Sample records for binds dna ends

  1. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data

    Wilson Zoe A


    Full Text Available Abstract Background ChIP-Seq, which combines chromatin immunoprecipitation (ChIP with high-throughput massively parallel sequencing, is increasingly being used for identification of protein-DNA interactions in vivo in the genome. However, to maximize the effectiveness of data analysis of such sequences requires the development of new algorithms that are able to accurately predict DNA-protein binding sites. Results Here, we present SIPeS (Site Identification from Paired-end Sequencing, a novel algorithm for precise identification of binding sites from short reads generated by paired-end solexa ChIP-Seq technology. In this paper we used ChIP-Seq data from the Arabidopsis basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS, which is expressed within the anther during pollen development, the results show that SIPeS has better resolution for binding site identification compared to two existing ChIP-Seq peak detection algorithms, Cisgenome and MACS. Conclusions When compared to Cisgenome and MACS, SIPeS shows better resolution for binding site discovery. Moreover, SIPeS is designed to calculate the mappable genome length accurately with the fragment length based on the paired-end reads. Dynamic baselines are also employed to effectively discriminate closely adjacent binding sites, for effective binding sites discovery, which is of particular value when working with high-density genomes.

  2. A critical role for the C-terminus of Nej1 protein in Lif1p association, DNA binding and non-homologous end-joining.

    Sulek, M; Yarrington, R; McGibbon, G; Boeke, J D; Junop, M


    A predominant pathway implicated in repair of DNA double-strand breaks (DSBs) is the evolutionarily conserved non-homologous end-joining (NHEJ) pathway. Among the major constituents of this pathway in Saccharomyces cerevisiae is Nej1p, for which a biochemical function has yet to be determined. In this work we demonstrate that Nej1p exhibits a DNA binding activity (KD approximately 1.8 microM) comparable to Lif1p. Although binding is enhanced with larger substrates (>300 bp), short approximately 20 bp substrates can suffice. This DNA binding activity is the first biochemical evidence supporting the idea that Nej1p plays a direct role in the repair of double-strand breaks. The C-terminus of Nej1p is required for interaction with Lif1p and is sufficient for DNA binding. Structural characterization reveals that Nej1p exists as a dimer, and that residues 1-244 are sufficient for dimer formation. Nej1p (aa 1-244) is shown to be defective in end-joining in vivo. Preliminary functional and structural studies on the Nej1p-Lif1p complex suggest that the proteins stably co-purify and the complex binds DNA with a higher affinity than each independent component. The significance of these results is discussed with reference to current literature on Nej1p and other end-joining factors (mammalian and yeast), specifically the recently identified putative mammalian homologue of Nej1p, XLF/Cernunnos. PMID:17765666

  3. DNA End Resection:Facts and Mechanisms

    Ting Liu; a Jun Huang; b


    DNA double-strand breaks (DSBs), which arise following exposure to a number of endogenous and exogenous agents, can be repaired by either the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways in eukaryotic cells. A vital step in HR repair is DNA end resection, which generates a long 30 single-stranded DNA (ssDNA) tail that can invade the homologous DNA strand. The generation of 30 ssDNA is not only essential for HR repair, but also promotes activation of the ataxia telangiectasia and Rad3-related protein (ATR). Multiple fac-tors, including the MRN/X complex, C-terminal-binding protein interacting protein (CtIP)/Sae2, exonuclease 1 (EXO1), Bloom syndrome protein (BLM)/Sgs1, DNA2 nuclease/helicase, and several chromatin remodelers, cooperate to complete the process of end resection. Here we review the basic machinery involved in DNA end resection in eukaryotic cells.

  4. A Region Near the C-Terminal End of Escherichia coli DNA Helicase II Is Required for Single-Stranded DNA Binding

    MECHANIC, LEAH E.; Latta, Marcy E.; Matson, Steven W.


    The role of the C terminus of Escherichia coli DNA helicase II (UvrD), a region outside the conserved helicase motifs, was investigated by using three mutants: UvrDΔ107C (deletion of the last 107 C-terminal amino acids), UvrDΔ102C, and UvrDΔ40C. This region, which lacks sequence similarity with other helicases, may function to tailor UvrD for its specific in vivo roles. Genetic complementation assays demonstrated that mutant proteins UvrDΔ107C and UvrDΔ102C failed to substitute for the wild-t...

  5. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom


    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers. PMID:20518483

  6. Recognition and repair of chemically heterogeneous structures at DNA ends.

    Andres, Sara N; Schellenberg, Matthew J; Wallace, Bret D; Tumbale, Percy; Williams, R Scott


    Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini. PMID:25111769

  7. Mechanisms and regulation of DNA end resection

    Longhese, Maria Pia; Bonetti, Diego; Manfrini, Nicola; Clerici, Michela


    DNA double-strand breaks (DSBs) are highly hazardous for genome integrity, because failure to repair these lesions can lead to genomic instability. DSBs can arise accidentally at unpredictable locations into the genome, but they are also normal intermediates in meiotic recombination. Moreover, the natural ends of linear chromosomes resemble DSBs. Although intrachromosomal DNA breaks are potent stimulators of the DNA damage response, the natural ends of linear chromosomes are packaged into pro...

  8. Glucocorticoid receptor transformation and DNA binding

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, [3H]dexamethasone-bound receptors at 00C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing [32P]orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA

  9. Synapsis of DNA ends by DNA-dependent protein kinase

    DeFazio, Lisa G.; Stansel, Rachel M.; Griffith, Jack D.; Chu, Gilbert


    The catalytic subunit of DNA-dependent protein kinase (DNA-PKCS) is required for a non-homologous end-joining pathway that repairs DNA double-strand breaks produced by ionizing radiation or V(D)J recombination; however, its role in this pathway has remained obscure. Using a neutravidin pull-down assay, we found that DNA-PKCS mediates formation of a synaptic complex containing two DNA molecules. Furthermore, kinase activity was cooperative with respect to DNA concentration, suggesting that act...

  10. DNA-binding residues and binding mode prediction with binding-mechanism concerned models

    Oyang Yen-Jen; Liu Yu-Cheng; Huang Chun-Chin; Huang Yu-Feng; Huang Chien-Kang


    Abstract Background Protein-DNA interactions are essential for fundamental biological activities including DNA transcription, replication, packaging, repair and rearrangement. Proteins interacting with DNA can be classified into two categories of binding mechanisms - sequence-specific and non-specific binding. Protein-DNA specific binding provides a mechanism to recognize correct nucleotide base pairs for sequence-specific identification. Protein-DNA non-specific binding shows sequence indepe...

  11. A mechanism for DNA-PK activation requiring unique contributions from each strand of a DNA terminus and implications for microhomology-mediated nonhomologous DNA end joining

    Pawelczak, Katherine S; Turchi, John J.


    DNA-dependent protein kinase (DNA-PK) is an essential component of the nonhomologous end joining pathway (NHEJ), responsible for the repair of DNA double-strand breaks. Ku binds a DSB and recruits the catalytic subunit, DNA-PKcs, where it is activated once the kinase is bound to the DSB. The precise mechanism by which DNA activates DNA-PK remains unknown. We have investigated the effect of DNA structure on DNA-PK activation and results demonstrate that in Ku-dependent DNA-PKcs reactions, DNA-...

  12. Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein.

    Thiesen, H J; Bach, C.


    We developed a rapid method designated Target Detection Assay (TDA) to determine DNA binding sites for putative DNA binding proteins. A purified, functionally active DNA binding protein and a pool of random double-stranded oligonucleotides harbouring PCR primer sites at each end are included the TDA cycle which consists of four separate steps: a DNA protein incubation step, a protein DNA complex separation step, a DNA elution step and a polymerase chain reaction (PCR) DNA amplification step. ...

  13. Radiation damage to DNA-binding proteins

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  14. Biophysical characterization of DNA binding from single molecule force measurements

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.


    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as hig...

  15. [Binding of ions of trivalent iron with DNA].

    Sorokin, V A; Gladchenko, G O; Valeev, V A


    The DNA helix-coil transition in nonbuffer solutions of Fe(NO3)3 was studied. Calculation of the ionic equilibrium indicated that in these solutions iron exists in the form of mono-, bi- or trivalent hydroxide, the formation of which decreases pH. A component of the DNA thermal stability variation associated with DNA binding to iron ions was calculated. An increase in the iron contents produces an increase in the melting range which was determined by a rise in the melting end temperature when binding the ions with phosphates and a drop in the melting beginning temperature when binding to DNA bases. A main contribution to the former effect is made by [Fe2(OH)3]3+ ions and to the latter effect by [FeOH]2+ ions. The constants of ion binding are higher for bases than for phosphates. Differential UV spectra of native and denatured DNA due to iron ions were measured. Calculations of conformation and coordination components of these spectra show that G-C pairs are one of the possible sites of iron ion binding with DNA. PMID:6621527

  16. Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining*

    Tsai, Chun J.; Chu, Gilbert


    Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL), and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3′ overhangs, but the mechanism has remained obscure. Here, we showed XL required Ku to bind DNA, whereas XLF required both Ku and XL to bind DNA. We detected cooperative assembly of one or two Ku molecules and up to five molecules each of XL and XLF int...

  17. Elasticity of DNA and the effect of Dendrimer Binding

    Mogurampelly, Santosh; Netz, Roland R; Maiti, Prabal K


    Negatively charged DNA can be compacted by positively charged dendrimers and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. We report various elastic properties of short double stranded DNA (dsDNA) and the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations. In equilibrium at room temperature, the contour length distribution P(L) and end-to-end distance distribution P(R) are nearly Gaussian, the former gives an estimate of the stretch modulus {\\gamma}_1 of dsDNA in quantitative agreement with the literature value. The bend angle distribution P({\\theta}) of the dsDNA also has a Gaussian form and allows to extract a persistence length, L_p of 43 nm. When the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant but the effective bending rigidity estimated from the end-to-end distance distribution decreases dramatically due to backbone charge neutralization...

  18. SUMO-1 possesses DNA binding activity

    Wieruszeski Jean-Michel


    Full Text Available Abstract Background Conjugation of small ubiquitin-related modifiers (SUMOs is a frequent post-translational modification of proteins. SUMOs can also temporally associate with protein-targets via SUMO binding motifs (SBMs. Protein sumoylation has been identified as an important regulatory mechanism especially in the regulation of transcription and the maintenance of genome stability. The precise molecular mechanisms by which SUMO conjugation and association act are, however, not understood. Findings Using NMR spectroscopy and protein-DNA cross-linking experiments, we demonstrate here that SUMO-1 can specifically interact with dsDNA in a sequence-independent fashion. We also show that SUMO-1 binding to DNA can compete with other protein-DNA interactions at the example of the regulatory domain of Thymine-DNA Glycosylase and, based on these competition studies, estimate the DNA binding constant of SUMO1 in the range 1 mM. Conclusion This finding provides an important insight into how SUMO-1 might exert its activity. SUMO-1 might play a general role in destabilizing DNA bound protein complexes thereby operating in a bottle-opener way of fashion, explaining its pivotal role in regulating the activity of many central transcription and DNA repair complexes.

  19. DNA binding and aggregation by carbon nanoparticles

    Significant environmental and health risks due to the increasing applications of engineered nanoparticles in medical and industrial activities have been concerned by many communities. The interactions between nanomaterials and genomes have been poorly studied so far. This study examined interactions of DNA with carbon nanoparticles (CNP) using atomic force microscopy (AFM). We experimentally assessed how CNP affect DNA molecule and bacterial growth of Escherichia coli. We found that CNP were bound to the DNA molecules during the DNA replication in vivo. The results revealed that the interaction of DNA with CNP resulted in DNA molecule binding and aggregation both in vivo and in vitro in a dose-dependent manner, and consequently inhabiting the E. coli growth. While this was a preliminary study, our results showed that this nanoparticle may have a significant impact on genomic activities.

  20. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Kukshal, Vandna; Kim, In-Kwon; Gregory L. Hura; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom


    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with ...

  1. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Nadia Nikolaus; Beate Strehlitz


    Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminog...

  2. DNA Triplexes That Bind Several Cofactor Molecules.

    Vollmer, Sven; Richert, Clemens


    Cofactors are critical for energy-consuming processes in the cell. Harnessing such processes for practical applications requires control over the concentration of cofactors. We have recently shown that DNA triplex motifs with a designed binding site can be used to capture and release nucleotides with low micromolar dissociation constants. In order to increase the storage capacity of such triplex motifs, we have explored the limits of ligand binding through designed cavities in the oligopurine tract. Oligonucleotides with up to six non-nucleotide bridges between purines were synthesized and their ability to bind ATP, cAMP or FAD was measured. Triplex motifs with several single-nucleotide binding sites were found to bind purines more tightly than triplexes with one large binding site. The optimized triplex consists of 59 residues and four C3-bridges. It can bind up to four equivalents of ligand with apparent Kd values of 52 µM for ATP, 9 µM for FAD, and 2 µM for cAMP. An immobilized version fuels bioluminescence via release of ATP at body temperature. These results show that motifs for high-density capture, storage and release of energy-rich biomolecules can be constructed from synthetic DNA. PMID:26561335

  3. Identification of procollagen promoter DNA-binding proteins: effects of dexamethasone

    Glucocorticoids selectively decrease procollagen synthesis by decreasing procollagen mRNA transcription. Dexamethasone coordinately decreased total cellular type I and type III procollagen mRNAs in mouse embryonic skin fibroblasts. Since sequence specific DNA-binding proteins are known to modulate eukaryotic gene expression the authors identified in mouse fibroblasts nuclear proteins which bind to types I and III procollagen promoter DNAs. Nuclear proteins were electrophoresed, blotted onto nitrocellulose and probed with 32P-end-labeled type I and type III procollagen promoter DNAs in the presence of equimolar amounts of 32P-end-labeled vector DNA. Differences in total DNA binding were noted by the densitometric scans of the nuclear proteins. Dexamethasone treatment enhanced total DNA binding. Increasing the NaCl concentration decreased the number of promoter DNA-binding proteins without altering the relative specificity for the promoter DNAs. Promoter DNA binding to nuclear proteins was also inhibited by increasing concentrations of E. coli DNA. The number of DNA-binding proteins was greater for type III procollagen promoter DNA. The effect of dexamethasone treatment on promoter DNA binding to nuclear proteins was determined

  4. Human placental DNA methyltransferase: DNA substrate and DNA binding specificity.

    Wang, R.Y.; Huang, L. H.; Ehrlich, M


    We have partially purified a DNA methyltransferase from human placenta using a novel substrate for a highly sensitive assay of methylation of hemimethylated DNA. This substrate was prepared by extensive nick translation of bacteriophage XP12 DNA, which normally has virtually all of its cytosine residues replaced by 5-methylcytosine (m5C). Micrococcus luteus DNA was just as good a substrate if it was first similarly nick translated with m5dCTP instead of dCTP in the polymerization mixture. At ...

  5. Quantitative radiommunoassay for DNA-binding antibodies

    A radioimmunoassay (RIA) is described for the measurement of serum immunoglobulins capable of binding to double-standard or single-standard DNA. DNA attached to Sephadex G-50 by ultraviolet radiation was used as a solid- phase immunoabsorbent for DNA-binding proteins from serum. Goat anti-human (GAH) IgG (125I-labeled) were used to detect the human immunoglobulins bound onto the washed DNA-Sephadex. The quantities of immunoglobulins bound were determined by comparison with a standard curve constructed by dilution of a plasma from an systemic lupus erythematosus (SLE) patient containing known amounts of bound, DNA-specific IgM and IgG. Another RIA was employed for measuring levels of IgG and IgM. In combination with measurements of the total serum IgM and IgG, the RIA allowed for the determination of the fraction of the total serum IgM or IgG that was specific for double- or single-standard DNA. For a pool of normal human sera the quantities were as follows: 0.04% of the total IgM and 0.001% of the total IgG bound double-standard DNA; 0.22% of the total IgM and 0.05% of the total IgG bound single-stranded DNA. This capability is important because information regarding the quantitative measurement of antibodies to DNA and their class determination may be of significance in monitoring the status of subjects with SLE

  6. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  7. Coincident In Vitro Analysis of DNA-PK-Dependent and -Independent Nonhomologous End Joining

    Cynthia L. Hendrickson


    Full Text Available In mammalian cells, DNA double-strand breaks (DSBs are primarily repaired by nonhomologous end joining (NHEJ. The current model suggests that the Ku 70/80 heterodimer binds to DSB ends and recruits DNA-PKcs to form the active DNA-dependent protein kinase, DNA-PK. Subsequently, XRCC4, DNA ligase IV, XLF and most likely, other unidentified components participate in the final DSB ligation step. Therefore, DNA-PK plays a key role in NHEJ due to its structural and regulatory functions that mediate DSB end joining. However, recent studies show that additional DNA-PK-independent NHEJ pathways also exist. Unfortunately, the presence of DNA-PKcs appears to inhibit DNA-PK-independent NHEJ, and in vitro analysis of DNA-PK-independent NHEJ in the presence of the DNA-PKcs protein remains problematic. We have developed an in vitro assay that is preferentially active for DNA-PK-independent DSB repair based solely on its reaction conditions, facilitating coincident differential biochemical analysis of the two pathways. The results indicate the biochemically distinct nature of the end-joining mechanisms represented by the DNA-PK-dependent and -independent NHEJ assays as well as functional differences between the two pathways.

  8. Allosteric, chiral-selective drug binding to DNA

    Qu, Xiaogang; Trent, John O.; Fokt, Izabela; Priebe, Waldemar; Chaires, Jonathan B.


    The binding interactions of (−)-daunorubicin (WP900), a newly synthesized enantiomer of the anticancer drug (+)-daunorubicin, with right- and left-handed DNA, have been studied quantitatively by equilibrium dialysis, fluorescence spectroscopy, and circular dichroism. (+)-Daunorubicin binds selectively to right-handed DNA, whereas the enantiomeric WP900 ligand binds selectively to left-handed DNA. Further, binding of the enantiomeric pair to DNA is clearly chirally ...

  9. The role of DNA dependent protein kinase in synapsis of DNA ends


    DNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PKCS) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks the action of exonucleases and ligases. The DNA termini become accessible after autophosphorylation of DNA-PKCS, which we demonstrate to require synapsis of DNA ends. Interestingly, the presence of DNA-PK preve...

  10. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Nadia Nikolaus


    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  11. The role of DNA dependent protein kinase in synapsis of DNA ends

    Weterings, Eric; Verkaik, Nicole; Brüggenwirth, Hennie; Gent, Dik; Hoeijmakers, Jan


    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks the action of exonucleases and ligases. The DNA termini become accessible after autophosphorylation of DNA-PK(CS), which we demonstrate to require synapsis of DNA ends. Interestingly, the presence...

  12. The Role of Microtubule End Binding (EB) Proteins in Ciliogenesis

    Schrøder, Jacob Morville

    biflagellate green alga Chlamydomonas (Pedersen et al., 2003), and is required for ciliogenesis in mouse fibroblasts (Schroder et al., 2007). However, the exact mechanism(s) involved and roles of the two additional mammalian members of the end binding (EB) protein family, EB2 and EB3, in ciliogenesis are...

  13. DNA binding studies of Vinca alkaloids: experimental and computational evidence.

    Pandya, Prateek; Gupta, Surendra P; Pandav, Kumud; Barthwal, Ritu; Jayaram, B; Kumar, Surat


    Fluorescence studies on the indole alkaloids vinblastine sulfate, vincristine sulfate, vincamine and catharanthine have demonstrated the DNA binding ability of these molecules. The binding mode of these molecules in the minor groove of DNA is non-specific. A new parameter of the purine-pyrimidine base sequence specificty was observed in order to define the non-specific DNA binding of ligands. Catharanthine had shown 'same' pattern of 'Pu-Py' specificity while evaluating its DNA binding profile. The proton resonances of a DNA decamer duplex were assigned. The models of the drug:DNA complexes were analyzed for DNA binding features. The effect of temperature on the DNA binding was also evaluated. PMID:22545401

  14. Roles of RNA-Binding Proteins in DNA Damage Response.

    Kai, Mihoko


    Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, "sensor" proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)'s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as "liquid-demixing"). Among the

  15. A thermodynamic signature for drug-DNA binding mode.

    Chaires, Jonathan B


    A number of small molecules bind directly and selectively to DNA, acting as chemotherapeutic agents by inhibiting replication, transcription or topoisomerase activity. Two common binding modes for these small molecules are intercalation or groove-binding. Intercalation results from insertion of a planar aromatic substituent between DNA base pairs, with concomitant unwinding and lengthening of the DNA helix. Groove binding, in contrast, does not perturb the duplex structure to any great extent. Groove-binders are typically crescent-shaped, and fit snugly into the minor groove with little distortion of the DNA structure. Recent calorimetric studies have determined the enthalpic and entropic contributions to the DNA binding of representative DNA binding compounds. Analysis of such thermodynamic data culled from the literature reveals distinctive thermodynamic signatures for groove-binding and intercalating compounds. Plots of the binding enthalpy (DeltaH) against binding entropy (-TDeltaS) for 26 drug-DNA interactions reveal that groove-binding interactions are clustered in a region of the graph with favorable entropy contributions to the free energy, while intercalators are clustered in a region with unfavorable entropy but favorable enthalpy contributions. Groove-binding is predominantly entropically driven, while intercalation in enthalpically driven. The molecular basis of the contrasting thermodynamic signatures for the two binding modes is by no means clear, but the pattern should be of use in categorizing new DNA binding agents. PMID:16730635

  16. Binding dynamics of single-stranded DNA binding proteins to fluctuating bubbles in breathing DNA

    We investigate the dynamics of a single local denaturation zone in a DNA molecule, a so-called DNA bubble, in the presence of single-stranded DNA binding proteins (SSBs). In particular, we develop a dynamical description of the process in terms of a two-dimensional master equation for the time evolution of the probability distribution of having a bubble of size m with n bound SSBs, for the case when m and n are the slowest variables in the system. We derive explicit expressions for the equilibrium statistical weights for a given m and n, which depend on the statistical weight u associated with breaking a base-pair interaction, the loop closure exponent c, the cooperativity parameter σ0, the SSB size λ, and binding strength κ. These statistical weights determine, through the detailed balance condition, the transfer coefficient in the master equation. For the case of slow and fast binding dynamics the problem can be reduced to one-dimensional master equations. In the latter case, we perform explicitly the adiabatic elimination of the fast variable n. Furthermore, we find that for the case that the loop closure is neglected and the binding dynamics is vanishing (but with arbitrary σ0) the eigenvalues and the eigenvectors of the master equation can be obtained analytically, using an orthogonal polynomial approach. We solve the general case numerically (i.e., including SSB binding and the loop closure) as a function of statistical weight u, binding protein size λ, and binding strength κ, and compare to the fast and slow binding limits. In particular, we find that the presence of SSBs in general increases the relaxation time, compared to the case when no binding proteins are present. By tuning the parameters, we can drive the system from regular bubble fluctuation in the absence of SSBs to full denaturation, reflecting experimental and in vivo situations

  17. Studies of the silencing of Baculovirus DNA binding protein

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.


    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovir

  18. DNA and RNA Quadruplex-Binding Proteins

    Václav Brázda


    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  19. TDP1 promotes assembly of non-homologous end joining protein complexes on DNA.

