for research and construction project, a series of systematic experiments and studies on shielding γ-ray radiation concrete with the density of 4.60 t/m 3 were made in such aspects as mix ratio design, construction technology, uniformly shielding etc. Such issues as uniformity in the construction and compactness were solved. The ray test method for uniformly shielding concrete was presented and some technical steps for this high-density concrete used in the process of test design or construction were summed up. A series of tests and practical applications show that this technology of mix ratio design and construction is feasible. (authors)

  18. Slow neutrons and secondary gamma ray distributions in concrete shields followed by reflecting layers

    International Nuclear Information System (INIS)

    Makarious, A.S.; Swilem, Y.I.; Awwad, Z.; Bayomy, T.

    1993-01-01

    Slow neutrons and secondary gamma ray distributions in concrete shields with and without a reflecting layer behind layer behind the concrete shield have been investigated first in case of using a bare reactor beam and then on using a B-4 C filtered beam. The total and capture secondary gamma ray coefficient (B gamma and B gamma C ), the ratio of the reflected thermal neutron (gamma) the ratio of the secondary gamma rays caused by reflected neutrons to those caused transmitted neutrons (Th I gamma/F I gamma) and the effect of inserting a blocking layer (a B-4 C layer) between the concrete shield and the reflector on the suppression of the produced secondary gamma rays have been investigated. It was found that the presence of the reflector layer behind the concrete shield reflects some thermal neutrons back to the concrete shields and so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector. Also the capture secondary gamma rays was increased at the interface between the two medii due to the capture of the reflected thermal neutrons in the concrete shields. It was shown that B-gamma is higher than and that B g amma B gamma C and I gamma T h/ I gamma i f for the different concrete types is higher in case of using the graphite reflector than that in using either water or paraffin reflectors. Putting a blocking layer (B 4 C layer) between the concrete shield and the reflector decreases the produced secondary gamma rays due to the absorption of the reflected thermal neutrons. 17 figs

  19. Study of local Agregate for Gamma radiation concrete shield

    International Nuclear Information System (INIS)

    Tochrul-Binowo; Endro-Kismolo; Darsono

    1996-01-01

    Investigation on the composition of gamma radiation concrete shield made of local barite, manganese fine and coarse aggregates from Kulon Progo, Yogyakarta has been done. The purpose of the research was to find out the quality of these local material for an aggregate of gamma radiation concrete shield. The research was done where each mineral was used as coarse aggregate and the fine aggregate from Kulon Progo was used as fine basic aggregate. Firstly a normal concrete was made by mixing cement, fine aggregate, coarse aggregate and water at a weight ratio of cement: fine aggregate: coarse: water 1: 2.304: 3.456: 0.58. The gamma radiation absorption capacity of the concrete tested by using Cs-137 as source standard. The same method was done on barite concrete at the weight ratio of cement: fine aggregate: barite aggregate: water 1: 2.303: 3.456: 0.58 and manganese concrete at the weight ratio of cement: fine aggregate: manganese aggregate: and water 1: 1.896: 2.844: 0.58. The result of the study showed that the gamma radiation absorption capacity of barite aggregate was greater than that of normal concrete and manganese concrete. The coefficient linear attenuation (for 6.0 cm thickness) of each concrete were μ barite concrete = 0.23071 cm -1 , μ manganese concrete = 0.08401 cm -1 and μ normal concrete = 0.1669 cm -1

  20. Heavy density concrete for nuclear radiation shielding and power stations: [Part]2

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the second part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. In this part, some of the important properties of heavy density concrete are discussed. They include density, water retentivity, air content, permeability with special reference to concrete mixes used in India's nuclear power reactors. All these properties are affected to various extents by heating. Indian shield concrete is rarely subjected to temperatures above 60degC during its life, because of thermal shield protection. During placement, the maximum anticipated rise in temperature due to heat of hydration is restricted to around 45degC by chilling, if necessary to reduce shrinkage stresses and cracks. (M.G.B.)

  1. Beta induced Bremsstrahlung dose rate in concrete shielding

    International Nuclear Information System (INIS)

    Manjunatha, H.C.

    2013-01-01

    Dosimetric study of beta-induced Bremsstrahlung in concrete is importance in the field of radiation protection. The efficiency, intensity and dose rate of beta induced Bremsstrahlung by 113 pure beta nuclides in concrete shielding is computed. The Bremsstrahlung dosimetric parameters such as the efficiency (yield), Intensity and dose rate of Bremsstrahlung are low for 199 Au and high for 104 Tc in concrete. The efficiency, Intensity and dose rate of Bremsstrahlung increases with maximum energy of beta nuclide (Emax) and modified atomic number (Zmod) of the target. The estimated Bremsstrahlung efficiency, Intensity and dose rate are useful in the calculations photon track-length distributions. These parameters are useful to determine the quality and quantity of the radiation (known as the source term). Precise estimation of this source term is very important in planning of radiation shielding. (author)

  2. Shield design of concrete wall between decay tank room and primary pump room in TRIGA facility

    International Nuclear Information System (INIS)

    Khan, M. J. H.; Rahman, M.; Haque, A.; Zulquarnain, A.; Ahmed, F. U.; Bhuiyan, S. I.

    2007-01-01

    The objective of this study is to recommend the radiation protection design parameters from the shielding point of view for concrete wall between the decay tank room and the primary pump room in TRIGA Mark-II research reactor facility. The shield design for this concrete wall has been performed with the help of Point-kernel Shielding Code Micro-Shield 5.05 and this design was also validated based on the measured dose rate values with Radiation Survey Meter (G-M Counter) considering the ICRP-60 (1990) recommendations for occupational dose rate limit (10 μSv/hr). The recommended shield design parameters are: (i) thickness of 114.3 cm Ilmenite-Magnetite Concrete (IMC) or 129.54 cm Ordinary Reinforced Concrete (ORC) for concrete wall A (ii) thickness of 66.04 cm Ilmenite-Magnetite Concrete (IMC) or 78.74 cm Ordinary Reinforced Concrete (ORC) for concrete wall B and (iii) door thickness of 3.175 cm Mild Steel (MS) on the entrance of decay tank room. In shielding efficiency analysis, the use of I-M concrete in the design of this concrete wall shows that it reduced the dose rate by a factor of at least 3.52 times approximately compared to ordinary reinforced concrete

  3. Determination of shielding parameters for different types of concretes by Monte Carlo methods

    International Nuclear Information System (INIS)

    Aminian, A.; Nematollahi, M. R.

    2007-01-01

    The chose of a suitable concrete composition for a biological reactor shield remain as a research target up to now. In the present study the attempts has been made to estimate the influence of the concrete aggregates on the shielding parameters for three type of ordinary, serpentine and steel magnetite concrete by Monte Carlo N-Particle (MCNP ) transport code. MCNP calculations have been performed in order to obtain the leakage of neutrons, photons and electrons from dry shield. Also the mass attenuation coefficients and the liner attenuation coefficient are estimated for neutron and photon in those energies in range of actual energy which exist out of pressure vessel of power reactor in the cavity for the investigated concretes. The concrete densities ranged from 2.3 to 5.11 g/cm 3 . These calculations were done in the condition of a typical commercial Pressurized Water Reactor (PWR). The results show that Steel-magnetite concrete, with high density (5.11 g/cm 3 ) and constituents of relatively high atomic number, is an effective shield for both photons and neutrons

  4. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles.

    Science.gov (United States)

    Seifan, Mostafa; Sarmah, Ajit K; Samani, Ali Khajeh; Ebrahiminezhad, Alireza; Ghasemi, Younes; Berenjian, Aydin

    2018-05-01

    Concrete is arguably one of the most important and widely used materials in the world, responsible for the majority of the industrial revolution due to its unique properties. However, it is susceptible to cracking under internal and external stresses. The generated cracks result in a significant reduction in the concrete lifespan and an increase in maintenance and repair costs. In recent years, the implementation of bacterial-based healing agent in the concrete matrix has emerged as one of the most promising approaches to address the concrete cracking issue. However, the bacterial cells need to be protected from the high pH content of concrete as well as the exerted shear forces during preparation and hardening stages. To address these issues, we propose the magnetic immobilization of bacteria with iron oxide nanoparticles (IONs). In the present study, the effect of the designed bio-agent on mechanical properties of concrete (compressive strength and drying shrinkage) is investigated. The results indicate that the addition of immobilized Bacillus species with IONs in concrete matrix contributes to increasing the compressive strength. Moreover, the precipitates in the bio-concrete specimen were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The characterization studies confirm that the precipitated crystals in bio-concrete specimen were CaCO 3 , while no precipitation was observed in the control sample.

  6. Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.

    2018-06-01

    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.

  7. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    International Nuclear Information System (INIS)

    Oh, Jeong Hwan; Choi, Soo Seok; Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook

    2016-01-01

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of "1"3"7Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m"-"3. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m"-"3, which was lower than the maximum unit weight condition by 123 kg·m"-"3, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing

  8. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeong Hwan; Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of); Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook [Sungshin Cement Co., Ltd, Sejong (Korea, Republic of)

    2016-12-15

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of {sup 137}Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m{sup -3}. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m{sup -3}, which was lower than the maximum unit weight condition by 123 kg·m{sup -3}, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

  9. Study and installation of concrete shielding in the civil engineering of nuclear construction (1960)

    International Nuclear Information System (INIS)

    Dubois, F.

    1960-01-01

    The object of this report is to give technical information about high density concretes which have become very important for radiation biological shielding. The most generally used heavy aggregates (barytes, ilmenite, ferrophosphorus, limonite, magnetite and iron punching) to make these concretes are investigated from the point of view prospecting and physical and chemical characteristics. At first, a general survey of shielding concretes is made involving the study of components, mixing and placing methods, then, a detailed investigation of some high density concretes: barytes concrete, with incorporation of iron punching or iron shot, ferrophosphorus concrete, ilmenite concrete and magnetite concrete, more particularly with regard to grading and mix proportions and testing process. To put this survey in concrete form, two practical designs are described such as they have been carried out at the Saclay Nuclear Station. Specifications are given for diverse concretes and for making the proton-synchrotron 'Saturne' shielding blocks. (author) [fr

  10. Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles.

    Science.gov (United States)

    Seifan, Mostafa; Sarmah, Ajit K; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-03-01

    Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In this study, for the first time, magnetic iron oxide nanoparticles (IONs) are being practically employed as the protective vehicle for bacteria to evaluate the self-healing performance in concrete environment. Magnetic IONs were successfully synthesized and characterized using different techniques. The scanning electron microscope (SEM) images show the efficient adsorption of nanoparticles to the Bacillus cells. Microscopic observation illustrates that the incorporation of the immobilized bacteria in the concrete matrix resulted in a significant crack healing behavior, while the control specimen had no healing characteristics. Analysis of bio-precipitates revealed that the induced minerals in the cracks were calcium carbonate. The effect of magnetic immobilized cells on the concrete water absorption showed that the concrete specimens supplemented with decorated bacteria with IONs had a higher resistance to water penetration. The initial and secondary water absorption rates in bio-concrete specimens were 26% and 22% lower than the control specimens. Due to the compatible behavior of IONs with the concrete compositions, the results of this study proved the potential application of IONs for developing a new generation of bio self-healing concrete.

  11. Build-up Factor Calculation for Ordinary Concrete, Baryte Concrete and Blast-furnace Slugges Concrete as γ Radiation Shielding

    International Nuclear Information System (INIS)

    Isman MT; Elisabeth Supriatni; Tochrul Binowo

    2002-01-01

    Calculation of build up factor ordinary concrete, baryte concrete and blast-furnace sludge concrete have been carried out. The calculations have been carried out by dose rate measurement of Cs 137 source before and after passing through shielding. The investigated variables were concrete type, thickness of concrete and relative possession of concrete. Concrete type variables are ordinary concrete, baryte concrete and blast sludge furnace concrete. The thickness variables were 6, 12, 18, 24, 30 and 36 cm. The relative position variables were dose to the source and close to detector. The result showed that concrete type and position did not have significant effect to build-up factor value, while the concrete thickness (r) and the attenuation coefficient (μ) were influenced to the build-up factor. The higher μr value the higher build-up factor value. (author)

  12. Shielding effects of concrete and foam external pipeline coatings

    International Nuclear Information System (INIS)

    Barlo, T.J.; Werner, D.P.

    1992-01-01

    The research project began in July, 1986 and was completed in December, 1990. The objectives of the research were: To determine whether concrete and urethane foam-barrier coatings shield the pipe from cathodic-protection current, To determine whether the barrier coatings also effectively shield the pipe from the environment, thus reducing the need for cathodic protection, To determine what levels of cathodic protection will be required to overcome shielding, and To establish what types of barrier coatings are most compatible with obtaining adequate levels of cathodic protection. To achieve these objectives, laboratory experiments were conducted with five barrier coating materials. These materials were (1) 2-lb/ft 3 , closed-cell urethane foam, (2) 3-lb/ft 3 , closed-cell urethane foam, (3) concrete barrier material, (4) glass fiber-reinforced concrete barrier material, and (5) sand. The barrier materials, whole and intentionally cracked, were applied to the bare, FBE-coated, and tape-coated steel specimens. The specimens were tested in aqueous electrolytes at room temperature and 140 degree F with no protection, protection to -0.95 V, and overprotection to -1.2 V (Cu/CuSO 4 )

  13. An Analysis of Radiation Penetration through the U-Shaped Cast Concrete Joints of Concrete Shielding in the Multipurpose Gamma Irradiator of BATAN

    Science.gov (United States)

    Ardiyati, Tanti; Rozali, Bang; Kasmudin

    2018-02-01

    An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.

  14. Effect of Gamma Ray Energies and Steel Fiber addition by Weight on some Shielding Properties of Limestone Concrete

    International Nuclear Information System (INIS)

    Abd El-Latifa, A.A.; Ikraiam, F.A.; Abd El-Latifa, A.A.; Abd Elazziz, A.; Abd Elazziz, A.

    2010-01-01

    The mass attenuation coefficient , the build up factor , the half value thickness X 1/2 , and tenth value thickness X 1/10 of fiber concrete , 0% , 1% , 2%, 3%, and 4% by weight fiber content were measured at different gamma ray energies in MeV, 0.511,1.274 from Na-22 ,1.17 ,1.33 from Co-60 and 0.662 from Cs-137 . Appreciable variations were noted in the former nuclear parameters, due to the changes in the fiber content and gamma ray energies .A comparison of shielding properties of concrete with fiber content and reference sample(concrete without fiber ) have proven that the addition of steel fibers by weight to concrete have a potential application as a radiation shielding

  15. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    International Nuclear Information System (INIS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-01-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  16. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho

    2017-01-01

    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  17. Measurement of 36Cl induced in shielding concrete of various accelerator facilities

    International Nuclear Information System (INIS)

    Bessho, K.; Matsumura, H.; Matsuhiro, T.

    2003-01-01

    The concentrations of 36 Cl induced in shielding concrete of the various accelerators has been measured by accelerator mass spectrometry. For three kinds of accelerator facilities, SF cyclotron (Center for Nuclear Study, the University of Tokyo), 300 MeV electron LINAC (Laboratory of Nuclear Science, Tohoku University), and 12 GeV proton synchrotron (High Energy Accelerator Research Organization), the depth profiles of 36 Cl/ 35 Cl ratios in concrete samples near the beam lines were analyzed. The depth profiles of 36 Cl/ 35 Cl are consistent with those of the radioactive concentrations of 152 Eu and 60 Co, which are formed by thermal neutron capture reactions. These results imply that 36 Cl formed in shielding concrete of these accelerators is mainly produced by thermal neutron capture of 35 Cl. The maximum 36 Cl/ 35 Cl ratio of 3x10 -8 (300 MeV electron LINAC, depth of 8 cm) corresponds to the specific radioactivity of 2x10 -3 Bq/g, which is not serious for radioactive waste management in reconstruction or decommissioning of accelerator facilities, compared with specific radioactivity of 3 H, 152 Eu and 60 Co. (author)

  18. Analysis of crack-formation in the shielding concrete of a TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Linsbauer, H.; Maydl, P.

    1978-01-01

    Within a short time after the start-up of the reactor several cracks appeared at the concrete surface and the number and width of the cracks had grown till now. Experimental and theoretical analysis were made in order to investigate the origin of the cracks and to prevent further crack increase. Crack movement was measured by inductive gages and simultaneously the temperature of the cooling water in the reactor tank at the top and at the bottom as well as the air and the concrete temperature were recorded. The calculations of the thermal stresses were made in two independent ways: 1. Analytically, simulating the shielding concrete as an infinite hollow cylinder of constant thickness and 2. Using the Finite Element method, for a better description of the geometry. It was concluded that the cracks of the shielding concrete are exclusively caused by the thermal stresses. The thermal insulation at the lower part of the shielding is not effective. The structural system of the shielding concrete as a monolithic block without joints produces automatically tensile stresses

  19. Discussion on the standardization of concrete composition for radiation shielding design 2. Evaluation of the effect of the composition variance on the shielding property

    International Nuclear Information System (INIS)

    Ogata, Tomohiro; Kimura, Ken-ichi; Nakata, Mikihiro; Okuno, Koichi; Ishikawa, Tomoyuki

    2017-01-01

    Radiation Shielding Material Standardization Working Group of AESJ has been organized to establish Japanese standard concrete composition for radiation shielding design. We have collected concrete composition data to organize a representative concrete composition data. Neutron and Gamma dose rates penetrated through several concrete compositions are calculated by one dimensional discrete ordinate code ANISN. Effects of the variation of concrete composition on the neutron and gamma dose are evaluated. In this paper, recent standardization activity is summarized. (author)

  20. Large-scale experiment with laying shielding concrete at Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Hoenig, A.; Svoboda, R.; Rosa, J.

    1984-01-01

    In some places the concrete walls of the biological shielding are so thin that it is not possible to control the density of the deposited concrete. An experiment was therefore carried out which was to demonstrate that concrete may be deposited by sinking through concrete tubes or by a concrete pump from a height of 8 metres. Two test walls A and B were concreted using the non-standardized method and the third wall was used as the standard. The following tests were conducted on the two non-standardized walls: test of miscibility of extra-heavy concrete, ultrasonic test of homogeneity, and samples were taken for tests of density. Density was determined radiometrically using a narrow gamma beam. Statistical evaluation of the results showed that the homogeneity of density of the concrete was the best in the standard wall, in walls A and B the variation coefficient did not exceed 8 per mille. An exception was made to the rule and concrete with a max. 16 mm grain size was deposited from the height of 8 m on condition of strict observance of production technology. (J.P.)

  1. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    International Nuclear Information System (INIS)

    Tanny, S; Parsai, E

    2014-01-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, within various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction

  2. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, S; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2014-06-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, within various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction

  3. High Density Radiation Shielding Concretes for Hot Cells of 99mTc Project

    International Nuclear Information System (INIS)

    Sakr, K.

    2006-01-01

    High density concrete [more than 3.6 ton/m 3 (3.6x10 3 kg/m 3 )] was prepared to be used as a radiation shielding concrete (RSC) for hot-cells in gel technetium project at inshas to attenuate gamma radiation emitted from radioactive sources. different types of concrete were prepared by mixing local mineral aggregates mainly gravel and ilmenite . iron shots were added to the concrete mixture proportion as partial replacement of heavy aggregates to increase its density. the physical properties of prepared concrete in both plastic and hardened phases were investigated. compressive strength and radiation attenuation of gamma rays were determined. Results showed that ilmenite concrete mixed with iron shots had the highest density suitable to be use as RSC according to the chinese hot cell design requirements. Recommendations to avoid some technical problems of manufacturing radiation shielding concrete were maintained

  4. Characterization of Radiation Fields for Assessing Concrete Degradation in Biological Shields of NPPs

    Science.gov (United States)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Pape, Yann Le

    2017-09-01

    Life extensions of nuclear power plants (NPPs) to 60 years of operation and the possibility of subsequent license renewal to 80 years have renewed interest in long-term material degradation in NPPs. Large irreplaceable sections of most nuclear generating stations are constructed from concrete, including safety-related structures such as biological shields and containment buildings; therefore, concrete degradation is being considered with particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the currently available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database is desirable to ensure reliable risk assessment for extended operation of nuclear power plants.

  5. Abrasive water jet cutting technique for biological shield concrete dismantlement

    International Nuclear Information System (INIS)

    Konno, T.; Narazaki, T.; Yokota, M.; Yoshida, H.; Miura, M.; Miyazaki, Y.

    1987-01-01

    The Japan Atomic Energy Research Institute (JAERI) is developing the abrasive-water jet cutting system to be applied to dismantling the biological shield walls of the JPDR as a part of the reactor dismantling technology development project. This is a total system for dismantling highly activated concrete. The concrete biological shield wall is cut into blocks by driving the abrasive-water jet nozzle, which is operated with a remote, automated control system. In this system, the concrete blocks are removed to a container, while the slurry and dust/mist which are generated during cutting are collected and treated, both automatically. It is a very practical method and will quite probably by used for actual dismantling of commercial power reactors in the future because it can minimize workers' exposure to radioactivity during dismantling, contributes to preventing diffusion of radiation, and reduces the volume of contaminated secondary waste

  6. Shielding design of highly activated sample storage at reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Naim Syauqi Hamzah; Julia Abdul Karim; Mohamad Hairie Rabir; Muhd Husamuddin Abdul Khalil; Mohd Amin Sharifuldin Salleh

    2010-01-01

    Radiation protection has always been one of the most important things considered in Reaktor Triga PUSPATI (RTP) management. Currently, demands on sample activation were increased from variety of applicant in different research field area. Radiological hazard may occur if the samples evaluation done were misjudge or miscalculated. At present, there is no appropriate storage for highly activated samples. For that purpose, special irradiated samples storage box should be provided in order to segregate highly activated samples that produce high dose level and typical activated samples that produce lower dose level (1 - 2 mR/ hr). In this study, thickness required by common shielding material such as lead and concrete to reduce highly activated radiotracer sample (potassium bromide) with initial exposure dose of 5 R/ hr to background level (0.05 mR/ hr) were determined. Analyses were done using several methods including conventional shielding equation, half value layer calculation and Micro shield computer code. Design of new irradiated samples storage box for RTP that capable to contain high level gamma radioactivity were then proposed. (author)

  7. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  8. Attenuation of fast neutron in concretes for biological shielding

    International Nuclear Information System (INIS)

    Labrada, A.; Chavez, A.; Gonzalez Mateu, D.; Desdin, F.; Tenjeiro, J.I.; Tellez, E.

    1993-01-01

    The attenuation of neutrons emitted by an 10 6 n/s. Am-Be source, in concretes elaborated with different aggregates is discussed in this paper. Two measurement methods were used an dosimetric system with Bonner spheres and 6 LiI(Eu) detector, and LAVSAN dielectric nuclear track detectors - with 238 U converts. The concretes elaborated with magnetite is reported as the best for neutron shielding while the Bauxite is not advisable for this purpose

  9. Heavy density concrete for nuclear radiation shielding and power stations: [Part]3

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the third part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. Specific considerations relevant to natural but manufactured heavy aggregates like haematite used in India are briefly discussed. They include water-cement ratio, strength versus water-cement ratio, mix design strength and aggregate grading. Some typical mix proportions in haematite concretes used in India are given. Equipment for heavy density concrete is mentioned. Quality control methods and tests for heavy density concrete are described under the heading: type and chemical composition of the rock, specific gravity and surface absorption of the aggregates, grading of aggregates, cement, batching, mixing, compressive strength, and density. Construction aspects such as form work, placement, vibration, finishing, and temperature control are discussed. Finally it is pointed out that for optimising the design and economy of heavy density concrete, it is necessary to carry out country-wide survey of suitable materials, to study their properties, suitability and effectiveness in shielding radiation. (M.G.B.)

  10. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    Energy Technology Data Exchange (ETDEWEB)

    Zorla, Eyüp; Ipbüker, Cagatay [University of Tartu, Institute of Physics (Estonia); Biland, Alex [US Basalt Corp., Houston (United States); Kiisk, Madis [University of Tartu, Institute of Physics (Estonia); Kovaljov, Sergei [OÜ Basaltest, Tartu (Estonia); Tkaczyk, Alan H. [University of Tartu, Institute of Physics (Estonia); Gulik, Volodymyr, E-mail: volodymyr.gulik@gmail.com [Institute for Safety Problems of Nuclear Power Plants, Lysogirska 12, of. 201, 03028 Kyiv (Ukraine)

    2017-03-15

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  11. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    International Nuclear Information System (INIS)

    Zorla, Eyüp; Ipbüker, Cagatay; Biland, Alex; Kiisk, Madis; Kovaljov, Sergei; Tkaczyk, Alan H.; Gulik, Volodymyr

    2017-01-01

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  12. Determination of gamma ray shielding parameters of rocks and concrete

    Science.gov (United States)

    Obaid, Shamsan S.; Gaikwad, Dhammajyot K.; Pawar, Pravina P.

    2018-03-01

    Gamma shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) and electron density (Neff) have been measured and calculated for rocks and concrete in the energy range 122-1330 keV. The measurements have been carried out at 122, 356, 511, 662, 1170, 1275, 1330 keV gamma ray energies using a gamma spectrometer includes a NaI(Tl) scintillation detector and MCA card. The atomic and electronic cross sections have also been investigated. Experimental and calculated (WinXCom) values were compared, and good agreement has been observed within the experimental error. The obtained results showed that feldspathic basalt, compact basalt, volcanic rock, dolerite and pink granite are more efficient than the sandstone and concrete for gamma ray shielding applications.

  13. Application of SCALE 6.1 MAVRIC Sequence for Activation Calculation in Reactor Primary Shield Concrete

    International Nuclear Information System (INIS)

    Kim, Yong IL

    2014-01-01

    Activation calculation requires flux information at desired location and reaction cross sections for the constituent elements to obtain production rate of activation products. Generally it is not an easy task to obtain fluxes or reaction rates with low uncertainties in a reasonable time for deep penetration problems by using standard Monte Carlo methods. The MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) sequence in SCALE 6.1 code package is intended to perform radiation transport on problems that are too challenging for standard, unbiased Monte Carlo methods. And the SCALE code system provides plenty of ENDF reaction types enough to consider almost all activation reactions in the nuclear reactor materials. To evaluate the activation of the important isotopes in primary shield, SCALE 6.1 MAVRIC sequence has been utilized for the KSNP reactor model and the calculated results are compared to the isotopic activity concentration of related standard. Related to the planning for decommission, the activation products in concrete primary shield such as Fe-55, Co-60, Ba-133, Eu-152, and Eu-154 are identified as important elements according to the comparisons with related standard for exemption. In this study, reference data are used for the concrete compositions in the activation calculation to see the applicability of MAVRIC code to the evaluation of activation inventory in the concrete primary shield. The composition data of trace elements as shown in Table 1 are obtained from various US power plant sites and accordingly they have large variations in quantity due to the characteristics of concrete composition. In practical estimation of activation radioactivity for a specific plant related to decommissioning, rigorous chemical analysis of concrete samples of the plant would first have to be performed to get exact information for compositions of concrete. Considering the capability of solving deep penetration transport problems and richness

  14. Efficiency of steel-concrete compositions in a side shielding of high-energy proton accelerators

    International Nuclear Information System (INIS)

    Getmanov, V.B.; Kryuchkov, V.P.; Lebedev, V.N.

    1983-01-01

    Aiming at the study of efficiency of application of heavy concretes with the density up to 6.3 g/cm -3 with iron-ore aggregate and steel scrap with shot the calculational study on high-energy radiation attenuation in the accelerator side shield has been carried out. The calculation is made for five concretes with the density 2.38; 3.66; 4.68; 5.34; 6.30 g x cm -3 and for pure iron. The real chemical composition of each concrete, including hydrogen, is taken into account. The real spectrum of hadron generated in the materiai of evacuated ionguide wall under the effect of the 70 GeV proton beam incident on the wall at a narrow angle THETA -3 ensuring the same ratio of the dose or hadron fluence with the energy > 20 MeV attenuation is accepted as a relative shield efficiency of the material. It is shown, that for steel-concrete compositions with the density > 5.6 gxcm -3 the relative shield efficiency decreases sharply. It is also shown, that aplication of concretes with the density 3.6-3.7 gxcm -3 is expedient and economically profitable

  15. Radiation shielding and effective atomic number studies in different types of shielding concretes, lead base and non-lead base glass systems for total electron interaction: A comparative study

    International Nuclear Information System (INIS)

    Kurudirek, Murat

    2014-01-01

    Highlights: • Radiation shielding calculations for concretes and glass systems. • Assigning effective atomic number for the given materials for total electron interaction. • Glass systems generally have better shielding ability than concretes. - Abstract: Concrete has been widely used as a radiation shielding material due to its extremely low cost. On the other hand, glass systems, which make everything inside visible to observers, are considered as promising shielding materials as well. In the present work, the effective atomic numbers, Z eff of some concretes and glass systems (industrial waste containing glass, Pb base glass and non-Pb base glass) have been calculated for total electron interaction in the energy region of 10 keV–1 GeV. Also, the continuous slowing down approximation (CSDA) ranges for the given materials have been calculated in the wide energy region to show the shielding effectiveness of the given materials. The glass systems are not only compared to different types of concretes but also compared to the lead base glass systems in terms of shielding. Moreover, the obtained results for total electron interaction have been compared to the results for total photon interaction wherever possible. In general, it has been observed that the glass systems have superior properties than most of the concretes over the high-energy region with respect to the electron interaction. Also, glass systems without lead show better electron stopping than lead base glasses at some energy regions as well. Along with the photon attenuation capability, it is seen that Fly Ash base glass systems have not only greater electron stopping capability but also have greater photon attenuation especially in high energy region when compared with standard shielding concretes

  16. Radiation shielding and effective atomic number studies in different types of shielding concretes, lead base and non-lead base glass systems for total electron interaction: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat, E-mail: mkurudirek@gmail.com

    2014-12-15

    Highlights: • Radiation shielding calculations for concretes and glass systems. • Assigning effective atomic number for the given materials for total electron interaction. • Glass systems generally have better shielding ability than concretes. - Abstract: Concrete has been widely used as a radiation shielding material due to its extremely low cost. On the other hand, glass systems, which make everything inside visible to observers, are considered as promising shielding materials as well. In the present work, the effective atomic numbers, Z{sub eff} of some concretes and glass systems (industrial waste containing glass, Pb base glass and non-Pb base glass) have been calculated for total electron interaction in the energy region of 10 keV–1 GeV. Also, the continuous slowing down approximation (CSDA) ranges for the given materials have been calculated in the wide energy region to show the shielding effectiveness of the given materials. The glass systems are not only compared to different types of concretes but also compared to the lead base glass systems in terms of shielding. Moreover, the obtained results for total electron interaction have been compared to the results for total photon interaction wherever possible. In general, it has been observed that the glass systems have superior properties than most of the concretes over the high-energy region with respect to the electron interaction. Also, glass systems without lead show better electron stopping than lead base glasses at some energy regions as well. Along with the photon attenuation capability, it is seen that Fly Ash base glass systems have not only greater electron stopping capability but also have greater photon attenuation especially in high energy region when compared with standard shielding concretes.

  17. Criticality study of PWR fuel elements separated by concrete shields

    International Nuclear Information System (INIS)

    Guillemot, M.; Colomb, G.; Maubert, L.

    1984-01-01

    The development of nuclear energy involved a need of neutronic shield studies to reduce the size and the cost of nuclear liquid storage units, of storage pools, and of transport casks. A concrete has been developed of the laboratory of concretes and coatings of Saclay; the validation of calculation codes including this material, as also the presence of free water and linked water necessitated an experimental confirmation of which program is presented here [fr

  18. Removal of concrete layers from biological shields by microwaves

    International Nuclear Information System (INIS)

    Wace, P.F.; Harker, A.H.; Hills, D.L.

    1990-01-01

    A comprehensive literature review has been carried out, to provide information for an experimental programme and equipment design. Mathematical modelling of the microwave and power fields in a concrete block, both steel reinforced and unreinforced, subjected to a microwave attack at two frequencies, has been carried out and estimates of the likely temperature rise with time obtained. A method of launching microwaves into concrete has been established from theoretical considerations and from the findings of the literature review. Equipment for laboratory trials has been designed and assembled using an 896 MHz, 25 kW microwave generator. Reinforced concrete blocks, 0.6 m in dimension and representing the concrete in a Magnox reactor biological shield, have been attacked at different power levels and the surface removed to the depth of the reinforcing steel (100 mm). Outline proposals for the design of a remotely operated prototype microwave machine for stripping the surface of large concrete test panels have been prepared. (author)

  19. Carbon Dioxide (CO2 Sequestration In Bio-Concrete, An Overview

    Directory of Open Access Journals (Sweden)

    Faisal Alshalif A.

    2017-01-01

    Full Text Available The emission of CO2 into atmosphere which has increased rapidly in the last years has led to global warming. Therefore, in order to overcome the negative impacts on human and environment, the researchers focused mainly on the reduction and stabilization of CO2 which represent the main contributor in the increasing global warming. The natural capturing and conversion of CO2 from atmosphere is taken place by biological, chemical and physical processes. However, these processes need long time to cause a significant reduction in CO2. Recently, scientists shifted to use green technologies that aimed to produce concrete with high potential to adsorb CO2 in order to accelerate the reduction of CO2. In the present review the potential of bio-concrete to sequestrate CO2 based on carbonation process and as a function of carbonic anhydrase (CA is highlighted. The factors affecting CO2 sequestration in concrete and bacterial species are discussed. It is evident from the literatures, that the new trends to use bio-concrete might contribute in the reduction of CO2 and enhance the strength of non-reinforced concrete.

  20. Induced radioactivity in Bevatron concrete radiation shielding blocks

    International Nuclear Information System (INIS)

    Moeller, G.C.; Donahue, R.J.

    1994-07-01

    The Bevatron accelerated protons up to 6.2 GeV and heavy ions up to 2.1 GeV/amu. It operated from 1954 to 1993. Radioactivity was induced in some concrete radiation shielding blocks by prompt radiation. Prompt radiation is primarily neutrons and protons that were generated by the Bevatron's primary beam interactions with targets and other materials. The goal was to identify the gamma-ray emitting nuclides (t 1/2 > 0.5 yr) that could be present in the concrete blocks and estimate the depth at which the maximum radioactivity presently occurs. It is shown that the majority of radioactivity was produced via thermal neutron capture by trace elements present in concrete. The depth of maximum thermal neutron flux, in theory, corresponds with the depth of maximum induced activity. To estimate the depth at which maximum activity occurs in the concrete blocks, the LAHET Code System was used to calculate the depth of maximum thermal neutron flux. The primary beam interactions that generate the neutrons are also modeled by the LAHET Code System

  1. Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators

    International Nuclear Information System (INIS)

    Sheu, Rong-Jiun; Chen, Yen-Fu; Lin, Uei-Tyng; Jiang, Shiang-Huei

    2012-01-01

    Proton accelerators in the energy range of approximately 200 MeV have become increasingly popular for cancer treatment in recent years. These proton therapy facilities usually involve bulky concrete or iron in their shielding design or accelerator structure. Simple shielding data, such as source terms or attenuation lengths for various proton energies and materials are useful in designing accelerator shielding. Understanding the appropriateness or uncertainties associated with these data, which are largely generated from Monte Carlo simulations, is critical to the quality of a shielding design. This study demonstrated and investigated the problems of deep-penetration calculations on the estimation of shielding parameters through an extensive comparison between the FLUKA and MCNPX calculations for shielding against a 200-MeV proton beam hitting an iron target. Simulations of double-differential neutron production from proton bombardment were validated by comparison with experimental data. For the concrete shielding, the FLUKA calculated depth–dose distributions were consistent with the MCNPX results, except for some discrepancies in backward directions. However, for the iron shielding, if FLUKA is used inappropriately then overestimation of neutron attenuation can be expected as shown by this work because of the multigroup treatment for low-energy neutrons in FLUKA. Two neutron energy group structures, three degrees of self-shielding correction, and two iron compositions were considered in this study. Significant variation of the resulting attenuation lengths indicated the importance of problem-dependent multigroup cross sections and proper modeling of iron composition in deep-penetration calculations.

  2. A study on the effect of crack in concrete structure in the point of radiation shielding

    International Nuclear Information System (INIS)

    Lee, Chang-Min; Lee, Yoon-Hee; Lee, Kun-Jai; Cho, Cheon-Hyung; Choi, Byung-Il; Lee, Heung-Young

    2005-01-01

    The saturation of South Korea's at-reactor (AR) spent fuel storage pools has created a necessity for additional spent fuel storage capacity. Because the South Korean government has a plan to increase the number of nuclear power plants to 27 units by 2016, the increase of spent nuclear fuel generation will be accelerated. Because there is no concrete plan for spent unclear fuel permanent disposal, the Korea hydraulic nuclear power company is planning to construct dry storage facility. Spent nuclear fuel from CANDU type nuclear power plant will be stored in MACSTOR-400 composed by reinforced concrete. Because it is new model, it has to be licensed. Life time estimation is needed for licensing. Deterioration of reinforced concrete structure is currently of great concern for life time estimation. The most significant form of deterioration is reinforcement corrosion that gives rise to crack the concrete structure. In this study, in order to estimate the life time of MACSTOR, the tendency of crack creation, propagation and the effect of crack in concrete structure against radiation shielding are investigated. Crack creation and propagation depends on concrete cover thickness and c/d ratio. The surface dose rate at the concrete shield in MACSTOR is simulated by MCNP code about several cases. Generally in the case of point source, surface dose rate depends on shape, width and length of crack. In the case of MACSTOR-400, It is estimated that crack is not dominant factor in the point of radiation shielding in less than 0.4mm of crack width. Above results will be helpful to estimate the life time of concrete structure as radiation shield

  3. The investigation of gamma and neutron shielding properties of concrete including basalt fibre for nuclear energy applications

    International Nuclear Information System (INIS)

    Nulk, H.; Ipbuker, C.; Gulik, V.; Tkaczyk, A.; Biland, A.

    2015-01-01

    In this study, we would like to draw attention to the prospect of basalt fibre as the main component for concrete reinforcement of NPP. This work describes the computational study of gamma attenuation parameters, the effective atomic number Z(eff) and the effective electron density N e (eff), of relatively light-weight concrete with chopped basalt fibre used as reinforcement in different mixture rates. We can draw the following conclusions. Basalt fibre is a relatively cheap material that can be used as reinforcement instead of metallic fibers. Basalt fibre has a similar specific gravity to that of concrete elements. Basalt fibre has high chemical and abrasion resistance. Basalt fibre has almost 10 times the tensile strength of steel re-bars. Gamma-ray attenuation coefficients increase with addition of basalt fibre into concrete in every case. The effective atomic number of the concrete increases with the addition of basalt fibre. The results show that basalt fibre reinforced concrete have improved shielding properties against gamma rays in comparison with regular concrete. This result is based on a regular concrete with only basalt fiber reinforcement. We estimate that with addition of standard aggregates for radiation shielding concrete, such as barite, magnetite or hematite, the shielding properties will increase exponentially

  4. Rapid detailed characterization of concrete shielding blocks utilizing internal natural radionuclides for calibration

    International Nuclear Information System (INIS)

    McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Norman, E.B.; Schoonover, M.R.

    1998-01-01

    Following many years of productive research, the 184-inch Cyclotron, the SuperHILAC, and the BEVALAC accelerators at the Berkeley Laboratory were closed, leaving thousands of concrete shielding blocks available for reuse, recycling, or disposal. The process history of these blocks precludes free release pending radiological characterization. This paper describes a procedure whereby a high efficiency shielded germanium spectrometer is used to rapidly characterize natural and man-made activity within the blocks. The spectrometer is moved up to the block and 5 minutes of data are collected at the point on the block that registers highest on a micro-R meter. Sensitivity is better than 1 pCi/g (0.037 Bq/g) for Co-60 and Eu-152, the prominent man-made activities observed. One-time calibration of the detector system is obtained from a sample of concrete, drilled with a hammer drill, counted in our low-background facility, and compared to crushed rock with known U, Th, and K activity. A simple relationship exists between the counts/minute observed in a characteristic gamma-ray peak and the activity in the block. (author)

  5. The AA disappearing under concrete shielding

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    When the AA started up in July 1980, the machine stood freely in its hall, providing visitors with a view through the large window in the AA Control Room. The target area, in which the high-intensity 26 GeV/c proton beam from the PS hit the production target, was heavily shielded, not only towards the outside but also towards the AA-Hall. However, electrons and pions emanating from the target with the same momentum as the antiprotons, but much more numerous, accompanied these through the injection line into the AA ring. The pions decayed with a half-time corresponding to approximately a revolution period (540 ns), whereas the electrons lost energy through synchrotron radiation and ended up on the vacuum chamber wall. Electrons and pions produced the dominant component of the radiation level in the hall and the control room. With operation times far exceeding original expectations, the AA had to be buried under concrete shielding in order to reduce the radiation level by an order of magnitude.

  6. Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    Science.gov (United States)

    Shelef, Yaniv; Bar-On, Benny

    2017-09-01

    The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Radiation effects in concrete for nuclear power plants – Part I: Quantification of radiation exposure and radiation effects

    International Nuclear Information System (INIS)

    Field, K.G.; Remec, I.; Pape, Y. Le

    2015-01-01

    Highlights: • Neutron and gamma rays fields in concrete biological shield are calculated. • An extensive database on irradiated concrete properties has been collected. • Concrete mechanical properties decrease beyond 1.0 × 10 19 n/cm 2 fluence. • Loss of properties appears correlated with radiation induced-aggregate swelling. • Commercial reactor bio-shield may experience long-term irradiation damage. - Abstract: A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation

  8. Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus

    NARCIS (Netherlands)

    Chen, Yuxuan; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    Miscanthus Giganteus (i.e. Elephant Grass) is a cost-effective and extensively available ecological resource in many agricultural regions. This article aims at a fundamental research on a bio-based lightweight concrete using miscanthus as aggregate, i.e. miscanthus lightweight concrete (MLC), with

  9. Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays

    International Nuclear Information System (INIS)

    Hassan, H.E.; Badran, H.M.; Aydarous, A.; Sharshar, T.

    2015-01-01

    In the present work the effect of concrete incorporation with two types of nano-lead compounds on its γ-ray shielding characteristics is investigated. The concrete samples were prepared according to the local standards of building materials and doped by different percentages of PbO and PbTiO_3 nano powders which were prepared using co-precipitation and oxalate precursor techniques, respectively. In addition, commercial PbO_2 powder additive was used to check the effect of particle size on concrete attenuation properties. The phase composition and particle size of all the lead-oxide additives were confirmed by XRD and TEM imaging. The γ-rays attenuation coefficients were measured as a function of the additive percentage of lead compounds for γ-ray energies of 662, 1173 and 1332 keV using "1"3"7Cs and "6"0Co sources. The microstructure changes occurred in the concrete samples doped with Pb compounds additives were probed using the positron annihilation spectroscopy (PAS) and the results were compared with that for normal concrete. The obtained data revealed that the overall defect density of the investigated samples, as seen by the positrons, decreases with increasing the nano-PbO contents which is in agreement with the determined values of the samples apparent densities. It was found that the γ-ray attenuation coefficient of concrete doped by nano-PbO is improved. The results are explained in the view of the fine structure enhanced modification and its impact on the γ-ray interaction probability at different energies.

  10. Double-layer neutron shield design as neutron shielding application

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  11. An accuracy estimation on neutron penetration calculation through concrete shield with PALLAS codes using bunched component nuclides of concrete

    International Nuclear Information System (INIS)

    Sasamoto, Nobuo; Kotegawa, Hiroshi

    1984-11-01

    In order to improve computational efficiency of PALLAS code, an accuracy is estimated on the neutron penetration calculation through a concrete shield, using bunched component nuclides of concrete. The calculated fast neutron flux is observed to depend weakly on how the nuclides are bunched. Contrary to this, the calculated thermal neutron fluxes are strongly dependent on the manner of bunching, mainly due to the fact that iron cross section has exceptionally large negative sensitivity to thermal neutron flux. (author)

  12. Using FLUKA to Study Concrete Square Shield Performance in Attenuation of Neutron Radiation Produced by APF Plasma Focus Neutron Source

    Science.gov (United States)

    Nemati, M. J.; Habibi, M.; Amrollahi, R.

    2013-04-01

    In 2010, representatives from the Nuclear Engineering and physics Department of Amirkabir University of Technology (AUT) requested development of a project with the objective of determining the performance of a concrete shield for their Plasma Focus as neutron source. The project team in Laboratory of Nuclear Engineering and physics department of Amirkabir University of Technology choose some shape of shield to study on their performance with Monte Carlo code. In the present work, the capability of Monte Carlo code FLUKA will be explored to model the APF Plasma Focus, and investigating the neutron fluence on the square concrete shield in each region of problem. The physical models embedded in FLUKA are mentioned, as well as examples of benchmarking against future experimental data. As a result of this study suitable thickness of concrete for shielding APF will be considered.

  13. Comprehensive analysis of shielding effectiveness for HDPE, BPE and concrete as candidate materials for neutron shielding

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    In the compact accelerator based DD neutron generator, the deuterium ions generated by the ion source are accelerated after the extraction and bombarded to a deuterated titanium target. The emitted neutrons have typical energy of ∼2.45MeV. Utilization of these compact accelerator based neutron generators of yield up to 10 9 neutron/second (DD) is under active consideration in many research laboratories for conducting active neutron interrogation experiments. Requirement of an adequately shielded laboratory is mandatory for the effective and safe utilization of these generators for intended applications. In this reference, we report the comprehensive analysis of shielding effectiveness for High Density Polyethylene (HDPE), Borated Polyethylene (BPE) and Concrete as candidate materials for neutron shielding. In shielding calculations, neutron induced scattering and absorption gamma dose has also been considered along with neutron dose. Contemporarily any material with higher hydrogenous concentration is best suited for neutron shielding. Choice of shielding material is also dominated by practical issues like economic viability and availability of space. Our computational analysis results reveal that utilization of BPE sheets results in minimum wall thickness requirement for attaining similar range of attenuation in neutron and gamma dose. The added advantage of using borated polyethylene is that it reduces the effect of both neutron and gamma dose by absorbing neutron and producing lithium and alpha particle. It has also been realized that for deciding upon optimum thickness determination of any shielding material, three important factors to be necessarily considered are: use factor, occupancy factor and work load factor. (author)

  14. Study of temperature effect on the physical properties of ilmenite-serpentine heat resistant concrete radiation shields

    International Nuclear Information System (INIS)

    Kany, A.M.I.; EL-Fouly, M.M.; EL-Gohary, M.I.; Makatious, A.S.; Kamal, S.M.

    1990-01-01

    A series of experimental studies have been carried out to determine the change in unit weigh, compressive strength, water content and neutron macroscopic cross section of a new type of concrete shields made from egyptian ilmenite and serpentine ores when heated for long period at temperatures up to 600 degree C. Results show that the unit weight of the cure concrete has a value of 2.98 Ton/M 3 and decreases with increasing temperature, while the compressive strength reaches a maximum value of 19 Ton/M 2 at 100 degree C. The differential thermal analysis (D.T.A.) of this concrete shows three endothermic peaks at 100 degree C, 48 degree C and 740 degree C. Also, the thermogravimetry analysis (T.G.A.) shows that the cure concrete retains about 11% water content of the total sample weigh and still retains 4.5% of its initial value when heated for long period at 600 degree C. Results also show that the neutron macroscopic cross section (for neutrons of energies < 1 MeV) of the ilmenite-serpentine heat resistant concrete decreases to 18.6% of its initial value after heating to 600 degree C

  15. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  16. Concrete Shielding For Radiation Safety And Unexpected Dangerous Inside Cobalt-60 Industrial Irradiator

    International Nuclear Information System (INIS)

    Keshk, A.B.; Aly, R.A.

    2011-01-01

    The study shows a proposed destruction inside one of three cobalt-60 industrial irradiators to determine and reduce the negative results, to improve and modify emergency plan to face terrorism works. The results show the performance of concrete shielding (walls and ceiling) contains the bad effect of dynamic pressures. The explosion forces are prevented to destructive by performance of their concrete shielding, which will contain the most components of devastated systems inside each irradiator after explosion. Shield penetration like electrical cable tunnels, pushers holes, hole with removable plug, product boxes openings, lens opening and ozone duct are affected badly by destruction. Through probability of transporting, some of devastated parts of broken radioactive cobalt- 60 pencils from inside radiation concreter room to outside (surrounded environment) are maintained and causing very danger radiation exposure by gamma rays outside irradiator. A necessity needs to modify emergency plan to prevent any explosive materials to enter inside the main building (irradiation sale) and also discovering any explosive materials which are placed inside the product boxes before passing to inside irradiator. The minimizing radiation exposure (2 mrem/h) inside underground radiation shelters are maintained by reducing radiation dose exerted from a nuclear explosion of 20 kT about 1 km away to a safe value, and calculating the protective factors of radiation main building basements are more than 40 (safety factor) as they are located under ground level, are surrounded by sandy soil and are constructed by concrete. The study shows the proposed basements of the main building maintain success to use as under ground safe radiation shelter (during emergency) with separate safe radiation trace. It begins from the main opening of irradiation sale and leads to underground proposed shelter through modified main stair

  17. Prediction of the strength of concrete radiation shielding based on LS-SVM

    International Nuclear Information System (INIS)

    Juncai, Xu; Qingwen, Ren; Zhenzhong, Shen

    2015-01-01

    Highlights: • LS-SVM was introduced for prediction of the strength of RSC. • A model for prediction of the strength of RSC was implemented. • The grid search algorithm was used to optimize the parameters of the LS-SVM. • The performance of LS-SVM in predicting the strength of RSC was evaluated. - Abstract: Radiation-shielding concrete (RSC) and conventional concrete differ in strength because of their distinct constituents. Predicting the strength of RSC with different constituents plays a vital role in radiation shielding (RS) engineering design. In this study, a model to predict the strength of RSC is established using a least squares-support vector machine (LS-SVM) through grid search algorithm. The algorithm is used to optimize the parameters of the LS-SVM on the basis of traditional prediction methods for conventional concrete. The predicted results of the LS-SVM model are compared with the experimental data. The results of the prediction are stable and consistent with the experimental results. In addition, the studied parameters exhibit significant effects on the simulation results. Therefore, the proposed method can be applied in predicting the strength of RSC, and the predicted results can be adopted as an important reference for RS engineering design

  18. The shielding calculation for the CN guide shielding assembly in HANARO

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, B. C.; Lee, K. H.; Kim, H.

    2006-01-01

    The cold neutron research facility in HANARO is under construction. The area including neutron guides and rotary shutter in the reactor hall should be shielded by the guide shielding assembly which is constructed of heavy concrete blocks and structure. The guide shielding assembly is divided into 2 parts, A and B. Part A is about 6.4 meters apart from the reactor biological shield and it is constructed of heavy concrete blocks whose density is above 4.0g/cm 3 . And part B is a fixed heavy concrete structure whose density is above 3.5g/cm 3 . The rotary shutter is also made with heavy concrete whose density is above 4.0g/cm 3 and includes 5 neutron guides inside. It can block the neutron beam by rotating when CNS is not operating. The dose criterion outside the guide shielding assembly is established as 12.5 μSv/hr which is also applied to reactor shielding in HANARO

  19. Shielded scanning electron microscope for radioactive samples

    International Nuclear Information System (INIS)

    Crouse, R.S.; Parsley, W.B.

    1977-01-01

    A small commercial SEM had been successfully shielded for examining radioactive materials transferred directly from a remote handling facility. Relatively minor mechanical modifications were required to achieve excellent operation. Two inches of steel provide adequate shielding for most samples encountered. However, samples reading 75 rad/hr γ have been examined by adding extra shielding in the form of tungsten sample holders and external lead shadow shields. Some degradation of secondary electron imaging was seen but was adequately compensated for by changing operating conditions

  20. Measurement of neutron diffusion length in heavy concrete

    International Nuclear Information System (INIS)

    Krejci, D.

    2007-04-01

    Using an aluminium sampler filled with heavy concrete the neutron diffusion length was determined, measuring thermal and fast neutrons over the whole beam hole with various threshold detectors using gold samples. These calculations should describe the neutron distribution in the whole concrete shield of the reactor and contribute to the investigation of the activation of the concrete shield using reactor parameters like operating time, power and neutron flux. Instrumentation, activation and positioning of the samples in the beam hole of the TRIGA Mark II reactor are described. (nevyjel)

  1. Remote sampling and analysis of highly radioactive samples in shielded boxes

    International Nuclear Information System (INIS)

    Kirpikov, D.A.; Miroshnichenko, I.V.; Pykhteev, O.Yu.

    2010-01-01

    The sampling procedure used for highly radioactive coolant water is associated with high risk of personnel irradiation and uncontrolled radioactive contamination. Remote sample manipulation with provision for proper radiation shielding is intended for safety enhancement of the sampling procedure. The sampling lines are located in an isolated compartment, a shielded box. Various equipment which enables remote or automatic sample manipulation is used for this purpose. The main issues of development of the shielded box equipment intended for a wider ranger of remote chemical analyses and manipulation techniques for highly radioactive water samples are considered in the paper. There were three principal directions of work: Transfer of chemical analysis performed in the laboratory inside the shielded box; Prevalence of computer-aided and remote techniques of highly radioactive sample manipulation inside the shielded box; and, Increase in control over sampling and determination of thermal-hydraulic parameters of the coolant water in the sampling lines. The developed equipment and solutions enable remote chemical analysis in the restricted volume of the shielded box by using ion-chromatographic, amperometrical, fluorimetric, flow injection, phototurbidimetric, conductometric and potentiometric methods. Extent of control performed in the shielded box is determined taking into account the requirements of the regulatory documents as well as feasibility and cost of the technical adaptation of various methods to the shielded box conditions. The work resulted in highly precise determination of more than 15 indexes of the coolant water quality performed in on-line mode in the shielded box. It averages to 80% of the total extent of control performed at the prototype reactor plants. The novel solutions for highly radioactive sample handling are implemented in the shielded box (for example, packaging, sample transportation to the laboratory, volume measurement). The shielded box is

  2. Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, D., E-mail: davide.micheli@uniroma1.it [“Sapienza” University of Rome, Department of Astronautic, Electric and Energy Engineering (DIAEE), Via Salaria 851, 00184 Rome (Italy); Pastore, R.; Vricella, A.; Morles, R.B.; Marchetti, M.; Delfini, A. [“Sapienza” University of Rome, Department of Astronautic, Electric and Energy Engineering (DIAEE), Via Salaria 851, 00184 Rome (Italy); Moglie, F.; Primiani, V. Mariani [Università Politecnica delle Marche, Department of Information Engineering (DII), Via Brecce Bianche 12, Ancona (Italy)

    2014-10-15

    Highlights: • The frequency band 0.75–1.12 GHz is exploited in mobile phone radio access network. • A lot of nanomaterial is needed for the measurement and no literature is available. • The manufacturing procedure is usually used for preparation of concrete composite. • High EM absorbing walls could be used to mitigate the human exposure to EM fields. • A shielding effectiveness of 50 dB is obtained for a 15 cm thick wall–3 wt% of CNT. - Abstract: The electromagnetic properties of carbon nanotube powder reinforced concretes are numerically and experimentally characterized. This typology of composite material is built by following the simple procedure usually adopted for the on-site concrete production. The dielectric parameters are investigated by means of waveguide measurements in the frequency band 0.75–1.12 GHz that is currently exploited in mobile phone radio access networks. The obtained results are used to compute the electromagnetic shielding effectiveness of large wall-shaped concrete structures. A shielding effectiveness up to 50 dB is obtained for a 15 cm thick wall when the carbon nanotube inclusion is raised up to 3 wt%.

  3. Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band

    International Nuclear Information System (INIS)

    Micheli, D.; Pastore, R.; Vricella, A.; Morles, R.B.; Marchetti, M.; Delfini, A.; Moglie, F.; Primiani, V. Mariani

    2014-01-01

    Highlights: • The frequency band 0.75–1.12 GHz is exploited in mobile phone radio access network. • A lot of nanomaterial is needed for the measurement and no literature is available. • The manufacturing procedure is usually used for preparation of concrete composite. • High EM absorbing walls could be used to mitigate the human exposure to EM fields. • A shielding effectiveness of 50 dB is obtained for a 15 cm thick wall–3 wt% of CNT. - Abstract: The electromagnetic properties of carbon nanotube powder reinforced concretes are numerically and experimentally characterized. This typology of composite material is built by following the simple procedure usually adopted for the on-site concrete production. The dielectric parameters are investigated by means of waveguide measurements in the frequency band 0.75–1.12 GHz that is currently exploited in mobile phone radio access networks. The obtained results are used to compute the electromagnetic shielding effectiveness of large wall-shaped concrete structures. A shielding effectiveness up to 50 dB is obtained for a 15 cm thick wall when the carbon nanotube inclusion is raised up to 3 wt%

  4. Analytical determination of traced elements in concrete samples used in nuclear reactors of the European Community

    International Nuclear Information System (INIS)

    May, S.; Piccot, D.

    1984-01-01

    In reactor dismantling residual radioacting of concrete used, especially in biological shield can brought problems for treatment and disposal. Radioactivity of concrete from reactors can be forecasted if element content is known. Elements producing long life radionuclides are: chlorine, calcium nickel, cobalt, niobium, europium and samarium. Neutron activation analysis is used for determination of these elements whithout chemical separation for Ca, Co, Eu and Sm and with radiochemical separation for Cl, Ni and Nb. A lot of elements, less interesting are also determined by gamma spectrometry after irradiation. It was possible to determine 29 elements in 21 concrete samples from different European Community reactors

  5. Comparison of some lead and non-lead based glass systems, standard shielding concretes and commercial window glasses in terms of shielding parameters in the energy region of 1 keV-100 GeV: A comparative study

    International Nuclear Information System (INIS)

    Kurudirek, Murat; Ozdemir, Yueksel; Simsek, Onder; Durak, Ridvan

    2010-01-01

    The effective atomic numbers, Z eff of some glass systems with and without Pb have been calculated in the energy region of 1 keV-100 GeV including the K absorption edges of high Z elements present in the glass. Also, these glass systems have been compared with some standard shielding concretes and commercial window glasses in terms of mean free paths and total mass attenuation coefficients in the continuous energy range. Comparisons with experiments were also provided wherever possible for glasses. It has been observed that the glass systems without Pb have higher values of Z eff than that of Pb based glasses at some high energy regions even if they have lower mean atomic numbers than Pb based glasses. When compared with some standard shielding concretes and commercial window glasses, generally it has been shown that the given glass systems have superior properties than concretes and window glasses with respect to the radiation-shielding properties, thus confirming the availability of using these glasses as substitutes for some shielding concretes and commercial window glasses to improve radiation-shielding properties in the continuous energy region.

  6. Evaluation of the concrete shield compositions from the 2010 criticality accident alarm system benchmark experiments at the CEA Valduc SILENE facility

    International Nuclear Information System (INIS)

    Miller, Thomas Martin; Celik, Cihangir; Dunn, Michael E; Wagner, John C; McMahan, Kimberly L; Authier, Nicolas; Jacquet, Xavier; Rousseau, Guillaume; Wolff, Herve; Savanier, Laurence; Baclet, Nathalie; Lee, Yi-kang; Trama, Jean-Christophe; Masse, Veronique; Gagnier, Emmanuel; Naury, Sylvie; Blanc-Tranchant, Patrick; Hunter, Richard; Kim, Soon; Dulik, George Michael; Reynolds, Kevin H.

    2015-01-01

    In October 2010, a series of benchmark experiments were conducted at the French Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE facility. These experiments were a joint effort between the United States Department of Energy Nuclear Criticality Safety Program and the CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems. This series of experiments consisted of three single-pulsed experiments with the SILENE reactor. For the first experiment, the reactor was bare (unshielded), whereas in the second and third experiments, it was shielded by lead and polyethylene, respectively. The polyethylene shield of the third experiment had a cadmium liner on its internal and external surfaces, which vertically was located near the fuel region of SILENE. During each experiment, several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor. Nearly half of the foils and TLDs had additional high-density magnetite concrete, high-density barite concrete, standard concrete, and/or BoroBond shields. CEA Saclay provided all the concrete, and the US Y-12 National Security Complex provided the BoroBond. Measurement data from the experiments were published at the 2011 International Conference on Nuclear Criticality (ICNC 2011) and the 2013 Nuclear Criticality Safety Division (NCSD 2013) topical meeting. Preliminary computational results for the first experiment were presented in the ICNC 2011 paper, which showed poor agreement between the computational results and the measured values of the foils shielded by concrete. Recently the hydrogen content, boron content, and density of these concrete shields were further investigated within the constraints of the previously available data. New computational results for the first experiment are now available

  7. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  8. Measurement of γ-Ray Attenuation Coefficient for Concrete with Different Aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeong Hwan [Jeju National University, Jeju (Korea, Republic of); Lee, Jea Hyung; Mun, Young Bum; Choi, Hyun Kook [Sungshin Cement Co, Sejong (Korea, Republic of); Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of)

    2016-05-15

    In this work, we used different aggregates in a concrete to examine their effect on gamma-ray shielding. In addition, attenuation coefficient has been evaluated using a gamma-ray measuring system. The attenuation coefficient represents the amount of attenuated radiation by the thickness of a given sample material. Shielding performance improvement is expected to effect on the increasing high-weight aggregate rather than unit weigh and it is consider that additional research is needed for mixing condition of aggregates. In this study, shielding performance of concrete was confirmed to increase, according to the increasing in unit weight and aggregate. However, Iron ore is the density greater than oxidizing slag gravel, but attenuation coefficient is lower than including oxidizing slag gravel. The demand of radiation shielding material for a safe transport and storage of radioactive materials increases rapidly with the commencement of the medium and low-level radioactive waste disposal facility. It is because radioactive materials from a nuclear reactor, spent nuclear fuels, fission products, and many industrial application of radiation influences on environment over a long period by releasing gamma-ray and neutron continuously. Typical radiation shielding materials are lead, boron, iron, water, heavy-weight concrete, etc. In heavy-weight concrete, oxidizing slag from an electric arc furnace, magnetite and barite are used as an aggregate. The radiation shielding rate of the heavy-weight concrete which used oxidizing slag was studied. Both size of coarse aggregate and experiment sample is a few cm thicknesses. Therefore, location of shielding material including metal component in sample is important, according to direction of radiation.

  9. Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation

    International Nuclear Information System (INIS)

    Almeida, A. T. Jr.; Nogueira, M.S.; Santos, M.A.P.; Campos, L.L.; Araújo, F. G. S.

    2015-01-01

    The attenuation coefficient depends on the incident photon energy and the nature of the materials. In order to minimize exposure to individuals. Barite concrete has been largely used as a shielding material in installations housing gamma radiation sources as well as X-ray generating equipment. This study was conducted to evaluate the efficacy of different mixtures of barite concrete for shielding in diagnostic X-ray rooms. The mass attenuation coefficient (μ/ρ). The mass attenuation coefficients have been measured by employing the CdTe detector model XR-100T. The distance between the source and the exposed surface of all samples was measured by SSD light indicator of machine which was 350 cm. The slope of the linear plot of the intensity transmitted versus specimen thickness would yield the attenuation coefficient. The mass attenuation coefficients (μ/ρ) were compared with the tabulations based upon the results of the XCOM program. The rectangular barite concrete blocks in different thicknesses from were used for the radiation attenuation test. The experimental values were compared with theoretical values WinXcom. The plots of the logarithm of transmitted intensity versus specimen thickness were linear for all the samples and the µ/ρ was obtained from the plots by linear regression over the 25%-2% transmission range, under good geometrical condition. There is a good agreement between theoretical and experimental values, within the 9%. In fact over the entire transmission range of 25-2% the experimental and theoretical values agree well for both the energies. (authors)

  10. Definition of a concrete bio-decontamination process in nuclear substructures

    International Nuclear Information System (INIS)

    Jestin, A.

    2005-05-01

    The decontamination of sub-structural materials represents a stake of high-importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those micro-organisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  11. Study of local Agregate for Gamma radiation concrete shield; Studi pemakaian Agregat lokal pada pembuatan beton perisai radiasi Gamma

    Energy Technology Data Exchange (ETDEWEB)

    Tochrul-Binowo,; Endro-Kismolo,; Darsono, [Yogyakarta Nuclear Research Centre, National Atomic Energy Agency, Yogyakarta (Indonesia)

    1996-04-15

    Investigation on the composition of gamma radiation concrete shield made of local barite, manganese fine and coarse aggregates from Kulon Progo, Yogyakarta has been done. The purpose of the research was to find out the quality of these local material for an aggregate of gamma radiation concrete shield. The research was done where each mineral was used as coarse aggregate and the fine aggregate from Kulon Progo was used as fine basic aggregate. Firstly a normal concrete was made by mixing cement, fine aggregate, coarse aggregate and water at a weight ratio of cement: fine aggregate: coarse: water 1: 2.304: 3.456: 0.58. The gamma radiation absorption capacity of the concrete tested by using Cs-137 as source standard. The same method was done on barite concrete at the weight ratio of cement: fine aggregate: barite aggregate: water 1: 2.303: 3.456: 0.58 and manganese concrete at the weight ratio of cement: fine aggregate: manganese aggregate: and water 1: 1.896: 2.844: 0.58. The result of the study showed that the gamma radiation absorption capacity of barite aggregate was greater than that of normal concrete and manganese concrete. The coefficient linear attenuation (for 6.0 cm thickness) of each concrete were {mu} barite concrete = 0.23071 cm{sup -1}, {mu} manganese concrete = 0.08401 cm{sup -1} and {mu} normal concrete = 0.1669 cm{sup -1}.

  12. Availability of special local rock materials for using in radiation shielding concrete

    International Nuclear Information System (INIS)

    Rammah, S.; Al-Hent, R.; Aissa, M.; Yousef, S.

    2003-11-01

    Concrete is an excellent and versatile material for using in radiation shielding of nuclear power plants, hot cells and medical facilities that deal with ionizing radiations, Because it is easy controlled with composition and density by using aggregates with high specific gravity such as Barite, Hematite, Magnetite, or minerals with high hydrogen content such as Serpentine. This research offered the essential information about local resources rocks and minerals can be used in this inclination, as aggregates for heavy/high hydrion concrete. The present work indicates that iron ores, which located in RAJO-EFREEN is better than other locations like ANTI-LEBANON or AL-KADMOUS. While the heavy beach sands in AL-BASSIT are the best compared with other locations on the Syrian seaside, because it has acceptable percentage of heavy mineral. Barite concretions were found in KALAMON, HOMS and other sites, which its percentages approach 50%, but however in small quantities. Finally, high hydrion concrete can be used by Serpentinite were found with high Serpentine percentage in BAYER and BASSIT blocks. (author)

  13. Concrete shielding of neutron radiations of plasma focus and dose examination by FLUKA

    Science.gov (United States)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2013-07-01

    Plasma Focus (PF) is among those devices which are used in plasma investigations, but this device produces some dangerous radiations after each shot, which generate a hazardous area for the operators of this device; therefore, it is better for the operators to stay away as much as possible from the area, where plasma focus has been placed. In this paper FLUKA Monte Carlo simulation has been used to calculate radiations produced by a 4 kJ Amirkabir plasma focus device through different concrete shielding concepts with various thicknesses (square, labyrinth and cave concepts). The neutron yield of Amirkabir plasma focus at varying deuterium pressure (3-9 torr) and two charging voltages (11.5 and 13.5 kV) is (2.25 ± 0.2) × 108 neutrons/shot and (2.88 ± 0.29) × 108 neutrons/shot of 2.45 MeV, respectively. The most influential shield for the plasma focus device among these geometries is the labyrinth concept on four sides and the top with 20 cm concrete.

  14. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  15. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  16. ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLE PBC-44.2

    Energy Technology Data Exchange (ETDEWEB)

    Best, D.; Cozzi, A.; Reigel, M.

    2012-12-20

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Sample PBC-44.2 was received on 9/20/2012 and analyzed. The average total density measured by the ASTM method C 642 was 2.03 g/cm{sup 3}, within the lower bound of 1.88 g/cm3. The average partial hydrogen density was 6.64E-02 g/cm{sup 3} as measured using method ASTM E 1311 and met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density was 1.70E-01 g/cm{sup 3} which met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method.

  17. ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLES POURED AUGUST 29, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Best, D.; Cozzi, A.; Reigel, M.

    2012-12-20

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples poured 8/29/12 were received on 9/20/2012 and analyzed. The average total density of each of the samples measured by the ASTM method C 642 was within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density of samples 8.6.1, 8.7.1, and 8.5.3 as measured using method ASTM E 1311 met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density of each sample met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method. The average partial hydrogen density of samples 8.5.1, 8.6.3, and 8.7.3 did not meet the lower bound. The samples, as received, were not wrapped in a moist towel as previous samples and appeared to be somewhat drier. This may explain the lower hydrogen partial density with respect to previous samples.

  18. Investigation of the use of Ishiagu Galena Concrete in E-M Radiation Sheilding

    Directory of Open Access Journals (Sweden)

    Gabriel Ndubisi EGWUONWU

    2012-08-01

    Full Text Available Galena samples, collected from Ishiagu, south-eastern Nigeria, were used to make concretes for experimental radiation shielding. The concretes were moulded into cylindrical tablets of various densities in order to ascertain their attenuation capability to some electromagnetic radiations. Blue visible light and gamma-ray (455-500 nm sourced from cobolt-60, were transmitted through the concretes and detected with the aid of Op-Amp and digital Geiger-Muller Counter respectively. The absorption coefficients of the samples of thicknesses in the range of 1.00 mm – 5.00 cm were determined. Results obtained show that a typical Ishiagu galena concrete of about 2.80 g/cm3 has the capacity of shielding visible blue light with about 2.51 mm TVL and 0.81 mm HVL. It also shows that the concrete of similar density can optimally shield gamma radiation with about 5.06 cm TVL and 1.53 cm HVL. The results of the investigation however, suggest the shielding and engineering properties of the galena sourced from Ishiagu. A database of shielding strength for the insitu galena was established hence, can serve as suitable platform for quality and quantity control in radiation shielding technology and can be used in high voltage radiotherapy rooms and nuclear reactors.

  19. Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method - Version 2

    CERN Document Server

    Žukauskaite, A; Plukiene, R; Plukis, A

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.

  20. A study of gamma shielding

    International Nuclear Information System (INIS)

    Roogtanakait, N.

    1981-01-01

    Gamma rays have high penetration power and its attenuation depends upon the thickness and the attenuation coefficient of the shield, so it is necessary to use the high density shield to attenuate the gamma rays. Heavy concrete is considered to be used for high radiation laboratory and the testing of the shielding ability and compressibility of various types of heavy concrete composed of baryte, hematite, ilmenite and galena is carried out. The results of this study show that baryte-ilmenite concrete is the most suitable for high radiation laboratory in Thailand

  1. A very sensitive LSC procedure to determine Ni-63 in environmental samples, steel and concrete

    International Nuclear Information System (INIS)

    Scheuerer, C.; Schupfner, R.; Schuettelkopf, H.

    1995-01-01

    This procedure to determine Ni-63 contributes to a safe and economically reasonable decommissioning of nuclear power plants. Co-60, Fe-55 and Ni-63 are the most abundant long-lived radionuclides associated with contaminated piping, hardware and concrete for a period of several decades of years after shutdown. Samples are carefully ashed leached, or dissolved by suitable mixtures of acids. The analysis starts with the absorption Ni 2+ on the chelating resin CHELEX 100. The next purification steps include an anionic exchange column and a precipitation as Ni-dimethyl-glyoxime, which is extracted into chloroform. After reextraction with sulfuric acid the solution containing Ni 2+ is mixed with a scintillation cocktail and counted in an anticoincidence shielded LSC. The decontamination factors are determined for all important artificially and naturally occurring radionuclides ranging form above 10 4 to 10 9 . The chemical yield adopts a value of (95±5)%. Up to maximum sample amounts of 0.4 g steel, 5 g concrete and about 100 g of environmental samples the detection limits are about 5 mBq per sample or 12 mBq/g steel, 1 mBq/g concrete and 0.05 mBq/g environmental sample at a counting time of 1000 minutes. (author) 16 refs.; 2 figs.; 2 tabs

  2. Thermal neutron shield and method of manufacture

    Science.gov (United States)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  3. Modeling of neutron and photon transport in iron and concrete radiation shields by using Monte Carlo method

    CERN Document Server

    Žukauskaitėa, A; Plukienė, R; Ridikas, D

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.

  4. Shielding properties of protective thin film coatings and blended concrete compositions for high level waste storage packages

    International Nuclear Information System (INIS)

    Fusco, Michael A.; Winfrey, Leigh; Bourham, Mohamed A.

    2016-01-01

    Highlights: • Measured linear attenuation coefficients are the same for bare and coated steels. • Gamma mean free path is much larger than coating thickness; buildup is negligible. • ‘Concrete-6’ reduces exposure rate outside spent fuel cask significantly over ordinary concrete. - Abstract: Various thin film coatings have been proposed to protect stainless steel high level waste (HLW) containers from premature failure due to localized corrosion, hydrogen embrittlement, and mechanical wear. These coatings include TiN, ZrO 2 , MoS 2 , TiO 2 , and Al 2 O 3 , to be deposited either in multiple layers or as a thicker, single-layer composite. Linear attenuation coefficients of these materials have been simulated using MicroShield and measured experimentally for various photon energies. Additionally, spent fuel casks with overpacks made of two different types of concrete were simulated to compare exposure rate at the cask surface. In the energy range that is significant for high level waste storage all coating materials possess very similar attenuation behavior. A specialty concrete, containing magnetite (Fe 3 O 4 ) and lead oxide (PbO), reduces the exposure rate at the outer surface of the overpack by several orders of magnitude. The higher-Z elements not present in ordinary concrete greatly increase attenuation of intermediate-energy gammas (0.4–1.0 MeV). The thin film coatings do not affect the shielding capabilities of the HLW packaging, as their total proposed thickness is nearly three orders of magnitude less than the mean free path (MFP) of the primary photons of interest.

  5. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  6. New Medium for Isolation of Bacteria From Cement Kiln Dust with a Potential to Apply in Bio-Concrete

    Science.gov (United States)

    Alshalif, A. F.; Irwan, J. M.; Othman, N.; Al-Gheethi, A.

    2018-04-01

    The present study aimed to introduce a new isolation medium named kiln dust medium (KDM) for recovering of bacteria from cement kiln dust with high pH (>pH 11) without the need for nutrients additives. The cement kiln dust samples were collected from five different areas of Cement Industries of Malaysia Berhad (CIMA). The bacterial isolates were recovered on KDM by direct plating technique. The chemical components for all collected samples were identified using X-ray fluorescence (XRF). The primary identification for the bacterial isolates indicated that these bacteria belongs to Bacillus spp. Based on the morphological characteristics. The growth curve of the bacterial strains was monitored using the optical density (OD) with 650 nm wavelength, which in role confirmed that all isolated bacteria had the ability to grow successfully in the proposed medium. The ability of the bacterial strains to grow at high pH reflects their potential in the bio-concrete applications (aerated and non-aerated concrete). These findings indicated that the cement kiln dust samples from Cement Industries represent the most appropriate source for bacteria used in the bioconcrete.

  7. Present status of NMCC and sample preparation method for bio-samples

    International Nuclear Information System (INIS)

    Futatsugawa, S.; Hatakeyama, S.; Saitou, S.; Sera, K.

    1993-01-01

    In NMCC(Nishina Memorial Cyclotron Center) we are doing researches on PET of nuclear medicine (Positron Emission Computed Tomography) and PIXE analysis (Particle Induced X-ray Emission) using a small cyclotron of compactly designed. The NMCC facilities have been opened to researchers of other institutions since April 1993. The present status of NMCC is described. Bio-samples (medical samples, plants, animals and environmental samples) have mainly been analyzed by PIXE in NMCC. Small amounts of bio-samples for PIXE are decomposed quickly and easily in a sealed PTFE (polytetrafluoroethylene) vessel with a microwave oven. This sample preparation method of bio-samples also is described. (author)

  8. Discussion on the Standardization of Shielding Materials — Sensitivity Analysis of Material Compositions

    Directory of Open Access Journals (Sweden)

    Ogata Tomohiro

    2017-01-01

    Full Text Available The overview of standardization activities for shielding materials is described. We propose a basic approach for standardizing material composition used in radiation shielding design for nuclear and accelerator facilities. We have collected concrete composition data from actual concrete samples to organize a representative composition and its variance data. Then the sensitivity analysis of the composition variance has been performed through a simple 1-D dose calculation. Recent findings from the analysis are summarized.

  9. Effect of neutrons scattered from boundary of neutron field on shielding experiment

    International Nuclear Information System (INIS)

    Ogawa, Tatsuhiko; Abe, Takuya; Kosako, Toshiso; Iimoto, Takeshi

    2009-01-01

    Neutron shielding experiment with 49 cm-thick ordinary concrete was carried out at the reactor 'Yayoi' The University of Tokyo. System of this experiment is enclosed by heavy concrete where neutrons backscattered from heavy concrete likely affected neutron flux on the back surface of shielding concrete. Reaction rate of 197 Au(n, γ), cadmium covered 197 Au(n, γ) and 115 In(n, n') in the shielding concrete was measured using foil activation method. Neutron transport calculation was carried out in order to simulate reaction rate by calculating neutron spectra and convoluting with neutron capture cross-section in neutron shielding concrete. Comparison was made between calculated reaction rate and experimental one, and almost satisfactory agreement was found except for the back surface of shielding. To compose adequate simulation model, description of heavy concrete behind the shielding was thought to be of importance. For example, disregarding neutrons backscattered from heavy concrete, calculation underestimated reaction rate by the factor of 10. In another example, assuming that chemical composition of heavy concrete is equal to the composition adopted from a literature, the reaction rate was overestimated by factor of 5. By making the composition of heavy concrete equal to that based on facility design, overestimation was found to be the factor of 2. Therefore, adequate description of chemical composition of heavy concrete is found to be of importance in order to simulate neutron induced reaction rate on the back surface of neutron shielding concrete in shielding experiment performed in a system enclosed by heavy concrete. (author)

  10. Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations.

    Science.gov (United States)

    Mesbahi, Asghar; Ghiasi, Hosein

    2018-06-01

    The shielding properties of ordinary concrete doped with some micro and nano scaled materials were studied in the current study. Narrow beam geometry was simulated using MCNPX Monte Carlo code and the mass attenuation coefficient of ordinary concrete doped with PbO 2 , Fe 2 O 3 , WO 3 and H 4 B (Boronium) in both nano and micro scales was calculated for photon and neutron beams. Mono-energetic beams of neutrons (100-3000 keV) and photons (142-1250 keV) were used for calculations. The concrete doped with nano-sized particles showed higher neutron removal cross section (7%) and photon attenuation coefficient (8%) relative to micro-particles. Application of nano-sized material in the composition of new concretes for dual protection against neutrons and photons are recommended. For further studies, the calculation of attenuation coefficients of these nano-concretes against higher energies of neutrons and photons and different particles are suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Gamma ray attenuation studies on concrete reinforced with coconut shells

    International Nuclear Information System (INIS)

    Vishnu, C.V.; Antony, Joseph

    2017-01-01

    The fact that radiation could be harmful has led to the development of wide variety of shields to protect against it. For nuclear radiation shielding, a larger quantity of shielding material is required and therefore, the study of propagation of radiation flux in shielding materials is an essential requirement for shield design. Concrete has proven to be an excellent and versatile shielding material with well-established linear attenuation for neutrons and gamma rays. Coconut being naturally available, it can be used readily in concrete, still maintaining almost all the qualities of the original form of concrete. Concrete obtained using coconut shell as a coarse aggregate satisfies the requirements of concrete. Coconut shell aggregate possess acceptable strength which is required for structural concrete

  12. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mengge [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Xue, Xiangxin, E-mail: xuexx@mail.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Yang, He; Liu, Dong [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Wang, Chao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Zhefu [Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    Highlights: • A novel comprehensive utilization method for vanadium slag is proposed. • Shielding properties of vanadium slag are better than ordinary concrete. • HVL of vanadium slag is between Lead and concrete to shield {sup 60}Co gamma ray. • HVL of composite is higher than concrete when adding amount of vanadium slag is 900. • Composite can be used as injecting mortar for cracks developed in concrete shields. - Abstract: New exploration of vanadium slag as gamma ray shielding material was proposed, the shielding properties of vanadium slag was higher than concrete when the energy of photons was in 0.0001 MeV–100000 MeV. Vanadium slag/epoxy resin composites were prepared, shielding and material properties of materials were tested by {sup 60}Co gamma ray, simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy, respectively. The results showed that the shielding properties of composite would be better with the increase of vanadium slag addition amount. The HVL (half value layer thickness) of vanadium slag was between Lead and concrete while composite was higher than concrete when the addition amount of vanadium slag was 900 used as material to shield {sup 60}Co gamma ray, also the resistance temperature of composite was about 215 °C and the bending strength was over 10 MPa. The composites could be used as injecting mortar for cracks developed in biological concrete shields, coating for the floor of the nuclear facilities, and shielding materials by itself.

  13. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    Science.gov (United States)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  14. AP1000 shield building: a constructability challenge

    International Nuclear Information System (INIS)

    Di Giuseppe, Giovanni; Bonanno, Domenico

    2010-01-01

    The AP1000 Shield Building, an enhanced structure which surrounds the containment vessel, consists of standard Reinforced Concrete (RC) and composite Steel and Concrete (SC) construction. In the SC module the surface steel plates, (with attached shear studs and angles) filled with concrete, act as the steel reinforcement in concrete. This is a relatively new design technology that required the appropriate use of structural codes, supplemented with information from applicable tests on similar composite steel and concrete construction. Being a newer design concept, existing codes do not provide explicit guidance on SC construction so a review of literature and test data on composite structures similar to AP1000 shield building was done in order to confirm the technical basis for the design. The SC walls, air inlet structure and roof of the Shield Building will be constructed using modular construction practices and then transported to site and lifted into place. These modules, working also as permanent form-work, will be filled with high strength Self- Consolidating Concrete. (SCC) This paper provides a focused and integrated presentation of the enhanced shield building design methodology, testing, constructability and inspection. (authors)

  15. Boron carbide nanostructures: A prospective material as an additive in concrete

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  16. A study on the calculation of the shielding wall thickness in medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Ins. of Radiological and Medical Science, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Inje University Busan Paik Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological science, college of health sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-06-15

    The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50⁓100 cm for pure concrete and concrete with Boron+polyethylene at 80⁓100 cm. The neutron shielding was calculated 100⁓140 cm for pure concrete and concrete with Boron+polyethylene at 90⁓100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.

  17. Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material

    International Nuclear Information System (INIS)

    Tapan, Mücip; Yalçın, Zeynel; İçelli, Orhan; Kara, Hüsnü; Orak, Salim; Özvan, Ali; Depci, Tolga

    2014-01-01

    Highlights: • Radiation shielding properties of pumice materials are studied. • The relationship between physical, chemical and electro-kinetic properties pumice samples is identified. • The photon atomic parameters are important for the absorber peculiarity of the pumices. - Abstract: Pumice has been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. In this study, some gamma-ray photon absorption parameters such as the total mass attenuation coefficients, effective atomic number and electronic density have been investigated for six different pumice samples. Numerous values of energy related parameters from low energy (1 keV) to high energy (100 MeV) were calculated using WinXCom programme. The relationship between radiation shielding properties of the pumice samples and their physical, chemical and electro-kinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between photon energy absorption parameters and density and SiO 2 , Fe 2 O 3 , CaO, MgO, TiO 2 content of pumice samples in this study. It is found that photon energy absorption parameters are not related to electro-kinetic properties of pumice samples

  18. Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete.

    Science.gov (United States)

    Seifan, Mostafa; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-01-01

    Self-healing mechanisms are a promising solution to address the concrete cracking issue. Among the investigated self-healing strategies, the biotechnological approach is distinguished itself by inducing the most compatible material with concrete composition. In this method, the potent bacteria and nutrients are incorporated into the concrete matrix. Once cracking occurs, the bacteria will be activated, and the induced CaCO 3 crystals will seal the concrete cracks. However, the effectiveness of a bio self-healing concrete strictly depends on the viability of bacteria. Therefore, it is required to protect the bacteria from the resulted shear forces caused by mixing and drying shrinkage of concrete. Due to the positive effects on mechanical properties and the high compatibility of metallic nanoparticles with concrete composition, for the first time, we propose 3-aminopropyltriethoxy silane-coated iron oxide nanoparticles (APTES-coated IONs) as a biocompatible carrier for Bacillus species. This study was aimed to investigate the effect of APTES-coated IONs on the bacterial viability and CaCO 3 yield for future application in the concrete structures. The APTES-coated IONs were successfully synthesized and characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results show that the presence of 100 μg/mL APTES-coated IONs could increase the bacterial viability. It was also found that the CaCO 3 -specific yield was significantly affected in the presence of APTES-coated IONs. The highest CaCO 3 -specific yield was achieved when the cells were decorated with 50 μg/mL of APTES-coated IONs. This study provides new insights for the application of APTES-coated IONs in designing bio self-healing strategies.

  19. Benchmark experiments of dose distributions in phantom placed behind iron and concrete shields at the TIARA facility

    International Nuclear Information System (INIS)

    Nakane, Yoshihiro; Sakamoto, Yukio; Tsuda, Shuichi

    2004-01-01

    To verify the calculation methods used for the evaluations of neutron dose at the radiation shielding design of the high-intensity proton accelerator facility (J-PARC), dose distributions in a plastic phantom of 30x30x30 cm 3 slab placed behind iron and concrete test shields were measured by using a tissue equivalent proportional counter for 65-MeV quasi-monoenergetic neutrons generated from the 7 Li(p,n) reactions with 68-MeV protons at the TIARA facility. Dose distributions in the phantom were calculated by using the MCNPX and the NMTC/JAM-MCNP codes with the flux-to-dose conversion coefficients prepared for the shielding design of the facility. The comparison results show the calculated results were in good agreement with the measured ones within 20%. (author)

  20. Shielding of radiation fields generated by 252Cf in a concrete maze. Part 2 -- Simulation

    International Nuclear Information System (INIS)

    Fasso, A.; Ipe, N.E.; Reyna, A.