    Heo, Jinho; Li, Jing; Summerlin, Matthew; Hays, Annette; Katyal, Sachin; McKinnon, Peter J; Nitiss, Karin C; Nitiss, John L; Hanakahi, Leslyn A


    The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3'-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ. PMID:25841101

  20. AFM studies of nonspecific binding of enzyme on DNA

    张益; 谢恒月; 等


    Atomic force microscope(AFM) is used to study restriction endonuclease digestion of plasmid DNA,pWRr plasmid DNA is digested by Hind Ⅲ,and the specific and the nonspecific binding of the restriction endonuclease are imaged,and the biological function of the enzyme binding to nonspecific sites is discussed.In addition,it is found that nonspecific binding of Hind ǚ could not induce the DNA characteristic bending angle.

  1. D1 protein of Drosophila melanogaster. Purification and AT-DNA binding properties

    D1 protein of Drosophila melanogaster is a sequence-specific DNA-binding protein which recognizes AT-rich DNA sequences. AT-rich DNA sequences in eukaryotic organisms are distributed in two characteristic ways: flanking transcriptional units and in constitutive heterochromatin. D1 could play a role in regulation of gene expression and in geographical localization of DNA sequences within the nucleus. D1 has been partially purified by ion exchange chromatography. DNA-binding activity was investigated by nucleoprotein gel electrophoresis, using end-labeled restriction fragments varying in AT sequence content. D1 binds most tightly to the satellite sequence -AATAT-, with intermediate strength to the complex satellite (359-base pair repeat) and another AT-rich (68% AT) mixed sequence DNA, and least to the simple satellite sequence -AAGAG-

  2. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica.

    Hickman, Alison B; Ewis, Hosam E; Li, Xianghong; Knapp, Joshua A; Laver, Thomas; Doss, Anna-Louise; Tolun, Gökhan; Steven, Alasdair C; Grishaev, Alexander; Bax, Ad; Atkinson, Peter W; Craig, Nancy L; Dyda, Fred


    Hermes is a member of the hAT transposon superfamily that has active representatives, including McClintock's archetypal Ac mobile genetic element, in many eukaryotic species. The crystal structure of the Hermes transposase-DNA complex reveals that Hermes forms an octameric ring organized as a tetramer of dimers. Although isolated dimers are active in vitro for all the chemical steps of transposition, only octamers are active in vivo. The octamer can provide not only multiple specific DNA-binding domains to recognize repeated subterminal sequences within the transposon ends, which are important for activity, but also multiple nonspecific DNA binding surfaces for target capture. The unusual assembly explains the basis of bipartite DNA recognition at hAT transposon ends, provides a rationale for transposon end asymmetry, and suggests how the avidity provided by multiple sites of interaction could allow a transposase to locate its transposon ends amidst a sea of chromosomal DNA. PMID:25036632

  3. Structural Basis for Transposon End Recognition by Hermes, an Octameric hAT DNA Transposase from Musca domestica

    Hickman, Alison B.; Ewis, Hosam E.; Li, Xianghong; Knapp, Joshua A.; Laver, Thomas; Doss, Anna-Louise; Tolun, Gökhan; Steven, Alasdair C.; Grishaev, Alexander; Bax, Ad; Atkinson, Peter W.; Craig, Nancy L.; Dyda, Fred


    SUMMARY Hermes is a member of the hAT transposon superfamily which has active representatives, including McClintock's archetypal Ac mobile genetic element, in many eukaryotic species. The crystal structure of the Hermes transposase-DNA complex reveals that Hermes forms an octameric ring organized as a tetramer of dimers. While isolated dimers are active in vitro for all the chemical steps of transposition, only octamers are active in vivo. The octamer can provide not only multiple specific DNA-binding domains to recognize repeated subterminal sequences within the transposon ends, which are important for activity, but also multiple non-specific DNA binding surfaces for target capture. The unusual assembly explains the basis of bipartite DNA recognition at hAT transposon ends, provides a rationale for transposon end asymmetry, and suggests how the avidity provided by multiple sites of interaction could allow a transposase to locate its transposon ends amidst a sea of chromosomal DNA. PMID:25036632

  4. Interplay between Ku, Artemis, and the DNA-dependent protein kinase catalytic subunit at DNA ends.

    Drouet, Jérôme; Frit, Philippe; Delteil, Christine; de Villartay, Jean-Pierre; Salles, Bernard; Calsou, Patrick


    Repair of DNA double strand breaks (DSB) by the nonhomologous end-joining pathway in mammals requires at least seven proteins involved in a simplified two-step process: (i) recognition and synapsis of the DNA ends dependent on the DNA-dependent protein kinase (DNA-PK) formed by the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs in association with Artemis; (ii) ligation dependent on the DNA ligase IV.XRCC4.Cernunnos-XLF complex. The Artemis protein exhibits exonuclease and endonuclease activities that are believed to be involved in the processing of a subclass of DSB. Here, we have analyzed the interactions of Artemis and nonhomologous end-joining pathway proteins both in a context of human nuclear cell extracts and in cells. DSB-inducing agents specifically elicit the mobilization of Artemis to damaged chromatin together with DNA-PK and XRCC4/ligase IV proteins. DNA-PKcs is necessary for the loading of Artemis on damaged DNA and is the main kinase that phosphorylates Artemis in cells damaged with highly efficient DSB producers. Under kinase-preventive conditions, both in vitro and in cells, Ku-mediated assembly of DNA-PK on DNA ends is responsible for a dissociation of the DNA-PKcs. Artemis complex. Conversely, DNA-PKcs kinase activity prevents Artemis dissociation from the DNA-PK.DNA complex. Altogether, our data allow us to propose a model in which a DNA-PKcs-mediated phosphorylation is necessary both to activate Artemis endonuclease activity and to maintain its association with the DNA end site. This tight functional coupling between the activation of both DNA-PKcs and Artemis may avoid improper processing of DNA. PMID:16857680

  5. Blinking statistics of a molecular beacon triggered by end-denaturation of DNA

    We use a master equation approach based on the Poland-Scheraga free energy for DNA denaturation to investigate the (un)zipping dynamics of a denaturation wedge in a stretch of DNA that is clamped at one end. In particular, we quantify the blinking dynamics of a fluorophore-quencher pair mounted within the denaturation wedge. We also study the behavioural changes in the presence of proteins that selectively bind to single-stranded DNA. We show that such a set-up could be well suited as an easy-to-implement nanodevice for sensing environmental conditions in small volumes

  6. Blinking statistics of a molecular beacon triggered by end-denaturation of DNA

    Ambjoernsson, Tobias; Metzler, Ralf


    We use a master equation approach based on the Poland-Scheraga free energy for DNA denaturation to investigate the (un)zipping dynamics of a denaturation wedge in a stretch of DNA, that is clamped at one end. In particular, we quantify the blinking dynamics of a fluorophore-quencher pair mounted within the denaturation wedge. We also study the behavioural changes in the presence of proteins, that selectively bind to single-stranded DNA. We show that such a setup could be well-suited as an eas...

  7. Flavonoid-DNA binding studies and thermodynamic parameters

    Janjua, Naveed Kausar; Shaheen, Amber; Yaqub, Azra; Perveen, Fouzia; Sabahat, Sana; Mumtaz, Misbah; Jacob, Claus; Ba, Lalla Aicha; Mohammed, Hamdoon A.


    Interactional studies of new flavonoid derivatives (Fl) with chicken blood ds.DNA were investigated spectrophotometrically in DMSO-H 2O (9:1 v/v) at various temperatures. Spectral parameters suggest considerable binding between the flavonoid derivatives studied and ds.DNA. The binding constant values lie in the enhanced-binding range. Thermodynamic parameters obtained from UV studies also point to strong spontaneous binding of Fl with ds.DNA. Viscometric studies complimented the UV results where a small linear increase in relative viscosity of the DNA solution was observed with added optimal flavonoid concentration. An overall mixed mode of interaction (intercalative plus groove binding) is proposed between DNA and flavonoids. Conclusively, investigated flavonoid derivatives are found to be strong DNA binders and seem to be promising drug candidates like their natural analogues.

  8. Structural biology of DNA repair: spatial organisation of the multicomponent complexes of nonhomologous end joining.

    Ochi, Takashi; Sibanda, Bancinyane Lynn; Wu, Qian; Chirgadze, Dimitri Y; Bolanos-Garcia, Victor M; Blundell, Tom L


    Nonhomologous end joining (NHEJ) plays a major role in double-strand break DNA repair, which involves a series of steps mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV (LigIV) is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV. We describe how a combination of methods-X-ray crystallography, electron microscopy and small angle X-ray scattering-can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-PKcs/Ku70/Ku80/DNA complex (DNA-PK) and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of structural studies in developing new therapies in oncology and elsewhere. PMID:20862368

  9. Interactions of photoactive DNAs with terminal deoxynucleotidyl transferase: Identification of peptides in the DNA binding domain

    Terminal deoxynucleotidyl transferase (terminal transferase) was specifically modified in the DNA binding site by a photoactive DNA substrate (hetero-40-mer duplex containing eight 5-azido-dUMP residues at one 3' end). Under optimal photolabeling conditions, 27-40% of the DNA was covalently cross-linked to terminal transferase. The specificity of the DNA and protein interaction was demonstrated by protection of photolabeling at the DNA binding domain with natural DNA substrates. In order to recover high yields of modified peptides from limited amounts of starting material, protein modified with 32P-labeled photoactive DNA and digested with trypsin was extracted 4 times with phenol followed by gel filtration chromatography. All peptides not cross-linked to DNA were extracted into the phenol phase while the photolyzed DNA and the covalently cross-linked peptides remained in the aqueous phase. The 32P-containing peptide-DNA fraction was subjected to amino acid sequence analysis. Two sequences, Asp221-Lys231 (peptide B8) and Cys234-Lys249 (peptide B10), present in similar yield, were identified. Structure predictions placed the two peptides in an α-helical array of 39 angstrom which would accommodate a DNA helix span of 11 nucleotides. These peptides share sequence similarity with a region in DNA polymerase β that has been implicated in the binding of DNA template

  10. Mechanisms of DNA Binding and Regulation of Bacillus anthracis DNA Primase

    Biswas, Subhasis B; Wydra, Eric; Biswas, Esther E.


    DNA primases are pivotal enzymes in chromosomal DNA replication in all organisms. In this article, we report unique mechanistic characteristics of recombinant DNA primase from Bacillus anthracis (B. anthracis). The mechanism of action of B. anthracis DNA primase (DnaGBA) may be described in several distinct steps as follows. Its mechanism of action is initiated when it binds to single-stranded DNA (ssDNA) in the form of a trimer. Although DnaGBA binds to different DNA sequences with moderate ...

  11. Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding.

    Tomlinson, Christopher G; Moye, Aaron L; Holien, Jessica K; Parker, Michael W; Cohen, Scott B; Bryan, Tracy M


    The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from syndromes such as dyskeratosis congenita, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic and thermodynamic analyses of wild-type telomerase and two disease-associated mutations in the reverse transcriptase domain. Differences in dissociation rates between primers with different 3' ends were independent of DNA affinities, revealing that initial binding of telomerase to telomeric DNA occurs through a previously undescribed two-step mechanism involving enzyme conformational changes. Both mutations affected DNA binding, but through different mechanisms: P704S specifically affected protein conformational changes during DNA binding, whereas R865H showed defects in binding to the 3' region of the DNA. To gain further insight at the structural level, we generated the first homology model of the human telomerase reverse transcriptase domain; the positions of P704S and R865H corroborate their observed mechanistic defects, providing validation for the structural model. Our data reveal the importance of protein interactions with the 3' end of telomeric DNA and the role of protein conformational change in telomerase DNA binding, and highlight naturally occurring disease mutations as a rich source of mechanistic insight. PMID:25365545

  12. Displacement of DNA-PKcs from DNA ends by the Werner syndrome protein

    Li, Baomin; Comai, Lucio


    The DNA-dependent protein kinase (DNA-PK) complex, which is composed of a DNA-dependent kinase subunit (DNA-PKcs) and the Ku70/80 heterodimer, is involved in DNA double-strand break repair by non-homologous end joining (NHEJ). Ku70/80 interacts with the Werner syndrome protein (WRN) and stimulates WRN exonuclease activity. To investigate a possible function of WRN in NHEJ, we have examined the relationship between DNA-PKcs, Ku and WRN. First, we showed that WRN forms a complex with DNA-PKcs a...

  13. High-Fidelity DNA Sensing by Protein Binding Fluctuations

    Tlusty, Tsvi; Libchaber, Albert; 10.1103/PhysRevLett.93.258103


    One of the major functions of RecA protein in the cell is to bind single-stranded DNA exposed upon damage, thereby triggering the SOS repair response.We present fluorescence anisotropy measurements at the binding onset, showing enhanced DNA length discrimination induced by adenosine triphosphate consumption. Our model explains the observed DNA length sensing as an outcome of out-of equilibrium binding fluctuations, reminiscent of microtubule dynamic instability. The cascade architecture of the binding fluctuations is a generalization of the kinetic proofreading mechanism. Enhancement of precision by an irreversible multistage pathway is a possible design principle in the noisy biological environment.

  14. Binding Parameters of Alkaloids Berberine and Sanguinarine with DNA

    Gumenyuk, V G; Kutovyy, S Yu; Yashchuk, V M; Zaika, L A


    We study the interaction of berberine and sanguinarine (plant alkaloids) with DNA in aqueous solutions, by using optical spectroscopy methods (absorption and fluorescence). The dependencies of alkaloid spectral characteristics on the concentration ratio N/c between the DNA base pairs and alkaloid molecules in the solutions are considered, and the manifestations of the alkaloid-DNA binding are revealed. The character of binding is found to depend on N/c. The parameters of the binding of berberine and sanguinarine with DNA are determined, by using the modified Scatchard and McGhee-von Hippel equations

  15. Nonhomologous DNA End Joining in Cell-Free Extracts

    Sheetal Sharma


    Full Text Available Among various DNA damages, double-strand breaks (DSBs are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.

  16. WRN Exonuclease Structure, Molecular Mechanism, and DNA EndProcessing Role

    Perry, J. Jefferson P.; Yannone, Steven M.; Holden, Lauren G.; Hitomi, Chiharu; Asaithamby, Aroumougame; Han, Seungil; Cooper, PriscillaK.; Chen, David J.; Tainer, John A.


    WRN is unique among the five human RecQ DNA helicases by having a functional exonuclease domain (WRN-exo) and being defective in the premature aging and cancer-related disorder Werner syndrome. Here, we characterize WRN-exo crystal structures, biochemical activity and participation in DNA end-joining. Metal ion complex structures, active site mutations and activity assays reveal a two-metal-ion mediated nuclease mechanism. The DNA end-binding Ku70/80 complex specifically stimulates WRN-exo activity, and structure-based mutational inactivation of WRN-exo alters DNA end-joining in human cells. We furthermore establish structural and biochemical similarities of WRN-exo to DnaQ family replicative proofreading exonucleases, with WRN-specific adaptations consistent with dsDNA specificity and functionally important conformational changes. These results indicate WRN-exo is a human DnaQ family member and support analogous proof-reading activities that are stimulated by Ku70/80 with implications for WRN functions in age related pathologies and maintenance of genomic integrity.

  17. High-throughput analysis of protein-DNA binding affinity.

    Franco-Zorrilla, José M; Solano, Roberto


    Sequence-specific protein-DNA interactions mediate most regulatory processes underlying gene expression, such as transcriptional regulation by transcription factors (TFs) or chromatin organization. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies that are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. The use of protein-binding microarrays (PBMs) offers a high-throughput alternative for the identification of protein-DNA specificities. PBM consists in an array of pseudorandomized DNA sequences that are optimized to include all the possible 10- or 11-mer DNA sequences, allowing the determination of binding specificities of most eukaryotic TFs. PBMs that can be synthesized by several manufacturing companies as single-stranded DNA are converted into double-stranded in a simple primer extension reaction. The protein of interest fused to an epitope tag is then incubated onto the PBM, and specific DNA-protein complexes are revealed in a series of immunological reactions coupled to a fluorophore. After scanning and quantifying PBMs, specific DNA motifs recognized by the protein are identified with ready-to-use scripts, generating comprehensive but accessible information about the DNA-binding specificity of the protein. This chapter describes detailed procedures for preparation of double-stranded PBMs, incubation with recombinant protein, and detection of protein-DNA complexes. Finally, we outline some cues for evaluating the biological role of DNA motifs obtained in vitro. PMID:24057393

  18. Structural Basis for Telomerase Catalytic Subunit TERT Binding to RNA Template and Telomeric DNA

    Mitchell, M.; Gillis, A; Futahashi, M; Fujiwara, H; Skordalakes, E


    Telomerase is a specialized DNA polymerase that extends the 3{prime} ends of eukaryotic linear chromosomes, a process required for genomic stability and cell viability. Here we present the crystal structure of the active Tribolium castaneum telomerase catalytic subunit, TERT, bound to an RNA-DNA hairpin designed to resemble the putative RNA-templating region and telomeric DNA. The RNA-DNA hybrid adopts a helical structure, docked in the interior cavity of the TERT ring. Contacts between the RNA template and motifs 2 and B{prime} position the solvent-accessible RNA bases close to the enzyme active site for nucleotide binding and selectivity. Nucleic acid binding induces rigid TERT conformational changes to form a tight catalytic complex. Overall, TERT-RNA template and TERT-telomeric DNA associations are remarkably similar to those observed for retroviral reverse transcriptases, suggesting common mechanistic aspects of DNA replication between the two families of enzymes.

  19. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination.

    Frank-Vaillant, Marie; Marcand, Stéphane


    The stability of DNA ends generated by the HO endonuclease in yeast is surprisingly high with a half-life of more than an hour. This transient stability is unaffected by mutations that abolish nonhomologous end joining (NHEJ). The unprocessed ends interact with Yku70p and Yku80p, two proteins required for NHEJ, but not significantly with Rad52p, a protein involved in homologous recombination (HR). Repair of a double-strand break by NHEJ is unaffected by the possibility of HR, although the use of HR is increased in NHEJ-defective cells. Partial in vitro 5' strand processing suppresses NHEJ but not HR. These results show that NHEJ precedes HR temporally, and that the availability of substrate dictates the particular pathway used. We propose that transient stability of DNA ends is a foundation for the permanent stability of telomeres. PMID:12453425

  20. Quantitative modeling of transcription factor binding specificities using DNA shape.

    Zhou, Tianyin; Shen, Ning; Yang, Lin; Abe, Namiko; Horton, John; Mann, Richard S; Bussemaker, Harmen J; Gordân, Raluca; Rohs, Remo


    DNA binding specificities of transcription factors (TFs) are a key component of gene regulatory processes. Underlying mechanisms that explain the highly specific binding of TFs to their genomic target sites are poorly understood. A better understanding of TF-DNA binding requires the ability to quantitatively model TF binding to accessible DNA as its basic step, before additional in vivo components can be considered. Traditionally, these models were built based on nucleotide sequence. Here, we integrated 3D DNA shape information derived with a high-throughput approach into the modeling of TF binding specificities. Using support vector regression, we trained quantitative models of TF binding specificity based on protein binding microarray (PBM) data for 68 mammalian TFs. The evaluation of our models included cross-validation on specific PBM array designs, testing across different PBM array designs, and using PBM-trained models to predict relative binding affinities derived from in vitro selection combined with deep sequencing (SELEX-seq). Our results showed that shape-augmented models compared favorably to sequence-based models. Although both k-mer and DNA shape features can encode interdependencies between nucleotide positions of the binding site, using DNA shape features reduced the dimensionality of the feature space. In addition, analyzing the feature weights of DNA shape-augmented models uncovered TF family-specific structural readout mechanisms that were not revealed by the DNA sequence. As such, this work combines knowledge from structural biology and genomics, and suggests a new path toward understanding TF binding and genome function. PMID:25775564

  1. Tight-binding parameters for charge transfer along DNA

    Hawke, L. G.D.; Kalosakas, G.; Simserides, C.


    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The $\\pi$ molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and gua...

  2. Tight-binding modeling of charge migration in DNA devices

    Cuniberti, G.; Macia, E.; Rodriguez, A.; R.A. Römer


    Long range charge transfer experiments in DNA oligomers and the subsequently measured -- and very diverse -- transport response of DNA wires in solid state experiments exemplifies the need for a thorough theoretical understanding of charge migration in DNA-based natural and artificial materials. Here we present a review of tight-binding models for DNA conduction which have the intrinsic merit of containing more structural information than plain rate-equation models while still retaining suffi...

  3. Tying the loose ends together in DNA double strand break repair with 53BP1

    Carpenter Phillip B


    Full Text Available Abstract To maintain genomic stability and ensure the fidelity of chromosomal transmission, cells respond to various forms of genotoxic stress, including DNA double-stranded breaks (DSBs, through the activation of DNA damage response signaling networks. In response to DSBs as induced by ionizing radiation (IR, during DNA replication, or through immunoglobulin heavy chain (IgH rearrangements in B cells of lymphoid origin, the phosphatidyl inositol-like kinase (PIK kinases ATM (mutated in ataxia telangiectasia, ATR (ATM and Rad3-related kinase, and the DNA-dependent protein kinase (DNA-PK activate signaling pathways that lead to DSB repair. DSBs are repaired by either of two major, non-mutually exclusive pathways: homologous recombination (HR that utilizes an undamaged sister chromatid template (or homologous chromosome and non- homologous end joining (NHEJ, an error prone mechanism that processes and joins broken DNA ends through the coordinated effort of a small set of ubiquitous factors (DNA-PKcs, Ku70, Ku80, artemis, Xrcc4/DNA lig IV, and XLF/Cernunnos. The PIK kinases phosphorylate a variety of effector substrates that propagate the DNA damage signal, ultimately resulting in various biological outputs that influence cell cycle arrest, transcription, DNA repair, and apoptosis. A variety of data has revealed a critical role for p53-binding protein 1 (53BP1 in the cellular response to DSBs including various aspects of p53 function. Importantly, 53BP1 plays a major role in suppressing translocations, particularly in B and T cells. This report will review past experiments and current knowledge regarding the role of 53BP1 in the DNA damage response.

  4. Tying the loose ends together in DNA double strand break repair with 53BP1.

    Adams, Melissa M; Carpenter, Phillip B


    To maintain genomic stability and ensure the fidelity of chromosomal transmission, cells respond to various forms of genotoxic stress, including DNA double-stranded breaks (DSBs), through the activation of DNA damage response signaling networks. In response to DSBs as induced by ionizing radiation (IR), during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in B cells of lymphoid origin, the phosphatidyl inositol-like kinase (PIK) kinases ATM (mutated in ataxia telangiectasia), ATR (ATM and Rad3-related kinase), and the DNA-dependent protein kinase (DNA-PK) activate signaling pathways that lead to DSB repair. DSBs are repaired by either of two major, non-mutually exclusive pathways: homologous recombination (HR) that utilizes an undamaged sister chromatid template (or homologous chromosome) and non- homologous end joining (NHEJ), an error prone mechanism that processes and joins broken DNA ends through the coordinated effort of a small set of ubiquitous factors (DNA-PKcs, Ku70, Ku80, artemis, Xrcc4/DNA lig IV, and XLF/Cernunnos). The PIK kinases phosphorylate a variety of effector substrates that propagate the DNA damage signal, ultimately resulting in various biological outputs that influence cell cycle arrest, transcription, DNA repair, and apoptosis. A variety of data has revealed a critical role for p53-binding protein 1 (53BP1) in the cellular response to DSBs including various aspects of p53 function. Importantly, 53BP1 plays a major role in suppressing translocations, particularly in B and T cells. This report will review past experiments and current knowledge regarding the role of 53BP1 in the DNA damage response. PMID:16945145

  5. Mechanochemical regulations of RPA's binding to ssDNA

    Chen, Jin; Le, Shimin; Basu, Anindita; Chazin, Walter J.; Yan, Jie


    Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPA's binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.