    1998-03-01

    A streaming experiment performed in a concrete maze of shape and size typical of a radiotherapy room was simulated with the Monte Carlo program FLUKA. The purpose of the calculation was to test the performance of the code in the low energy neutron range, and at the same time to provide additional information which could help in optimizing shielding of medical facilities. Instrument responses were calculated at different maze locations for several experimental configurations and were compared with measurements. In addition, neutron and gamma fluence, ambient dose equivalent and effective dose were calculated at the same positions. Both sources used in the experiment, namely a bare 252 Cf source and one shielded by a tungsten shell 5 cm thick, were considered in the simulation

  1. Non destructive Testing (NDT) of concrete containing hematite

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of Non-destructive ultrasonic and rebound hammer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/c) and types of fine aggregate. All samples were cured in water for 7 days and then tested after 28 days. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  2. Calculations of the photon dose behind concrete shielding of high energy proton accelerators

    International Nuclear Information System (INIS)

    Dworak, D.; Tesch, K.; Zazula, J.M.

    1992-02-01

    The photon dose per primary beam proton behind lateral concrete shieldings was calculated by using an extension of the Monte Carlo particle shower code FLUKA. The following photon-producing processes were taken into account: capture of thermal neutrons, deexcitation of nuclei after nuclear evaporation, inelastic neutron scattering and nuclear reactions below 140 MeV, as well as photons from electromagnetic cascades. The obtained ratio of the photon dose to the neutron dose equivalent varies from 8% to 20% and it well compares with measurements performed recently at DESY giving a mean ratio of 14%. (orig.)

  3. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    International Nuclear Information System (INIS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-01-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi_2O_3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μ_m) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Z_e_f_f) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  4. Nuclear radiation and the properties of concrete

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1983-08-01

    Concrete is used for structures in which the concrete is exposed to nuclear radiation. Exposure to nuclear radiation may affect the properties of concrete. The report mentions the types of nuclear radiation while radiation damage in concrete is discussed. Attention is also given to the effects of neutron and gamma radiation on compressive and tensile strength of concrete. Finally radiation shielding, the attenuation of nuclear radiation and the value of concrete as a shielding material is discussed

  5. Neutron shielding properties of boron-containing ore and epoxy composites

    International Nuclear Information System (INIS)

    Li Zhifu; Xue Xiangxin

    2011-01-01

    Using the boron-containing iron ore concentrate and boron-rich slag as studying object, the starting materials were got after the specific green ore containing boron dressing in China and blast furnace separation respectively. Monte-Carlo method was used to study the effect of the boron-containing iron ore concentrate and boron-rich slag and their composites with epoxy on the neutron shielding abilities. The reasons that affecting the shielding materials properties was discussed and the suitable proportioning of boron-containing ore to epoxy composites was confirmed; the 14.1 MeV fast neutron removal cross section and the total thermal neutron attenuation coefficient were obtained and compared with that of the common used concrete. The results show that the shielding property of 14.1 MeV fast neutron is mainly concerned with the low-Z elements in the shielding materials, the thermal neutron shielding ability is mainly concerned with boron concentrate in the composite, the attenuation of the accompany γ-ray photon is mainly concerned with the high atom number elements content in the ore and the density of the shielding material. The optimum Janume fractions of composites are in the range of 0.4-0.6 and the fast neutron shielding properties are similar to concrete while the thermal neutron shielding properties are higher than concrete. The composites are expected to be used as biological concrete shields crack injection and filling of the anomalous holes through the concrete shields around the radiation fields or directly to be prepared as shielding materials.(authors)

  6. Measurement of neutron activation in concrete samples

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.

    2000-01-01

    The results of activation studies of ordinary and barytes concrete samples relevant for research reactor decommissioning are given. Five important long-lived radioactive isotopes ( 54 Mn, 60 Co, 65 Zn, 133 Ba, and 152 Eu) were identified from the gamma-ray spectra measured in the irradiated concrete samples. Activation of these samples was also calculated using ORIGEN2 code. Comparison of calculated and measured results is given. (author)

  7. Method of constructing shielding wall

    International Nuclear Information System (INIS)

    Nagao, Tetsuya.

    1990-01-01

    For instance, surfaces of lead particles each formed into a sphere of about 0.5 to 0.3 mm grain size are coated with a coating material of a synthetic resin comprising a polymeric material such as teflon. Subsequently, the floated lead particle are kneaded with concrete materials and then poured into a molding die by way of a hose. After coagulation, the molding die is removed to complete shielding walls in which lead particles are scattered substantially at an equal distance. In this way, since the lead particles are mixed into the shielding walls, shielding effects can be improved by so much as the lead particles are mixed, thereby enabling to reduce the thickness of the shielding walls. Further, since the lead particles are coated with the coating material, the lead particles are insulated from the concrete materials, thereby enabling to prevent the corrosion of the lead particles. Furthermore, since the lead particles and the concrete materials can be transported with ease, operation labors can be reduced. (T.M.)

  8. Concrete for γ radiation shielding

    International Nuclear Information System (INIS)

    Azevedo e Souza, A.C. de; Rogers, John Douglas

    1980-01-01

    The attenuation characteristics of γ radiation in concrete slabs, considering their mechanical resistence and densities were determined. One heavy concrete which was used, was prepared using as additives iron ore and Fe 2 O 3 pellets in various grain sizes. Fortran programs were used for analysing data and determining the absorption coefficients and attenuation factors. (Author) [pt

  9. Concrete for. gamma. radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo e Souza, A.C. (Rio de Janeiro Univ. (Brazil). Inst. de Quimica); Rogers, J D [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1980-06-01

    The attenuation characteristics of ..gamma.. radiation in concrete slabs, considering their mechanical resistence and densities were determined. One heavy concrete which was used, was prepared using as additives iron ore and Fe/sub 2/ O/sub 3/ pellets in various grain sizes. Fortran programs were used for analysing data and determining the absorption coefficients and attenuation factors.

  10. Characterization of High Density Concrete by Ultrasonic Goniometer

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismail; Noor Azreen Masenwat; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of ultrasonic goniometer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/ c) and types of fine aggregate. All samples were cured in water for 7 days. After 28 days of casting, the concrete cubes were then cut into small size of about 10 mm x 20 mm x 30 mm so that it can be fitted into goniometer specimen holder. From this measurement, longitudinal, shear and surface Rayleigh waves in the concrete can be determined. The measurement results are explained and discussed. (author)

  11. The optimum shielding for a power reactor using local components

    International Nuclear Information System (INIS)

    AlHajali, S.; Kharita, M. H.; Yousef, S.; Naoom, B.; Al-Nassar, M.

    2009-07-01

    Some local concrete mixtures have been picked out (selected) to be studied as shielding concrete for prospective nuclear power reactor in Syria. This research has interested in the attenuation of gamma radiation and neutron fluxes by these local concretes in the ordinary conditions. In addition to the heat effect on the shielding and physical properties of local concrete. Furthermore the neutron activation of the elements of the local concrete mixtures have been studied that for selection the low-activation materials (low dose rate and short half life radioisotopes). In this way biological shielding for nuclear reactor can be safe during operation of nuclear power reactor, in addition to be low radioactive waste after decommissioning the reactor. (author)

  12. Shielding of radiation fields generated by {sup 252}Cf in a concrete maze. Part 2 -- Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A.; Ipe, N.E.; Reyna, A. [Stanford Univ., CA (US). Stanford Linear Accelerator Center; McCall, R.C. [McCall Associates, Woodside, CA (US)

    1998-03-01

    A streaming experiment performed in a concrete maze of shape and size typical of a radiotherapy room was simulated with the Monte Carlo program FLUKA. The purpose of the calculation was to test the performance of the code in the low energy neutron range, and at the same time to provide additional information which could help in optimizing shielding of medical facilities. Instrument responses were calculated at different maze locations for several experimental configurations and were compared with measurements. In addition, neutron and gamma fluence, ambient dose equivalent and effective dose were calculated at the same positions. Both sources used in the experiment, namely a bare {sup 252}Cf source and one shielded by a tungsten shell 5 cm thick, were considered in the simulation.

  13. Concrete density estimation by rebound hammer method

    International Nuclear Information System (INIS)

    Ismail, Mohamad Pauzi bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite

  14. Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    El-Samrah, Moamen G.; Abdel-Rahman, Mohamed A.E. [Nuclear Engineering Department, Military Technical College Kobry El-kobbah, Cairo (Egypt); Kany, Amr M.I. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2018-02-01

    Ordinary concrete and those of different compositions are regarded as suitable material in many applications concerning with gamma and neutron radiation shielding purposes. They are widely used in nuclear power plant, medical facilities, nuclear shelters, and for radioactive materials transportation as well as storage of radioactive wastes. In this study four different concrete mixes were prepared with the following different types of coarse aggregates: dolomite, barite, goethite, and steel slag. The effect of changes in the fine aggregates, selected to be 50 % local sand and 50 % limonite with addition of 10 % silica fume (SF) and 10 % fly ash (FA) by replacement of the total cement weight, on the performance of the samples was also investigated. To examine the performance of such samples for radiation shielding applications, a set of physical, mechanical, and radiation attenuation properties was studied and compared with those of ordinary concrete. This investigation includes compressive strength, slump test, bulk density, ultrasonic pulse velocity test, and gamma rays attenuation measurements for the different samples. A verification of the experimental results concerning the radiation attenuation measurements was performed using WinXcom program (Version 3.1). The experimental results revealed that all concrete mixes; goethite-limonite concrete (G.L), barite-limonite concrete (B.L), steel slag-limonite concrete (S.L) and dolomite concrete (D.C) have good physical and mechanical properties that successfully satisfying them as high performance concretes. In addition the barite-limonite and the steel slag-limonite have the higher γ-ray attenuation coefficients at low and high energy range and hence have a better radiation shielding. The obtained results from WinXcom program calculations showed a good agreement with the experimental results concerning γ-ray attenuation measurements for the studied concrete mixes. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGa

  15. RADSHI: shielding calculation program for different geometries sources

    International Nuclear Information System (INIS)

    Gelen, A.; Alvarez, I.; Lopez, H.; Manso, M.

    1996-01-01

    A computer code written in pascal language for IBM/Pc is described. The program calculates the optimum thickness of slab shield for different geometries sources. The Point Kernel Method is employed, which enables the obtention of the ionizing radiation flux density. The calculation takes into account the possibility of self-absorption in the source. The air kerma rate for gamma radiation is determined, and with the concept of attenuation length through the equivalent attenuation length the shield is obtained. The scattering and the exponential attenuation inside the shield material is considered in the program. The shield materials can be: concrete, water, iron or lead. It also calculates the shield for point isotropic neutron source, using as shield materials paraffin, concrete or water. (authors). 13 refs

  16. Tests on standard concrete samples

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Compression and tensile tests on standard concrete samples. The use of centrifugal force in tensile testing has been developed by the SB Division and the instruments were built in the Central workshops.

  17. Trace elements with large activation cross section in concrete materials in Japan

    International Nuclear Information System (INIS)

    Suzuki, Atsuo; Iida, Takao; Moriizumi, Jun; Sakuma, Yoichi; Takada, Jitsuya; Yamasaki, Keizo; Yoshimoto, Takaaki

    2001-01-01

    Amounts of trace elements with large activation cross section in concrete materials were measured to offer the basic data for developing of low activation concrete. From the measurements, the quantities of the activated radioactivities in biological shielding concrete were measured and evaluated for the clearance level. The average concentrations of 60 Co, 152 Eu and 134 Cs formed in concrete were 21.9, 1.08 and 3.21 ppm, respectively. The combination of the concrete materials for the most lowering concentrations of 60 Co, 152 Eu and 134 Cs was the limestone as aggregate and the white Portland cement produced in specific places. The most lowering concentrations of this limestone concrete were 0.16, 0.049 and 0.060 ppm, respectively. The limestone concrete was excellent as biological shielding concrete, because the neutron shielding effect was excellent a little compared with ordinary concrete. If this concrete used for biological shielding concrete, concrete waste will be able to handle as follows. Usage of this limestone low-activated concrete makes almost all concretes satisfy the clearance level for 60 Co after 20 yr cooling from decommissioning. In respect of 152 Eu, radioactivation quantity in the biological shielding concrete is reduced up to a half of the average value or less. With regard to 134 Cs, all concrete satisfies the clearance level. (author)

  18. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Asano, Y.

    2006-01-01

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  19. Estimation of temperature distribution in a reactor shield

    International Nuclear Information System (INIS)

    Agarwal, R.A.; Goverdhan, P.; Gupta, S.K.

    1989-01-01

    Shielding is provided in a nuclear reactor to absorb the radiations emanating from the core. The energy of these radiations appear in the form of heat. Concrete which is commonly used as a shielding material in nuclear power plants must be able to withstand the temperatures and temperature gradients appearing in the shield due to this heat. High temperatures lead to dehydration of the concrete and in turn reduce the shielding effectiveness of the material. Adequate cooling needs to be provided in these shields in order to limit the maximum temperature. This paper describes a method to estimate steady state and transient temperature distribution in reactor shields. The results due to loss of coolant in the coolant tubes have been studied and presented in the paper. (author). 5 figs

  20. Dose rate evaluation of body phantom behind ITER bio-shield wall using Monte Carlo method

    International Nuclear Information System (INIS)

    Beheshti, A.; Jabbari, I.; Karimian, A.; Abdi, M.

    2012-01-01

    One of the most critical risks to humans in reactors environment is radiation exposure. Around the tokamak hall personnel are exposed to a wide range of particles, including neutrons and photons. International Thermonuclear Experimental Reactor (ITER) is a nuclear fusion research and engineering project, which is the most advanced experimental tokamak nuclear fusion reactor. Dose rates assessment and photon radiation due to the neutron activation of the solid structures in ITER is important from the radiological point of view. Therefore, the dosimetry considered in this case is based on the Deuterium-Tritium (DT) plasma burning with neutrons production rate at 14.1 MeV. The aim of this study is assessment the amount of radiation behind bio-shield wall that a human received during normal operation of ITER by considering neutron activation and delay gammas. To achieve the aim, the ITER system and its components were simulated by Monte Carlo method. Also to increase the accuracy and precision of the absorbed dose assessment a body phantom were considered in the simulation. The results of this research showed that total dose rates level near the outside of bio-shield wall of the tokamak hall is less than ten percent of the annual occupational dose limits during normal operation of ITER and It is possible to learn how long human beings can remain in that environment before the body absorbs dangerous levels of radiation. (authors)

  1. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    International Nuclear Information System (INIS)

    Smith, R.J.

    1998-01-01

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site

  2. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  3. Shielding technology for high energy radiation production facility

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Heon Il

    2004-06-01

    In order to develop shielding technology for high energy radiation production facility, references and data for high energy neutron shielding are searched and collected, and calculations to obtain the characteristics of neutron shield materials are performed. For the evaluation of characteristics of neutron shield material, it is chosen not only general shield materials such as concrete, polyethylene, etc., but also KAERI developed neutron shields of High Density PolyEthylene (HDPE) mixed with boron compound (B 2 O 3 , H 2 BO 3 , Borax). Neutron attenuation coefficients for these materials are obtained for later use in shielding design. The effect of source shape and source angular distribution on the shielding characteristics for several shield materials is examined. This effect can contribute to create shielding concept in case of no detail source information. It is also evaluated the effect of the arrangement of shield materials using current shield materials. With these results, conceptual shielding design for PET cyclotron is performed. The shielding composite using HDPE and concrete is selected to meet the target dose rate outside the composite, and the dose evaluation is performed by configuring the facility room conceptually. From the result, the proper shield configuration for this PET cyclotron is proposed

  4. Neutron shielding material based on colemanite and epoxy resin

    International Nuclear Information System (INIS)

    Okuno, K.

    2005-01-01

    In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or up-gradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252 Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use. (authors)

  5. Modelling dielectric-constant values of concrete: an aid to shielding effectiveness prediction and ground-penetrating radar wave technique interpretation

    International Nuclear Information System (INIS)

    Bourdi, Taoufik; Rhazi, Jamal Eddine; Ballivy, Gérard; Boone, François

    2012-01-01

    A number of efficient and diverse mathematical methods have been used to model electromagnetic wave propagation. Each of these methods possesses a set of key elements which eases its understanding. However, the modelling of the propagation in concrete becomes impossible without modelling its electrical properties. In addition to experimental measurements; material theoretical and empirical models can be useful to investigate the behaviour of concrete's electrical properties with respect to frequency, moisture content (MC) or other factors. These models can be used in different fields of civil engineering such as (1) electromagnetic compatibility which predicts the shielding effectiveness (SE) of a concrete structure against external electromagnetic waves and (2) in non-destructive testing to predict the radar wave reflected on a concrete slab. This paper presents a comparison between the Jonscher model and the Debye models which is suitable to represent the dielectric properties of concrete, although dielectric and conduction losses are taken into consideration in these models. The Jonscher model gives values of permittivity, SE and radar wave reflected in a very good agreement with those given by experimental measurements and this for different MCs. Compared with other models, the Jonscher model is very effective and is the most appropriate to represent the electric properties of concrete.

  6. Primary shield displacement and bowing

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  7. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  8. Determination of material and its thickness for Cs-137 gamma source shielding

    International Nuclear Information System (INIS)

    Tukiman

    2008-01-01

    Its has been determined the shielding material and its thickness necessarily conducted due to every material will have different half-thickness characteristics, and by the selection a suitable material and its thickness will be obtained. Half-thickness of any material is the ability of the material at a certain thickness to absorb any radiation intensity so that the intensity becomes half of its source. Sample materials to be used are concrete, wood, and lead with their thickness varied. From experiment data and theoretical computation can be concluded that lead is the suitable material for shielding with the value of HVT for gamma radiation 0,732 cm. For wood and concrete will give half-thickness of 11,0 cm and 3,164 cm respectively. (author)

  9. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Mohammadi, A.; Jalali, M.

    2009-01-01

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required.

  10. Attenuation of neutrons and gamma-rays in homogeneous and multilayered shields

    International Nuclear Information System (INIS)

    Abdo, A.E.; Megahid, R.M.

    1997-01-01

    Measurements were carried-out to compare the attenuation properties of homogeneous shields and shields of two layers and three layers for fast neutrons and total gamma-rays. These were performed by measuring the fast neutron and total gamma-ray spectra behind homogeneous shields of magnetite-limonite, ilmenite-ilmenite and magnetite-magnetite concretes. The two layers assembly consists of iron and one of the above mentioned concretes, while the three layers shield consists of water, iron and one of the previously mentioned concretes. All measurements were carried-out using a neutron-gamma spectrometer with stilbene scintillator coupled to a fast photo multi player tube. Separation between pulses of recoil protons and recoil electrons was achieved by a pulse shape discrimination technique. 3 tabs., 10 figs., 13 refs

  11. Study of the radiation scattered and produced by concrete shielding of radiotherapy rooms and its effects on equivalent doses in patients' organs

    International Nuclear Information System (INIS)

    Braga, K.L.; Rebello, W.F.; Andrade, E.R.; Gavazza, S.; Medeiros, M.P.C.; Mendes, R.M.S.; Gomes, R.G.; Silva, M.G.; Thalhofer, J.L.; Silva, A.X.; Santos, R.F.G.

    2015-01-01

    Within a radiotherapy room, in addition to the primary beam, there is also secondary radiation due to the leakage of the accelerator head and the radiation scattering from room objects, patient and even the room's shielding itself, which is projected to protect external individuals disregarding its effects on the patient. This work aims to study the effect of concrete shielding wall over the patient, taking into account its contribution on equivalent doses. The MCNPX code was used to model the linear accelerator Varian 2100/2300 C/D operating at 18MeV, with MAX phantom representing the patient undergoing radiotherapy treatment for prostate cancer following Brazilian Institute of Cancer four-fields radiation application protocol (0°, 90°, 180° and 270°). Firstly, the treatment was patterned within a standard radiotherapy room, calculating the equivalent doses on patient's organs individually. In a second step, this treatment was modeled withdrawing the walls, floor and ceiling from the radiotherapy room, and then the equivalent doses calculated again. Comparing these results, it was found that the concrete has an average shielding contribution of around 20% in the equivalent dose on the patient's organs. (author)

  12. Borated concrete for ZPPR fuel storage

    International Nuclear Information System (INIS)

    Gasidlo, J.M.

    1985-01-01

    Fuel handling at the Zero Power Plutonium Reactor (ZPPR) led to two requirements for storage of ZPPR fuel: a low neutron multiplication and shielded storage to minimize personnel doses. Boron-poisoned concrete was chosen as the storge medium with boron frit as the poisoning agent. The calculated effects of water content and boron concentration led to specifying a concrete with a water content that was higher than ordinary concrete. The finite size of the boron frit particles caused concern about reduced effectiveness due to self-shielding. The self-shielding was evaluated using optical path lengths for spheres and tabulated self-shielding for slabs. The results showed that the finite-sized particles were at least 80% as effective as infinitely dilute absorption. Neutron and gamma dose rates measured in the vault verified that personnel could work in the vault on a regular basis without exceeding personnel dose limits. 4 refs., 3 figs., 7 tabs

  13. Laser cutting of concretes with various ballasts

    International Nuclear Information System (INIS)

    Hamasaki, Masanobu; Katsumura, Munehide; Utsumi, Hiroaki

    1985-01-01

    The biological shield concrete and the radiation shield concrete which construct a part of the atomic reactor must be demolished with the decommissioning of the atomic reactor plants. In a case, the demolition using a laser is expected as one of excellent method for the decommissioning of these radioactive concretes. The fundamental cuttings of a mortar, the concretes with andesite, lime stone and gray wacke as ballast and a concrete reinforced with mild steel rods were therefore carried out using a 5 kW output CO 2 laser. As the results of experiment, it was cleared that cutting results varied with ballasts, 100 mm thick reinforced concrete could be cut, safety was high because few dross and few fume were produced. (author)

  14. Development and application of high performance liquid shielding materials

    International Nuclear Information System (INIS)

    Miura, Toshimasa; Omata, Sadao; Otano, Naoteru; Hirao, Yoshihiro; Kanai, Yasuji

    1998-01-01

    Development of liquid shielding material with good performance for neutron and γ-ray was investigated. Lead, hydrogen and boron were selected as the elements of shielding materials which were made by the ultraviolet curing method. Good performance shielding materials with about 1 mm width to neutron and gamma ray were produced by mixing lead, boron compound and ultraviolet curing monomer with many hydrogens. The shielding performance was the same as a concrete with two times width. The activation was very small such as 1/10 6 -1/10 8 of the standard concrete. The weight and the external appearance did not charged from room temperature to 100degC. Polyfunctional monomer had good thermal resistance. This shielding material was applied to double bending cylindrical duct and annulus ring duct. The results proved the shielding materials developed had good performance. (S.Y.)

  15. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Baumann, S.; Teunckens, L.; Walthery, R.; Lewandowski, P.; Millen, D.

    2002-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale and will continue till the end of 2005. In view of the final demolition of the building, a clearance methodology has to be proposed. Application of the methodology applied for the storage buildings of the pilot project is complicated for several reasons. Although this methodology is not rejected as such, an alternative has been studied thoroughly. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radioactivity. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  16. 60Co γ-ray attenuation coefficient of barite concrete

    International Nuclear Information System (INIS)

    Bouzarjomehri, F.; Bayat, T.; Dashti, M. H.; Ghisari, J.; Abdoli, N.

    2006-01-01

    Recently, the use of medium and high energy X-rays has increased in Iran, and radiotherapy centers along with a variety of accelerators have been installed in some provinces. Hence, there is not sufficient skill in designing and installing radiotherapy treatment rooms. This study was conducted to evaluate the efficacy of different mixtures of barite concrete for shielding the radiotherapy rooms. This way, we have emphasized on determining the size and amount of barite aggregations to achieve the maximum radiation attenuation which leads to minimizing wall thickness in treatment room. Materials and Methods: To increase concrete density, the barite aggregation was added to concrete. Different size variations of barite aggregates mixed with different water/cement ratio were examined. The dimension of cubic concrete specimens for compression strength test was 15*15*15 cm. The rectangular barite concrete blocks with different compressions as used for strength test with cross section of 10*10 cm, and thicknesses from 5 to 40 cm were used for radiation attenuation test. To do so, concrete specimens were irradiated by gamma beam of 60 Co (Phoenix Theratron). The transmission radiation through the blocks was measured by a Farmer ionization chamber (Fc 65 P). Results: Our findings showed that in all specimens the highest mean compression strength was related to the specimens with equal ratio of fine to coarse barite aggregates, but the lowest half value layer was obtained from mixtures with fine to coarse ratio of 35/65. The concrete sample with a 0.45 water/cement ratio, 350 kg/m3 cement and equal amounts of fine and coarse barite sands had nearly minimum half value layer (half value layer), and maximum compression strength, so the sample was considered as the best barite concrete sample. Conclusion: Since half value layer of the barite concrete specimens with the same compression strength is markedly lower than the conventional concrete, and that there are quite a number

  17. An experimental study of the shielding characteristics of the dwelling house building materials against gamma radiations in the Central Region of Syria

    International Nuclear Information System (INIS)

    Albarhoum, M.; Soufan, A.H.; Mustafa, H.

    2011-01-01

    Highlights: → We measure shielding properties of dwelling houses in the central region of Syria. → The concrete used for ceiling construction is good for shielding from gamma radiations. → Fairly high linear attenuation coefficients are obtained (from 0.173 to 0.198 cm -1 ). → Blocks used for house walls are not effective against gamma radiations. → Blocks efficiency can be improved by filling their holes with a cement paste. - Abstract: The shielding properties of the concrete and blocks used for the construction of dwelling houses in the Central Region of Syria (CRS) were measured and studied. The concrete used for the ceiling construction was found to have optimum shielding properties with 0.182 cm -1 (or equivalently 0.0859 cm 2 g -1 ) for the linear (mass) attenuation coefficient [L(M)AC]. In addition gamma radiation is attenuated by 73.221% on average, while the blocks used for the walls have smaller LACs (0.082 cm -1 for the bare blocks, and 0.118 cm -1 for the coated ones). Although the LACs for the blocks are smaller than those for the concrete their shielding properties are good to protect from the gamma radiations coming from radioactive or nuclear accidents (78.630% attenuation), even Chernobyl - like disasters, because of their big width (10-12 cm). The LACs were measured by an ionization chamber and simple theoretical calculations have been made to predict the concrete LACs. The calculations showed an average LAC for the six samples equal to 0.1664 cm -1 with 8.47% error with respect to the experimental values. The average LAC for the concrete used for ceiling construction in the CRS was found to be comparable or even better than the average of some international values for the reactor shielding concretes, which are about 0.163 cm -1 .

  18. Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses

    International Nuclear Information System (INIS)

    Yasaka, P.; Pattanaboonmee, N.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • 10ZnO:xBi 2 O 3 :(90−x)B 2 O 3 , (ZBB) glasses were prepared. • Radiation shielding and optical properties were investigated. • Higher 25 mol% of Bi 2 O 3 show better shielding property compared with concretes. • ZBB glasses can develop as a Pb-free radiation shielding material. - Abstract: In this work, the zinc bismuth borate (ZBB) glasses of the composition 10ZnO:xBi 2 O 3 :(90−x)B 2 O 3 (where x = 15, 20, 25 and 30 mol%) were prepared by the melt quenching technique. Their radiation shielding and optical properties were investigated and compared with theoretical calculations. The mass attenuation coefficients of ZBB glasses have been measured at different energies obtained from a Compton scattering technique. The results show a decrease of the mass attenuation coefficient, effective atomic number and effective electron density values with increasing of gamma-ray energies; and good agreements between experimental and theoretical values. The glass samples with Bi 2 O 3 concentrations higher than 25 mol% (25 and 30 mol%) were observed with lower mean free path (MFP) values than all the standard shielding concretes studied. These results are indications that the ZBB glasses in the present study may be developed as a lead-free radiation shielding material in the investigated energy range

  19. The status of shielding research at Tajoura research center

    International Nuclear Information System (INIS)

    El-Bakkoush, F.A.

    2005-01-01

    This paper gives a description to the shielding research activities which have been carried-out at the radiation shielding group ,Tajoura Research Center. This includes the design of different types of concrete shields made from local aggregates which have suitable radiation attenuation properties. These include, Ordinary Concrete(with density p = 2.3 ton/m3) heavy weight concrete (with density p =3.6 ton/m3) and heat resistant concrete with aggregates having bound- in water. Investigation have been carried -out by measuring the neutron and gamma-rays spectra which have been transmitted through barriers having different thickness. These were performed using a collimated beam of reactor neutrons and gamma-ray transmitted from the horizontal channel no 1 of Tajoura-Research reactor with 10 MW Max ape rating power. The transmitted fast neutron and gamma spectra were measured by neutron-gamma spectrometer employing NE-213 liquid organic scintillater. Discrimination of against undesired pulses of neutrons or gamma-ray was achieved by a pulse shape discrimination method based on differences in the shape of the decay part of the emitted pulses. The obtained results are presented in the form of displayed neutron and gamma spectra measured behind different thickness of the investigated concrete shield. These spectra were used to derive the macroscopic cross section for at different energy for material under investigation

  20. Characterization and mediation of microbial deterioration of concrete bridge structures.

    Science.gov (United States)

    2013-04-01

    Samples obtained from deteriorated bridge structures in Texas were cultured in growth medium containing thiosulfate as an energy source and investigated for acid production, type of acid produced by microbes and the bio-deterioration of concrete cyli...

  1. Radiation shield for PWR reactors

    International Nuclear Information System (INIS)

    Esenov, Amra; Pustovgar, Andrey

    2013-01-01

    One of the chief structures of a reactor pit is a 'dry' shield. Setting up a 'dry' shield includes the technologically complex process of thermal processing of serpentinite concrete. Modern advances in the area of materials technology permit avoiding this complex and demanding procedure, and this significantly decreases the duration, labor intensity, and cost of setting it up. (orig.)

  2. Study and installation of concrete shielding in the civil engineering of nuclear construction (1960); Etude et mise en place des betons de protection dans le genie civil des ouvrages nucleaires (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The object of this report is to give technical information about high density concretes which have become very important for radiation biological shielding. The most generally used heavy aggregates (barytes, ilmenite, ferrophosphorus, limonite, magnetite and iron punching) to make these concretes are investigated from the point of view prospecting and physical and chemical characteristics. At first, a general survey of shielding concretes is made involving the study of components, mixing and placing methods, then, a detailed investigation of some high density concretes: barytes concrete, with incorporation of iron punching or iron shot, ferrophosphorus concrete, ilmenite concrete and magnetite concrete, more particularly with regard to grading and mix proportions and testing process. To put this survey in concrete form, two practical designs are described such as they have been carried out at the Saclay Nuclear Station. Specifications are given for diverse concretes and for making the proton-synchrotron 'Saturne' shielding blocks. (author) [French] Ce rapport a pour objet de donner des precisions techniques au sujet des betons a haute densite qui ont pris une grande importance pour la protection biologique contre les rayonnements. Les agregats lourds les plus couramment utilises (barytine, ilmenite, ferrophosphore, limonite, magnetite et riblons) pour la fabrication de ces betons, sont examines du point de vue prospection et caracteristiques physiques et chimiques. On procede d'abord a une etude generale des betons de protection comprenant l'etude des constituants, de la confection et de la mise en place, ensuite, a un examen detaille de quelques betons a haute densite: betons a base de barytine, avec incorporation de riblons ou de grenaille de fonte, betons au ferrophosphore, a base d'ilmenite ou de magnetite, notamment en ce qui concerne la granulometrie, la composition, le dosage et les processus d'essais. Pour concretiser ces etudes, deux applications pratiques

  3. BioSampling Data from LHP Cruises

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes separate bioSampling logs from each LHP Bottomfishing cruise both within and outside of the Main Hawaiian Islands, as well as a master file...

  4. The angular gamma flux in an iron slab shield

    International Nuclear Information System (INIS)

    Penkuhn, H.

    1975-08-01

    The angular distribution of the photon energy and dose rate flux in a plane iron shield is investigated assuming an isotropic volume source. Near the shield axis (cos phi approximately 1, with phi=angle between shield axis and gamma direction) the angular spectrum is strongly space-dependent. For large phi, space-independent fits are given. Source energies from 0.662 to 6 MeV and penetrations from 6 to 60 cm are treated and the results are compared with a similar investigation on normal concrete. The differences iron-concrete are appreciable only for the lowest source energy

  5. Study of measurement method of tritium induced in concrete of high-energy proton accelerator facilities

    International Nuclear Information System (INIS)

    Ohtsuka, N.; Ishihama, S.; Kunifuda, T.; Hayasaka, N.; Miura, T.

    2001-01-01

    Various long-loved radionuclides, 3 H, 7 Be, 22 Na, 51 Cr, 54 Mn, 56 Co, 57 Co, 60 Co, 134 Cs, 152 Eu and 154 Eu, have been produced in the shielding concrete of high energy proton accelerator facility through both nuclear spallation reactions and thermal neutron capture reactions of concrete elements, during machine operation. Tritium is the most important nuclide from the radiation protection. There were, however, few measurements of tritium concentration induced in the shielding concrete. In this study, the conditions of measurement method of tritium concentration induced in shielding concrete have been investigated using the activated shielding concrete of the 12 GeV proton beam-line tunnel at KEK and the standard rock (JG-1) irradiated of thermal neutron at the reactor. And the depth profiles of tritium induced in the shielding concrete of slow extracted proton beam line at KEK were determined using this method. (author)

  6. Investigation of water content in primary upper shield of high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Sawa, Kazuhiro; Mogi, Haruyoshi; Itahashi, Shuuji; Kitami, Toshiyuki; Akutu, Youichi; Fuchita, Yasuhiro; Kawaguchi, Toru; Moriya, Masahiro

    1999-09-01

    A primary upper shield of the High Temperature Engineering Test Reactor (HTTR) is composed of concrete (grout) which is packed into iron frames. The main function of the primary upper shield is to attenuate neutron and gamma ray from the core, that leads to satisfy dose equivalent rate limit of operating floor and stand-pipe room. Water content in the concrete is one of the most important things because it strongly affects neutron-shielding ability. Then, we carried out out-of-pile experiments to investigate relationship between temperature and water content in the concrete. Based on the experimental results, a hydrolysis-diffusion model was developed to investigate water release behavior from the concrete. The model showed that water content used for shielding design in the primary upper shield of the HTTR will be maintained if temperature during operating life is under 110degC. (author)

  7. The shielding of a 14 MeV neutron generator

    International Nuclear Information System (INIS)

    Brighton, D.R.

    1976-10-01

    The concrete masonry shield for a 14 MeV neutron generator was designed using data supplied by the manufacturer. Subsequent radiation surveys outside the shield showed doses higher than expected. Calculations indicated the sensitivity of dose transmission factors to concrete composition. The observed dose transmission factor agreed with that of Broerse but not with that of Hacke and Prudhomme. Measurements and calculations delineated the contribution that neutrons, scattered from the upper wall that supports the laboratory roof, made to the dose in adjoining areas. In redesigning the shield a compromise was made between additional cost and restrictions on the generator's duty cycle, which is automatically controlled to ensure personnel safety. (Author)

  8. Phase 1 sampling and analysis plan for the 304 Concretion Facility closure activities

    International Nuclear Information System (INIS)

    Adler, J.G.

    1994-01-01

    This document provides guidance for the initial (Phase 1) sampling and analysis activities associated with the proposed Resource Conservation and Recovery Act of 1976 (RCRA) clean closure of the 304 Concretion Facility. Over its service life, the 304 Concretion Facility housed the pilot plants associated with cladding uranium cores, was used to store engineering equipment and product chemicals, was used to treat low-level radioactive mixed waste, recyclable scrap uranium generated during nuclear fuel fabrication, and uranium-titanium alloy chips, and was used for the repackaging of spent halogenated solvents from the nuclear fuels manufacturing process. The strategy for clean closure of the 304 Concretion Facility is to decontaminate, sample (Phase 1 sampling), and evaluate results. If the evaluation indicates that a limited area requires additional decontamination for clean closure, the limited area will be decontaminated, resampled (Phase 2 sampling), and the result evaluated. If the evaluation indicates that the constituents of concern are below action levels, the facility will be clean closed. Or, if the evaluation indicates that the constituents of concern are present above action levels, the condition of the facility will be evaluated and appropriate action taken. There are a total of 37 sampling locations comprising 12 concrete core, 1 concrete chip, 9 soil, 11 wipe, and 4 asphalt core sampling locations. Analysis for inorganics and volatile organics will be performed on the concrete core and soil samples. Separate concrete core samples will be required for the inorganic and volatile organic analysis (VOA). Analysis for inorganics only will be performed on the concrete chip, wipe, and asphalt samples

  9. Study and installation of concrete shielding in the civil engineering of nuclear construction (1960); Etude et mise en place des betons de protection dans le genie civil des ouvrages nucleaires (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, F. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The object of this report is to give technical information about high density concretes which have become very important for radiation biological shielding. The most generally used heavy aggregates (barytes, ilmenite, ferrophosphorus, limonite, magnetite and iron punching) to make these concretes are investigated from the point of view prospecting and physical and chemical characteristics. At first, a general survey of shielding concretes is made involving the study of components, mixing and placing methods, then, a detailed investigation of some high density concretes: barytes concrete, with incorporation of iron punching or iron shot, ferrophosphorus concrete, ilmenite concrete and magnetite concrete, more particularly with regard to grading and mix proportions and testing process. To put this survey in concrete form, two practical designs are described such as they have been carried out at the Saclay Nuclear Station. Specifications are given for diverse concretes and for making the proton-synchrotron 'Saturne' shielding blocks. (author) [French] Ce rapport a pour objet de donner des precisions techniques au sujet des betons a haute densite qui ont pris une grande importance pour la protection biologique contre les rayonnements. Les agregats lourds les plus couramment utilises (barytine, ilmenite, ferrophosphore, limonite, magnetite et riblons) pour la fabrication de ces betons, sont examines du point de vue prospection et caracteristiques physiques et chimiques. On procede d'abord a une etude generale des betons de protection comprenant l'etude des constituants, de la confection et de la mise en place, ensuite, a un examen detaille de quelques betons a haute densite: betons a base de barytine, avec incorporation de riblons ou de grenaille de fonte, betons au ferrophosphore, a base d'ilmenite ou de magnetite, notamment en ce qui concerne la granulometrie, la composition, le dosage et les processus d'essais. Pour concretiser ces

  10. SU-E-T-264: New Concrete Designed and Evaluation for Megavoltage X Radiotherapy Facilities (CONTEK-RFH2).

    Science.gov (United States)

    Mera, M; Pereira, L; Mera, M; Pereira, L; Meilán, E; Moral, F Del; Teijeiro, A; Salgado, M; Andrade, B; Gomez, F; Fuentes-Vázquez, V; Caruncho, J; Medina, A

    2012-06-01

    The most common material for shielding is concrete, which can be made using various materials of different densities as aggregates. New techniques in radiotherapy, as IMRT and VMAT, require more monitor units and it is important to develop specifically designed shielding materials. Arraela S.L. has developed new concrete (CONTEK®-RFH2), which is made from an arid with a high percentage in iron (> 60%), and using the suitable sieve size, enables optimum compaction of the material and a high mass density, about 4.1-4.2 g/cm 3 . Moreover, aluminate cement, used as base, gives high resistance to high temperatures what makes this product be structurally resistant to temperatures up to 1200 ° C. The measurements were made in a LINAC Elekta SL18 to energies 6MV and 15 MV with a field size of 10×10 cm 2 for concrete samples in the form of tile 25cm×25cm with variable thickness. The linear attenuation coefficient, μm, was determined for each energy by fitting the data to Eq. 1, where Xxm is the exposure in air behind a thickness xm of the material, and X0 is the exposure in the absence of shielding. These results are compared with the ordinary concrete (2.35 g cm-3) for 6MV and 15MV energies (Ref. NCRP Report No.151). Results are tabulated in Table1. Results of attenuation are compared with ordinary concrete in Fig. 1. The new concrete CONTEK®-RFH2 increases photon attenuation and reduces the size of a shielded wall. A very high percentage in iron and a suitablesieve size approximately double the density of ordinary concrete. High mass attenuation coefficient makes this concrete an extremely desirable material for use in radiation facilities as shielding material for photon beam, and for upgrading facilities designed for less energy or less workload. © 2012 American Association of Physicists in Medicine.

  11. Measured and Predicted Variations in Fast Neutron Spectrum in Massive Shields of Water and Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, E; Sandlin, R; Fraeki, R

    1965-09-15

    The absolute magnitude, and the variations in form, of the fast neutron spectrum during deep penetration (0.8 - 1.1 metre) in massive shields of water, ordinary and magnetite concrete have been studied by using threshold detectors (In (n, h'), S(n,p), Al(n, {alpha})). The results have been compared with predictions by two rigorous (NIOBE, Moments method) and two non-rigorous (multigroup removal-diffusion) shielding codes (NRN, RASH D). The absolute results predicted were in general within 50% of the measured ones, i. e. showed as good or better accuracy than thermal and epithermal flux predictions in the same small-reactor configurations. No difference in accuracy was found between the rigorous and non-rigorous methods. The changes in the relative form of the spectrum (indicated by variations in the (Al/S) and (In/S) reaction rate ratios and amounting to factors up to 3 - 4 during a one metre penetration in water) were rather accurately (within 10 - 30%) predicted by all of the methods. The photonuclear excitation of the 335 keV level used for detecting the In(n, n') reaction was found to distort completely the In results in water at penetrations > 50 cm.

  12. Effects of micro-sized and nano-sized WO_3 on mass attenauation coefficients of concrete by using MCNPX code

    International Nuclear Information System (INIS)

    Tekin, H.O.; Singh, V.P.; Manici, T.

    2017-01-01

    In the present work the effect of tungsten oxide (WO_3) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO_3 and micro-WO_3 into concrete sample. The mass attenuation coefficients of pure concrete and WO_3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO_3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO_3 significanlty improve shielding properties than micro-WO_3. It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. - Highlights: • It was found that size of the WO_3 affected the mass attenuation coefficients of concrete in all photon energies.