  6. Quantitative Determination of DNA-Ligand Binding Using Fluorescence Spectroscopy

    Healy, Eamonn F.


    The effective use of fluorescence spectroscopy for determining the binding of the intercalcating agent crhidium bromide to DNA is being described. The analysis used simple measurement techniques and hence can be easily adopted by the students for a better understanding.

  7. Visually Relating Gene Expression and in vivo DNA Binding Data

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd


    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  8. Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining.

    Raghavan, Sathees C; Tong, Jiangen; Lieber, Michael R


    In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining. PMID:16275127

  9. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K. (VCU); (Mount Sinai Hospital)


    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures of IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.

  10. Thermodynamic characterization of proflavine–DNA binding through microcalorimetric studies

    Highlights: • Energetics of the interaction of proflavine with DNA has been studied. • The binding reaction was favored by both negative enthalpy and positive entropy. • Enthalpy–entropy compensation phenomenon was observed. • Non-polyelectrolytic forces played a dominant role in the binding process. • Proflavine enhanced the thermal stability of DNA remarkably. - Abstract: The interaction of an important acridine dye, proflavine hydrochloride, with double stranded DNA was investigated using isothermal titration calorimetry and differential scanning calorimetry. The equilibrium constant for the binding reaction was calculated to be (1.60 ± 0.04) · 105 · M−1 at T = 298.15 K. The binding of proflavine hydrochloride to DNA was favored by both negative enthalpy and positive entropy contributions to the Gibbs energy. The equilibrium constant for the binding reaction decreased with increasing temperature. The standard molar enthalpy change became increasingly negative while the standard molar entropy change became less positive with rise in temperature. However, the standard molar Gibbs free energy change varied marginally suggesting the occurrence of enthalpy–entropy compensation phenomenon. The binding reaction was dominated by non-polyelectrolytic forces which remained virtually unchanged at all the salt concentrations studied. The binding also significantly increased the thermal stability of DNA against thermal denaturation

  11. The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange.

    Mazin, A V; Kowalczykowski, S C


    The RecA protein-single-stranded DNA (ssDNA) filament can bind a second DNA molecule. Binding of ssDNA to this secondary site shows specificity, in that polypyrimidinic DNA binds to the RecA protein-ssDNA filament with higher affinity than polypurinic sequences. The affinity of ssDNA, which is identical in sequence to that bound in the primary site, is not always greater than that of nonhomologous DNA. Moreover, this specificity of DNA binding does not depend on the sequence of the DNA bound ...

  12. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange.

    Mazin, A V; Kowalczykowski, S C


    RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product...

  13. Rapid identification of DNA-binding proteins by mass spectrometry

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;


    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...

  14. Prediction of DNA-binding specificity in zinc finger proteins

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar


    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  15. Specific binding of a cellular DNA replication protein to the origin of replication of adenovirus DNA


    Nuclear factor I, a 47-kilodalton protein, purified from nuclear extracts of uninfected HeLa cells, is involved in the initiation and possibly the elongation of replicating adenovirus (Ad) DNA in vitro. The binding of nuclear factor I to DNA has been monitored by a filter binding assay of nuclear factor I to DNA has been monitored by a filter binding assay using plasmid pLA1 DNA, which contains a 3,290 base-pair fragment derived from the left-hand terminus (coordinates, 0-9.4 map units) of Ad...

  16. Length-dependent binding of human XLF to DNA and stimulation of XRCC4.DNA ligase IV activity.

    Lu, Haihui; Pannicke, Ulrich; Schwarz, Klaus; Lieber, Michael R


    An XRCC4-like factor, called XLF or Cernunnos, was recently identified as another important factor in the non-homologous DNA end joining (NHEJ) process. NHEJ is the major pathway for the repair of double-strand DNA breaks. The similarity in the putative secondary structures of XLF and XRCC4 as well as the association of XLF with XRCC4.DNA ligase IV in vivo suggested a role in the final ligation step of NHEJ. Here, we find that purified XLF directly interacts with purified XRCC4.DNA ligase IV complex and stimulates the ligase complex in a direct assay for ligation activity. Purified XLF has DNA binding activity, but this binding is dependent on DNA length in a manner most consistent with orientation of the C-terminal alpha helices parallel to the DNA helix. To better understand the function of XLF, we purified an XLF mutant (R57G), which was identified in patients with NHEJ deficiency and severe combined immunodeficiency. Surprisingly, the mutant protein retained its ability to stimulate XRCC4.DNA ligase IV but failed to translocate to the nucleus, and this appears to be the basis for the NHEJ defect in this patient. PMID:17317666

  17. Thermodynamics of sequence-specific binding of PNA to DNA

    Ratilainen, T; Holmén, A; Tuite, E; Nielsen, P E; Nordén, B


    For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and...... relative to that of the perfectly matched sequence with a corresponding free energy penalty of about 15 kJ mol(-1) bp(-1). The average cost of a single mismatch is therefore estimated to be on the order of or larger than the gain of two matched base pairs, resulting in an apparent binding constant of only...

  18. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.


    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  19. Coupled dynamics of DNA-breathing and single-stranded DNA binding proteins

    Ambjornsson, Tobias; Metzler, Ralf


    We study the size fluctuations of a local denaturation zone in a DNA molecule in the presence of proteins that selectively bind to single-stranded DNA, based on a (2+1)-dimensional master equation. By tuning the physical parameters we can drive the system from undisturbed bubble fluctuations to full, binding protein-induced denaturation. We determine the effective free energy landscape of the DNA-bubble and explore its relaxation modes.

  20. Binding Isotherms and Cooperative Effects for Metal-DNA Complexes

    Gelagutashvili, Eteri


    The stoichiometric binding constants of Nickel(II), Cobalt(II), Manganese(II), Silver(I), Zinc(II) ions with DNA, from Spirulina platensis were determined from their binding isotherms by equilibrium dialysis and atomic absorption spectroscopy. It was shown, that the nature of these ions interaction with DNA, from S .platensis is different. For Cobalt(II), Zinc(II) ions were observed cooperative effects and existence of two different types of the binding sites. Nickel(II)_, Silver(I) -DNA complexes shows independent and identical binding sites and Manganese(II)_ negative cooperative interaction. The logarithm of binding constants for Cobalt (II)_, Nickel (II)_, Manganese (II)_, Zinc (II)_, Silver (I) - DNA, from S. platensis in 3 mM Na(I) are 5.11; 5.18; 4.77; 5.05; 5.42; respectively. The linear correlation of logarithm of binding constants (for complexes of metal-DNA from S. platensis) and the covalent index of Pauling are observed.

  1. DNA binding fluorescent proteins for the direct visualization of large DNA molecules.

    Lee, Seonghyun; Oh, Yeeun; Lee, Jungyoon; Choe, Sojeong; Lim, Sangyong; Lee, Hyun Soo; Jo, Kyubong; Schwartz, David C


    Fluorescent proteins that also bind DNA molecules are useful reagents for a broad range of biological applications because they can be optically localized and tracked within cells, or provide versatile labels for in vitro experiments. We report a novel design for a fluorescent, DNA-binding protein (FP-DBP) that completely 'paints' entire DNA molecules, whereby sequence-independent DNA binding is accomplished by linking a fluorescent protein to two small peptides (KWKWKKA) using lysine for binding to the DNA phosphates, and tryptophan for intercalating between DNA bases. Importantly, this ubiquitous binding motif enables fluorescent proteins (Kd = 14.7 μM) to confluently stain DNA molecules and such binding is reversible via pH shifts. These proteins offer useful robust advantages for single DNA molecule studies: lack of fluorophore mediated photocleavage and staining that does not perturb polymer contour lengths. Accordingly, we demonstrate confluent staining of naked DNA molecules presented within microfluidic devices, or localized within live bacterial cells. PMID:26264666

  2. Binding and Transformation of Extracellular DNA in Soil

    CAI Peng; HUANG Qiao-Yun; ZHANG Xue-Wen; CHEN Hao


    DNA is the genetic material of various organisms. Extracellular DNA adsorbed or bound on surface-active particles in soils has been shown to persist for long periods against nucleases degradation and still retain the ability to transform competent cells. This paper reviews some recent advances on the binding and transformation of extracellular DNA in soils,which is fundamental to understanding the nature of the soil, regulating biodiversity, and assessing the risk of releasing genetically engineered microorganisms (GEMs) as well as being helpful for development of the genetic evolutional theory of bacteria. Several influencing factors, such as soil pH, ionic strength, soil surface properties, and characteristics of the DNA polymer, are discussed. To date, the understanding of the type of molecular binding sites and the conformation of adsorbed and bound DNA to soil particles is still in its infancy.

  3. DnaT is a PriC-binding protein.

    Huang, Chien-Chih; Huang, Cheng-Yang


    DnaT and PriC are replication restart primosomal proteins required for re-initiating chromosomal DNA replication. DnaT is a component of the PriA-dependent primosome, while PriC belongs to the PriC-dependent primosome. Whether DnaT can interact with PriC is still unknown. In this study, we define a direct interaction between PriC, a key initiator protein in PriC-mediated DNA replication restart, and DnaT, a DnaB/C complex loader protein, from Klebsiella pneumoniae. In fluorescence titrations, PriC bound to single-stranded DNA with a binding-site size of approximately 9 nt. Gold nanoparticle assay showed that the solution of DnaT-PriC changed from red to purple, which indicated the protein-protein interactions due to gold nanoparticle aggregate. In addition, this DnaT-PriC complex could be co-purified by the heparin HP column. Surface plasmon resonance analysis showed that the Kd value of DnaT bound to PriC was 2.9 × 10(-8) M. These results constitute a pioneering study of the DnaT-PriC interaction and present a putative link between the two independent replication restart pathways, namely, PriA- and PriC-dependent primosome assemblies. Further research can directly focus on determining how DnaT binds to the PriC-SSB-DNA tricomplex and regulates the PriC-dependent replication restart. PMID:27387236

  4. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics

    Bentin, T; Nielsen, Peter E.


    efficient with supercoiled than with linear DNA. In the presence of 140 mM KCI, the PNA binding rate was reduced but, notably, highly dependent on template topology. Negative supercoiling (mean superhelix density, sigma approximately -0.051) increased the rate of binding by 2 orders of magnitude compared...... to that of relaxed DNA. The pseudo-first-order rate constant [k psi (sigma)] obeys an exponential function, k psi (sigma) = k psi (lin)e-sigma delta, where delta is a constant of 105 and k psi lin is the rate of PNA binding to linear DNA (sigma = 0). The activation energy [Ea(sigma)] was determined as approximately...... 93 and approximately 48 kJ mol-1 for PNA binding to linear and supercoiled DNA, respectively. The results are discussed in relation to the possible future use of PNA as an antigene agent and in the framework of DNA "breathing" dynamics....

  5. Tight-binding approach to strain-dependent DNA electronics

    Malakooti, Sadeq; Hedin, Eric; Joe, Yong


    Small mechanical strain perturbations are considered in calculations of the poly(G)-poly(C) DNA molecular electronic structure, using a tight-binding framework in conjunction with the theories of Slater-Koster and linear elasticity. Results reveal a strain-induced band gap for DNA which is linearly dependent on the induced strain. Local density of states calculations expose that the contribution of the guanine-cytosine base pairs in the charge transport mechanism is significantly enhanced relative to the backbones when DNA is compressed. Transport investigations also disclose a strain-induced metal-semiconductor transition for the DNA molecule, which suggests possible potential uses for sensing applications.

  6. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans.

    Lieber, Michael R; Gu, Jiafeng; Lu, Haihui; Shimazaki, Noriko; Tsai, Albert G


    Double-strand breaks (DSBs) arise in dividing cells about ten times per cell per day. Causes include replication across a nick, free radicals of oxidative metabolism, ionizing radiation, and inadvertent action by enzymes of DNA metabolism (such as failures of type II topoisomerases or cleavage by recombinases at off-target sites). There are two major double-strand break repair pathways. Homologous recombination (HR) can repair double-strand breaks, but only during S phase and typically only if there are hundreds of base pairs of homology. The more commonly used pathway is nonhomologous DNA end joining, abbreviated NHEJ. NHEJ can repair a DSB at any time during the cell cycle and does not require any homology, although a few nucleotides of terminal microhomology are often utilized by the NHEJ enzymes, if present. The proteins and enzymes of NHEJ include Ku, DNA-PKcs, Artemis, DNA polymerase mu (Pol micro), DNA polymerase lambda (Pol lambda), XLF (also called Cernunnos), XRCC4, and DNA ligase IV. These enzymes constitute what some call the classical NHEJ pathway, and in wild type cells, the vast majority of joining events appear to proceed using these components. NHEJ is present in many prokaryotes, as well as all eukaryotes, and very similar mechanistic flexibility evolved both convergently and divergently. When two double-strand breaks occur on different chromosomes, then the rejoining is almost always done by NHEJ. The causes of DSBs in lymphomas most often involve the RAG or AID enzymes that function in the specialized processes of antigen receptor gene rearrangement. PMID:20012587

  7. DNA and RNA Quadruplex-Binding Proteins

    Brázda, Václav; Haroniková, Lucia; Liao, J.C.C.; Fojta, Miroslav


    Roč. 15, č. 10 (2014), s. 17493-17517. E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GBP206/12/G151 Institutional support: RVO:68081707 Keywords : DNA quadruplex * RNA quadruplex * telomere Subject RIV: BO - Biophysics Impact factor: 2.862, year: 2014

  8. Quantitative DNA slot blot analysis: inhibition of DNA binding to membranes by magnesium ions.

    Kube, D M; Srivastava, A.


    Titers of wild-type and recombinant adeno-associated viruses are routinely determined by DNA slot blot analysis. The binding of viral DNA to nylon membranes was found to be inhibited by magnesium ions, which are critical components of the DNase I digestion carried out prior to slot blot analysis. Mg2+ions also interfered with the adsorption of plasmid DNA to nylon and nitrocellulose membranes. These observations yield practical insights into the poorly understood mechanisms by which DNA molec...

  9. IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation

    Hároníková, Lucia; Coufal, Jan; Kejnovská, Iva; Jagelská, Eva B.; Fojta, Miroslav; Dvořáková, Petra; Muller, Petr; Vojtesek, Borivoj; Brázda, Václav


    Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0–80) and in structurally identical parts of both HIN domains (aa 271–302 and aa 586–617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation. PMID:27280708

  10. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Janet L Smith


    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  11. Functional interplay between SA1 and TRF1 in telomeric DNA binding and DNA-DNA pairing.

    Lin, Jiangguo; Countryman, Preston; Chen, Haijiang; Pan, Hai; Fan, Yanlin; Jiang, Yunyun; Kaur, Parminder; Miao, Wang; Gurgel, Gisele; You, Changjiang; Piehler, Jacob; Kad, Neil M; Riehn, Robert; Opresko, Patricia L; Smith, Susan; Tao, Yizhi Jane; Wang, Hong


    Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding. PMID:27298259

  12. Binding of 2,7-diaminomitosene to DNA: model for the precovalent recognition of DNA by activated mitomycin C.

    Kumar, G S; He, Q Y; Behr-Ventura, D; Tomasz, M


    Mitomycin C (MC), mitomycin A, porfiromycin, BMY-25067, and BMY-25287, antitumor antibiotics collectively termed "mitosanes", were found to have no appreciable binding affinity to various natural and synthetic DNAs, as tested by UV spectrophotometry and equilibrium dialysis. Further tests of DNA binding applied to MC including thermal melting measurements, displacement of ethidium fluorescence, and unwinding of closed circular DNA were similarly negative. In contrast, 2,7-diaminomitosene (2,7-DAM), a major end product of the reductive activation of MC, binds to the same series of DNAs by all of these criteria. In the presence of DNA its UV absorbance at the 313 nm maximum decreased and underwent a slight red shift. This effect was used for determining DNA binding constants (Kb) by the spectrophotometric titration method. At pH 6.0 the Kbs of three natural DNAs with varying GC content, as well as poly(dA-dT).poly(dA-dT), and poly(dG-dC).poly(dG-dC), were all in the range of (1.2-5.3) x 10(4) (M nucleotide)-1, with no apparent specificity of binding. Poly(dG-m5dC).poly(dG-m5dC) displayed a slightly higher Kb ((7.5-8.4) x 10(4)). Binding of other, closely related mitosenes was tested to calf thymus DNA by equilibrium dialysis. Neither the presence of a 1-OH substituent, removal of the 10-carbamoyl group, nor methylation of the 2-amino group modifies the binding affinity of the mitosenes significantly. The 1-phosphate substituent abolishes binding. The binding of 2,7-DAM to DNA increased with decreasing pH and decreasing ionic strength. It was determined that 2,7-DAM is protonated at the 2-amino group with a pKa = 7.55, and this correlated well with the observed pH dependence of the binding, indicating that the binding affinity has a strong electrostatic component. This was confirmed by the finding that the extrapolated Kb to 1 M Na+ concentration diminishes to only 10% of the value of Kb at 0.01 M Na+ concentration. Viscosity tests showed conclusively that 2,7-DAM

  13. Damage of DNA ends induced by mechanical force during AFM nano-manipulation

    An experimental and statistical study was carried out to explore the effects of mechanical forces on the ends of linear double-stranded DNA (dsDNA) fragments. Mechanical force was applied onto individual DNA molecules during atomic force microscope (AFM)-based picking-up manipulation. By comparing the PCR efficiency of two DNA fragments with primers either at ends or at the inner regions, it was found that the ends of DNA fragments were damaged during picking-up process. (authors)

  14. Synthesis, DNA binding and cytotoxic evaluation of aminoquinoline scaffolds

    Gopal Senthil Kumar; Mohamed Ashraf Ali; Tan Soo Choon; Rajendra Prasad Karnam Jayarampillai


    An effortless synthetic route has been developed for the synthesis of a new class of aminoquinoline substituted isoindolin-1,3-diones from regio-isomerical hydrazinylquinolines with phthalic anhydride in presence of Eaton’s reagent. DNA binding studies of selected isomeric compounds showed interaction withDNA via intercalation mode with higher binding affinity of 4-substituted quinolines rather than 2-substituted counterparts. Further, all compounds were screened for cytotoxic activity against three human cancer cell lines,among them compound 2c outranged standard doxorubicin against CCRF-CEM cell line.

  15. Specific versus Nonspecific Binding of Cationic PNAs to Duplex DNA

    Abibi, Ayome; Protozanova, Ekaterina; Demidov, Vadim V.; Frank-Kamenetskii, Maxim D.


    Although peptide nucleic acids (PNAs) are neutral by themselves, they are usually appended with positively charged lysine residues to increase their solubility and binding affinity for nucleic acid targets. Thus obtained cationic PNAs very effectively interact with the designated duplex DNA targets in a sequence-specific manner forming strand-invasion complexes. We report on the study of the nonspecific effects in the kinetics of formation of sequence-specific PNA-DNA complexes. We find that ...

  16. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.

    Eva Polanská

    Full Text Available HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.

  17. Molecular dynamics simulations of p53 DNA-binding domain.

    Lu, Qiang; Tan, Yu-Hong; Luo, Ray


    We have studied room-temperature structural and dynamic properties of the p53 DNA-binding domain in both DNA-bound and DNA-free states. A cumulative 55 ns of explicit solvent molecular dynamics simulations with the particle mesh Ewald treatment of electrostatics was performed. It was found that the mean structures in the production portions of the trajectories agree well with the crystal structure: backbone root-mean-square deviations are in the range of 1.6 and 2.0 A. In both simulations, noticeable backbone deviations from the crystal structure are observed only in loop L6, due to the lack of crystal packing in the simulations. More deviations are observed in the DNA-free simulation, apparently due to the absence of DNA. Computed backbone B-factor is also in qualitative agreement with the crystal structure. Interestingly, little backbone structural change is observed between the mean simulated DNA-bound and DNA-free structures. A notable difference is observed only at the DNA-binding interface. The correlation between native contacts and inactivation mechanisms of tumor mutations is also discussed. In the H2 region, tumor mutations at sites D281, R282, E285, and E286 may weaken five key interactions that stabilize H2, indicating that their inactivation mechanisms may be related to the loss of local structure around H2, which in turn may reduce the overall stability to a measurable amount. In the L2 region, tumor mutations at sites Y163, K164, E171, V173, L194, R249, I251, and E271 are likely to be responsible for the loss of stability in the protein. In addition to apparent DNA contacts that are related to DNA binding, interactions R175/S183, S183/R196, and E198/N235 are highly occupied only in the DNA-bound form, indicating that they are more likely to be responsible for DNA binding. PMID:17824689

  18. Structural modeling for DNA binding to antioxidants resveratrol, genistein and curcumin.

    N'soukpoé-Kossi, C N; Bourassa, P; Mandeville, J S; Bekale, L; Tajmir-Riahi, H A


    Several models are presented here for the bindings of the antioxidant polyphenols resveratrol, genistein and curcumin with DNA in aqueous solution at physiological conditions. Multiple spectroscopic methods and molecular modeling were used to locate the binding sites of these polyphenols with DNA duplex. Structural models showed that intercalation is more stable for resveratrol and genistein than groove bindings, while curcumin interaction is via DNA grooves. Docking showed more stable complexes formed with resveratrol and genistein than curcumin with the free binding energies of -4.62 for resveratrol-DNA (intercalation), -4.28 for resveratrol-DNA (groove binding), -4.54 for genistein-DNA (intercalation), -4.38 for genistein-DNA (groove binding) and -3.84 kcal/mol for curcumin-DNA (groove binding). The free binding energies show polyphenol-DNA complexation is spontaneous at room temperature. At high polyphenol concentration a major DNA aggregation occurred, while biopolymer remained in B-family structure. PMID:26188387

  19. Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence.

    Gu, Jiafeng; Lu, Haihui; Tsai, Albert G; Schwarz, Klaus; Lieber, Michael R


    The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends and compatible DNA ends at physiologic concentrations of Mg2+, but only of incompatible DNA ends at higher concentrations of Mg2+, suggesting charge neutralization between the two DNA ends within the ligase complex. XRCC4-DNA ligase IV has the distinctive ability to ligate poly-dT single-stranded DNA and long dT overhangs in a Ku- and XLF-independent manner, but not other homopolymeric DNA. The dT preference of the ligase is interesting given the sequence bias of the NHEJ polymerase. These distinctive properties of the XRCC4-DNA ligase IV complex explain important aspects of its in vivo roles. PMID:17717001

  20. Binding fullerenol C60(OH24 to dsDNA

    Mariana Pinteala


    Full Text Available Mariana Pinteala, Andrei Dascalu, Cezar UngurenasuPetru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica, Iasi, RomaniaAbstract: The first C60(OH24-DNA complex and its fluorescence enhancement is reported. The enhanced fluorescence intensity of fullerenol C60(OH24 is in proportion to the concentration of DNA in the range of 1 × 10-9 to 8 × 10-5 molL-1 and the detection limit was 1.3 ng mL-1. Fullerenol C60(OH24 binds significantly to the phosphate backbone of native dsDNA and to base-pairs within the major groove of sodium salt of dsDNA.Keywords: nanomedicine, fullerenol, DNA complexation, fluorescent probe

  1. Tight-binding parameters for charge transfer along DNA

    Hawke, L G D; Simserides, C


    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The $\\pi$ molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessar...

  2. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan;


    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by...

  3. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions

  4. Cdc13 N-Terminal Dimerization DNA Binding and Telomere Length Regulation

    M Mitchell; J Smith; M Mason; S Harper; D Speicher; F Johnson; E Skordalakes


    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.

  5. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan; M. Bompiani, Kristin; Hansen, Majken Nørgaard; Gothelf, Kurt Vesterager; Sullenger, Bruce A; LaBean, Thomas H.


    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by a flexible single-strand linker, have been shown to possess anticoagulant activity. Here, we link multiple aptamers at programmed positions on DNA nanostructures to optimize spacing and orientation o...

  6. NMR characterization of the DNA binding properties of a novel Hoechst 33258 analogue peptide building block

    Bunkenborg, Jakob; Behrens, Carsten; Jacobsen, Jens Peter


    A novel aryl-bis-benzimidazole amino acid analogue of the DNA-binding compound Hoechst 33258 has recently been designed for incorporation in peptide combinatorial libraries by replacing the N-methylpiperazine group with a carboxyl group and the hydroxy group with an amino-methyl group. The DNA...... preference with the bis-benzimidazole moiety displaced toward the 3'-end from the center of the duplex. Two families of models of the complexes with A(5) and A(3)T(3) were derived with restrained molecular dynamics based on a large set of 70 and 61, respectively, intermolecular ligand NOEs. Both models give...

  7. DNA binding properties of the small cascade subunit Csa5.

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  8. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres

  9. Pitfalls of DNA Quantification Using DNA-Binding Fluorescent Dyes and Suggested Solutions.

    Nakayama, Yuki; Yamaguchi, Hiromi; Einaga, Naoki; Esumi, Mariko


    The Qubit fluorometer is a DNA quantification device based on the fluorescence intensity of fluorescent dye binding to double-stranded DNA (dsDNA). Qubit is generally considered useful for checking DNA quality before next-generation sequencing because it measures intact dsDNA. To examine the most accurate and suitable methods for quantifying DNA for quality assessment, we compared three quantification methods: NanoDrop, which measures UV absorbance; Qubit; and quantitative PCR (qPCR), which measures the abundance of a target gene. For the comparison, we used three types of DNA: 1) DNA extracted from fresh frozen liver tissues (Frozen-DNA); 2) DNA extracted from formalin-fixed, paraffin-embedded liver tissues comparable to those used for Frozen-DNA (FFPE-DNA); and 3) DNA extracted from the remaining fractions after RNA extraction with Trizol reagent (Trizol-DNA). These DNAs were serially diluted with distilled water and measured using three quantification methods. For Frozen-DNA, the Qubit values were not proportional to the dilution ratio, in contrast with the NanoDrop and qPCR values. This non-proportional decrease in Qubit values was dependent on a lower salt concentration, and over 1 mM NaCl in the DNA solution was required for the Qubit measurement. For FFPE-DNA, the Qubit values were proportional to the dilution ratio and were lower than the NanoDrop values. However, electrophoresis revealed that qPCR reflected the degree of DNA fragmentation more accurately than Qubit. Thus, qPCR is superior to Qubit for checking the quality of FFPE-DNA. For Trizol-DNA, the Qubit values were proportional to the dilution ratio and were consistently lower than the NanoDrop values, similar to FFPE-DNA. However, the qPCR values were higher than the NanoDrop values. Electrophoresis with SYBR Green I and single-stranded DNA (ssDNA) quantification demonstrated that Trizol-DNA consisted mostly of non-fragmented ssDNA. Therefore, Qubit is not always the most accurate method for

  10. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork

  11. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA

    Smith, Janet L.; Grossman, Alan D.


    DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep ...

  12. Interactions of the DNA Polymerase X From African Swine Fever Virus With the ssDNA. Properties of the Total DNA-Binding Site and the Strong DNA-Binding Subsite§

    Jezewska, Maria J.; Szymanski, Michal R.; Bujalowski, Wlodzimierz


    Interactions of the polymerase X from the African Swine Fever Virus with the ssDNA have been studied, using quantitative fluorescence titration and fluorescence resonance energy transfer techniques. The primary DNA-binding subsite of the enzyme, independent of the DNA conformation, is located on the C-terminal domain. Association of the bound DNA with the catalytic N-terminal domain finalizes the engagement of the total DNA-binding site of the enzyme and induces a large topological change in ...

  13. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends.

    Bombarde, Oriane; Boby, Céline; Gomez, Dennis; Frit, Philippe; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Salles, Bernard; Calsou, Patrick


    DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA-PK end binding and activation step and (2) DNA-PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells. PMID:20407424

  14. Probing the binding of coumarins and cyclothialidines to DNA gyrase

    Kampranis, S C; Gormley, N A; Tranter, R;


    DNA gyrase is the target of a number of antibacterial agents, including the coumarins and the cyclothialidines. To extend our understanding of the mechanism of action of these compounds, we have examined the previously published crystal structures of the complexes between the 24 kDa fragment of Gyr......, suggesting a drug-induced conformational change. The ability of the mutants to bind the drugs was studied by testing their ability to induce the coumarin-associated proteolytic signature and to bind to a novobiocin-affinity column. To analyze further the interaction of the drugs with gyrase, we studied the...

  15. A monoclonal antibody to triplex DNA binds to eucaryotic chromosomes.

    Lee, J. S.; Burkholder, G D; Latimer, L J; Haug, B L; Braun, R P


    A monoclonal antibody (Jel 318) was produced by immunizing mice with poly[d(TmC)].poly[d(GA)].poly[d(mCT) which forms a stable triplex at neutral pH. Jel 318 did not bind to calf thymus DNA or other non pyrimidine.purine DNAs such as poly[d(TG)].poly[d(CA)]. In addition the antibody did not recognize pyrimidine.purine DNAs containing mA (e.g. poly[d(TC)].poly[d(GmA)]) which cannot form a triplex since the methyl group blocks Hoogsteen base-pairing. The binding of Jel 318 to chromosomes was as...

  16. Genomic DNA binding to ZnO microrods

    Guzmán-Embús, D. A.; Cardozo, M. Orrego; Vargas-Hernández, C.


    In this work, ZnO microrods were produced by hydrothermal synthesis. DNA was extracted from pork spleen cells by cellular lysis, deproteinization and precipitation. The analysis of the DNA binding to the ZnO was performed using Raman spectroscopy a technique that allowed for the evaluation of the effect that the presence of the ZnO in the complex has on the DNA structure. Vibrational spectral bands from the DNA molecule and hexagonal wurtzite ZnO were observed and classified as E2(M), A1(TO), E2(High), E1(LO) and 2LO. The Raman signals from the vibrational bands corresponding to the phosphodiester bond 5‧-C-O-P-O-C-3‧ and bond stretching of the PO2- group, as well as ring vibrations of the nitrogenous bases of the DNA, were enhanced by the presence of the ZnO microrods. The bands from the modes corresponding to the C-O and Odbnd Psbnd O- molecules of the DNA backbone were observed to exhibit larger spectral shifts due to the compression and tensile stresses generated at the ZnO/DNA interface, respectively. In addition, the relative vibrational mode intensities of the nitrogenous bases increased.

  17. Modeling spatial correlation of DNA deformations: Allosteric effects of DNA protein binding

    Xu, Xinliang; Cao, Jianshu; Hao Ge Collaboration; X. Sunney Xie Collaboration


    We report a study of DNA deformations by a coarse grained mechanical model. Recent single molecule experimental studies show that when DNA molecule is deformed by its binding to a protein, the binding affinity of a second protein at distance L away from the first binding site is altered. To explain this observation, the relaxation of deformation along the DNA chain is examined. Our method predicts a general exponentially decaying behavior for differenct deformation modes. As an example, inter-helical distance deformation is studied in details, and is found to decay at a previously unknown lengthscale of 10 base pairs as a result of the balance between inter and intra DNA strand energy. This lengthscale is in good agreement with the said single molecule experimental observation. This model of local deformation relaxation helps us better understand many important issues in DNA such as the enhanced flexibility of DNA at short lengthscales and DNA repair mechanism inside cells. Biodynamic Optical Imaging Center, Peking University

  18. Effect of DNA binding protein Ssh12 from hyperthermophilic archaeon Sulfolobus shibatae on DNA supercoiling

    楼慧强; 黄力; VietQ.Mai


    An 11.5-ku DNA binding protein, designated as Sshl2, was purified from the hyperthermophilic archaeon Sulfolobus shibatae by column chromatography in SP Sepharose, DNA cellulose and phosphocellulose. Sshl2 accounts for about 4 % of the total cellular protein. The protein is capable of binding to both negatively supercoiled and relaxed DNAs. Nick closure analysis revealed that Sshl2 constrains negative supercoils upon binding to DNA. While the ability of the protein to constrain supercoils is weak at 22℃ , it is enhanced substantially at temperatures higher than 37℃ . Both the cellular content and supercoil-constraining ability of Sshl2 suggest that the protein may play an important role in the organization and stabilization of the chromosome of S. shibatae.

  19. Binding of cationic surfactants to DNA, protein and DNA-protein mixtures.

    Gani, S A; Chattoraj, D K; Mukherjee, D C


    Extent of binding (gamma 2(1)) of cationic surfactants cetyltrimethyl ammonium bromide (CTAB), myristyltrimethyl ammonium bromide (MTAB) and dodecyl trimethyl ammonium bromide (DTAB) to calf-thymus DNA, bovine serum albumin (BSA) and to their binary mixture respectively have been measured as function of bulk concentration of the surfactant by using equilibrium dialysis technique. Binding of CTAB has been studied at different pH, ionic strength (mu), temperature and biopolymer composition and with native and denatured states of the biopolymers. The chain-length of different long chain amines plays a significant role in the extent of binding under identical solution condition. The binding ratios for CTAB to collagen, gelatin, DNA-collagen and DNA-gelatin mixtures respectively have also been determined. The conformational structures of different biopolymers are observed to play significant role in macromolecular interactions between protein and DNA in the presence of CTAB. From the experimental values of the maximum binding ratio (gamma 2m) at the saturation level for each individual biopolymer, ideal values (gamma 2m)id have been theoretically calculated for binary mixtures of biopolymers using additivity rule. The protein-DNA-CTAB interaction in mixture has been explained in terms of the deviation (delta) of (gamma 2m) from (gamma 2m)id in the presence of a surfactant in bulk. The binding of surfactants to biopolymers and to their binary mixtures are compared more precisely in terms of the Gibbs' free energy decrease (-delta G degree) for the saturation of the binding sites in the biopolymers or biopolymer mixtures with the change of the bulk surfactant activity from zero to unity in the rational mole fraction scale. PMID:10650715

  20. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ruthenium-fluoroquinolone complexes

    Mohan N Patel; Hardik N Joshi; Chintan R Patel


    Six new Ru(II) and Ru(III) complexes have been synthesized and characterized by elemental analysis, LC-MS, electronic spectra, IR spectra and magnetic moment measurements. DNA-binding properties of Ru complexes have been studied by means of absorption spectrophotometry and viscosity measurements as well as their HS DNA cleavage properties by means of agarose gel electrophoresis. The experimental results show that all the complexes can bind to DNA via partial intercalative mode. The b values of complexes were found in the range 2.14 × 104 to 2.70 × 105 M-1. All the complexes show excellent efficiency of cleaving DNA than respective fluoroquinolones. Brine shrimp lethality bioassay has been performed to check the cytotoxic activity. The IC50 values of the complexes are in the range of 6.27 to 16.05 g mL-1.

  1. Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends

    Tsai, Chun J.; Kim, Sunny A.; Chu, Gilbert


    Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation or V(D)J recombination of the immunoglobulin genes. The breaks often leave mismatched or nonligatable ends, and NHEJ must repair the breaks with high efficiency and minimal nucleotide loss. Here, the NHEJ proteins Ku, DNA-dependent protein kinase catalytic subunit, XRCC4/Ligase IV, and Cernunnos/XRCC4-like factor joined mismatched and noncohesive DNA ends in the absence of processing factors. Depen...

  2. Processing of DNA for nonhomologous end-joining by cell-free extract

    Budman, Joe; Chu, Gilbert


    In mammalian cells, nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. We have developed a cell-free system capable of processing and joining noncompatible DNA ends. The system had key features of NHEJ in vivo, including dependence on Ku, DNA-PKcs, and XRCC4/Ligase4. The NHEJ reaction had striking properties. Processing of noncompatible ends involved polymerase and nuclease activities that often stabilized the alignment of ...

  3. A plant DNA-binding protein that recognizes 5-methylcytosine residues.

    Zhang, D. L.; Ehrlich, K C; Supakar, P C; Ehrlich, M


    A novel, 5-methylcytosine-specific, DNA-binding protein, DBP-m, has been identified in nuclear extracts of peas. DBP-m specifically recognizes 5-methylcytosine residues in DNA without appreciable DNA sequence specificity, unlike a mammalian DNA-binding protein (MDBP), which recognizes 5-methylcytosine residues but only in a related family of 14-base-pair sequences.

  4. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays.

    Anna Schrader

    Full Text Available The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.

  5. Cell nonhomologous end joining capacity controls SAF-A phosphorylation by DNA-PK in response to DNA double-strand breaks inducers.

    Britton, Sébastien; Froment, Carine; Frit, Philippe; Monsarrat, Bernard; Salles, Bernard; Calsou, Patrick


    Aiming to identify novel phosphorylation sites in response to DNA double-strand breaks (DSB) inducers, we have isolated a phosphorylation site on KU70. Unexpectedly, a rabbit antiserum raised against this site cross-reacted with a 120 kDa protein in cells treated by DNA DSB inducers. We identified this protein as SAF-A/hnRNP U, an abundant and essential nuclear protein containing regions binding DNA or RNA. The phosphorylation site was mapped at S59 position in a sequence context favoring a "S-hydrophobic" consensus model for DNA-PK phosphorylation site in vivo. This site was exclusively phosphorylated by DNA-PK in response to DNA DSB inducers. In addition, the extent and duration of this phosphorylation was in inverse correlation with the capacity of the cells to repair DSB by Nonhomologous End Joining. These results bring a new link between the hnRNP family and the DNA damage response. Addtionaly, the mapped phospho-site on SAF-A might serve as a potential bio-marker for DNA-PK activity in academic studies and clinical analyses of DNA-PK activators or inhibitors. PMID:19844162

  6. Dynamic binding of replication protein a is required for DNA repair

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.


    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  7. Interplay between Cernunnos-XLF and nonhomologous end-joining proteins at DNA ends in the cell.

    Wu, Peï-Yu; Frit, Philippe; Malivert, Laurent; Revy, Patrick; Biard, Denis; Salles, Bernard; Calsou, Patrick


    Cernunnos-XLF is the most recently identified core component in the nonhomologous end-joining (NHEJ) pathway for the repair of DNA double strand breaks (DSBs) in mammals. It associates with the XRCC4/ligase IV ligation complex and stimulates its activity in a still unknown manner. NHEJ also requires the DNA-dependent protein kinase that contains a Ku70/Ku80 heterodimer and the DNA-dependent protein kinase catalytic subunit. To understand the interplay between Cernunnos-XLF and the other proteins implicated in the NHEJ process, we have analyzed the interactions of Cernunnos-XLF and NHEJ proteins in cells after treatment with DNA double strand-breaking agents by means of a detergent-based cellular fractionation protocol. We report that Cernunnos-XLF is corecruited with the core NHEJ components on chromatin damaged with DSBs in human cells and is phosphorylated by the DNA-dependent protein kinase catalytic subunit. Our data show a pivotal role for DNA ligase IV in the NHEJ ligation complex assembly and recruitment to DSBs because the association of Cernunnos-XLF with the XRCC4/ligase IV complex relies primarily on the DNA ligase IV component, and an intact XRCC4/ligase IV complex is necessary for Cernunnos-XLF mobilization to damaged chromatin. Conversely, a Cernunnos-XLF defect has no apparent impact on the XRCC4/ligase IV association and recruitment to the DSBs or on the stimulation of the DNA-dependent protein kinase on DNA ends. PMID:17720816

  8. Theory on thermodynamic coupling of site-specific DNA-protein interactions with fluctuations in DNA-binding domains

    Murugan, R, E-mail: [Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)


    DNA-binding proteins recognize their cognate sites on the template DNA more efficiently when the thermally driven flipping of their DNA-binding domains between the fast- and slow-moving conformations is coupled to the search dynamics. We show that there exists an optimum barrier height ({approx}k{sub B}T ln2) that separates these fast- and slow-moving states of DNA-binding domains, at which the efficiency associated with the thermodynamic coupling of thermally driven flipping and the overall search dynamics is the maximum. Furthermore, the dynamics of DNA-binding domains resembles that of typical downhill folding proteins at their midpoint denaturation temperatures. We further show that the average one-dimensional scanning lengths of slow- and fast-moving states of DNA-binding domains of LacI repressor protein are tuned to minimize the overall search time that is required to locate its cognate sites on DNA. (paper)

  9. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    Lu, Xun; Guanga, Gerald P; Wan, Cheng; Rose, Robert B [Z; (W Elec.); (NCSU)


    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G–5C–4 and central C0/G0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.

  10. Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences.

    S. Hahn; Buratowski, S.; Sharp, P A; Guarente, L


    The DNA binding properties of the yeast TATA element-binding protein TFIID were investigated. The affinity (apparent equilibrium dissociation constant) of TFIID for the adenovirus major late promoter consensus TATA element is 2 x 10(-9) M, a value similar to the affinity of gene-specific regulatory proteins for their binding sites. TFIID binding is highly specific and recognizes nonspecific sites with approximately 10(5)-fold lower affinity. Despite this specificity, TFIID also binds with hig...

  11. N-ethylmaleimide inhibition of the DNA-binding activity of the herpes simplex virus type 1 major DNA-binding protein

    The major herpes simplex virus DNA-binding protein, designated ICP8, binds tightly to single-stranded DNA and is required for replication of viral DNA. The sensitivity of the DNA-binding activity of ICP8 to the action of the sulfhydryl reagent N-ethylmaleimide has been examined by using nitrocellulose filter-binding and agarose gel electrophoresis assays. Incubation of ICP8 with N-ethylmaleimide results in a rapid loss of DNA-binding activity. Preincubation of ICP8 with single-stranded DNA markedly inhibits this loss of binding activity. These results imply that a free sulfhydryl group is involved in the interaction of ICP8 with single-stranded DNA and that this sulfhydryl group becomes less accessible to the environment upon binding. Agarose gel electrophoretic analysis of the binding interaction in the presence and absence of N-ethylmaleimide indicates that the cooperative binding exhibited by ICP8 is lost upon treatment with this reagent but that some residual noncooperative binding may remain. This last result was confirmed by equilibrium dialysis experiments with the 32P-labeled oligonucleotide dT10 and native and N-ethylmaleimide-treated ICP8

  12. DNA-binding protein from HeLa cells that binds preferentially to supercoiled DNA damaged by ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene

    A DNA-binding protein was partially purified from extracts of HeLa cells by high-speed centrifugation and chromatography on DEAE-cellulose, phosphocellulose and ultraviolet light-irradiated DNA-cellulose columns. It eluted from the phosphocellulose column with 0.375 M potassium phosphate and from the ultraviolet light-irradiated DNA-cellulose column between 0.5 M and 1 M NaCl. The protein binds preferentially to supercoiled PM2 DNA treated with ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene, as compared to native supercoiled PM2 DNA. The binding is non-cooperative. Nicked or linear forms of PM2 DNA (damaged or untreated) are not efficient substrates, indicating a requirement of DNA supercoiling for DNA binding. The sedimentation coefficient of the protein estimated by glycerol gradient centrifugation is 2.0-2.5 S, corresponding to a molecular weight of about 20000-25000 if the protein is spherical. The binding to DNA irradiated with ultraviolet light or treated with acetoxyacetylaminofluorene is optimal at around 100-200 mM NaCl and is relatively independent of temperature and pH. MgCl2 and MnCl2 at concentrations between 1 and 5 mM do not markedly affect the binding, but it is inhibited by sucrose, ATP and caffeine. The biological significance of the DNA-binding protein remains to be determined. It does not possess significant glycosylase, endonuclease or exonuclease activities. The dissociation equilibrium constant for the binding reaction of the protein to the ultraviolet light or acetoxyacetylaminofluorene-induced binding sites on DNA is estimated to be 4x10-11 M. There are at least 1x105 DNA-binding protein molecules/HeLa cell. (Auth.)

  13. Getting it done at the ends: Pif1 family DNA helicases and telomeres.

    Geronimo, Carly L; Zakian, Virginia A


    It is widely appreciated that the ends of linear DNA molecules cannot be fully replicated by the conventional replication apparatus. Less well known is that semi-conservative replication of telomeric DNA also presents problems for DNA replication. These problems likely arise from the atypical chromatin structure of telomeres, the GC-richness of telomeric DNA that makes it prone to forming DNA secondary structures, and from RNA-DNA hybrids, formed by transcripts of one or both DNA strands. Given the different aspects of telomeres that complicate their replication, it is not surprising that multiple DNA helicases promote replication of telomeric DNA. This review focuses on one such class of DNA helicases, the Pif1 family of 5'-3' DNA helicases. In budding and fission yeasts, Pif1 family helicases impact both telomerase-mediated and semi-conservative replication of telomeric DNA as well as recombination-mediated telomere lengthening. PMID:27233114

  14. Sharpening the ends for repair: mechanisms and regulation of DNA resection.

    Paudyal, Sharad C; You, Zhongsheng


    DNA end resection is a key process in the cellular response to DNA double-strand break damage that is essential for genome maintenance and cell survival. Resection involves selective processing of 5' ends of broken DNA to generate ssDNA overhangs, which in turn control both DNA repair and checkpoint signaling. DNA resection is the first step in homologous recombination-mediated repair and a prerequisite for the activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent checkpoint that coordinates repair with cell cycle progression and other cellular processes. Resection occurs in a cell cycle-dependent manner and is regulated by multiple factors to ensure an optimal amount of ssDNA required for proper repair and genome stability. Here, we review the latest findings on the molecular mechanisms and regulation of the DNA end resection process and their implications for cancer formation and treatment. PMID:27174871

  15. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA

    Veprintsev, Dmitry B.; Fersht, Alan R.