  13. Calculation of concrete shielding wall thickness for 450kVp X-ray tube with MCNP simulation and result comparison with half value layer method calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Heon; Lee, Eun Joong; Kim, Chan Kyu; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Hur, Sam Suk [Sam Yong Inspection Engineering Co., Ltd., Seoul (Korea, Republic of)

    2016-11-15

    Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal 0.02 mGy wk-1 on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the

  14. Calculation of concrete shielding wall thickness for 450kVp X-ray tube with MCNP simulation and result comparison with half value layer method calculation

    International Nuclear Information System (INIS)

    Lee, Sang Heon; Lee, Eun Joong; Kim, Chan Kyu; Cho, Gyu Seong; Hur, Sam Suk

    2016-01-01

    Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal 0.02 mGy wk-1 on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the safety goal

  15. Definition of a concrete bio-decontamination process in nuclear substructures; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high-importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those micro-organisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  16. 1995 Phase 1 concrete sampling at the decontaminated 183-H basins

    International Nuclear Information System (INIS)

    Kramer, C.D.

    1996-01-01

    This report provides a consolidated reference for 1995 concrete sampling data associated with the Hanford Site's 183-H Solar Evaporation Basins (located at the Hanford Site in Richland, Washington). In 1995, the basins were decontaminated and dismantled. Sampling efforts began after completion of concrete decontamination efforts. Soil and water samples were collected and are described in chronological order in this report

  17. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gribok, Andrei V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  18. The Effect of Various Waste Materials' Contents on the Attenuation Level of Anti-Radiation Shielding Concrete.

    Science.gov (United States)

    Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul

    2013-10-23

    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.

  19. Measurements of Accelerator-Produced Leakage Neutron and Photon Transmission through Concrete

    International Nuclear Information System (INIS)

    2002-01-01

    Optimum shielding of the radiation from particle accelerators requires knowledge of the attenuation characteristics of the shielding material. The most common material for shielding this radiation is concrete, which can be made using various materials of different densities as aggregates. These different concrete mixes can have very different attenuation characteristics. Information about the attenuation of leakage photons and neutrons in ordinary and heavy concrete is, however, very limited. To increase our knowledge and understanding of the radiation attenuation in concrete of various compositions, we have performed measurements of the transmission of leakage radiation, photons and neutrons, from a Varian Clinac 2100C medical linear accelerator operating at maximum electron energies of 6 and 18 MeV. We have also calculated, using Monte Carlo techniques, the leakage neutron spectra and its transmission through concrete. The results of these measurements and calculations extend the information currently available for designing shielding for medical electron accelerators. Photon transmission characteristics depend more on the manufacturer of the concrete than on the atomic composition. A possible cause for this effect is a non-uniform distribution of the high-density aggregate, typically iron, in the concrete matrix. Errors in estimated transmission of photons can exceed a factor of three, depending on barrier thickness, if attenuation in high-density concrete is simply scaled from that of normal density concrete. We found that neutron transmission through the high-density concretes can be estimated most reasonably and conservatively by using the linear tenth-value layer of normal concrete if specific values of the tenth-value layer of the high-density concrete are not known. The reason for this is that the neutron transmission depends primarily on the hydrogen content of the concrete, which does not significantly depend on concrete density. Errors of factors of two

  20. Short and long term behaviour of externally bonded fibre reinforced polymer laminates with bio-based resins for flexural strengthening of concrete beams

    Science.gov (United States)

    McSwiggan, Ciaran

    The use of bio-based resins in composites for construction is emerging as a way to reduce of embodied energy produced by a structural system. In this study, two types of bio-based resins were explored: an epoxidized pine oil resin blend (EP) and a furfuryl alcohol resin (FA) derived from corn cobs and sugar cane. Nine large-scale reinforced concrete beams strengthened using externally bonded carbon and glass fibre reinforced bio-based polymer (CFRP and GFRP) sheets were tested. The EP resin resulted in a comparable bond strength to conventional epoxy (E) when used in wet layup, with a 7% higher strength for CFRP. The FA resin, on the other hand, resulted in a very weak bond, likely due to concrete alkalinity affecting curing. However, when FA resin was used to produce prefabricated cured CFRP plates which were then bonded to concrete using conventional epoxy paste, it showed an excellent bond strength. The beams achieved an increase in peak load ranging from 18-54% and a 9-46% increase in yielding load, depending on the number of FRP layers and type of fibres and resin. Additionally, 137 concrete prisms with a mid-span half-depth saw cut were used to test CFRP bond durability, and 195 CFRP coupons were used to examine tensile strength durability. Specimens were conditioned in a 3.5% saline solution at 23, 40 or 50°C, for up to 240 days. Reductions in bond strength did not exceed 15%. Bond failure of EP was adhesive with traces of cement paste on CFRP, whereas that of FA was cohesive with a thicker layer of concrete on CFRP, suggesting that the bond between FA and epoxy paste is excellent. EP tension coupons had similar strength and modulus to E resin, whereas FA coupons had a 9% lower strength and 14% higher modulus. After 240 days of exposure, maximum reductions in tensile strength were 8, 19 and 10% for EP, FA and E resins, respectively. Analysis of Variance (ANOVA) was also performed to assess the significance of the reductions observed. High degrees of

  1. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Manning, Mark R.; Gardner, Frederick W.

    1990-01-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  2. The Effect of Various Waste Materials’ Contents on the Attenuation Level of Anti-Radiation Shielding Concrete

    Science.gov (United States)

    Azeez, Ali Basheer; Mohammed, Kahtan S.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul

    2013-01-01

    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities. PMID:28788363

  3. Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ipbüker, Cagatay; Nulk, Helena; Gulik, Volodymyr [University of Tartu, Institute of Physics (Estonia); Biland, Alex [HHK Technologies, Houston (United States); Tkaczyk, Alan Henry, E-mail: alan@ut.ee [University of Tartu, Institute of Physics (Estonia)

    2015-04-01

    Highlights: • Basalt fiber is a relatively cheap material that can be used as reinforcement. • Gamma-ray attenuation remains relatively stable with addition of basalt fiber. • Neutron attenuation remains relatively stable with addition of basalt fiber. • Cement–basalt mixture has a good potential for use in nuclear energy applications. - Abstract: The radiation shielding properties of a new proposed building material, a novel cement–basalt fiber mixture (CBM), are investigated. The authors analyze the possibility of this material to be a viable substitute to outgoing materials in nuclear energy applications, which will lead to a further sustained development of nuclear energy in the future. This computational study involves four types of concrete with various amounts of basalt fiber in them. The gamma-ray shielding characteristics of proposed CBM material are investigated with the help of WinXCom program, whereas the neutron shielding characteristics are computed by the Serpent code. For gamma-ray shielding, we find that the attenuation coefficients of concretes with basalt fibers are not notably influenced by the addition of fibers. For neutron shielding, additional basalt fiber in mixture presents negligible effect on neutron radiation shielding. With respect to radiation shielding, it can be concluded that basalt fibers have good potential as an addition to heavyweight concrete for nuclear energy applications.

  4. Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications

    International Nuclear Information System (INIS)

    Ipbüker, Cagatay; Nulk, Helena; Gulik, Volodymyr; Biland, Alex; Tkaczyk, Alan Henry

    2015-01-01

    Highlights: • Basalt fiber is a relatively cheap material that can be used as reinforcement. • Gamma-ray attenuation remains relatively stable with addition of basalt fiber. • Neutron attenuation remains relatively stable with addition of basalt fiber. • Cement–basalt mixture has a good potential for use in nuclear energy applications. - Abstract: The radiation shielding properties of a new proposed building material, a novel cement–basalt fiber mixture (CBM), are investigated. The authors analyze the possibility of this material to be a viable substitute to outgoing materials in nuclear energy applications, which will lead to a further sustained development of nuclear energy in the future. This computational study involves four types of concrete with various amounts of basalt fiber in them. The gamma-ray shielding characteristics of proposed CBM material are investigated with the help of WinXCom program, whereas the neutron shielding characteristics are computed by the Serpent code. For gamma-ray shielding, we find that the attenuation coefficients of concretes with basalt fibers are not notably influenced by the addition of fibers. For neutron shielding, additional basalt fiber in mixture presents negligible effect on neutron radiation shielding. With respect to radiation shielding, it can be concluded that basalt fibers have good potential as an addition to heavyweight concrete for nuclear energy applications

  5. Optimizing of the recycling of contaminated concrete debris. Final report

    International Nuclear Information System (INIS)

    Kloeckner, J.; Rasch, H.; Schloesser, K.H.; Schon, T.

    1999-01-01

    1. Latest research: So far concrete debris from nuclear facilities has been free released or was treated as radioactive waste. 2. Objective: The objective of this study is to develop solutions and methods for recycling concrete debris. The amount of materials used in nuclear facilities should be limited and the contamination of new materials should be avoided. 3. Methods: The status of recycling was presented using examples of operating or completed decommissioning as well as available studies and literature. The quality requirements for the production of new concrete products using recycled materials has been discussed. The expected amounts of concrete debris for the next 12 years was estimated. For the proposed recycling examples, radiological and economic aspects have been considered. 4. Results: The production of qualified concrete products from concrete debris is possible by using modified receptions. Technical regulations to this are missing. There is no need for the utilization of large amounts of concrete debris for shielding walls. For the production of new shielding-containers for radioactive waste, concrete debris can be applied. Regarding the distance to a central recycling facility the use of mobile equipment can be economical. By using the concrete for filling the cavity or space in a final storage, it is possible to dispose the whole radioactive debris. 5. Application possibilities: The use of concrete debris as an inner concrete shielding in waste-containers today is already possible. For the manufacture of qualified concrete products by using recycling products, further developments and regulations are necessary. (orig.) [de

  6. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  7. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  8. Pb-free Radiation Shielding Glass Using Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Watcharin Rachniyom

    2015-12-01

    Full Text Available In this work, Pb-free shielding glass samples were prepared by the melt quenching technique using subbituminous fly ash (SFA composed of xBi2O3 : (60-xB2O3 : 10Na2O : 30SFA (where x = 10, 15, 20, 25, 30 and 35 by wt%. The samples were investigated for their physical and radiation shielding properties. The density and hardness were measured. The results showed that the density increased with the increase of Bi2O3 content. The highest value of hardness was observed for glass sample with 30 wt% of Bi2O3 concentration. The samples were investigated under 662 keV gamma ray and the results were compared with theoretical calculations. The values of the mass attenuation coefficient (μm, the atomic cross section (σe and the effective atomic number (Zeff were found to increase with an increase of the Bi2O3 concentration and were in good agreement with the theoretical calculations. The best results for the half-value layer (HVL were observed in the sample with 35 wt% of Bi2O3 concentration, better than the values of barite concrete. These results demonstrate the viability of using coal fly ash waste for radiation shielding glass without PbO in the glass matrices.

  9. Shielding study of a fusion machine. Elaboration of a global shielding calculation scheme for the Tokamak tore Supra

    International Nuclear Information System (INIS)

    Diop, C.M'B.

    1984-01-01

    This thesis presents a global shielding calculation scheme for neutron and gamma rays arising from the Tokamak TORE SUPRA fusion device, in which a deuterium plasma is used. To study the shield parameters we have elabored a important chaining of neutron and gamma transport codes, TRIPOLI, ANISN, MERCURE 4, allowing to evaluate the radial and skyshine components of the dose rate behind the concrete shield. The study of thermonuclear neutron activation is fundamental to define a tokamak exploitation strategy. For this, two formalisme have been developed. They are based on a modelization of the activation reaction rates according to TRIPOLI, ANISN, and MERCURE 4 codes capabilities. The first one calculates, in one dimensional geometry, the desactivation gamma dose rate inside the vacuum chamber. The second one is a tridimensional model which determines the spatial variation of the gamma dose rate in the machine room. The problem of the existence of runaway electrons and associated secondaries radiations, bremsstrahlung gamma rays particularly, is approched. The results which are presented have contributed to define the parameters of the concrete shield and a strategy for TORE SUPRA Tokamak exploitation [fr

  10. Measurements of Neutron and Gamma Attenuation in Massive Laminated Shields of Concrete and a Study of the Accuracy of some Methods of Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, E; Nilsson, R

    1964-09-15

    Extensive neutron and gamma attenuation measurements have been performed in magnetite and ordinary concrete up to a depth of 2 metres in order to study the accuracy attainable by some shield calculation methods. The effect of thin, heavy layers (Pb) has also been studied. Experimental facilities and instrumentation, especially the foil detection methods used for thermal and epithermal neutrons, are described in some detail. Great weight is laid upon a thorough error analysis. The fluxes measured are compared to those calculated by an earlier version of the British 18-group removal method (RASH B{sub 3}), by an improved removal method (NRN) developed at AB Atomenergi, and by numerical integration of the Boltzmann equation (NIOBE). The results show that shielding calculations with the newer methods give fluxes that are generally within a factor of 2-3 from the true values. A greater accuracy seems to be difficult to obtain in practice in spite of possible improvements in the mathematical solution of the transport problem. The greatest errors originate in the translation between the true and calculation geometries in the uncertainty of material properties in the case of concrete, and in approximations and inaccuracies of radiation sources.

  11. Measurements of Neutron and Gamma Attenuation in Massive Laminated Shields of Concrete and a Study of the Accuracy of some Methods of Calculation

    International Nuclear Information System (INIS)

    Aalto, E.; Nilsson, R.

    1964-09-01

    Extensive neutron and gamma attenuation measurements have been performed in magnetite and ordinary concrete up to a depth of 2 metres in order to study the accuracy attainable by some shield calculation methods. The effect of thin, heavy layers (Pb) has also been studied. Experimental facilities and instrumentation, especially the foil detection methods used for thermal and epithermal neutrons, are described in some detail. Great weight is laid upon a thorough error analysis. The fluxes measured are compared to those calculated by an earlier version of the British 18-group removal method (RASH B 3 ), by an improved removal method (NRN) developed at AB Atomenergi, and by numerical integration of the Boltzmann equation (NIOBE). The results show that shielding calculations with the newer methods give fluxes that are generally within a factor of 2-3 from the true values. A greater accuracy seems to be difficult to obtain in practice in spite of possible improvements in the mathematical solution of the transport problem. The greatest errors originate in the translation between the true and calculation geometries in the uncertainty of material properties in the case of concrete, and in approximations and inaccuracies of radiation sources

  12. Investigation of the effect of barium content on the structural and gamma-ray shielding properties of bismuth borate glasses

    International Nuclear Information System (INIS)

    Parminder Kaur; Singh, K.J.; Kulwinder Kaur; Anand, Vikas; Dogra, Mridula

    2017-01-01

    Glasses doped with heavy metal oxides have been proposed to shield the hazardous gamma rays originating from nuclear reactors as alternative to the conventional concretes. In this work, transparent glasses with composition 65Bi_2O_3-xBaO-(35-x) B_2O_3 (with x =0, 4, 8 wt %) have been prepared by using melt quenching technique in the laboratory. XRD and FTIR studies have been undertaken to explore the structural properties. The amorphous nature of the prepared samples is confirmed by XRD studies. Structural changes in the system have been explored by FTIR studies. The FTIR results reveal the conversion of (BO_3) triangular units to (BO_4) tetrahedral units with the addition of barium oxide along with the creation of non-bridging oxygen in the prepared glass system. Gamma-ray shielding properties have been explored with the help of WinXCom software developed by National Institute Standards and Technology at photon energy 662 keV. Gamma ray shielding properties in terms of mass attenuation coefficient, half value layer, tenth value layer and mean free path have been found to be superior as compared to the ordinary as well as barite concrete. Therefore, it is speculated that our prepared glass samples can serve as better gamma ray shielding materials. (author)

  13. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Heavy concrete exerting shielding effects particularly against gamma radiation

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.; Racek, M.

    1990-01-01

    The heavy concrete contains synthetic iron(III) oxide in amounts of 5 to 100% with respect to the aggregate content. The oxide has smooth grains, no more than 4 mm in size. The remaining aggregate has grains up to 32 mm in size and a specific weight of 3500 to 5200 kg.m -3 . The remaining concrete components are cement, water and plasticizer. The mixture is homogeneous and is well suited to feeding by means of concrete pumps. (M.D.)

  15. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  16. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  17. Shielding analysis of the advanced voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Park, J. J.; Lee, J. W.; Shin, J. M.; Park, G. I.; Song, K. C

    2008-09-15

    This report deals describes how much a shielding benefit can be obtained by the Advanced Voloxidation process. The calculation was performed with the MCNPX code and a simple problem was modeled with a spent fuel source which was surrounded by a concrete wall. The source terms were estimated with the ORIGEN-ARP code and the gamma spectrum and the neutron spectrum were also obtained. The thickness of the concrete wall was estimated before and after the voloxidation process. From the results, the gamma spectrum after the voloxidation process was estimated as a 67% reduction compared with that of before the voloxidation process due to the removal of several gamma emission elements such as cesium and rubidium. The MCNPX calculations provided that the thickness of the general concrete wall could be reduced by 12% after the voloxidation process. And the heavy concrete wall provided a 28% reduction in the shielding of the source term after the voloxidation process. This can be explained in that there lots of gamma emission isotopes still exist after the advanced voloxidation process such as Pu-241, Y-90, and Sr-90 which are independent of the voloxidation process.

  18. Shielding calculations for the TFTR neutral beam injectors

    International Nuclear Information System (INIS)

    Santoro, R.T.; Lillie, R.A.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1979-07-01

    Two-dimensional discrete ordinates calculations have been performed to determine the location and thickness of concrete shielding around the Tokamak Fusion Test Reactor (TFTR) neutral beam injectors. Two sets of calculations were performed: one to determine the dose equivalent rate on the roof and walls of the test cell building when no injectors are present, and one to determine the contribution to the dose equivalent rate at these locations from radiation streaming through the injection duct. Shielding the side and rear of the neutral beam injector with 0.305 and 0.61 m of concrete, respectively, and lining the inside of the test cell wall with an additional layer of concrete having a thickness of 0.305 m and a height above the axis of deuteron injection of 3.10 m are sufficient to maintain the biological dose equivalent rate outside the test cell to approx. 1 mrem/DT pulse

  19. New applications and developments in the neutron shielding

    Directory of Open Access Journals (Sweden)

    Uğur Fatma Aysun

    2017-01-01

    Full Text Available Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  20. New applications and developments in the neutron shielding

    Science.gov (United States)

    Uğur, Fatma Aysun

    2017-09-01

    Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  1. A Shielding Analysis of Hot Cell for a 10 MW Research Reactor

    International Nuclear Information System (INIS)

    Alnajjar, Alaaddin; Park, Chang Je; Roh, Gyuhong; Lee, Byunchul

    2013-01-01

    In this paper, a shielding analysis has been performed for the hot cell in a 10 MW research reactor. Two kinds of shielding analysis code systems are used such as MCNPX2.7 and M-Shield7. The first one is Monte Carlo stochastic code and the second one is a deterministic point kernel code. The results are compared in this study. In order to obtain source term, the ORIGEN-S code is used for different kinds of source. Four kinds of sources are taken into consideration. From the simulation, it is also proposed that the proper thickness of shielding material and the maximum source capacity in the hot cell. This study shows preliminary analysis results of hot cell shielding for 10MW research reactor. Total four different source terms are considered such as spent fuel assembly, Ir-192, Mo-99, and I-131. For shielding material, general concrete, heavy concrete, and lead are used. MCNPX code is mainly used for a simplified hot cell model and the result are nearly consistent when compared with M-Shield code. Required shielding thickness and the hot cell capacity are also obtained for various criterion of surface dose rates

  2. PEP radiation shielding tests in SLAC A Beam

    International Nuclear Information System (INIS)

    Ash, W.; DeStaebler, H.; Harris, J.; Jenkins, T.; Murray, J.

    1977-09-01

    Radiation shielding tests designed to simulate possible conditions in and around the PEP experimental halls were conducted. The SLAC A Beam was targeted in the block tunnel at a point about midway between End Station A and Beam Dump East. At that site it was relatively easy to rearrange the concrete block structure to simulate the various shielding configurations under consideration for PEP. Extensive surveys of neutron and ionizing radiation were made. Complete results of the shielding tests are given

  3. Light Water Reactor Sustainability Program: survey of models for concrete degradation

    International Nuclear Information System (INIS)

    2014-01-01

    Concrete has been used in the construction of nuclear facilities because of two primary properties: its structural strength and its ability to shield radiation. Concrete structures have been known to last for hundreds of years, but they are also known to deteriorate in very short periods of time under adverse conditions. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

  4. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  5. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  6. Attenuation of gamma radiation in concrete shields

    International Nuclear Information System (INIS)

    Azevedo e Souza, A.C. de.

    1978-12-01

    The attenuation characteristics of γ radiation in concrete layers considering their mechanical resistence and densities were determined. A 137 Cs source was used in a 'good geometry' arrangement to eliminate the effects of the buildup factor. The ordinary and the heavy concrete were irradiated and for the latter it was used as additives iron ore and Fe 2 O 3 pellets in various grain sizes. The detection system consisted of a 2' x 2' NaI (Tl) crystal coupled to a photomultiplier tube and the associated electronic equipment. FORTRAN programs were used for determining the absorption coefficients and the attenuation factors. These programs calculate photopeak areas eliminating all contributions due to Compton effect and background. (Author) [pt

  7. Shielded transport containers for reactor waste

    International Nuclear Information System (INIS)

    Grundfelt, B.; Eriksson, E.

    The report presents that part of risk analysis which deals with the frequency of breakdowns and the damage on containers. The report focusses on shielded containers made of reinforced concrete. Also a container made of steel is referred to the cases of breakdown are closely allied to collisions with ships. The frequency of breakdowns which might damage the containers is low in all respects, namely 1.10 -5 per year or lower for the shielded container. (G.B.)

  8. Shielding design study for the JAERI/KEK spallation neutron source

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Teshigawara, Makoto; Konno, Chikara; Ikeda, Yujiro; Watanabe, Noboru

    2001-01-01

    Shielding design for the JAERI/KEK spallation neutron source was studied. Bulk shielding characteristics and optimization of a beam shutter were investigated by using Monte Carlo calculation code NMTC/JAM and MCNP with LA-150 neutron cross-section library. The following remarks were derived. (1) Neutron dose outside of the concrete shield at 6.6 m from the center is ∼10 μSv/hr regardless of angles with respect to the proton beam axis. The neutron dose can be reduced more than a factor of 30 by adding natural boron of 5 wt% in the concrete. (2) When a beam shutter position just outside the void vessel and the shutter length of 2 m are assumed, a shutter made of copper (1.7 m) with polyethylene (0.3 m) is the optimum in terms of shielding performance as well as cost merit. A shutter made of tungsten is not so effective. (3) Further studies are needed for optimization of beam shutter position. (author)

  9. Shield wall evaluation of hot cell facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Cho, I. J.; Kuk, D. H.; Ko, J. H.; Jung, W. M.; Yoo, G. S.; Lee, E. P.; Park, S. W.

    2002-01-01

    The future hot cell is located in the Irradiated Material Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). It is β-γ type hot cell that was constructed on the base floor in IMEF building for irradiated material testing. And this hot cell will be used for carrying out the Advanced spent fuel Conditioning Process (ACP). The radiation shielding capability of hot cell should be sufficient to meet the radiation dose requirements in the related regulations. Because the radioactive sources of ACP are expected to be higher than radioactive sources of IMEF design criteria, the future hot cell in current status is unsatisfactory to hot test of ACP. So the shielding analysis of the future hot cell is performed to evaluate shielding ability of concrete shield wall. The shielding analysis included (a) identification of ACP source term; (b) photon source spectrum; (c) shielding analysis by QADS and MCNP-4C; and (d) enhancement of concrete shield wall. In this research, dose rates are obtained according to ACP source, geometry and hot cell shield wall thickness. And the evaluation and reinforcement thickness of the shield wall about future hot cell are concluded

  10. Effect of molybdenum on gamma ray shielding and structural properties of PbO-B2O3 glasses

    Science.gov (United States)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder

    2018-04-01

    The present study is aimed at developing new shielding materials for gamma ray shielding applications. Transparent glasses of the composition xMoO3-0.7PbO-(0.3-x)B2O3 where x= 0.03 to 0. 06 (mole fraction) have been prepared by using melt-quenchingtechnique. Gamma ray shielding properties have been evaluated in terms of mass attenuation coefficient and half value layer parameter at photon energies 662 and 1173 keV. These shielding parameters are also compared with standard shielding material`concretes'. It has been found that prepared glass system shows better shielding properties than barite and ordinary concretes proving the possibility of its usage as an alternate to conventional concrete for gamma ray shielding applications. The density, molar volume, X-Ray Diffraction, Fourier Transform InfraRed and Raman studies have been performed to study the structural properties of the glass system. It has been analyzed from FTIR and Raman studies that bridging oxygens increase with the decrease of MoO3 content in the glass composition.

  11. Correlation of gamma ray shielding and structural properties of PbO–BaO–P{sub 2}O{sub 5} glass system

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Kulwinder; Singh, K.J., E-mail: kanwarjitsingh@yahoo.com; Anand, Vikas

    2015-04-15

    Highlights: • Transparent glass samples of the system 55PbO{sub x}BaO(45 − x)P{sub 2}O{sub 5} (x = 1 up to 5) have been prepared in the laboratory. • Gamma ray shielding properties improve with the addition of BaO. • Number of non-bridging oxygens decrease with the increase in the content of BaO. • Investigated glass system can be potential candidate as an alternate to conventional radiation shielding ‘concrete’. - Abstract: The presented work has been undertaken to evaluate the applicability of BaO doped PbO-P{sub 2}O{sub 5} glass system as gamma ray shielding material in terms of mass attenuation coefficient and half value layer at photon energies 662, 1173 and1332 keV. A meaningful comparison of their radiation shielding properties has been made in terms of their mass attenuation coefficient and HVL parameters with standard radiation shielding concrete ‘barite’. The density, molar volume, XRD, FTIR, Raman and UV–visible techniques and mechanical properties (by Yamane and Mackenzie's procedure) have been used to study the structural properties of the prepared glass system in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  12. Alternative methodology for irradiation reactor experimental shielding calculation

    International Nuclear Information System (INIS)

    Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho

    1996-01-01

    Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)

  13. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  14. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy

    International Nuclear Information System (INIS)

    Pomaro, B.; Salomoni, V.A.; Gramegna, F.; Prete, G.; Majorana, C.E.

    2011-01-01

    Highlights: → We present the effect of radiation on concrete as shielding material. → The coupling between hydro-thermal-mechanical fields and radiation damage is shown. → Attention is focused on numerical modelling of concrete in 3D domains. → A new estimate of the radiation damage parameter is given. → A risk assessment of concrete-radiation interactions is developed. - Abstract: Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties.

  15. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  16. Production of iron-serpentinite concrete and mortar for Jaslovske Bohunice V-2 nuclear power plant

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.

    1982-01-01

    The ideas behind the research and the results of the research of serpentinite concrete with a discontinuous granulometric curve are given. Concrete mixes were experimentally tested; a formula is given for the manufacture of 1 m 3 of fresh concrete. Serpentinite concrete of a density of 2,240 kg/m 3 is satisfactory as shielding material. Time dependence of workability was also tested. It was found that the concrete was well workable as late as 2 hours after manufacture. Serpentinite concrete and mortar were made and used for the biological shielding construction in the shaft of Unit I of the V-2 nuclear power plant. (J.P.)

  17. Neutron shield analysis and design for the PDX fusion facility

    International Nuclear Information System (INIS)

    Grimesey, R.A.; Nigg, D.W.; Scott, A.J.; Wheeler, F.J.; Jassby, D.L.; Perry, E.D.

    1979-01-01

    The basic component of the biological shield for PDX is an existing 81 cm thick high-density concrete shielding wall surrounding the machine. The principal additional shielding requirement is a roof shield over the machine to reduce air-scattered skyshine dose into the PDX control room and to the site boundary. The roof shield is designed in removable sections on a steel support structure permitting overhead crane access to major PDX components. After analysis of a number of alternate concepts, a roof shield consisting of 50 cm of water in polyethylene tanks was selected to meet design objectives of effectiveness, weight, removability, and cost

  18. Nomogram for Determining Shield Thickness for Point and Line Sources of Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Joenemalm, C; Malen, K

    1966-10-15

    A set of nomograms is given for the determination of the required shield thickness against gamma radiation. The sources handled are point and infinite line sources with shields of Pb, Fe, magnetite concrete (p = 3.6), ordinary concrete (p = 2.3) or water. The gamma energy range covered is 0.5 - 10 MeV. The nomograms are directly applicable for source and dose points on the surfaces of the shield. They can easily be extended to source and dose points in other positions by applying a geometrical correction. Also included are data for calculation of the source strength for the most common materials and for fission product sources.

  19. Nomogram for Determining Shield Thickness for Point and Line Sources of Gamma Rays

    International Nuclear Information System (INIS)

    Joenemalm, C.; Malen, K

    1966-10-01

    A set of nomograms is given for the determination of the required shield thickness against gamma radiation. The sources handled are point and infinite line sources with shields of Pb, Fe, magnetite concrete (p = 3.6), ordinary concrete (p = 2.3) or water. The gamma energy range covered is 0.5 - 10 MeV. The nomograms are directly applicable for source and dose points on the surfaces of the shield. They can easily be extended to source and dose points in other positions by applying a geometrical correction. Also included are data for calculation of the source strength for the most common materials and for fission product sources

  20. Cask size and weight reduction through the use of depleted uranium dioxide-concrete material

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Haire, J.M.

    2007-01-01

    Newly developed depleted uranium (DU) composite materials enable fabrication of spent nuclear fuel (SNF) transport and storage casks that are smaller and lighter in weight than casks made with conventional materials. One such material is DU dioxide (DUO2)-concrete, so-called DUCRETE TM . This paper examines the radiation shielding efficiency of DUCRETE as compared with that of a conventional concrete cask that holds 32 pressurized-water-reactor SNF assemblies. In this analysis, conventional concrete shielding material is replaced with DUCRETE. The thickness of the DUCRETE shielding is adjusted to give the same radiation surface dose, 200 mrem/h (2 mSv/hr), as the conventional concrete cask. It was found that the concrete shielding thickness decreased from 71 to 20 cm and that the cask radial cross-section shielding area was reduced approx 50 %. The weight was reduced approx 21 %, from 154 to approx 127 tons. Should one choose to add an extra outer ring of SNF assemblies, the number of such assemblies would increase from 32 to 52. In this case, the outside cask diameter would still decrease, from 169 to 137 cm. However, the weight would increase somewhat from 156 to 177 tons. Neutron cask surface dose is only approx 10 % of the gamma dose. These reduced sizes and weights will significantly influence the design of next-generation SNF casks

  1. Experimental study of sodium fires on concrete based on the sodium-concrete reaction and its consequences: study of the behavior of various concretes under metallic sheaths

    International Nuclear Information System (INIS)

    Berlin; Colome, J.; Malet, J.C.

    The problem created by the violent reaction between hot sodium and concrete has only recently been recognized. Its importance was evidenced during experiments in which the sodium-barium oxide concrete reactions led to violent explosions. SESR approached this question during its experimental programs Cassandre and Lucifer. The Cassandre 01 experiment demonstrated the sodium-ordinary concrete reaction, where sodium was burned directly in a concrete vat. The consequences of this fire, pulverization of sodium particles, explosions and deterioration of the concrete led to consideration of protecting the concrete. Among possible shieldings sheath metal appeared to be the safest solution. The Cassandre 08, Lucifer 01 and Lucifer 04 experiments were used to study the behavior of various qualities of concrete protected from fire by a metal wall. The results show that a metal cladding efficiently protects concrete from sodium leaks

  2. Sample collection and sample analysis plan in support of the 105-C/190-C concrete and soil sampling activities

    International Nuclear Information System (INIS)

    Marske, S.G.

    1996-07-01

    This sampling and analysis plan describes the sample collection and sample analysis in support of the 105-C water tunnels and 190-C main pumphouse concrete and soil sampling activities. These analytical data will be used to identify the radiological contamination and presence of hazardous materials to support the decontamination and disposal activities

  3. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.

    1988-01-01

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  4. Light Water Reactor Sustainability Program: Survey of Models for Concrete Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States). Energy and Environment Science and Technology

    2014-08-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have predictive tools to address concerns related to aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

  5. Shielding tests for a new ship for the transport of spent nuclear fuels

    International Nuclear Information System (INIS)

    Ito, D.; Kitano, T.; Akiyama, H.; Ueki, K.; Sanui, T.

    1998-01-01

    a new ship for the transport of spent nuclear fuels which uses serpentine concrete as its major shielding material has been constructed. The shielding calculations are based on DOT3.5 code (CCC-276) and the DLC23). Experiments with Cf-252 and Co-60 sources were carried out to confirm the validity of this method of calculating the shielding effectiveness of serpentine concrete. In these experiments, neutron and gamma-ray dose equivalent rates were measured in various arrangements to simulate the shielding structures of the ship, the calculations for each arrangement were performed by this shielding calculation method. For both neutron and gamma-rays, the calculation results agreed with the experiments very well, confirming that this calculation method used in the ship's shielding design is valid. Two kinds of on-board gamma-ray shielding tests were performed to confirm the ship's actual shielding effectiveness. In one kind of test, gamma-ray dose equivalent rates were measured for each shielding wall using Co-60 sources. In the other kind of test, gamma-ray dose equivalent rates in the ship's accommodation area were measured when a strong Co-60 source was placed in a loaded shipping cask's position. In both gamma-ray shielding tests all measured dose equivalent rates were less than the calculated values, confirming that the ship's actual shielding is sufficient to meet safety requirements. (authors)

  6. Requirement for radiation shields of transportation pipe for on line inhalation gases from compact cyclotron in positron emission tomography

    International Nuclear Information System (INIS)

    Hachiya, Takenori; Hagami, Eiichi; Shoji, Yasuaki; Aizawa, Yasuo; Kanno, Iwao; Uemura, Kazuo; Handa, Masahiko; Mori, Junichi; Fukagawa, Akihisa.

    1989-01-01

    In the unit housing of a compact cyclotron and positron emission CT (PET), positron emitting gas such as 15 O, 11 C, C 15 O 2 , C 15 O etc. is supplied from a cyclotron to a PET room through a transportation pipe with an appropriate shield to reduce positron annihilation radiation. This paper discribes the effect of lead and concrete shields with various thickness. Using lead or concrete shield blocks with various thicknesses, radiation leakage through the shield was measured by an ionization chamber type survey meter during continuous and constant supply of 15 O gas of 1.85 GBq/min concentration which is the maximum dose for clinical use. The leakage radiation measured was 213.7, 56.0, 15.3, 5.0 μSv/week for lead shield with 1, 2, 3, and 4 cm thickness, respectively, and 193.3, 30.5 and 5.1 μSv/week for concrete shields with thickness of 10, 20, and 30 cm, respectively. The present study shows that to keep less than 300 μSv/week, which is the permissible dose rate of the boundary zone around the radiation controlled area by Japan Science and Technology Agency, it is required to use more than 8 mm thick lead shield or 7 cm thick concrete for continuous supply of 1.85 GBq/min 15 O gas. (author)

  7. High-impact concrete for fill in US Department of Transportation type shipping containers

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Cash, R.J.

    1990-01-01

    This report describes the use of light-weight, high-impact concrete in U.S. Department of Transportation-type shipments. The formulations described are substantially lighter in weight (20 to 50 percent) than construction concrete, but product test specimens generally yield superior impact characteristics. The use of this specialty concrete for container fill, encapsulations, or liquid-waste solidification can be advantageous. Use of the material for container or cask construction has the advantage of lighter weight for easier handling, and the container consistently exhibits better performance on drop tests. High-impact concrete does have the disadvantage of less gamma radiation shielding per volume, but some formulation changes discussed in this report can be used to prepare better shielding concrete. Test characteristics of high-impact concrete are included. 3 refs., 6 figs., 7 tabs

  8. Effect of density deviations of concrete on its attenuation efficiency

    International Nuclear Information System (INIS)

    Szymendera, L.; Wincel, K.; Blociszewski, S.; Kordyasz, D.; Sobolewska, I.

    In the work, the influence of concrete density deviation on shield thickness and total dose ratio outside the reactor shield, has--on the basis of numerical analysis--been considered. It has been noticed the possibility of introducing flexible corrections--without additional shielding calculation--to the design thickness of the shield. It has been also found that in common cases of shield design, where any necessity of minimizing the shield thickness does not exist, the tendency to minimize the value of this deviation is hardly substantiable

  9. Development of HANARO ST3 shield

    International Nuclear Information System (INIS)

    Park, K. N.; Lee, J. S.; Shim, H. S.

    2004-12-01

    This report contains the design, fabrication and accurate installation of ST3 shield, which would be installed at ST3 beam port of HANARO. At first, we designed and fabricated ST3 shield casemate composed of 14 blocks. We filled it with heavy concrete, lead ingot and polyethylene that mixed B 4 C powder and epoxy. The average filling density of total shield casemate was 4.7g/cm 3 . The developed ST3 shield was installed at the ST3 beam port and the accuracy of installation for each beam path and channel was evaluated. We found that the extraction of neutron beam to meet the requirement of neutron spectrometer is possible. Also, we developed ancillary equipment such as BGU, quick shutter and exterior shield door for the effective opening and closing of neutron beam. As a result of this study, it was found that neutron spectrometer such as neutron reflectometer and high intensity powder diffractomater can be installed at the ST3 beam port

  10. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  11. Shielding structure analysis for LSDS facility

    International Nuclear Information System (INIS)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong

    2014-01-01

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization

  12. Radiation-resistant composite for biological shield of personnel

    Science.gov (United States)

    Barabash, D. E.; Barabash, A. D.; Potapov, Yu B.; Panfilov, D. V.; Perekalskiy, O. E.

    2017-10-01

    This article presents the results of theoretical and practical justification for the use of polymer concrete based on nonisocyanate polyurethanes in biological shield structures. We have identified the impact of ratio: polymer - radiation-resistant filling compound on the durability and protection properties of polymer concrete. The article expounds regression dependence of the change of basic properties of the aforementioned polymer concrete on the absorbed radiation dose rate. Synergy effect in attenuation of radioactivity release in case of conjoint use of hydrogenous polymer base and radiation-resistant powder is also addressed herein.

  13. Concrete sample point: 304 Concretion Facility

    International Nuclear Information System (INIS)

    Rollison, M.D.

    1995-01-01

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis

  14. Development of BaO-ZnO-B2O3 glasses as a radiation shielding material

    Science.gov (United States)

    Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P.

    2017-08-01

    The effects of the BaO on the optical, physical and radiation shielding properties of the xBaO: 20ZnO: (80-x)B2O3, where x=5, 10, 15, 20 and 25 mol%, were investigated. The glasses were developed by the conventional melt-quenching technique at 1400 °C with high purity chemicals of H3BO3, ZnO, and BaSO4. The optical transparency of the glasses indicated that the glasses samples were high, as observed by visual inspections. The mass attenuation coefficients (μm), the effective atomic numbers (Zeff), and the effective electron densities (Ne) were increased with the increase of BaO concentrations, and the decrease of gamma-ray energy. The developed glass samples were investigated and compared with the shielding concretes and glasses in terms of half value layer (HVL). The overall results demonstrated that the developed glasses had good shielding properties, and highly practical potentials in the environmental friendly radiation shielding materials without an additional of Pb.

  15. Shield calculation of project for instrument calibration integrated laboratory of IPEN-Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Barros, Gustavo A.S.J.; Caldas, Linda V.E.

    2009-01-01

    This work performed the shield calculation of the future rooms walls of the five X-ray equipment of the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, which will be constructed in project of laboratory enlargement. The obtained results by application of a calculation methodology from an international regulation have shown that the largest thickness of shielding (25.7 cm of concrete or 7.1 mm of lead) will be of the wall which will receive the primary beam of the equipment with a 320 kV voltage. The cost/benefit analysis indicated the concrete as the best material option for the shielding

  16. Aircraft impact on nuclear power plants concrete structures

    International Nuclear Information System (INIS)

    Coombs, R.F.; Barbosa, L.C.B.; Santos, S.H.C.

    1980-01-01

    A summary about the procedures for the analysis of aircraft on concrete structures, aiming to emphasize the aspects related to the nuclear power plants safety, is presented. The impact force is determined by the Riera model. The effect of this impact force on the concrete structures is presented, showing the advantages to use nonlinear behaviour in the concrete submitted to short loads. The simplifications used are shown through a verification example of the nuclear reactor concrete shielding. (E.G.) [pt

  17. Waterproofing shielding for concrete in wet and dry storage

    International Nuclear Information System (INIS)

    Gorin, N.; Scherbina, A.; Urusov, S.

    2007-01-01

    One of main reliability and safety criteria for constructions, designed for wet and dry storage of radioactive materials and waste, is the long-term ability to maintain the waterproofing properties in the conditions of high radiation load. The base structural material of these constructions is concrete (cooling ponds, different storage for spent nuclear fuel and waste, etc.). The provision of reliable concrete waterproofing is very important for decreasing risks of radioactive substances ingress to environment and moisture penetration to objects from outside, and also for construction life extension. In the process of long-term operation, some concrete constructions, erected already few decades ago, are gradually losing their waterproofing and this circumstance involves severe operational and ecological threats. Therefore advanced effective concrete waterproofing technologies both for erection of new objects and for repairing of operating constructions are in extreme demand. The paper is devoted to the solution of this problem proposed by Russian Federal Nuclear Centre (RFNC-VNIITF, Snezhinsk). The paper contains the developed criteria established for the search for optimal materials, the 'integral capillary systems' (ICS) principal of operation, methods and results of the tests, and also the experience of ICS application on real objects. (author)

  18. Calculation of neutron fluxes in biological shield of the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Bozic, M.; Zagar, T.; Ravnik, M.

    2001-01-01

    The complete calculation of neutron fluxes in biological shield and verification with experimental results is presented. Calculated results are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Experimental results used for comparison are available from irradiation experiment with selected type of concrete and other materials in irradiation channel 4 in TRIGA Mark II reactor. These experimental results were used as a benchmark. Homogeneous type of problem (without inserted irradiation channel) and problem with asymmetry (inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. Deviation from material data set up as original parameters is also considered (first of all presence of water in concrete and density of concrete) for type of concrete in biological shield and for selected type of concrete in irradiation channel. BUGLE-96 (47 neutron energy groups) library is used. Excellent agreement between calculated and experimental results for reaction rate is received.(author)

  19. Shielding concretes for liquid sodium cooled nuclear reactors

    International Nuclear Information System (INIS)

    Massa, G.; De Stefano, R.; Chatterji, S.; Maniscalco, V.

    1983-01-01

    The scope of the research was to develop concretes with low water loss and high strength with time during continuing operation in relatively high temperature environment. The required physical properties of the concrete are: - density greater than or equal to 3.8 t/m 3 - 28 days compressive strength greater than 500 kg/cm 2 - retained water at 200 0 C higher than 10 litres per cubic meter. The optimum mixture is determined by the following processes: - selection of materials capable of yielding concretes of the required density, - chemical/physical analysis of the mix components, - optimization/determination of required sieve analyses with quantitative analysis of each sieve group, - determination of the fineness modulus drawn from the selected sieve analyses, - preparation of various mixtures with the criteria of minimizing water content, obtaining high workability (to meet the needs of the various casting operations) and 28 days compressive strength of at least 500 kilograms per square centimeter, and achieving retention of the required physical properties at 200 degrees centigrades, - study of mixture response to variations in temperature with the scope of determining the modulus of elasticity. (orig./HP)

  20. Porous Network Concrete : A bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new

  1. Decontamination and concrete core sampling by teleoperated robot at Fukushima Daiichi reactor buildings

    International Nuclear Information System (INIS)

    Watanabe, Masaru; Onitsuka, Hironori; Shimonabe, Noriaki; Fujita, Jun; Matsumura, Takumi; Okumura, Atsushi

    2015-01-01

    For decommissioning of Fukushima daiichi nuclear power station, reduction of the dose equivalent rates inside the reactor buildings is an important issue. Concrete core sampling from the buildings to investigate the contamination is necessary for study about effective decontamination. However, dose rate inside the reactor buildings is very high. For example, dose rate of 1st floor on the Unit 1 is 1.2 - 1820 [mSv / h], the Unit 2 is 2.5 - 220 [mSv / h] and Unit 3 is 2.2 - 4780 [mSv / h]. So it is difficult for workers to work long hours. Therefore, a teleoperated robot, named 'MHI-MEISTeR (Mitsubishi Heavy Industries - Maintenance Equipment Integrated System of Telecontrol Robot)', has been developed to conduct operations like concrete core samples from the reactor buildings. Actually, some concrete core samples from Fukushima daiichi were taken by MHI-MEISTeR. In addition, MHI-MEISTeR is designed as a versatile robot, and so it can conduct suction / blast decontamination works as well as concrete core sampling. The above operations were performed by MHI-MEISTeR in Fukushima daiichi nuclear power station. (author)

  2. Evaluation of the performance of the shields in the EPMAs used for radioactive samples

    International Nuclear Information System (INIS)

    Matsui, Hiroki; Suzuki, Miho; Obata, Hiroki; Kanazawa, Hiroyuki

    2014-06-01

    The Reactor Fuel Examination Facility (RFEF) in Japan Atomic Energy Agency (JAEA) has been used for Post Irradiation Examinations (PIEs) to verify the reliability and safety of the nuclear fuels irradiated in commercial reactors. EPMA (Electron Probe Micro Analyzer) has been utilized for the qualitative analysis of the fission product in the fuel pellet and the detailed observation of the oxide layers formed at the inner and outer surfaces of fuel cladding. Commercial EPMAs were remodeled so that the EPMAs can be applied for radioactive samples. Several shields were set in the EPMA to avoid the gamma-rays which radiate from a radioactive sample to the proportional counter in the EPMA. It is important to calculate this shielding performance adequately to maintain the precision of analysis. This report describes the results of re-evaluation of the performance of the shields in the EPMAs in the RFEF by using the Particle and Heavy Ion Transport Code System (PHITS) and the examination results of gamma-ray effect to the X-ray spectrum data by using a radioactive sample. (author)

  3. Studies on limestone concrete as a low-activation structural material for nuclear power plants

    International Nuclear Information System (INIS)

    Uematsu, Mikio; Nagano, Hiroshi; Naito, Yasuhiro

    2000-01-01

    Because of low content of Li, Co and Eu, the target nuclides of activation reaction, limestone concrete is considered to be effective in reducing the decommissioning cost of nuclear plants. Induced activity calculation and structural strength test were performed for limestone concrete and the results were compared with the data obtained for sandstone concrete, which is generally used in nuclear plants. Minor elements, which are important from the viewpoint of activation, were measured with elementary analysis for limestone samples from three different quarries in Japan. Induced activity in biological shield walls (BSW) of Boiling Water Reactor (BWR) plants was calculated with the isotope generation code ORIGEN-79 using neutron flux data obtained with the one-dimensional Sn transport code ANISN and MGCL 137-group activation cross section library based on JENDL-3. Estimated total radioactivity accumulated in limestone concrete BSW was 5 times lower than that in the sandstone concrete BSW. Structural strength were compared between limestone concrete and sandstone concrete, and limestone concrete was found to have enough compressive strength and tensile strength. (author)

  4. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Noorddin Ibrahim; Rosnie Akang

    2009-01-01

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  5. A Monte Carlo Method for the Analysis of Gamma Radiation Transport from Distributed Sources in Laminated Shields

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1964-02-15

    A description is given of a method for calculating the penetration and energy deposition of gamma radiation, based on Monte Carlo techniques. The essential feature is the application of the exponential transformation to promote the transport of penetrating quanta and to balance the steep spatial variations of the source distributions which appear in secondary gamma emission problems. The estimated statistical errors in a number of sample problems, involving concrete shields with thicknesses up to 500 cm, are shown to be quite favorable, even at relatively short computing times. A practical reactor shielding problem is also shown and the predictions compared with measurements.

  6. A Monte Carlo Method for the Analysis of Gamma Radiation Transport from Distributed Sources in Laminated Shields

    International Nuclear Information System (INIS)

    Leimdoerfer, M.

    1964-02-01

    A description is given of a method for calculating the penetration and energy deposition of gamma radiation, based on Monte Carlo techniques. The essential feature is the application of the exponential transformation to promote the transport of penetrating quanta and to balance the steep spatial variations of the source distributions which appear in secondary gamma emission problems. The estimated statistical errors in a number of sample problems, involving concrete shields with thicknesses up to 500 cm, are shown to be quite favorable, even at relatively short computing times. A practical reactor shielding problem is also shown and the predictions compared with measurements

  7. An Evaluation on Radiation Shielding and Activation Properties of ISOL-bunker Structural Materials for Radiation Safety in RAON Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Hyun; Kim, Song Hyun; Woo, Myeong Hyeon; Lee, Jae Yong; Kim, Jong Woo; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Nam, Shin Woo [Institute for Basic Science, Daejeon (Korea, Republic of)

    2015-10-15

    RAON heavy ion accelerator has been designed by the Institute for Basic Science (IBS). ISOL is one of RAON facilities to generate and separate rare isotopes. For generating rare isotopes, high intensity proton beam, which has 70 MeV energy, is induced into UCx target. From this reaction, lots of neutrons are concomitantly generated. To meet our design goal, it was required that the structural material of ISOL-bunker should be carefully selected. In this study, to select the structural material which has lower activation property with higher performance for radiation shielding, following aspects were evaluated: (i) residual dose, (ii) radioactive wastes, and (iii) shielding performance in ISOL-bunker. In this study, to effectively design the radiation shielding of the RAON ISOL-bunker, two methods were proposed. No.1 strategy is a method to replace the normal concrete to specific concretes. No.2 strategy is to design dual-layer radiation shields that a specific shielding material is located inner side of the normal concrete. Using the strategies, performance evaluations were evaluated for three aspects, which are residual dose, radioactive waste, and prompt radiation. The results show that the residual radiation can be effectively reduced using B{sub 4}C, borated polyethylene and polyethylene with No.2 strategy. Also, the colemanite concrete and B{sub 4}C shielding give a good ability to reduce the radioactive wastes.

  8. Shielding calculations using FLUKA

    International Nuclear Information System (INIS)

    Yamaguchi, Chiri; Tesch, K.; Dinter, H.

    1988-06-01

    The dose equivalent on the surface of concrete shielding has been calculated using the Monte Carlo code FLUKA86 for incident proton energies from 10 to 800 GeV. The results have been compared with some simple equations. The value of the angular dependent parameter in Moyer's equation has been calculated from the locations where the values of the maximum dose equivalent occur. (author)

  9. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  10. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy.

    Science.gov (United States)

    Pomaro, B; Salomoni, V A; Gramegna, F; Prete, G; Majorana, C E

    2011-10-30

    Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste

    International Nuclear Information System (INIS)

    Gallala, Wissem; Hayouni, Yousra; Gaied, Mohamed Essghaier; Fusco, Michael; Alsaied, Jasmin; Bailey, Kathryn; Bourham, Mohamed

    2017-01-01

    Highlights: • Effectiveness of mine waste as additive fine aggregate has been investigated. • Experimental results are verified by computationally from composition of synthesized samples. • Work focuses on shielding materials for nuclear systems including spent fuel storage and drycasks. - Abstract: Incorporation of barite-fluorspar mine waste (BFMW) as a fine aggregate additive has been investigated for its effect on the mechanical and shielding properties of cement mortar. Several mortar mixtures were prepared with different proportions of BFMW ranging from 0% to 30% as fine aggregate replacement. Cement mortar mixtures were evaluated for density, compressive and tensile strengths, and gamma ray radiation shielding. The results revealed that the mortar mixes containing 25% BFMW reaches the highest compressive strength values, which exceeded 50 MPa. Evaluation of gamma-ray attenuation was both measured by experimental tests and computationally calculated using MicroShield software package, and results have shown that using BFMW aggregates increases attenuation coefficient by about 20%. These findings have demonstrated that the mine waste can be suitably used as partial replacement aggregate to improve radiation shielding as well as to reduce the mortar and concrete costs.

  12. Radiation shielding analysis of medical cyclotron at Radiation Medicine Centre, Parel

    International Nuclear Information System (INIS)

    Gathibandhe, M.V.; Agrawal, R.A.; Utge, C.G.

    2003-01-01

    Full text: PET (Positron Emission Tomography) is a diagnostic method to obtain 3-D functional images of the distribution of radio-nuclides introduced in the human body as tracers for specific biological processes. Tracers are produced by bombardment of different target nuclides by protons and deuterons of high energy produced in the cyclotron. A Wipro-GE medical cyclotron was installed in the basement of RMC, Parel. Shielding around the cyclotron is provided in the form of borated concrete walls of required thickness to limit dose rates to design values as per AERB criteria. The roof of the cyclotron room is made of heavy concrete. Entry in to the room is through a maze. Shielding analysis for the cyclotron room has been carried out using computer code ANISN. The maze has been analyzed using code MCNP. Based on the analysis carried out additional shielding was recommended to meet the design requirements. The paper discusses the shielding analysis carried out for the cyclotron room and the maze. Dose rate estimated at various locations are highlighted

  13. Shielding modification design of the N.S. Mutsu

    International Nuclear Information System (INIS)

    Yamaji, A.; Miyakoshi, J.; Kageyama, T.; Futamura, Y.

    1983-01-01

    Shielding modification design of the N.S. Mutsu was performed for reducing the radiation doses outside the primary and the secondary shields by providing shields for neutrons streaming through the air gap between the pressure vessel and the primary shield. This was accomplished by replacing parts of the shields and adding new shields in the upper and lower sections of both primary and secondary shields, and also replacing the thermal insulator in the gap. The shielding design calculations were made using one- and two-dimensional discrete ordinates codes and also a point kernel code. Special attention was paid to the calculations of, (1) the neutrons streaming through the gap between the pressure vessel and the primary shield, (2) the radiations transmitted through the radial shield of the core in the primary shield, (3) the radiations transmitted through the upper and lower sections of the secondary shield, and (4) the dose rate equivalent in the accommodation area. Their calculational accuracies were estimated by analyzing various experiments. To support the modification, a variety of experiments and tests were carried out, which were material tests, cooling test of the primary shield, mechanical strength test of the double bottom, trial fabrication tests of new shields, performance degradation test of heavy concrete and duct streaming experiment in the secondary shield. (author)

  14. Evaluation of bulk shield for the JHP facilities

    International Nuclear Information System (INIS)

    Uwamino, Yoshitomo; Shibata, Tokushi

    1991-01-01

    In the Japanese Hadron Project (JHP), a 1-GeV 200-μA proton beam will be handled, and the radiation shield of the facility will be very massive concrete and iron lump. Since the constructing cost is strongly affected by the shielding design, the design must be severely performed. The neutron yield in thin targets and a copper beam dump was calculated by the HETC-KFA-2 Monte Carlo code. For the evaluation of the calculational accuracy, the calculational results were compared with the experimental data by Cierjacks and Raupp. The calculated result of heavy element agreed well with the experiment at a low energy region, E n n >100 MeV) of 90 deg close to the calculated one of about 60 deg in the absolute value. The high energy neutron transport in a 5-m-thick iron slab and in an 8-m-thick ordinary concrete slab was calculated with the HETC code and also with the discrete ordinates transport code, ANISN. In the ANISN calculation, the DLC-87/HILO and the DLC-128/LAHIMAC group cross sections were used. The ANISN calculation with the LAHIMAC cross sections gave strong underestimation compared with the HETC calculation. The difference of the shielding lengths calculated by the HETC code and by the ANISN code used with the HILO cross sections was smaller than 6% for the both iron and concrete cases. (author)

  15. The carbonaceous concrete based on sawdust

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2015-06-01

    Full Text Available Today there are many requirements for strength, ecology and economy of produced concretes. The authors of the paper study attenuation of electromagnetic radiation of carbonaceous powders in the concrete composition. Carbon black was selected as a carbon powder for addition in concrete composition. Carbon black is a nanomaterial with disoriented structure of particles (average size is about 50 nm. The composition of the carbon black contains at least 90 wt.% amorphous carbon, more than 5 wt. % chemisorbed oxygen and about 4 wt.% of impurities. Materials with the addition of carbon black have electrical conductivity due to the high content of carbon. These materials are able to absorb electromagnetic radiation. For cement composition with addition of carbon black (more than 30 wt. % and water transmission coefficient of electromagnetic radiation is about –10 dB, for cement composition with 20 wt. % of carbon black the reflection coefficient is –8 dB in the frequency range 8–12 GHz. The concretes with a saturated aqueous solution of calcium chloride and 10% of carbon black possess minimal reflection coefficient (–14... –8 dB. Electromagnetic radiation shielding of concrete with the addition of sawdust was investigated. The concrete with sawdust (40 wt. % impregnated with an aqueous solution with carbon black has the reflection coefficient less than –8 dB and transmission coefficient –40 dB in the frequency range 8–12 GHz. These concretes can be used for creation of a shielded room with the technical equipment for information processing to prevent data leakage through the compromising emanations and crosstalk.

  16. The removal of concrete layers from biological shields by microwaves

    International Nuclear Information System (INIS)

    Hills, D.L.

    1989-01-01

    Concrete blocks reinforced with steel bars have been subjected to microwave attack at a frequency of 896 MHz at power levels up to 25 kW. The surface concrete has been explosively removed to the depth of the reinforcement, 10 cm, at a rate of about 2 litres per kWh. Heating was localized around the point of attack, with temperatures up to 300 0 C at the fractured face being attained. A simple mathematical model of the propagation and absorption of micro-waves was used to estimate the temperature rise of concrete at microwave frequencies of 896 wand 2450 MHz, at different power levels with and without the presence of reinforcing bars. This demonstrated that reinforcement is expected to significantly increase the temperature rise in the concrete between the irradiated surface and the reinforcement, and that near-surface heating should be more rapid at the higher frequency. There was reasonable agreement between predicted and observed temperature at the higher power levels. Further desk and laboratory studies are proposed before proceeding to a fullscale practical demolition machine and the requirements for a prototype remotely-operated demonstration system have been identified. This consists of a static generator of high power (at least 50 kW) transmitting microwaves via a steerable waveguide to a remote applicator mounted on a simple three-axis manipulator capable of traversing realistically large concrete test panels

  17. Gamma ray shielding properties of PbO-Li2O-B2O3 glasses

    Science.gov (United States)

    Kumar, Ashok

    2017-07-01

    The mass attenuation coefficients have been measured in (0.6-x) PbO-x Li2O-0.40 B2O3 (where 0≤ x≤0.25 mol%) glasses for photon energies of 356, 662, 1173 and 1332 keV in a narrow beam geometry with an overall scatter acceptance angle of 2.31°. The experimental results are found to be within 3% of their theoretical values. These coefficients were then used to obtain the values of mean free path, effective atomic number and electron density. The shielding properties of these glasses have also been compared among themselves in terms of their mean free path and radiation protection efficiency. The shielding properties prepared glasses have also been compared with standard concretes as well as with the standard shielding glasses. It is found that the prepared glasses are the better shielding substitute to the conventional concretes as well as other standard shielding glasses. The Pb3B4O9 has been found to be the most effective shield.

  18. Shielding calculation for bremsstrahlung from β-emitters

    International Nuclear Information System (INIS)

    Ichimiya, Tsutomu

    1990-01-01

    Accompanying the revision of radiation injury prevention law, the shielding calculation method for photon corresponding to the dose equivalent was shown. However, regarding the electron from β decay nuclide and bremsstrahlung caused by shielding material, the shielding calculation method corresponding to the 1 cm dose equivalent has not been reported, hence, in this report, the spectrum of β-ray is calculated and the 1 cm dose equivalent transmission rate of the bremsstrahlung was calculated for three kinds of shielding materials (iron, lead, concrete). As the result of consideration, it is sufficient to think about the bremsstrahlung due to negative electron emission accompanying β-decay. In β-decay, electrons which constitute the continuous spectrum with maximum energy are emitted. The shape of the spectrum differs with nuclides. The maximum energy of β-ray of generally used nuclides is mostly below 3MeV and, besides, the electron ray itself is easily shielded, while the strength of bremsstrahlung depends on the atomic number of shielding materials and its generating mechanism is complicated. In this report, the actual shielding calculation method for bremsstrahlung is shown with regard to the most frequently used β-decay nuclides. (M.T.)

  19. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  20. Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings

    Science.gov (United States)

    Yesmin, Sabina; Sonker Barua, Bijoy; Uddin Khandaker, Mayeen; Tareque Chowdhury, Mohammed; Kamal, Masud; Rashid, M. A.; Miah, M. M. H.; Bradley, D. A.

    2017-11-01

    Following the rapid growing per capita income, a major portion of Bangladeshi dwellers is upgrading their non-brick houses by rod-cement-concrete materials and simultaneously curious to decorate the houses using luxurious marble stones. Present study was undertaken to investigate the gamma-ray attenuation co-efficient of decorative marble materials leading to their suitability as shielding of ionizing radiation. A number of commercial grades decorative marble stones were collected from home and abroad following their large-scale uses. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the mass attenuation coefficients of the studied materials for high energy photons. Some allied parameters such as half-value layer and radiation protection efficacy of the investigated marbles were calculated. The results showed that among the studied samples, the marble 'Carrara' imported from Italy is suitable to be used as radiation shielding material.

  1. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  2. Roles of concrete technology for containment of radioactive contaminants

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori; Imamoto, Keiichi

    2014-01-01

    A large amount of radioactive materials was emitted in the environment by the reactor accident at Fukushima Daiichi Nuclear Power Plant. Nuclear debris still remains in the reactor container. An investigative committee was organized in Japan Concrete Institute to study on the containment of radioactive materials and the safe utilization of concrete materials. We have investigated the effect of the hydrogen explosion upon the property of concrete and the transfer of materials into the concrete. We also present the outline of the advice made by Japan Concrete Institute about technologies on the concrete materials for the waterproofing in buildings and for water-shielding walls. (J.P.N.)

  3. Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1 keV to 100 GeV

    International Nuclear Information System (INIS)

    Chanthima, N.; Kaewkhao, J.; Limsuwan, P.

    2012-01-01

    Highlights: ► Interaction photon with of silicate glasses containing PbO, BaO and Bi 2 O 3 studied. ► All interactions were changed with energy and composition of glasses. ► Shielding properties of glasses are better than some standard shielding materials. - Abstract: The mass attenuation coefficient (μ/ρ), effective atomic number (Z eff ), effective electron density (N e,eff ) and half-value layer (HVL) of xR m O n :(1 − x)SiO 2 glass system (where R m O n are Bi 2 O 3 , PbO and BaO, with 0.3 ⩽ x ⩽ 0.7 is fraction by weight) have been calculated by theoretical approach using WinXCom program in the energy region from 1 keV to 100 GeV. Also, the HVL of these glass samples has been compared with some standard shielding concretes. The variations of μ/ρ, Z eff , N e,eff and HVL with energy are shown graphically only for total photon interaction. It has been observed that the value of these parameters has been changed with energy and composition of the silicate glasses. The better shielding properties of glass samples were obtained compared with some standard shielding concretes. These results indicated that glasses in the present study can be used as radiation shielding materials.

  4. Characterisation of the inventory of radioisotopes induced in the biological shield a WWER-440 reactor

    International Nuclear Information System (INIS)

    Feher, S.; Czifrus, Sz.; Zsolnay, E.M.; Szondi, E.

    2001-01-01

    A significant part of the radwaste originating from the decommissioning of NPPs is made up of the activated concrete and steel components of the biological shield. The paper presents the results of studies aimed at the determination of the amount of radionuclides accumulating in the serpentinous and ordinary concrete shield around the WWER-440 reactors of the Paks NPP. For the calculations, the reactor, vessel and shield were modelled in detail both in terms of geometry and material composition. The spatial and energy distribution of the activating neutron spectrum was determined by certain modules of SCALE 4.3 and the code TORT in two and three dimensions, while the activation was calculated using ORIGEN-S for 22 geometrical regions. The results showed that the activity of the concrete structures at final shutdown after 30 years of operation is approximately 50 TBq, which decreases to 20, 12, 1.1 TBq and 27 GBq after 1 month, 1 year, 10 and 100 years, respectively (Authors)

  5. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of builtup, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  6. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of built-up, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  7. Treatment vault shielding for a flattening filter-free medical linear accelerator

    Science.gov (United States)

    Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.

    2009-03-01

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  8. Treatment vault shielding for a flattening filter-free medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)], E-mail: sfkry@mdanderson.org

    2009-03-07

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m{sup 3} less concrete to shield the single-energy linac and 36 m{sup 3} less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  9. Treatment vault shielding for a flattening filter-free medical linear accelerator

    International Nuclear Information System (INIS)

    Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N

    2009-01-01

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m 3 less concrete to shield the single-energy linac and 36 m 3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  10. Dynamic Impact Analysis and Test of Concrete Overpack Segment Models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Kim, Ki Young; Jeon, Je Eon; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Concrete cask is an option for spent nuclear fuel interim storage which is used mainly in US. The concrete overpack of the cask provides radiation shielding as well as physical protection for inner canister against external mechanical shock. When the overpack undergoes a severe missile impact which might be caused by tornado or aircraft crash, it should sustain minimal level of structural integrity so that the radiation shielding and the retrievability of canister are maintained. Empirical formulas have been developed for the evaluation of concrete damage but those formulas can be used only for local damage evaluation and not for global damage evaluation. In this research, a series of numerical simulations and tests have been performed to evaluate the damage of two types of concrete overpack segment models under high speed missile impact. It is shown that appropriate modeling of material failure is crucial in this kind of analyses and finding the correct failure parameters may not be straightforward

  11. Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings

    International Nuclear Information System (INIS)

    Yesmin, Sabina; Sonker Barua, Bijoy; Uddin Khandaker, Mayeen; Tareque Chowdhury, Mohammed; Kamal, Masud; Rashid, M.A.; Miah, M.M.H.; Bradley, D.A.

    2017-01-01

    Following the rapid growing per capita income, a major portion of Bangladeshi dwellers is upgrading their non-brick houses by rod-cement-concrete materials and simultaneously curious to decorate the houses using luxurious marble stones. Present study was undertaken to investigate the gamma-ray attenuation co-efficient of decorative marble materials leading to their suitability as shielding of ionizing radiation. A number of commercial grades decorative marble stones were collected from home and abroad following their large-scale uses. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the mass attenuation coefficients of the studied materials for high energy photons. Some allied parameters such as half-value layer and radiation protection efficacy of the investigated marbles were calculated. The results showed that among the studied samples, the marble ‘Carrara’ imported from Italy is suitable to be used as radiation shielding material. - Highlights: • Studies of decorative building materials for shielding of ionizing radiation. • High energy photon beam were used to obtain various interaction properties. • Marble stone ‘Carrara’ from Italy shows suitability to be used as shielding material.

  12. A theoretical study of the fast-neutron attenuation in Ghanaian serpentine shields

    International Nuclear Information System (INIS)

    Akaho, E.H.K.; Anim-Sampong, S.

    1994-01-01

    Theoretical calculations were done to determine the suitability of local serpentine rocks for shielding fast neutrons. A coupled neutron-gamma library of 25 energy groups, IRAN3.LIB developed for ANISN/PC was used to generate nuclear data for the tested shields. Calculations were carried out assuming a P 3 scattering order for spherical geometry with S 6 angular quadrature. From the trends of attenuation and computer factors such as relaxation length and transmission there is the indication that the shielding properties of the local shields are better than the foreign serpentine shields used in this study. They are slightly inferior to ordinary concrete employed in shielding power reactors. (author). 9 refs.; 5 tabs.; 5 figs

  13. Utilization of Swedish fly ash from bio fuel fired power plants as a filler material in concrete; Anvaendning av svenska flygaskor som fillermaterial i betong

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2006-03-15

    The tested Swedish fly ashes (FA) (FA from bio combustion) in this project proved to have good filler qualities such as improving the stability and the rheological behavior of the concrete. One of tested FA could directly replace the compared limestone filler in the concrete recipes in booth laboratory investigation and in full-scale demonstration. The other FA demanded more water. The recipes were modified in the laboratory investigation to get a functional recipe for full-scale demonstration. The process to investigate the Swedish FA has been following (this project is one part of several investigation): Basic characterization; Characterization as a filler material; Full-scale demonstration; Certification, regularly quality assurance; Continuous use of Swedish FA in the Swedish Concrete Industry. Three representatives Swedish FA have been investigated in step 1-3 according to the process above. There were two FA in a full-scale demonstration a FA from bio fuel/paper sludge fired circulated fluidized bed boiler (at a paper mill) and a FA from a peat fired pulverized boiler. The test made was basic chemical and physical characterization, investigation as a filler material and strength development of a crushed aggregate self-compacting concrete in laboratory and in a full-scale demonstration. The conclusion were following: FA from the paper mill CFB boiler changes in strength development depending on the combustion temperature. It seems the reason is in the way CaO is distribute into different chemical compounds. Higher compressive strength with higher free CaO (analyzed in XRD) Higher content of reactive SiO{sub 2} and free lime in the CFB FA comparing with the PF FA. The soundness of the FA have been tested in early research projects. The sieves curves demonstrated that the FA from the CFB boiler coarser than the other FA tested and the limestone filler compared. The coarser grain fraction could explain why the FA demanded more water in the laboratory and full

  14. Tests of Neutron Spectrum Calculations with the Help of Foil Measurements in a D{sub 2}O and in an H{sub 2}O-Moderated Reactor and in Reactor Shields of Concrete an Iron

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, R; Aalto, E

    1964-09-15

    Foil measurements covering the fast, epithermal and thermal neutron energy regions have been made in the centre of the Swedish D{sub 2}O-moderated reactor R1, in the pool reactor R2-0, and in different positions in reactor shields of iron, magnetite concrete and ordinary concrete. Neutron spectra have also been calculated for most of these positions, often with the help of a numerical integration of the Boltzmann equation. The measurements and the calculated spectra are presented.

  15. Establishment of a cervical cancer bio-bank for the Chinese population: from project-based sample collection to routine management.

    Science.gov (United States)

    Yang, Ru; Li, Xiong; Zhou, Hang; Jia, Yao; Zhou, Jin; Huang, Kecheng; Tang, Fangxu; Hu, Ting; Shen, Jian; Chen, Zhilan; Wang, Shaoshuai; Sun, Haiying; Guo, Lili; Wang, Lin; Wang, Hui; Ma, Ding; Li, Shuang

    2015-08-01

    There is an increasing need for the establishment of a cervical cancer bio-bank that will facilitate both clinical and basic research. The cervical cancer bio-bank was first established in January 1999 and included two stages. First, a GWAS-based sample collection was conducted with special emphasis on the diagnosis and the retrieval of the corresponding bio-specimens, especially blood samples. Second, clinical data and their corresponding bio-specimens were routinely collected and handled. Notably, these bio-specimens also included samples from Wufeng Tujia Autonomous County, which has the highest incidence of cervical cancer in China. The specimens were collected from patients with cervical cancer and those with cervical intraepithelial neoplasia, while the control samples were collected from normal individuals. With special emphasis on clinical data and blood samples for the GWAS analysis, the collection of other bio-specimens was slow, and the pairing of specimens and clinical data was poor during the first stage. However, in the second stage, the pairing of the clinical data and its corresponding bio-specimens improved. At present, the samples procured and preserved in the bio-bank cover most regions of China and different ethnic groups for both the normal controls and cervical cancer patients of different pathological categories. This bio-bank of cervical cancer specimens from the Chinese population will greatly promote the studies of cervical cancer in China.

  16. Comparative study of the shield of concrete blocks with hematite in relation to common concrete blocks

    International Nuclear Information System (INIS)

    Costa, Paulo R.; Buerger, Andre A.; Naccache, Veronica K.; Priszkulnik, Simao

    2012-01-01

    The present work shows results of an empirical evaluation of the transmission properties of two radioprotection materials: an ordinary concrete and an ordinary concrete mixed with hematite. It was used techniques of x-ray spectroscopy and measurements of the air-kerma transmitted through these two materials in order to compare the transmission properties for each one. (author)

  17. Application of a calculational model for thermal neutrons through biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M [Nuclear engineering safety department, national center for nuclear safety and radiation, Nasr City Cairo, (Egypt)

    1995-10-01

    In this work a computational program, based on the Boltzmann transport integrodifferential equation, is applied. The scattering kernel is represented by the synthetic scattering model. The behaviour of thermal neutron in hydrogenous materials, which can be used as biological shields, are studied. These materials are water, polyethylene, Oak-Ridge concrete, ordinary concrete and manganese concrete. The data obtained are presented in tables. The results are analysed and compared with similar experimental values. Safety evaluation and environmental impact are discussed. 2 tabs.

  18. A code for leakage neutron spectra through thick shields

    International Nuclear Information System (INIS)

    Nagarajan, P.S.; Sethulakshmi, P.; Raghavendran, C.P.

    1975-01-01

    An exponential transform Monte Carlo code has been developed for deep penetration of neutrons and the results of leakage neutron spectra of this code have been compared with those of a basic Monte Carlo code for small thickness. The development of the code and optimisation of certain transform parameters are discussed and results are presented for a few thick shields of concrete and water in the context of neutron monitoring in the environs of accelerator and reactor shields. (author)

  19. Precooling of concrete with flake ice

    International Nuclear Information System (INIS)

    Inoue, Katsuhiro; Shigenobu, Manabu; Soejima, Kenji; Noguchi, Hiroshi; Noda, Youichi; Sakaguchi, Tohru.

    1989-01-01

    The buildings in nuclear power stations are the reinforced concrete structures which are constructed with the massive members having much rein forcing bar quantity and relatively high strength due to the requirement of aseismatic capability, shielding and others. Also their scale is large, and in the case of a power station of one million kW class, concrete as much as 300,000 m 3 is used for one plant. Accordingly, at the time of construction, the case of stably supplying the concrete of high quality in large quantity by installing the facilities of manufacturing ready mixed concrete at construction sites is frequent. Moreover, electric power companies carry out thorough quality control to undergo the inspection before use by the Agency of Natural Resources and Energy from the aspects of materials, structures and strength. Since prestressed concrete containment vessels were adopted for No.3 and No.4 plants, the quality of concrete and the facilities for manufacturing ready mixed concrete were examined in detail. The precooling facilities for concrete and the effect of precooling are reported. (Kako, I.)

  20. Development of low-activation design method for reduction of radioactive waste (3). Various types of low-activation concrete

    International Nuclear Information System (INIS)

    Kinno, Masaharu; Kimura, Ken-ichi; Fujikura, Yusuke

    2008-01-01

    Manufacturing tests by mixing together with low-activation aggregates, low-activation cements, low-activation additives, low-activation admixtures and low-activation neutron absorbers have been performed to develop low-activation concrete. After that, we developed various types (1/10, 1/20, 1/30, 1/50, 1/100, 1/300, 1/1,000, 1/3,000 and 1/10,000) of low-activation concrete composed of low-activation raw materials as very useful shielding material in a nuclear facility. The term '1/10 of low-activation concrete' denotes that the activity reduction rate to ordinary concrete is designed to be 1/10. By adopting some suitable types of low-activation concrete, most of the shielding concrete around ABWR and APWR are classified below clearance level on decommissioning. (author)

  1. Repair Mortars and New Concretes with Coal Bottom and Biomass Ashes Using Rheological Optimisation

    International Nuclear Information System (INIS)

    Bras, A.; Faustino, P.

    2016-01-01

    The objective of the present work is to analyse the potential of using non-classical additions in concrete and mortar compositions such as coal bottom ash and biomass ash (Bio), as partial replacing binder of ordinary Portland cement. It is intended to deal with production of these type of wastes and its accumulation and contribute to the minimisation of carbon and embodied energy in construction materials. The aim is to identify the concrete and mortars formulation types where it is possible to get more benefit by incorporating bottom ash and Bio. Based on the optimisation of the rheological properties of cement-based materials, mortars with repair function and concrete compositions were developed including 0%, 10%, 15% and 20% of bottom ash and Bio as cement replacement. An assessment of the evolution of relative concrete compressive strength was calculated as a function of the relative solid volume fraction of several concretes. bottom ash compositions present low resistance to high flow rates, increasing the ease of placement and vibration. bottom ash seems to present more filler and pozzolanic effect when compared with Bio. bottom ash mortars fulfil the compressive strength and stiffness requirements to be used as repair mortars, allowing the replacement of 15% or 20% of cement by an industrial waste. This by-product is able to work in the development of the mortar and concrete microstructure strength adopting a much more sustainable solution for the environment.

  2. Measurement of the wetting profile in concrete samples with vertical water by gamma radiation transmission method

    International Nuclear Information System (INIS)

    Silva, L.M. da; Rocha, M.C. da; Appoloni, C.R.; Portezan Filho, O.; Lopes, F.; Melquiades, F.L.; Santos, E.A. dos; Santos, A.O. dos; Moreira, A.C.; Poetker, W.E.; Almeida, E. de; Tannous, C.Q.; Kuramoto, R.; Cavalcante, F.H. de M.; Barbieri, P.F.

    2000-01-01

    Samples of concrete for popular habitation (0,1x0,03x0,1 m) and cellular concrete (0,1x0,05x0,1 m) were submitted to water vertical ascending infiltration. The moisture content spatial and temporal evolution of each sample it was monitored in three halfway positions in a same horizontal line, applying the gamma rays transmission method. The data were taken with a 137 Cs (3,7x10 10 Bq, 0662 MeV) source, NaI (Tl) of 2x2' detector coupled to between wetting profiles and concrete strength. The cellular concrete showed a wetting profile compatible to its greater porosity. (author)

  3. Safety-related concrete structure design and construction of Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Morishita, Hideki; Munakata, Yoshinari; Togashi, Akihito

    2003-01-01

    The Rokkasho Reprocessing Plant of the Japan Nuclear Fuel Co. Ltd., is a facility to reprocess remained uranium without firing and newly formed plutonium contained in spent fuels used at the nuclear power stations, to produce fuels to be repeatedly used. Constructions in this facility has some characteristics shown as follows: 1) radiation shielding and seismic isolated functions like those at the nuclear power plants, 2) reduction of wall thickness based on partially using heavy concrete at walls required for radiation shielding, 3) protective design against fly-coming matters such as aircrafts, 4) construction period reduction based on winter construction and large scale block engineering. Here were described characteristics of designs on radiation shielding, seismic isolated and fly-coming matters protection construction engineering and quality control on concrete. (G.K.)

  4. 36Cl measurements of Hiroshima concrete samples

    International Nuclear Information System (INIS)

    Matsuhiro, T.; Nagashima, Y.; Seki, R.; Takahashi, T.

    2002-01-01

    The 36 Cl AMS studies are reported. A new steps of procedure of a sample preparation is developed and a tremendous reduction of sulphur background has been achieved. The 36 Cl contents of two atomic bombed concrete samples, old Hiroshima Bank one and Gokoku Shrine one, have been measured as a function of 36 Cl to Cl ratio by the Tsukuba AMS system. The 36 Cl to Cl ratio of the old Hiroshima Bank sample shows very nice agreement with the result of γ measurement of 152 Eu. Otherwise, the ratio is about 20% smaller than an estimation by the DS86 dosimetry system. A result of the Gokoku Shrine sample is also smaller than a depth profile estimation by the same DS86. It might be clear that the DS86 has a tendency of overestimation. It seems that a calculation method and/or the parameters used in the calculation are requested to be improved. (author)

  5. A study of explosive demolition techniques for heavy reinforced and prestressed concrete structures

    International Nuclear Information System (INIS)

    Fleischer, C.C.

    1984-10-01

    This report presents the results from a research programme aimed at advancing explosive demolition techniques from the present 'rule of thumb art' to a more scientifically based set of procedures to achieve the degree of control which will be essential in a nuclear power station decommissioning. The research is directed mainly at the biological shields of early Magnox reactors and the prestressed concrete pressure vessels (PCPVs) of later Magnox and Advanced Gas-cooled reactors. Relevant structures of other commercial nuclear power plants in the European Community, in particular the PCPVs of French Gas Graphite reactors and the biological shields of Light Water reactors are also considered. The bulk of the programme has been based on experiments with an extensive usage of scaled models. The programme investigated the use of buried explosive charges in cratering concrete and the use of shaped charges in stripping surface cover and drilling holes. After an initial parametric study the programme considered concrete layer stripping using multiple charges and culminated in the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of a complete cylindrical model of a biological shield. (author)

  6. A study of explosive demolition techniques for heavy reinforced and prestressed concrete structures

    International Nuclear Information System (INIS)

    Fleischer, C.C.

    1985-01-01

    This report presents the results from a research programme aimed at advancing explosive demolition techniques from the present ''rule of thumb art'' to a more scientifically based set of procedures to achieve the degree of control which will be essential in a nuclear power station decommissioning. The research is directed mainly at the biological shields of early Magnox reactors and the prestressed concrete pressure vessels (PCPVs) of later Magnox and advanced gas-cooled reactors. Relevant structures of other commercial nuclear power plants in the European Community, in particular the PCPVs of French gas graphite reactors and the biological shields of light water reactors are also considered. The bulk of the programme has been based on experiments with an extensive usage of scaled models. The programme investigated the use of buried explosive charges in cratering concrete and the use of shaped charges in stripping surface cover and drilling holes. After an initial parametric study the programme considered concrete layer stripping using multiple charges and culminated in the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of a complete cylindrical model of a biological shield

  7. Nuclear shielding of openings in ITER Tokamak building

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Arumugam, A.P.; Beaudoin, V.; Beltran, D.; Benchikhoune, M.; Berruyer, F.; Cortes, P.; Gandini, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ghirelli, N. [ASSYSTEM E.O.S, ZAC Saint Martin, 23, rue Benjamin Franklin, 84120 Pertuis (France); Gray, A.; Hurzlmeier, H.; Le Page, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Lentini, G.; Loughlin, M.; Mita, Y.; Patisson, L.; Rigoni, G.; Rathi, D.; Song, I. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Establishment of a methodology to design shielded opening in external wall of the Tokamak building. ► Analysis of the shielding requirement, case by case, depending on the localization and the context. ► Implementation of an integrated solution for shielded opening. -- Abstract: The external walls of the Tokamak building, made of thick concrete, provide the nuclear shielding for operators working in adjacent buildings and for the environment. There are a series of openings to these external walls, devoted to ducts or pipes for ventilation, waveguides and transmission lines for heating systems and diagnostics, cooling pipes, cable trays or busbars. The shielding properties of the wall shall be preserved by adequate design of the openings in order not to affect the radiological zoning in adjacent areas. For some of them, shielding properties of the wall are not affected because the size of the network is quite small or the source is far from the opening. But for most of the openings, specific features shall be considered. Even if the approach is the same and the ways to shield can be standardized, specific analysis is requested in any case because the constraints are different.

  8. Leaching studies of heavy concrete material for nuclear fuel waste immobilization containers

    International Nuclear Information System (INIS)

    Onofrei, M.; Raine, D.; Brown, L.; Hooton, R.D.

    1989-08-01

    The leaching behaviour of a high-density concrete was studied as part of a program to evaluate its potential use as a container material for nuclear fuel waste under conditions of deep geologic disposal. Samples of concrete material were leached in deionized distilled water, Standard Canadian Shield Saline Solution (SCSSS), SCSSS plus 20% Na-bentonite, and SCSSS plus granite and 20% Na-bentonite under static conditions at 100 degrees celsius for periods up to 365 days. The results of these leaching experiments suggest that the stability of concrete depends on the possible internal structural changes due to hydration reactions of unhydrated components, leading to the formation of C-S-H gel plus portlandite (Ca(OH) 2 ). The factors controlling the concrete leaching process were the composition of the leachant and the concentration of elements in solution capable of forming precipitates on the concrete surface, e.g., silicon, Mg 2+ and Ca 2+ . The main effect observed during leaching was an increase in groundwater pH (from 7 to 9). However, the addition of Na-bentonite suppressed the normal tendency of the pH of the groundwater in contact with concrete to rise rapidly. It was shown that the solution concentration of elements released from the concrete, particularly potassium, increased in the presence of Na-bentonite

  9. Determination of self shielding factors and gamma attenuation effects for tree ring samples

    International Nuclear Information System (INIS)

    Dagistan Sahin; Kenan Uenlue

    2012-01-01

    Determination of tree ring chemistry using Neutron Activation Analysis (NAA) is part of an ongoing research between Penn State University (PSU) and Cornell University, The Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology. Tree-ring chemistry yields valuable data for environmental event signatures. These signatures are a complex function of elemental concentration. To be certain about concentration of signature elements, it is necessary to perform the measurements and corrections with the lowest error and maximum accuracy possible. Accurate and precise values of energy dependent neutron flux at dry irradiation tubes and detector efficiency for tree ring sample are calculated for Penn State Breazeale Reactor (PSBR). For the calculation of energy dependent and self shielding corrected neutron flux, detailed model of the TRIGA Mark III reactor at PSU with updated fuel compositions was prepared using the MCNP utility for reactor evolution (MURE) libraries. Dry irradiation tube, sample holder and sample were also included in the model. The thermal flux self-shielding correction factors due to the sample holder and sample for were calculated and verified with previously published values. The Geant-4 model of the gamma spectroscopy system, developed at Radiation Science and Engineering Center (RSEC), was improved and absolute detector efficiency for tree-ring samples was calculated. (author)

  10. The quality control for biological-shield heavy concrete construction of nuclear power project

    International Nuclear Information System (INIS)

    Sun Hongjun; Ma Xinchao

    2012-01-01

    The paper introduces the function and characteristics of biological protective heavy-concrete, and its main application scope and role in Fangjiashan nuclear power project. From the aspects of raw material selection, mixing ratio test, heavy concrete production, the paper discusses the main control points of heavy concrete construction process, points out the basic characteristics of heavy concrete construction, and put forward measures to prevent density non-uniformity during heavy concrete construction and to control slump during transportation. Results prove that reasonable construction process control can assure the engineering quality. (authors)

  11. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    Science.gov (United States)

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  12. Study of radioactivity and radiation attenuation of a new heavy weight concrete

    International Nuclear Information System (INIS)

    Ramadan, A.B.; Fouda, S.; EL-Mongy, S.; Hodhod, O.; Yousef, M.