    The tumour suppressor p53 is a transcription factor that binds DNA in the vicinity of the genes it controls. The affinity of p53 for specific binding sites relative to other DNA sequences is an inherent driving force for specificity, all other things being equal. We measured the binding affinities of systematically mutated consensus p53 DNA-binding sequences using automated fluorescence anisotropy titrations. Based on measurements of the effects of every possible single base-pair substitution...

  16. Developing novel single molecule analyses of the single-stranded DNA binding protein from Sulfolobus solfataricus

    Morten, Michael J.


    Single-stranded DNA binding proteins (SSB) bind to single-stranded DNA (ssDNA) that is generated by molecular machines such as helicases and polymerases. SSBs play crucial roles in DNA translation, replication and repair and their importance is demonstrated by their inclusion across all domains of life. The homotetrameric E. coli SSB and the heterotrimeric human RPA demonstrate how SSBs can vary structurally, but all fulfil their roles by employing oligonucleotide/oligosaccharide binding (OB)...

  17. Rif1 and Rif2 inhibit localization of Tel1 to DNA ends

    Hirano, Yukinori; Fukunaga, Kenzo; Sugimoto, Katsunori


    Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks (DSBs) that activate the DNA damage checkpoint. In budding yeast, the ATM homolog Tel1 associates preferentially with short telomeres and promotes telomere addition. Here we show that the telomeric proteins Rif1 and Rif2 attenuate Tel1 recruitment to DNA ends through distinct mechanisms. Both Rif1 and Rif2 inhibit the localization of Tel1, but not the Mre11-Rad50-Xrs2 (MRX) complex, to adjacent DNA end...

  18. RNA binding specificity of hnRNP proteins: a subset bind to the 3' end of introns.

    Swanson, M S; Dreyfuss, G


    The binding of hnRNP proteins to pre-mRNAs in nuclear extracts, and as isolated proteins, was studied by using monoclonal antibody immunopurification of hnRNP proteins bound to RNase T1-generated fragments. Several major hnRNP proteins, A1, C and D, bind specifically to the 3' end of introns within a region containing the conserved polypyrimidine stretch between the branch site and the 3' splice site. Mutations which alter the conserved 3' splice site dinucleotide AG strongly impair or abolis...

  19. Binding Studies of Natural Product Berberine with DNA G-Quadruplex

    Nagendra K. Sharma


    Full Text Available Problem statement: The ends of chromosome had highly repetitive short G and C-rich sequences of DNA. These sequences were known to form stable tetraplex type of secondary structures which help to maintain gene integratity after cell divison. Approach: Any reagent which controls the random cell division would be useful to design anticancer drugs. Therefore a many natural and synthesized molecules which stabilized tetraplex structures are targeted as anticancer drug entities. Results: Among them, Berberine hydrochloride natural product and its analogues are well studies as G-quadruplex stabilizing agent. In this report, DNA sequence 5’-G3-C5-G3-3’ has been designed which has probability to form i-motif and G-qua druplex types of secondary structures. Herein we studied the interaction between this DNA strands and Berberine hydrochloride by 1H-NMR techniques and UV in two different PH (4.7 and 7.4 conditions. Conclusion/Recommendations: Our preliminary results showed that Berberine bind with this DNA strand in both pH conditions which is further supported by UV melting experiments. In future this sequence can be used as probe to screen out tetraplex binding natural products which help to generate new anticancer drugs.

  20. Monophosphate end groups produced in radiation induced strand breakage in DNA

    A solution of DNA was gamma-irradiated and treated with monophosphatase for studies on the amount of inorganic phosphate released as a function of time. Studies were also conducted on: effect of alkali on yield of monophosphate end groups; induction of DNA strand breaks by treatment with DNAase; initial G values for monophosphate termini; and effect of alkali on radioinduced DNA damage

  1. Interaction of zinc and cobalt with dipeptides and their DNA binding studies

    P Rabindra Reddy; M Radhika; K Srinivas Rao


    Interactions of zinc and cobalt with peptides cysteinylglycine and histidylglycine have been studied. The binding modes were identified and geometry assigned. Stabilities of these complexes and their ability to bind DNA have been investigated. It is demonstrated that only zinc complexes bind DNA as compared to cobalt complexes.

  2. 5'-end sequences of budding yeast full-length cDNA clones - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Full Text Available Budding yeast cDNA sequencing project 5'-end sequences of budding yeast full-length cDNA clones Data detail Data name 5'-end sequence...s of budding yeast full-length cDNA clones Description of data contents cDNA sequence...e Update History of This Database Site Policy | Contact Us 5'-end sequences of budding yeast full-length cDNA clones - Budding yeast cDNA sequencing project | LSDB Archive ...

  3. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes

    Bailey, Susan M.; Meyne, Julianne; Chen, David J.; Kurimasa, Akihiro; Li, Gloria C.; Lehnert, Bruce E.; Goodwin, Edwin H.


    Recent findings intriguingly place DNA double-strand break repair proteins at chromosome ends in yeast, where they help maintain normal telomere length and structure. In the present study, an essential telomere function, the ability to cap and thereby protect chromosomes from end-to-end fusions, was assessed in repair-deficient mouse cell lines. By using fluorescence in situ hybridization with a probe to telomeric DNA, spontaneously occurring chromosome aberrations were examined for telomere ...

  4. Characterization and DNA-Binding Specificities of Ralstonia TAL-Like Effectors

    Li, LiXin; Atef, Ahmed; Piatek, Agnieszka; Ali, Zahir; Piatek, Marek; Aouida, Mustapha; Sharakuu, Altanbadralt; Mahjoub, Ali; Wang, Guangchao; Khan, Suhail; Fedoroff, Nina V.; Zhu, Jian-Kang; Mahfouz, Magdy M


    We report the characterization of three Ralstonia TAL-like effectors, which mediate DNA binding and can be used as customizable architectures for DNA targeting. We determined DNA-binding specificities of novel repeat variable di-residues (RVDs) and devised a repeat assembly approach for engineering Ralstonia solanacearum TALE-like proteins (RTLs).

  5. Mechanism of the ATP-dependent DNA End Resection Machinery from S. cerevisiae

    Niu, Hengyao; Chung, Woo-Hyun; Zhu, Zhu; Kwon, YoungHo; Zhao, Weixing; Chi, Peter; Prakash, Rohit; Seong, Changhyun; Liu, Dongqing; Lu, Lucy; Ira, Gregory; Sung, Patrick


    If not properly processed and repaired, DNA double-strand breaks (DSBs) can give rise to deleterious chromosome rearrangements, which could ultimately lead to the tumor phenotype1,2. DSB ends are resected in a 5′ to 3′ fashion in cells, to yield single-stranded DNA for the recruitment of factors critical for DNA damage checkpoint activation and repair by homologous recombination2. The resection process involves redundant pathways consisting of nucleases, DNA helicases, and associated proteins...

  6. ncDNA and drift drive binding site accumulation

    Ruths Troy


    Full Text Available Abstract Background The amount of transcription factor binding sites (TFBS in an organism’s genome positively correlates with the complexity of the regulatory network of the organism. However, the manner by which TFBS arise and accumulate in genomes and the effects of regulatory network complexity on the organism’s fitness are far from being known. The availability of TFBS data from many organisms provides an opportunity to explore these issues, particularly from an evolutionary perspective. Results We analyzed TFBS data from five model organisms – E. coli K12, S. cerevisiae, C. elegans, D. melanogaster, A. thaliana – and found a positive correlation between the amount of non-coding DNA (ncDNA in the organism’s genome and regulatory complexity. Based on this finding, we hypothesize that the amount of ncDNA, combined with the population size, can explain the patterns of regulatory complexity across organisms. To test this hypothesis, we devised a genome-based regulatory pathway model and subjected it to the forces of evolution through population genetic simulations. The results support our hypothesis, showing neutral evolutionary forces alone can explain TFBS patterns, and that selection on the regulatory network function does not alter this finding. Conclusions The cis-regulome is not a clean functional network crafted by adaptive forces alone, but instead a data source filled with the noise of non-adaptive forces. From a regulatory perspective, this evolutionary noise manifests as complexity on both the binding site and pathway level, which has significant implications on many directions in microbiology, genetics, and synthetic biology.

  7. DNA Bending is Induced in an Enhancer by the DNA-Binding Domain of the Bovine Papillomavirus E2 Protein

    Moskaluk, Christopher; Bastia, Deepak


    The E2 gene of bovine papillomavirus type 1 has been shown to encode a DNA-binding protein and to trans-activate the viral enhancer. We have localized the DNA-binding domain of the E2 protein to the carboxyl-terminal 126 amino acids of the E2 open reading frame. The DNA-binding domain has been expressed in Escherichia coli and partially purified. Gel retardation and DNase I ``footprinting'' on the bovine papillomavirus type 1 enhancer identify the sequence motif ACCN6GGT (in which N = any nucleotide) as the E2 binding site. Using electrophoretic methods we have shown that the DNA-binding domain changes conformation of the enhancer by inducing significant DNA bending.

  8. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis.

    Itoh, G; Tamura, J; M. Suzuki; Suzuki, Y.; Ikeda, H; Koike, M; Nomura, M; Jie, T; Ito, K


    Myocardial tissue taken from 19 autopsy cases of myocardial infarction were examined both by the nick and labeling method (NELM) and by DNA agarose gel electrophoresis in order to demonstrate the localization of cells with fragmented DNA and to confirm the internucleosomal cleavage of DNA biochemically. The nuclei corresponding to those with the histological features of acute myocardial infarction in hematoxylin and eosin (H&E)-stained sections were stained strongly positive with the nick end...

  9. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    Rebecca Cook


    Full Text Available Deficiencies in DNA double-strand break (DSB repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1 is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ. Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.

  10. DNABINDPROT: fluctuation-based predictor of DNA-binding residues within a network of interacting residues

    Ozbek, Pemra; Soner, Seren; Erman, Burak; Haliloglu, Turkan


    DNABINDPROT is designed to predict DNA-binding residues, based on the fluctuations of residues in high-frequency modes by the Gaussian network model. The residue pairs that display high mean-square distance fluctuations are analyzed with respect to DNA binding, which are then filtered with their evolutionary conservation profiles and ranked according to their DNA-binding propensities. If the analyses are based on the exact outcome of fluctuations in the highest mode, using a conservation thre...

  11. Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos.

    Hentges, Pierre; Ahnesorg, Peter; Pitcher, Robert S; Bruce, Chris K; Kysela, Boris; Green, Andrew J; Bianchi, Julie; Wilson, Thomas E; Jackson, Stephen P; Doherty, Aidan J


    Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF (also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery. PMID:17038309

  12. Prediction of transcription factor binding to DNA using rule induction methods

    Huss, Mikael; Nordström, Karin


    The transcription of DNA into mRNA is initiated and aided by a number of transcription factors (TFs), proteins with DNA-binding regions that attach themselves to binding sites in the DNA (transcription factor binding sites, TFBSs). As it has become apparent that both TFs and TFBSs are highly variable, tools are needed to quantify the strength of the interaction resulting from a certain TF variant binding to a certain TFBS. We used a simple way to predict interactions between protein and DNA: ...

  13. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain.

    Morris, Gavin; Fanucchi, Sylvia


    Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members. PMID:26950495

  14. Glycation of Ribonuclease A affects its enzymatic activity and DNA binding ability.

    Dinda, Amit Kumar; Tripathy, Debi Ranjan; Dasgupta, Swagata


    Prolonged non-enzymatic glycation of proteins results in the formation of advanced glycation end products (AGEs) that cause several diseases. The glycation of Ribonuclease A (RNase A) at pH 7.4 and 37 °C with ribose, glucose and fructose has been monitored by UV-vis, fluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption ionization spectroscopy-time of flight (MALDI-TOF) methods. The enzymatic activity and DNA binding ability of glycated RNase A was also investigated by an agarose gel-based assay. A precipitation assay examined the ribonucleolytic activity of the glycated enzyme. An increase in incubation time resulted in the formation of high molecular weight AGEs with a decrease in ribonucleolytic activity. Ribose exhibits the highest potency as a glycating agent and showed the greatest reduction in the ribonucleolytic activity of the enzyme. Interestingly, glycated RNase A was unable to bind with the ribonuclease inhibitor (RI) and DNA. The glycated form of the protein was also found to be ineffective in DNA melting unlike native RNase A. PMID:26365067

  15. Drug binding to higher ordered DNA structures: netropsin complexation with a nucleic acid triple helix.

    Park, Y. W.; Breslauer, K J


    We have used a combination of spectroscopic and calorimetric techniques to characterize how netropsin, a ligand that binds in the minor groove of DNA, influences the properties of a DNA triple helix. Specifically, our data allow us to reach the following conclusions: (i) netropsin binds to the triplex without displacing the major-groove-bound third strand; (ii) netropsin binding to the triplex exhibits a lower saturation binding density (7.0 base triplets per netropsin bound) than netropsin b...

  16. Relationship of Structure and Function of DNA-Binding Domain in Vitamin D Receptor

    Lin-Yan Wan


    Full Text Available While the structure of the DNA-binding domain (DBD of the vitamin D receptor (VDR has been determined in great detail, the roles of its domains and how to bind the motif of its target genes are still under debate. The VDR DBD consists of two zinc finger modules and a C-terminal extension (CTE, at the end of the C-terminal of each structure presenting α-helix. For the first zinc finger structure, N37 and S-box take part in forming a dimer with 9-cis retinoid X receptor (RXR, while V26, R50, P-box and S-box participate in binding with VDR response elements (VDRE. For the second zinc finger structure, P61, F62 and H75 are essential in the structure of the VDR homodimer with the residues N37, E92 and F93 of the downstream of partner VDR, which form the inter-DBD interface. T-box of the CTE, especially the F93 and I94, plays a critical role in heterodimerization and heterodimers–VDRE binding. Six essential residues (R102, K103, M106, I107, K109, and R110 of the CTE α-helix of VDR construct one interaction face, which packs against the DBD core of the adjacent symmetry mate. In 1,25(OH2D3-activated signaling, the VDR-RXR heterodimer may bind to DR3-type VDRE and ER9-type VDREs of its target gene directly resulting in transactivation and also bind to DR3-liked nVDRE of its target gene directly resulting in transrepression. Except for this, 1α,25(OH2D3 ligand VDR-RXR may bind to 1αnVDRE indirectly through VDIR, resulting in transrepression of the target gene. Upon binding of 1α,25(OH2D3, VDR can transactivate and transrepress its target genes depending on the DNA motif that DBD binds.

  17. Solution measurement of DNA curvature in papillomavirus E2 binding sites

    Zimmerman, Jeff M.; Maher, L. James


    ‘Indirect readout’ refers to the proposal that proteins can recognize the intrinsic three-dimensional shape or flexibility of a DNA binding sequence apart from direct protein contact with DNA base pairs. The differing affinities of human papillomavirus (HPV) E2 proteins for different E2 binding sites have been proposed to reflect indirect readout. DNA bending has been observed in X-ray structures of E2 protein–DNA complexes. X-ray structures of three different E2 DNA binding sites revealed di...

  18. DNA structure, binding mechanism and biology functions of polypyridyl complexes in biomedicine


    There is considerable research interest and vigorous debate about the DNA binding of polypyridyl complexes including the electron transfer involving DNA. In this review, based on the fluorescence quenching experiments, it was proposed that DNA might serve as a conductor. From the time-interval CD spectra, the different binding rates of D- and L-enantiomer to calf thymus DNA were observed. The factors influencing the DNA-binding of polypyridyl complexes, and the potential bio-functions of the complexes are also discussed.

  19. Stepwise bending of DNA by a single TATA box binding protein

    Tolic-Nørrelykke, Simon F; Rasmussen, Mette B; Pavone, Francesco S;


    The TATA-box binding protein (TBP) is required by all three eucaryotic RNA polymerases for the initiation of transcription from most promoters. TBP recognizes, binds to, and bends promoter sequences called "TATA-boxes" in the DNA. We present results from the study of individual Saccharomyces...... cerevisiae TBPs interacting with single DNA molecules containing a TATA-box. Using video microscopy, we observed the Brownian motion of the beads tethered by short surface-bound DNA. When TBP binds to and bends the DNA, the conformation of the DNA changes and the amplitude of Brownian motion of the tehtered...

  20. Recognition of DNA sequencing through binding of nucleobases to graphene

    Zaffino, Valentina

    Graphene is one of the most promising materials in nanotechnology. Its large surface to volume ratio, high conductivity and electron mobility at room temperature are outstanding properties for use in DNA sensors. For this study, we used Density Functional Theory (DFT), ?with and without the inclusion of van der Waals (vdW) interactions, ?to investigate the adsorption of nucleobases (cytosine, guanine, adenine, thymine, and uracil) on pristine graphene and graphene with defects (Divacancy and Stone-Wales). We investigated the performance of two types of vdW-DF functional (optB86b-vdW and rPW86-vdW), as well as the PBE functional, and their description of the adsorption geometry and electronic structure of the nucleobase-graphene systems.The inclusion of defects results in an increase in binding energy, closer adsorption of the molecule to graphene and greater buckling in both the graphene structure and nucleobase.

  1. Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends.

    Tsai, Chun J; Kim, Sunny A; Chu, Gilbert


    Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation or V(D)J recombination of the immunoglobulin genes. The breaks often leave mismatched or nonligatable ends, and NHEJ must repair the breaks with high efficiency and minimal nucleotide loss. Here, the NHEJ proteins Ku, DNA-dependent protein kinase catalytic subunit, XRCC4/Ligase IV, and Cernunnos/XRCC4-like factor joined mismatched and noncohesive DNA ends in the absence of processing factors. Depending on the mismatch, Cernunnos stimulated joining 8- to 150-fold. For substrates with a blunt end and a 3' overhanging end, Ku, XRCC4/Ligase IV, and Cernunnos ligated the 3' overhanging hydroxyl group to the 5' phosphate of the blunt end, leaving the other strand unjoined. This activity provides a mechanism for retaining 3' overhang sequences, as observed during V(D)J recombination in vivo. Thus, Cernunnos/XRCC4-like factor promotes a mismatched end (MEnd) DNA ligase activity to facilitate joining and to preserve DNA sequence. Furthermore, MEnd ligase activity may have applications in recombinant DNA technology. PMID:17470781

  2. cDNA cloning and characterization of a mannose-binding lectin from Zingiber officinale Roscoe (ginger) rhizomes

    Zhonghai Chen; Guoyin Kai; Xiaojun Liu; Juan Lin; Xiaofen Sun; Kexuan Tang


    Using RNA extracted from Zingiber officinale rhizomes and primers designed according to the conservative regions of monocot mannose-binding lectins, the full-length cDNA of Z. officinale agglutinin (ZOA) was cloned by rapid amplification of cDNA ends (RACE). The full-length cDNA of zoa was 746 bp and contained a 510 bp open reading frame (ORF) encoding a lectin precursor of 169 amino acids with a signal peptide. ZOA was a mannose-binding lectin with three typical mannose-binding sites (QDNY). Semi-quantitative RT-PCR analysis revealed that zoa expressed in all the tested tissues of Z. officinale including leaf, root and rhizome, suggesting it to be a constitutively expressing form. ZOA protein was successfully expressed in Escherichia coli with the molecular weight expected. To our knowledge, this is the first mannose-binding lectin cDNA cloned from the family Zingiberaceae. Our results demonstrate that monocot mannose-binding lectins also occur within the family Zingiberaceae.

  3. Conserved Cysteine Residue in the DNA-Binding Domain of the Bovine Papillomavirus Type 1 E2 Protein Confers Redox Regulation of the DNA- Binding Activity in Vitro

    McBride, Alison A.; Klausner, Richard D.; Howley, Peter M.


    The bovine papillomavirus type 1 E2 open reading frame encodes three proteins involved in viral DNA replication and transcriptional regulation. These polypeptides share a carboxyl-terminal domain with a specific DNA-binding activity; through this domain the E2 polypeptides form dimers. In this study, we demonstrate the inhibition of E2 DNA binding in vitro by reagents that oxidize or otherwise chemically modify the free sulfydryl groups of reactive cysteine residues. However, these reagents had no effect on DNA-binding activity when the E2 polypeptide was first bound to DNA, suggesting that the free sulfydryl group(s) may be protected by DNA binding. Sensitivity to sulfydryl modification was mapped to a cysteine residue at position 340 in the E2 DNA-binding domain, an amino acid that is highly conserved among the E2 proteins of different papillomaviruses. Replacement of this residue with other amino acids abrogated the sensitivity to oxidation-reduction changes but did not affect the DNA-binding property of the E2 protein. These results suggest that papillomavirus DNA replication and transcriptional regulation could be modulated through the E2 proteins by changes in the intracellular redox environment. Furthermore, a motif consisting of a reactive cysteine residue carboxyl-terminal to a lysine residue in a basic region of the DNA-binding domain is a feature common to a number of transcriptional regulatory proteins that, like E2, are subject to redox regulation. Thus, posttranslational regulation of the activity of these proteins by the intracellular redox environment may be a general phenomenon.

  4. Xenopus Cds1 Is Regulated by DNA-Dependent Protein Kinase and ATR during the Cell Cycle Checkpoint Response to Double-Stranded DNA Ends

    McSherry, Troy D.; Mueller, Paul R.


    The checkpoint kinase Cds1 (Chk2) plays a key role in cell cycle checkpoint responses with functions in cell cycle arrest, DNA repair, and induction of apoptosis. Proper regulation of Cds1 is essential for appropriate cellular responses to checkpoint-inducing insults. While the kinase ATM has been shown to be important in the regulation of human Cds1 (hCds1), here we report that the kinases ATR and DNA-dependent protein kinase (DNA-PK) play more significant roles in the regulation of Xenopus Cds1 (XCds1). Under normal cell cycle conditions, nonactivated XCds1 constitutively associates with a Xenopus ATR complex. The association of XCds1 with this complex does not require a functional forkhead activation domain but does require a putative SH3 binding region that is found in XCds1. In response to double-stranded DNA ends, the amino terminus of XCds1 is rapidly phosphorylated in a sequential pattern. First DNA-PK phosphorylates serine 39, a site not previously recognized as important in Cds1 regulation. Xenopus ATM, ATR, and/or DNA-PK then phosphorylate three consensus serine/glutamine sites. Together, these phosphorylations have the dual function of inducing dissociation from the ATR complex and independently promoting the full activation of XCds1. Thus, the checkpoint-mediated activation of XCds1 requires phosphorylation by multiple phosphoinositide 3-kinase-related kinases, protein-protein dissociation, and autophosphorylation. PMID:15509799

  5. Binding of the antitumor drug nogalamycin and its derivatives to DNA: Structural comparison

    The three-dimensional molecular structures of the complexes between a novel antitumor drug nogalamycin and its derivative U-58872 with a modified DNA hexamer d[m5CGT(pS)Am5CG] have been determined at 1.7- and 1.8-angstrom resolution, respectively, by X-ray diffraction analyses. Both structures (in space group P61) have been refined with constrained refinement procedure to final R factors of 0.208 (3386 reflections) and 0.196 (2143 reflections). In both complexes, two nogalamycins bind to the DNA hexamer double helix in a 2:1 ratio with the elongated aglycon chromophore intercalated between the CpG steps at both ends of the helix. The aglycon chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. Most of the sugars remain in the C2'-endo pucker family, except three deoxycytidine residues (terminal C1, C7, and internal C5). All nucleotides are in the anti conformation. Specific hydrogen bonds are found in the complex between the drug and guanine-cytosine bases in both grooves of the helix. One hydroxyl group of the aminoglucose donates a hydrogen bond to the N7 of guanine, while the other receives a hydrogen bond from the N4 amino group of cytosine. The orientation of these two hydrogen bonds suggests that nogalamycin prefers a GC base pair with its aglycon chromophore intercalating at the 5'-side of a guanine (between NpG), or at the 3'-side of a cytosine (between CpN) with the sugars pointing toward the GC base pair. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through, suggesting that nogalamycin prefers GC sequences embedded in a stretch of AT sequences

  6. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K


    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs. PMID:25824951

  7. Controlling DNA-End Resection: An Emerging Task for Ubiquitin and SUMO.

    Himmels, Sarah-Felicitas; Sartori, Alessandro A


    DNA double-strand breaks (DSBs) are one of the most detrimental lesions, as their incorrect or incomplete repair can lead to genomic instability, a hallmark of cancer. Cells have evolved two major competing DSB repair mechanisms: Homologous recombination (HR) and non-homologous end joining (NHEJ). HR is initiated by DNA-end resection, an evolutionarily conserved process that generates stretches of single-stranded DNA tails that are no longer substrates for religation by the NHEJ machinery. Ubiquitylation and sumoylation, the covalent attachment of ubiquitin and SUMO moieties to target proteins, play multifaceted roles in DNA damage signaling and have been shown to regulate HR and NHEJ, thus ensuring appropriate DSB repair. Here, we give a comprehensive overview about the current knowledge of how ubiquitylation and sumoylation control DSB repair by modulating the DNA-end resection machinery. PMID:27602047

  8. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation



    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  9. The DNA Binding Domain of a Papillomavirus E2 Protein Programs a Chimeric Nuclease To Cleave Integrated Human Papillomavirus DNA in HeLa Cervical Carcinoma Cells▿

    Horner, Stacy M.; DiMaio, Daniel


    Viral DNA binding proteins that direct nucleases or other protein domains to viral DNA in lytically or latently infected cells may provide a novel approach to modulate viral gene expression or replication. Cervical carcinogenesis is initiated by high-risk human papillomavirus (HPV) infection, and viral DNA persists in the cancer cells. To test whether a DNA binding domain of a papillomavirus protein can direct a nuclease domain to cleave HPV DNA in cervical cancer cells, we fused the DNA bind...

  10. DNA-binding specificity and molecular functions of NAC transcription factors

    Olsen, Addie Nina; Ernst, Heidi Asschenfeldt; Lo Leggio, Leila;


    The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites for....... Furthermore, NAC protein binding to the CaMV 35S promoter was shown to depend on sequences similar to the consensus of the selected oligonucleotides. Electrophoretic mobility shift assays demonstrated that NAC proteins bind DNA as homo- or heterodimers and that dimerization is necessary for stable DNA binding....... The ability of NAC proteins to dimerize and to bind DNAwas analysed by structure-based mutagenesis. This identified two salt bridge-forming residues essential for NAC protein dimerization. Alteration of basic residues in a loop region containing several highly conserved residues abolished DNA binding...

  11. Functional zinc-binding motifs in enzymes and DNA-binding proteins.

    Vallee, B L; Auld, D S


    Zinc is now known to be an integral component of a large number and variety of enzymes and proteins involved in virtually all aspects of metabolism, thus accounting for the fact that this element is essential for growth and development. The chemistry of zinc, superficially bland, in reality has turned out to be ideally appropriate and versatile for the unexpected development of multiple and unique chemical structures which biology has used for specific life processes. The present discussion will centre on those distinctive zinc-binding motifs that are critical both to enzyme function and the expression of the genetic message. X-Ray diffraction structure determination of 15 zinc enzymes belonging to IUB classes I-IV provide absolute standards of reference for the identity and nature of zinc ligands in their families. Three types of zinc enzyme binding motifs emerge through analysis of these: catalytic, coactive or cocatalytic, and structural. In contrast to zinc enzymes virtually all DNA-binding proteins contain multiple zinc atoms. With the availability of NMR and X-ray structure analyses three distinct motifs now emerge for those: zinc fingers, twists and clusters. PMID:1290939

  12. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase

    Davidson, John F.; Fox, Richard; Harris, Dawn D.; Lyons-Abbott, Sally; Loeb, Lawrence A.


    Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq...

  13. DNA bending is induced in an enhancer by the DNA-binding domain of the bovine papillomavirus E2 protein.

    Moskaluk, C; Bastia, D


    The E2 gene of bovine papillomavirus type 1 has been shown to encode a DNA-binding protein and to trans-activate the viral enhancer. We have localized the DNA-binding domain of the E2 protein to the carboxyl-terminal 126 amino acids of the E2 open reading frame. The DNA-binding domain has been expressed in Escherichia coli and partially purified. Gel retardation and DNase I "footprinting" on the bovine papillomavirus type 1 enhancer identify the sequence motif ACCN6GGT (in which N = any nucle...

  14. Direct Single-Stranded DNA Binding by Teb1 Mediates the Recruitment of Tetrahymena thermophila Telomerase to Telomeres

    Upton, Heather E.; Hong, Kyungah; Collins, Kathleen


    The eukaryotic reverse transcriptase telomerase copies its internal RNA template to synthesize telomeric DNA repeats at chromosome ends in balance with sequence loss during cell proliferation. Previous work has established several factors involved in telomerase recruitment to telomeres in yeast and mammalian cells; however, it remains unclear what determines the association of telomerase with telomeres in other organisms. Here we investigate the cell cycle dependence of telomere binding by ea...

  15. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation.

    Deniz Simsek; Erika Brunet; Sunnie Yan-Wai Wong; Sachin Katyal; Yankun Gao; McKinnon, Peter J.; Jacqueline Lou; Lei Zhang; James Li; Rebar, Edward J; Gregory, Philip D.; Michael C. Holmes; Maria Jasin


    International audience Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translo...

  16. Study of MMLV RT- Binding with DNA using Surface Plasmon Resonance Biosensor

    Lei WU; Ming-Hui HUANG; Jian-Long ZHAO; Meng-Su YANG


    Surface plasmon resonance biosensor technique was used to study the binding of Moloney murine leukemia virus reverse transcriptase without RNase H domain (MMLV RT-) with DNA in the absence and in the presence of inhibitors. Different DNA substrates, including single-stranded DNA (ssDNA),DNA template-primer (T-P) duplex and gapped DNA, were immobilized on the biosensor chip surface using streptavidin-biotin, and MMLV RT--DNA binding kinetics were analyzed by different models. MMLV RT-could bind with ssDNA and the binding was involved in conformation change. MMLV RT- binding DNA T-P duplex and gapped DNA could be analyzed using the simple 1:1 Langmuir model. The lack of RNase H domain reduced the affinity between MMLV RT- and T-P duplex. The effects of RT inhibitors, including efavirenz, nevirapine and quercetin, on the interaction between MMLV RT- and gapped DNA were analyzed according to recovered kinetics parameters. Efavirenz slightly interfered with the binding between RT and DNA and the affinity constant in the presence of the inhibitor (KA=1.21× 106 M-1) was lower than in the absence of the inhibitor (KA=4.61× 106 M-1). Nevirapine induced relatively tight binding between RT and DNA and the affinity constant in the presence of the inhibsitor (KA=l.47×107 M-1) was approximately three folds higher than without nevirapine, mainly due to rapid association and slow dissociation. Quercetin, a flavonoid originating from plant which has previously shown strong inhibition of the activity of RT, was found to have minimal effect on the RT-DNA binding.

  17. Isolation of cDNAs encoding a human protein that binds selectively to DNA modified by the anticancer drug cis-diammine-dichloroplatinum(II)

    DNA modified by the antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP or cisplatin) was used to identify a factor in mammalian cells that binds to cis-DDP-damaged DNA and hence may play a role in repair. This factor selectivity recognizes double-stranded DNA fragments modified by cis-DDP or [Pt(en)Cl2] (en, ethylenediamine). Little or no binding occurs to unmodified double-stranded DNA or to DNA modified with the clinically ineffective compounds trans-DDP and [Pt(dien)Cl]Cl (dien, diethylenetriamine). Low levels of binding to single-stranded DNA modified by cis-DDP are observed. The apparent molecular mass of the factor in a variety of mammalian cells is ∼ 100 kDa, as determined by modified Western blotting. Two recombinant phage have been isolated from a human B-cell λgt11 library by using a cis-DDP-modified DNA restriction fragments as a probe. The two clones have insert sizes of 1.88 and 1.44 kilobases and are aligned at their 5' ends. The polypeptides encoded by the recombinant phage exhibit DNA binding properties similar to those of the cellular factor identified in crude extracts prepared from mammalian cells. Northern analysis with one of the clones revealed an mRNA of 2.8 kilobases that is conserved in humans and rodents. The methods used here should be applicable in studies of other damage-specific DNA binding proteins

  18. Interindividual variation in binding of benzo[a]pyrene to DNA in cultured human Bronchi

    Harris, C.C.; Autrup, Herman; Connor, R.;


    The binding of benzo[a]pyrene to DNA in cultured human bronchus was measured in specimens from 37 patients. The binding values ranged from 2 to 151 picomoles of benzo[a]pyrene per milligram of DNA with an overall mean +/- standard error of 34.2 +/- 5.2. This 75-fold interindividual variation in t...

  19. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors

    Li, Lixin


    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. © 2013 The Author.

  20. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors.

    Li, Lixin; Atef, Ahmed; Piatek, Agnieszka; Ali, Zahir; Piatek, Marek; Aouida, Mustapha; Sharakuu, Altanbadralt; Mahjoub, Ali; Wang, Guangchao; Khan, Suhail; Fedoroff, Nina V; Zhu, Jian-Kang; Mahfouz, Magdy M


    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. PMID:23300258

  1. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar


    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  2. Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking

    Shi, Jie-Hua; Chen, Jun; Wang, Jing; Zhu, Ying-Yao


    The binding interaction of sorafenib with calf thymus DNA (ct-DNA) was studied using UV-vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results revealed that there was obvious binding interaction between sorafenib and ct-DNA. The binding constant (Kb) of sorafenib with ct-DNA was 5.6 × 103 M-1 at 298 K. The enthalpy and entropy changes (ΔH0 and ΔS0) in the binding process of sorafenib with ct-DNA were -27.66 KJ mol-1 and -21.02 J mol-1 K-1, respectively, indicating that the main binding interaction forces were van der Waals force and hydrogen bonding. The docking results suggested that sorafenib preferred to bind on the minor groove of A-T rich DNA and the binding site of sorafenib was 4 base pairs long. The conformation change of sorafenib in the sorafenib-DNA complex was obviously observed and the change was close relation with the structure of DNA, implying that the flexibility of sorafenib molecule played an important role in the formation of the stable sorafenib-ct-DNA complex.

  3. An Overview of the Prediction of Protein DNA-Binding Sites

    Jingna Si


    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  4. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.

    Vallee, B L; Coleman, J E; Auld, D S


    We now recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have be...

  5. A Novel Approach to Predict Core Residues on Cancer-Related DNA-Binding Domains

    Ka-Chun Wong


    Protein–DNA interactions are involved in different cancer pathways. In particular, the DNA-binding domains of proteins can determine where and how gene regulatory regions are bound in different cell lines at different stages. Therefore, it is essential to develop a method to predict and locate the core residues on cancer-related DNA-binding domains. In this study, we propose a computational method to predict and locate core residues on DNA-binding domains. In particular, we have selected the ...

  6. DNA binding during expanded bed adsorption and factors affecting adsorbent aggregation

    Arpanaei, Ayyoob; Mathiasen, N.; Hobley, Timothy John


    tolerance of anion exchangers when binding DNA. However, more importantly. with the adsorbents examined here. attempts to reduce bed aggregation by feedstock conditioning with added salt may increase DNA binding leading to a reduction in expanded bed adsorption performance compromising protein capture...... ligand densities to be examined. Very high dynamic binding capacities at 10% breakthrough were found in the absence of added salt. However, the highest binding capacities (similar to 10 and similar to 19mg DNA ml(-1) gel) were found in buffers containing added salt at concentrations of either 0.25 or 0......) even though the dynamic binding capacity was reduced as DNA concentration was increased. The extent of bed contraction during DNA loading was found to be a function of added salt concentration and ligand density of the adsorbent. The results imply that ligand density significantly affects the salt...

  7. The Microtubule-Associated Protein END BINDING1 Modulates Membrane Trafficking Pathways in Plant Root Cells

    Shahidi, Saeid


    EB1 protein preferentially binds to the fast growing ends of microtubules where it regulates microtubule dynamics. In addition to microtubules, EB1 interacts with several additional proteins, and through these interactions modulates various cellular processes. Arabidopsis thaliana eb1 mutants have roots that exhibit aberrant responses to touch/gravity cues. Columella cells in the centre of the root cap are polarized and play key roles in these responses by functioning as sensors.I examined th...

  8. High Purity DNA Extraction with a SPE Microfluidic Chip Using KI as the Binding Salt

    Xing CHEN; Da Fu CUI; Chang Chun LIU


    Based on solid phase extraction method, a novel silicon-PDMS-glass microchip for high purity DNA extraction has been developed by using KI as the binding salt. The microfluidic chip fabricated by MEMS technology was composed of a silicon substrate with a coiled channel and a compounded PDMS-glass cover. With this microfluidic chip, the wall of the coiled channel was used as solid phase matrix for binding DNA and DNA was extracted by the fluxion of the binding buffer, washing buffer and elution buffer. KI as a substitute for guanidine, was used successfully as binding salt for purification DNA, obtaining higher purity of genomic DNA and about 13.9 ng DNA from 1 μL rat whole blood in 35 minutes.

  9. Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopies.

    Révet, B; Fourcade, A


    A comparative study of the stabilisation of DNA sticky ends by divalent cations was carried out by atomic force microscopy (AFM), electron microscopy and agarose gel electrophoresis. At room temperature, molecules bearing such extremities are immediately oligomerised or circularised by addition of Mg2+or Ca2+. This phenomenon, more clearly detected by AFM, requires the presence of uranyl salt, which stabilises the structures induced by Mg2+or Ca2+. DNA fragments were obtained by restriction enzymes producing sticky ends of 2 or 4 nucleotides (nt) in length with different guanine plus cytosine (GC) contents. The stability of the pairing is high when ends of 4 nt display a 100% GC-content. In that case, 95% of DNA fragments are maintained circular by the divalent cations, although 2 nt GC-sticky ends are sufficient for a stable pairing. DNA fragments with one blunt end and the other sticky appear as dimers in the presence of Mg2+. Dimerisation was analysed by varying the lengths and concentrations of DNA fragments, the base composition of the sticky ends, and also the temperature. Our observation provides a new powerful tool for construction of inverted dimers, and circularisation, ligation analysis or short bases sequence interaction studies. PMID:9547265

  10. Luminescence and binding properties of two isoquinoline alkaloids chelerythrine and sanguinarine with ctDNA

    Li, Junfen; Li, Baohong; Wu, Yanbo; Shuang, Shaomin; Dong, Chuan; Choi, Martin M. F.


    The binding mode and mechanism of the interactions between two planar cationic alkaloids chelerythrine (Che) and sanguinarine (San) with calf thymus DNA (ctDNA) were systematically investigated at pH 5.40 using UV-vis absorption spectroscopy, fluorescence spectroscopy and cyclic voltammetry. Che and San show strong fluorescence at 570 and 589 nm, respectively. Che displays fluorescence enhancement with ctDNA whereas the fluorescence of San is quenched on interaction with ctDNA. In addition, UV-vis spectra of both alkaloids show apparent hypochromicity and are bathochromic shifted, indicating that they could intercalate into ctDNA bases. The fluorescence polarization of Che and San increases in the presence of ctDNA, again implying the intercalation of two alkaloids with ctDNA. This conclusion was also supported by the results obtained from anion quenching and cyclic voltammetry. The binding constants of both alkaloids with ctDNA were calculated in the order of 105 L/mol. San binds with ctDNA 3-fold stronger than Che. The stoichiometric bindings are five nucleotides per Che or San. Electrostatic binding also exists between the alkaloids and DNA helix. Finally, theoretical calculations show that only certain parts of Che and San molecules intercalate into the DNA helix.

  11. Determination of the cationic amphiphilic drug-DNA binding mode and DNA-assisted fluorescence resonance energy transfer amplification

    Yaseen, Zahid; Banday, Abdul Rouf; Hussain, Mohammed Aamir; Tabish, Mohammad; Kabir-ud-Din


    Understanding the mechanism of drug-DNA binding is crucial for predicting the potential genotoxicity of drugs. Agarose gel electrophoresis, absorption, steady state fluorescence, and circular dichroism have been used in exploring the interaction of cationic amphiphilic drugs (CADs) such as amitriptyline hydrochloride (AMT), imipramine hydrochloride (IMP), and promethazine hydrochloride (PMT) with calf thymus or pUC19 DNA. Agarose gel electrophoresis assay, along with absorption and steady state fluorescence studies, reveal interaction between the CADs and DNA. A comparative study of the drugs with respect to the effect of urea, iodide induced quenching, and ethidium bromide (EB) exclusion assay reflects binding of CADs to the DNA primarily in an intercalative fashion. Circular dichroism data also support the intercalative mode of binding. Besides quenching, there is fluorescence exchange energy transfer (FRET) in between CADs and EB using DNA as a template.

  12. A novel role for DNA photolyase: binding to DNA damaged by drugs is associated with enhanced cytotoxicity in Saccharomyces cerevisiae.

    Fox, M E; Feldman, B. J.; Chu, G.


    DNA photolyase binds to and repairs cyclobutane pyrimidine dimers induced by UV radiation. Here we demonstrate that in the yeast Saccharomyces cerevisiae, photolyase also binds to DNA damaged by the anticancer drugs cis-diamminedichloroplatinum (cis-DDP) and nitrogen mustard (HN2) and by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Surprisingly, mutations in photolyase were associated with resistance of yeast cells to cis-DDP, MNNG, 4-nitroquinoline oxide (4NQO), and HN2....

  13. Coupling end resection with the checkpoint response at DNA double-strand breaks.

    Villa, Matteo; Cassani, Corinne; Gobbini, Elisa; Bonetti, Diego; Longhese, Maria Pia


    DNA double-strand breaks (DSBs) are a nasty form of damage that needs to be repaired to ensure genome stability. The DSB ends can undergo a strand-biased nucleolytic processing (resection) to generate 3'-ended single-stranded DNA (ssDNA) that channels DSB repair into homologous recombination. Generation of ssDNA also triggers the activation of the DNA damage checkpoint, which couples cell cycle progression with DSB repair. The checkpoint response is intimately linked to DSB resection, as some checkpoint proteins regulate the resection process. The present review will highlight recent works on the mechanism and regulation of DSB resection and its interplays with checkpoint activation/inactivation in budding yeast. PMID:27141941

  14. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.


    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  15. Linkage structures strongly influence the binding cooperativity of DNA intercalators conjugated to triplex forming oligonucleotides.


    Conjugation of DNA intercalators to triple helix forming oligodeoxynucleotides (ODN's) can enhance ODN binding properties and consequently their potential ability to modulate gene expression. To test the hypothesis that linkage structure could strongly influence the binding enhancement of intercalator conjugation with triplex forming ODN's, we have used a model system to investigate binding avidity of short oligomers conjugated to DNA intercalators through various linkages. Using a dA10.T10 t...

  16. Duplex structural differences and not 2′-hydroxyls explain the more stable binding of HIV-reverse transcriptase to RNA-DNA versus DNA-DNA

    Olimpo, Jeffrey T.; DeStefano, Jeffrey J


    Human immunodeficiency virus reverse transcriptase (HIV-RT) binds more stably in binary complexes with RNA–DNA versus DNA–DNA. Current results indicate that only the -2 and -4 RNA nucleotides (-1 hybridized to the 3′ recessed DNA base) are required for stable binding to RNA–DNA, and even a single RNA nucleotide conferred significantly greater stability than DNA–DNA. Replacing 2′- hydroxyls on pivotal RNA bases with 2′-O-methyls did not affect stability, indicating that interactions between hy...


    Liu, Ying; Matthews, Kathleen S.; Bondos, Sarah E.


    In developing bilaterans, the Hox transcription factor family regulates batteries of downstream genes to diversify serially repeated units. Given Hox homeodomains bind a wider array of DNA binding sites in vitro than are regulated by the full-length protein in vivo, regions outside the homeodomain must aid DNA site selection. Indeed, we find affinity for disparate DNA sequences varies less than 3-fold for the homeodomain isolated from the Drosophila Hox protein Ultrabithorax Ia (UbxHD), where...

  18. Structural and dynamic properties of linker histone H1 binding to DNA

    Dootz, Rolf; Toma, Adriana C.; Pfohl, Thomas


    Found in all eukaryotic cells, linker histones H1 are known to bind to and rearrange nucleosomal linker DNA. In vitro, the fundamental nature of H1/DNA interactions has attracted wide interest among research communities - for biologists from a chromatin organization deciphering point of view, and for physicists from the study of polyelectrolyte interactions point of view. Hence, H1/DNA binding processes, structural and dynamical information about these self-assemblies is of broad importance. ...

  19. Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore

    Dorvel, B.; Sigalov, G.; Zhao, Q.; Comer, J.; Dimitrov, V; Mirsaidov, U.; Aksimentiev, A.; Timp, G.


    Restriction endonucleases are used prevalently in recombinant DNA technology because they bind so stably to a specific target sequence and, in the presence of cofactors, cleave double-helical DNA specifically at a target sequence at a high rate. Using synthetic nanopores along with molecular dynamics (MD), we have analyzed with atomic resolution how a prototypical restriction endonuclease, EcoRI, binds to the DNA target sequence—GAATTC—in the absence of a Mg2+ ion cofactor. We have previously...

  20. Electrical Detection of TATA Binding Protein at DNA-Modified Microelectrodes

    Gorodetsky, Alon A.; Ebrahim, Ali; Barton, Jacqueline K.


    A simple method for the electrochemical detection of TATA-binding protein is demonstrated at DNA-modified microelectrodes. The assay is general and based on the interruption of DNA-mediated charge transport to Nile Blue, a redox-active probe covalently attached to the DNA base pair stack. Nanomolar quantities of TATA binding protein can be detected on the microelectrodes even in the presence of micromolar amounts of bovine serum albumin, EndonucleaseIII, or Bam HI methyltransferase. The schem...

  1. A Novel Cobalt(Ⅲ) Mixed-polypyridyl Complex: Synthesis,Characterization and DNA Binding

    CHEN,Hui-Li(陈绘丽); YANG,Pin(杨频)


    A novel complex[Co(phen)2HPIP]Cl3[phen=phenanethroline,HPIP=2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanethroline]has been synthesized and structurally characterized by elemental analysis,UV,IR and 1H NMR spectroscopies. The interaction of the complex with calf thymus DNA(CT DNA)has been studied using absorption and emission spectroscopy, DNA melting techniques and cyclic voltammetry. The compound shows absorption hypochromicity, fluorescence enhancement and DNA melting temperature increment when binding to CT DNA. CV measurement shows a shift in reduction potential and a change in peak current with addition of DNA.These results prove that the compound inserts into DNA base pairs. The shift of peak potential indicates the ion interaction mode between the complex and DNA. The binding constant of the compound to DNA is 4.37×104. The complex also seems to be an efficient photocleavage reagent.

  2. No difference in high-magnification morphology and hyaluronic acid binding in the selection of euploid spermatozoa with intact DNA

    Suchada Mongkolchaipak; Teraporn Vutyavanich


    In this study,we compared conventional sperm selection with high-magnification morphology based on the motile sperm organellar morphology examination (MSOME) criteria,and hyaluronic acid (HA) binding for sperm chromosome aneuploidy and DNA fragmentation rates.Semen from 50 severe male factor cases was processed through density gradient centrifugation,and subjected to sperm selection by using the conventional method (control),high magnification at x 6650 or HA binding.Aneuploidy was detected by fluorescence in situ hybridization with probes for chromosomes 13,18,21,X and Y,and DNA fragmentation by the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) method.Spermatozoa selected under high-magnification had a lower DNA fragmentation rate (2.6% vs.1.7%; P=0.032),with no significant difference in aneuploidy rate (0.8% vs 0.7%; P=0.583),than those selected by the HA binding method.Spermatozoa selected by both methods had much lower aneuploidy and DNA fragmentation rate than the controls (7% aneuploidy and 26.8% DNA fragmentation rates,respectively).In the high-magnification group,the aneuploidy rate was lower when the best spermatozoa were selected than when only the second-best spermatozoa were available for selection,but the DNA fragmentation rate was not different.In conclusion,sperm selection under high magnification was more effective than under HA binding in selecting spermatozoa with low DNA fragmentation rate,but the small difference (0.9%) might not be clinically meaningful.Both methods were better than the conventional method of sperm selection.

  3. Different Thermodynamic Signatures for DNA Minor Groove Binding with Changes in Salt Concentration and Temperature

    Wang, Shuo; Kumar, Arvind; Aston, Karl; Nguyen, Binh; Bashkin, James K.; Boykin, David W.; Wilson, W. David


    The effects of salt concentration and temperature on the thermodynamics of DNA minor groove binding have quite different signatures: binding enthalpy is salt concentration independent but temperature dependent. Conversely, binding free energy is salt dependent but essentially temperature independent through enthalpy-entropy compensation.

  4. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans

    Shevelev Igor V


    Full Text Available Abstract Background Enzymes involved in DNA metabolic events of the highly radioresistant bacterium Deinococcus radiodurans are currently examined to understand the mechanisms that protect and repair the Deinococcus radiodurans genome after extremely high doses of γ-irradiation. Although several Deinococcus radiodurans DNA repair enzymes have been characterised, no biochemical data is available for DNA ligation and DNA endhealing enzymes of Deinococcus radiodurans so far. DNA ligases are necessary to seal broken DNA backbones during replication, repair and recombination. In addition, ionizing radiation frequently leaves DNA strand-breaks that are not feasible for ligation and thus require end-healing by a 5'-polynucleotide kinase or a 3'-phosphatase. We expect that DNA ligases and end-processing enzymes play an important role in Deinococcus radiodurans DNA strand-break repair. Results In this report, we describe the cloning and expression of a Deinococcus radiodurans DNA ligase in Escherichia coli. This enzyme efficiently catalyses DNA ligation in the presence of Mn(II and NAD+ as cofactors and lysine 128 was found to be essential for its activity. We have also analysed a predicted second DNA ligase from Deinococcus radiodurans that is part of a putative DNA repair operon and shows sequence similarity to known ATP-dependent DNA ligases. We show that this enzyme possesses an adenylyltransferase activity using ATP, but is not functional as a DNA ligase by itself. Furthermore, we identified a 5'-polynucleotide kinase similar to human polynucleotide kinase that probably prepares DNA termini for subsequent ligation. Conclusion Deinococcus radiodurans contains a standard bacterial DNA ligase that uses NAD+ as a cofactor. Its enzymatic properties are similar to E. coli DNA ligase except for its preference for Mn(II as a metal cofactor. The function of a putative second DNA ligase remains unclear, but its adenylyltransferase activity classifies it as a

  5. Expression, purification and characterization of methyl DNA binding protein from Bombyx mori

    Uno, Tomohide; Nomura, Yuka; Nakamura, Masahiko; Nakao, Atsushi; Tajima, Shoji; Kanamaru, Kengo; Yamagata, Hiroshi; Iwanaga, Yousuke


    A cDNA clone encoding methyl DNA binding domain-containing protein (bMBD2/3) was obtained by homology searches using a Bombyx mori fat body cDNA library. The cDNA encoded a polypeptide with 249 amino acids sharing 54% similarity with the methyl DNA binding protein from Drosophila melanogaster. To characterize the biochemical properties of bMBD2/3, the clone was expressed in Escherichia coli as His-tagged protein. The recombinant protein was purified to homogeneity using Ni-NTA superflow resin...

  6. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.

  7. Changes in dynamical behavior of the retinoid X receptor DNA-binding domain upon binding to a 14 base-pair DNA half site.

    van Tilborg, P J; Czisch, M; Mulder, F A; Folkers, G E; Bonvin, A M; Nair, M; Boelens, R; Kaptein, R


    The retinoid X receptor (RXR) is a prominent member of the nuclear receptor family of ligand-inducible transcription factors. Many proteins of this family exert their function as heterodimers with RXR as a common upstream partner. Studies of the DNA-binding domains of several nuclear receptors reveal differences in structure and dynamics, both between the different proteins and between the free- and DNA-bound receptor DBDs. We investigated the differences in dynamics between RXR free in solution and in complex with a 14 base-pair oligonucleotide, using (1)H and (15)N relaxation studies. Nano- to picosecond dynamics were probed on (15)N, employing Lipari-Szabo analysis with an axially symmetric tumbling model to estimate the exchange contributions to the transverse relaxation rates. Furthermore, milli- to microsecond dynamics were estimated qualitatively for (1)H and (15)N, using CPMG-HSQC and CPMG-T(2) measurements with differential pulse spacing. RXR shows hardly any nano- to picosecond time-scale internal motion. Upon DNA binding, the order parameters show a tiny increase. Dynamics in the milli- to microsecond time scale is more prevalent. It is localized in the first and second zinc fingers of the free RXR. Upon DNA-binding, exchange associated with specific/aspecific DNA-binding of RXR is observed throughout the sequence, whereas conformational flexibility of the D-box and the second zinc finger of RXR is greatly reduced. Since this DNA-binding induced folding transition occurs remote from the DNA in a region which is involved in protein-protein interactions, it may very well be related to the cooperativity of dimeric DNA binding. PMID:10913286

  8. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    Sinara Mônica Vitalino de Almeida


    Full Text Available In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide derivatives (3a–h were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z-2-(acridin-9-ylmethylene-N- (4-chlorophenyl hydrazinecarbothioamide (3f, while the most active compound in antiproliferative assay was (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide (3a. There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties.

  9. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives.

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; da Silva, Lúcia Patrícia Bezerra Gomes; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Ruiz, Ana Lucia Tasca Gois; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra


    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a-h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 10(4) to 1.0 × 10(6) M(-1) and quenching constants from -0.2 × 10(4) to 2.18 × 10(4) M(-1) indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N- (4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  10. How does a protein reach its binding locus: sliding along DNA chain or not?

    Li, Jingwei


    In gene expression, various kinds of proteins need to bind to specific locus of DNA. It is still not clear how these proteins find their target locus. In this study, the mean first-passage time (FPT) of protein binding to its target locus on DNA chain is discussed by a chain-space coupled model. Our results show that the 1-dimensional diffusion constant has a critical value, with which the mean time spent by a protein to find its target locus is almost independent of the binding rate of protein to DNA chain and the detachment rate from DNA chain. Which implies that, the frequency of protein binding to DNA and the sliding time on DNA chain have little influence on the search efficiency, and therefore whether or not the 1-dimensional sliding on DNA chain increases the search efficiency depends on the 1-dimensional diffusion constant of the protein on DNA chain. This study also finds that only protein bindings to DNA loci which are close to the target locus help to increase the search efficiency, while bindings ...

  11. A role for the weak DnaA binding sites in bacterial replication origins

    Charbon, Godefroid; Løbner-Olesen, Anders


    DnaA initiates the chromosomal DNA replication in nearly all bacteria, and replication origins are characterized by binding sites for the DnaA protein (DnaA-boxes) along with an ‘AT-rich’ region. However, great variation in number, spatial organization and specificity of DnaA-boxes is observed...... between species. In the study by Taylor et al. (2011), new and unexpectedly weak DnaA-boxes were identified within the Caulobacter crescentus origin of replication (Cori). The position of weak and stronger DnaA-boxes follows a pattern seen in Escherichia coli oriC. This raises the possibility that...

  12. Molecular modeling and spectroscopic studies of semustine binding with DNA and its comparison with lomustine-DNA adduct formation.

    Agarwal, Shweta; Chadha, Deepti; Mehrotra, Ranjana


    Chloroethyl nitrosoureas constitute an important family of cancer chemotherapeutic agents, used in the treatment of various types of cancer. They exert antitumor activity by inducing DNA interstrand cross-links. Semustine, a chloroethyl nitrosourea, is a 4-methyl derivative of lomustine. There exist some interesting reports dealing with DNA-binding properties of chloroethyl nitrosoureas; however, underlying mechanism of cytotoxicity caused by semustine has not been precisely and completely delineated. The present work focuses on understanding semustine-DNA interaction to comprehend its anti-proliferative action at molecular level using various spectroscopic techniques. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is used to determine the binding site of semustine on DNA. Conformational transition in DNA after semustine complexation is investigated using circular dichroism (CD) spectroscopy. Stability of semustine-DNA complexes is determined using absorption spectroscopy. Results of the present study demonstrate that semustine performs major-groove-directed DNA alkylation at guanine residues in an incubation-time-drug-concentration-dependent manner. CD spectral outcomes suggest partial transition of DNA from native B-conformation to C-form. Calculated binding constants (Ka) for semustine and lomustine interactions with DNA are 1.53 × 10(3) M(-1) and 8.12 × 10(3) M(-1), respectively. Moreover, molecular modeling simulation is performed to predict preferential binding orientation of semustine with DNA that corroborates well with spectral outcomes. Results based on comparative study of DNA-binding properties of semustine and lomustine, presented here, may establish a correlation between molecular structure and cytotoxicity of chloroethyl nitrosoureas that may be instrumental in the designing and synthesis of new nitrosourea therapeutics possessing better efficacy and fewer side effects. PMID:25350567

  13. TAFII170 Interacts with the Concave Surface of TATA-Binding Protein To Inhibit Its DNA Binding Activity

    Pereira, Lloyd A.; van der Knaap, Jan A.; van den Boom, Vincent; van den Heuvel, Fiona A. J.; Timmers, H. T. Marc


    The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAFII170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAFII170. We have defined the TBP interaction domain of TAFII170 within three amino-terminal regions: residues 2 to 137, 290 to 381, and 380 to 460. Each region contains a pair of Huntington-elongation-A subunit-Tor repeats and exhibits species-specific interactions with TBP family members. Remarkably, the altered-specificity TBP mutant (TBPAS) containing a triple mutation in the concave surface is defective for binding the TAFII170 amino-terminal region of residues 1 to 504. Furthermore, within this region the TAFII170 residues 290 to 381 can inhibit the interaction between Drosophila TAFII230 (residues 2 to 81) and TBP through competition for the concave surface of TBP. Biochemical analyses of TBP binding to the TATA box indicated that TAFII170 region 290-381 inhibits TBP-DNA complex formation. Importantly, the TBPAS mutant is less sensitive to TAFII170 inhibition. Collectively, our results support a mechanism in which TAFII170 induces high-mobility DNA binding by TBP through reversible interactions with its concave DNA binding surface. PMID:11585931

  14. Detailed kinetic analysis of the interaction between the FOXO4–DNA-binding domain and DNA

    Vácha, P.; Zusková, Iva; Bumba, Ladislav; Večeř, J.; Obšilová, Veronika; Obšil, T.


    Roč. 184, DEC 31 (2013), s. 68-78. ISSN 0301-4622 R&D Projects: GA ČR(CZ) GAP207/11/0717 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : binding kinetics * DNA-binding domain * FOXO4 forkhead transcription factor Subject RIV: BO - Biophysics; CE - Biochemistry (MBU-M) Impact factor: 2.319, year: 2013

  15. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers

    Research highlights: → PD153035 is a DNA intercalator and intercalation occurs only under very low salt concentration. → The minimum distance between adjacent bound PD153035 ∼ 11 bp. → Binding affinity constant for PD153035 is 1.18(±0.09) x 104 (1/M). → The change of binding free energy of PD153035-DNA interaction is -5.49 kcal mol-1 at 23 ± 0.5 oC. -- Abstract: Accurately predicting binding affinity constant (KA) is highly required to determine the binding energetics of the driving forces in drug-DNA interactions. Recently, PD153035, brominated anilinoquinazoline, has been reported to be not only a highly selective inhibitor of epidermal growth factor receptor but also a DNA intercalator. Here, we use a dual-trap optical tweezers to determining KA for PD153035, where KA is determined from the changes in B-form contour length (L) of PD153035-DNA complex. Here, L is fitted using a modified wormlike chain model. We found that a noticeable increment in L in 1 mM sodium cacodylate was exhibited. Furthermore, our results showed that KA = 1.18(±0.09) x 104 (1/M) at 23 ± 0.5 oC and the minimum distance between adjacent bound PD153035 ∼ 11 bp. We anticipate that by using this approach we can determine the complete thermodynamic profiles due to the presence of DNA intercalators.

  16. Thermodynamics of Damaged DNA Binding and Catalysis by Human AP Endonuclease 1.

    Miroshnikova, A D; Kuznetsova, A A; Kuznetsov, N A; Fedorova, O S


    Apurinic/apyrimidinic (AP) endonucleases play an important role in DNA repair and initiation of AP site elimination. One of the most topical problems in the field of DNA repair is to understand the mechanism of the enzymatic process involving the human enzyme APE1 that provides recognition of AP sites and efficient cleavage of the 5'-phosphodiester bond. In this study, a thermodynamic analysis of the interaction between APE1 and a DNA substrate containing a stable AP site analog lacking the C1' hydroxyl group (F site) was performed. Based on stopped-flow kinetic data at different temperatures, the steps of DNA binding, catalysis, and DNA product release were characterized. The changes in the standard Gibbs energy, enthalpy, and entropy of sequential specific steps of the repair process were determined. The thermodynamic analysis of the data suggests that the initial step of the DNA substrate binding includes formation of non-specific contacts between the enzyme binding surface and DNA, as well as insertion of the amino acid residues Arg177 and Met270 into the duplex, which results in the removal of "crystalline" water molecules from DNA grooves. The second binding step involves the F site flipping-out process and formation of specific contacts between the enzyme active site and the everted 5'-phosphate-2'-deoxyribose residue. It was shown that non-specific interactions between the binding surfaces of the enzyme and DNA provide the main contribution into the thermodynamic parameters of the DNA product release step. PMID:27099790

  17. Specific and Efficient Binding of XPA to Double-strand/Single-strand DNA Junctions with 3′- and/or 5′-ssDNA Branches

    Yang, Zhengguan; Roginskaya, Marina; Colis, Laureen C.; Basu, Ashis K.; Shell, Steven M.; Liu, Yiyong; Musich, Phillip R.; Harris, Constance M.; Harris, Thomas M.; Zou, Yue


    Human XPA is an important DNA damage recognition protein in nucleotide excision repair (NER). We previously observed that XPA binds to DNA lesion as a homodimer (1). Herein we report that XPA recognized undamaged DNA doublestrand/ single-strand (ds-ssDNA) junctions containing ssDNA branches with binding affinity (Kd = 49.1±5.1 nM) much higher than its ability to bind to DNA damage. The recognized DNA junction structures include Y-shape junction (with both 3′- and 5′- ssDNA branches), 3′-overh...

  18. Investigation of DNA binding, DNA photocleavage, topoisomerase I inhibition and antioxidant activities of water soluble titanium(IV) phthalocyanine compounds.

    Özel, Arzu; Barut, Burak; Demirbaş, Ümit; Biyiklioglu, Zekeriya


    The binding mode of water soluble peripherally tetra-substituted titanium(IV) phthalocyanine (Pc) compounds Pc1, Pc2 and Pc3 with calf thymus (CT) DNA was investigated by using UV-Vis spectroscopy and thermal denaturation studies in this work. The results of DNA binding constants (Kb) and the changes in the thermal denaturation profile of DNA with the addition of Pc compounds indicated that Pc1, Pc2 and Pc3 are able to bind to CT-DNA with different binding affinities. DNA photocleavage studies of Pc compounds were performed in the absence and presence of oxidizing agents such as hydrogen peroxide (H2O2), ascorbic acid (AA) and 2-mercaptoethanol (ME) using the agarose gel electrophoresis method at irradiation 650nm. According to the results of electrophoresis studies, Pc1, Pc2 and Pc3 cleaved of supercoiled pBR322 DNA via photocleavage pathway. The Pc1, Pc2 and Pc3 compounds were examined for topoisomerase I inhibition by measuring the relaxation of supercoiled pBR322 DNA. The all of Pc compounds inhibited topoisomerase I at 20μM concentration. A series of antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, superoxide radical scavenging (SOD) assay and metal chelating effect assay were performed for Pc1, Pc2 and Pc3 compounds. The results of antioxidant assays indicated that Pc1, Pc2 and Pc3 compounds have remarkable superoxide radical scavenging activities, moderate 2,2-diphenyl-1-picrylhydrazyl activities and metal chelating effect activities. All the experimental studies showed that Pc1, Pc2 and Pc3 compounds bind to CT-DNA via minor groove binding, cleave of supercoiled pBR322 DNA via photocleavage pathway, inhibit topoisomerase I and have remarkable superoxide radical scavenging activities. Thanks to these properties the Pc1, Pc2 and Pc3 compounds are suitable agents for photo dynamic therapy. PMID:26882290

  19. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul


    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  20. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Fagan, P A [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry


    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I{center_dot}C base pairs are functional analogs of A{center_dot}T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  1. The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase.

    Yu, Zhong; Genest, Paul-André; ter Riet, Bas; Sweeney, Kate; DiPaolo, Courtney; Kieft, Rudo; Christodoulou, Evangelos; Perrakis, Anastassis; Simmons, Jana M; Hausinger, Robert P; van Luenen, Henri G A M; Rigden, Daniel J; Sabatini, Robert; Borst, Piet


    Trypanosomatids contain an unusual DNA base J (beta-d-glucosylhydroxymethyluracil), which replaces a fraction of thymine in telomeric and other DNA repeats. To determine the function of base J, we have searched for enzymes that catalyze J biosynthesis. We present evidence that a protein that binds to J in DNA, the J-binding protein 1 (JBP1), may also catalyze the first step in J biosynthesis, the conversion of thymine in DNA into hydroxymethyluracil. We show that JBP1 belongs to the family of Fe(2+) and 2-oxoglutarate-dependent dioxygenases and that replacement of conserved residues putatively involved in Fe(2+) and 2-oxoglutarate-binding inactivates the ability of JBP1 to contribute to J synthesis without affecting its ability to bind to J-DNA. We propose that JBP1 is a thymidine hydroxylase responsible for the local amplification of J inserted by JBP2, another putative thymidine hydroxylase. PMID:17389644

  2. Study on the Binding Mode of a Co(Ⅱ) Complex with DNA

    ZHOU Qing-Hua; YANG Pin


    The mode of binding of CoLCl2, here L=bis(2-benzimidazolylmethyl)amine, with calf thymus DNA has been investigated by fluorescence measurements, equilibrium dialysis, viscosity experiments and gel electrophoresis. The complex was found to bind but weakly to DNA, with binding constant of 1.96× 104 L/mol determind at 20 ℃ in a solution containing 5 mmol/L Tris-HCl (pH 7.1) and 50 mmol/L NaCl. Polyelectrolyte theory was applied to analyse these values. Viscosity experiments show that binding did not alter the relative viscosity of DNA with any complexes to an appreciable extent. Electrophoresis test displayed that the compound could not cleave the DNA.These results show that the complex is essentially electrostatically bound to DNA.

  3. Overlapping functions between XLF repair protein and 53BP1 DNA damage response factor in end joining and lymphocyte development.

    Liu, Xiangyu; Jiang, Wenxia; Dubois, Richard L; Yamamoto, Kenta; Wolner, Zachary; Zha, Shan


    Nonhomologous end joining (NHEJ), a major pathway of DNA double-strand break (DSB) repair, is required during lymphocyte development to resolve the programmed DSBs generated during Variable, Diverse, and Joining [V(D)J] recombination. XRCC4-like factor (XLF) (also called Cernunnos or NHEJ1) is a unique component of the NHEJ pathway. Although germ-line mutations of other NHEJ factors abrogate lymphocyte development and lead to severe combined immunodeficiency (SCID), XLF mutations cause a progressive lymphocytopenia that is generally less severe than SCID. Accordingly, XLF-deficient murine lymphocytes show no measurable defects in V(D)J recombination. We reported earlier that ATM kinase and its substrate histone H2AX are both essential for V(D)J recombination in XLF-deficient lymphocytes, despite moderate role in V(D)J recombination in WT cells. p53-binding protein 1 (53BP1) is another substrate of ATM. 53BP1 deficiency led to small reduction of peripheral lymphocyte number by compromising both synapse and end-joining at modest level during V(D)J recombination. Here, we report that 53BP1/XLF double deficiency blocks lymphocyte development at early progenitor stages, owing to severe defects in end joining during chromosomal V(D)J recombination. The unrepaired DNA ends are rapidly degraded in 53BP1(-/-)XLF(-/-) cells, as reported for H2AX(-/-)XLF(-/-) cells, revealing an end protection role for 53BP1 reminiscent of H2AX. In contrast to the early embryonic lethality of H2AX(-/-)XLF(-/-) mice, 53BP1(-/-)XLF(-/-) mice are born alive and develop thymic lymphomas with translocations involving the T-cell receptor loci. Together, our findings identify a unique function for 53BP1 in end-joining and tumor suppression. PMID:22355127

  4. Multiple sequence-specific DNA binding activities are eluted from chicken nuclei at low ionic strengths.

    Plumb, M A; Nicolas, R H; Wright, C. A.; Goodwin, G H


    DNA sequence-specific binding proteins eluted from chicken erythrocyte and thymus nuclei, and fractionated as described by Emerson and Felsenfeld (19), have been investigated by filter binding and footprint analyses. The erythrocyte nuclear protein fraction specifically binds to at least two sites within the 5' flanking chromatin hypersensitive site of the chicken beta A-globin gene, and to a site 5' to the human beta-globin gene. The major chicken beta A globin gene binding site [G)18CGGGTGG...

  5. Structure of a Thyroid Hormone Receptor DNA-Binding Domain Homodimer Bound to an Inverted Palindrome DNA Response Element

    Chen, Yi; Young, Matthew A. (Michigan)


    Thyroid hormone receptor (TR), as a member of the nuclear hormone receptor family, can recognize and bind different classes of DNA response element targets as either a monomer, a homooligomer, or a heterooligomer. We report here the first crystal structure of a homodimer TR DNA-binding domain (DBD) in complex with an inverted repeat class of thyroid response element (TRE). The structure shows a nearly symmetric structure of the TR DBD assembled on the F2 TRE where the base recognition contacts in the homodimer DNA complex are conserved relative to the previously published structure of a TR-9-cis-retinoic acid receptor heterodimer DNA complex. The new structure also reveals that the T-box region of the DBD can function as a structural hinge that enables a large degree of flexibility in the position of the C-terminal extension helix that connects the DBD to the ligand-binding domain. Although the isolated TR DBDs exist as monomers in solution, we have measured highly cooperative binding of the two TR DBD subunits onto the inverted repeat DNA sequence. This suggests that elements of the DBD can influence the specific TR oligomerization at target genes, and it is not just interactions between the ligand-binding domains that are responsible for TR oligomerization at target genes. Mutational analysis shows that intersubunit contacts at the DBD C terminus account for some, but not all, of the cooperative homodimer TR binding to the inverted repeat class TRE.

  6. [Non-homologous DNA end joining--new proteins, new functions, new mechanisms].

    Popławski, Tomasz; Stoczyńska, Ewelina; Błasiak, Janusz


    Humans use primarily nonhomologous end joining (NHEJ) to repair DNA double strand breaks (DSBs), which are the most serious DNA damage, resulting in cell death if non-repaired or missrepaired. NHEJ directly joins together DNA ends resulted from DSBs. This pathway plays a key role in the development of vertebrate immune system through its involvement in the V(D)J recombination. Classical NHEJ in vertebrates involves a heterodimer of Ku proteins, the catalytic subunits of DNA-dependent protein kinase (DNA-PKCS), Artemis, Cernunnos-XLF and XRCC4/ligase DNA IV complex. This classical pathway may be assisted by DNA polymerases mu and lambda. Last 2 years brought new information on the mechanisms, proteins and functions of this DNA repair pathway. In 2006 Cernunnos-XLF was discovered, a protein playing a key role in NHEJ. Some alternative NHEJ pathways were also identified, lacking some of the main proteins of classical NHEJ, but involving other factors, including BRCA1, 53BP1, hPNK, WRN or MDC1. The results obtained so far suggest that not all key components and basic mechanisms of NHEJ have been identified. Future aspects of NHEJ research should include the determination of its role in cancer, aging, immune system development and basic nuclear metabolism. PMID:19514464

  7. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor

  8. Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator

    Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.; Llinás, Manuel (Princeton); (UW-MED)


    Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened or eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.

  9. Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics.

    Tan, Cheng; Terakawa, Tsuyoshi; Takada, Shoji


    Protein binding to DNA changes the DNA's structure, and altered DNA structure can, in turn, modulate the dynamics of protein binding. This mutual dependency is poorly understood. Here we investigated dynamic couplings among protein binding to DNA, protein sliding on DNA, and DNA bending by applying a coarse-grained simulation method to the bacterial architectural protein HU and 14 other DNA-binding proteins. First, we verified our method by showing that the simulated HU exhibits a weak preference for A/T-rich regions of DNA and a much higher affinity for gapped and nicked DNA, consistent with biochemical experiments. The high affinity was attributed to a local DNA bend, but not the specific chemical moiety of the gap/nick. The long-time dynamic analysis revealed that HU sliding is associated with the movement of the local DNA bending site. Deciphering single sliding steps, we found the coupling between HU sliding and DNA bending is akin to neither induced-fit nor population-shift; instead they moved concomitantly. This is reminiscent of a cation transfer on DNA and can be viewed as a protein version of polaron-like sliding. Interestingly, on shorter time scales, HU paused when the DNA was highly bent at the bound position and escaped from pauses once the DNA spontaneously returned to a less bent structure. The HU sliding is largely regulated by DNA bending dynamics. With 14 other proteins, we explored the generality and versatility of the dynamic coupling and found that 6 of the 15 assayed proteins exhibit the polaron-like sliding. PMID:27309278

  10. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA

    Tao, Mo; Zhang, Guowen; Pan, Junhui; Xiong, Chunhong


    Tau-fluvalinate (TFL) and flumethrin (FL), widely used in agriculture and a class of synthetic pyrethroid pesticides with a similar structure, may cause a potential security risk. Herein, the modes of binding in vitro of TFL and FL with calf thymus DNA (ctDNA) were characterized by fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy with the aid of viscosity measurements, melting analyses and molecular docking studies. The fluorescence titration indicated that both TFL and FL bound to ctDNA forming complexes through hydrogen bonding and van der Waals forces. The binding constants of TFL and FL with ctDNA were in the range of 104 L mol- 1, and FL exhibited a higher binding propensity than TFL. The iodide quenching effect, single/double-stranded DNA effects, and ctDNA melting and viscosity measurements demonstrated that the binding of both TFL and FL to ctDNA was groove mode. The FT-IR analyses suggested the A-T region of the minor groove of ctDNA as the preferential binding for TFL and FL, which was confirmed by the displacement assays with Hoechst 33258 probe, and the molecular docking visualized the specific binding. The changes in CD spectra indicated that both FL and TFL induced the perturbation on the base stacking and helicity of B-DNA, but the disturbance caused by FL was more obvious. Gel electrophoresis analyses indicated that both TFL and FL did not cause significant DNA cleavage. This study provides novel insights into the binding properties of TFL/FL with ctDNA and its toxic mechanisms.

  11. Thyroid hormone action in the absence of thyroid hormone receptor DNA-binding in vivo

    Shibusawa, Nobuyuki; Hashimoto, Koshi; Nikrodhanond, Amisra A.; Liberman, M. Charles; Applebury, Meredithe L.; Liao, Xiao Hui; Robbins, Janet T.; Refetoff, Samuel; Cohen, Ronald N.; Wondisford, Fredric E.


    Thyroid hormone action is mediated by thyroid hormone receptors (TRs), which are members of the nuclear hormone receptor superfamily. DNA-binding is presumed to be essential for all nuclear actions of thyroid hormone. To test this hypothesis in vivo, the DNA-binding domain of TR-β was mutated within its P-box (GS mutant) using gene targeting techniques. This mutation in vitro completely abolishes TR-β DNA-binding, while preserving ligand (T3) and cofactor interactions with the receptor. Homoz...

  12. DNA Ligases I and III Cooperate in Alternative Non-Homologous End-Joining in Vertebrates

    Katja Paul; Minli Wang; Emil Mladenov; Alena Bencsik-Theilen; Theresa Bednar; Wenqi Wu; Hiroshi Arakawa; George Iliakis


    Biochemical and genetic studies suggest that vertebrates remove double-strand breaks (DSBs) from their genomes predominantly by two non-homologous end joining (NHEJ) pathways. While canonical NHEJ depends on the well characterized activities of DNA-dependent protein kinase (DNA-PK) and LIG4/XRCC4/XLF complexes, the activities and the mechanisms of the alternative, backup NHEJ are less well characterized. Notably, the contribution of LIG1 to alternative NHEJ remains conjectural and although bi...

  13. Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining.

    Ropars, Virginie; Drevet, Pascal; Legrand, Pierre; Baconnais, Sonia; Amram, Jeremy; Faure, Guilhem; Márquez, José A; Piétrement, Olivier; Guerois, Raphaël; Callebaut, Isabelle; Le Cam, Eric; Revy, Patrick; de Villartay, Jean-Pierre; Charbonnier, Jean-Baptiste


    Cernunnos/XLF is a core protein of the nonhomologous DNA end-joining (NHEJ) pathway that processes the majority of DNA double-strand breaks in mammals. Cernunnos stimulates the final ligation step catalyzed by the complex between DNA ligase IV and Xrcc4 (X4). Here we present the crystal structure of the X4(1-157)-Cernunnos(1-224) complex at 5.5-Å resolution and identify the relative positions of the two factors and their binding sites. The X-ray structure reveals a filament arrangement for X4(1-157) and Cernunnos(1-224) homodimers mediated by repeated interactions through their N-terminal head domains. A filament arrangement of the X4-Cernunnos complex was confirmed by transmission electron microscopy analyses both with truncated and full-length proteins. We further modeled the interface and used structure-based site-directed mutagenesis and calorimetry to characterize the roles of various residues at the X4-Cernunnos interface. We identified four X4 residues (Glu(55), Asp(58), Met(61), and Phe(106)) essential for the interaction with Cernunnos. These findings provide new insights into the molecular bases for stimulatory and bridging roles of Cernunnos in the final DNA ligation step. PMID:21768349

  14. Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings.

    Takatsuji, H; Mori, M; Benfey, P.N.; L Ren; Chua, N H


    In Petunia, the expression of the 5-enolpyruvylshikimate-3-phosphate synthase gene (EPSPS) is tissue-specific and developmentally regulated. Nuclear extracts from Petunia petal contain a factor that interacts with the 5' upstream region of EPSPS. DNase I footprinting experiments revealed four strong binding sites (EP1-EP4) and several weaker sites that appear to bind the same factor. We have isolated a cDNA clone (EPF1) encoding a DNA-binding protein that has similar binding activity to that ...

  15. Crystal Structure of the VapBC Toxin–Antitoxin Complex from Shigella flexneri Reveals a Hetero-Octameric DNA-Binding Assembly

    Dienemann, Christian; Bøggild, Andreas; Winther, Kristoffer S.; Gerdes, Kenn; Brodersen, Ditlev


    the crystal structure of the intact Shigella flexneri VapBC TA complex, determined to 2.7 Å resolution. Both in solution and in the crystal structure, four molecules of each protein combine to form a large and globular hetero-octameric assembly with SpoVT/AbrB-type DNA-binding domains at each end and...

  16. DNA binding of dinuclear iron(II) metallosupramolecular cylinders. DNA unwinding and sequence preference

    Malina, Jaroslav; Hannon, M.J.; Brabec, Viktor


    Roč. 36, č. 11 (2008), s. 3630-3638. ISSN 0305-1048 R&D Projects: GA AV ČR(CZ) KJB400040601; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651; GA MŠk(CZ) LC06030; GA MZd(CZ) NR8562 Grant ostatní: GA AV ČR(CZ) IAA400040803; GA MŠk(CZ) ME08017 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : supramolecular chemistry * enantiomeric DNA binding * metallosupramolecular cylinder Subject RIV: AQ - Safety, Health Protection, Human - Machine Impact factor: 6.878, year: 2008

  17. DNA minor groove binding of small molecules: Experimental and computational evidence

    Prateek Pandya; Md Maidul Islam; G Suresh Kumar; B Jayaram; Surat Kumar


    Eight indole derivatives were studied for their DNA binding ability using fluorescence quenching and molecular docking methods. These indole compounds have structural moieties similar as in few indole alkaloids. Experimental and theoretical studies have suggested that indole derivatives bind in the minor groove of DNA. Thermodynamic profiles of DNA complexes of indole derivatives were obtained from computational methods. The complexes were largely stabilized by H-bonding and van der Waal’s forces with positive entropy values. Indole derivatives were found to possess some Purine (Pu) - Pyrimidine (Py) specificity with DNA sequences. The results obtained from experimental and computational methods showed good agreement with each other, supported by their correlation constant values.

  18. DNA Binding Proteins of the Filamentous Phages CTXφ and VGJφ of Vibrio cholerae▿

    Falero, Alina; Caballero, Andy; Ferrán, Beatriz; Izquierdo, Yovanny; Fando, Rafael; Campos, Javier


    The native product of open reading frame 112 (orf112) and a recombinant variant of the RstB protein, encoded by Vibrio cholerae pathogen-specific bacteriophages VGJφ and CTXφ, respectively, were purified to more than 90% homogeneity. Orf112 protein was shown to specifically bind single-stranded genomic DNA of VGJφ; however, RstB protein unexpectedly bound double-stranded DNA in addition to the single-stranded genomic DNA. The DNA binding properties of these proteins may explain their requirem...

  19. The binding of gyrase to DNA: analysis by retention by nitrocellulose filters.

    Higgins, N P; Cozzarelli, N R


    Three distinct Escherichia coli DNA gyrase complexes with DNA can be identified using a nitrocellulose filter-binding assay. One complex consists of an ensemble of two subunit A and two subunit B protomers bound noncovalently to specific sequences of DNA. High levels of each subunit alone are inactive but a single gyrase molecule binds DNA to a filter. At 23 degrees, the complex has a dissociation constant of approximately 10(-10) M and a half-time of decay of about 60 h. It is sufficiently s...

  20. The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase

    Yu, Zhong; Genest, Paul-André; ter Riet, Bas; Sweeney, Kate; DiPaolo, Courtney; Kieft, Rudo; Christodoulou, Evangelos; Perrakis, Anastassis; Simmons, Jana M.; Hausinger, Robert P.; van Luenen, Henri G.A.M.; Daniel J Rigden; Sabatini, Robert; Borst, Piet


    Trypanosomatids contain an unusual DNA base J (β-d-glucosylhydroxymethyluracil), which replaces a fraction of thymine in telomeric and other DNA repeats. To determine the function of base J, we have searched for enzymes that catalyze J biosynthesis. We present evidence that a protein that binds to J in DNA, the J-binding protein 1 (JBP1), may also catalyze the first step in J biosynthesis, the conversion of thymine in DNA into hydroxymethyluracil. We show that JBP1 belongs to the family of Fe...

  1. Surface area of lipid membranes regulates the DNA-binding capacity of cationic liposomes

    Marchini, Cristina; Montani, Maura; Amici, Augusto; Pozzi, Daniela; Caminiti, Ruggero; Caracciolo, Giulio


    We have applied electrophoresis on agarose gels to investigate the DNA-binding capacity of cationic liposomes made of cationic DC-cholesterol and neutral dioleoylphosphatidylethanolamine as a function of membrane charge density and cationic lipid/DNA charge ratio. While each cationic liposome formulation exhibits a distinctive DNA-protection ability, here we show that such a capacity is universally regulated by surface area of lipid membranes available for binding in an aspecific manner. The relevance of DNA protection for gene transfection is also discussed.

  2. Binding specificity of antiidiotypic autoantibodies to anti-DNA antibodies in humans.

    Sasaki, T; Muryoi, T; Takai, O; Tamate, E; Saito, H.; Yoshinaga, K


    Human antiidiotypic antibodies to anti-DNA antibodies can be separated into at least two categories based on their binding to anti-DNA, antiidiotypic antibodies, and antigens. One type was found mainly in inactive stage of SLE. The antiidiotypic antibodies appear to be directed towards idiotype (Id) determinants in the antigen-binding sites of anti-DNA antibodies. Antibody from patient T.K. acted like a mirror image of anti-single-stranded DNA antibodies, O-81, as determined by a competitive ...

  3. Direct zonal liquid chromatographic method for the kinetic study of actinomycin-DNA binding.

    Vidal-Madjar, Claire; Florentina, Cañada-Cañada; Gherghi, Ioanna; Jaulmes, Alain; Pantazaki, Anastasia; Taverna, Myriam


    The binding of an anticancer drug (actinomycin D or ACTD) to double-stranded DNA (dsDNA) was studied by means of high-performance liquid chromatography (HPLC). ACTD is an antitumor antibiotic containing one chromophore group and two pentapeptidic lactone cycles that binds dsDNA. Incubations of ACTD with DNA were performed at physiological pH. The complexed and free ligand concentrations of the mixture were quantified at 440 nm from their separation on a size-exclusion chromatographic (SEC) column using the same buffer for the elution and the sample incubation. The DNA and the ACTD-DNA complexes were eluted at the column exclusion volume while the ligand was retained on the support. An apparent binding curve was obtained by plotting the amount emerging at the exclusion column volume against that eluted at free ACTD retention volume. A dissociating effect was evidenced and the binding parameters were significantly different from those obtained at equilibrium by visible absorbance titration. The equilibrium binding parameters determined by absorption spectroscopy were used as starting data in the numerical simulations of the chromatographic process. The results showed a strong dependency of the apparent binding parameters on the reaction kinetics. Finally the comparison of the apparent binding curve obtained from the HPLC experiments and from the numerical simulations permitted an evaluation of the dissociation rate constant (kd = 0.004 s(-1)). PMID:15296384

  4. 3'-Formyl phosphate-ended DNA: high-energy intermediate in antibiotic-induced DNA sugar damage

    Under anaerobic conditions where the nitroaromatic radiation-sensitizer misonidazole substitutes for dioxygen, DNA strand breakage (gaps with phosphate residues at each end) by the nonprotein chromophore of the antitumor antibiotic neocarzinostatin (NCS-Chrom) is associated with the generation of a reactive form of formate from the C-5' of deoxyribose of thymidylate residues. Such lesions account for a minority (10-15%) of the strand breakage found in the aerobic reaction without misonidazole. Amino-containing nucleophiles such as tris(hydroxymethyl)aminomethane (Tris) and hydroxylamine act as acceptors for the activated formate. The amount of [3H]formyl hydroxamate produced from DNA labeled with [5'-3H]thymidine is comparable to the spontaneously released thymine. During the course of the reaction, misonidazole undergoes a DNA-dependent reduction and subsequent conjugation with glutathione used to activate NCS-Chrom. From these and earlier results, the authors propose a possible mechanism in which the carbon-centered radical formed at C-5' by hydrogen atom abstraction by thiol-activated NCS-Chrom reacts anaerobically with misonidazole to form a nitroxyl-radical-adduct intermediate, which fragments to produce an oxy radical at C-5'. β-fragmentation results in cleavage between C-5' and C-4' with the generation of 3'-formyl phosphate-ended DNA. A similar mechanism, involving dioxygen addition, is probably responsible for the 10-15% DNA gap formation in the aerobic reaction

  5. Cloning and characterisation of mtDBP, a DNA-binding protein which binds two distinct regions of sea urchin mitochondrial DNA.

    Loguercio Polosa, P; Roberti, M; Musicco, C; Gadaleta, M N; Quagliariello, E.; Cantatore, P


    The cDNA for the sea urchin mitochondrial D-loop-binding protein (mtDBP), a 40 kDa protein which binds two homologous regions of mitochondrial DNA (the D-loop region and the boundary between the oppositely transcribed ND5 and ND6 genes), has been cloned. Four different 3'-untranslated regions have been detected that are related to each other in pairs and do not contain the canonical polyadenylation signal. The in vitro synthesised mature protein (348 amino acids), deprived of the putative sig...

  6. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein.

    Keeney, S.; Eker, André; Brody, T.; Vermeulen, Wim; Bootsma, Dirk; Hoeijmakers, Jan; Linn, S.(Florida International University, Miami, USA)


    textabstractCells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells is caused by a defect in DDB activity. Injected DDB protein stimulated DNA repair to normal levels in those strains that lack the DDB activity but did not stimulate repair in cells from other xerode...

  7. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: synthesis, DNA-binding affinity and cytotoxic activity.

    Kamal, Ahmed; Sreekanth, Kokkonda; Shankaraiah, Nagula; Sathish, Manda; Nekkanti, Shalini; Srinivasulu, Vunnam


    A new series of C8-linked dithiocarbamate/piperazine bridged pyrrolo[2,1-c][1,4]benzodiazepine conjugates (5a-c, 6a,b) have been synthesized and evaluated for their cytotoxic potential and DNA-binding ability. The representative conjugates 5a and 5b have been screened for their cytotoxicity against a panel of 60 human cancer cell lines. Compound 5a has shown promising cytotoxic activity on selected cancer cell lines that display melanoma, leukemia, CNS, ovarian, breast and renal cancer phenotypes. The consequence of further replacement of the 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate in 5b and 5c with 4-methylpiperazine-1-carbodithioate yielded new conjugates 6a and 6b respectively. In addition, the compounds 5c and 6a,b have been evaluated for their in vitro cytotoxicity on some of the selected human cancer cell lines and these conjugates have exhibited significant cytotoxic activity. Further, the DNA-binding ability of these new conjugates has been evaluated by using thermal denaturation (ΔTm) studies. The correlation between structure and DNA-binding ability has been investigated by molecular modeling studies which predicted that 6b exhibits superior DNA-binding ability and these are in agreement with the experimental DNA-binding studies. PMID:25665519

  8. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA

    Yang, Wenjuan; Shen, Cenchao; Ji, Qiaoli; An, Hongjie; Wang, Jinju; Liu, Qingdai; Zhang, Zhizhou


    Nanosilver is increasingly used in the food industry and biomedical applications. A lot of studies have been done to investigate the potential toxicity of nanosilver. But information on whether or how nanosilver particles bring changes in genetic materials remains scant. In this study, the replication fidelity of the rpsL gene was quantified when nanosilver particles were present in polymerase chain reactions (PCRs) or cell cultures of E. coli transformed with the wild-type rpsL gene. Three types of nanosilver (silver nanopowder, SN; silver-copper nanopowder, SCN; and colloidal silver, CS) were tested. The results showed that the replication fidelity of the rpsL gene was differentially compromised by all three kinds of nanosilver particle compared with that without nanosilver. This assay could be expanded and applied to any other materials to preliminarily assess their potential long-term toxicity as a food additive or biomedical reagent. Moreover, we found that nanosilver materials bind with genomic DNA under atomic force microscopy, and this might be an explanation for the compromised DNA replication fidelity.

  9. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA

    Nanosilver is increasingly used in the food industry and biomedical applications. A lot of studies have been done to investigate the potential toxicity of nanosilver. But information on whether or how nanosilver particles bring changes in genetic materials remains scant. In this study, the replication fidelity of the rpsL gene was quantified when nanosilver particles were present in polymerase chain reactions (PCRs) or cell cultures of E. coli transformed with the wild-type rpsL gene. Three types of nanosilver (silver nanopowder, SN; silver-copper nanopowder, SCN; and colloidal silver, CS) were tested. The results showed that the replication fidelity of the rpsL gene was differentially compromised by all three kinds of nanosilver particle compared with that without nanosilver. This assay could be expanded and applied to any other materials to preliminarily assess their potential long-term toxicity as a food additive or biomedical reagent. Moreover, we found that nanosilver materials bind with genomic DNA under atomic force microscopy, and this might be an explanation for the compromised DNA replication fidelity.

  10. DNA binding by Corynebacterium glutamicum TetR-type transcription regulator AmtR

    Sticht Heinrich


    Full Text Available Abstract Background The TetR family member AmtR is the central regulator of nitrogen starvation response in Corynebacterium glutamicum. While the AmtR regulon was physiologically characterized in great detail up to now, mechanistic questions of AmtR binding were not addressed. This study presents a characterization of functionally important amino acids in the DNA binding domain of AmtR and of crucial nucleotides in the AmtR recognition motif. Results Site-directed mutagenesis, the characterization of corresponding mutant proteins by gel retardation assays and surface plasmon resonance and molecular modelling revealed several amino acids, which are directly involved in DNA binding, while others have more structural function. Furthermore, we could show that the spacing of the binding motif half sites is crucial for repression of transcription by AmtR. Conclusion Although the DNA binding domain of TetR-type repressors is highly conserved and a core binding motif was identified for AmtR and TetR(D, the AmtR binding domain shows individual properties compared to other TetR proteins. Besides by distinct amino acids of AmtR, DNA binding is influenced by nucleotides not only of the conserved binding motif but also by spacing nucleotides in C. glutamicum.