    2005-01-01

    The present study is concerned with studying the radioactivity levels and efficiency of proposed heavy weight concrete as a shielding material for low and intermediate level radioactive wastes. Effect of elevated temperatures on radiation attenuation characteristics of proposed materials was also studied. Three types of local natural aggregates (iron ores) namely magnetite, limonite and hematite have been prepared, analyzed for their radioactivity and tested to determine their suitability for the manufacture of heavy weight concrete, which can be used for shielding. Hematite was excluded and two types of concrete have been prepared by using magnetite and limonite. The gamma spectrometry and neutron activation have been used to determine both uranium and thorium contents in the investigated materials. The results obtained by the two methods showed that uranium and thorium were within the acceptable low levels. It was observed that the two types of concrete have good attenuation properties

  13. Neutron and gamma ray transport calculations in shielding system

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Sakamoto, Hiroki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In the shields for radiation in nuclear facilities, the penetrating holes of various kinds and irregular shapes are made for the reasons of operation, control and others. These penetrating holes and gaps are filled with air or the substances with relatively small shielding performance, and radiation flows out through them, which is called streaming. As the calculation techniques for the shielding design or analysis related to the streaming problem, there are the calculations by simplified evaluation, transport calculation and Monte Carlo method. In this report, the example of calculation by Monte Carlo method which is represented by MCNP code is discussed. A number of variance reduction techniques which seem effective for the analysis of streaming problem were tried. As to the investigation of the applicability of MCNP code to streaming analysis, the object of analysis which are the concrete walls without hole and with horizontal hole, oblique hole and bent oblique hole, the analysis procedure, the composition of concrete, and the conversion coefficient of dose equivalent, and the results of analysis are reported. As for variance reduction technique, cell importance was adopted. (K.I.)

  14. Development of high-performance shielding material by heat curing method

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro; Hayashi, Takayuki; Okuno, Koichi; Sato, Osamu [National Maritime Research Institute, Ibaraki (Japan)

    2002-07-01

    A high-performance shielding material is developed by a heat curing method. It is mainly made of a thermosetting resin, lead powder, and a boron compound. To make the resin, a single functional monomer stearyl methacrylate (SMA) is used. To get good dispersion of lead and the boron compound in the resin, the viscosity of the SMA is increased by adding a small amount of a peroxide into the liquid monomer and heating up to the temperature of 100 .deg. C. Next, a peroxide, lead powder, a boron compound, a three functional monomer, and a curing accelerator are mixed into the viscous SMA. The mixture is cured in an atmosphere of nitrogen after removing bubbles using a vacuum pump. Measured properties of the cured material are as follows. The curing rate of SMA is 97 %. The density is kept 2.35 g/cm{sub 3} in the range from room temperature to 150 .deg. C. The weight-change measured by a thermogravimetry is 0.16 % in the range from room temperature to 200 .deg. C. Details of fragments in the gas released from the material is analyzed by a gas chromatography and a mass spectrometry. The hydrogen content of the material is 6.04x10 {sub 22} /cm{sub 3} . The shielding effect is calculated for a fission source by an Sn code ANISN. The shielding effect of the curing material is excellent. For example, concrete shield of a certain thickness can be replaced by the material having a thickness less than a half of concrete. Several samples of the material are irradiated at an irradiation equipment of the research reactor JRR-4 installed at Japan Atomic Energy Research Institute. At the 14{sub th} day after irradiating with the thermal neutron fluence of 6.6x10{sub 15} /cm{sub 2} , the radioactivity is less than one tenth of 75 Bq/g above which materials are regulated as the radioactive substance in Japan.

  15. Detection of shielded radionuclides from weak and poorly resolved spectra using group positive RIVAL

    International Nuclear Information System (INIS)

    Kump, Paul; Bai, Er-Wei; Chan, Kung-Sik; Eichinger, William

    2013-01-01

    This paper is concerned with the identification of nuclides from weak and poorly resolved spectra in the presence of unknown radiation shielding materials such as carbon, water, concrete and lead. Since a shield will attenuate lower energies more so than higher ones, isotope sub-spectra must be introduced into models and into detection algorithms. We propose a new algorithm for detection, called group positive RIVAL, that encourages the selection of groups of sub-spectra rather than the selection of individual sub-spectra that may be from the same parent isotope. Indeed, the proposed algorithm incorporates group positive LASSO, and, as such, we supply the consistency results of group positive LASSO and adaptive group positive LASSO. In an example employing various shielding materials and material thicknesses, group positive RIVAL is shown to perform well in all scenarios with the exception of ones in which the shielding material is lead. - Highlights: ► Identification of nuclides from weak and poorly resolved spectra. ► Shielding materials such as carbon, water, concrete, and lead are considered. ► Isotope spectra are decomposed into their sub-spectra. ► A variable selection algorithm is proposed that encourages group selection. ► Simulations demonstrate the proposed method's performance when nuclides have been shielded

  16. RADIO SHIELDING PROPERTIES OF CONCRETE BASED ON SHUNGITE NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2013-04-01

    Full Text Available Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  17. AA, radiation shielding curtain along the target area

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    At the far left is the beam tube for the high-intensity proton beam from the 26 GeV PS. The tube ends in a thin window and the proton beam continues in air through a hole in the shielding blocks (see also 8010308), behind which the target (see 7905091, 7905094)was located. After the target followed the magnetic horn, focusing the antiprotons, and the first part of the injection line with a proton dump. The antiprotons, deflected by a magnet, left the target area through another shielding wall, to make their way to the AA ring. Laterally, this sequence of components was shielded with movable, suspended, concrete blocks: the "curtain". Balasz Szeless, who had constructed it, is standing at its side.

  18. Measurements of attenuation lengths through concrete and iron for neutrons produced by 800-MeV proton on tantalum target at ISIS

    CERN Document Server

    Nunomiya, T; Wright, P; Nakamura, T; Kim, E; Kurosawa, T; Taniguchi, S; Sasaki, M; Iwase, H; Uwamino, Y; Shibata, T; Ito, S; Perry, D R

    2002-01-01

    A deep penetration experiment through a thick bulk shield was performed at an intense spallation neutron source facility, ISIS, of the Rutherford Appleton Laboratory (RAL), United Kingdom. ISIS is a 800 MeV-200 mu A proton accelerator facility. Neutrons are produced from a tantalum target, and are shielded with approximately 3-m thick steel and 1-m thick ordinary concrete. On top of the shield, we measured the neutron flux attenuation through concrete and iron shields, which were additionally placed up to 120-cm and 60-cm thickness, respectively, using activation detectors of graphite and bismuth. The attenuation lengths of concrete and iron for high-energy neutrons above 20 MeV were obtained from the sup 1 sup 2 C(n, 2n) sup 1 sup 1 C reaction of graphite.

  19. Gamma ray shielding and structural properties of PbO-P2O5-Na2WO4 glass system

    Science.gov (United States)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder

    2017-05-01

    The present work has been undertaken to study the gamma ray shielding properties of PbO-P2O5-Na2WO4 glass system. The values of mass attenuation coefficient and half value layer parameter at photon energies 511, 662 and 1173 KeV have been determined using XCOM computer software developed by National Institute of Standards and Technology. The density, molar volume, XRD, UV-VIS and Raman studies have been performed to study the structural properties of the prepared glass system to check the possibility of the use of prepared samples as an alternate to conventional concrete for gamma ray shielding applications.

  20. CHESS upgrade 1995: Improved radiation shielding

    International Nuclear Information System (INIS)

    Finkelstein, K.

    1996-01-01

    The Cornell Electron Storage Ring (CESR) stores electrons and positrons at 5.3 GeV for the production and study of B mesons, and, in addition, it supplies synchrotron radiation for CHESS. The machine has been upgraded for 300 mA operation. It is planned that each beam will be injected in about 5 minutes and that particle beam lifetimes will be several hours. In a cooperative effort, staff members at CHESS and LNS have studied sources in CESR that produce radiation in the user areas. The group has been responsible for the development and realization of new tunnel shielding walls that provide a level of radiation protection from 20 to approx-gt 100 times what was previously available. Our experience has indicated that a major contribution to the environmental radiation is not from photons, but results from neutrons that are generated by particle beam loss in the ring. Neutrons are stopped by inelastic scattering and absorption in thick materials such as heavy concrete. The design for the upgraded walls, the development of a mix for our heavy concrete, and all the concrete casting was done by CHESS and LNS personnel. The concrete incorporates a new material for this application, one that has yielded a significant cost saving in the production of over 200 tons of new wall sections. The material is an artificially enriched iron oxide pellet manufactured in vast quantities from hematite ore for the steel-making industry. Its material and chemical properties (iron and impurity content, strength, size and uniformity) make it an excellent substitute for high grade Brazilian ore, which is commonly used as heavy aggregate in radiation shielding. Its cost is about a third that of the natural ore. The concrete has excellent workability, a 28 day compressive strength exceeding 6000 psi and a density of 220 lbs/cu.ft (3.5 gr/cc). The density is limited by an interesting property of the pellets that is motivated by efficiency in the steel-making application. (Abstract Truncated)

  1. Some engineering properties of heavy concrete added silica fume

    International Nuclear Information System (INIS)

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-01-01

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated

  2. Stripping demolition of concrete by applying electric current through reinforcing bars

    International Nuclear Information System (INIS)

    Nakagawa, Wahei; Kumegawa, Sadatsune

    1995-01-01

    The presence of reinforcing bars in reinforced concrete structures is an obstruction hindering the smooth progress of demolition works. The electric heating method is, on the other hand, a demolition technique of unique concept since it adopts the bars to help the demolition of reinforced concrete structures. This technique has the following advantages for demolition: 1) the more densely a structure is reinforced with bars, the greater is the effect of the electric heating, 2) demolition after heating produces little dust, and 3) electric heating of reinforcing bars causes no damage to the portions of concrete not subjected to electric current. The present paper describes the procedures and results of a series of experiments we conducted to verify the efficiency of the electric heating method. In this method, a low-voltage high-current is run through reinforcing bars existing in a concrete structure, inducing intense heat in the bars which in its turn brings about cracks in the surrounding concrete mass, facilitating secondary demolition by hammer picks or other means. The experiments were performed on full-scale biological shield wall mock-ups of a BWR and a small nuclear reactor. The experiments revealed that these excellent features of the electric heating method are worth utilizing in stripping demolition of radioactivated regions of biological shield walls in nuclear power plants. The electric heating method is currently being adopted and shows effective results in partial demolition works in diaphragm wall shafts where starting/arriving holes are to be fixed for shield machines without damaging surrounding portions. (author)

  3. SU-E-T-271: Direct Measurement of Tenth Value Layer Thicknesses for High Density Concretes with a Clinical Machine

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, S; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States); Harrell, D; Noller, J [Shielding Construction Solutions, Inc, Tuscon, AZ (United States); Chopra, M [Unviersal Minerals International, Inc, Tuscon, AZ (United States)

    2015-06-15

    Purpose: Use of high density concrete for radiation shielding is increasing, trading cost for space savings associated with the reduced tenth value layer (TVL). Precise information on the attenuation properties of high-density concretes is not readily present in the literature. A simple approximation is to scale the TVLs from NCRP 151 according relative increase in density. Here we present measured TVLs for heavy concretes of various densities using a built-in shielding test port. Methods: Concrete densities tested range from 2.35 g cc{sup −1} (147 pcf) to 5.6 g cc{sup −1} (350 pcf). Measurements were taken using 6MV, 6FFF, and 10FFF on a Varian Truebeam linear accelerator. Field sizes of 4x4, 9x9 and 30x30 cm{sup 2} were measured. A PTW 31013 Farmer chamber with a buildup cap was positioned 5.5 m from isocenter along the beam CAX. Concrete thicknesses were incremented in 5 cm intervals. Comparison TVLs were determined by scaling the NCRP 151 TVLs by the density ratio between the sample and standard density. Results: The trend from the first to equilibrium TVL was an increase in thickness, compared with MC modeling, which predicted a decrease. Measured TVLs for 6 MV were reduced by as much as 8.9 cm for TVL{sub 1} and 3.4 cm for TVL{sub E} compared to values scaled from NCRP 151. There was 1–3 mm difference in TVL between measurements done at 4x4 versus 30x30 cm{sup 2}. TVL{sub 1} for 6FFF was 1.1 cm smaller than TVL{sub 1} for 6MV, but TVL{sub E} was consistent to within 4 mm. TVL{sub 1} and TVL{sub E} for 10FFF were reduced by 8.8 and 3.7 cm from scaled NCRP values, respectively. Conclusions: We have measured the TVL thicknesses for various concretes. Simple density scaling of the values in NCRP 151 is a conservatively safe approximation, but actual TVLs may be reduced enough to eliminate some of the expense of installation. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built

  4. SU-E-T-271: Direct Measurement of Tenth Value Layer Thicknesses for High Density Concretes with a Clinical Machine

    International Nuclear Information System (INIS)

    Tanny, S; Parsai, E; Harrell, D; Noller, J; Chopra, M

    2015-01-01

    Purpose: Use of high density concrete for radiation shielding is increasing, trading cost for space savings associated with the reduced tenth value layer (TVL). Precise information on the attenuation properties of high-density concretes is not readily present in the literature. A simple approximation is to scale the TVLs from NCRP 151 according relative increase in density. Here we present measured TVLs for heavy concretes of various densities using a built-in shielding test port. Methods: Concrete densities tested range from 2.35 g cc −1 (147 pcf) to 5.6 g cc −1 (350 pcf). Measurements were taken using 6MV, 6FFF, and 10FFF on a Varian Truebeam linear accelerator. Field sizes of 4x4, 9x9 and 30x30 cm 2 were measured. A PTW 31013 Farmer chamber with a buildup cap was positioned 5.5 m from isocenter along the beam CAX. Concrete thicknesses were incremented in 5 cm intervals. Comparison TVLs were determined by scaling the NCRP 151 TVLs by the density ratio between the sample and standard density. Results: The trend from the first to equilibrium TVL was an increase in thickness, compared with MC modeling, which predicted a decrease. Measured TVLs for 6 MV were reduced by as much as 8.9 cm for TVL 1 and 3.4 cm for TVL E compared to values scaled from NCRP 151. There was 1–3 mm difference in TVL between measurements done at 4x4 versus 30x30 cm 2 . TVL 1 for 6FFF was 1.1 cm smaller than TVL 1 for 6MV, but TVL E was consistent to within 4 mm. TVL 1 and TVL E for 10FFF were reduced by 8.8 and 3.7 cm from scaled NCRP values, respectively. Conclusions: We have measured the TVL thicknesses for various concretes. Simple density scaling of the values in NCRP 151 is a conservatively safe approximation, but actual TVLs may be reduced enough to eliminate some of the expense of installation. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built the vault discussed in this abstract. Manjit Chopra is

  5. Cosmic Ray Interactions in Shielding Materials

    International Nuclear Information System (INIS)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-01-01

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth's surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth's surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  6. Photon spectrum behind biological shielding of the LVR-15 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klupak, V.; Viererbl, L.; Lahodova, Z.; Marek, M.; Vins, M. [Research Centre Rez Ltd., Husinec-Rez 130 (Czech Republic)

    2011-07-01

    The LVR-15 reactor is a light water research reactor situated at the Research Centre Rez, near Prague. It operates as a multipurpose facility with a maximum thermal power of 10 MW. The reactor core usually contains from 28 to 32 fuel assemblies with a total mass of {sup 235}U of about 5 kg. Emitted radiation from the fuel caused by fission is shielded by moderating water, a steel reactor vessel, and heavy concrete. This paper deals with measurement and analysis of the gamma spectrum near the outer surface of the concrete wall, behind biological shielding, mainly in the 3- to 10-MeV energy range. A portable HPGe detector with a portable multichannel analyzer was used to measure gamma spectra. The origin of energy lines in gamma detector spectra was identified. (authors)

  7. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1981-12-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  8. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1980-09-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  9. Gamma-ray shielding design and performance test of WASTEF

    International Nuclear Information System (INIS)

    Matsumoto, Seiichiro; Aoyama, Saburo; Tashiro, Shingo; Nagai, Shiro

    1984-06-01

    The Waste Safety Testing Facility (WASTEF) was planned in 1978 to test the safety performance of HLW vitrified forms under the simulated conditions of long term storage and disposal, and completed in August 1981. The designed feature of the facility is to treat the vitrified forms contain actual high-level wastes of 5 x 10 4 Ci in maximum with 5 units of concrete shilded hot cells (3 units : Bate-Gamma cells, 2 units : Alpha-Gamma cells) and one units of Alpha-Gamma lead shielded cell, and to store radioactivity of 10 6 Ci in maximum. The safety performance of this facility is fundamentally maintained with confinement of radioactivity and shielding of the radiation. This report describes the method of gamma-ray shielding design, evaluation of the shielding test performed by using sealded gamma-ray sources(Co-60). (author)

  10. Dry storage technologies: keys to choosing among metal casks, concrete shielded steel canister modules and vaults

    International Nuclear Information System (INIS)

    Roland, V.; Solignac, Y.; Chiguer, M.; Guenon, Y.

    2003-01-01

    time. Then the key criterion is maximum modularity. Furthermore, the up front capital costs requirement for this type of solution is minimal, so depending on the chosen discount rate of the investor, they have an additional attraction. Those smaller modules allow to change course in back end policy more easily. Priority of modularity yields two other solutions, dual-purpose metal casks of the TN24TM family or dual purpose or single purpose concrete shielded welded canisters such as NUHOMS. These solutions, implemented by COGEMA LOGISTICS, TRANSNUCLEAR Inc. and FRAMATOME-ANP, are very flexible and have been adapted also to quite different fuels. Among what influences the choice, we can consider: in favor of metal casks (minimal ancillary equipment, ready to move to final or centralized repository or reprocessing or other ISFSI, compact systems, easy rearrangement, easy handling), in favor of concrete shielded canisters based systems (economics when initial quantity is sufficient to spread out up front equipment, significant cost-shielding advantage, easy local production of the relatively light canisters). Both approaches, when transportable, are also a factor for public acceptance because of the non-permanent characteristics and because transport licensing refers to internationally recognized rules, standards and methods. (authors)

  11. Stripping demolition of reinforced concrete by electric heating method

    International Nuclear Information System (INIS)

    Nakagawa, Wahei; Nishita, Kiwamu; Kasai, Yoshio

    1993-01-01

    The present paper describes the procedures and results of a series of experiments the authors conducted to verify the efficiency of the electric heating method, previously proposed for so-called stripping demolition by applying electric current through reinforcing bars. In this method, a low voltage high current is run from one end to the other of a reinforcing bar or bars existing in a concrete structure, inducing intense heat in the bar(s) which in its turn brings about cracks in the surrounding concrete mass, facilitating secondary demolition by hammer picks or other means. The experiments were performed on full-scale biological shield wall mock-ups of a BWR and a small reactor. The results of the experiments are summarized as follows. (1) When electric current is applied through reinforcing bars, the bond between concrete and bars is loosened, and cracks start from one bar and progress toward other bars. Under appropriate conditions, the cracks in concrete run from the contact surface at one bar all the way to its the contact surface on another bar. (2) Cracks appear and grow only between two electrodes between which current is applied, not extending out of the area thus defined. (3) The concrete in the region closer to a current-bearing bar is intensely heated, whereas the concrete far from the bars remains nearly unheated. (4) Concrete walls after electric heating of bars disintegrates, if demolished with hammers, with the covering concrete are removed from the remaining portion of the structure together with heated bars, in shapes of flakes. (5) The reinforced concrete collapses in massive pieces of concrete, without generating much dust as is the case with the demolition of a concrete structure not heated by electricity. Results of the experiments show that the electric heating method is worth applying also to the demolition of nuclear power plants where concrete in the radioactivated surface region of shield walls needs to be stripped off in flakes

  12. Gamma ray shielding properties of PbO-Li2O-B2O3 glasses

    International Nuclear Information System (INIS)

    Kumar, Ashok

    2017-01-01

    The mass attenuation coefficients have been measured in (0.6-x) PbO-x Li 2 O-0.40 B 2 O 3 (where 0≤ x≤0.25 mol%) glasses for photon energies of 356, 662, 1173 and 1332 keV in a narrow beam geometry with an overall scatter acceptance angle of 2.31°. The experimental results are found to be within 3% of their theoretical values. These coefficients were then used to obtain the values of mean free path, effective atomic number and electron density. The shielding properties of these glasses have also been compared among themselves in terms of their mean free path and radiation protection efficiency. The shielding properties prepared glasses have also been compared with standard concretes as well as with the standard shielding glasses. It is found that the prepared glasses are the better shielding substitute to the conventional concretes as well as other standard shielding glasses. The Pb 3 B 4 O 9 has been found to be the most effective shield. - Highlights: • Shielding efficiencies of PbO-B 2 O 3 -Li 2 O glasses have been compared. • Measurements have been done for 356, 662, 1173 and 1332 keV photon energies. • Experimental values have been found to be within 3% of their theoretical ones. • Pb 3 B 4 O 9 has been found to be the most effective shield.

  13. Analyses of iron and concrete shielding experiments at JAEA/TIARA with JENDL/HE-2007, ENDF/B-VII.1 and FENDL-3.0

    International Nuclear Information System (INIS)

    Konno, Chikara; Ochiai, Kentaro; Sato, Satoshi; Ohta, Masayuki

    2015-01-01

    IAEA released a new Fusion Evaluated Nuclear Data Library, FENDL-3.0, in 2012. FENDL-3.0 extends the neutron energy range from 20 MeV to greater than 60 MeV. Now there is increasing interest in nuclear data above 20 MeV. Thus we have analyzed the iron and concrete shielding experiments with the 40 and 65 MeV neutron sources at TIARA in Japan Atomic Energy Agency with the latest high-energy nuclear data libraries, JENDL/HE-2007, ENDF/B-VII.1 and FENDL-3.0. The Monte Carlo code MCNP-5 and ACE files of JENDL/HE-2007, ENDF/B-VII.1 and FENDL-3.0, which are supplied from JAEA, LANL and IAEA, respectively, were used for this analysis. The collimated neutron beam and test shields were modeled in the analysis. The measured source neutron data were adopted in the analysis. The followings are found out from the results; (1) Iron experiments: The calculation result with FENDL-3.0 agrees with the measured one best. That with JENDL/HE-2007 fairly agrees with the measured one. On the contrary that with ENDF/B-VII.1 drastically overestimates the measured one. It is confirmed that this overestimation is due to the smaller non-elastic scattering data of "5"6Fe in ENDF/B-VII.1. (2) Concrete experiments: The calculation result with ENDL/HE-2007 agrees with the measured one best, while those with FENDL-3.0 and ENDF/B-VII.1 drastically overestimate the measured one. It is confirmed that this overestimation is due to both the larger elastic and smaller non-elastic scattering data of "1"6O in FENDL-3.0 and ENDF/B-VII.1.

  14. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Multimedia

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  15. Barium-borate-flyash glasses: As radiation shielding materials

    International Nuclear Information System (INIS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3 o . Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses

  16. Analyses and testing of model prestressed concrete reactor vessels with built-in planes of weakness

    International Nuclear Information System (INIS)

    Dawson, P.; Paton, A.A.; Fleischer, C.C.

    1990-01-01

    This paper describes the design, construction, analyses and testing of two small scale, single cavity prestressed concrete reactor vessel models, one without planes of weakness and one with planes of weakness immediately behind the cavity liner. This work was carried out to extend a previous study which had suggested the likely feasibility of constructing regions of prestressed concrete reactor vessels and biological shields, which become activated, using easily removable blocks, separated by a suitable membrane. The paper describes the results obtained and concludes that the planes of weakness concept could offer a means of facilitating the dismantling of activated regions of prestressed concrete reactor vessels, biological shields and similar types of structure. (author)

  17. Soil biological shield exposed to high energy neutrons; Zemlja kao bioloski stit od neutrona visokih energija

    Energy Technology Data Exchange (ETDEWEB)

    Simovic, R; Marinkovic, N [Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1993-04-15

    Shielding efficiency of soil biological shield exposed to high energy neutrons was investigated. Dose rate equivalents for neutrons, secondary gamma and gamma radiation were computed on the surface of soil slabs having different thicknesses. Yields of primary and secondary nuclear radiation in the total dose were evaluated. Influence of the incident neutron spectrum, water content and chemical composition of the material on its shielding efficiency was examined. It was found that the soil density and the water content determine the quality of biological shield, the influence of other factors being less important. Comparison of shielding efficiencies for soil with sand, brick and ordinary concrete shields was done.

  18. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    International Nuclear Information System (INIS)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor

  19. Physico-mechanical properties of high performance concrete using different aggregates in presence of silica fume

    Directory of Open Access Journals (Sweden)

    Salah A. Abo-El-Enein

    2014-04-01

    Full Text Available Heavy weight high performance concrete (HPC can be used when particular properties, such as high strength and good radiation shielding are required. Such concrete, using ilmenite and hematite coarse aggregates can significantly have higher specific gravities than those of concrete made with dolomite and air-cooled slag aggregates. Four different concrete mixes with the same cement content and different w/c ratios were designed using normal dolomite aggregate, air-cooled slag by-product and two different types of iron ore aggregates. High performance concrete (grade-M60 can be achieved using superplasticizer to reduce the water/cement ratio; the effect of SF on the performance of concrete was studied by addition of 10% silica fume to the total cement content. The physico-mechanical properties of coarse aggregates and hardened concrete were studied. The results show that, Ilmenite coarse aggregate gives higher physical and mechanical properties than the other aggregates. Also, addition of 10% silica fume developed a stronger and a denser interfacial transition zone (ITZ between concrete particles and the cement matrix. Crushed air-cooled slag can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with crushed hematite and ilmenite. Heavy density concrete made with fine aggregates of ilmenite and air-cooled slag are expected to be suitable as shielding materials to attenuate gamma rays.

  20. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  1. Development of new type concrete for spent fuel storage cask

    International Nuclear Information System (INIS)

    Shimojo, J.; Mantani, K.; Owaki, E.; Sugihara, Y.; Hata, A.; Shimono, M.; Taniuchi, H.

    2004-01-01

    Heat resistant concrete has been developed to make it possible to design a new type cask that has been designed on the same concept of metal cask technologies for use in high temperature conditions. The allowable temperature of conventional concrete is limited to less than 100 degrees Celsius because most of its moisture is free water and therefore hydrogen, which is effective for neutron shielding, can be easily lost. Our newly developed concrete uses chemically bonded water and as a result can be used under high temperatures

  2. Development of new type concrete for spent fuel storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, J.; Mantani, K. [Kobe Steel, Ltd., Hyogo (Japan); Owaki, E.; Sugihara, Y.; Hata, A.; Shimono, M. [Taisei Corp., Tokyo (Japan); Taniuchi, H. [Transnuclear, Ltd., Tokyo (Japan)

    2004-07-01

    Heat resistant concrete has been developed to make it possible to design a new type cask that has been designed on the same concept of metal cask technologies for use in high temperature conditions. The allowable temperature of conventional concrete is limited to less than 100 degrees Celsius because most of its moisture is free water and therefore hydrogen, which is effective for neutron shielding, can be easily lost. Our newly developed concrete uses chemically bonded water and as a result can be used under high temperatures.

  3. Development of advanced, non-toxic, synthetic radiation shielding aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Mudgal, Manish; Chouhan, Ramesh Kumar; Verma, Sarika; Amritphale, Sudhir Sitaram; Das, Satyabrata [CSIR-Advanced Materials and Processes Research Institute, Bhopal (India); Shrivastva, Arvind [Nuclear Power Corporation of India Ltd. (NPCIL), Mumbai (India)

    2018-04-01

    For the first time in the world, the capability of red mud waste has been explored for the development of advanced synthetic radiation shielding aggregate. Red mud, an aluminium industry waste consists of multi component, multi elemental characteristics. In this study, red mud from two different sources have been utilized. Chemical formulation and mineralogical designing of the red mud has been done by ceramic processing using appropriate reducing agent and additives. The chemical analysis, SEM microphotographs and XRD analysis confirms the presence of multi-component, multi shielding and multi-layered phases in both the different developed advance synthetic radiation shielding aggregate. The mechanical properties, namely aggregate impact value, aggregate crushing value and aggregate abrasion value have also been evaluated and was compared with hematite ore aggregate and found to be an excellent material useful for making advanced radiation shielding concrete for the construction of nuclear power plants and other radiation installations.

  4. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding.

    Science.gov (United States)

    Papagiannis, P; Baltas, D; Granero, D; Pérez-Calatayud, J; Gimeno, J; Ballester, F; Venselaar, J L M

    2008-11-01

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for 60Co, 137CS, 198Au, 192Ir 169Yb, 170Tm, 131Cs, 125I, and 103pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  5. Shielding calculation techniques used in the design of storage systems

    International Nuclear Information System (INIS)

    Wang, S.S.; Massey, J.V.

    1986-01-01

    The shielding design and analysis of a concrete modular spent fuel storage system are discussed. Particular attention is given to comparing various computation techniques in determining bulk shielding thickness, and also in dealing with the radiation streaming effect through the air exist penetration openings in the module. Three computer codes QADMOD, ANISN, and DOT-IV were used to solve the same problem. In addition, hand albedo calculation were done to augment the result of the QADMOD calculation to properly deal with the surface scattering

  6. Shielding analysis of high level waste water storage facilities using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Yabuta, Naohiro [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    2001-01-01

    The neutron and gamma-ray transport analysis for the facility as a reprocessing facility with large buildings having thick shielding was made. Radiation shielding analysis consists of a deep transmission calculation for the concrete wall and a skyshine calculation for the space out of the buildings. An efficient analysis with a short running time and high accuracy needs a variance reduction technique suitable for all the calculation regions and structures. In this report, the shielding analysis using MCNP and a discrete ordinate transport code is explained and the idea and procedure of decision of variance reduction parameter is completed. (J.P.N.)

  7. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    OpenAIRE

    Barbosa, C. S.; Hanai, J.B.

    2009-01-01

    This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm²). The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and str...

  8. How can bio dosimetry measurements be used to improve radiation epidemiologic studies?

    International Nuclear Information System (INIS)

    Simon, Steven L.; Bouville, Andre; Kleinerman, Ruth

    2008-01-01

    the persons sampled relative to the overall study population, limits of detection, effects of body shielding as well as external shielding, how to extrapolate from the tissue sampled to tissues of interest, and how to adjust dosimetry models applied to large populations based on sparse bio dosimetry measurements. These various issues will be discussed. (author)

  9. Economic analysis of sectional concrete blocks uses in biological shieldings

    International Nuclear Information System (INIS)

    Ivanov, V.N.

    1977-01-01

    The relative economy of different structural embodiments of the biological protection of a research reactor has been evaluated. The alternatives include cast in-situ concrete and prefabricated blocks with different linear dimension tolerances (+-2, +-5 and +-7 mm). The cost-benefit estimates have been done according to the reduced cost calculated for the final products - the erected structures. It has been found that the optimum tolerances for 6 meter-long blocks are not less than +-5 mm for the other linear dimensions. The optimum concrete block volume for dismountable structures is 1 to 1.5 m 3 and for prefabricated protection structures -more than 4 m 3

  10. Characterization of barite and crystal glass as attenuators in X-ray and gamma radiation shieldings

    International Nuclear Information System (INIS)

    Almeida Junior, Airton Tavares de

    2005-03-01

    Aiming to determine the barium sulphate (BaSO 4 ) ore and crystal glass attenuation features, both utilized as shieldings against ionizing X and gamma radiations in radiographic installations, a study of attenuation using barite plaster and barite concrete was carried out, which are used, respectively, on wall coverings and in block buildings. The crystal glass is utilized in screens and in windows. To do so, ten plates of barite plaster and three of barite concrete with 900 cm 2 and with an average thickness ranging from 1 to 5 cm, and three plates of crystal glass with 323 cm 2 and with thicknesses of 1, 2 and 4 cm were analyzed. The samples were irradiated with X-rays with potentials of 60, 80, 110 and 150 kilovolts, and also with 60 Co gamma rays. Curves of attenuation were obtained for barite plaster and barite concrete (mGy/mA.min) and (mGy/h), both at 1 meter, as a function of thickness and curve of transmission through barite plaster and barite concrete as a function of the thickness. The equivalent thicknesses of half and tenth value layers for barite plaster, barite concrete and crystal glass for all X-Ray energies were also determined. (author)

  11. Round table on bio-fuels

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  12. Studying the ability to use basalt in preparing radiation shielding concrete and the properties of the resulted concrete

    International Nuclear Information System (INIS)

    Alhajali, S.; Yousef, S.; Kanbour, M.; Naoum, B.

    2010-12-01

    Basalt is widespread rocks in the lands of Syria. This kind of rocks has high density relatively, high insulation properties and, mechanical and heat resistance. In this work several kinds of basalt rocks, which were collected from several sites, were studied. The analyses which were done, shows that the basalt rocks collected from Shahba, Nba'a Al-Sakhr and Almana'a mountain are suitable for high efficient gamma radiation shielding, but with low efficiency for neutron shielding, especially for thermal and epithermal neutrons. (author)

  13. Three-dimensional fabric reinforced concrete finds first use in reactor building

    International Nuclear Information System (INIS)

    Akihama, S.; Nakagava, H.

    1989-01-01

    It is reported about creation of concrete reinforced with synthetic fibers by Japanese firm Kadzima. Synthetic material with three-dimensional orientation of fibers is produced of roving impreganted with synthetic resin. The reinforcement produced is submerged into the concrete matrix. The compression strength of such a material makes up 58 MPa. The new material is used for constructing the nuclear reactor shielding containers

  14. Present and future problems of radiation shielding for maritime transport of nuclear spent fuels

    International Nuclear Information System (INIS)

    Ueki, K.; Nariyama, N.; Ohashi, A.

    2000-01-01

    The transport of spent fuels with casks began in September 1999 by the exclusive spent fuel transport vessel the 'Rokuei Maru'. The casks have been transported to the reprocessing plant at Rokkasho-village in Aomori Prefecture. The 'Rokuei Maru' is approximately 100 m-length, 16.5 m-width and 3,000 gross-tons. The 20 NFT casks can be loaded into 5 holds. At the present time, the NFT casks can carry spent fuels of up to 44,000 MWD/MTU. Serpentine concrete is employed as a neutron shields in the hatch covers, the bulkheads, and the house front of the accommodations except the wheelhouse. Polyethylene covers the side walls in each hold. The neutron shielding ability of serpentine concrete and polyethylene was investigated by a shielding experiment using a 252 Cf-neutron source. The shielding experiment was analyzed with the Monte Carlo code MCNP 4B. In the near future, on-board experiment will be carried out to measure the dose-equivalent rate distributions in the 'Rokuei Maru' and the measured data and the Monte Carlo analysis of it will establish the radiation safety of the ship. (author)

  15. Comparison of fine particle colemanite and boron frit in concrete for time-strength relationship

    International Nuclear Information System (INIS)

    Volkman, D.E.; Bussolini, P.L.

    1992-01-01

    This paper reports that the element boron, when added to concrete, has proved effective in shielding neutron particles by absorbing the neutron and emitting a low-energy gamma ray. The various boron additives used with concrete can severely retard the set time and strength gain. An advantage to using small particle size boron is that the smaller grain size provides better boron disbursement within the concrete matrix to absorb neutrons. However, boron additives of powder consistency are usually not used due to the greater potential of forming chemical solutions that act as a retarder in the concrete. Research has shown that the amount of boron additives in concrete can be reduced significantly if fine grain particles can be successfully incorporated into the concrete matrix. The purpose of this study is to compare strength gain characteristics of concrete mixes containing various quantities of fine grain boron additive. The boron additive colemanite, a natural mineral, is compared with two brands of manufactured aggregate, boron frit. Concrete test cylinders are molded for testing the compressive strength of the mix after 4, 7, 28, and 56 days. Tested are five different quantities of colemanite as well as five comparable amounts of boron frit for each brand of the material. The test values are compared with a control concrete specimen containing no boron additive. Results of this study can be used to optimize the cost and effectiveness of boron additives in radiation shielding concrete

  16. Attenuation of Gamma Rays by Concrete . Lead Slag Composites

    International Nuclear Information System (INIS)

    Ismail, I.M.; Sweelam, M.H.; Zaghloul, Y.R.; Aly, H.F.

    2008-01-01

    Using of wastes and industrial by-products as concrete aggregate to be used as structural and radiation shielded material has increased in the recent years. Concrete was mixed with different amounts of lead slag extracted from recycling of the spent automotive batteries as fine aggregates. The lead slag was used as partial replacement of sand in the studied composites. The concrete composites obtained were characterized in terms of density, water absorption, porosity, compressive strength and attenuation of γ- rays with different energies. The attenuation coefficient and the half value thickness of the different matrices were calculated and discussed

  17. Safety catching device for pipes in missile shielding cylinders of nuclear power plants

    International Nuclear Information System (INIS)

    Hering, S.; Doll, B.

    1976-01-01

    The safety catching device consists of a steel wire passed in U-shape around the pipe to be caught and supported by two anchor ties embedded in the concrete of the missile shielding cylinder. This flexible catching device is to cause the energy released in case of a pipe rupture to be absorbed and no dangerous bending shesses to be transferred to the walls of the missile shielding cylinder. (UWI) [de

  18. Shielding for a tandem accelerator coupled to linac booster

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Bisht, J.S.; Venkataraman, G.

    1996-01-01

    Shielding calculation for the Beam-Hall-II of pelletron facility, augmented with linac booster in its phase-II at Nuclear Science Centre, New Delhi, has been done. An estimate is obtained by reduction factor method considering source radiation of monoenergetic neutrons, which is then compared with the detail computation using computer code ALICE considering total energy and angular distribution of neutrons. Another code ASFIT is used to take into account the build up of gamma dose from (n, gamma) reactions within the concrete shield incorporating new radiation weighting factors as recommended by ICRP-60. (author). 8 refs., 2 figs

  19. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    Directory of Open Access Journals (Sweden)

    C. S. Barbosa

    Full Text Available This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm². The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and strain analyses were made based on concrete’s modulus of elasticity obtained in the sample tests as well as on measured strain in the blocks’ face-shells and webs. A peculiar stress-strain analysis, based on the superposition of effects, provided an estimation of the block load capacity based on its deformations. In addition, a tentative method to preview the block deformability from the concrete mechanical properties is described and tested. This analysis is a part of a broader research that aims to support a detailed structural analysis of blocks, prisms and masonry constructions.

  20. Concrete works for Hamaoka No. 1 nuclear power plant

    International Nuclear Information System (INIS)

    Horiuchi, Minoru; Sugihara, Kazuo; Iwasawa, Jiro.

    1975-01-01

    Various aspects of concrete works performed for the reactor building of Hamaoka No.1 plant are reviewed. Control building and waste disposal building were all together combined with the reactor building in order to improve safety against earthquakes. Special consideration was given for the quality control of concrete works by establishing quality control committee, making quality control manual and by performing daily examination and monthly report. The quality and various materials of concrete used are described. The composition of concrete used for various parts of the building is also listed. Detailed description is made regarding the concrete placing for foundation mat, under a containment vessel, and the construction of air gaps and the placing of shielding concrete around the containment vessel. Curves representing the temperature history of concrete at various points are presented. As for testing, the items of test, methods of measurement, and the results of these test and measurement are presented in detail. (Aoki, K.)

  1. Configuration Design of Detector Shielding for Gamma Prompt Analysis

    International Nuclear Information System (INIS)

    Elin-Nuraini; Darsono; Elisabeth

    2000-01-01

    Configuration on design of detector shielding for gamma prompt analysishas been performed. The aim of this design is to obtain effective shieldingmaterial and configuration that able to protect the detector for fastneutron. The result shown that detector shielding configuration that obtainedby configuration of water and concrete, would be able to absorb fast neutronup to 99.5 %. The neutron flux that passed through shielding configuration is2.4 x 10 3 n/cm 2 dt, in the detector position of 60 cm (forward neutron beamdirection) on the X axis and 30 cm (side ward neutron beam direction) on theZ axis of target. On this position (60,30) counting result was 104358 for Pbcollimator and 246652 for PVC collimator. From examination result shown thatthe weight of silicon is in order 175 gram. (author)

  2. Evaluation of radiation-shielding properties of the composite material

    International Nuclear Information System (INIS)

    Pavlenko, V.I.; Chekashina, N.I.; Yastrebinskij, R.N.; Sokolenko, I.V.; Noskov, A.V.

    2016-01-01

    The paper presents the evaluation of radiation-shielding properties of composite materials with respect to gamma-radiation. As a binder for the synthesis of radiation-shielding composites we used lead boronsilicate glass matrix. As filler we used nanotubular chrysotile filled with lead tungstate PbWO4. It is shown that all the developed composites have good physical-mechanical characteristics, such as compressive strength, thermal stability and can be used as structural materials. On the basis of theoretical calculation we described the graphs of the gamma-quanta linear attenuation coefficient depending on the emitted energy for all investigated composites. We founded high radiation-shielding properties of all the composites on the basis of theoretical and experimental data compared to materials conventionally used in the nuclear industry - iron, concrete, etc

  3. Shielding effectiveness of superconductive particles in plastics

    International Nuclear Information System (INIS)

    Pienkowski, T.; Kincaid, J.; Lanagan, M.T.; Poeppel, R.B.; Dusek, J.T.; Shi, D.; Goretta, K.C.

    1988-09-01

    The ability to cool superconductors with liquid nitrogen instead of liquid helium has opened the door to a wide range of research. The well known Meissner effect, which states superconductors are perfectly diamagnetic, suggests shielding applications. One of the drawbacks to the new ceramic superconductors is the brittleness of the finished material. Because of this drawback, any application which required flexibility (e.g., wire and cable) would be impractical. Therefore, this paper presents the results of a preliminary investigation into the shielding effectiveness of YBa 2 Cu 3 O/sub 7-x/ both as a composite and as a monolithic material. Shielding effectiveness was measured using two separate test methods. One tested the magnetic (near field) shielding, and the other tested the electromagnetic (far field) shielding. No shielding was seen in the near field measurements on the composite samples, and only one heavily loaded sample showed some shielding in the far field. The monolithic samples showed a large amount of magnetic shielding. 5 refs., 5 figs

  4. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

  5. Improvement of BaO:B2O3:Fly ash glasses: Radiation shielding, physical and optical properties

    International Nuclear Information System (INIS)

    Tuscharoen, S.; Kaewkhao, J.; Limkitjaroenporn, P.; Limsuwan, P.; Chewpraditkul, W.

    2012-01-01

    Highlights: ► BaO:B 2 O 3 :Fly ash glasses have been improved in radiation Shielding, physical and optical properties. ► The visible light transmission of RHA glass was better than SiO 2 . ► At all BaO concentrations, exhibited the better half values layer in comparison window and ordinary concrete. -- Abstract: Rice husk ash glass (RHA-glass) of composition xBaO:(80 − x)B 2 O 3 :20RHA where x = 45, 50, 55, 60, 65 and 70 wt.% have been prepared using melt-quenching method and investigated on their optical, physical and gamma-rays shielding properties. The densities of these glass samples were increased with increasing of BaO content, due to higher molecular weight of BaO comparing with B 2 O 3 . The molar volume of these glasses was increased with increasing content of BaO; BaO acts as modifier to increase the loose packing. The visible light transmission of RHA glass was better than SiO 2 glass prepared in same formula and preparing condition. The experimental values of gamma ray shielding properties such as; mass attenuation coefficients, atomic cross sections and effective atomic numbers, were found in good agreement with the theoretical values as calculated from WinXCom. Moreover the glass system at all BaO concentrations, exhibited the better half values layer in comparison window and ordinary concrete.

  6. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1988-07-01

    This part 4 of the draft standard deals with a specific design type of radiation shielding windows for walls with a concrete desnity of 2.3 g/m 3 and wall thicknesses of 800 mm, 1000 mm, 1200 mm, 1400 mm, and 1500 mm. The design is for protection against Co-60 radiation, with the attenuation factors being 2x10 3 , 2x10 4 , 2x10 5 , 2x10 6 , and 8x10 6 . These specifications are given in order to define the requirements to be met by design and manufacture, especially with regard to main dimensions, seeing conditions, shielding effect, and radiation resistance of the windows. (orig./HP) [de

  7. Neutron/photon/electron shielding study for a laser-fusion facility

    International Nuclear Information System (INIS)

    Thompson, W.L.

    1977-01-01

    A Monte Carlo shielding study encompassing neutron, photon, and electron transport has been conducted for the High Energy Gas Laser Facility at the Los Alamos Scientific Laboratory. This paper describes the application of the Monte Carlo technique and several variance reduction schemes to the study. The calculations involve a geometry which is complicated in all three dimensions, a very intense 14 MeV neutron source, skyshine and deep penetrations. The facility design with 1.83 m concrete walls and a 1.52 m concrete roof is based on these calculations

  8. Feasibility of surface sampling in automated inspection of concrete aggregates during bulk transport on a conveyor

    NARCIS (Netherlands)

    Bakker, M.C.M.; Di Maio, F.; Lotfi, S.; Bakker, M.; Hu, M.; Vahidi, A.

    2017-01-01

    Automated optic inspection of concrete aggregates for pollutants (e.g. wood, plastics, gypsum and brick) is required to establish the suitability for reuse in new concrete products. Inspection is more efficient when directly sampling the materials on the conveyor belt instead of feeding them in a

  9. Effect of high temperature or fire on heavy weight concrete properties

    International Nuclear Information System (INIS)

    Sakr, K.; EL-Hakim, E.

    2005-01-01

    Temperature plays an important role in the use of concrete for shielding nuclear reactors. In the present work, the effect of different durations (1, 2 and 3 h) of high temperatures (250, 500, 750 and 950 deg. C) on the physical, mechanical and radiation properties of heavy concrete was studied. The effect of fire fitting systems on concrete properties was investigated. Results showed that ilmenite concrete had the highest density, modulus of elasticity and lowest absorption percent, and it had also higher values of compressive, tensile, bending and bonding strengths than gravel or baryte concrete. Ilmenite concrete showed the highest attenuation of transmitted gamma rays. Firing (heating) exposure time was inversely proportional to mechanical properties of all types of concrete. Ilmenite concrete was more resistant to elevated temperature. Foam or air proved to be better than water as a cooling system in concrete structure exposed to high temperature because water leads to a big damage in concrete properties

  10. LL/ILW: Post-Qualification of Old Waste through Non-Destructive Extraction of Barrels from Cement Shields - 13535

    International Nuclear Information System (INIS)

    Oehmigen, Steffen; Ambos, Frank

    2013-01-01

    Currently there is a large number of radioactive waste drums entombed in cement shields at German nuclear power plants. These concrete containers used in the past for the waste are not approved for the final repository. Compliance with current acceptance criteria of the final repository has to be proven by qualification measures on the waste. To meet these criteria, a new declaration and new packing is necessary. A simple non-destructive extraction of about 2000 drums from their concrete shields is not possible. So different methods were tested to find a way of non-destructive extraction of old waste drums from cement shields and therefore reduce the final repository volume and final repository costs by using a container accepted and approved for Konrad. The main objective was to build a mobile system to offer this service to nuclear plant stations. (authors)

  11. Body Burden of Hg in Different Bio-Samples of Mothers in Shenyang City, China

    Science.gov (United States)

    Xu, Jian; Du, Juan; Yan, Chong-huai

    2014-01-01

    Hg is an accumulative and neuro-toxic heavy metal which has a wide range of adverse effects in human health. However, few studies are available on body burden of Hg level in different bio-samples of pregnant women in Chinese population. Therefore, this study evaluated Hg levels in different maternal bio-samples in Shenyang city, China and investigated the correlation of Hg levels in different bio-samples. From October to December 2008, 200 pregnant women about to deliver their babies at ShengJing Hospital (Shenyang city, northeast of China) participated in this study. The geometric mean (GM) of Hg levels in cord blood, maternal venous blood, breast milk, and maternal urine were 2.18 µg/L, 1.17 µg/L, 1.14 µg/L, and 0.73 µg/L, respectively, and the GM of maternal hair Hg level was 404.45 µg/kg. There was a strong correlation between cord blood and maternal blood total Hg level (r = 0.713, PHg exposure (unadjusted OR 3.5, adjusted OR 2.94, PHg burden of mothers and the risk factors of prenatal Hg exposure in Shenyang city, China. PMID:24858815

  12. Shielding calculation techniques used in the design of fuel storage systems

    International Nuclear Information System (INIS)

    Wang, S.S.; Massey, J.V.

    1986-01-01

    This paper addresses the shielding design and analysis of a concrete modular spent fuel storage system. Particular attention is given to comparing various computation techniques in determining bulk shielding thickness, and also in dealing with the radiation streaming effect through the air exit penetration openings in the module. Three computer codes QADMOD, ANISN, and DOT-IV were used to solve the same problem. In addition, hand albedo calculation were done to augment the result of the QADMOD calculation to properly deal with the surface scattering

  13. Effect of elevated temperatures on heavy concrete structural strength in Qinshan phase 3 CANDU 6 reactor buildings

    International Nuclear Information System (INIS)

    Alikhan, S.; Khan, A.F.; Chen, S.

    2005-01-01

    Heavy concrete is commonly used inside the Qinshan Phase 3 CANDU 6 reactor buildings for radiation shielding functions in order to provide access to key areas during reactor operation. In some cases, the heavy concrete elements are also structural elements. Concerns have been raised about the functional performance of the heavy concrete structural elements, specifically the primary heat transport pump (PHTS) supporting slabs, surrounding the feeder cabinets when subjected to elevated temperatures between 42 degree C and 121 degree C and their corresponding temperature gradients on a long-term basis during the normal operation of the plant. This paper presents the results of a test investigation on the strength of heavy concrete under elevated temperature conditions being experienced by the heavy concrete structural elements around the feeder cabinet to confirm that these structural elements meet their functional requirements. The loading conditions consist subjecting the specimens to the elevated temperatures and temperature gradient noted during commissioning, including the effect of epoxy coating. The heavy concrete mix proportion and materials of the test samples (ilmenite aggregate and Portland cement) are identical to those used for heavy concrete structural elements surrounding the feeder cabinet. Subsequent to the confirmation of the functional requirements of the heavy concrete structural elements, alarm limits are recommended for these structural elements. (authors)

  14. Design of buried concrete encasements

    International Nuclear Information System (INIS)

    Drake, R.M.

    1989-01-01

    The operation of many Department of Energy (DOE) sites requires the transfer of radioactive liquid products from one location to another. DOE Order 6430.1A requires that the transfer pipelines be designed and constructed so that any leakage can be detected and contained before it reaches the environment. One design option often considered to meet this requirement is to place the pipeline in a stainless steel-lined, buried concrete encasement. This provides the engineer with the design challenge to integrate standard structural design principles with unique DOE requirements. The complete design of a buried concrete encasement must consider seismic effects, leak detection, leak confinement, radiation shielding, thermal effects, pipe supports, and constructability. This paper contains a brief discussion of each of these design considerations, based on experience gained during the design of concrete encasements for the Process Facilities Modifications (PFM) project at Hanford

  15. γ-ray shielding behaviors of some nuclear engineering materials

    International Nuclear Information System (INIS)

    Mann, Kulwinder Singh

    2017-01-01

    The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma (γ)-rays. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM). The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, γ-ray shielding behaviors (GSB) of six glass samples (transparent NEM) were evaluated and compared with some opaque NEM in a wide range of energy (15 keV–15 MeV) and optical thickness (OT). The study was performed by computing various γ-ray shielding parameters (GSP) such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well

  16. γ-ray shielding behaviors of some nuclear engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Kulwinder Singh [Dept. of Physics, D.A.V. College, Punjab (India)

    2017-06-15

    The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma (γ)-rays. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM). The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, γ-ray shielding behaviors (GSB) of six glass samples (transparent NEM) were evaluated and compared with some opaque NEM in a wide range of energy (15 keV–15 MeV) and optical thickness (OT). The study was performed by computing various γ-ray shielding parameters (GSP) such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

  17. γ-Ray Shielding Behaviors of Some Nuclear Engineering Materials

    Directory of Open Access Journals (Sweden)

    Kulwinder Singh Mann

    2017-06-01

    Full Text Available The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma (γ-rays. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM. The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, γ-ray shielding behaviors (GSB of six glass samples (transparent NEM were evaluated and compared with some opaque NEM in a wide range of energy (15 keV–15 MeV and optical thickness (OT. The study was performed by computing various γ-ray shielding parameters (GSP such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

  18. Shielding design for the target room of the proton accelerator research center

    International Nuclear Information System (INIS)

    Min, Y. S.; Lee, C. W.; Mun, K. J.; Nam, J.; Kim, J. Y.

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) has been developing a 100-MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center (PARC). In the Accelerator Tunnel and Beam Experiment Hall in PARC, 10 target rooms for the 20- and 100-MeV beamline facilities exist in the Beam Experiment Hall. For the 100-MeV target rooms during 100-MeV proton beam extraction, a number of high energy neutrons, ranging up to 100-MeV, are produced. Because of the high beam current and space limitations of each target room, the shielding design of each target room should be considered seriously. For the shielding design of the 100-MeV target rooms of the PEFP, a permanent and removable local shield structure was adopted. To optimize shielding performance, we evaluated four different shield materials (concrete, HDPE, lead, iron). From the shielding calculation results, we confirmed that the proposed shielding design made it possible to keep the dose rate below the 'as low as reasonably achievable (ALARA)' objective.

  19. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    Energy Technology Data Exchange (ETDEWEB)

    Dahing, Lahasen Normanshah [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia and Malaysian Nuclear Agency (Nuklear Malaysia), Bangi 43000, Kajang (Malaysia); Yahya, Redzuan [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yahya, Roslan; Hassan, Hearie [Malaysian Nuclear Agency (Nuklear Malaysia), Bangi 43000, Kajang (Malaysia)

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  20. Radiation shielding design for DECY-13 cyclotron using Monte Carlo method

    International Nuclear Information System (INIS)

    Rasito T; Bunawas; Taufik; Sunardi; Hari Suryanto

    2016-01-01

    DECY-13 is a 13 MeV proton cyclotron with target H_2"1"8O. The bombarding of 13 MeV protons on target H_2"1"8O produce large amounts of neutrons and gamma radiation. It needs the efficient radiation shielding to reduce the level of neutrons and gamma rays to ensure safety for workers and public. Modeling and calculations have been carried out using Monte Carlo method with MCNPX code to optimize the thickness for the radiation shielding. The calculations were done for radiation shielding of rectangular space room type with the size of 5.5 m x 5 m x 3 m and thickness of 170 cm made from lightweight concrete types of portland. It was shown that with this shielding the dose rate outside the wall was reduced to 1 μSv/h. (author)

  1. Evaluation of Shielding Wall Optimization in Lead Slowing Down Spectrometer System

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Young; Kim, Jeong Dong; Lee, Yong Deok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A Lead Slowing Down Spectrometer (LSDS) system is nondestructive technology for analyzing isotope fissile content in spent fuel and pyro processed material, in real time and directly. The high intensity neutron and gamma ray were generated from a nuclear material (Pyro, Spent nuclear fuel), electron beam-target reaction and fission of fissile material. Therefore, shielding analysis of LSDS system should be carried out. In this study, Borax, B{sub 4}C, Li{sub 2}Co{sub 3}, Resin were chosen for shielding analysis. The radiation dose limit (<0.1 μSv/hr) was adopted conservatively at the outer wall surface. The covering could be able to reduce the concrete wall thickness from 5cm to 15cm. The optimized shielding walls evaluation will be used as an important data for future real LSDS facility design and shielding door assessment.

  2. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield

    International Nuclear Information System (INIS)

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Boeck, Helmuth; Steinhauser, Georg

    2011-01-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10 9 cm -2 s -1 at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. - Highlights: → Neutron activation is an important process for the waste management of nuclear facilities. → Biological shield of the TRIGA reactor Vienna has been topic of investigation. → Flux values allow a categorization of the concrete concerning radiation protection legislation. → Reactor installations are of great importance as neutron sources into the biological shield. → Every installation shows distinguishable flux profiles.

  3. Decontamination of large horizontal concrete surfaces outdoors

    International Nuclear Information System (INIS)

    Barbier, M.M.; Chester, C.V.

    1980-01-01

    A study is being conducted of the resources and planning that would be required to clean up an extensive contamination of the outdoor environment. As part of this study, an assessment of the fleet of machines needed for decontaminating large outdoor surfaces of horizontal concrete will be attempted. The operations required are described. The performance of applicable existing equipment is analyzed in terms of area cleaned per unit time, and the comprehensive cost of decontamination per unit area is derived. Shielded equipment for measuring directional radiation and continuously monitoring decontamination work are described. Shielding of drivers' cabs and remote control vehicles is addressed

  4. Utilization of radiation facilities at TNRC for shielding researches and related topics

    Energy Technology Data Exchange (ETDEWEB)

    Akki, T S [Physics Department, Nuclear Physics and Radiation Shielding Division Tajura Nuclear Research Center, Tripoli (Libyan Arab Jamahiriya)

    1997-12-31

    This paper presents the running shielding research activities at Tajura Nuclear research center. The main area of researches are concentrated on the investigation of different types of concrete made from local materials such as conventional concrete, Magnetite-Limonite concrete, and heat resistant concrete. The measuring techniques used were neutron-gamma spectrometry, and activation foils. The measurements were performed using collimated beam of reactor neutrons emitted from one of the horizontal channels, as well as from californium-252 neutron source. The transmitted neutron spectra through concrete barriers of different thicknesses were measured by a scintillation spectrometer with NE-213 liquid organic scintillator. A non-destructive testing of some reactor materials were also carried out using neutron and gamma ray computerized tomography technique (CT). Some experiments were also carried out related to measurements of neutron depth dose distributions inside tissue equivalent materials. 10 figs.

  5. Technical Requirements for Fabrication and Installation of Removable Shield for CNRF in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Lee, Jung Hee; Shin, Jin Won

    2008-04-15

    This report details the technical requirements for the fabrication and installation of the removable shield for the Cold Neutron Research Facility (CNRF) in HANARO reactor hall. The removable shield is classified as non-nuclear safety (NNS), seismic category II, and quality class T. The main function of the removable shield is to do the biological shielding of neutrons and gamma from the CN port and the guides. The removable shield consists of block type walls and roofs that can be necessarily assembled, disassembled and moveable. These will be installed between the reactor pool wall and the CNS guide bunker in. This report describes technical requirements for the removable shield such as quality assurance, seismic analysis requirements, configuration, concrete compositions, fabrication and installation requirements, test and inspection, shipping, delivery, etc. Appendix is the technical specification of structural design and analysis. Attachments are composed of the technical specification for the fabrication of the removable shield, shielding design drawings and procurement quality requirements. These technical requirements will be provided to a contract for the manufacturing and installation.

  6. Standard test method for compressive strength of grouts for preplaced-aggregate concrete in the laboratory. ASTM standard

    International Nuclear Information System (INIS)

    1998-10-01

    DoD adopted. This test method is under the jurisdiction of ASTM Committee C-9 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.41 on Concrete for Radiation Shielding. Current edition approved Feb. 10, 1986 and published October 1998. Originally published as C 942-81. Last previous edition was C 942-86(1991)

  7. Streaming experiment of gamma-ray obliquely incident on concrete shield wall with straight cylindrical ducts and verification of single scattering code

    International Nuclear Information System (INIS)

    Yamaji, Akio; Saito, Tetsuo.

    1988-01-01

    To investigate a proximity effect of ducts on shield performance against γ radiation, an experiment was performed at JRR-4 by entering the γ-ray beam into a concrete shield wall of 100 cm-thickness with 3 or 5 straight cylindrical ducts of radius of 4.45 cm placed in a straight line or crosswise at interval of 8.9 cm. The dose rates were measured using digital dosimeters on a horizontal line 20 cm apart from the rear of the wall with 0, 1, 3 and 5 ducts, and with the incident angles of 0deg, 7deg, 14deg and 20deg, respectively. The dose rate distributions depended on the number of ducts and the incident angle, and the dose rate ratios of with-three-ducts to no-duct distributed within 3.6∼12, 1.3∼5.0 and 1.1∼4.3, for the incident angles of 7deg, 14deg and 20deg, while those of with-single-duct to no-duct within 1.2∼7.1, 1.1∼2.7 and 1.0∼1.9, respectively. The experiment was analyzed using a multigroup single scattering code G33YSN able to deal with the geometry of the ducts exactly. For each incident angle, the calculation agreed with the experiment within a factor of 2. (author)

  8. Radiometric determination of density of fresh shielding concrete (in situ) in the nuclear industry

    International Nuclear Information System (INIS)

    Honig, A.

    1985-01-01

    Methods of radiometric determination of density have been in recent years elaborated in detail and successfully. But on the market no instruments are available for measuring fresh concrete when it is possible to repair inhomogeneities, if any, even before hardening, and thus to guarantee safety of biological protection of nuclear reactors. The paper describes an analog and digital radiation density meter and their application in the inspection of radiation protection concrete walls. By repairing defective, insufficiently dense locations still in the course of concrete placement it is possible to attain a laboratory quality of the concrete even under on-site conditions

  9. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  10. Prompt gamma-ray analysis of chlorine in superpozz cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Kalakada, Zameer [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ur-Rehman, Khateeb [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-11-21

    The chlorine concentration in Superpozz (SPZ) cement concrete was analyzed using a newly designed prompt gamma-ray neutron activation (PGNAA) setup utilizing a portable neutron generator. The setup, which mainly consists of a neutron source along with its moderator placed side by side with a shielded gamma-ray detector, allows determining chloride concentration in a concrete structure from one side. The setup has been tested through chlorine detection in chloride-contaminated Superpozz (SPZ) cement concrete specimens using 6.11 and 2.86{+-}3.10 MeV chlorine prompt gamma-rays. The optimum 0.032{+-}0.012 wt% value of Minimum Detectable Concentration (MDC) of chlorine in SPZ cement concrete measured in this study shows a successful application of a portable neutron generator in chloride analysis of concrete structure for corrosion studies.

  11. Application of gypsum as shielding against low-energy X-radiation in the radiodiagnosis area

    International Nuclear Information System (INIS)

    Lins, J.A.G.; Lima, F.R.A.; Santos, M.A.P. dos; Oliveira, D.N.S. de; Silva, V.H.F.F. da

    2017-01-01

    In recent years, materials such as lead, concrete and iron have been studied for use as shielding for ionizing radiations of different energies in radiative installations. In the radiodiagnosis area, lead and barite are the most used materials as shielding. However, for beams of low energy X-radiation, such as in mammography and dentistry, the gypsum material may be used. This study aims to verify the feasibility of the use of gypsum as shielding for low-energy X-ray using standardized dental X-ray beams in a metrology laboratory. The project will allow a better understanding in the study of gypsum used as shielding, certifying its use as a good attenuator for low-energy X-ray

  12. Shielding research in France

    Energy Technology Data Exchange (ETDEWEB)

    Lafore, P

    1964-10-01

    Shielding research as an independent subject in France dates from 1956. The importance of these studies has been reflected in the contribution which they have made to power reactor design and in the resultant savings in expenditure for civil engineering and machinery for the removal of mobile shields. The Reactor Shielding Research Division numbers approximately 60 persons and uses several experimental facilities. These include: NAIADE I, installed near the ZOE reactor and operating with a natural uranium slab 2 cm thick (an effective diameter of 60 cm is the one most commonly used); the TRITON pool-type reactor, mainly used in shielding studies, includes an active-water loop, by means of which the secondary shields required for light-water reactors can be studied; core, NEREIDE, which is situated near a 2 m x 2 m aluminium window enables a large neutron source to be placed in a compartment without water in which large-scale mock-ups can be mounted for the study, in particular, of neutron diffusion in large cavities, and of reactor shielding of greater thickness than that in NAIADE I; SAMES 600 keV accelerator is used for monoenergetic neutron studies. Instrumentation studies are an important part of the work, mainly in the measurement of fast neutrons and their spectra by activation detectors. Of late, attention has been directed towards the use of (n, n') (rhodium) reactions and of heavy detectors for low-flux measurements. The simultaneous use of a large number of detectors poses automation problems. With our installation we can count 16 detectors simultaneously. Neutron spectrum studies are conducted with nuclear emulsions and a lithium-6 semiconductor spectrometer. As to the materials used, the research carried out in France involves chiefly graphite, iron and concrete at various temperatures up to 800 deg C. Different compounds, borated and non-borated and of densities up to between 1 and 9 are under consideration. Problems connected with applications are

  13. Method for calculating required shielding in medical x-ray rooms

    International Nuclear Information System (INIS)

    Karppinen, J.

    1997-10-01

    The new annual radiation dose limits - 20 mSv (previously 50 mSv) for radiation workers and 1 mSv (previously 5 mSv) for other persons - implies that the adequacy of existing radiation shielding must be re-evaluated. In principle, one could assume that the thicknesses of old radiation shields should be increased by about one or two half-value layers in order to comply with the new dose limits. However, the assumptions made in the earlier shielding calculations are highly conservative; the required shielding was often determined by applying the maximum high-voltage of the x-ray tube for the whole workload. A more realistic calculation shows that increased shielding is typically not necessary if more practical x-ray tube voltages are used in the evaluation. We have developed a PC-based calculation method for calculating the x-ray shielding which is more realistic than the highly conservative method formerly used. The method may be used to evaluate an existing shield for compliance with new regulations. As examples of these calculations, typical x-ray rooms are considered. The lead and concrete thickness requirements as a function of x-ray tube voltage and workload are also given in tables. (author)

  14. Attenuation characteristics of materials used in radiation protection as radiation shielding

    International Nuclear Information System (INIS)

    Almeida Junior, Airton T.; Araujo, F.G.S.; Nogueira, M.S.; Santos, M.A.P.

    2013-01-01

    Crystal glass has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass, in order to minimize exposure to individuals. In this work, ten plates of crystal glass, with dimensions of 20cm x 20cm and range of thicknesses from 0.5 to 2.0 cm, and barite concrete were irradiated with potential constants of 60kV, 80kV, 110kV, 150kV and gamma radiation of 60 Co. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/mA.min) at 1 meter as a function of thickness.Crystal glass has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass, in order to minimize exposure to individuals. In this work, ten plates of crystal glass, with dimensions of 20cm x 20cm and range of thicknesses from 0.5 to 2.0 cm, and barite concrete were irradiated with potential constants of 60kV, 80kV, 110kV, 150kV and gamma radiation of 60 Co. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/mA.min) at 1 meter as a function of thickness. (author)

  15. Revise of a basic data base for shielding design

    International Nuclear Information System (INIS)

    Nakao, Makoto; Takemura, Morio

    2000-03-01

    With use of the two-dimensional discrete ordinates code DORT and the standard groupwise shielding design library JSSTDL produced from the latest evaluated nuclear data library JENDL-3.2, experimental analyses for the representative configurations in the Radial Shield Attenuation Experiment of the JASPER were performed. The results were compared with those obtained with use of traditional method DOT3.5/JSDJ2 for the previous JASPER experimental analyses. In general, the change of the cross section library gives higher results and the change of the transport code gives lower results. Finally the new analysis method gives better agreement with the experimental results and also less deviations of calculational errors between various detectors. Experimental analyses for the thick concrete configuration in the Gap Streaming Experiment of the JASPER was also performed with the new analysis method, after solving the poor agreement found in last year with the original JASPER experimental analyses. The same tendency due to the library change was confirmed with the above mentioned analyses of the Radial Shield Attenuation Experiment. Compilation of the input data necessary for future reanalyses of important configurations in JASPER experiments were continued through the above-mentioned experimental analyses and related informations were added for repletion of the database preserved in a computer disk holding previously accumulated data. Input data descriptions were made for auxiliary routines needed for the experimental analyses and their sample data were compiled and stored in the database. (author)

  16. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D and D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release

  17. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    International Nuclear Information System (INIS)

    Evans, J.F.; Blue, T.E.

    1996-01-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h -1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  18. A fast and very sensitive LSC procedure to determine Fe-55 in steel and concrete

    International Nuclear Information System (INIS)

    Koenig, W.; Schupfner, R.; Schuettelkopf, H.

    1995-01-01

    This procedure determining Fe-55 contributes to a safe and economically reasonable decommissioning of nuclear power plants. Co-60, Fe-55 and Ni-63 are the most abundant, long-lived radionuclides associated with contaminated piping, hardware, and concrete for several decades of years after shutdown. The analysis of Fe takes about three hours until the measurement with an anticoincidence shielded LSC Quantulus 1220 starts. The decontamination factors are ranging from greater than 10 5 to 10 9 for all important naturally and artificially occurring radionuclides except Sb. The chemical yield stays constant at a value of about 92% up to 0.1 g stable Fe in steel, concrete or other material. The detection limits (confidence level 95%) reach values of 8 mBq per sample or about 60 mBq/g steel and 1.5 mBq/g concrete at a counting time of 1000 minutes. Four to eight analyses are performed by one technician during eight hours. (author) 16 refs.; 2 figs.; 4 tabs

  19. Transmission test of the polyethylene shield against 40 and 65 MeV quasi monochrome neutron

    International Nuclear Information System (INIS)

    Nakao, Makoto; Nakamura, Takashi; Sakuya, Yoshimasa; Nauchi, Yasushi; Nakao, Noriaki; Tanaka, Susumu; Sakamoto, Yukio; Nakajima, Hiroshi; Nakane, Yoshihiro.

    1996-01-01

    Using 40 and 65 MeV quasi monochrome neutron of the AVF cyclotron installed at Takasaki Laboratory, Japan Atomic Energy Research Institute, the neutron energy spectra were measured after transmitting the polyethylene shield. Results of the shielding experiments using concrete and iron recognized as main shielding material were proposed previously. As data obtained in the experiments were useful for a bench-mark experiment to investigate for shielding calculation and sectional data set, a shielding calculation simulated with new experiment to compare with and investigate for the previous experimental data. As a result, it was found that calculation result of neutron flux transmitting through the polyethylene shield showed difference with increase of the shield thickness. And, reducing distance of the peak neutron was also found to be over-estimated in its calculation value, such as three and five times on 43 MeV at 120 and 180 cm thick, respectively. (G.K.)

  20. Evaluation of neutron shielding properties of lead glass using bubble detector

    International Nuclear Information System (INIS)

    Viswanathan, S.; Vishwa Prasad, K.; Srinivasan, T.K.; Ponraju, D.

    1999-01-01

    Neutron shielding properties of lead glass had been studied using a 241 Am-Be neutron source. Indigenously developed bubble detector was used as neutron detector. Attenuation curves were determined experimentally for the lead glass under the conditions of broad beam geometry. Theoretical calculations were made using Monte Carlo code MCNP3. Measurements were made for polyethylene and concrete to serve as reference. The measured and calculated neutron removal cross sections of lead glass, polyethylene and concrete are reported in this paper. Good agreement is observed between the experimental results and theoretical calculations. (author)

  1. Study on the bearing capacity of embedded chute on shield tunnel segment

    Science.gov (United States)

    Fanzhen, Zhang; Jie, Bu; Zhibo, Su; Qigao, Hu

    2018-05-01

    The method of perforation and steel implantation is often used to fix and install pipeline, cables and other facilities in the shield tunnel, which would inevitably do damage to the precast segments. In order to reduce the damage and the resulting safety and durability problems, embedded chute was set at the equipment installation in one shield tunnel. Finite element models of segment concrete and steel are established in this paper. When water-soil pressure calculated separately and calculated together, the mechanical property of segment is studied. The bearing capacity and deformation of segment are analysed before and after embedding the chute. Research results provide a reference for similar shield tunnel segment engineering.

  2. Quality Control of Concrete Structure For APR1400 Construction

    International Nuclear Information System (INIS)

    Seo, Inseop; Song, Changhak; Kim, Duill

    2012-01-01

    Nuclear structure shall be constructed to protect internal facilities in the normal operation against external accidents such as the radiation shielding, earthquakes and to be leak-proof of radioactive substances to the external environment in case of loss of coolants. containment and auxiliary building of nuclear power plants are built in reinforced concrete structures to maintain these protection functions. Nuclear structures shall be designed to ensure soundness in operation since they are located on the waterfront where is easy do drain the cooling water and so deterioration and damage of concrete structures caused by seawater can occur. Durability is ensured for concrete structures of APR1400, a Korea standard NPP, in compliance with all safety requirements. In particular, owners perform quality control directly on the production and pouring of cast in place concrete for the concrete structure construction to make sure concrete structures established with quality homogeneity and durability. This report is to look into the quality control standard and management status of cast in place concrete for APR1400 construction

  3. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  4. Seismic analysis of the mirror fusion test facility shielding vault

    International Nuclear Information System (INIS)

    Gabrielsen, B.L.; Tsai, K.

    1981-04-01

    This report presents a seismic analysis of the vault in Building 431 at Lawrence Livermore National Laboratory which houses the mirror Fusion Test Facility. The shielding vault structure is approximately 120 ft long by 80 ft wide and is constructed of concrete blocks approximately 7 x 7 x 7 ft. The north and south walls are approximately 53 ft high and the east wall is approximately 29 ft high. These walls are supported on a monolithic concrete foundation that surrounds a 21-ft deep open pit. Since the 53-ft walls appeared to present the greatest seismic problem they were the first investigated

  5. Prestressed concrete pressure vessels for nuclear reactors - 1973

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This standard deals with the design, construction, inspection and testing of prestressed concrete pressure vessels for nuclear reactors. Such pressure vessels serve the dual purpose of shielding and containing gas cooled nuclear reactors and are a form of civil engineering structure requiring particularly high integrity, and ensured leak tightness. (Metric)

  6. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    Science.gov (United States)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  7. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  8. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  9. Generation of point isotropic source dose buildup factor data for the PFBR special concretes in a form compatible for usage in point kernel computer code QAD-CGGP

    International Nuclear Information System (INIS)

    Radhakrishnan, G.

    2003-01-01

    Full text: Around the PFBR (Prototype Fast Breeder Reactor) reactor assembly, in the peripheral shields special concretes of density 2.4 g/cm 3 and 3.6 g/cm 3 are to be used in complex geometrical shapes. Point-kernel computer code like QAD-CGGP, written for complex shield geometry comes in handy for the shield design optimization of peripheral shields. QAD-CGGP requires data base for the buildup factor data and it contains only ordinary concrete of density 2.3 g/cm 3 . In order to extend the data base for the PFBR special concretes, point isotropic source dose buildup factors have been generated by Monte Carlo method using the computer code MCNP-4A. For the above mentioned special concretes, buildup factor data have been generated in the energy range 0.5 MeV to 10.0 MeV with the thickness ranging from 1 mean free paths (mfp) to 40 mfp. Capo's formula fit of the buildup factor data compatible with QAD-CGGP has been attempted

  10. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  11. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Dong; Ahn, Sang Joon; Lee, Yong Deok [Nonproliferation System Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Chang Je [Dept. of Nuclear Engineering, Sejong University, Seoul (Korea, Republic of)

    2015-04-15

    A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux (>101{sup 2n}/cm{sup 2}·s) neutron source comprised of a high-energy (30 MeV)/high-current (∼2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h), a few shielding materials [high-density polyethylene (HDPE)–Borax, B{sub 4}C, and Li{sub 2}CO{sub 3}] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in

  12. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    International Nuclear Information System (INIS)

    Kim, Jeong Dong; Ahn, Sang Joon; Lee, Yong Deok; Park, Chang Je

    2015-01-01

    A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux (>101 2n /cm 2 ·s) neutron source comprised of a high-energy (30 MeV)/high-current (∼2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h), a few shielding materials [high-density polyethylene (HDPE)–Borax, B 4 C, and Li 2 CO 3 ] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

  13. Design optimization of radiation shielding structure for lead slowing-down spectrometer system

    Directory of Open Access Journals (Sweden)

    Jeong Dong Kim

    2015-04-01

    Full Text Available A lead slowing-down spectrometer (LSDS system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as 235U, 239Pu, 241Pu, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea is planned to utilize a high-flux (>1012 n/cm2·s neutron source comprised of a high-energy (30 MeV/high-current (∼2 A electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 μSv/h, a few shielding materials [high-density polyethylene (HDPE–Borax, B4C, and Li2CO3] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near

  14. SEM/TIMS analysis trials on hotswipe samples taken from a shielded cell at Harwell

    International Nuclear Information System (INIS)

    Tushingham, J.; Vatter, I.; Cooke, R.

    1998-09-01

    The IAEA require advanced techniques and procedures for the detection of traces of actinides to be applied to their environmental sampling programme for nuclear safeguards as a means to detect undeclared activities. 'Swipe' samples taken from within nuclear facilities by IAEA inspectors require analysis to determine their actinide content and composition by bulk and particle measurements. The use of analytical equipment capable of analysing individual particles, particularly of actinides, is essential to optimise the IAEA's aim to monitor Member State's nuclear activities more proficiently. A trial has been undertaken at the Harwell Laboratory of AEA Technology to establish the efficacy of scanning electron microscopy (SEM) and thermal ionisation mass spectrometry (TIMS) for the particle and bulk characterisation, respectively, of actinides on samples taken from within a shielded cell. These measurements were supported by γ-spectrometry and α-spectrometry. 'Hotswipe' samples taken from within a shielded cell with a well-known recent history have been prepared for particle and bulk analysis. SEM has been used to characterise individual particles from the swipe samples and the results have been related to known cell activities. Samples were prepared for SEM using a simple procedure to minimise the potential for sample contamination. The method proved to be capable of identifying 1 μm particles that contained U, Pu, Pa and Np. The measurement of U/Pu ratios was limited to particles that contained >2% Pu in U by weight. TIMS, together with alpha spectrometry, has been used to determine the bulk actinide composition of the samples whilst gamma spectrometry has been used to determine the fission product composition. Further work to improve the potential of SEM, and also secondary ionisation mass spectrometry (SIMS), for the measurement of hotswipe samples has been proposed. (author)

  15. Radiation shielding lead shield

    International Nuclear Information System (INIS)

    Dei, Shoichi.

    1991-01-01

    The present invention concerns lead shields for radiation shielding. Shield boxes are disposed so as to surround a pipeline through which radioactive liquids, mists or like other objects are passed. Flanges are formed to each of the end edges of the shield boxes and the shield boxes are connected to each other by the flanges. Upon installation, empty shield boxes not charged with lead particles and iron plate shields are secured at first at the periphery of the pipeline. Then, lead particles are charged into the shield boxes. This attains a state as if lead plate corresponding to the depth of the box is disposed. Accordingly, operations for installation, dismantling and restoration can be conducted in an empty state with reduced weight to facilitate the operations. (I.S.)

  16. MARS14 deep-penetration calculation for the ISIS target station shielding

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Nunomiya, Tomoya; Iwase, Hiroshi; Nakamura, Takashi

    2004-01-01

    The calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility of Rutherford Appleton Laboratory. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation, a three-dimensional multi-layer technique and energy cut-off method were used considering a spatial statistical balance. Finally, the energy spectra of neutrons behind the very thick shield could be calculated down to the thermal energy with good statistics, and the calculated results typically agree well within a factor of two with the experimental data over a broad energy range. The 12 C(n,2n) 11 C reaction rates behind the bulk shield were also calculated, which agree with the experimental data typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem

  17. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    International Nuclear Information System (INIS)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-01-01

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  18. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities.

    Science.gov (United States)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-01

    A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  19. Status report on the Experimental Boiling Water Reactor (EBWR) Decontamination and Decommissioning (D ampersand D) Project

    International Nuclear Information System (INIS)

    Sears, L.; Garlock, G.; Mencarelli, R.; Fellhauer, C.

    1994-01-01

    ALARON Corporation is under contract, to Argonne National Laboratory - East (ANL-E), to complete the decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR). The project, begun, in 1986 by ANL-E personnel, is projected to be completed by the end of 1994. The final phase of work was awarded to ALARON in December 1993 with the scope of work including the disassembly and removal of all remaining reactor internals, the reactor vessel, the lead bio-shield, the core liner, and the activated portion of the concrete bio-shield. This paper discusses the work undertaken beginning in January 1994 and continuing through July 1994. During this period the required pre-mobilization documentation was prepared and approved, mobilization was completed, and the reactor internals, reactor vessel, lead bio-shield and core liner were removed. The paper will compare the planned schedule to the actual schedule, discuss problems encountered, review volume reduction techniques and health and safety issues including radiological aspects of the project

  20. Development and production of radiation shielding window (RSW) glass: Indian scenario

    International Nuclear Information System (INIS)

    Phani, K.K.

    2006-01-01

    Nuclear energy/power and its peaceful applications play an ever increasing role in India. Irradiated nuclear fuels, irradiated structural materials from reactors, nuclear wastes and radio-isotopes emit high energy gamma radiations which are extremely health hazardous. These materials are handled remotely by manipulators inside the hot cells, which are constructed by shielding materials such as lead and concrete walls. The direct visual control of processes in the hot cells during operation demands the windows in the radiation shielding walls. These windows must provide the clear viewing but yet ensure the good protection to the working personnel from the high energy radiation

  1. Body burden of Hg in different bio-samples of mothers in Shenyang city, China.

    Directory of Open Access Journals (Sweden)

    Min-Ming Li

    Full Text Available Hg is an accumulative and neuro-toxic heavy metal which has a wide range of adverse effects in human health. However, few studies are available on body burden of Hg level in different bio-samples of pregnant women in Chinese population. Therefore, this study evaluated Hg levels in different maternal bio-samples in Shenyang city, China and investigated the correlation of Hg levels in different bio-samples. From October to December 2008, 200 pregnant women about to deliver their babies at ShengJing Hospital (Shenyang city, northeast of China participated in this study. The geometric mean (GM of Hg levels in cord blood, maternal venous blood, breast milk, and maternal urine were 2.18 µg/L, 1.17 µg/L, 1.14 µg/L, and 0.73 µg/L, respectively, and the GM of maternal hair Hg level was 404.45 µg/kg. There was a strong correlation between cord blood and maternal blood total Hg level (r = 0.713, P<0.001. Frequency of fish consumption more than or equal to 3 times per week during pregnancy was suggested as a significant risk factor of prenatal Hg exposure (unadjusted OR 3.5, adjusted OR 2.94, P<0.05. This study provides evidence about Hg burden of mothers and the risk factors of prenatal Hg exposure in Shenyang city, China.

  2. Concrete spent fuel storage casks dose rates

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Trontl, K.

    1998-01-01

    Our intention was to model a series of concrete storage casks based on TranStor system storage cask VSC-24, and calculate the dose rates at the surface of the casks as a function of extended burnup and a prolonged cooling time. All of the modeled casks have been filled with the original multi-assembly sealed basket. The thickness of the concrete shield has been varied. A series of dose rate calculations for different burnup and cooling time values have been performed. The results of the calculations show rather conservative original design of the VSC-24 system, considering only the dose rate values, and appropriate design considering heat rejection.(author)

  3. Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO

    International Nuclear Information System (INIS)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-01-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2 O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2 O 3 , BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  4. Preliminary shielding calculation for the system of CyberKnife robotic radiosurgery

    International Nuclear Information System (INIS)

    Toreti, Dalila; Xavier, Clarice; Moura, Fabio

    2011-01-01

    The CyberKnife robotic system uses a manipulator with six grade of freedom for positioning a 6 MV Linac accelerator for treatment of lesions. This paper presents calculations for a standard room, with 200 cm of thickness walls primary, build for a CyberKnife system, and calculations for a room originally designed for a Linac conventional (with gantry), with secondary barriers of 107 cm thickness. After the realization of shielding for both rooms, the results shown that walls of standard room with 200 cm thickness are adequate for the secondary shield, and for a room with a conventional Linac, from all six evaluated points, two would require additional shielding of nine cm and four cm of concrete with 2.4 g/cubic cm. This shows that the CyberKnife system can be installed in a originally designed room for a conventional Linac with neither restrict nor any shielding, since no incidence of beams on the secondary barriers is existent

  5. Program for photon shielding calculations. Examination of approximations on irradiation geometries

    International Nuclear Information System (INIS)

    Isozumi, Yasuhito; Ishizuka, Fumihiko; Miyatake, Hideo; Kato, Takahisa; Tosaki, Mitsuo

    2004-01-01

    Penetration factors and related numerical data in 'Manual of Practical Shield Calculation of Radiation Facilities (2000)', which correspond to the irradiation geometries of point isotropic source in infinite thick material (PI), point isotropic source in finite thick material (PF) and vertical incident to finite thick material (VF), have been carefully examined. The shield calculation based on the PI geometry is usually performed with effective dose penetration factors of radioisotopes given in the 'manual'. The present work cleary shows that such a calculation may lead to an overestimate more than twice larger, especially for thick shield of concrete and water. Employing the numerical data in the 'manual', we have fabricated a simple computer program for the estimation of penetration factors and effective doses of radioisotopes in the different irradiation geometries, i.e., PI, PF and VF. The program is also available to calculate the effective dose from a set of radioisotopes in the different positions, which is necessary for the γ-ray shielding of radioisotope facilities. (author)

  6. Shielding chalculations in x-rays installations for medical diagnosis. description of the method and computational solution

    International Nuclear Information System (INIS)

    Borroto Valdes, M.; Saez, D.G.

    1992-01-01

    Shielding requirements for x-rays diagnostic installations are investigated. The description of an entirely analytical method for calculation of thickness, based in the papers of Simpkin and NCRP49, is presented. Considerations described in specialized method to solving this problem. A program for microcomputer IBM and compatibles ones is available for estimation of minimum shielding requirements in lead, concrete and steel. Similar results were obtained from comparing with others authors

  7. Shielding design for positron emission tomography facility

    International Nuclear Information System (INIS)

    Abdallah, I.I.

    2007-01-01

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  8. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas while the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)

  9. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    International Nuclear Information System (INIS)

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2013-01-01

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas while the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)

  10. Study of neutron and gamma shielding by lead borate and bismuth lead borate glasses: transparent radiation shielding

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Badiger, N.M.

    2013-01-01

    Radiation shielding for gamma and neutron is the prominent area in nuclear reactor technology, medical application, dosimetry and other industries. Shielding of these types of radiation requires an appropriate concrete with mixture of low-to-high Z elements which is an opaque medium. The transparent radiation shielding in visible light for gamma and neutron is also extremely essential in the nuclear facilities as lead window. Presently various types of lead equivalent glass oxides have been invented which are transparent as well as provide protection from radiation. In our study we have assessment of effectiveness of neutron and gamma radiation shielding of xPbO.(1-x) B 2 O 3 (x=0.15 to 0.60) and xBi 2 O 3 .(0.80-x) PbO.0.20 B 2 O 3 (x=0.10 to 0.70) transparent borate and bismuth glasses by NXCOM program. The neutron effective mass removal cross section, Σ R /ρ (cm 2 /g) of the lead, bismuth and boron oxides are given. We found invariable Σ R /ρ of various combinations of the lead borate glass for x=0.15 to 0.60 and bismuth lead borate glass for x=0.10 to 0.70. It is observed that the effective removal cross-section for fast neutron (cm -1 ) of lead borate reduces significantly whereas roughly constant for bismuth borate. The gamma mass attenuation coefficients (μ/ρ) of the glasses were also compared with possible experimental values and found comparable. High (μ/ρ) for gamma radiation of the bismuth glasses shows that it is better gamma shielding compared with lead containing glass. However lead borate glasses are better neutron shielding as the neutron removal coefficient are higher. Our investigation is very useful for nuclear reactor technology where prompt neutron of energy 17 MeV and gamma photon up to 10 MeV produced. (author)

  11. Cutting techniques of reinforced concrete by wire sawing

    International Nuclear Information System (INIS)

    Miyao, Hidehiko; Komatsu, Junji; Kamiyama, Yoshinori; Yasoshima, Harunori; Kukino, Yoshinori; Yamamoto, Yuichi; Miyazaki, Takashi; Aritomi, Masanori

    1995-01-01

    The Research Association for Nuclear Facility Decommissioning (RANDEC) has been carrying out demonstration tests to improve current technologies for decommissioning. The conceptual dismantling system has been studied and basic cutting tests have been carried out by wire sawing. In terms of waste management and dismantling efficiency, the diamond wire saw cutting method has advantages for cutting radioactive concrete in large blocks. A conceptual design for a dismantling system for various concrete shieldings of nuclear facilities has been developed and diamond wire sawing has been designed and manufactured. The basic cutting tests by wire sawing have been carried out to obtain quantitative data, in addition to the conceptual design of a dismantling system for biological shielding of various power reactors (PWR, BWR, GCR) and cell walls of nuclear fuel cycle facilities. On the basis of the conceptual dismantling system and quantitative cutting performance data, wire sawing equipment has been manufactured for use in nuclear facilities. This study was performed on consignment for the Science and Technology Agency of Japan. (author)

  12. Application of wire sawing method to decommissioning of high level activated concrete

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Hideki; Nishimura, Youichi [Tokyo Electric Power Co., Tokyo (Japan); Watanabe, Morishige; Yamashita Yoshitaka

    1999-07-01

    Wire sawing method is proposed as an effective cutting method for the dismantling of high level activated concrete of a nuclear power plant. The cutting test with wire sawing method discussed in this paper was carried out to obtain the data such as the cutting rate, the volume of concrete dust and the time of cutting and related work. The cutting test consisted of two parts; 'Fundamental test' and 'mock-up test.' In the fundamental test, we carried out the cutting test with small concrete blocks simulating the high level activated concrete of Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR). Through the test, the following data were obtained: the cutting rate of wire sawing, the volume of generated concrete dust and the grading distribution of suspended particulate. We also studied the life of wire and the relations between the wire tension, the wire rotating speed, the steel ratio and the cutting rate. In the mock-up test, we carried out the test with large concrete blocks simulating the part of the reactor shield wall of BWR and the biological shield wall of PWR. Through the mock-up test, we made clear that it is possible that the large test blocks with high re-bar ratio and a steel plate (steel plates) were cut smoothly by the wire sawing method. In the test, the following data were obtained; the cutting rate, the time of the cutting and related work and the remote controllability of cutting machines. (author)

  13. Application of wire sawing method to decommissioning of high level activated concrete

    International Nuclear Information System (INIS)

    Hasegawa, Hideki; Nishimura, Youichi; Watanabe, Morishige; Yamashita Yoshitaka

    1999-01-01

    Wire sawing method is proposed as an effective cutting method for the dismantling of high level activated concrete of a nuclear power plant. The cutting test with wire sawing method discussed in this paper was carried out to obtain the data such as the cutting rate, the volume of concrete dust and the time of cutting and related work. The cutting test consisted of two parts; 'Fundamental test' and 'mock-up test.' In the fundamental test, we carried out the cutting test with small concrete blocks simulating the high level activated concrete of Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR). Through the test, the following data were obtained: the cutting rate of wire sawing, the volume of generated concrete dust and the grading distribution of suspended particulate. We also studied the life of wire and the relations between the wire tension, the wire rotating speed, the steel ratio and the cutting rate. In the mock-up test, we carried out the test with large concrete blocks simulating the part of the reactor shield wall of BWR and the biological shield wall of PWR. Through the mock-up test, we made clear that it is possible that the large test blocks with high re-bar ratio and a steel plate (steel plates) were cut smoothly by the wire sawing method. In the test, the following data were obtained; the cutting rate, the time of the cutting and related work and the remote controllability of cutting machines. (author)

  14. Optimisation of structural shielding of accelerator control room for compliance with ALARA principle under Indian conditions

    International Nuclear Information System (INIS)

    Ahmad, Masood; Singh, Brijesh

    1999-01-01

    The case of a 20 MV x-ray accelerator has been considered in this paper for optimisation. An internationally recommended value of α = US$ 1000 per person-sievert has been assumed. Cost of concrete has been assumed as US$ 82.7/m 3 . It is seen that, extra shielding is needed to satisfy the ALARA principle. Further, the amount of requisite shielding increases with the degree of occupancy and, also, if the local construction materials or the labour are cheaper than considered in this paper. Accordingly 1.5 to 4.75 HVLs may be needed as extra shielding in different situations. Therefore, a site specific and installation specific optimisation of shielding is necessary

  15. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    Science.gov (United States)

    Ploykrathok, T.; Chanyotha, S.

    2017-06-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.

  16. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    International Nuclear Information System (INIS)

    Ploykrathok, T; Chanyotha, S

    2017-01-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated. (paper)

  17. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxiliary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embedded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. (Auth.)

  18. Relating the structural strength of concrete sewer pipes and material properties retrieved from core samples

    NARCIS (Netherlands)

    Stanic, N.; Langeveld, J.G.; Salet, Theo; Clemens, F.H.L.R.

    2016-01-01

    Drill core samples are taken in practice for an analysis of the material characteristics of concrete pipes in order to improve the quality of the decision-making on rehabilitation actions. Earlier research has demonstrated that core sampling is associated with a significant uncertainty. In this

  19. Sulfur determination in concrete samples using laser-induced breakdown spectroscopy and limestone standards

    Science.gov (United States)

    Hrdlička, Aleš; Hegrová, Jitka; Novotný, Karel; Kanický, Viktor; Prochazka, David; Novotný, Jan; Modlitbová, Pavlína; Sládková, Lucia; Pořízka, Pavel; Kaiser, Jozef

    2018-04-01

    A LIBS equipment operating at 532 nm was optimized and used for sulfur determination in concrete samples. The influence of He atmosphere in a gas-tight chamber (1000-200 mbar) on S I 921.29 nm line sensitivity, signal-to-background and signal-to-noise ratio was studied at gate delays 100-2000 ns. Wide range of gate delays from 500 to about 1000 ns and pressures from several hundreds of mbar to the atmospheric pressure can be used for the desired detection of sulfur. The LIBS quantification was done using a simple calibration method. A synthetic limestone enriched by defined amounts of sodium sulfate was newly employed for direct quantification of S in concrete. This powder material was pressed into pellets and ablated with the LIBS system. The average content of sulfur as SO3 in the samples was 0.41-0.70 wt% by LIBS and 0.43-0.61 wt% by a reference standard procedure employing gravimetry and Inductively Coupled Plasma Triple Quad Mass Spectrometry (ICP-QQQMS). The uncertainty of the yielded LIBS results covers also the dispersion of the points in the calibration line and ranges from 16 to 28% at the probability level of 95%. The uncertainty of the ICP-QQQMS results was almost 10%. No correction on different signal response on the limestone and on the concrete was necessary.

  20. Studies of historic concrete

    International Nuclear Information System (INIS)

    Jull, S.P.; Lees, T.P.

    1990-01-01

    Underground concrete repositories for nuclear waste will have to maintain their integrity for hundreds of years. This study examines ancient concretes and assesses the suitability of equivalent modern materials for underground storage. Thirty four ancient samples have been obtained from Great Britain, Austria and Italy. One 19th century sample was also collected. The samples were examined using a variety of analytical techniques (including scanning electron microscopy, optical microscopy, chemical analysis and pH determination). The samples were also subjected to a range of physical tests. Most of the samples examined were very weak and porous although they had retained full structural integrity. With the exception of the 19th century sample, none of the concretes had maintained pH alkaline enough to immobilize radionuclides. Hydrated calcium silicates have been detected in some samples which are similar to those observed in modern Portland cement concretes. These stable cementitious species have endured for almost two thousand years. All the ancient concretes and mortars examined contained natural pozzolanic material or crushed burnt clay. This may have had some effect on the reduction in alkalinity although the main reason was full carbonation of calcium hydroxide

  1. Study of the radiation scattered and produced by concrete shielding of radiotherapy rooms and its effects on equivalent doses in patients' organs; Estudo da radiacao espalhada e produzida pela blindagem de concreto de salas de radioterapia e seus efeitos sobre doses equivalentes nos orgaos dos pacientes

    Energy Technology Data Exchange (ETDEWEB)

    Braga, K.L.; Rebello, W.F.; Andrade, E.R.; Gavazza, S.; Medeiros, M.P.C.; Mendes, R.M.S.; Gomes, R.G.; Silva, M.G., E-mail: kelmo.lins@gmail.com, E-mail: rebello@ime.eb.br, E-mail: fisica.dna@gmail.com, E-mail: sergiogavazza@yahoo.com, E-mail: eng.cavaliere@gmail.com, E-mail: raphaelmsm@gmail.com, E-mail: ggrprojetos@gmail.com, E-mail: maglosilva15@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Thalhofer, J.L.; Silva, A.X., E-mail: jardellt@yahoo.com.br, E-mail: ademir@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Energia Nuclear; Santos, R.F.G., E-mail: raphaelfgsantos@gmail.com [Centro Universitario Anhanguera, Niteroi, RJ (Brazil). Departamento de Engenharia

    2015-07-01

    Within a radiotherapy room, in addition to the primary beam, there is also secondary radiation due to the leakage of the accelerator head and the radiation scattering from room objects, patient and even the room's shielding itself, which is projected to protect external individuals disregarding its effects on the patient. This work aims to study the effect of concrete shielding wall over the patient, taking into account its contribution on equivalent doses. The MCNPX code was used to model the linear accelerator Varian 2100/2300 C/D operating at 18MeV, with MAX phantom representing the patient undergoing radiotherapy treatment for prostate cancer following Brazilian Institute of Cancer four-fields radiation application protocol (0°, 90°, 180° and 270°). Firstly, the treatment was patterned within a standard radiotherapy room, calculating the equivalent doses on patient's organs individually. In a second step, this treatment was modeled withdrawing the walls, floor and ceiling from the radiotherapy room, and then the equivalent doses calculated again. Comparing these results, it was found that the concrete has an average shielding contribution of around 20% in the equivalent dose on the patient's organs. (author)

  2. The shielding performance of multilayer composite shielding structures to 14.8 MeV fast neutrons

    International Nuclear Information System (INIS)

    Shen Zhiqiang; Kang Qing; Xu Jun; Wang Zhenggang; Lu Nan

    2014-01-01

    Cement-based round thin-layer samples mixed with 30% quality content of barite, and 20% quality content of carbide boron has Prepared, the same-diameter sliced samples of pure graphite and pure polyethylene has cut, then, samples combination and cross stack order has designed, formed four species Multilayer Composite shield structure, at last, neutron attenuation measurements has been done by experimental system of using 14.8 MeV neutrons from the 5SDH-2 accelerator and long counter composition, penetrating rate of samples and the shield structure to 14.8 MeV fast neutron has tested, and attenuation section has calculated. Results show that 14.8 MeV fast neutrons to higher penetration rates of thin layer samples, attenuation cross section of samples distinguish small between each other, must be increasing the thickness of the samples to reduce the experimental uncertainty; through composed of attenuation cross section and thickness parameters of composite structure, can more accurately predict the shielding ability of composite structures, error between calculation results and experimental results in 4%. (authors)

  3. A historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.; Li Davies, I.

    1987-01-01

    The requirement that concrete in radioactive waste repositories be stable physically and chemically for very long times has initiated studies of ancient and old concretes. This report is a contribution to this effort. After a description of the history of cement and concrete, the published literature relating to the analysis of old and ancient concrete is reviewed. A series of samples spanning the history of concrete has been obtained; a variety of physical and chemical techniques have been employed to characterize these samples. Reasons for survival of ancient concretes, and for durability of early, reinforced concretes are identified. Recommendations for further studies are given. 132 refs

  4. Radiation Damage In Reactor Cavity Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G [ORNL; Le Pape, Yann [ORNL; Naus, Dan J [ORNL; Remec, Igor [ORNL; Busby, Jeremy T [ORNL; Rosseel, Thomas M [ORNL; Wall, Dr. James Joseph [Electric Power Research Institute (EPRI)

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  5. New gadolinium based glasses for gamma-rays shielding materials

    International Nuclear Information System (INIS)

    Kaewjang, S.; Maghanemi, U.; Kothan, S.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • Gd 2 O 3 based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd 2 O 3. • All the glasses of Gd 2 O 3 compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd 2 O 3 based glass matrices. - Abstract: In this work, Gd 2 O 3 based glasses in compositions (80−x)B 2 O 3 -10SiO 2 -10CaO-xGd 2 O 3 (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd 2 O 3 concentration. The experimental values of mass attenuation coefficients (μ m ), effective atomic number (Z eff ) and effective electron densities (N e ) of the glasses were found to increase with the increasing of Gd 2 O 3 concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd 2 O 3 compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials

  6. Exposure rates from concrete covered cylindrical units containing radioactive waste

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1983-03-01

    Exposure rates from cylindrical waste units containing the nuclides 60 Co, 134 Cs and 137 Cs homogeneously mixed in a solidification product have been calculated. Analyses have been made for single drums and for two disposal geometries, one with the units placed below ground near the surface in a circular geometry, and one with the units placed on the ground in a pile behind a concrete wall. Due to self-shielding of the units, the exposure rate from the two geometries will be a factor of only 10 - 20 higher than from a single unit, even without soil or wall shielding. With one meter of soil above the circular pile below ground, a reduction factor of 5.10 3 to 5.10 4 can be achieved, depending on the nuclide considered. Placing a one-meter concrete wall in front of the drum pile on the ground gives rise to a reduction factor in the range of 5.10 5 to 2.10 7 . (author)

  7. Development of mechanical shield docking method; MSD (mekanikaru/shirudo/dokkingu) koho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, I. [Tokyo Metroplitan Government Water Supply Bureau, Tokyo (Japan); Watanabe, T.; Hagiwara, H. [Shimizu Corp., Tokyo (Japan); Nishitake, S. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Endo, M. [Obayashi Corp., Osaka (Japan)

    1993-09-20

    For the construction works of underground tunnels, mainly the shield method has so far been adopted, but in order to make underground junction of shield machines, the method of utilizing a shaft or the method of improving the earth by the auxiliary methods such as chemical feeding have been adopted. However, either method has restriction for its practical application. The MSD method uses no auxiliary method at all, can join directly two shield machines mechanically underground, has high water stoppability at its junction, is applicable for either of shield machines of slush type or mud pressure type, and is the method to solve totally various problems in the existing joining methods. This method is the one that two shield machines, one on the out-pushing side and another on the in-receiving side, progress from both sides and face each other, then the both are joined mechanically for unification by pushing a steel penetration ring built-in the out-pushing shield machine to the rubber ring built-in the penetration chamber of the in-receiving shield machine. After joining, the shield machines are disassembled for removal leaving the junction only, and the secondary lining is done with concrete. 6 figs.

  8. A study on radiation shielding design in MACSTOR-400(CANDU spent fuel storage facility)

    International Nuclear Information System (INIS)

    Lee, Yoon Hee

    2006-02-01

    Since the spent fuel pool will be saturated in the near future, spent fuel storage facilities are urgently needed. Because of high radiation and decay heat, spent fuel management is difficult and important. In this study, the shielding thickness of MACSTOR-400 that satisfies the general surface dose rate limit has been investigated. And the radiation shielding safety at site boundary has also been evaluated. IAEA recommends the safety series as a guideline and the U.S. follows the NUREG guide for spent fuel storage facility design. In Japan, the regulation for internal transfer is applied to the spent fuel storage. In Korea, the ACT notification for radiation protection is considered. As a shielding design requirement, it is stated that the occupational exposure dose rate must not exceed 1 mSv/week. From this value, it is assumed that the surface dose rate limit is 25 μSv/hr. And for multi unit operation in same site, the dose rate limit at the controlled area boundary is 0.25 mSv/yr. MCNP code and Microshield program were used for calculating the surface dose rate and the dose rate at site boundary respectively. The shielding should be at least 90 cm thick except the air inlet to follow the surface dose rate limit. Additional shielding is needed on air inlet because the dose rate on air inlet is higher than the dose rate on concrete surface. Without the shielding structure, the shielding thickness should be at least 127 cm. In order to satisfy the surface dose rate limit with maintaining the same concrete thickness on air inlet, shielding structure is required on air inlet. The optimum shielding structure has been proposed in this study. The allowable number of MACSTORs with considering other nuclear facilities in Wolsung site is calculated at 60. It is expected that the required number of MACSTORs are 28 in order to store the total amount of spent fuel generated during NPP operation in Wolsung. Therefore, it seems to be safe in radiation point at site boundary

  9. A study on radiation shielding design in MACSTOR-400(CANDU spent fuel storage facility)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee

    2006-02-15

    Since the spent fuel pool will be saturated in the near future, spent fuel storage facilities are urgently needed. Because of high radiation and decay heat, spent fuel management is difficult and important. In this study, the shielding thickness of MACSTOR-400 that satisfies the general surface dose rate limit has been investigated. And the radiation shielding safety at site boundary has also been evaluated. IAEA recommends the safety series as a guideline and the U.S. follows the NUREG guide for spent fuel storage facility design. In Japan, the regulation for internal transfer is applied to the spent fuel storage. In Korea, the ACT notification for radiation protection is considered. As a shielding design requirement, it is stated that the occupational exposure dose rate must not exceed 1 mSv/week. From this value, it is assumed that the surface dose rate limit is 25 μSv/hr. And for multi unit operation in same site, the dose rate limit at the controlled area boundary is 0.25 mSv/yr. MCNP code and Microshield program were used for calculating the surface dose rate and the dose rate at site boundary respectively. The shielding should be at least 90 cm thick except the air inlet to follow the surface dose rate limit. Additional shielding is needed on air inlet because the dose rate on air inlet is higher than the dose rate on concrete surface. Without the shielding structure, the shielding thickness should be at least 127 cm. In order to satisfy the surface dose rate limit with maintaining the same concrete thickness on air inlet, shielding structure is required on air inlet. The optimum shielding structure has been proposed in this study. The allowable number of MACSTORs with considering other nuclear facilities in Wolsung site is calculated at 60. It is expected that the required number of MACSTORs are 28 in order to store the total amount of spent fuel generated during NPP operation in Wolsung. Therefore, it seems to be safe in radiation point at site boundary

  10. Development of the cutting machine for the biological shield wall

    International Nuclear Information System (INIS)

    Yokota, Mitsuo; Hasegawa, Tetsuo; Kohyama, Kazunori.

    1987-01-01

    22 years have passed since the first commercial nuclear power plant operation in Japan. At present, there were 33 commercial nuclear power plants in operation, supplying about 25 percent of total electricity. Some of them are going to be terminated in the near future and enter into the decommissioning stage. Therefore, it is now necessary to developed decommissioning technologies, including dismantling techniques of these power plants. The development of a concrete cutting machine is one of the most important items applicable to dismantling biological shield walls of the plants. This paper describes the outline of the cutting machine developed for the biological shield wall demolition of the Japan Power Demonstration Reactor (JPDR) including actual decommissioning works tested. (author)

  11. Magnet Architectures and Active Radiation Shielding Study - SR2S Workshop

    Science.gov (United States)

    Westover, Shane; Meinke, Rainer; Burger, William; Ilin, Andrew; Nerolich, Shaun; Washburn, Scott

    2014-01-01

    Analyze new coil configurations with maturing superconductor technology -Develop vehicle-level concept solutions and identify engineering challenges and risks -Shielding performance analysis Recent advances in superconducting magnet technology and manufacturing have opened the door for re-evaluating active shielding solutions as an alternative to mass prohibitive passive shielding.Publications on static magnetic field environments and its bio-effects were reviewed. Short-term exposure information is available suggesting long term exposure may be okay. Further research likely needed. center dotMagnetic field safety requirements exist for controlled work environments. The following effects have been noted with little noted adverse effects -Magnetohydrodynamic (MHD) effects on ionized fluids (e.g. blood) creating an aortic voltage change -MHD interaction elevates blood pressure (BP) center dot5 Tesla equates to 5% BP elevation -Prosthetic devises and pacemakers are an issue (access limit of 5 gauss).

  12. 111-B Metal Examination Facility Concrete Tanks Characterization Plan

    International Nuclear Information System (INIS)

    Encke, D.B.

    1997-08-01

    The 111-B Metal Examination Facility was a single-story, wood frame 'L'-shaped building built on a concrete floor slab. The facility served as a fuel failure inspection facility. Irradiated fuel pieces were stored and examined in two below grade concrete storage tanks filled with water. The tanks have been filled with grout to stabilize the contamination they contained, and overall dimensions are 5 ft 9 in. (1.5 m 22.8 cm ) wide, 9 ft 1 in. (2.7 m 2.54 cm ) deep, and 10 ft 8 in. (3.0 m 20.32 cm) long, and are estimated to weigh 39 tons. The tanks were used to store and examine failed fuel rods, using water as a radiation shield. The tanks were lined with stainless steel; however, drawings show the liner has been removed from at least one tank (south tank) and was partially filled with grout. The south tank was used to contain the Sample Storage Facility, a multi-level metal storage rack for failed nuclear fuel rods (shown in drawings H-1-2889 and -2890). Both tanks were completely grouted sometime before decontamination and demolition (D ampersand D) of the above ground facility in 1984. The 111-B Metal Examination Facility contained two concrete tanks located below floor level for storage and examination of failed fuel. The tanks were filled with concrete as part of decommissioning the facility prior to 1983 (see Appendix A for description of previous work). Funding for removal and disposal of the tanks ran out before they could be properly disposed

  13. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  14. Biodegradation of concrete intended for their decontamination

    International Nuclear Information System (INIS)

    Jestin, A.

    2005-05-01

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  15. SCALE6.1 Hybrid Shielding Methodology For The Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Matijevic, M.; Pevec, D.; Trontl, K.

    2015-01-01

    The SCALE6.1/MAVRIC hybrid deterministic-stochastic shielding methodology was used for dose rates calculation of the generic spent fuel dry storage installation. The neutron-gamma dose rates around the cask array were calculated over a large problem domain in order to determine the boundary of the controlled area. The FW-CADIS methodology, based on the deterministic forward and adjoint solution over the phase - space, was used for optimized, global Monte Carlo results over the mesh tally. The cask inventory was modeled as homogenized material corresponding to 20 fuel assemblies from a standard mid - sized PWR reactor. The global simulation model was an array of 32 casks in 2 rows with concrete foundations and external air, which makes a large spatial domain for shielding calculations. The dose rates around the casks were determined using FW-CADIS method with weighted adjoint source and mesh tally covering a portion of spatial domain of interest. The conservatively obtained dose rates give the upper boundary, since the activation reduction of sources was not taken into account when sequential filling of the dry storage will start. The effective area of the dry storage installation can be additionally reduced with lowering concrete foundation under the ground, embankment raising, and with extra concrete walls, that would additionally lower the dominant gamma dose rates. (author).

  16. Studies on the use of the hematitic heavy concrete in the shielding of nuclear reactors

    International Nuclear Information System (INIS)

    Mello, M.J. de.

    1980-12-01

    The main difficulties and and the necessary adaptations in the usual techniques for the regular concrete, are intended to show. In particular the problems of dosing and the methods of vibration an homogenization in the setting of heavy concrete will need more detailed research. It was showed possible to obtain densities of 4 g/cm 3 and more. The atenuation coeficients obtained for the range of energy of gamma rays studied are much greater than the ones obtained with most concretes. The interpretation of measurements of these coeficients showed agreement with the characteristics of the materials and measuring methods used. The matching of the measured atenuation coeficients with the values calculated from the analysis of the mean composition of the heavy concrete also showed coherence with a deviation of 4% in most cases. (Author) [pt

  17. Evaluation of Environmental and Hydraulic Performance of Bio-Composite Revetment Blocks

    OpenAIRE

    Thamer A.  Ahmeed; Nor A.  Alias; Abdul H.  Ghazali; Mohd. S.  Jaafar

    2006-01-01

    It is necessary to develop a concrete revetment block which can cater for environment and at the same time it will be effective in protecting river banks (stabilize the slope of banks) from scouring during flood. In the present study, the environmental and hydraulic performance of the proposed revetment block was evaluated through laboratory and field tests. The tested revetment block is called bio-composite because it is composed of concrete, plastic mesh and biological material (coconut hus...

  18. Quality control in high thickness concrete walls for shielding

    International Nuclear Information System (INIS)

    Arcama, J.A.; San Pedro, Marcelo; Cannistracci, C.A.

    1983-01-01

    After evaluating different methods of non-destructive testing, of fast execution and quick results, with low operative cost, and suitable to verify the homogeneity and the shielding power of the walls of process cells for radiochemical use, under construction in the Centro Atomico Ezeiza, it was decided to employ the ultrasound method over the whole surface to be examined, with subsequent verification of the results on isolated zones by means of radiometry and gammagraphy. This procedure proved to be satisfactory. The cell's characteristics, the tests performed and their results, which were statistically evaluated by means of a computer program, implemented to his effect, are described. (C.A.K.) [es

  19. Effect of High Temperature or fire on heavy weight concrete properties used in nuclear facilities

    International Nuclear Information System (INIS)

    Sakr, K.

    2003-01-01

    In the present work the effect of different duration (1, 2 and 3 hours) of high temperatures (250 degree C, 500 degree C, 750 degree C and 950 degree C) on the physical and mechanical properties of heavy concrete shields were studied. The effect of fire fitting systems on ordinary concrete was investigated. The work was extended to determine the effect of high temperature or accidental fire on the radiation properties of heavy weight concrete. Results showed that ilmenite concrete had the highest density, absorption, and modulus of elasticity when compared to the other types of studied concrete and it had also higher values of compressive, tensile, bending and bonding strength than ordinary or baryte concrete. Ilmenite concrete had the highest attenuation of transmitted gamma rays in comparing to gravel concrete and baryte concrete. Ilmenite concrete was more resistant to elevated temperature than gravel concrete and baryte concrete. Foam or air as a fire fitting system in concrete structure that exposed to high temperature or accidental fire proved that better than water

  20. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  1. Carbonated miscanthus mineralized aggregates for reducing environmental impact of lightweight concrete blocks

    Directory of Open Access Journals (Sweden)

    Courard Luc

    2017-01-01

    Full Text Available At a time when the cement industry is largely responsible for the production of CO2 in the construction sector, it is useful to make this production a reverse phenomenon: that is CO2 capture. The CO2 absorption process called carbonation, improves specific properties of the concrete during the conversion of carbon dioxide CO2 into calcium carbonate CaCO3. Current environmental concerns motivate the study of carbonation in order to maximize the absorption of carbon dioxide. Moreover, lightweight concrete with bio-based products knows an interesting development in the construction field, especially as thermal insulation panels for walls in buildings. Before identifying and quantifying the basic physical characteristics of concrete made from miscanthus, it is necessary to optimize the composition of the product. The long-term stability as well as the reinforcement may be obtained by means of a mineralization process of the natural product: a preparation with a lime and/or cement-based material is necessary to reinforce the cohesion of the bio-based product. Mineralization process is described as well as the way of producing blocks for CO2 capture by means of accelerated carbonation. Finally, concrete blocks produced with miscanthus mineralized aggregates offer interesting mechanical properties and minimal environmental impact.

  2. Flux trapping and shielding in irreversible superconductors

    International Nuclear Information System (INIS)

    Frankel, D.J.

    1978-05-01

    Flux trappings and shielding experiments were carried out on Pb, Nb, Pb-Bi, Nb-Sn, and Nb-Ti samples of various shapes. Movable Hall probes were used to measure fields near or inside the samples as a function of position and of applied field. The trapping of transverse multipole magnetic fields in tubular samples was accomplished by cooling the samples in an applied field and then smoothly reducing the applied field to zero. Transverse quadrupole and sextupole fields with gradients of over 2000 G/cm were trapped with typical fidelity to the original impressed field of a few percent. Transverse dipole fields of up to 17 kG were also trapped with similar fidelity. Shielding experiments were carried out by cooling the samples in zero field and then gradually applying an external field. Flux trapping and shielding abilities were found to be limited by two factors, the pinning strength of the material, and the susceptibility of a sample to flux jumping. The trapping and shielding behavior of flat disk samples in axial fields and thin-walled tubular samples in transverse fields was modeled. The models, which were based on the concept of the critical state, allowed a connection to be made between the pinning strength and critical current level, and the flux trapping and shielding abilities. Adiabatic and dynamic stability theories are discussed and applied to the materials tested. Good qualitative, but limited quantitative agreement was obtained between the predictions of the theoretical stability criteria and the observed flux jumping behavior

  3. An analytical solution to the shielding of Co 60 teletherapy rooms based on a semiempirical equation of photon attenuation

    International Nuclear Information System (INIS)

    Saez, D.G.; Hernandez, L.; Borroto, M.; Figueredo, M.

    1996-01-01

    A semiempirical equation of polynomial-exponential type is presented to describe the transmission data of Co-60 gamma radiation in finite materials of concrete and lead. This equation and the expression obtained for the relationship of scatter-to-incident exposure made easy the developing in computer of an analytical solution for shielding calculations of Co 60 teletherapy rooms, based on the procedures of the NCRP 49 and Simpkin's method. The standard error in the estimation of parameters is less than 1.7 % except for the attenuation of 150 'o' scattered radiation in concrete that resulted in 6.3 % for one of them. The shielding calculations were compared with the data in NCRP 49 for the same conditions with a correlation better than 99 %

  4. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael R, Kruzic

    2008-01-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D and D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  5. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  6. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  7. ICRS1, Proceedings of the First Radiation Shielding Symposium, Cambridge, UK 1958

    International Nuclear Information System (INIS)

    Goebelbecker, Hans-Juergen

    2008-01-01

    Description: The papers of the European Atomic Energy Society Symposium VI-58 on radiation shielding (ICRS1) held at Caius College, Cambridge England from 26 to 29 August 1958 are collected here for the first time in electronic form. This symposium was organised in connection with the Second Atoms for Peace Conference held in Geneva Held in Geneva from 1 to 13 September 1958. The Topics discussed covered gamma rays and neutron radiation; the Methods discussed were analytical approaches, semi-empirical Methods, simple computer codes, Monte Carlo method. Little quality nuclear data for shielding calculations was available and the presentations would concentrate on removal cross-sections and build-up factors. Experimental techniques in support to estimate the effective shielding properties of materials were discussed such as general experimental shielding techniques and experiments on neutron attenuation in different materials and on concrete as shield. Foil detectors for spectra measurements and determination of dose rates were mainly used. The typical issues addressed were gamma-heating, gamma spectra, neutron induced gammas, fission products gamma spectra, skyshine radiation and neutron ducts - streaming. Most participants were researchers from the naval and aeronautics sector

  8. influence of severe conditions on the concrete employed in nuclear technology

    International Nuclear Information System (INIS)

    Khalil, W.M.K.S.

    2006-01-01

    this thesis is mainly concentrating on honing the efficiency of heavy-weight high -performance (HWHP) concrete, developed from local aggregates together with additives that are waste products of other manufacturing processes, for the purpose of producing radiation shields, to attenuate gamma-rays in peaceful active-service facilitations . in other words, the thesis is in attempt to develop a special type of heavy concrete of various advantages that would enhance its performance in severe environment. such advantages may embrace concurrent improvements; such as high specific gravity, workability, high compressive strength, efficient attenuator for gamma radiation, and resistant to elevated temperature along with chemical attack.the named HWHP concrete was mainly prepared using two types of heavy aggregates, ilmenite (iron ore) and barite . in addition usual concrete (dolomite/sand) was also employed in this thesis to compare the obtained HWHP concrete. the practical facet of this thesis accounts for evaluating the influence of severe conditions, concomitantly and consecutively, on mechanical , morphological and attenuation characteristics for the three types of concrete

  9. Fast neutron relaxation length in concretes in the range of neutron energies En=0.5 - 17.5 MeV

    International Nuclear Information System (INIS)

    Desdin, L.F.; Garcia, L.; Perez, G.; Hernandez, A.; Herrera, E.; Tellez, E.

    1998-01-01

    In the present research were determined the fast neutron relaxation length y in different type of concretes, having special interest for biological shielding as well as for ordinary construction purposes, in the energy interval of 0.5-17.5 MeV. The values of Y concrete are reported with an accuracy of 6 %

  10. Design Considerations and Validation of Tenth Value Layer Used for a Medical Linear Accelerator Bunker Using High Density Concrete

    International Nuclear Information System (INIS)

    Peet, Deborah; Horton, Patrick; Jones, Matthew; Ramsdale, Malcolm

    2006-01-01

    A bunker for the containment and medical use of 10 MV and 6 MV X-rays from a linear accelerator was designed to be added on to four existing bunkers. Space was limited and the walls of the bunker were built using Magnadense, a high density aggregate mined in Sweden and imported into the UK by Minelco Minerals Ltd. The density was specified by the user to be a minimum of 3800 kg/m 3 . This reduced the thickness of primary and secondary shielding over that required using standard concrete. Standard concrete (density 2350 kg/m 3 ) was used for the roof of the bunker. No published data for the tenth value layer (T.V.L.) of the high density concrete were available and values of T.V.L. were derived from those for standard concrete using the ratio of density. Calculations of wall thickness along established principles using normal assumptions and dose constraints resulted in a design with minimum primary wall barriers of 1500 mm and secondary barriers of between 800 mm and 1000 mm of high density concrete. Following construction, measurements were made of the dose rates outside the shielding thereby allowing estimates of the T.V.L. of the material for 6 and 10 MV X-rays. The instantaneous dose rates outside the primary barrier walls were calculated to be less than 6 x 10 -6 Sv/hr but on measurement were found to be more than a factor of 4 times lower than this. Calculations were reviewed and the T.V.L. was found to be 12% greater than that required to achieve the measured dose rate. On the roof, the instantaneous dose rate at the primary barrier was measured to be within 3% of that predicted using the published values of T.V.L. for standard concrete. Sample cubes of standard and high density concrete poured during construction showed that the density of the standard concrete in the roof was close to that used in the design whereas the physical density of Magnadense concrete was on average 5% higher than that specified. In conclusion, values of T.V.L. for the high density

  11. Effect of prolonged mixing time on concrete properties

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Sidek, H.A.A.; Wahab, Z.A.

    2009-01-01

    The correlation between workability, compressive strength and mixing time of fresh concrete has been studied. The concrete samples used in the study are normal concrete of grade 30. The mix design of the concrete samples was estimated using software called Calcrete. Three concrete cubes of 150 mm size were cast immediately after mixing. The same grade of concrete was prepared with the mixing time of 30 minutes to 5 hours. All of the concrete samples were cured for 28 days under room temperature before they were compressed using a compression machine. Result shows that the compressive strength of concrete decreases when mixing time is increased. (author)

  12. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    Science.gov (United States)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  13. A review of sample preparation and its influence on pH determination in concrete samples

    International Nuclear Information System (INIS)

    Manso, S.; Aguado, A.

    2017-01-01

    If we are to monitor the chemical processes in cementitious materials, then pH assays in the pore solutions of cement pastes, mortars, and concretes are of key importance. However, there is no standard method that regulates the sample-preparation method for pH determination. The state-of-the-art of different methods for pH determination in cementitious materials is presented in this paper and the influence of sample preparation in each case. Moreover, an experimental campaign compares three different techniques for pH determination. Its results contribute to establishing a basic criterion to help researchers select the most suitable method, depending on the purpose of the research. A simple tool is described for selecting the easiest and the most economic pH determination method, depending on the objective; especially for researchers and those with limited experience in this field.

  14. Shield calculation of project for instrument calibration integrated laboratory of IPEN-Sao Paulo, Brazil; Calculo das blindagens do projeto de um laboratorio integrado de calibracao de instrumentos no IPEN - Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo A.S.J.; Caldas, Linda V.E., E-mail: gustavaobarros@gmail.co, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    This work performed the shield calculation of the future rooms walls of the five X-ray equipment of the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, which will be constructed in project of laboratory enlargement. The obtained results by application of a calculation methodology from an international regulation have shown that the largest thickness of shielding (25.7 cm of concrete or 7.1 mm of lead) will be of the wall which will receive the primary beam of the equipment with a 320 kV voltage. The cost/benefit analysis indicated the concrete as the best material option for the shielding

  15. Program of environmental and bio monitoring sampling

    International Nuclear Information System (INIS)

    Fernandez, H.

    2012-01-01

    This presentation is about the importance of the biological signs to determine the environmental features characteristics.The low level of taxonomic resolution and the environmental perturbation is determined by the bio monitoring techniques

  16. Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.

    Science.gov (United States)

    Duckic, Paulina; Hayes, Robert B

    2018-06-01

    Buildup factors are dimensionless multiplicative factors required by the point kernel method to account for scattered radiation through a shielding material. The accuracy of the point kernel method is strongly affected by the correspondence of analyzed parameters to experimental configurations, which is attempted to be simplified here. The point kernel method has not been found to have widespread practical use for neutron shielding calculations due to the complex neutron transport behavior through shielding materials (i.e. the variety of interaction mechanisms that neutrons may undergo while traversing the shield) as well as non-linear neutron total cross section energy dependence. In this work, total ambient dose buildup factors for NBS04 concrete are calculated in terms of neutron and secondary gamma ray transmission factors. The neutron and secondary gamma ray transmission factors are calculated using MCNP6™ code with updated cross sections. Both transmission factors and buildup factors are given in a tabulated form. Practical use of neutron transmission and buildup factors warrants rigorously calculated results with all associated uncertainties. In this work, sensitivity analysis of neutron transmission factors and total buildup factors with varying water content has been conducted. The analysis showed significant impact of varying water content in concrete on both neutron transmission factors and total buildup factors. Finally, support vector regression, a machine learning technique, has been engaged to make a model based on the calculated data for calculation of the buildup factors. The developed model can predict most of the data with 20% relative error.

  17. Radioprotection shielding for neutrons induced by the reaction (2H (40 MeV, 12C

    Directory of Open Access Journals (Sweden)

    Fadil M.

    2017-01-01

    Full Text Available In the framework of design studies for SPIRAL2, the simulation of the neutron flux generated by 40 MeV deuterons on a thick 12C target was performed and compared to experimental data. The calculation of the dose rate of these neutrons allowed to compare four materials being considered for radioprotection shielding: barites, gypsum, ordinary concrete and heavy concrete. The simulated map of the neutron dose rate in the production building shows a very high dose rate around the neutron source and in the environment of some of the accelerator equipment.

  18. Radon levels in dwelling shielded spaces (DSS) in Israel

    International Nuclear Information System (INIS)

    Haquin, G.; Margaliot, M.; Riemer, T.; Shamash, S.; Even, O.; Shamai, Y.

    2002-01-01

    Exposure to radon gas is known as the major contributor to the general public exposure to ionizing radiation. The typical radon concentration in Israeli houses with a direct ground contact is about 50 Bq/m 3 , attributed mainly to soil gas penetration into the house. All newly constructed buildings (since 1991) must include Dwelling Shielded Spaces (DSS) which are rooms made of massive solid concrete, equipped with air-tight steel door and window. The DSS serve as shelters against both explosive and chemical warfare. In normal practice, the DSS serves as a conventional room in the household. Standard size DSS contain a mass of around 35 tons of concrete with typical 2 26R a activity concentration of 30 Bq/kg. This mass of concrete is expected to increase the radon concentration in the DSS room due to exhalation from the building material. Published exhalation rate values from concrete in the US and Europe vary from 0.1 to 8 mBq/m 2 sec. (0.5 - 30 Bq/m 2 h). This work presents short and long-term radon measurements performed in high-rise building DSS's. Measurements of the free exhalation rate and wall exhalation rate as well as ventilation rate in DSS are also presented and the relation between these quantities is analyzed

  19. Correlation between hydrogen release and degradation of limestone concrete exposed to hot liquid sodium in inert atmosphere

    International Nuclear Information System (INIS)

    Parida, F.C.; Das, S.K.; Sharma, A.K.; Ramesh, S.S.; Somayajulu, P.A.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: Concrete is used as a structural material in a Fast Breeder Reactor (FBR) plant for the construction of its foundation, containment, radiation shield and equipment support structures. An accidental leakage of hot sodium on these civil structures can bring about thermo-chemical reactions, with concrete producing hydrogen gas and causing structural degradation. The concrete damage and hydrogen generation take place concurrently due to conduction of heat from sodium into the concrete and migration of steam / moisture in counter current direction towards sodium. In a series of experiments conducted with limestone concrete for two different types of design corresponding to composition and geometry, were exposed to liquid sodium (∼2 kg) at initial temperatures varying from 180 deg. C to 500 deg. C in an inerted test vessel (Capacity = 203 L). Immersion heater was employed to heat the sodium pool on the concrete cavity during the test period in some test runs. On-line continuous measurement of pressure, temperature, hydrogen gas and oxygen gas was carried out. Pre- and post- test nondestructive testing such as colour photography, spatial profiling of ultrasonic pulse velocity and measurement of dimensions were also conducted. Solid samples were collected from sodium debris by manual core drilling machine and from concrete block by hand held electric drilling machine. These samples were subjected to chemical analysis for the determination of free and bound water along with unburnt and burnt sodium. The hydrogen generation parameters such as average and peak release rate as well as release efficiency are derived from measured test variables. These test variables include temperature, pressure and hydrogen concentration in the argon atmosphere contained in the test vessel. The concrete degradation parameters encompass percentage reduction in ultrasonic pulse velocity, depth of physical and chemical dehydration and sodium penetration. These

  20. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl