WorldWideScience

Sample records for binding sites antibody

  1. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG 3 k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of [ 3 H]naloxone. The antibody which did not inhibit the binding of [ 3 H]naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG 3 k antibody that blocked the binding of [ 3 H]naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form

  2. Distance between two binding sites of the same antibody molecule

    International Nuclear Information System (INIS)

    Cser, L.; Gladkikh, I.A.; Ostanevich, Y.M.; Franek, F.; Novotny, J.; Nezlin, R.S.

    1978-01-01

    Neutron small-angle scattering experiments are reported, aimed at determining the distance between the two binding sites of the same antibody molecule employing complexes of anti-Dnp antibody with an antigenically univalent, high molecular weight ligand. Although the distance values could be determined only with a large statistical error, the data allowed the conclusion that the geometrical parameters of the complexes formed with the early (i.e., precipitating) antibody are significantly different from those of the complexes formed with the late (i.e, non-precipitating) antibody. The data suggest that the precipitating antibody complexed with a high molecular weight antigen assumes an extended shape with an antigen to antigen distance of 35.8 +- 1.3 nm. (Auth.)

  3. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  4. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    International Nuclear Information System (INIS)

    Miles, L.A.; Plow, E.F.

    1986-01-01

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [ 125 I]EDP I, [ 125 I]Glu-plasminogen, and [ 125 I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [ 125 I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 μM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. α 2 -Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of [ 125 I]EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor

  5. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Karim, Salim S. Abdool; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.; Kwong, Peter D.; Morris, Lynn (NHLS-South Africa); (NIH); (Witwatersrand); (KwaZulu-Natal)

    2016-08-31

    ABSTRACT

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage.

    IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of

  6. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing.

    Science.gov (United States)

    de Juan-Franco, Elena; Caruz, Antonio; Pedrajas, J R; Lechuga, Laura M

    2013-04-07

    We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.

  7. Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains.

    Science.gov (United States)

    Perols, Anna; Karlström, Amelie Eriksson

    2014-03-19

    Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with

  8. Conserved epitope on several human vitamin K-dependent proteins: location of the antigenic site and influence of metal ions on antibody binding

    International Nuclear Information System (INIS)

    Church, W.R.; Messier, T.; Howard, P.R.; Amiral, J.; Meyer, D.; Mann, K.G.

    1988-01-01

    A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125 I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 x 10 -8 to 1 x 10 -6 M. Chemical treatment of prothrombin with a variety of agents did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. Increasing concentrations of Ca 2+ , Mg 2+ , or Mn 2+ partially inhibited binding of 125 I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively. The antigenic site thus recognized by monoclonal antibody H-11 is located at the amino-terminal region in the highly conserved γ-carboxyglutamic acid-containing domains of several, but not all, vitamin K-dependent proteins

  9. Effect of iodination site on binding of radiolabeled ligand by insulin antibodies and insulin autoantibodies

    International Nuclear Information System (INIS)

    Diaz, J.L.; Wilkin, T.J.

    1988-01-01

    Four human insulins and four porcine insulins, each monoiodinated to the same specific activity at one of the four tyrosine residues (A14, A19, B16, B26) and purified by reversed-phase liquid chromatography, were tested in a radiobinding assay against a panel of insulin-antibody (IA)-positive sera from 10 insulin-treated diabetics and insulin-autoantibody-positive (IAA) sera from 10 nondiabetics. Of the 10 IAA-positive sera, five were fully cross reactive with both insulin species, and five were specific for human insulin. The rank order of binding of sera with the four ligands from each species was random for IA (mean rank values of 1.9 for A14, 2.0 for A19, 2.5 for B16, and 3.6 for B26 from a possible ranking range of 1 to 4), but more consistent for non-human-insulin-specific IAA (mean rank values 1.3 for A14, 3.8 for A19, 1.7 for B16, and 3.2 for B26 for labeled human insulins; 1.2 for A14, 4.0 for A19, 1.8 for B16, and 3.0 for B26 for labeled porcine insulins). The rank order of binding was virtually uniform for human-insulin-specific IAA (mean values 1.2 for A14, 3.0 for A19, 1.8 for B16, and 4.0 for B26). The influence of iodination site on the binding of labeled insulin appears to be dependent on the proximity of the labeled tyrosine to the antibody binding site and the clonal diversity, or restriction, of insulin-binding antibodies in the test serum. When IA and IAA are measured, the implications of this study regarding the choice of assay ligand may be important

  10. Anti-idiotypes against a monoclonal anti-haloperidol antibody bind to dopamine receptor

    International Nuclear Information System (INIS)

    Elazar, Z.; Kanety, H.; Schreiber, M.; Fuchs, S.

    1988-01-01

    Anti-idiotypic antibodies were raised in rabbits by immunization with a monoclonal anti-haloperidol antibody. Some of these anti-idiotypic antibodies bind in a concentration dependent manner to bovine striatal membranes. Following affinity purification, these antibodies inhibit haloperidol binding to striatal membranes and deplete [ 3 H]-spiperone binding sites from a solubilized preparation of striatal membranes. It is thus concluded that these anti-idiotypic antibodies are an internal image of haloperidol and as such can interact with D 2 -dopamine receptors

  11. Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins.

    Science.gov (United States)

    Mousa, Jarrod J; Binshtein, Elad; Human, Stacey; Fong, Rachel H; Alvarado, Gabriela; Doranz, Benjamin J; Moore, Martin L; Ohi, Melanie D; Crowe, James E

    2018-02-01

    Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.

  12. Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction

    International Nuclear Information System (INIS)

    Rebelo, Tânia S.C.R.; Santos, C.; Costa-Rodrigues, J.; Fernandes, M.H.; Noronha, João P.; Sales, M. Goreti F.

    2014-01-01

    Graphical abstract: EF13-201, Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. - Abstract: This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomers around the binding site enhances protein binding. These charged receptor sites are placed over a neutral polymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed by preparing control materials with neutral monomers and also with non-imprinted template. This concept has been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate cancer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associated cancer. Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surface imprinting over graphene layers to which the protein was first covalently attached. Vinylbenzyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labelling the binding site and were allowed to self-organize around the protein. The subsequent polymerization was made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without oriented charges and non imprinted materials (NIM) obtained without template were used as controls. These materials were used to develop simple and inexpensive potentiometric sensor for PSA. They were included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liquid conductive contacts, made of conductive carbon over a syringe or of inner reference solution over micropipette tips. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10 −11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed lower

  13. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinghe; Kang, Byong H.; Ishida, Elise; Zhou, Tongqing; Griesman, Trevor; Sheng, Zizhang; Wu, Fan; Doria-Rose, Nicole A.; Zhang, Baoshan; McKee, Krisha; O’Dell, Sijy; Chuang, Gwo-Yu; Druz, Aliaksandr; Georgiev, Ivelin S.; Schramm, Chaim A.; Zheng, Anqi; Joyce, M.  Gordon; Asokan, Mangaiarkarasi; Ransier, Amy; Darko, Sam; Migueles, Stephen A.; Bailer, Robert T.; Louder, Mark K.; Alam, S.  Munir; Parks, Robert; Kelsoe, Garnett; Von Holle, Tarra; Haynes, Barton F.; Douek, Daniel C.; Hirsch, Vanessa; Seaman, Michael S.; Shapiro, Lawrence; Mascola, John R.; Kwong, Peter D.; Connors, Mark

    2016-11-01

    Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.

  14. Isolation and functional effects of monoclonal antibodies binding to thymidylate synthase.

    Science.gov (United States)

    Jastreboff, M M; Todd, M B; Malech, H L; Bertino, J R

    1985-01-29

    Monoclonal antibodies against electrophoretically pure thymidylate synthase from HeLa cells have been produced. Antibodies (M-TS-4 and M-TS-9) from hybridoma clones were shown by enzyme-linked immunoassay to recognize thymidylate synthase from a variety of human cell lines, but they did not bind to thymidylate synthase from mouse cell lines. The strongest binding of antibodies was observed to enzyme from HeLa cells. These two monoclonal antibodies bind simultaneously to different antigenic sites on thymidylate synthase purified from HeLa cells, as reflected by a high additivity index and results of cross-linked radioimmunoassay. Both monoclonal antibodies inhibit the activity of thymidylate synthase from human cell lines. The strongest inhibition was observed with thymidylate synthase from HeLa cells. Monoclonal antibody M-TS-9 (IgM subclass) decreased the rate of binding of [3H]FdUMP to thymidylate synthase in the presence of 5,10-methylenetetrahydrofolate while M-TS-4 (IgG1) did not change the rate of ternary complex formation. These data indicate that the antibodies recognize different epitopes on the enzyme molecule.

  15. New Insights into the Functional Behavior of Antibodies as Revealed by Binding Studies on an Anti-Uranium Monoclonal Antibody

    International Nuclear Information System (INIS)

    Blake, Diane A.; Xia Li; Haini Yu; Blake, Robert C.

    2004-01-01

    As part of an ongoing effort to develop immunoassays for chelated uranium(VI) on a hand-held flow fluorimeter, an anti-uranium monoclonal antibody designated as 8A11 was fluorescently labeled using two different strategies. When 8A11 was coupled via reactive lysines to either ALEXATM 488 or Cy5TM, the resulting fluorescent antibody conjugate exhibited positive cooperativity in the presence of its antigen, U(VI) chelated with 2,9-dicarboxy-1,10-phenanthroline (U(VI)-DCP). That is, when one of the two binding sites on the covalently modified 8A11 was occupied with bound antigen, the affinity of the remaining site on the antibody for U(VI)-DCP appeared to increase. Unmodified 8A11 bound U(VI)-DCP with the expected hyperbolic dependence on the concentration of antigen, consistent with independent and equal binding of ligand at both sites. Proteolytic cleavage of the fluorescently conjugated 8A11 to produce the fluorescent monovalent Fab fragment yielded an active preparation that now bound U(VI)-DCP with no evidence of positive cooperativity. Although, in principle, any divalent antibody has the potential to exhibit positive cooperativity in its binding interactions with its antigen, very little literature precedent for this type of behavior exists. Native 8A11 was also noncovalently labeled with highly fluorescent ZENONTM reagents. These reagents are fluorescently-labeled Fab fragments of goat anti-mouse antibodies that bind to the Fc portion of 8A11. These high-affinity, monovalent fluorescent reagents permitted the intact 8A11 mouse antibody to be labeled in situ with no covalent modifications. Incubation of the 8A11 with ZENON 647 produced a fluorescent protein complex that showed an 8-fold higher affinity for U(VI)-DCP than did the free 8A11 alone. Again, very few literature precedents exist for this phenomenon, where agents that bind to the Fc portion of an intact antibody change the affinity of the antibody for the antigen at the structurally distant Fab portion

  16. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region

    NARCIS (Netherlands)

    van Schie, K. A.; Hart, M. H.; de Groot, E. R.; Kruithof, S.; Aarden, L. A.; Wolbink, G. J.; Rispens, T.

    2015-01-01

    In a subset of patients, anti tumour necrosis factor (TNF) therapeutic antibodies are immunogenic, resulting in the formation of antidrug antibodies (ADAs). Neutralising ADAs compete with TNF for its binding site and reduces the effective serum concentration, causing clinical non-response. It is

  17. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    Directory of Open Access Journals (Sweden)

    Ema T Crooks

    2015-05-01

    Full Text Available Eliciting broad tier 2 neutralizing antibodies (nAbs is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs expressing trimers (trimer VLP sera and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera. All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs. Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype rendered 50% or 16.7% (n = 18 of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  18. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.

  19. Monoclonal antibodies that bind the renal Na+/glucose symport system. 1. Identification

    International Nuclear Information System (INIS)

    Wu, J.S.R.; Lever, J.E.

    1987-01-01

    Phlorizin is a specific, high-affinity ligand that binds the active site of the Na + /glucose symporter by a Na + -dependent mechanism but is not itself transported across the membrane. The authors have isolated a panel of monoclonal antibodies that influence high-affinity, Na + -dependent phlorizin binding to pig renal brush border membranes. Antibodies were derived after immunization of mice either with highly purified renal brush border membranes or with apical membranes purified from LLC-PK 1 , a cell line of pig renal proximal tubule origin. Antibody 11A3D6, an IgG/sub 2b/, reproducibly stimulated Na + -dependent phlorizin binding whereas antibody 18H10B12, an IgM, strongly inhibited specific binding. These effects were maximal after 30-min incubation and exhibited saturation at increased antibody concentrations. Antibodies did not affect Na + -dependent sugar uptake in vesicles but significantly prevented transport inhibition by bound phlorizin. Antibodies recognized a 75-kDa antigen identified by Western blot analysis of brush border membranes, and a 75-kDa membrane protein could be immunoprecipitated by 18H10B12. These properties, provide compelling evidence that the 75-kDa antigen recognized by these antibodies is a component of the renal Na + /glucose symporter

  20. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis.

    Science.gov (United States)

    Yu, Xiaowen; Yang, Yu-Ping; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia

    2017-06-12

    The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.

  1. Antibody binding constants from Farr test and other radioimmunoassays. A theoretical and experimental analysis

    International Nuclear Information System (INIS)

    Engel, J.; Schalch, W.

    1980-01-01

    For the reaction of monovalently reacting antibody (116-700pIEF) with its antigen (streptococcal group A-variant polysaccharide), an apparent binding constant Ksub(a) was derived by the ammonium sulfate precipitation technique (Farr assay) which was 40 times larger than the true binding constant K = 10 6 M -1 determined by fluorescence titration and equilibrium dialysis. For monovalently reacting antibodies the time needed for re-equilibration of the binding reaction is short as compared to the time of ammonium sulfate incubation. A thermodynamic analysis was therefore performed for the case of complete equilibration of all components in solution and in the ammonium sulfate precipitate. It was found that in this limiting case Ksub(a)/K is equal to the ratio of the solubilities of the antibody and the antibody complex corrected by the activity coefficients of the components in the precipitate. For other antibody-antigen reactions in which the antibody reacts with both binding sites to the same antigen molecule, re-equilibration of the binding reaction in solution is much slower. For such systems a disturbance of the binding reaction by the precipitation is less likely and correct binding constants may be obtained by the Farr technique or other radioimmunoassays involving precipitation. (author)

  2. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    Directory of Open Access Journals (Sweden)

    Henry Memczak

    Full Text Available Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.

  3. Thermodynamic model of binding of flexible bivalent haptens to antibody

    Energy Technology Data Exchange (ETDEWEB)

    Dembo, M; Goldstein, B

    1978-01-01

    Studies by Wilder et al. of the binding of Fab' fragments to small haptens have shown that the cross-linking constant (the equilibrium constant for binding an additional Fab' fragment to a hapten-Fab' complex) is strongly dependent on the length of the hapten. We present a simple model for predicting the relationship between the intermolecular cross-linking constant and the monovalent hapten-antibody binding constant. In particular we used the model to obtain the dependence of the cross-linking constant on the length of th hapten, the depth to which the hapten fills th Fab' binding site, and the size of the Fab' fragment. To test the model, we devised expressions which allowed us to analyze the data of Wilder et al. From their data we determined the values of two parameters which we took to be unknown in the theory, the size of the Fab' fragment and the depth to which the hapten fills the Fab' binding site. The values arrived at in this way agreed well with published measurements of these parameters.

  4. Three-site sandwich radioimmunoassay with monoclonal antibodies for a sensitive determination of human alpha-fetoprotein

    International Nuclear Information System (INIS)

    Nomura, M.; Imai, M.; Takahashi, K.; Kumakura, T.; Tachibana, K.; Aoyagi, S.; Usuda, S.; Nakamura, T.; Miyakawa, Y.; Mayumi, M.

    1983-01-01

    Utilizing monoclonal antibodies against human alpha-fetoprotein, 3 distinct antigenic determinants were identified. These antigenic determinants, provisionally designated a, b and c, were arranged in such a manner that the binding of one determinant with the corresponding antibody did not inhibit, or only barely inhibited the binding of antibodies directed to the other 2 determinants. Monoclonal antibodies with 3 different specificities were, therefore, applied to develop a sandwich-type solid-phase radioimmunoassay of the antigen in which wells were coated with anti-a, and radiolabeled anti-b together with radiolabeled anti-c was employed to detect the bound antigen. The 3-site sandwich radioimmunoassay involving 3 different determinants gave a higher sensitivity than 2-site assays in which only anti-b or anti-c was employed as a radiolabeled reagent, because the radioactivity of the 2 labeled antibodies was added on the antigen bound to immobilized anti-a. (Auth.)

  5. The Antibody Response of Pregnant Cameroonian Women to VAR2CSA ID1-ID2a, a Small Recombinant Protein Containing the CSA-Binding Site

    Science.gov (United States)

    Babakhanyan, Anna; Leke, Rose G. F.; Salanti, Ali; Bobbili, Naveen; Gwanmesia, Philomina; Leke, Robert J. I.; Quakyi, Isabella A.; Chen, John J.; Taylor, Diane Wallace

    2014-01-01

    In pregnant women, Plasmodium falciparum-infected erythrocytes expressing the VAR2CSA antigen bind to chondroitin sulfate A in the placenta causing placental malaria. The binding site of VAR2CSA is present in the ID1-ID2a region. This study sought to determine if pregnant Cameroonian women naturally acquire antibodies to ID1-ID2a and if antibodies to ID1-ID2a correlate with absence of placental malaria at delivery. Antibody levels to full-length VAR2CSA and ID1-ID2a were measured in plasma samples from 745 pregnant Cameroonian women, 144 Cameroonian men, and 66 US subjects. IgM levels and IgG avidity to ID1-ID2a were also determined. As expected, antibodies to ID1-ID2a were absent in US controls. Although pregnant Cameroonian women developed increasing levels of antibodies to full-length VAR2CSA during pregnancy, no increase in either IgM or IgG to ID1-ID2a was observed. Surprisingly, no differences in antibody levels to ID1-ID2a were detected between Cameroonian men and pregnant women. For example, in rural settings only 8–9% of males had antibodies to full-length VAR2CSA, but 90–96% had antibodies to ID1-ID2a. In addition, no significant difference in the avidity of IgG to ID1-ID2a was found between pregnant women and Cameroonian men, and no correlation between antibody levels at delivery and absence of placental malaria was found. Thus, the response to ID1-ID2a was not pregnancy specific, but predominantly against cross-reactivity epitopes, which may have been induced by other PfEMP1 antigens, malarial antigens, or microbes. Currently, ID1-ID2a is a leading vaccine candidate, since it binds to the CSA with the same affinity as the full-length molecule and elicits binding-inhibitory antibodies in animals. Further studies are needed to determine if the presence of naturally acquired cross-reactive antibodies in women living in malaria endemic countries will alter the response to ID1-ID2a following vaccination with ID1-ID2a. PMID:24505415

  6. The antibody response of pregnant Cameroonian women to VAR2CSA ID1-ID2a, a small recombinant protein containing the CSA-binding site.

    Directory of Open Access Journals (Sweden)

    Anna Babakhanyan

    Full Text Available In pregnant women, Plasmodium falciparum-infected erythrocytes expressing the VAR2CSA antigen bind to chondroitin sulfate A in the placenta causing placental malaria. The binding site of VAR2CSA is present in the ID1-ID2a region. This study sought to determine if pregnant Cameroonian women naturally acquire antibodies to ID1-ID2a and if antibodies to ID1-ID2a correlate with absence of placental malaria at delivery. Antibody levels to full-length VAR2CSA and ID1-ID2a were measured in plasma samples from 745 pregnant Cameroonian women, 144 Cameroonian men, and 66 US subjects. IgM levels and IgG avidity to ID1-ID2a were also determined. As expected, antibodies to ID1-ID2a were absent in US controls. Although pregnant Cameroonian women developed increasing levels of antibodies to full-length VAR2CSA during pregnancy, no increase in either IgM or IgG to ID1-ID2a was observed. Surprisingly, no differences in antibody levels to ID1-ID2a were detected between Cameroonian men and pregnant women. For example, in rural settings only 8-9% of males had antibodies to full-length VAR2CSA, but 90-96% had antibodies to ID1-ID2a. In addition, no significant difference in the avidity of IgG to ID1-ID2a was found between pregnant women and Cameroonian men, and no correlation between antibody levels at delivery and absence of placental malaria was found. Thus, the response to ID1-ID2a was not pregnancy specific, but predominantly against cross-reactivity epitopes, which may have been induced by other PfEMP1 antigens, malarial antigens, or microbes. Currently, ID1-ID2a is a leading vaccine candidate, since it binds to the CSA with the same affinity as the full-length molecule and elicits binding-inhibitory antibodies in animals. Further studies are needed to determine if the presence of naturally acquired cross-reactive antibodies in women living in malaria endemic countries will alter the response to ID1-ID2a following vaccination with ID1-ID2a.

  7. Comparison of (/sup 125/I)beta-endorphin binding to rat brain and NG108-15 cells using a monoclonal antibody directed against the opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bidlack, J.M.; O' Malley, W.E.; Schulz, R.

    1988-02-01

    The properties of (/sup 125/I)beta h-endorphin-binding sites from rat brain membranes and membranes from the NG108-15 cell line were compared using a monoclonal antibody directed against the opioid receptor and opioid peptides as probes. The binding of (/sup 125/I)beta h-endorphin to both rat brain and NG108-15 membranes yielded linear Scatchard plots with Kd values of 1.2 nM and 1.5 nM, respectively, and Bmax values of 865 fmol/mg rat brain membrane protein and 1077 fmol/mg NG108-15 membrane protein. A monoclonal antibody, OR-689.2.4, capable of inhibiting mu and delta binding but not kappa binding to rat brain membranes, noncompetitively inhibited the binding of 1 nM (/sup 125/I)beta h-endorphin to rat brain and NG108-15 membranes with an IC50 value of 405 nM for rat brain membranes and 543 nM for NG108-15 membranes. The monoclonal antibody also inhibited the binding of 3 nM (/sup 3/H) (D-penicillamine2, D-penicillamine5) enkephalin to NG108-15 membranes with an IC50 value of 370 nM. In addition to blocking the binding of (/sup 125/I)beta h-endorphin to brain membranes, the antibody also displaced (/sup 125/I)beta h-endorphin from membranes. Site-specific opioid peptides had large variations in their IC50 values depending on whether they were inhibiting (/sup 125/I)beta h-endorphin binding to rat brain or the NG108-15 membranes. When the peptides were tested with the monoclonal antibody for their combined ability to inhibit (/sup 125/I)beta h-endorphin binding to both membrane preparations, the peptides and antibody blocked binding as though they were acting at allosterically coupled sites, not two totally independent sites. These studies suggest that mu-, delta-, and beta-endorphin-binding sites share some sequence homology with the 35,000-dalton protein that the antibody is directed against.

  8. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Directory of Open Access Journals (Sweden)

    Mattias N E Forsell

    2008-10-01

    Full Text Available The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3. Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4 rabbits with envelope glycoprotein (Env trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  9. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Science.gov (United States)

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  10. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2011-09-01

    Full Text Available of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 onto plates coated with anti-CD4bs antibodies b12, b6 or the CD4 receptor mimetic, CD4-IgG2...

  11. Light-chain residue 95 is critical for antigen binding and multispecificity of monoclonal antibody G2.

    Science.gov (United States)

    Usui, Daiki; Inaba, Satomi; Kamatari, Yuji O; Ishiguro, Naotaka; Oda, Masayuki

    2017-09-02

    The monoclonal antibody, G2, specifically binds to the immunogen peptide derived from the chicken prion protein, Pep18mer, and two chicken proteins derived peptides, Pep8 and Pep395; G2 binds with equal affinity to Pep18mer. The amino acid sequences of the three peptides are completely different, and so the recognition mechanism of G2 is unique and interesting. We generated a single-chain Fv (scFv) antibody of G2, and demonstrated its correct folding with an antigen binding function similar to intact G2 antibody. We also generated a Pro containing mutant of G2 scFv at residue 95 of the light chain, and analyzed its antigen binding using a surface plasmon biosensor. The mutant lost its binding ability to Pep18mer, but remained those to Pep8 and Pep395. The results clearly indicate residue 95 as being critical for multispecific antigen binding of G2 at the site generated from the junctional diversity introduced at the joints between the V and J gene segments. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Binding of monoclonal antibody to protein antigen in fluid phase or bound to solid supports

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, S J

    1982-01-01

    Rat monoclonal antibody (MoAb) to fragment D (FgD) of human fibrinogen was used to characterize the direct binding of antibody to protein in solution or bound to solid supports. Purified IgG, F(ab')/sub 2/ and Fab' were prepared from ascites fluid of hybridoma 104-14B which is a fusion product of spleen cells from a rat immunized with FgD and the mouse myeloma cell line, P3-X63-Ag8. Two-dimensional electrophoresis of radioiodinated antibody preparations demonstrated the presence of hybrid immunoglobulin molecules, but only structures having rat heavy and rat light chains had active antibody combinig sites. The affinity constant for IgG as well as F(ab')/sub 2/ and Fab', 6x10/sup 9/ M/sup -1/, was identical when tested using fluid phase antigen (/sup 125/I-labeled FgD). Affinity constants determined for direct binding of iodinated IgG using FgD immobilized on solid supports showed a slight dependence on the antigen concentration used in the measurement. These values ranged from 0.5x10/sup 9/ M/sup -1/ at high antigen concentrations (1.3x10/sup -7/ M) to 9x10/sup 9/ M/sup -1/ at low antigen concentration (1.3x10/sup -10/ M). Binding constants for F(ab')/sub 2/ and Fab' gave similar results indicating that binding was homogeneous and univalent. The capacity of solid state antigen to bind antibody varied with the method used to bind FgD to the solid support. FgD bound directly to polystyrene plates was least efficient at binding labeled antibody; FgD bound to plates through intermediate carriers poly(L-lysine) was only slightly more efficient, while antigen bound to Sepharose beads by cyanogen bromide activation was the most active.

  13. Biomimetic conformation-specific assembly of proteins at artificial binding sites nano-patterned on silicon

    Science.gov (United States)

    de la Rica, Roberto; Matsui, Hiroshi

    2009-01-01

    Biomolecules such as enzymes and antibodies possess binding sites where the molecular architecture and the physicochemical properties are optimum for their interaction with a particular target, in some cases even differentiating between stereoisomers. Here, we mimic this exquisite specificity via the creation of a suitable chemical environment by fabricating artificial binding sites for the protein calmodulin (CaM). By downscaling well-known surface chemical modification methodologies to the nanometer scale via silicon nanopatterning, the Ca2+-CaM conformer was found to selectively bind the biomimetic binding sites. The methodology could be adapted to mimic other protein-receptor interactions for sensing and catalysis. PMID:19757782

  14. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns.

    Science.gov (United States)

    Davenport, Kaitlynn R; Smith, Christopher A; Hofstetter, Heike; Horn, James R; Hofstetter, Oliver

    2016-05-15

    In this study, the effect of random vs. site-directed immobilization techniques on the performance of antibody-based HPLC columns was investigated using a single-domain camelid antibody (VHH) directed against methotrexate (MTX) as a model system. First, the high flow-through support material POROS-OH was activated with disuccinimidyl carbonate (DSC), and the VHH was bound in a random manner via amines located on the protein's surface. The resulting column was characterized by Frontal Affinity Chromatography (FAC). Then, two site-directed techniques were explored to increase column efficiency by immobilizing the antibody via its C-terminus, i.e., away from the antigen-binding site. In one approach, a tetra-lysine tail was added, and the antibody was immobilized onto DSC-activated POROS. In the second site-directed approach, the VHH was modified with the AviTag peptide, and a biotin-residue was enzymatically incorporated at the C-terminus using the biotin ligase BirA. The biotinylated antibody was subsequently immobilized onto NeutrAvidin-derivatized POROS. A comparison of the FAC analyses, which for all three columns showed excellent linearity (R(2)>0.999), revealed that both site-directed approaches yield better results than the random immobilization; the by far highest efficiency, however, was determined for the immunoaffinity column based on AviTag-biotinylated antibody. As proof of concept, all three columns were evaluated for quantification of MTX dissolved in phosphate buffered saline (PBS). Validation using UV-detection showed excellent linearity in the range of 0.04-12μM (R(2)>0.993). The lower limit of detection (LOD) and lower limit of quantification (LLOQ) were found to be independent of the immobilization strategy and were 40nM and 132nM, respectively. The intra- and inter-day precision was below 11.6%, and accuracy was between 90.7% and 112%. To the best of our knowledge, this is the first report of the AviTag-system in chromatography, and the first

  15. Radiometric immunosorbent assay for the detection of anti-hormone-binding protein antibodies

    International Nuclear Information System (INIS)

    Pierce, E.A.; Dame, M.C.; DeLuca, H.F.

    1986-01-01

    A radiometric immunosorbent assay (RISA) for the detection of monoclonal antibodies to hormone-binding proteins has been developed. The assay involves incubating hybridoma supernatants in microtiter wells that have been coated with goat anti-mouse IgG antibodies. Any mouse IgG in the test supernatant is thus specifically retained in the wells. Radioactive ligand-binding protein complexes are then incubated in the wells. The presence of anti-binding protein antibodies in the supernatant is indicated by specific retention of radioactive ligand-binding protein complexes in the wells. Crude antigen preparations, such as tissue homogenates, can be used to detect antibodies. The assay is capable of detecting antibody at concentrations 20 ng/ml (approx. 100 pM IgG). The RISA has been used successfully to screen for monoclonal antibodies to the intracellular receptor for 1,25-dihydroxyvitamin D 3 and should be useful for the detection of antibodies to ligand-binding proteins in general

  16. Heparin-associated thrombocytopenia: antibody binding specificity to platelet antigens.

    Science.gov (United States)

    Lynch, D M; Howe, S E

    1985-11-01

    Sera from four patients with heparin-associated thrombocytopenia (HAT) were evaluated by a quantitative enzyme-linked immunosorbent assay (ELISA) to detect heparin-dependent serum platelet-bindable immunoglobulin (S-PBIg) and by Western blotting and immunoprecipitation to investigate the specificity of the antibody binding. All HAT sera showed mildly increased S-PBIg (mean, 7.8 fg per platelet; normal, less than 6.0 fg per platelet) to intact target platelets in the ELISA, which was markedly increased in the presence of heparin (mean, 20.9 fg per platelet). This increase was 20-fold greater than normal control sera, which showed a mean differential increase of only 0.5 fg per platelet. Immunoglobulin binding specificity to platelet antigens was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis of platelet lysate with transfer of the platelet fractions onto nitrocellulose strips (Western blotting) and subsequent immunoassay using HAT and normal sera. In the presence of heparin, the four HAT patients demonstrated increased binding of immunoglobulin to platelet antigens of apparent molecular weights of 180, 124, and 82 kd. Radiolabeled heparin when incubated with HAT sera, normal sera, or albumin blanks bound to platelet proteins of the same apparent molecular weights. These observations are consistent with current hypotheses suggesting that HAT antibody is directed to heparin-platelet complexes or, alternatively, that heparin induces conformational change of antigenic sites on the platelet membrane.

  17. A novel cell binding site in the coiled‐coil domain of laminin involved in capillary morphogenesis

    DEFF Research Database (Denmark)

    Sanz, Laura; García-Bermejo, Laura; Blanco, Francisco J

    2003-01-01

    Recently, we reported the isolation and characterization of an anti‐laminin antibody that modulates the extracellular matrix‐dependent morphogenesis of endothelial cells. Here we use this antibody to precisely map the binding site responsible for mediating this biologically important interaction....

  18. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2017-10-01

    The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

  19. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  20. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    International Nuclear Information System (INIS)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. The authors have studied the binding of 125 I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind =Ka[Ag total]/1 + Ka[Ag total]. Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10 8 M -1 are not likely to be useful for drug targeting or tumor imaging

  1. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins

    Science.gov (United States)

    Rosen, Christian B.; Kodal, Anne L. B.; Nielsen, Jesper S.; Schaffert, David H.; Scavenius, Carsten; Okholm, Anders H.; Voigt, Niels V.; Enghild, Jan J.; Kjems, Jørgen; Tørring, Thomas; Gothelf, Kurt V.

    2014-09-01

    DNA-protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA-protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His6-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.

  2. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Imamichi, Hiromi; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark [NIH

    2015-10-15

    The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) <50 μg ml-1. The median IC50 of neutralized viruses was 0.033 μg ml-1, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.

  3. Designing two-in-one antibodies.

    Science.gov (United States)

    Valladares, Ignacio Garcia; Espinoza, Luis R

    2009-09-01

    Evaluation of: Bostrom J, Shang-Fan Y, Kan D et al.: Variants of the antibody Herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323, 1610-1614 (2009). The longstanding held notion that one antibody equals one antigen and, hence, one function has been challenged in recent years. Improved technology in antibody production, especially the accumulation of sequence data of immunoglobulin genes and the advent of PCR have made it possible to clone antibody gene repertoires. The current paper provides further challenge to the notion of one antibody = one antigen by developing 'two-in-one' antibodies with an antigen-binding site that binds two distinct proteins with high affinity. A therapeutic variant antibody of Herceptin (Genentech, CA, USA) was isolated that binds the human EGF receptor (HER)2 and also to VEGF. This development may represent a breakthrough discovery and may have significant implications in the therapy of malignant, infectious, allergic and autoimmune disorders.

  4. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  5. Site-Specific Antibody Functionalization Using Tetrazine-Styrene Cycloaddition.

    Science.gov (United States)

    Umlauf, Benjamin J; Mix, Kalie A; Grosskopf, Vanessa A; Raines, Ronald T; Shusta, Eric V

    2018-05-03

    Biologics, such as antibody-drug conjugates, are becoming mainstream therapeutics. Consequently, methods to functionalize biologics without disrupting their native properties are essential for identifying, characterizing, and translating candidate biologics from the bench to clinical practice. Here, we present a method for site-specific, carboxy-terminal modification of single-chain antibody fragments (scFvs). ScFvs displayed on the surface of yeast were isolated and functionalized by combining intein-mediated expressed protein ligation (EPL) with inverse electron-demand Diels-Alder (IEDDA) cycloaddition using a styrene-tetrazine pair. The high thiol concentration required to trigger EPL can hinder the subsequent chemoselective ligation reactions; therefore, the EPL reaction was used to append styrene to the scFv, limiting tetrazine exposure to damaging thiols. Subsequently, the styrene-functionalized scFv was reacted with tetrazine-conjugated compounds in an IEDDA cycloaddition to generate functionalized scFvs that retain their native binding activity. Rapid functionalization of yeast surface-derived scFv in a site-directed manner could find utility in many downstream laboratory and preclinical applications.

  6. Site-Specific Antibody Labeling by Covalent Photoconjugation of Z Domains Functionalized for Alkyne-Azide Cycloaddition Reactions.

    Science.gov (United States)

    Perols, Anna; Arcos Famme, Melina; Eriksson Karlström, Amelie

    2015-11-01

    Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Two-site sandwich radioimmunoassay of human gamma interferon with monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, E; Imai, M; Usuda, S; Tachibana, K; Okamoto, H; Ohike, Y; Nakamura, T; Miyakawa, Y; Mayumi, M [Jichi Medical School, Minamikawachi, Tochigi (Japan)

    1985-03-18

    Two monoclonal antibodies were raised against human gamma interferon (IFN-..gamma..) derived from E. coli harboring the recombinant cDNA for IFN-..gamma.., and one against a synthetic peptide representing its C-terminus amino acid sequence of 20 residues. The monoclonal antibody against the synthetic peptide reacted either with IFN-..gamma.. or the synthetic peptide. One monoclonal anti-IFN-..gamma.. did not react with the synthetic peptide, while the other showed a weak binding with the peptide. A 2-site '1-step' radioimmunoassay was developed. The assay was rapid with a sensitivity capable of detecting a few ng/ml of IFN-..gamma...

  8. Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-09-08

    Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.

  9. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  10. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody.

    Science.gov (United States)

    Zhang, Di; Whitaker, Brian; Derebe, Mehabaw G; Chiu, Mark L

    2018-04-01

    Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.

  11. Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus

    Science.gov (United States)

    Asfor, Amin S.; Upadhyaya, Sasmita; Knowles, Nick J.; King, Donald P.; Paton, David J.

    2014-01-01

    Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design. PMID:24584474

  12. Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys

    Science.gov (United States)

    Leabman, Maya K; Meng, Y Gloria; Kelley, Robert F; DeForge, Laura E; Cowan, Kyra J; Iyer, Suhasini

    2013-01-01

    Antibody interactions with Fcγ receptors (FcγRs), like FcγRIIIA, play a critical role in mediating antibody effector functions and thereby contribute significantly to the biologic and therapeutic activity of antibodies. Over the past decade, considerable work has been directed towards production of antibodies with altered binding affinity to FcγRs and evaluation of how the alterations modulate their therapeutic activity. This has been achieved by altering glycosylation status at N297 or by engineering modifications in the crystallizable fragment (Fc) region. While the effects of these modifications on biologic activity and efficacy have been examined, few studies have been conducted to understand their effect on antibody pharmacokinetics (PK). We present here a retrospective analysis in which we characterize the PK of three antibody variants with decreased FcγR binding affinity caused by amino acid substitutions in the Fc region (N297A, N297G, and L234A/L235A) and three antibody variants with increased FcγRIIIA binding affinity caused by afucosylation at N297, and compare their PK to corresponding wild type antibody PK in cynomolgus monkeys. For all antibodies, PK was examined at a dose that was known to be in the linear range. Since production of the N297A and N297G variants in Chinese hamster ovary cells results in aglycosylated antibodies that do not bind to FcγRs, we also examined the effect of expression of an aglycosylated antibody, without sequence change(s), in E. coli. All the variants demonstrated similar PK compared with that of the wild type antibodies, suggesting that, for the six antibodies presented here, altered FcγR binding affinity does not affect PK. PMID:24492343

  13. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis

    Science.gov (United States)

    Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan

    2018-05-01

    The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.

  14. Antigen-binding radioimmunoassays for human IgG antibodies to bovine ν-lactoglobulin

    International Nuclear Information System (INIS)

    Turner, M.W.; Paganelli, R.; Levinsky, R.J.; Williams, A.

    1983-01-01

    A double antibody antigen-binding assay for the detection of human IgG antibodies to the bovine milk allergen ν-lactoglobulin is described. The levels of such antibodies in patients with established cows' milk protein intolerance were significantly higher than the levels observed in a healthy control group (P<0.01). The assay showed excellent correlation with a solid phase antigen binding assay (rsub(s) = 0.8, P<0.001). (Auth.)

  15. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  16. Characterization of Palytoxin Binding to HaCaT Cells Using a Monoclonal Anti-Palytoxin Antibody

    Directory of Open Access Journals (Sweden)

    Chiara Florio

    2013-02-01

    Full Text Available Palytoxin (PLTX is the reference compound for a group of potent marine biotoxins, for which the molecular target is Na+/K+-ATPase. Indeed, ouabain (OUA, a potent blocker of the pump, is used to inhibit some PLTX effects in vitro. However, in an effort to explain incomplete inhibition of PLTX cytotoxicity, some studies suggest the possibility of two different binding sites on Na+/K+-ATPase. Hence, this study was performed to characterize PLTX binding to intact HaCaT keratinocytes and to investigate the ability of OUA to compete for this binding. PLTX binding to HaCaT cells was demonstrated by immunocytochemical analysis after 10 min exposure. An anti-PLTX monoclonal antibody-based ELISA showed that the binding was saturable and reversible, with a Kd of 3 × 10−10 M. However, kinetic experiments revealed that PLTX binding dissociation was incomplete, suggesting an additional, OUA-insensitive, PLTX binding site. Competitive experiments suggested that OUA acts as a negative allosteric modulator against high PLTX concentrations (0.3–1.0 × 10−7 M and possibly as a non-competitive antagonist against low PLTX concentrations (0.1–3.0 × 10−9 M. Antagonism was supported by PLTX cytotoxicity inhibition at OUA concentrations that displaced PLTX binding (1 × 10−5 M. However, this inhibition was incomplete, supporting the existence of both OUA-sensitive and -insensitive PLTX binding sites.

  17. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Guorui; Lam, Kwok-ho; Weisemann, Jasmin; Peng, Lisheng; Krez, Nadja; Perry, Kay; Shoemaker, Charles B.; Dong, Min; Rummel, Andreas; Jin, Rongsheng (BCH); (Cornell); (Tufts CTSI); (UCI); (MHH)

    2017-08-07

    Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.

  18. The effects of variations in the specificities of the antibody components on a two-site immunoradiometric assay for ferritin

    International Nuclear Information System (INIS)

    Cowan, S.I.; Stagg, B.H.; Niemann, E.

    1977-01-01

    Variations in the sub-unit antigenic structure of ferritins derived from various human tissues are reflected in the differing specificities of antisera raised against these ferritin preparations. In this study it was shown that antibody specificity played an important role in determining the sensitivity and overall binding of labelled antibody in a two-site immunoradiometric assay for ferritin. Homologous assay systems, in which solid phase and radiolabelled antibodies were of similar specificities, were generally less sensitive and showed lower binding than heterologous assay systems, in which solid phase and labelled antibodies were of different specificities. The source of the ferritin which was used as assay standard also played an important part in determining the sensitivity and overall binding in homologous antibody systems, spleen ferritin standards yielding assays superior to those obtained with placenta or liver ferritin standards. However, these differences between standards were not seen in a heterologous system employing solid phase antibodies directed against liver ferritin and labelled antibodies directed against placenta ferritin. The nature of the ferritin used to prepare immunoadsorbant for the purification of antibodies prior to radioiodination also affected the assay characteristics; antibodies prepared on spleen ferritin immunoadsorbant being more reactive than antibodies prepared on placenta ferritin immunoadsorbant, which in turn were more reactive then antibodies prepared on liver ferritin immunoadsorbant. (orig.) [de

  19. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  20. Rifampicin-dependent antibodies bind a similar or identical epitope to glycoprotein IX-specific quinine-dependent antibodies

    NARCIS (Netherlands)

    Burgess, Janette K.; Lopez, Jose A.; Gaudry, Leonie E.; Chong, Beng H.

    2000-01-01

    The drug-dependent antibody of a patient with rifampicin-induced thrombocytopenia was characterized using the antigen-capture enzyme-linked immunosorbent assay (MAIPA assay), flow cytometry, and immunoprecipitation. The antibody was found to bind glycoprotein (GP) Ib-IX but not GPIIb-IIIa because

  1. Monoclonal antibodies to the reactive centre loop (RCL) of human corticosteroid-binding globulin (CBG) can protect against proteolytic cleavage.

    Science.gov (United States)

    Lewis, John G; Elder, Peter A

    2017-07-01

    Corticosteroid-binding globulin (CBG) binds most of the cortisol in circulation and is a non-functional member of the family of serine protease inhibitors (serpins) with an exposed elastase sensitive reactive centre loop (RCL). The RCL can be cleaved by human neutrophil elastase, released from activated neutrophils, and can also be cleaved at nearby site(s) by elastase released by Pseudomonas aeruginosa, and at two further sites, also within the RCL, by bovine chymotrypsin. Cleavage of the RCL results in a conformational change accompanied by a marked decrease in affinity for cortisol and hence its release at the site of proteolysis. These cleavages are irreversible and the similar half-lives of cleaved and intact CBG could mean that there may be some advantage in slowing the rate of CBG cleavage in acute inflammation thereby increasing the proportion of intact CBG in circulation. Here we show, for the first time, that pre-incubation of tethered human CBG with two monoclonal antibodies to the RCL of CBG protects against cleavage by all three enzymes. Furthermore, in plasma, pre-incubation with both RCL monoclonal antibodies delays neutrophil elastase cleavage of the RCL and one of these RCL monoclonal antibodies also delays bovine chymotrypsin cleavage of the RCL. These findings may provide a basis and rationale for the concept of the use of RCL antibodies as therapeutic agents to effectively increase the proportion of intact CBG in circulation which may be of benefit in acute inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The original Pathologische Anatomie Leiden-Endothelium monoclonal antibody recognizes a vascular endothelial growth factor binding site within neuropilin-1

    NARCIS (Netherlands)

    Jaalouk, Diana E.; Ozawa, Nfichael G.; Sun, Jessica; Lahdenranta, Johanna; Schlingemann, Reinier O.; Pasqualini, Renata; Arap, Wadih

    2007-01-01

    For two decades, the antigen recognized by the Pathologische Anatomie Leiden-Endothelium (PAL-E) monoclonal antibody, a standard vascular endothelial cell marker, has remained elusive. Here, we used a combinatorial phage display-based approach ("epitope mapping") to select peptides binding to the

  3. Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.

    Science.gov (United States)

    André, S; Ortega, P J; Perez, M A; Roy, R; Gabius, H J

    1999-11-01

    Starburst glycodendrimers offer the potential to serve as high-affinity ligands for clinically relevant sugar receptors. In order to define areas of application, their binding behavior towards sugar receptors with differential binding-site orientation but identical monosaccharide specificity must be evaluated. Using poly(amidoamine) starburst dendrimers of five generations, which contain the p-isothiocyanato derivative of p-aminophenyl-beta-D-lactoside as ligand group, four different types of galactoside-binding proteins were chosen for this purpose, i.e., the (AB)(2)-toxic agglutinin from mistletoe, a human immunoglobulin G fraction, the homodimeric galectin-1 with its two binding sites at opposite ends of the jelly-roll-motif-harboring protein and monomeric galectin-3. Direct solid-phase assays with surface-immobilized glycodendrimers resulted in obvious affinity enhancements by progressive core branching for the plant agglutinin and less pronounced for the antibody and galectin-1. High density of binding of galectin-3 with modest affinity increases only from the level of the 32-mer onwards points to favorable protein-protein interactions of the monomeric lectin and a spherical display of the end groups without a major share of backfolding. When the inhibitory potency of these probes was evaluated as competitor of receptor binding to an immobilized neoglycoprotein or to asialofetuin, a marked selectivity was detected. The 32- and 64-mers were second to none as inhibitors for the plant agglutinin against both ligand-exposing matrices and for galectin-1 on the matrix with a heterogeneous array of interglycoside distances even on the per-sugar basis. In contrast, a neoglycoprotein with the same end group was superior in the case of the antibody and, less pronounced, monomeric galectin-3. Intimate details of topological binding-site presentation and the ligand display on different generations of core assembly are major operative factors which determine the potential

  4. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    International Nuclear Information System (INIS)

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  5. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  6. Effect of antibody charge and concentration on deposition of antibody to glomerular basement membrane

    International Nuclear Information System (INIS)

    Madaio, M.P.; Salant, D.J.; Adler, S.; Darby, C.; Couser, W.G.

    1984-01-01

    Fixed anionic sites within the glomerular capillary wall influence the permeation of serum proteins, the localization of various antigens, and the deposition of antibody in the subepithelial space. In anti-GBM nephritis antibody deposition occurs very rapidly to antigenic sites located relatively proximal in the glomerular capillary wall. The authors examined the influence of the glomerular charge barrier on anti-GBM antibody deposition by comparing the rate of deposition of antibodies with cationic and anionic isoelectric points. Purified sheep anti-rat GBM IgG was isolated from acid eluates of kidneys obtained 24 hr after rats were injected with sheep antiserum to rat GBM. Anti-GBM IgG was separated into cationic (pI 6.4-8.5) and anionic (pI 4.2-6.8) fractions, which were radiolabelled with 131 I and 125 I, respectively, shown to have equal antibody contents measured by in vitro binding to normal glomeruli, mixed in equal amounts, and injected in incremental doses to ten rats. At 1 hr the glomerular antibody binding of each fraction was directly related to the blood level (r . 0.95, r . 0.97) and delivery of antibody (r . 0.98, r . 0.98). Glomerular binding of cationic antibody was four times greater than anionic antibody over the entire range of deliveries studied (P less than 0.001). The authors conclude that glomerular deposition of anti-GBM antibody is directly related to blood concentration and delivery of antibody. Furthermore, the deposition of cationic antibodies to GBM antigens was significantly greater than the deposition of anionic antibodies

  7. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Monoclonal antibodies directed to E1 glycoprotein of rubella virus

    International Nuclear Information System (INIS)

    Umino, Y.; Sato, A.; Katow, S.; Matsuno, T.; Sugiura, A.

    1985-01-01

    We have prepared four monoclonal antibodies to rubella virus E1 glycoprotein. Three nonoverlapping antigenic sites were delineated on E1 protein by competitive binding assays. Antibodies binding to one site were characterized by high hemagglutination inhibition (HI) titer but poor neutralizing activity. The addition of antiglobulin conferred neutralizing activity. Antibodies directed to two other antigenic sites had modest hemolysis inhibition but little or no HI and neutralizing activities. The addition of antiglobulin markedly augmented HI activity but had little effect on neutralizing activity. Epitopes defined by three antibodies were conserved among four rubella virus strains examined. (Author)

  9. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  10. Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins

    Directory of Open Access Journals (Sweden)

    Datis Kharrazian

    2017-01-01

    Full Text Available Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw and modified (cooked and roasted foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease.

  11. Heparin binding domain of antithrombin III: Characterization using a synthetic peptide directed polyclonal antibody

    International Nuclear Information System (INIS)

    Smith, J.W.; Dey, B.; Knauer, D.J.

    1990-01-01

    Antithrombin III (ATIII) is a plasma-borne serine protease inhibitor that apparently forms covalent complexes with thrombin. The interaction between ATIII and thrombin is enhanced several thousandfold by the glycosaminoglycan, heparin. The authors have previously proposed that the heparin binding site of ATIII residues within a region extending from amino acid residues 114-156. Computer-assisted analysis of this region revealed the presence of a 22 amino acid domain (residues 124-145), part of which shows a strong potential for the formation of an amphipathic helix: hydrophobic on one face and highly positively charged on the other. In the presence studies, polyclonal antisera were generated against a synthetic peptide corresponding to residues 124-145 in native human ATIII. Affinity-purified IgG from these antisera, as well as monovalent Fab's derived from them, specifically blocked the binding of heparin to ATIII. Additionally, occupancy of the heparin binding site by these same monovalent and bivalent IgG's at least partially substituted for heparin, accelerating linkage formation between ATIII and thrombin. These results provide the first immunological evidence that region 124-145 is directly involved in the binding of heparin to ATIII and that an antibody-induced conformational change within this region can mediate ATIII activation

  12. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interfer......Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance......) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former...

  13. Na-K pump site density and ouabain binding affinity in cultured chick heart cells

    International Nuclear Information System (INIS)

    Lobaugh, L.A.; Lieberman, M.

    1987-01-01

    The possible existence of multiple [ 3 H]ouabain binding sites and the relationship between ouabain binding and Na-K pump inhibition in cardiac muscle were studied using cultured embryonic chick heart cells. [ 3 H]ouabain bound to a single class of sites in 0.5 mM K (0.5 Ko) with an association rate constant (k+1) of 3.4 X 10(4) M-1.s-1 and a dissociation rate constant (k-1) of 0.0095 s. Maximal specific [ 3 H]ouabain binding RT to myocyte-enriched cultures is 11.7 pmol/mg protein and Kd is 0.43 microM in 0.5 Ko, whereas Kd,apparent is 6.6 microM in 5.4 Ko. The number of binding sites per myocyte was calculated by correcting for the contribution of fibroblasts in myocyte-enriched cultures using data from homogeneous fibroblast cultures (RT = 3.3 pmol/mg protein; Kd = 0.19 microM in 0.5 Ko). Equivalence of [ 3 H]ouabain binding sites and Na-K pumps was implied by agreement between maximal specific binding of [ 3 H]ouabain and 125 I-labeled monoclonal antibody directed against Na+-K+-ATPase (approximately 2 X 10(6) sites/cell). However, [ 3 H]ouabain binding occurred at lower concentrations than inhibition of ouabain-sensitive 42 K uptake in 0.5 Ko. Further studies in both 0.5 K and 5.4 Ko showed that ouabain caused cell Na content Nai to increase over the same range of concentrations that binding occurred, implying that increased Nai may stimulate unbound Na-K pumps and prevent a proportional decrease in 42 K uptake rate. The results show that Na-K pump inhibition occurs as a functional consequence of specific ouabain binding and indicate that the Na-K pump is the cardiac glycoside receptor in cultured heart cells

  14. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  15. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function.

    Science.gov (United States)

    Chung, Amy W; Crispin, Max; Pritchard, Laura; Robinson, Hannah; Gorny, Miroslaw K; Yu, Xiaojie; Bailey-Kellogg, Chris; Ackerman, Margaret E; Scanlan, Chris; Zolla-Pazner, Susan; Alter, Galit

    2014-11-13

    To determine monoclonal antibody (mAb) features that predict fragment crystalizable (Fc)-mediated effector functions against HIV. Monoclonal antibodies, derived from Chinese hamster ovary cells or Epstein-Barr virus-immortalized mouse heteromyelomas, with specificity to key regions of the HIV envelope including gp120-V2, gp120-V3 loop, gp120-CD4(+) binding site, and gp41-specific antibodies, were functionally profiled to determine the relative contribution of the variable and constant domain features of the antibodies in driving robust Fc-effector functions. Each mAb was assayed for antibody-binding affinity to gp140(SR162), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and for the ability to bind to FcγRIIa, FcγRIIb and FcγRIIIa receptors. Antibody glycan profiles were determined by HPLC. Neither the specificity nor the affinity of the mAbs determined the potency of Fc-effector function. FcγRIIIa binding strongly predicted ADCC and decreased galactose content inversely correlated with ADCP, whereas N-glycolylneuraminic acid-containing structures exhibited enhanced ADCP. Additionally, the bi-antenary glycan arm onto which galactose was added predicted enhanced binding to FcγRIIIa and ADCC activity, independent of the specificity of the mAb. Our studies point to the specific Fc-glycan structures that can selectively promote Fc-effector functions independently of the antibody specificity. Furthermore, we demonstrated antibody glycan structures associated with enhanced ADCP activity, an emerging Fc-effector function that may aid in the control and clearance of HIV infection.

  16. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis.

    Science.gov (United States)

    Padmanabhan, Anand; Jones, Curtis G; Bougie, Daniel W; Curtis, Brian R; McFarland, Janice G; Wang, Demin; Aster, Richard H

    2015-01-01

    Antibodies specific for platelet factor 4 (PF4)/heparin complexes are the hallmark of heparin-induced thrombocytopenia and thrombosis (HIT), but many antibody-positive patients have normal platelet counts. The basis for this is not fully understood, but it is believed that antibodies testing positive in the serotonin release assay (SRA) are the most likely to cause disease. We addressed this issue by characterizing PF4-dependent binding of HIT antibodies to intact platelets and found that most antibodies testing positive in the SRA, but none of those testing negative, bind to and activate platelets when PF4 is present without any requirement for heparin (P HIT antibodies recognize PF4 in a complex with heparin, only a subset of these antibodies recognize more subtle epitopes induced in PF4 when it binds to CS, the major platelet glycosaminoglycan. Antibodies having this property could explain "delayed HIT" seen in some individuals after discontinuation of heparin and the high risk for thrombosis that persists for weeks in patients recovered from HIT. © 2015 by The American Society of Hematology.

  17. Reshaping Human Antibodies: Grafting an Antilysozyme Activity

    Science.gov (United States)

    Verhoeyen, Martine; Milstein, Cesar; Winter, Greg

    1988-03-01

    The production of therapeutic human monoclonal antibodies by hybridoma technology has proved difficult, and this has prompted the ``humanizing'' of mouse monoclonal antibodies by recombinant DNA techniques. It was shown previously that the binding site for a small hapten could be grafted from the heavy-chain variable domain of a mouse antibody to that of a human myeloma protein by transplanting the hypervariable loops. It is now shown that a large binding site for a protein antigen (lysozyme) can also be transplanted from mouse to human heavy chain. The success of such constructions may be facilitated by an induced-fit mechanism.

  18. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  19. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding

    Science.gov (United States)

    D’Angelo, Sara; Ferrara, Fortunato; Naranjo, Leslie; Erasmus, M. Frank; Hraber, Peter; Bradbury, Andrew R. M.

    2018-01-01

    Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with the same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding. PMID:29568296

  20. Monoclonal antibody to the rat glucocorticoid receptor. Relationship between the immunoreactive and DNA-binding domain

    International Nuclear Information System (INIS)

    Eisen, L.P.; Reichman, M.E.; Thompson, E.B.; Gametchu, B.; Harrison, R.W.; Eisen, H.J.

    1985-01-01

    The region of the glucocorticoid receptor that reacted with a monoclonal antibody (BUGR-1) was identified. In order to identify the immunoreactive region, the rat liver glucocorticoid receptor was subjected to limited proteolysis; immunoreactive fragments were identified by Western blotting. The monoclonal antibody reacted with both the undigested Mr approximately 97,000 receptor subunit and a Mr approximately 45,000 fragment containing the steroid-binding and DNA-binding domains. Digestion by trypsin also produced two steroid-binding fragments of Mr approximately 27,000 and 31,000 which did not react with the antibody and an immunoreactive Mr approximately 16,000 fragment. This Mr approximately 16,000 fragment was shown to bind to DNA-cellulose, indicating that it contained a DNA-binding domain of the receptor. The undigested receptor must have steroid associated with it to undergo activation to a DNA-binding form. However, the Mr approximately 16,000 immunoreactive fragment binds to DNA-cellulose even if it is obtained by digestion of the steroid-free holoreceptor which does not itself bind to DNA

  1. An anti vimentin antibody promotes tube formation

    DEFF Research Database (Denmark)

    Jørgensen, Mathias Lindh; Møller, Carina Kjeldahl; Rasmussen, Lasse

    2017-01-01

    antibody technology, promotes tube formation of endothelial cells in a 2D matrigel assay. By binding vimentin, the antibody increases the tube formation by 21% after 5 hours of incubation. Addition of the antibody directly to cultured endothelial cells does not influence endothelial cell migration...... or proliferation. The enhanced tube formation can be seen for up to 10 hours where after the effect decreases. It is shown that the antibody-binding site is located on the coil 2 domain of vimentin. To our knowledge this is the first study that demonstrates an enhanced tube formation by binding vimentin in a 2D...

  2. Method of stably radiolabeling antibodies with technetium and rhenium

    International Nuclear Information System (INIS)

    Paik, C.H.; Reba, R.C.; Eckelman, W.C.

    1987-01-01

    A method is described for labeling antibodies or antibody fragments with radionuclides of technetium or rhenium to obtain stable labeling, comprising: reacting a reduced radioisotope of technetium or rhenium with an antibody or antibody fragment, or a diethylenetriaminepentaacetic acid conjugated antibody or antibody fragment, in the presence of free or carrier-bound diethylenetriaminepentaacetic acid (DTPA). The amount of DTPA is sufficient to substantially completely inhibit binding of the reduced technetium or rhenium to nonstable binding sites of the antibody or antibody fragment, or the DTPA-conjugated antibody or antibody fragment. The resultant stably labeled antibody or antibody fragment, or DTPA[conjugated antibody or antibody fragment is recovered

  3. Inhibition of ligand exchange kinetics via active-site trapping with an antibody fragment.

    Science.gov (United States)

    Oyen, David; Steyaert, Jan; Barlow, John N

    2014-04-01

    We describe the first example of an inhibitory antibody fragment (nanobody ca1697) that binds simultaneously to an enzyme (the enzyme dihydrofolate reductase from Escherichia coli) and its bound substrate (folate). Binding of the antibody to the substrate causes a 20-fold reduction in the rate of folate exchange kinetics. This work opens up the prospect of designing new types of antibody-based inhibitors of enzymes and receptors through suitable design of immunogens.

  4. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    International Nuclear Information System (INIS)

    Hoetzel, Isidro; Cheevers, William P.

    2005-01-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains of CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain β-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding

  5. HYDROXYCHLOROQUINE REDUCES BINDING OF ANTIPHOSPHOLIPID ANTIBODIES TO SYNCYTIOTROPHOBLASTS AND RESTORES ANNEXIN A5 EXPRESSION

    Science.gov (United States)

    Wu, Xiao-Xuan; Guller, Seth; Rand, Jacob H.

    2011-01-01

    Objectives Antibody-mediated disruption of the annexin A5 (AnxA5) anticoagulant shield has been posited to be a thrombogenic mechanism in the antiphospholipid syndrome. We recently showed that the antimalarial drug, hydroxychloroquine, dissociates antiphospholipid immune complexes and restores AnxA5 binding to planar phospholipid bilayer. Using quantitative immunoassays, we demonstrated similar effects on BeWo trophoblasts. We therefore investigated the effects of the drug on localization of AnxA5 in primary cultures of human placental syncytiotrophoblasts (SCTs). Study Laser confocal microscopy with computer-based morphometric analysis was used to localize AnxA5 and antiphospholipid antibodies on SCTs exposed to polyclonal and monoclonal antiphospholipid and control IgGs. Results Hydroxychloroquine reversed the effects of the antiphospholipid antibodies on the SCTs by markedly reducing IgG binding and restoring AnxA5 expression. Conclusions These results provide the first morphologic evidence for this effect of hydroxychloroquine on human placental SCTs and support the possibility of novel treatments that target antiphospholipid antibody binding. PMID:21871597

  6. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix.

    Science.gov (United States)

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-02-17

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.

  7. Fluorometric titration approach for calibration of quantity of binding site of purified monoclonal antibody recognizing epitope/hapten nonfluorescent at 340 nm.

    Science.gov (United States)

    Yang, Xiaolan; Hu, Xiaolei; Xu, Bangtian; Wang, Xin; Qin, Jialin; He, Chenxiong; Xie, Yanling; Li, Yuanli; Liu, Lin; Liao, Fei

    2014-06-17

    A fluorometric titration approach was proposed for the calibration of the quantity of monoclonal antibody (mcAb) via the quench of fluorescence of tryptophan residues. It applied to purified mcAbs recognizing tryptophan-deficient epitopes, haptens nonfluorescent at 340 nm under the excitation at 280 nm, or fluorescent haptens bearing excitation valleys nearby 280 nm and excitation peaks nearby 340 nm to serve as Förster-resonance-energy-transfer (FRET) acceptors of tryptophan. Titration probes were epitopes/haptens themselves or conjugates of nonfluorescent haptens or tryptophan-deficient epitopes with FRET acceptors of tryptophan. Under the excitation at 280 nm, titration curves were recorded as fluorescence specific for the FRET acceptors or for mcAbs at 340 nm. To quantify the binding site of a mcAb, a universal model considering both static and dynamic quench by either type of probes was proposed for fitting to the titration curve. This was easy for fitting to fluorescence specific for the FRET acceptors but encountered nonconvergence for fitting to fluorescence of mcAbs at 340 nm. As a solution, (a) the maximum of the absolute values of first-order derivatives of a titration curve as fluorescence at 340 nm was estimated from the best-fit model for a probe level of zero, and (b) molar quantity of the binding site of the mcAb was estimated via consecutive fitting to the same titration curve by utilizing such a maximum as an approximate of the slope for linear response of fluorescence at 340 nm to quantities of the mcAb. This fluorometric titration approach was proved effective with one mcAb for six-histidine and another for penicillin G.

  8. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism*

    Science.gov (United States)

    Gunawardane, Ruwanthi N.; Fordstrom, Preston; Piper, Derek E.; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-01-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouseTM platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  9. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery....... To better understand the underlying mechanisms of antibody-antigen interaction here we present a pipeline developed by us to structurally classify immunoglobulin antigen binding sites and to infer key sequence residues and other variables that have a prominent role in each structural class....

  10. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition

    International Nuclear Information System (INIS)

    Koch, Markus; Pancera, Marie; Kwong, Peter D.; Kolchinsky, Peter; Grundner, Christoph; Wang Liping; Hendrickson, Wayne A.; Sodroski, Joseph; Wyatt, Richard

    2003-01-01

    The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization

  11. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies

    Directory of Open Access Journals (Sweden)

    Keskin Ozlem

    2007-05-01

    Full Text Available Abstract Background How antibodies recognize and bind to antigens can not be totally explained by rigid shape and electrostatic complimentarity models. Alternatively, pre-existing equilibrium hypothesis states that the native state of an antibody is not defined by a single rigid conformation but instead with an ensemble of similar conformations that co-exist at equilibrium. Antigens bind to one of the preferred conformations making this conformation more abundant shifting the equilibrium. Results Here, two antibodies, a germline antibody of 36–65 Fab and a monoclonal antibody, SPE7 are studied in detail to elucidate the mechanism of antibody-antigen recognition and to understand how a single antibody recognizes different antigens. An elastic network model, Anisotropic Network Model (ANM is used in the calculations. Pre-existing equilibrium is not restricted to apply to antibodies. Intrinsic fluctuations of eight proteins, from different classes of proteins, such as enzymes, binding and transport proteins are investigated to test the suitability of the method. The intrinsic fluctuations are compared with the experimentally observed ligand induced conformational changes of these proteins. The results show that the intrinsic fluctuations obtained by theoretical methods correlate with structural changes observed when a ligand is bound to the protein. The decomposition of the total fluctuations serves to identify the different individual modes of motion, ranging from the most cooperative ones involving the overall structure, to the most localized ones. Conclusion Results suggest that the pre-equilibrium concept holds for antibodies and the promiscuity of antibodies can also be explained this hypothesis: a limited number of conformational states driven by intrinsic motions of an antibody might be adequate to bind to different antigens.

  12. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    International Nuclear Information System (INIS)

    Bates, John T.; Keefer, Christopher J.; Slaughter, James C.; Kulp, Daniel W.; Schief, William R.; Crowe, James E.

    2014-01-01

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K on ) for binding to RSV F protein, while alteration of dissociation rate (K off ) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K on with reduced potency mirrored the effect of increased K on found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K on ) correlated well with the potency of neutralization

  13. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Bates, John T. [The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Keefer, Christopher J. [The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Slaughter, James C. [The Vanderbilt Vaccine Center, Departments of Biostatistics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); Kulp, Daniel W. [IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (United States); Schief, William R. [IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (United States); Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA (United States); Crowe, James E., E-mail: james.crowe@vanderbilt.edu [The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States); The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2014-04-15

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on} with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.

  14. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    International Nuclear Information System (INIS)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.; Holan, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial [ 3 H]diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli [ 3 H]diazepam binding are those that are active in displacing [ 3 H]benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed

  15. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab and single chain variable fragment (ScFv antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations.

    Directory of Open Access Journals (Sweden)

    John M Louis

    Full Text Available We previously reported a series of antibodies, in fragment antigen binding domain (Fab formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066 and non-neutralizing (8062 antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥ 150-fold in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.

  16. A radioisotope dilution assay for unlabelled vitamin B12-intrinsic factor complex employing the binding intrinsic factor antibody: probable evidence for two types of binding antibody

    International Nuclear Information System (INIS)

    Jacob, E.; O'Brien, H.A.W.; Mollin, D.L.

    1977-01-01

    A new radioisotope dilution assay for vitamin B 12 -intrinsic factor complex is described. The method is based on the use of the binding type intrinsic antibody (the binding reagent), which when combined with the intrinsic factor-vitamin B 12 complex (labelled ligand), is quantitatively adsorbed onto zirconium phosphate gel pH 6.25. The new assay has been shown to provide a measure of intrinsic factor comparable with other intrinsic factor assays, but it has the important advantage of being able to measure the unlabelled vitamin B 12 -intrinsic factor complex (unlabelled ligand), and will, therefore, be valuable in the study of physiological events in the gastrointestinal tract. During the study, it was found that there is some evidence for at least two types of binding intrinsic factor antibody: One which combines preferentially with the intrinsic factor-vitamin B 12 complex and one which combines equally well with this complex or with free intrinsic factor. (author)

  17. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  18. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    Science.gov (United States)

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  19. Specific binding of large aggregates of amphiphilic molecules to the respective antibodies.

    Science.gov (United States)

    Nabok, Alexei; Tsargorodskaya, Anna; Holloway, Alan; Starodub, Nikolay F; Demchenko, Anna

    2007-07-31

    The Binding of nonylphenol to respective antibodies immobilized on solid substrates was studied with the methods of total internal reflection ellipsometry (TIRE) and QCM (quartz crystal microbalance) impedance spectroscopy. The binding reaction was proved to be highly specific having an association constant of KA=1.6x10(6) mol(-1) L and resulted in an increase in both the adsorbed layer thickness of 23 nm and the added mass of 18.3 microg/cm2 at saturation. The obtained responses of both TIRE and QCM methods are substantially higher than anticipated for the immune binding of single molecules of nonylphenol. The mechanism of binding of large aggregates of nonylphenol was suggested instead. Modeling of the micelle of amphiphilic nonylphenol molecules in aqueous solutions yielded a micelle size of about 38 nm. The mechanism of binding of large molecular aggregates to respective antibodies can be extended to other hydrophobic low-molecular-weight toxins such as T-2 mycotoxin. The formation of large molecular aggregates of nonylphenol and T-2 mycotoxin molecules on the surface was proved by the AFM study.

  20. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  1. Identification of steroid-binding and phosphorylated sites within the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Smith, L.I.

    1989-01-01

    The primary goal of these studies was to localize the steroid-binding and phosphorylated sites of the glucocorticoid receptor. The synthetic steroid, dexamethasone 21-mesylate (DM) forms a covalent thioether bond via the sulfhydryl group of a cysteine residue in the receptor. To determine the covalent site of attachment of this ligand, receptors in WEHI-7 mouse thymoma cells were labeled with [ 3 H]DM and purified with a monoclonal antibody. The receptor was completely digested with trypsin and a single peptide covalently labeled with steroid identified by reversed-phase HPLC. This peptide was analyzed by automated Edman degradation to determine the location of the steroid-labeled residue. A similar analysis was performed on an overlapping peptide produced by Staphylococcus aureus protease digestion. Analysis of tryptic peptides from receptors labeled with both [ 3 H]DM and L-[ 35 S]methionine indicated that this peptide contained methionine. These analyses, coupled with the published amino acid sequence of the receptor, identified Cysteine-644 in the steroid-binding domain of the mouse glucocorticoid receptor as the residue involved in covalent steroid-binding. A synthetic peptide representing amino acids 640-650 of the mouse receptor was prepared and analyzed to confirm the identification. These biochemical studies represent a direct demonstration of an amino acid important in receptor function. It has been proposed that the receptor functions through a phosphorylation-dephosphorylation cycle to explain the dependence of hormone binding capacity upon cellular ATP. The glucocorticoid receptor has been shown to be a phosphoprotein. As an initial step to identifying a role of phosphorylation in receptor action, phosphorylated sites within the functional domains of the protein were identified

  2. Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding

    Science.gov (United States)

    Huang, Yining; Salinas, Nichole D.; Chen, Edwin; Tolia, Niraj H.; Gross, Michael L.

    2017-09-01

    Plasmodium vivax Duffy Binding Protein (PvDBP) is a promising vaccine candidate for P. vivax malaria. Recently, we reported the epitopes on PvDBP region II (PvDBP-II) for three inhibitory monoclonal antibodies (2D10, 2H2, and 2C6). In this communication, we describe the combination of native mass spectrometry and ion mobility (IM) with collision induced unfolding (CIU) to study the conformation and stabilities of three malarial antigen-antibody complexes. These complexes, when collisionally activated, undergo conformational changes that depend on the location of the epitope. CIU patterns for PvDBP-II in complex with antibody 2D10 and 2H2 are highly similar, indicating comparable binding topology and stability. A different CIU fingerprint is observed for PvDBP-II/2C6, indicating that 2C6 binds to PvDBP-II on an epitope different from 2D10 and 2H2. This work supports the use of CIU as a means of classifying antigen-antibody complexes by their epitope maps in a high throughput screening workflow. [Figure not available: see fulltext.

  3. A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP

    DEFF Research Database (Denmark)

    Shiryaev, S A; Remacle, A G; Golubkov, V S

    2013-01-01

    Matrix metalloproteinases (MMPs) and, especially membrane type 1 (MT1)-MMP/MMP-14, are promising drug targets in malignancies. In contrast with multiple small-molecule and protein pan-inhibitors of MT1-MMP cleavage activity, the murine 9E8 monoclonal antibody targets the MMP-2-activating function...... of cellular MT1-MMP alone, rather than the general proteolytic activity and the pro-migratory function of MT1-MMP. Furthermore, the antibody does not interact in any detectable manner with other members of the membrane type (MT)-MMP family. The mechanism of this selectivity remained unknown. Using mutagenesis......, binding and activity assays, and modeling in silico, we have demonstrated that the 9E8 antibody recognizes the MT-loop structure, an eight residue insertion that is specific for MT-MMPs and that is distant from the MT1-MMP active site. The binding of the 9E8 antibody to the MT-loop, however, prevents...

  4. LIGAND-BINDING SITES ON THE MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    Full Text Available Introduction. Mycobacterium tuberculosis is the causative agent of tuberculosis that remains a serious medical and social health problem. Despite intensive efforts have been made in the past decade, there are no new efficient anti-tuberculosis drugs today, and that need is growing due to the spread of drug-resistant strains of M.tuberculosis. M. tuberculosis urease (MTU, being an important factor of the bacterium viability and virulence, is an attractive target for anti-tuberculosis drugs acting by inhibition of urease activity. However, the commercially available urease inhibitors are toxic and unstable, that prevent their clinical use. Therefore, new more potent anti-tuberculosis drugs inhibiting new targets are urgently needed. A useful tool for the search of novel inhibitors is a computational drug design. The inhibitor design is significantly easier if binding sites on the enzyme are identified in advance. This paper aimed to determine the probable ligand binding sites on the surface of M. tuberculosis urease. Methods. To identify ligand binding sites on MTU surface, сomputational solvent mapping method FTSite was applied by the use of MTU homology model we have built earlier. The method places molecular probes (small organic molecules containing various functional groups on a dense grid defined around the enzyme, and for each probe finds favorable positions. The selected poses are refined by free energy minimization, the low energy conformations are clustered, and the clusters are ranked on the basis of the average free energy. FTSite server outputs the protein residues delineating a binding sites and the probe molecules representing each cluster. To predict allosteric pockets on MTU, AlloPred and AlloSite servers were applied. AlloPred uses the normal mode analysis (NMA and models how the dynamics of a protein would be altered in the presence of a modulator at a specific pocket. Pockets on the enzyme are predicted using the Fpocket

  5. Technical note: Protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen.

    Science.gov (United States)

    Williams, Y J; Rea, S M; Popovski, S; Skillman, L C; Wright, A-D G

    2014-12-01

    Binding of IgG antibodies to Entodinium spp. in the rumen of sheep (Ovis aries) was investigated by adding IgG, purified from plasma, directly into the rumen. Plasma IgG was sourced from sheep that had or had not been immunized with a vaccine containing whole fixed Entodinium spp. cells. Ruminal fluid was sampled approximately 2 h after each antibody dosing. Binding of protozoa by a specific antibody was detected using an indirect fluorescent antibody test. An antibody titer in the ruminal fluid was determined by ELISA, and the concentration of ruminal fluid ammonia-N and ruminal pH were also determined. Entodinium spp. and total protozoa from IgG-infused sheep were enumerated by microscopic counts. Two-hourly additions of IgG maintained a low antibody titer in the rumen for 12 h and the binding of the antibody to the rumen protozoa was demonstrated. Increased ammonia-N concentrations and altered ruminal fluid pH patterns indicated that additional fermentation of protein was occurring in the rumen after addition of IgG. No reduction in numbers of Entodinium spp. was observed (P>0.05). Although binding of antibodies to protozoa has been demonstrated in the rumen, it is unclear how much cell death occurred. On the balance of probability, it would appear that the antibody was degraded or partially degraded, and the impact of this on protozoal populations and the measurement of a specific titer is also unclear.

  6. RBPmap: a web server for mapping binding sites of RNA-binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kosti, Idit; Ares, Manuel; Cline, Melissa; Mandel-Gutfreund, Yael

    2014-07-01

    Regulation of gene expression is executed in many cases by RNA-binding proteins (RBPs) that bind to mRNAs as well as to non-coding RNAs. RBPs recognize their RNA target via specific binding sites on the RNA. Predicting the binding sites of RBPs is known to be a major challenge. We present a new webserver, RBPmap, freely accessible through the website http://rbpmap.technion.ac.il/ for accurate prediction and mapping of RBP binding sites. RBPmap has been developed specifically for mapping RBPs in human, mouse and Drosophila melanogaster genomes, though it supports other organisms too. RBPmap enables the users to select motifs from a large database of experimentally defined motifs. In addition, users can provide any motif of interest, given as either a consensus or a PSSM. The algorithm for mapping the motifs is based on a Weighted-Rank approach, which considers the clustering propensity of the binding sites and the overall tendency of regulatory regions to be conserved. In addition, RBPmap incorporates a position-specific background model, designed uniquely for different genomic regions, such as splice sites, 5' and 3' UTRs, non-coding RNA and intergenic regions. RBPmap was tested on high-throughput RNA-binding experiments and was proved to be highly accurate. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Autoradiographic localization of benzomorphan binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Crain, B.J.; Kwenjen Chang; McNamara, J.O.; Valdes, F.

    1985-07-17

    The benzomorphan subpopulation of opiate binding sites was labeled by (TH)diprenorphine in the presence of unlabeled ligands selected to quench and delta opiate binding sites. The distribution of benzomorphan binding sites was then localized autoradiographically. The distribution differs from the distributions of , delta and kappa opiate binding and is quite similar to the distribution of US -endorphin immunoreactivity. These observations support the hypothesis, based on biochemical studies in brain membranes, that benzomorphan binding sites may represent the ligand recognition sites of putative epsilon receptors. (Auth.). 34 refs.; 3 figs.

  8. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  9. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Production of antibodies which recognize opiate receptors on murine leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.J.J.; Bost, K.L.; Blalock, J.E.

    1988-01-01

    An antibody has been developed which recognizes opiate receptors on cells of the immune system. This antibody blocks specific binding of the radiolabeled opiate receptor ligand, /sup 3/H-dihydromorphine, to receptors on murine splenocytes. Additionally, the anti-receptor antibody competes with ..beta..-endorphin, meta-enkephalin, and naloxone for the same binding site on the leukocytes. Moreover, the anti-receptor antibody possesses agonist activity similar to ..beta..-endorphin in suppressing cAMP production by lymphocytes. These results suggest the development of an antibody which recognizes classical opiate receptors on cells of the immune system.

  11. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  12. Topographic antigenic determinants recognized by monoclonal antibodies on human choriogonadotropin beta-subunit

    International Nuclear Information System (INIS)

    Bidart, J.M.; Troalen, F.; Salesse, R.; Bousfield, G.R.; Bohuon, C.J.; Bellet, D.H.

    1987-01-01

    We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptides spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex

  13. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. (Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge (England))

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  14. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    Science.gov (United States)

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were

  15. Antibody-Unfolding and Metastable-State Binding in Force Spectroscopy and Recognition Imaging

    Science.gov (United States)

    Kaur, Parminder; Qiang-Fu; Fuhrmann, Alexander; Ros, Robert; Kutner, Linda Obenauer; Schneeweis, Lumelle A.; Navoa, Ryman; Steger, Kirby; Xie, Lei; Yonan, Christopher; Abraham, Ralph; Grace, Michael J.; Lindsay, Stuart

    2011-01-01

    Force spectroscopy and recognition imaging are important techniques for characterizing and mapping molecular interactions. In both cases, an antibody is pulled away from its target in times that are much less than the normal residence time of the antibody on its target. The distribution of pulling lengths in force spectroscopy shows the development of additional peaks at high loading rates, indicating that part of the antibody frequently unfolds. This propensity to unfold is reversible, indicating that exposure to high loading rates induces a structural transition to a metastable state. Weakened interactions of the antibody in this metastable state could account for reduced specificity in recognition imaging where the loading rates are always high. The much weaker interaction between the partially unfolded antibody and target, while still specific (as shown by control experiments), results in unbinding on millisecond timescales, giving rise to rapid switching noise in the recognition images. At the lower loading rates used in force spectroscopy, we still find discrepancies between the binding kinetics determined by force spectroscopy and those determined by surface plasmon resonance—possibly a consequence of the short tethers used in recognition imaging. Recognition imaging is nonetheless a powerful tool for interpreting complex atomic force microscopy images, so long as specificity is calibrated in situ, and not inferred from equilibrium binding kinetics. PMID:21190677

  16. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences.

    Directory of Open Access Journals (Sweden)

    Fabian König

    Full Text Available The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv of S9.6 showed high affinity (0.6 nM for DNA-RNA and also a high affinity (2.7 nM for RNA-RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.

  17. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.

    2001-01-01

    We have previously reported the cloning and characterisation of the heavy and light chain variable domain genes encoding three monoclonal antibodies (Mabs) that bind viral haemorrhagic septicaemia virus (VHSV). Two of these antibodies, 3F1H10 and 3F1A2 both neutralised the virus though 3F1A2...... appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...... single chain antibody (scAb) fragments were generated from the three anti-VHSV Mabs and their variable domain genes, respectively. Fabs and scAbs derived from the neutralising Mabs were both able to neutralise the VHSV type 1 isolate DK-F1. In addition, a series of scAb fragments were produced using...

  18. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    Science.gov (United States)

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  19. Molecular characterization of monoclonal antibodies that inhibit acetylcholinesterase by targeting the peripheral site and backdoor region.

    Directory of Open Access Journals (Sweden)

    Yves Bourne

    Full Text Available The inhibition properties and target sites of monoclonal antibodies (mAbs Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE, have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis.

  20. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  1. Antibody phage display applications for nuclear medicine imaging and therapy

    International Nuclear Information System (INIS)

    Winthrop, M.D.; Denardo, G.L.; Denardo, S.J.

    2000-01-01

    Antibody-based constructs genetically engineered from genes of diverse origin provide a remarkable opportunity to develop functional molecular imaging techniques and specific molecular targeted radionuclide therapies. Phage display libraries of antibody fragment genes can be used to select antibody-based constructs that bind any chosen epitope. A large naive human antibody-based library was used to illustrate binding of antibody constructs to a variety of common and unique antigens. Antibody-based libraries from hybridoma cells, lymphocytes from immunized humans or from mice and human antibody repertoires produced in transgenic mice have also been described. Several orders of magnitude of affinity enhancement can be achieved by random or site specific mutations of the selected binding peptide domains of the scFv. Affinities (K d ) as high as 10 - 11 M (10 pM) for affinity-matured scFv have been documented. Such gene libraries thus offer an almost limitless variety of antibody-based molecular binding peptide modules that can be used in creative ways for the construction of new targeting agents for functional or molecular imaging and therapy

  2. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  3. Comparison of in vitro cell binding characteristics of four monoclonal antibodies and their individual tumor localization properties in mice

    International Nuclear Information System (INIS)

    Andrew, S.M.; Johnstone, R.W.; Russell, S.M.; McKenzie, I.F.; Pietersz, G.A.

    1990-01-01

    Although many antibodies are being used for imaging studies, it is not clear which in vitro properties of antibodies will best reflect their in vivo characteristics. The ability to correlate in vitro binding characteristics of monoclonal antibodies to tumor antigens with their in vivo localization characteristics, particularly with respect to tumor localization properties, is desirable for rapid selection of monoclonal antibodies with potential for clinical use. The in vitro binding characteristics of three monoclonal antibodies to the murine Ly-2.1 antigen and one to the Ly-3.1 antigen have been studied on cultured tumor cells bearing these antigens. The association and dissociation rate constants, apparent affinity, and immunoreactivity of each antibody in vitro were compared with their ability to localize the s.c. tumors from the same cell line growing in Ly-2.1-/Ly-3.1-mice. The antibody with the highest affinity and fastest association rate localized to tumor at the earliest time (16-20 h after injection) and had the highest percentage of the injected dose/g in the tumor (greater than 25%). The antibody with the lowest affinity showed significantly less localization to tumor cells, compared with the other three antibodies. The ranking of the antibodies by affinity agreed with the ranking in terms of their ability to localize to tumors, but the in vitro immunoreactivity of the antibodies, as measured by a cell binding assay, did not correlate with their tumor localization properties. Immunoscintigraphic studies did not precisely correlate with biodistribution data or in vitro binding characteristics, because tumors could be satisfactorily imaged with each antibody, although it was noted that the antibody with the highest affinity gave the best image

  4. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Jungwirth, Britta; Sala, Claudia; Kohl, Thomas A

    2013-01-01

    of the 6C non-coding RNA gene and to non-canonical DNA binding sites within protein-coding regions. The present study underlines the dynamics within the GlxR regulon by identifying in vivo targets during growth on glucose and contributes to the expansion of knowledge of this important transcriptional......The transcriptional regulator GlxR has been characterized as a global hub within the gene-regulatory network of Corynebacterium glutamicum. Chromatin immunoprecipitation with a specific anti-GlxR antibody and subsequent high-throughput sequencing (ChIP-seq) was applied to C. glutamicum to get new...... mapping of these data on the genome sequence of C. glutamicum, 107 enriched DNA fragments were detected from cells grown with glucose as carbon source. GlxR binding sites were identified in the sequence of 79 enriched DNA fragments, of which 21 sites were not previously reported. Electrophoretic mobility...

  5. Naturally Acquired Antibodies to Plasmodium vivax Duffy Binding Protein (DBP) in Rural Brazilian Amazon

    Science.gov (United States)

    Souza-Silva, Flávia A.; da Silva-Nunes, Mônica; Sanchez, Bruno A. M.; Ceravolo, Isabela P.; Malafronte, Rosely S.; Brito, Cristiana F. A.; Ferreira, Marcelo U.; Carvalho, Luzia H.

    2010-01-01

    Duffy binding protein (DBP), a leading malaria vaccine candidate, plays a critical role in Plasmodium vivax erythrocyte invasion. Sixty-eight of 366 (18.6%) subjects had IgG anti-DBP antibodies by enzyme-linked immunosorbent assay (ELISA) in a community-based cross-sectional survey in the Brazilian Amazon Basin. Despite continuous exposure to low-level malaria transmission, the overall seroprevalence decreased to 9.0% when the population was reexamined 12 months later. Antibodies from 16 of 50 (36.0%) subjects who were ELISA-positive at the baseline were able to inhibit erythrocyte binding to at least one of two DBP variants tested. Most (13 of 16) of these subjects still had inhibitory antibodies when reevaluated 12 months later. Cumulative exposure to malaria was the strongest predictor of DBP seropositivity identified by multiple logistic regression models in this population. The poor antibody recognition of DBP elicited by natural exposure to P. vivax in Amazonian populations represents a challenge to be addressed by vaccine development strategies. PMID:20133990

  6. Antibody Based Surgical Imaging and Photodynamic Therapy for Cancer

    NARCIS (Netherlands)

    de Boer, Esther

    2016-01-01

    In 1944 Albert Coons was the first to show that a fluorescent molecule could be conjugated directly to an antibody made against a target site of interest. This binding does not affect antibody specificity so that labeled antibodies can be used to visualize the location and distribution of the target

  7. Collaborative enhancement of antibody binding to distinct PECAM-1 epitopes modulates endothelial targeting.

    Directory of Open Access Journals (Sweden)

    Ann-Marie Chacko

    Full Text Available Antibodies to platelet endothelial cell adhesion molecule-1 (PECAM-1 facilitate targeted drug delivery to endothelial cells by "vascular immunotargeting." To define the targeting quantitatively, we investigated the endothelial binding of monoclonal antibodies (mAbs to extracellular epitopes of PECAM-1. Surprisingly, we have found in human and mouse cell culture models that the endothelial binding of PECAM-directed mAbs and scFv therapeutic fusion protein is increased by co-administration of a paired mAb directed to an adjacent, yet distinct PECAM-1 epitope. This results in significant enhancement of functional activity of a PECAM-1-targeted scFv-thrombomodulin fusion protein generating therapeutic activated Protein C. The "collaborative enhancement" of mAb binding is affirmed in vivo, as manifested by enhanced pulmonary accumulation of intravenously administered radiolabeled PECAM-1 mAb when co-injected with an unlabeled paired mAb in mice. This is the first demonstration of a positive modulatory effect of endothelial binding and vascular immunotargeting provided by the simultaneous binding a paired mAb to adjacent distinct epitopes. The "collaborative enhancement" phenomenon provides a novel paradigm for optimizing the endothelial-targeted delivery of therapeutic agents.

  8. A Single-Domain Llama Antibody Potently Inhibits the Enzymatic Activity of Botulinum Neurotoxin by Binding to the Non-Catalytic [alpha]-Exosite Binding Region

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jianbo; Thompson, Aaron A.; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Stevens, Raymond C.; Marks, James D. (UIUC); (Scripps); (UCSF)

    2010-08-13

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K{sub d}) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K{sub d} for BoNT/A Lc of 1.47 x 10{sup -10} M and an IC{sub 50} (50% inhibitory concentration) of 4.7 x 10{sup -10} M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 {angstrom} resolution. The structure reveals that the Aa1 VHH binds in the {alpha}-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc {alpha}-exosite as a target for inhibitor development.

  9. Structures of protective antibodies reveal sites of vulnerability on Ebola virus.

    Science.gov (United States)

    Murin, Charles D; Fusco, Marnie L; Bornholdt, Zachary A; Qiu, Xiangguo; Olinger, Gene G; Zeitlin, Larry; Kobinger, Gary P; Ward, Andrew B; Saphire, Erica Ollmann

    2014-12-02

    Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks.

  10. Monoclonal antibody OKB7, which identifies the 14OKd complement receptor type 2 (CR2), also identifies a 72Kd secreted fragment of CR2 that contains the C3d-binding site

    International Nuclear Information System (INIS)

    Myones, B.L.; Ross, G.D.

    1986-01-01

    CR 2 is a 140-145Kd glycoprotein expressed on B lymphocytes which binds both C3d and Epstein-Barr virus (EBV). OKB7, an IgG/sub 2a/ monoclonal antibody to CR 2 , blocks C3d and EBV binding, while HB-5, another monoclonal IgG/sub 2a/ anti-CR 2 , does not. A 72Kd C3d-binding glycoprotein (gp72), isolated from Raji cell media, was previously thought to be CR 2 because a polyclonal rabbit anti-gp72 inhibited EC3d rosettes. ELISA assay demonstrated that OKB7, but not HB-5, bound to purified gp72 fixed to microtiter wells. Insoluble and soluble gp72 blocked Raji cell uptake of 125 I-labeled OKB7, but not labeled anti-B2 or HB-5. Rabbit anti-gp72 immunoprecipitated bands at 140Kd and 72Kd from 125 I-labelled and solubilized B cell membranes. Culture media from Raji cells grown in the presence 3 H-labeled amino acids was sequentially immunoprecipitated by irrelevant antibody, OKB7, and HB-5. A single 72Kd radiolabeled band was demonstrated only with OKB7, and this was identical to that produced by the immunoprecipitation of 125 I-labeled gp72 with rabbit anti-gp72. Thus, OKB7, which identifies the 140Kd CR 2 molecule, also identifies a 72Kd shed fragment of CR 2 isolated from Raji cell media, which contains the C3d-binding site

  11. Investigations on antibody binding to a micro-cantilever coated with a BAM pesticide residue

    DEFF Research Database (Denmark)

    Bache, Michael; Taboryski, Rafael Jozef; Schmid, Silvan

    2011-01-01

    -BAM antibody is measured using the CantiLab4© system from Cantion A/S with four gold-coated cantilevers and piezo resistive readout. The detection mechanism is in principle label-free, but fluorescent-marked antibodies have been used to subsequently verify the binding on the cantilever surface. The bending...

  12. Development and characterization of polyclonal antibodies against the linker region of the telomere-binding protein TRF2

    Directory of Open Access Journals (Sweden)

    Nadya V. Ilicheva

    2018-03-01

    Full Text Available Background: TRF2 (telomeric repeat binding factor 2 is an essential component of the telomere-binding protein complex shelterin. TRF2 induces the formation of a special structure of telomeric DNA and counteracts activation of DNA damage-response pathways telomeres. TRF2 has a poorly characterized linker region (udTRF2 between its homodimerization and DNA-binding domains. Some lines of evidence have shown that this region could be involved in TRF2 interaction with nuclear lamina. Results: In this study, the fragment of the TERF2 gene encoding udTRF2 domain of telomere-binding protein TRF2 was produced by PCR and cloned into the pET32a vector. The resulting plasmid pET32a-udTRF2 was used for the expression of the recombinant udTRF2 in E. coli RosettaBlue (DE3. The protein was isolated and purified using ammonium sulfate precipitation followed by ion-exchange chromatography. The purified recombinant protein udTRF2 was injected into guinea pigs to generate polyclonal antibodies. The ability of anti-udTRF2 antibodies to bind endogenous TRF2 in human skin fibroblasts was tested by western blotting and immunofluorescent staining. Conclusions: In this study, the recombinant protein udTRF2 and antibodies to it were generated. Both protein and antibodies will provide a useful tool for investigation of the functions of the udTRF2 domain and its role in the interaction between TRF2 and nuclear lamina. Keywords: Chromosomes, Molecular cloning, Nuclear lamina, Nucleoprotein complexes, Polyclonal antibodies, Recombinant polypeptide, Shelterin, Telomere-binding protein TRF2, Telomeres, Telomeric DNA, TTAGGG repeats

  13. Identification and analysis of cytochrome P450IID6 antigenic sites recognized by anti-liver-kidney microsome type-1 antibodies (LKM1).

    Science.gov (United States)

    Yamamoto, A M; Cresteil, D; Boniface, O; Clerc, F F; Alvarez, F

    1993-05-01

    Anti-liver-kidney microsome type-1 antibodies (LKM1), present in sera from a group of patients with autoimmune hepatitis, are directed against P450IID6. Previous work, using cDNA constructions spanning most of the P450IID6 protein defined the main immunogenic site between the amino acids (aa), 254-271 and predicted the presence of other putative immunogenic sites in the molecule. Fusion proteins from new cDNA constructions, spanning so-far-untested regions between aa 1-125 and 431-522, were not recognized by LKM1-positive sera. Synthetic peptides, representing sequences from putative immunogenic regions or previously untested regions, allowed a precise definition of four antigenic sites located between peptides 257-269, 321-351, 373-389 and 410-429, which were recognized, respectively, by 14, 8, 1 and 2 out of 15 LKM1-positive sera tested. The minimal sequence of the main antigenic site (peptide 257-269) recognized by the autoantibody was established to be WDPAQPPRD (peptide 262-270). In addition, deletion and replacement experiments showed that aa 263 (Asp) was essential for the binding of the autoantibody to peptide 262-270. Analysis of the second most frequently recognized peptide between aa 321-351, was performed using peptides 321-339 and 340-351 in competitive inhibition studies. Complete elimination of antibody binding to peptide 321-351 obtained by absorption of both shorter peptides indicated that peptide 321-351 is a discontinuous antigenic site. LKM1-positive sera reacting against peptide 321-351 recognized either both the shorter peptides or just one of them preferentially. Results of the present study suggest that the production of LKM1 antibodies is an antigen-driven, poly- or oligoclonal B cell response. The identification of antigenic sites will allow: (i) the development of specific diagnostic tests and (ii) further studies on the pathogenic value of LKM1 antibodies in autoimmune hepatitis.

  14. A radioimmunoassay to screen for antibodies to native conformational antigens and analyse ligand-induced structural states of antigenic proteins

    International Nuclear Information System (INIS)

    Bernotat-Danielowski, S.; Koepsell, H.

    1988-01-01

    A radioimmunoassay is described in which antigenic protein was immobilized by incubating nitrocellulose filters of defined diameter with antigen-containing solutions. Antigenic sites which are sensitive to protein denaturation by drying could be detected with the assay. The assay was also used to screen hybridoma supernatants for antibodies directed against Na + cotransport proteins from renal brush-border membranes. Monoclonal antibodies were selected which showed different binding charactertics depending on whether or not substrates of Na + cotransporters were present. One of the antibodies, which showed different antibody binding after addition of D-glucose or L-lactate, bound to a polypeptide component of the renal N + -D-glucose cotransporter and was able to inhibit Na + gradient-dependent. To investigate the effects of D-glucose and L-lactate on the binding of this antibody concentration dependence was measured. High and low affinity binding sites for D-glucose and L-lactate were characterized thereby demonstrating that the radioimmunoassay permits investigations of the properties of high and low affinity substrate binding sites. (author). refs.; 6 figs.; 2 tabs

  15. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  16. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  17. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    International Nuclear Information System (INIS)

    Quinn, T.P.

    2003-01-01

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with 99m Tc and 188 Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic nuclear

  18. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  19. Kinetics of Antibody Binding to Membranes of Living Bacteria Measured by a Photonic Crystal-Based Biosensor

    Directory of Open Access Journals (Sweden)

    Ekaterina Rostova

    2016-10-01

    Full Text Available Optical biosensors based on photonic crystal surface waves (PC SWs offer a possibility to study binding interactions with living cells, overcoming the limitation of rather small evanescent field penetration depth into a sample medium that is characteristic for typical optical biosensors. Besides this, simultaneous excitation of s- and p-polarized surface waves with different penetration depths is realized here, permitting unambiguous separation of surface and volume contributions to the measured signal. PC-based biosensors do not require a bulk signal correction, compared to widely used surface plasmon resonance-based devices. We developed a chitosan-based protocol of PC chip functionalization for bacterial attachment and performed experiments on antibody binding to living bacteria measured in real time by the PCSW-based biosensor. Data analysis reveals specific binding and gives the value of the dissociation constant for monoclonal antibodies (IgG2b against bacterial lipopolysaccharides equal to KD = 6.2 ± 3.4 nM. To our knowledge, this is a first demonstration of antibody-binding kinetics to living bacteria by a label-free optical biosensor.

  20. Structural basis for the antibody neutralization of Herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Chung; Lin, Li-Ling [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Chan, Woan-Eng [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ko, Tzu-Ping [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Lai, Jiann-Shiun [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ministry of Economic Affairs, Taipei 100, Taiwan (China); Wang, Andrew H.-J., E-mail: ahjwang@gate.sinica.edu.tw [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Taipei Medical University, Taipei 110, Taiwan (China)

    2013-10-01

    The gD–E317-Fab complex crystal revealed the conformational epitope of human mAb E317 on HSV gD, providing a molecular basis for understanding the viral neutralization mechanism. Glycoprotein D (gD) of Herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317 Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD–nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.

  1. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    2010-04-01

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  2. Development of Broadly Neutralizing Antibody Mimitopes for Characterization of CRF01_AE HIV-1 Antibody Responses

    Directory of Open Access Journals (Sweden)

    Jesse V. Schoen

    2017-10-01

    Full Text Available Mapping humoral immune responses to HIV-1 over the course of natural infection is important in understanding epitope exposure in relation to elicitation of broadly neutralizing antibodies (bNAbs, which is considered imperative for effective vaccine design. When analyzing HIV-specific immune responses, the antibody binding profiles may be a correlate for functional antibody activity. In this study, we utilized phage display technology to identify novel mimitopes that may represent Env epitope structures bound by bNAbs directed at V1V2 and V3 domains, CD4 binding site (CD4bs and the membrane proximal external region (MPER of Env. Mimitope sequence motifs were determined for each bNAb epitope. Given the ongoing vaccine development efforts in Thailand, these mimitopes that represent CD4bs and MPER epitopes were used to map immune responses of HIV-1 CRF01_AE-infected individuals with known neutralizing responses from two distinct time periods, 1996-98 and 2012-15. The more contemporary cohort showed an increase in binding breadth with binding observed for all MPER and CD4bs mimitopes, while the older cohort showed only 75% recognition of the CD4bs mimitopes and no MPER mimotope binding. Furthermore, mimitope binding profiles correlated significantly with magnitude (p=0.0036 and breadth (p=0.0358 of neutralization of a multi-subtype Tier 1 panel of pseudoviruses. These results highlight the utility of this mimitope mapping approach for detecting human plasma IgG-specificities that target known neutralizing antibody epitopes, and may also provide an indication of the plasticity of antibody binding within HIV-1 Env neutralization determinants.

  3. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies

    OpenAIRE

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Milne, Kathryn H.; Rawlinson, Thomas A.; Llewellyn, David; Shakri, A. Rushdi; Jin, Jing; Labb?, Genevi?ve M.; Edwards, Nick J.; Poulton, Ian D.; Roberts, Rachel; Farid, Ryan; J?rgensen, Thomas; Alanine, Daniel G.W.

    2017-01-01

    BACKGROUND: Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite's Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vac...

  4. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  5. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, Ludmila M.; Nakayasu, Ernesto S.; Sobreira, Tiago; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D.

    2016-03-30

    ABSTRACT

    Histoplasma capsulatumproduces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment ofH. capsulatumcells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bindH. capsulatumheat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion.

    IMPORTANCEDiverse fungal species release extracellular vesicles, indicating that this is a

  6. Neutralization escape mutants define a dominant immunogenic neutralization site on hepatitis A virus

    International Nuclear Information System (INIS)

    Stapleton, J.T.; Lemon, S.M.

    1987-01-01

    Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development

  7. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  8. Investigations on antibody binding to a micro-cantilever coated with a BAM pesticide residue

    Directory of Open Access Journals (Sweden)

    Aamand Jens

    2011-01-01

    Full Text Available Abstract The attachment of an antibody to an antigen-coated cantilever has been investigated by repeated experiments, using a cantilever-based detection system by Cantion A/S. The stress induced by the binding of a pesticide residue BAM (2,6 dichlorobenzamide immobilized on a cantilever surface to anti-BAM antibody is measured using the CantiLab4© system from Cantion A/S with four gold-coated cantilevers and piezo resistive readout. The detection mechanism is in principle label-free, but fluorescent-marked antibodies have been used to subsequently verify the binding on the cantilever surface. The bending and increase in mass of each cantilever has also been investigated using a light interferometer and a Doppler Vibrometer. The system has been analyzed during repeated measurements to investigate whether the CantiLab4© system is a suited platform for a pesticide assay system.

  9. Antibody specific epitope prediction-emergence of a new paradigm.

    Science.gov (United States)

    Sela-Culang, Inbal; Ofran, Yanay; Peters, Bjoern

    2015-04-01

    The development of accurate tools for predicting B-cell epitopes is important but difficult. Traditional methods have examined which regions in an antigen are likely binding sites of an antibody. However, it is becoming increasingly clear that most antigen surface residues will be able to bind one or more of the myriad of possible antibodies. In recent years, new approaches have emerged for predicting an epitope for a specific antibody, utilizing information encoded in antibody sequence or structure. Applying such antibody-specific predictions to groups of antibodies in combination with easily obtainable experimental data improves the performance of epitope predictions. We expect that further advances of such tools will be possible with the integration of immunoglobulin repertoire sequencing data. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Solid phase measurements of antibody and lectin binding to xenogenic carbohydrate antigens

    DEFF Research Database (Denmark)

    Kirkeby, Svend; André, Sabine; Gabius, Hans-Joachim

    2004-01-01

    OBJECTIVES: In future pig-to-man xenotransplantation it is important to master tools that identify potentially xenogenic alphagalactose (Galalpha) antigens in the doner tissue. DESIGN AND METHODS: We have measured the binding potentials of Galalpha detecting lectins and antibodies, including...

  11. Development of a 2-site radioimmunoassay for antithyroglobulin antibodies using 125I-thyroglobulin

    International Nuclear Information System (INIS)

    Leonard, J.P.; Taymans, F.; Beckers, C.

    1977-01-01

    A 2-site radioassay for human antithyroglobulin auto-antibodies has been developed using human thyroglobulin (Tg) labelled with 125 I. The technique is based on (1) the use of polystyrene tubes coated with Tg, (2) the binding of the antibodies to the solid phase Tg, (3) the reaction of the labelled Tg with the insolubilized antibodies. Factors affecting the assay were evaluated including (a) the effect of the temperature, Tg concentration and coating time on the adsorption of Tg, (b) the stability and storage of the solid phase Tg, (c) the variations in temperature, reaction times and incubation volumes, (d) the effect of the serum proteins, (e) the influence of the variations in concentration and specific activity of the labelled Tg. Increasing sensitivity resulted from a prolonged incubation at low temperature, the addition of serum proteins and the use of an appropriate specific activity of 125 I-Tg. Nonspecific radioactive uptake normally averaged 1% or less of the total radioactivity added. The use of Tg coated tubes makes the technique rapid and simple to be operated. The ability of the coated tubes to be stored and the relative insensitivity of the test to fluctuations in the quality of the tracer represent additional advantages in the routine application of the method. (orig.) [de

  12. Structure of Simian Immunodeficiency Virus Envelope Spikes Bound with CD4 and Monoclonal Antibody 36D5.

    Science.gov (United States)

    Hu, Guiqing; Liu, Jun; Roux, Kenneth H; Taylor, Kenneth A

    2017-08-15

    The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states. IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the

  13. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Derksen, Ninotska I L; Ooijevaar-de Heer, Pleuni; van Schie, Karin A; Kruithof, Simone; Berkowska, Magdalena A; van der Schoot, C Ellen; IJspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E M; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-02-20

    A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N -linked glycans, a process conditional on the introduction of consensus amino acid motifs ( N -glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N -glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.

  14. Direct 99mTc labeling of monoclonal antibodies: radiolabeling and in vitro stability

    International Nuclear Information System (INIS)

    Garron, J.Y.; Moinereau, M.; Pasqualini, R.; Saccavini, J.C.

    1991-01-01

    Direct labeling involves 99m Tc binding to different donor groups on the protein, giving multiple binding sites of various affinities resulting in an in vivo instability. The stability has been considerably improved by activating the antibody using a controlled reduction reaction (using 2-aminoethanethiol). This reaction generates sulfhydryl groups, which are known to strongly bind 99m Tc. The direct 99m Tc antibody labeling method was explored using whole antibodies and fragments. Analytical methods were developed for routine evaluation of radiolabeling yield and in vitro stability. Stable direct antibody labeling with 99m Tc requires the generation of sulfhydryl groups, which show high affinity binding sites for 99m Tc. Such groups are obtained with 2-aminoethanethiol (AET), which induces the reduction of the intrachain or interchain disulfide bond, with no structural deterioration or any loss of immunobiological activity of the antibody. The development of fast, reliable analytical methods has made possible the qualitative and quantitative assessment of technetium species generated by the radiolabeling process. Labeling stability is determined by competition of the 99m Tc-antibody bond with three ligands, Chelex 100 (a metal chelate-type resin), free DTPA solution and 1% HSA solution. Very good 99m Tc-antibody stability is obtained with activated IgG (IgGa) and Fab' fragment, which makes these substances possible candidates for immunoscintigraphy use. (author)

  15. Monoclonal antibody OKB7, which identifies the 14OKd complement receptor type 2 (CR/sub 2/), also identifies a 72Kd secreted fragment of CR/sub 2/ that contains the C3d-binding site

    Energy Technology Data Exchange (ETDEWEB)

    Myones, B.L.; Ross, G.D.

    1986-03-05

    CR/sub 2/ is a 140-145Kd glycoprotein expressed on B lymphocytes which binds both C3d and Epstein-Barr virus (EBV). OKB7, an IgG/sub 2a/ monoclonal antibody to CR/sub 2/, blocks C3d and EBV binding, while HB-5, another monoclonal IgG/sub 2a/ anti-CR/sub 2/, does not. A 72Kd C3d-binding glycoprotein (gp72), isolated from Raji cell media, was previously thought to be CR/sub 2/ because a polyclonal rabbit anti-gp72 inhibited EC3d rosettes. ELISA assay demonstrated that OKB7, but not HB-5, bound to purified gp72 fixed to microtiter wells. Insoluble and soluble gp72 blocked Raji cell uptake of /sup 125/I-labeled OKB7, but not labeled anti-B2 or HB-5. Rabbit anti-gp72 immunoprecipitated bands at 140Kd and 72Kd from /sup 125/I-labelled and solubilized B cell membranes. Culture media from Raji cells grown in the presence /sup 3/H-labeled amino acids was sequentially immunoprecipitated by irrelevant antibody, OKB7, and HB-5. A single 72Kd radiolabeled band was demonstrated only with OKB7, and this was identical to that produced by the immunoprecipitation of /sup 125/I-labeled gp72 with rabbit anti-gp72. Thus, OKB7, which identifies the 140Kd CR/sub 2/ molecule, also identifies a 72Kd shed fragment of CR/sub 2/ isolated from Raji cell media, which contains the C3d-binding site.

  16. Localization of gonadotropin binding sites in human ovarian neoplasms

    International Nuclear Information System (INIS)

    Nakano, R.; Kitayama, S.; Yamoto, M.; Shima, K.; Ooshima, A.

    1989-01-01

    The binding of human luteinizing hormone and human follicle-stimulating hormone to ovarian tumor biopsy specimens from 29 patients was analyzed. The binding sites for human luteinizing hormone were demonstrated in one tumor of epithelial origin (mucinous cystadenoma) and in one of sex cord-stromal origin (theca cell tumor). The binding sites for human follicle-stimulating hormone were found in three tumors of epithelial origin (serous cystadenoma and mucinous cystadenoma) and in two of sex cord-stromal origin (theca cell tumor and theca-granulosa cell tumor). The surface-binding autoradiographic study revealed that the binding sites for gonadotropins were localized in the stromal tissue. The results suggest that gonadotropic hormones may play a role in the growth and differentiation of a certain type of human ovarian neoplasms

  17. Use of thermodynamic coupling between antibody-antigen binding and phospholipid acyl chain phase transition energetics to predict immunoliposome targeting affinity.

    Science.gov (United States)

    Klegerman, Melvin E; Zou, Yuejiao; Golunski, Eva; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2014-09-01

    Thermodynamic analysis of ligand-target binding has been a useful tool for dissecting the nature of the binding mechanism and, therefore, potentially can provide valuable information regarding the utility of targeted formulations. Based on a consistent coupling of antibody-antigen binding and gel-liquid crystal transition energetics observed for antibody-phosphatidylethanolamine (Ab-PE) conjugates, we hypothesized that the thermodynamic parameters and the affinity for antigen of the Ab-PE conjugates could be effectively predicted once the corresponding information for the unconjugated antibody is determined. This hypothesis has now been tested in nine different antibody-targeted echogenic liposome (ELIP) preparations, where antibody is conjugated to dipalmitoylphosphatidylethanolamine (DPPE) head groups through a thioether linkage. Predictions were satisfactory (affinity not significantly different from the population of values found) in five cases (55.6%), but the affinity of the unconjugated antibody was not significantly different from the population of values found in six cases (66.7%), indicating that the affinities of the conjugated antibody tended not to deviate appreciably from those of the free antibody. While knowledge of the affinities of free antibodies may be sufficient to judge their suitability as targeting agents, thermodynamic analysis may still provide valuable information regarding their usefulness for specific applications.

  18. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    Science.gov (United States)

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  19. Generation of a haptoglobin-hemoglobin complex-specific Fab antibody blocking the binding of the complex to CD163

    DEFF Research Database (Denmark)

    Horn, Ivo R; Nielsen, Marianne Jensby; Madsen, Mette

    2003-01-01

    During intravascular hemolysis hemoglobin (Hb) binds to haptoglobin (Hp) leading to endocytosis of the complex by the macrophage receptor, CD163. In the present study, we used a phage-display Fab antibody strategy to explore if the complex formation between Hp and Hb leads to exposure of antigenic...... epitopes specific for the complex. By Hp-Hb-affinity screening of a phage-Fab library, we isolated a phage clone against the ligand complex. Surface plasmon resonance analyses of the Fab part expressed as a recombinant protein revealed a high affinity binding (KD = 3.9 nm) to Hp-Hb, whereas no binding...... was measured for non-complexed Hp or Hb. The Fab antibody completely inhibited the binding of 125I-labeled Hp-Hb complexes to CD163 and blocked their uptake in CD163-transfected cells. In conclusion, we have raised a receptor-blocking antibody specifically recognizing the Hp-Hb complex. In addition to provide...

  20. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Schade Larsen, C

    2000-01-01

    of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both...... chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta...

  1. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  2. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  3. Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria.

    Directory of Open Access Journals (Sweden)

    Oscar Harari

    2010-07-01

    Full Text Available Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs using a machine learning method inspired by the "Divide & Conquer" strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target

  4. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    James, I.F.; Goldstein, A.

    1984-01-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [ 3 H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [ 3 H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  5. DeepSite: protein-binding site predictor using 3D-convolutional neural networks.

    Science.gov (United States)

    Jiménez, J; Doerr, S; Martínez-Rosell, G; Rose, A S; De Fabritiis, G

    2017-10-01

    An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  7. An efficiently cleaved HIV-1 clade C Env selectively binds to neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Saikat Boliar

    Full Text Available An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.

  8. Impact of germline and somatic missense variations on drug binding sites.

    Science.gov (United States)

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  9. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  10. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding

    KAUST Repository

    Di Palma, Francesco; Tramontano, Anna

    2017-01-01

    The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody–antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.

  11. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding

    KAUST Repository

    Di Palma, Francesco

    2017-08-03

    The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody–antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.

  12. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine

    International Nuclear Information System (INIS)

    He Yuxian; Zhou Yusen; Liu Shuwen; Kou Zhihua; Li Wenhui; Farzan, Michael; Jiang Shibo

    2004-01-01

    The spike (S) protein of severe acute respiratory syndrome (SARS) coronavirus (CoV), a type I transmembrane envelope glycoprotein, consists of S1 and S2 domains responsible for virus binding and fusion, respectively. The S1 contains a receptor-binding domain (RBD) that can specifically bind to angiotensin-converting enzyme 2 (ACE2), the receptor on target cells. Here we show that a recombinant fusion protein (designated RBD-Fc) containing 193-amino acid RBD (residues 318-510) and a human IgG1 Fc fragment can induce highly potent antibody responses in the immunized rabbits. The antibodies recognized RBD on S1 domain and completely inhibited SARS-CoV infection at a serum dilution of 1:10,240. Rabbit antisera effectively blocked binding of S1, which contains RBD, to ACE2. This suggests that RBD can induce highly potent neutralizing antibody responses and has potential to be developed as an effective and safe subunit vaccine for prevention of SARS

  13. Quantitative relationship between antibody affinity and antibody avidity

    International Nuclear Information System (INIS)

    Griswold, W.R.

    1987-01-01

    The relationship between antibody avidity, measured by the dissociation of the antigen-antibody bond in antigen excess, and antibody affinity was studied. Complexes of radiolabelled antigen and antibody of known affinity were prepared in vitro and allowed to stand for seven days to reach equilibrium. Then nonlabelled antigen in one hundred fold excess was added to dissociate the complexes. After an appropriate incubation the fraction of antigen bound to antibody was measured by the ammonium sulfate precipitation method. The dissociation index was the fraction bound in the experimental sample divided by the fraction bound in the control. The correlation coefficient between the dissociation index and the antibody binding constant was 0.92 for early dissociation and 0.98 for late dissociation. The regression equation relating the binding constant to the dissociation index was K = 6.4(DI) + 6.25, where DI is the late dissociation index and K is the logarithm to the base 10 of the binding constant. There is a high correlation between avidity and affinity of antibody. Antibody affinity can be estimated from avidity data. The stability of antigen-antibody complexes can be predicted from antibody affinity

  14. Multiple [3H]-nemonapride binding sites in calf brain.

    Science.gov (United States)

    Helmeste, D M; Tang, S W; Li, M; Fang, H

    1997-07-01

    [3H]-Nemonapride has been the ligand of choice to label D4 dopamine receptors. Its specificity was questioned when it was discovered that sigma (sigma) sites were also labeled by [3H]-nemonapride. To further characterize the binding of [3H]-nemonapride, three areas of calf brain (striatum, frontal cortex and cerebellum) were examined. In all three areas, [3H]-nemonapride labeled multiple sites. Dopaminergic and sigma sites were the most prominent. The sigma binding profile was sigma-1 like with a Ki binding profile as follows (in order of decreasing potency): haloperidol, PPAP, pentazocine, DTG, U-50488, R(+)-3-PPP. Experiments using sulpiride and pentazocine to block striatal dopaminergic and sigma sites, respectively, revealed additional, not previously characterized binding sites for [3H]-nemonapride. One component which was present in striatum but not in frontal cortex or cerebellum, had affinity for some neuroleptics and WB-4101, but not for typical serotonergic agents. Thus, [3H]-nemonapride has no selectivity for dopamine receptors unless stringent experimental conditions are met.

  15. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  16. Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord

    Science.gov (United States)

    1984-11-30

    MEDICAL CENTER WILFORD HALL AIR FORCE MEDICAL CENTER Title of Thesis: "Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord" Name of...that the use of any copyrighted material in the dissertation manuscript entitled: "Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord...University of the Health Sciences 11 Abstract Title of Thesis: Heterogenity of Opioid Binding Sites In Guinea Pig Spinal Cord Gary Dean Zarr MAJ/ANC

  17. Human chorionic ganodotropin binding sites in the human endometrium

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Banerjee, J.; Sen, S.; Manna, P.R.

    1993-01-01

    The existence of high-affinity and low-capacity specific binding sites for luteinizing hormone/human chorionic gonadotropin (hCG) has been reported in porcine, rabbit and rat uteri. The authors have identified the hCG binding sites in the human endometrium collected from 35-42-year-old ovulatory and anovulatory women. The binding characteristics of hCG to endometrial tissue preparations from ovulatory and anovulatory women showed saturability with high affinity and low capacity. Scatchard plot analysis showed the dissociation constant of specific binding sites in the ovulatory women to be 3.5x10 -10 mol/l and in anovulatory women to be 3.1x10 -10 mol/l. The maximum binding capacity varied considerably between ovulatory and anovulatory endometrium. Among the divalent metal ions tested Zn 2+ effected a remarkable increase in [ 125 I]hCG binding to the endometrium, whereas Mn 2+ showed a marginal increase and other metal ions did not have any effect. Data obtained with human endometrium indicate an influence of the functional state of the ovary on [ 125 I]hCG binding to endometrium. 14 refs., 3 figs

  18. Transcription factor binding sites prediction based on modified nucleosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad Talebzadeh

    Full Text Available In computational methods, position weight matrices (PWMs are commonly applied for transcription factor binding site (TFBS prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, "modified nucleosomes neighboring" and "modified nucleosomes occupancy", to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method

  19. [3H]Azidodantrolene photoaffinity labeling, synthetic domain peptides and monoclonal antibody reactivity identify the dantrolene binding sequence on RyR1

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manju B.; Ma, Jianjie; Ikemoto, Noriaki; Jimenez, Leslie S.; Morimoto, Hiromi; Williams, Philip G.; Parness, Jerome

    2002-06-14

    Dantrolene is a drug that suppresses intracellular Ca2+ release from sarcoplasmic reticulum in normal skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Though its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca2+ release channel in sarcoplasmic reticulum, as a molecular target for dantrolene using the photoaffinity analog [3H]azidodantrolene(1). Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [3H]azidodantrolene,indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1, previously shown to affect RyR1 function in vitro and in vivo, were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2, peptide s containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [3H]azidodantrolene. A monoclonal anti-RyR1 antibody which recognizes RyR1 and its 1400 amino acid N-terminal fragment, recognizes DP1 and DP1-2 in both Western blots and immunoprecipitation assays, and specifically inhibits [3H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in sarcoplasmic reticulum. Our results indicate that synthetic domain peptides can mimic a native, ligand binding conformation in vitro, and that the dantrolene binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino-acids 590-609.

  20. Characterisation of peptide microarrays for studying antibody-antigen binding using surface plasmon resonance imagery.

    Directory of Open Access Journals (Sweden)

    Claude Nogues

    Full Text Available BACKGROUND: Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules. METHODOLOGY/PRINCIPAL FINDINGS: We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65 and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative DeltaG, DeltaS and DeltaH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding. CONCLUSIONS: The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody

  1. Isolation of a monoclonal antibody from a phage display library binding the rhesus macaque MHC class I allomorph Mamu-A1*001.

    Directory of Open Access Journals (Sweden)

    Nathan Holman

    Full Text Available Monoclonal antibodies that bind to human leukocyte antigen (HLA are useful tools for HLA-typing, tracking donor-recipient chimerisms after bone marrow transplants, and characterizing specific major histocompatibility complexes (MHC on cell surfaces. Unfortunately, equivalent reagents are not available for rhesus macaques, which are commonly used animal as models in organ transplant and infectious disease research. To address this deficiency, we isolated an antibody that recognizes the common Indian rhesus macaque MHC class I molecule, Mamu-A1*001. We induced Mamu-A1*001-binding antibodies by alloimmunizing a female Mamu-A1*001-negative rhesus macaque with peripheral blood mononuclear cells (PBMC from a male Mamu-A1*001-positive donor. A Fab phage display library was constructed with PBMC from the alloimmunized macaque and panned to isolate an antibody that binds to Mamu-A1*001 but not to other common rhesus macaque MHC class I molecules. The isolated antibody distinguishes PBMC from Mamu-A1*001-positive and -negative macaques. Additionally, the Mamu-A1*001-specific antibody binds the cynomolgus macaque MHC class I ortholog Mafa-A1*001:01 but not variants Mafa-A1*001:02/03, indicating a high degree of binding specificity. The Mamu-A1*001-specific antibody will be useful for identifying Mamu-A1*001-positive rhesus macaques, for detecting Mamu-A1*001-positive cells in populations of Mamu-A1*001-negative cells, and for examining disease processes that alter expression of Mamu-A1*001 on cell surfaces. Moreover, the alloimmunization process we describe will be useful for isolating additional MHC allomorph-specific monoclonal antibodies or antibodies against other polymorphic host proteins which are difficult to isolate with traditional technologies.

  2. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    Science.gov (United States)

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  3. The association of heavy and light chain variable domains in antibodies: implications for antigen specificity.

    KAUST Repository

    Chailyan, Anna

    2011-06-28

    The antigen-binding site of immunoglobulins is formed by six regions, three from the light and three from the heavy chain variable domains, which, on association of the two chains, form the conventional antigen-binding site of the antibody. The mode of interaction between the heavy and light chain variable domains affects the relative position of the antigen-binding loops and therefore has an effect on the overall conformation of the binding site. In this article, we analyze the structure of the interface between the heavy and light chain variable domains and show that there are essentially two different modes for their interaction that can be identified by the presence of key amino acids in specific positions of the antibody sequences. We also show that the different packing modes are related to the type of recognized antigen.

  4. Chloramine-T induced binding of monoclonal antibody B72. 3 to concanavalin-A

    Energy Technology Data Exchange (ETDEWEB)

    Cole, W.C.; Jhingran, S.G. (Methodist Hospital, Houston, TX (United States) Baylor Coll. of Medicine, Houston, TX (United States))

    1993-07-01

    The effects of chloramine-T (CT) on monoclonal antibody B72.3 were studied with particular reference to Con-A lectin binding. After exposure to chloramine-T concentrations from 0.8 to 4.0 mg/mL (115-574 mol CT/mol B72.3), B72.3 showed progressive binding to agarose-linked Con-A. This behavior was paralleled by decreasing immunoreactivity and increasing fragmentation and aggregation of B72.3 demonstrated by SDS-PAGE and size exclusion HPLC. (Author).

  5. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    International Nuclear Information System (INIS)

    Stoeckel, M.E.; Freund-Mercier, M.J.

    1989-01-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective 125 I-labeled OT antagonist ( 125 I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of 125 I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that 125 I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration

  6. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckel, M.E.; Freund-Mercier, M.J. (Centre National de la Recherche Scientifique, Strasbourg (France))

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.

  7. Receptor-ligand binding sites and virtual screening.

    Science.gov (United States)

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  8. Fab-dsFv: A bispecific antibody format with extended serum half-life through albumin binding.

    Science.gov (United States)

    Davé, Emma; Adams, Ralph; Zaccheo, Oliver; Carrington, Bruce; Compson, Joanne E; Dugdale, Sarah; Airey, Michael; Malcolm, Sarah; Hailu, Hanna; Wild, Gavin; Turner, Alison; Heads, James; Sarkar, Kaushik; Ventom, Andrew; Marshall, Diane; Jairaj, Mark; Kopotsha, Tim; Christodoulou, Louis; Zamacona, Miren; Lawson, Alastair D; Heywood, Sam; Humphreys, David P

    2016-10-01

    An antibody format, termed Fab-dsFv, has been designed for clinical indications that require monovalent target binding in the absence of direct Fc receptor (FcR) binding while retaining substantial serum presence. The variable fragment (Fv) domain of a humanized albumin-binding antibody was fused to the C-termini of Fab constant domains, such that the VL and VH domains were individually connected to the Cκ and CH1 domains by peptide linkers, respectively. The anti-albumin Fv was selected for properties thought to be desirable to ensure a durable serum half-life mediated via FcRn. The Fv domain was further stabilized by an inter-domain disulfide bond. The bispecific format was shown to be thermodynamically and biophysically stable, and retained good affinity and efficacy to both antigens simultaneously. In in vivo studies, the serum half-life of Fab-dsFv, 2.6 d in mice and 7.9 d in cynomolgus monkeys, was equivalent to Fab'-PEG.

  9. Pitfalls using tyramide signal amplification (TSA) in the mouse gastrointestinal tract: endogenous streptavidin-binding sites lead to false positive staining.

    Science.gov (United States)

    Horling, L; Neuhuber, W L; Raab, M

    2012-02-15

    Highly sensitive immunohistochemical detection systems such as tyramide signal amplification (TSA) are widely used, since they allow using two primary antibodies raised in the same species. Most of them are based on the streptavidin-biotin-peroxidase system and include streptavidin-coupled secondary antibodies. Using TSA in cryostat-sectioned tissues of mouse esophagus, we were puzzled by negative controls with unexpected staining mostly in the ganglionic areas. This prompted us to search for the causing agent and to include also other parts of the mouse gastrointestinal tract for comparison. Streptavidin-coupled antibodies bound to endogenous binding sites yet to be characterized, which are present throughout the mouse intestines. Staining was mainly localized around neuronal cell bodies of enteric ganglia. Thus, caution is warranted when applying streptavidin-coupled antibodies in the mouse gastrointestinal tract. The use of endogenous biotin-blocking kits combined with a prolonged post-fixation time could significantly reduce unintentional staining. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  12. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor.

    Science.gov (United States)

    Fleischli, Christoph; Sirena, Dominique; Lesage, Guillaume; Havenga, Menzo J E; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2007-11-01

    We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46-CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11-SCR I-II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.

  13. Pactamycin binding site on archaebacterial and eukaryotic ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.G.

    1987-01-01

    The presence of a photoreactive acetophenone group in the protein synthesis inhibitor pactamycin and the possibility of obtaining active iodinated derivatives that retain full biological activity allow the antibiotic binding site on Saccharomyces cerevisiae and archaebacterium Sulfolobus solfataricus ribosomes to be photoaffinity labeled. Four major labeled proteins have been identified in the yeast ribosomes, i.e., YS10, YS18, YS21/24, and YS30, while proteins AL1a, AS10/L8, AS18/20, and AS21/22 appeared as radioactive spots in S. solfataricus. There seems to be a correlation between some of the proteins labeled in yeast and those previously reported in Escherichia coli indicating that the pactamycin binding sites of both species, which are in the small subunit close to the initiation factors and mRNA binding sites, must have similar characteristics

  14. Dissecting water binding sites at protein-protein interfaces: a lesson from the atomic structures in the Protein Data Bank.

    Science.gov (United States)

    Mukherjee, Sunandan; Nithin, Chandran; Divakaruni, Yasaswi; Bahadur, Ranjit Prasad

    2018-04-04

    We dissect the protein-protein interfaces into water preservation (WP), water hydration (WH) and water dehydration (WD) sites by comparing the water-mediated hydrogen bonds (H-bond) in the bound and unbound states of the interacting subunits. Upon subunit complexation, if a H-bond between an interface water and a protein polar group is retained, we assign it as WP site; if it is lost, we assign it as WD site and if a new H-bond is created, we assign it as WH site. We find that the density of WD sites is highest followed by WH and WP sites except in antigen and (or) antibody complexes, where the density of WH sites is highest followed by WD and WP sites. Furthermore, we find that WP sites are the most conserved followed by WD and WH sites in all class of complexes except in antigen and (or) antibody complexes, where WD sites are the most conserved followed by WH and WP sites. A significant number of WP and WH sites are involved in water bridges that stabilize the subunit interactions. At WH sites, the residues involved in water bridges are significantly better conserved than the other residues. However, no such difference is observed at WP sites. Interestingly, WD sites are generally replaced with direct H-bonds upon subunit complexation. Significantly, we observe many water-mediated H-bonds remain preserved in spite of large conformational changes upon subunit complexation. These findings have implications in predicting and engineering water binding sites at protein-protein interfaces.

  15. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  16. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    Science.gov (United States)

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  17. Dextran as a Generally Applicable Multivalent Scaffold for Improving Immunoglobulin-Binding Affinities of Peptide and Peptidomimetic Ligands

    Science.gov (United States)

    2015-01-01

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors. PMID:25073654

  18. Characterisation of monoclonal antibodies for human luteinising hormone, and mapping of antigenic determinants on the hormone

    International Nuclear Information System (INIS)

    Soos, M.; Siddle, K.

    1983-01-01

    Twelve mouse monoclonal antibodies for human luteinising hormone were produced. The affinities varied from 4 X 10 7 to 1 X 10 10 l/mol. The specificity of each antibody was assessed by determining the relative reactivities with luteinising hormone, thyroid stimulating hormone, follicle stimulating hormone and chorionic gonadotrophin. Six antibodies bound to the α-subunit as shown by similar reactivity with all hormones, and the remainder to the β-subunit as shown by specificity for luteinising hormone. This latter group of antibodies cross-reacted only weakly with thyroid stimulating hormone (approximately 10%) and follicle stimulating hormone (approximately 3%). Three of these antibodies also showed low reactivity towards chorionic gonadotrophin (<10%), though the others did not (80-300%). The ability of different antibodies to bind simultaneously to luteinising hormone was examined and it was shown that several distinct antigenic determinants existed on both subunits. The characterisation of monoclonal binding sites is discussed in relation to the use of antibodies in two-site immunoradiometric assays. (Auth.)

  19. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; Marcus, Susan E.; Haeger, Ash

    2008-01-01

    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall...... investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls...

  20. Simplifying complex sequence information: a PCP-consensus protein binds antibodies against all four Dengue serotypes.

    Science.gov (United States)

    Bowen, David M; Lewis, Jessica A; Lu, Wenzhe; Schein, Catherine H

    2012-09-14

    Designing proteins that reflect the natural variability of a pathogen is essential for developing novel vaccines and drugs. Flaviviruses, including Dengue (DENV) and West Nile (WNV), evolve rapidly and can "escape" neutralizing monoclonal antibodies by mutation. Designing antigens that represent many distinct strains is important for DENV, where infection with a strain from one of the four serotypes may lead to severe hemorrhagic disease on subsequent infection with a strain from another serotype. Here, a DENV physicochemical property (PCP)-consensus sequence was derived from 671 unique sequences from the Flavitrack database. PCP-consensus proteins for domain 3 of the envelope protein (EdomIII) were expressed from synthetic genes in Escherichia coli. The ability of the purified consensus proteins to bind polyclonal antibodies generated in response to infection with strains from each of the four DENV serotypes was determined. The initial consensus protein bound antibodies from DENV-1-3 in ELISA and Western blot assays. This sequence was altered in 3 steps to incorporate regions of maximum variability, identified as significant changes in the PCPs, characteristic of DENV-4 strains. The final protein was recognized by antibodies against all four serotypes. Two amino acids essential for efficient binding to all DENV antibodies are part of a discontinuous epitope previously defined for a neutralizing monoclonal antibody. The PCP-consensus method can significantly reduce the number of experiments required to define a multivalent antigen, which is particularly important when dealing with pathogens that must be tested at higher biosafety levels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Senile amyloidosis and neuron binding antibody in the aging Syrian hamster

    International Nuclear Information System (INIS)

    Blumenthal, H.T.; Musacchia, X.J.

    1985-01-01

    The effects of age, sex, and irradiation on the genesis of amyloidosis, neuron-binding antibody (NBA), and the concomitant appearance of these two phenomena were studied in a colony of Syrian hamsters. In nonirradiated controls amyloidosis increased in prevalence with age after 12 months, and prevalence was higher in females than in males. Irradiation had the effect of advancing the appearance of amyloidosis to the 7-12 months group but did not intensify the amyloidotic process. IgG binding to the nucleus or cytoplasm of neurons was rare, and, despite the fact that IgM and IgA binding to these structures was present in about one-third of the animals, there was neither an aging nor an irradiation effect. The only statistically significant findings with respect to the concomitant occurrence of amyloid and NBA were negative correlations between nuclear IgM and IgA binding and amyloidosis. Of the various species thus far studied, the hamster is the first in which there has been no aging effect in respect to NBA

  2. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongjun; Zangar, Richard C.

    2017-01-17

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine, and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.

  3. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Keishi Yamasaki

    Full Text Available A wide variety of drugs bind to human serum albumin (HSA at its two principal sites, namely site I and site II. A number of reports indicate that drug binding to these two binding sites are not completely independent, and that interactions between ligands of these two discrete sites can play a role. In this study, the effect of the binding of long-chain fatty acids on the interactive binding between dansyl-L-asparagine (DNSA; site I ligand and ibuprofen (site II ligand at pH6.5 was examined. Binding experiments showed that the binding of sodium oleate (Ole to HSA induces conformational changes in the molecule, which, in turn, changes the individual binding of DNSA and ibuprofen, as well as the mode of interaction between these two ligands from a 'competitive-like' allosteric interaction in the case of the defatted HSA conformer to a 'nearly independent' binding in the case of non-defatted HSA conformer. Circular dichroism measurements indicated that ibuprofen and Ole are likely to modify the spatial orientation of DNSA at its binding site. Docking simulations suggest that the long-distance electric repulsion between DNSA and ibuprofen on defatted HSA contributes to a 'competitive-like' allosteric interaction, whereas extending the distance between ligands and/or increasing the flexibility or size of the DNSA binding site in fatted HSA evokes a change in the interaction mode to 'nearly independent' binding. The present findings provide further insights into the structural dynamics of HSA upon the binding of fatty acids, and its effects on drug binding and drug-drug interactions that occur on HSA.

  4. Oligomycin frames a common drug-binding site in the ATP synthase

    Energy Technology Data Exchange (ETDEWEB)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric; Mueller, David M. (Rosalind)

    2015-12-01

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100% conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.

  5. Quantitative cumulative biodistribution of antibodies in mice

    Science.gov (United States)

    Yip, Victor; Palma, Enzo; Tesar, Devin B; Mundo, Eduardo E; Bumbaca, Daniela; Torres, Elizabeth K; Reyes, Noe A; Shen, Ben Q; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A; Boswell, C Andrew

    2014-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn’s role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn’s role in antibody PK and catabolism at the tissue level. PMID:24572100

  6. Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server.

    KAUST Repository

    Olimpieri, Pier Paolo

    2013-06-26

    MOTIVATION: Antibodies or immunoglobulins are proteins of paramount importance in the immune system. They are extremely relevant as diagnostic, biotechnological and therapeutic tools. Their modular structure makes it easy to re-engineer them for specific purposes. Short of undergoing a trial and error process, these experiments, as well as others, need to rely on an understanding of the specific determinants of the antibody binding mode. RESULTS: In this article, we present a method to identify, on the basis of the antibody sequence alone, which residues of an antibody directly interact with its cognate antigen. The method, based on the random forest automatic learning techniques, reaches a recall and specificity as high as 80% and is implemented as a free and easy-to-use server, named prediction of Antibody Contacts. We believe that it can be of great help in re-design experiments as well as a guide for molecular docking experiments. The results that we obtained also allowed us to dissect which features of the antibody sequence contribute most to the involvement of specific residues in binding to the antigen. AVAILABILITY: http://www.biocomputing.it/proABC. CONTACT: anna.tramontano@uniroma1.it or paolo.marcatili@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  7. Isolation of Panels of Llama Single-Domain Antibody Fragments Binding All Nine Neuraminidase Subtypes of Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Guus Koch

    2013-04-01

    Full Text Available Avian influenza A virus comprises sixteen hemagglutinin (HA and nine neuraminidase (NA subtypes (N1–N9. To isolate llama single-domain antibody fragments (VHHs against all N subtypes, four llamas were immunized with mixtures of influenza viruses. Selections using influenza virus yielded predominantly VHHs binding to the highly immunogenic HA and nucleoprotein. However, selection using enzymatically active recombinant NA (rNA protein enabled us to isolate NA binding VHHs. Some isolated VHHs cross-reacted to other N subtypes. These were subsequently used for the capture of N subtypes that could not be produced as recombinant protein (rN6 or were enzymatically inactive (rN1, rN5 in phage display selection, yielding novel VHHs. In total we isolated 188 NA binding VHHs, 64 of which were expressed in yeast. Most VHHs specifically recognize a single N subtype, but some VHHs cross-react with other N-subtypes. At least one VHH bound to all N subtypes, except N4, identifying a conserved antigenic site. Thus, this work (1 describes methods for isolating NA binding VHHs, (2 illustrates the suitability of llama immunization with multiple antigens for retrieving many binders against different antigens and (3 describes 64 novel NA binding VHHs, including a broadly reactive VHH, which can be used in various assays for influenza virus subtyping, detection or serology.

  8. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule.

    Science.gov (United States)

    Dobosz, Michael; Haupt, Ute; Scheuer, Werner

    2017-01-01

    Preclinical efficacy studies of antibodies targeting a tumor-associated antigen are only justified when the expression of the relevant antigen has been demonstrated. Conventionally, antigen expression level is examined by immunohistochemistry of formalin-fixed paraffin-embedded tumor tissue section. This method represents the diagnostic "gold standard" for tumor target evaluation, but is affected by a number of factors, such as epitope masking and insufficient antigen retrieval. As a consequence, variances and discrepancies in histological staining results can occur, which may influence decision-making and therapeutic outcome. To overcome these problems, we have used different fluorescence-labeled therapeutic antibodies targeting human epidermal growth factor receptor (HER) family members and insulin-like growth factor-1 receptor (IGF1R) in combination with fluorescence imaging modalities to determine tumor antigen expression, drug-target interaction, and biodistribution and tumor saturation kinetics in non-small cell lung cancer xenografts. For this, whole-body fluorescence intensities of labeled antibodies, applied as a single compound or antibody mixture, were measured in Calu-1 and Calu-3 tumor-bearing mice, then ex vivo multispectral tumor tissue analysis at microscopic resolution was performed. With the aid of this simple and fast imaging method, we were able to analyze the tumor cell receptor status of HER1-3 and IGF1R, monitor the antibody-target interaction and evaluate the receptor binding sites of anti-HER2-targeting antibodies. Based on this, the most suitable tumor model, best therapeutic antibody, and optimal treatment dosage and application schedule was selected. Predictions drawn from obtained imaging data were in excellent concordance with outcome of conducted preclinical efficacy studies. Our results clearly demonstrate the great potential of combined in vivo and ex vivo fluorescence imaging for the preclinical development and characterization of

  9. Covalent Binding of Antibodies to Cellulose Paper Discs and Their Applications in Naked-eye Colorimetric Immunoassays.

    Science.gov (United States)

    Peng, Yanfen; Gelder, Victor Van; Amaladoss, Anburaj; Patel, Kadamb Haribhai

    2016-10-21

    This report presents two methods for the covalent immobilization of capture antibodies on cellulose filter paper grade No. 1 (medium-flow filter paper) discs and grade No. 113 (fast-flow filter paper) discs. These cellulose paper discs were grafted with amine functional groups through a silane coupling technique before the antibodies were immobilized on them. Periodate oxidation and glutaraldehyde cross-linking methods were used to graft capture antibodies on the cellulose paper discs. In order to ensure the maximum binding capacity of the capture antibodies to their targets after immobilization, the effects of various concentrations of sodium periodate, glutaraldehyde, and capture antibodies on the surface of the paper discs were investigated. The antibodies that were coated on the amine-functionalized cellulose paper discs through a glutaraldehyde cross-linking agent showed enhanced binding activity to the target when compared to the periodate oxidation method. IgG (in mouse reference serum) was used as a reference target in this study to test the application of covalently immobilized antibodies through glutaraldehyde. A new paper-based, enzyme-linked immunosorbent assay (ELISA) was successfully developed and validated for the detection of IgG. This method does not require equipment, and it can detect 100 ng/ml of IgG. The fast-flow filter paper was more sensitive than the medium-flow filter paper. The incubation period of this assay was short and required small sample volumes. This naked-eye, colorimetric immunoassay can be extended to detect other targets that are identified with conventional ELISA.

  10. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1985-01-01

    , the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing......Two methods have been used to examine epidermal growth factor (EGF) receptor distribution in human scalp and foreskin. The first employed [125I]EGF viable explants and autoradiography to determine the EGF binding pattern while the second used a monoclonal antibody to the human EGF receptor to map...... whether EGF-R1 could recognize molecules unrelated to the EGF receptor, the EGF binding and EGF-R1 recognition profiles were compared on cultures of SVK14 cells, a SV40 transformed human keratinocyte cell line. EGF binding and EGF-R1 monoclonal antibody distribution on these cells was found to be similar...

  11. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  12. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  13. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan

    2006-01-01

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  14. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta 9 tetrahydrocannabinol (delta 9 THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta 8 THC (TMA) is a positively charged analog of delta- 8 THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [ 3 H]-5'-trimethylammonium-delta- 8 THC ([ 3 H]TMA) to rat neuronal membranes. [ 3 H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [ 3 H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  15. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits.

    Science.gov (United States)

    Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki

    2015-09-09

    Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to "W3:34 and an top-loop", and "solely W2:41", accounting for 82% of published RGD-integrin-mAbs.

  16. Diverse binding site structures revealed in homology models of polyreactive immunoglobulins

    Science.gov (United States)

    Ramsland, Paul A.; Guddat, Luke W.; Edmundson, Allen B.; Raison, Robert L.

    1997-09-01

    We describe here computer-assisted homology models of the combiningsite structure of three polyreactive immunoglobulins. Template-based modelsof Fv (VL-VH) fragments were derived forthe surface IgM expressed by the malignant CD5 positive B cells from threepatients with chronic lymphocytic leukaemia (CLL). The conserved frameworkregions were constructed using crystal coordinates taken from highlyhomologous human variable domain structures (Pot and Hil). Complementaritydetermining regions (CDRs) were predicted by grafting loops, taken fromknown immunoglobulin structures, onto the Fv framework models. The CDRtemplates were chosen, where possible, to be of the same length and of highresidue identity or similarity. LCDR1, 2 and 3 as well as HCDR1 and 2 forthe Fv were constructed using this strategy. For HCDR3 prediction, adatabase containing the Cartesian coordinates of 30 of these loops wascompiled from unliganded antibody X-ray crystallographic structures and anHCDR3 of the same length as that of the B CLL Fv was selected as a template.In one case (Yar), the resulting HCDR3 model gave unfavourable interactionswhen incorporated into the Fv model. This HCDR3 was therefore modelled usingan alternative strategy of construction of the loop stems, using apreviously described HCDR3 conformation (Pot), followed by chain closurewith a β-turn. The template models were subjected to positionalrefinement using energy minimisation and molecular dynamics simulations(X-PLOR). An electrostatic surface description (GRASP) did not reveal acommon structural feature within the binding sites of the three polyreactiveFv. Thus, polyreactive immunoglobulins may recognise similar and multipleantigens through a diverse array of binding site structures.

  17. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  18. An immunochemical method for the quantitation of insulin antibodies

    International Nuclear Information System (INIS)

    Reeves, W.G.; Kelly, U.

    1980-01-01

    A 125 I-labelled insulin binding assay is described in which IgG antibody is precipitated by the addition of an optimal concentration of second antibody. Other features include the removal of unlabelled insulin from test sera prior to assay and the use of 22 Na as a volume marker. This approach overcomes problems associated with previous assays for insulin antibodies. Clear differences are seen in the IgG insulin binding capacity (IBC) of sera from patients with insulin resistance and injection site lipo-atrophy when compared with insulin-treated diabetics who lack such complications. The precision and flexibility of this technique make it particularly suitable for studies of the immune response to different species and forms of insulin. (Auth.)

  19. In vitro site selection of a consensus binding site for the Drosophila melanogaster Tbx20 homolog midline.

    Directory of Open Access Journals (Sweden)

    Nima Najand

    Full Text Available We employed in vitro site selection to identify a consensus binding sequence for the Drosophila melanogaster Tbx20 T-box transcription factor homolog Midline. We purified a bacterially expressed T-box DNA binding domain of Midline, and used it in four rounds of precipitation and polymerase-chain-reaction based amplification. We cloned and sequenced 54 random oligonucleotides selected by Midline. Electromobility shift-assays confirmed that 27 of these could bind the Midline T-box. Sequence alignment of these 27 clones suggests that Midline binds as a monomer to a consensus sequence that contains an AGGTGT core. Thus, the Midline consensus binding site we define in this study is similar to that defined for vertebrate Tbx20, but differs from a previously reported Midline binding sequence derived through site selection.

  20. Opioid binding site in EL-4 thymoma cell line

    International Nuclear Information System (INIS)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [ 3 H] bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10 6 cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [ 3 H] bremazocine with an IC 50 value = 0.57μM. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, [D-Pen 2 , D-Pen 5 ] enkephalin and β-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC 50 = 60μM, that was similar to naloxone. 32 references, 3 figures, 2 tables

  1. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  2. Repeated Vaccination of Cows with HIV Env gp140 during Subsequent Pregnancies Elicits and Sustains an Enduring Strong Env-Binding and Neutralising Antibody Response.

    Directory of Open Access Journals (Sweden)

    Behnaz Heydarchi

    Full Text Available An important feature of a potential vaccine against HIV is the production of broadly neutralising antibodies (BrNAbs capable of potentially blocking infectivity of a diverse array of HIV strains. BrNAbs naturally arise in some HIV infected individuals after several years of infection and their serum IgG can neutralise various HIV strains across different subtypes. We previously showed that vaccination of cows with HIV gp140 AD8 trimers resulted in a high titre of serum IgG against HIV envelope (Env that had strong BrNAb activity. These polyclonal BrNAbs concentrated into the colostrum during the late stage of pregnancy and can be harvested in vast quantities immediately after calving. In this study, we investigated the effect of prolonged HIV gp140 vaccination on bovine colostrum IgG HIV Env-binding and BrNAb activity over subsequent pregnancies. Repeated immunisation led to a maintained high titre of HIV Env specific IgG in the colostrum batches, but this did not increase through repeated cycles. Colostrum IgG from all batches also strongly competed with sCD4 binding to gp140 Env trimer and with human-derived monoclonal VRC01 and b12 BrNAbs that bind the CD4 binding site (CD4bs. Furthermore, competition neutralisation assays using RSC3 Env gp120 protein core and a derivative CD4bs mutant, RSC3 Δ371I/P363N, showed that CD4bs neutralising antibodies contribute to the neutralising activity of all batches of purified bovine colostrum IgG. This result indicates that the high IgG titre/avidity of anti-CD4bs antibodies with BrNAb activity was achieved during the first year of vaccination and was sustained throughout the years of repeated vaccinations in the cow tested. Although IgG of subsequent colostrum batches may have a higher avidity towards the CD4bs, the overall breadth in neutralisation was not enhanced. This implies that the boosting vaccinations over 4 years elicited a polyclonal antibody response that maintained the proportion of both

  3. Specific binding of beta-endorphin to normal human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chenet, B.; Hollis, V. Jr.; Kang, Y.; Simpkins, C.

    1986-03-05

    Beta-endorphin (BE) exhibits peripheral functions which may not be mediated by interactions with receptors in the brain. Recent studies have demonstrated binding of BE to both opioid and non-opioid receptors on lymphocytes and monocytes. Abood has reported specific binding of /sup 3/H-dihydromorphine in erythrocytes. Using 5 x 10/sup -11/M /sup 125/I-beta-endorphin and 10/sup -5/M unlabeled BE, they have detected 50% specific binding to human erythrocytes. This finding is supported by results from immunoelectron microscopy using rabbit anti-BE antibody and biotinylated secondary antibody with avidin-biotin complexes horseradish peroxidase. Binding is clearly observed and is confined to only one side of the cells. Conclusions: (1) BE binding to human erythrocytes was demonstrated by radioreceptor assay and immunoelectron microscopy, and (2) BE binding sites exist on only one side of the cells.

  4. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    Science.gov (United States)

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modification of Antibody Function by Mutagenesis.

    Science.gov (United States)

    Dasch, James R; Dasch, Amy L

    2017-09-01

    The ability to "fine-tune" recombinant antibodies by mutagenesis separates recombinant antibodies from hybridoma-derived antibodies because the latter are locked with respect to their properties. Recombinant antibodies can be modified to suit the application: Changes in isotype, format (e.g., scFv, Fab, bispecific antibodies), and specificity can be made once the heavy- and light-chain sequences are available. After immunoglobulin heavy and light chains for a particular antibody have been cloned, the binding site-namely, the complementarity determining regions (CDR)-can be manipulated by mutagenesis to obtain antibody variants with improved properties. The method described here is relatively simple, uses commercially available reagents, and is effective. Using the pComb3H vector, a commercial mutagenesis kit, PfuTurbo polymerase (Agilent), and two mutagenic primers, a library of phage with mutagenized heavy and light CDR3 can be obtained. © 2017 Cold Spring Harbor Laboratory Press.

  6. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  7. Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody-antigen interaction.

    Directory of Open Access Journals (Sweden)

    Takayoshi Matsuda

    Full Text Available Growing numbers of therapeutic antibodies offer excellent treatment strategies for many diseases. Elucidation of the interaction between a potential therapeutic antibody and its target protein by structural analysis reveals the mechanism of action and offers useful information for developing rational antibody designs for improved affinity. Here, we developed a rapid, high-yield cell-free system using dialysis mode to synthesize antibody fragments for the structural analysis of antibody-antigen complexes. Optimal synthesis conditions of fragments (Fv and Fab of the anti-EGFR antibody 059-152 were rapidly determined in a day by using a 30-μl-scale unit. The concentration of supplemented disulfide isomerase, DsbC, was critical to obtaining soluble antibody fragments. The optimal conditions were directly applicable to a 9-ml-scale reaction, with linear scalable yields of more than 1 mg/ml. Analyses of purified 059-152-Fv and Fab showed that the cell-free synthesized antibody fragments were disulfide-bridged, with antigen binding activity comparable to that of clinical antibodies. Examination of the crystal structure of cell-free synthesized 059-152-Fv in complex with the extracellular domain of human EGFR revealed that the epitope of 059-152-Fv broadly covers the EGF binding surface on domain III, including residues that formed critical hydrogen bonds with EGF (Asp355EGFR, Gln384EGFR, H409EGFR, and Lys465EGFR, so that the antibody inhibited EGFR activation. We further demonstrated the application of the cell-free system to site-specific integration of non-natural amino acids for antibody engineering, which would expand the availability of therapeutic antibodies based on structural information and rational design. This cell-free system could be an ideal antibody-fragment production platform for functional and structural analysis of potential therapeutic antibodies and for engineered antibody development.

  8. PocketMatch: A new algorithm to compare binding sites in protein structures

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma

    2008-12-01

    Full Text Available Abstract Background Recognizing similarities and deriving relationships among protein molecules is a fundamental requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison. Results Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. A comparison with other site matching algorithms is also presented. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless combined with chemical nature of amino acids. Conclusion A new algorithm has been developed to compare binding sites in accurate, efficient and high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that

  9. Immunotherapy with GD2 specific monoclonal antibodies

    International Nuclear Information System (INIS)

    Cheung, N.K.V.; Medof, E.M.; Munn, D.

    1988-01-01

    Targeted immunotherapy focuses anti-tumor activity of antibodies and effector cells, which are actively developed by the host or adoptively transferred, onto tumor cells and into tumor sites. Such tumor selective therapy can be more specific and efficient. The value of such an approach is evident in the classical interaction of antibodies. This paper reports that the ganglioside G D2 is an ideal antigen for specific tumor targeting because of its relative lack of heterogeneity among human neuroblastoma, its high density on tumor cells, its lack of antigen modulation upon binding to antibody, and its restricted distribution in normal tissues

  10. Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.

    2002-01-17

    This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use of such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.

  11. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  12. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    International Nuclear Information System (INIS)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji

    1991-01-01

    A 13 C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V H , V L , and C L domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with 13 C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with [1- 13 C]Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how 13 C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule

  13. Study of the Mn-binding sites in photosystem II using antibodies raised against lumenal regions of the D1 and D2 reaction center proteins

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, Enrique Agustin [Univ. of California, Berkeley, CA (United States)

    1992-04-01

    The experiments discussed in this thesis focus on identifying the protein segments or specific amino acids which provide ligands to the Mn cluster of photosystem II (PS II). This Mn cluster plays a central role in the oxygen-evolving complex (OEC) of PS II. The Mn cluster is thought to be bound by lumenal regions of the PS II reaction center proteins known as D1 and D2. First, several peptides were synthesized which correspond to specific lumenal segments of the D1 and D2 proteins. Next, polyclonal antibodies were successfully elicited using three of these peptides. The peptides recognized by these antibodies correspond to protein segments of the spinach reaction center proteins: Ile-321 to Ala-344 of D1 (D1-a), Asp-319 to Arg-334 of D1 (D1-b), and Val-300 to Asn-319 of D2 (D2-a). These antibodies were then used in assays which were developed to structurally or functionally probe the potential Mn-binding regions of the D1 and D2 proteins.

  14. Two distinct affinity binding sites for IL-1 on human cell lines

    International Nuclear Information System (INIS)

    Bensimon, C.; Wakasugi, N.; Tagaya, Y.; Takakura, K.; Yodoi, J.; Tursz, T.; Wakasugi, H.

    1989-01-01

    We used two human cell lines, NK-like YT-C3 and an EBV-containing B cell line, 3B6, as models to study the receptor(s) for IL-1. Two distinct types of saturable binding sites were found on both cell lines at 37 degrees C. Between 1 pM and 100 pM of 125I-IL-1-alpha concentration, saturable binding sites were detected on the YT-C3 cells with a K of 4 x 10(-11) M. The K found for the IL-1-alpha binding sites on 3B6 cells was 7.5 x 10(-11) M. An additional binding curve was detected above 100 pM on YT-C3 cells with a K of 7 x 10(-9) M and on 3B6 cells with a K of 5 x 10(-9) M. Scatchard plot analysis revealed 600 sites/cell with high affinity binding and 7000 sites/cell with low affinity for YT-C3 cells and 300 sites/cell with high affinity binding and 6000 sites/cell with low affinity for 3B6 cells. At 37 degrees C, the internalization of 125I-labeled IL-1 occurred via both high and low affinity IL-1R on both YT-C3 and 3B6 cells, whereas the rates of internalization for high affinity binding sites on YT-C3 cells were predominant in comparison to that of low affinity binding sites. In chemical cross-linking studies of 125 I-IL-1-alpha to 3B6 and YT-C3 cells, two protein bands were immunoprecipitated with Mr around 85 to 90 kDa leading to an estimation of the Mr of the IL-1R around 68 to 72 kDa. In similar experiments, the Mr found for the IL-1R expressed on the murine T cell line EL4 was slightly higher (around 80 kDa). Whether these distinct affinity binding sites are shared by a single molecule or by various chains remains to be elucidated

  15. Avidity of anti-malarial antibodies inversely related to transmission intensity at three sites in Uganda.

    Science.gov (United States)

    Ssewanyana, Isaac; Arinaitwe, Emmanuel; Nankabirwa, Joaniter I; Yeka, Adoke; Sullivan, Richard; Kamya, Moses R; Rosenthal, Philip J; Dorsey, Grant; Mayanja-Kizza, Harriet; Drakeley, Chris; Greenhouse, Bryan; Tetteh, Kevin K A

    2017-02-10

    People living in malaria endemic areas acquire protection from severe malaria quickly, but protection from clinical disease and control of parasitaemia is acquired only after many years of repeated infections. Antibodies play a central role in protection from clinical disease; however, protective antibodies are slow to develop. This study sought to investigate the influence of Plasmodium falciparum exposure on the acquisition of high-avidity antibodies to P. falciparum antigens, which may be associated with protection. Cross-sectional surveys were performed in children and adults at three sites in Uganda with varied P. falciparum transmission intensity (entomological inoculation rates; 3.8, 26.6, and 125 infectious bites per person per year). Sandwich ELISA was used to measure antibody responses to two P. falciparum merozoite surface antigens: merozoite surface protein 1-19 (MSP1-19) and apical membrane antigen 1 (AMA1). In individuals with detectable antibody levels, guanidine hydrochloride (GuHCl) was added to measure the relative avidity of antibody responses by ELISA. Within a site, there were no significant differences in median antibody levels between the three age groups. Between sites, median antibody levels were generally higher in the higher transmission sites, with differences more apparent for AMA-1 and in ≥5 year group. Similarly, median avidity index (proportion of high avidity antibodies) showed no significant increase with increasing age but was significantly lower at sites of higher transmission amongst participants ≥5 years of age. Using 5 M GuHCl, the median avidity indices in the ≥5 year group at the highest and lowest transmission sites were 19.9 and 26.8, respectively (p = 0.0002) for MSP1-19 and 12.2 and 17.2 (p = 0.0007) for AMA1. Avidity to two different P. falciparum antigens was lower in areas of high transmission intensity compared to areas with lower transmission. Appreciation of the mechanisms behind these findings as

  16. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy

    Directory of Open Access Journals (Sweden)

    Dapeng Zhou

    2018-05-01

    Full Text Available Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.

  17. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Directory of Open Access Journals (Sweden)

    Yan Gong

    Full Text Available β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may

  18. Influenza human monoclonal antibody 1F1 interacts with three major antigenic sites and residues mediating human receptor specificity in H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Tshidi Tsibane

    Full Text Available Most monoclonal antibodies (mAbs to the influenza A virus hemagglutinin (HA head domain exhibit very limited breadth of inhibitory activity due to antigenic drift in field strains. However, mAb 1F1, isolated from a 1918 influenza pandemic survivor, inhibits select human H1 viruses (1918, 1943, 1947, and 1977 isolates. The crystal structure of 1F1 in complex with the 1918 HA shows that 1F1 contacts residues that are classically defined as belonging to three distinct antigenic sites, Sa, Sb and Ca(2. The 1F1 heavy chain also reaches into the receptor binding site (RBS and interacts with residues that contact sialoglycan receptors and determine HA receptor specificity. The 1F1 epitope is remarkably similar to the previously described murine HC63 H3 epitope, despite significant sequence differences between H1 and H3 HAs. Both antibodies potently inhibit receptor binding, but only HC63 can block the pH-induced conformational changes in HA that drive membrane fusion. Contacts within the RBS suggested that 1F1 may be sensitive to changes that alter HA receptor binding activity. Affinity assays confirmed that sequence changes that switch the HA to avian receptor specificity affect binding of 1F1 and a mAb possessing a closely related heavy chain, 1I20. To characterize 1F1 cross-reactivity, additional escape mutant selection and site-directed mutagenesis were performed. Residues 190 and 227 in the 1F1 epitope were found to be critical for 1F1 reactivity towards 1918, 1943 and 1977 HAs, as well as for 1I20 reactivity towards the 1918 HA. Therefore, 1F1 heavy-chain interactions with conserved RBS residues likely contribute to its ability to inhibit divergent HAs.

  19. Synthesis of indium-labeled antibody-chelate conjugates for radioassays

    Energy Technology Data Exchange (ETDEWEB)

    Gokce, A; Nakamura, R M; Tubis, M; Wolf, W

    1982-01-01

    A method has been developed to achieve rapid and reproducible complexation of indium to transferrin at pH 7.4. The system consists of nitrilotriacetic acid (NTA) as the intermediate carrier ligand, whose function is to allow the /sup 113/m In ion, in a solution in Tris buffer, pH 7.4, to be transferred rapidly to the specific binding sites on transferrin. Just as in the case of iron, this complexation requires the presence of a synergistic ion such as bicarbonate. The present system can be used to allow the binding of /sup 113/mIn to transferrin when coupled to an antibody. This method has been tested by studying the conjugation of an antibody, the IgG fraction of goat anti-rabbit-IgG, with either transferrin or desferoxamine, using glutaraldehyde as the coupling agent. Optimization in terms of total protein concentration and glutaraldehyde levels lead to products where the specific metal binding capacity of the transferrin moiety remains unchanged, and where the antibody retains 70% of its antigenic activity. The present system can be considered an extension of the ELISA techniques and can be used to determine, by a terminal /sup 113/mIn labeling technique, the level of specific binding of an antibody to its antigen.

  20. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  1. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. (-)PPAP: a new and selective ligand for sigma binding sites.

    Science.gov (United States)

    Glennon, R A; Battaglia, G; Smith, J D

    1990-11-01

    Most agents employed for the investigation of sigma (sigma) binding sites display relatively low affinity for these sites, bind both at sigma sites and at either phencyclidine (PCP) sites or dopamine receptors with similar affinity, and/or produce some dopaminergic activity in vivo. We describe a new agent, (-)PPAP or R(-)-N-(3-phenyl-n-propyl)-1-phenyl-2-aminopropane hydrochloride, that binds with high affinity and selectivity at sigma (IC50 = 24 nM) versus either PCP sites (IC50 greater than 75,000 nM) or D1 and D2 dopamine receptors (IC50 greater than 5,000 nM). The sigma affinity of this agent is comparable to that of the standard ligands (+)-3-PPP and DTG. Furthermore, although (-)PPAP is structurally related to amphetamine, it neither produces nor antagonizes amphetamine-like stimulus effect in rats trained to discriminate 1 mg/kg of S(+)amphetamine from saline.

  3. Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.

    Science.gov (United States)

    Igawa, Tomoyuki

    2017-01-01

    Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.

  4. Molecular evolution of broadly neutralizing Llama antibodies to the CD4-binding site of HIV-1.

    Science.gov (United States)

    McCoy, Laura E; Rutten, Lucy; Frampton, Dan; Anderson, Ian; Granger, Luke; Bashford-Rogers, Rachael; Dekkers, Gillian; Strokappe, Nika M; Seaman, Michael S; Koh, Willie; Grippo, Vanina; Kliche, Alexander; Verrips, Theo; Kellam, Paul; Fassati, Ariberto; Weiss, Robin A

    2014-12-01

    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols.

  5. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    Energy Technology Data Exchange (ETDEWEB)

    Makyio, Hisayoshi [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Shimabukuro, Junpei; Suzuki, Tatsuya [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Imamura, Akihiro; Ishida, Hideharu [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Kiso, Makoto [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Ando, Hiromune, E-mail: hando@gifu-u.ac.jp [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Kato, Ryuichi, E-mail: ryuichi.kato@kek.jp [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  6. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    International Nuclear Information System (INIS)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-01-01

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  7. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander; Wei, Anzhi; Emanuel, Stuart L.; Gupta, Ruchira Das; Janjua, Ahsen; Cheng, Lin; Murdock, Melissa; Abramczyk, Bozena; Cohen, Daniel; Lin, Zheng; Morin, Paul; Davis, Jonathan H.; Dabritz, Michael; McLaughlin, Douglas C.; Russo, Katie A.; Chao, Ginger; Wright, Martin C.; Jenny, Victoria A.; Engle, Linda J.; Furfine, Eric; Sheriff, Steven (BMS)

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.

  8. 2[125I]Iodomelatonin binding sites in spleens of guinea pigs

    International Nuclear Information System (INIS)

    Poon, A.M.S.; Pang, S.F.

    1992-01-01

    2-[ 125 I]Iodomelatonin was found to bind specifically to the membrane preparations of the spleens of guinea pigs with high affinity. The binding was rapid, stable, saturable and reversible. Scatchard analysis of the binding assays revealed an equilibrium dissociation constant (Kd) of 49.8±4.12 pmol/l and binding site density (Bmax) of 0.69±0.082 fmol/mg protein at mid-light. There was no significant change in the Kd or the Bmax at mid-dark. Kinetic analysis showed a Kd of 23.13±4.81 pmol/l, in agreement to that derived from the saturation studies. The 2-[ 125 I]iodomelatonin binding sites have the following order of potency: 2-iodomelatonin > melatonin > 6-chloromelatonin much-gt N-acetylserotonin, 6-hydroxymelatonin > 5-methoxytryptamine, 5-methoxytryptophol > serotonin, 5-methoxyindole-3-acetic acid > 5-hydroxytryptophol, 3-acetylindole, 1-acetylindole-3-carboxyaldehyde, L-tryptophan > tryptamine, 5-hydroxyindole-3-acetic acid. Differential centrifugation studies showed that the binding sites are localized mainly in the nuclear fraction, the rest are distributed in the microsomal fraction, mitochondrial fraction and cytosolic fraction. The demonstration of 2-[ 125 I]iodomelatonin binding sites in the spleen suggests the presence of melatonin receptors and a direct mechanism of action of melatonin on the immune system

  9. A rapid one-step radiometric assay for hepatitis B surface antigen utilising monoclonal antibodies

    International Nuclear Information System (INIS)

    Goodall, A.H.; Meek, F.L.; Waters, J.A.; Miescher, G.C.; Janossy, G.; Thomas, H.C.

    1982-01-01

    A two-site antigen assay for HBsAg has been developed that employs 3 monoclonal antibodies. The antibodies were selected for their high affinity and their particular epitope specificity to establish an assay with a sensitivity for the antigen comparable with that of a conventional assay with heterologous antisera. In addition, by selecting a monoclonal antibody for use as a tracer which does not compete for antigenic binding sites with the solid-phase monoclonal antibodies, it has been possible to perform a two-site assay in a single 1 h incubation step, achieving the same degree of sensitivity. This principle of using monoclonal antibodies in a one-step assay therefore gives advantages of speed and simplicity over assays using heterologous antisera and would be applicable to a variety of antigen assays for which appropriate monoclonal antibodies are available. (Auth.)

  10. An indirect antibody assay using haptenated antigen and 125I-labelled anti-hapten antibody

    International Nuclear Information System (INIS)

    Aalberse, R.C.; Amsterdam Univ.

    1978-01-01

    Hapten (trinitrophenyl) was coupled to antigen (ovalbumin). The haptenated antigen was bound by anti-ovalbumin antibody and binding was quantitated with 125 I-labelled anti-hapten antibodies. Thus, with a single radioactive reagent, antibodies against a variety of antigens can be detected while the problems inherent in a labelled antiglobulin binding test are avoided. In the ovalbumin system, the haptenated antigen binding test proved to be approximately 20 times as sensitive as the iodinated ovalbumin binding test

  11. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-07-02

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with {sup 13}C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with (1-{sup 13}C)Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how {sup 13}C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule.

  12. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  13. Hepatitis A virus antibody

    International Nuclear Information System (INIS)

    Novak, J.; Kselikova, M.; Urbankova, J.

    1980-01-01

    A description is presented of a radioimmunoassay designed to prove the presence of the antibody against the hepatitis A virus (HA Ab, anti-Ha) using an Abbott HAVAB set. This proof as well as the proof of the antibody against the nucleus of the hepatitis B virus is based on competition between a normal antibody against hepatitis A virus and a 125 I-labelled antibody for the binding sites of a specific antigen spread all over the surface of a tiny ball; this is then indirect proof of the antibody under investigation. The method is described of reading the results from the number of impulses per 60 seconds: the higher the titre of the antibody against the hepatitis A virus in the serum examined, the lower the activity of the specimen concerned. The rate is reported of incidence of the antibody against the hepatitis A virus in a total of 68 convalescents after hepatitis A; the antibody was found in 94.1%. The immunoglobulin made from the convalescents' plasma showed the presence of antibodies in dilutions as high as 1:250 000 while the comparable ratio for normal immunoglobulin Norga was only 1:2500. Differences are discussed in the time incidence of the antibodies against the hepatitis A virus, the antibodies against the surface antigen of hepatitis B, and the antibody against the nucleus of the hepatitis V virus. (author)

  14. Site-specific conjugation and labelling of prostate antibody 7E11C5.3 (CYT-351) with technetium-99m

    International Nuclear Information System (INIS)

    Stalteri, M.A.; Mather, S.J.; Belinka, B.A.; Coughlin, D.J.; Chengazi, V.U.; Britton, K.E.

    1997-01-01

    Attachment of chelating agents to the sugar residues of antibodies for subsequent radiolabelling is an attractive approach since it may have less effect on the immunoreactivity than attachment through lysine residues, which are distributed throughout the antibody and may be present near the antigen binding site. We have attached a new hydrazide-linked chelator CYT-395 (Cytogen Corp., Princeton, N.J.) to the sugar residues of the anti-prostate monoclonal antibody 7E11C5.3 and optimised the conditions for labelling the conjugate with technetium-99m in order to compare the conjugate to 7E11C5.3 antibody labelled directly with technetium using a mercaptoethanol reduction technique. Labelling yields of 70%-90% were obtained at specific activities up to 2000 MBq/mg antibody. The stability of the technetium-labelled conjugate in plasma or to a challenge with 0.1 or 1.0 mM cysteine was similar to that of direct-labelled antibody. In nine patients with prostate cancer, the plasma clearance of the labelled conjugate followed a two-compartment model, with an average β-phase half-life of 31.4±3.9 h. The average urinary clearance at 24 h was 15.3±5.0% of the injected dose. In this group of patients there was no significant difference between the blood and urine clearance of the labelled conjugate, and the clearances of the direct-labelled antibody. (orig.). With 5 figs

  15. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  16. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    Science.gov (United States)

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  17. Mycoplasma infection of cell lines can simulate the expression of Fc receptors by binding of the carbohydrate moiety of antibodies.

    Science.gov (United States)

    Lemke, H; Krausse, R; Lorenzen, J; Havsteen, B

    1985-05-01

    During the production of Fc receptor (FcR)-bearing hybridomas it was observed with a particular monoclonal anti-sheep red blood cell antibody (anti-SRBC 1/5, IgG1) that the contamination with Mycoplasma arginini of in vitro cultured cell lines leads to an apparent FcR activity. This property did not correspond with the serological typing since other antibodies of the same isotype could not support FcR rosette formation. Another mycoplasma strain M. orale lacked this property. Analysis of the binding reaction revealed that M. arginini contains a lectin which binds the carbohydrate moiety of the anti-SRBC 1/5 antibody, i.e. anti-SRBC 1/5 synthesized under the influence of tunicamycin or deglycosylated by NaIO4 oxidation did not support rosette formation. These data suggest that binding of antibodies to certain mycoplasma strains may be a pathogenic factor during mycoplasma infections by masking the microorganisms with the host's own defense molecules. The experiments with M. arginini-infected cell lines gain immunological importance since we obtained identical results with staphylococcal protein A, as another bacteriological FcR, and cell lines expressing intrinsic membrane FcR. Although it is an open question whether the glycoconjugates are directly bound by the FcR or else by influencing the three-dimensional structure of the antibodies, it seems possible that FcR in general may be lectins.

  18. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  19. Location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins

    International Nuclear Information System (INIS)

    Bennick, A.; McLaughlin, A.C.; Grey, A.A.; Madapallimattam, G.

    1981-01-01

    The location of the calcium-binding sites in the human acidic proline-rich proteins, salivary proteins A and C, was determined by equilibrium dialysis of the tryptic peptides with buffers containing 45 Ca. All the calcium-binding sites are located in the NH 2 -terminal tryptic peptide (TX peptide). The nature of the calcium binding sites in the TX peptide and native salivary proteins A and C, as well as dephosphorylated proteins was compared. Two types of sites can be distinguished in peptide TX. Type I sites have an apparent dissociation constant (K) of 38 μM and are responsible for the binding of 2.6 mol of Ca/mol of peptide. The corresponding figures for Type II sites are 780 μM and 5.3 mol of Ca/mol of peptide. In the native proteins, the amount of calcium bound at the type II sites decreases to 3.9 mol of Ca/mol of proteins A and C and K increases to 1100 μM. The amount of calcium bound at type I sites decreases to 1.5 mol/mol of protein A and 0.6 mol/mol of protein C, but there is no change in K. Dephosphorylation affects the calcium binding at both types of sites. The experiments indicate that the COOH-terminal parts of the native proteins affect the number and the nature of the protein calcium-binding sites. Proton and phosphorous NMR data demonstrate that β-COOH in aspartic acid, as well as phosphoserine, are part of the calcium-binding sites. The difference in calcium binding to salivary proteins A and C may be due at least partially to differences in the environment of one or more aspartic acids

  20. An assessment of radioimmunoassay procedures for determination of anti-acetylcholine receptor antibodies in the sera of patients with myasthenia gravis

    International Nuclear Information System (INIS)

    Carter, B.; Harrison, R.; Lunt, G.G.; Morris, H.; Savage-Marengo, T.; Stephenson, F.A.

    1981-01-01

    A reproducible radioimmunoassay procedure for the determination of anti-acetylcholine receptor antibodies in the sera of patients with myasthenia gravis is described and examined in detail. The assay combines features of a number of methods previously outlined and allows repeat determinations of antibody titre in a given myasthenic serum sample with coefficient of variation 6%. The mean +- standard deviation for normal human serum anti-acetylcholine receptor antibodies was found by this procedure to be 0.024 +- 0.033 nmol/l α-bungarotoxin binding sites whereas the range for myasthenic patients was 0-139.14 nmol/l with a mean value of 7.55 nmol/l α-bungarotoxin binding sites. (author)

  1. Radiotracers for per studies of neurotransmitter binding sites: Design considerations

    International Nuclear Information System (INIS)

    Kilbourn, M.R.

    1991-01-01

    Neurotransmitter binding sites, such as receptors, neuronal uptake systems, and vesicular uptake systems, are important targets for new radiopharmaceutical design. Selection of potential radioligands can be guided by in vitro laboratory data including such characteristics as selectivity and affinity for specific binding sites. However, development of PET radiotracers for use in vivo must include considerations of in vivo pharmacokinetics and metabolism. Introduction of potential radioligands is further narrowed by the demands of the radiochemical synthesis, which must produce radioligands of high chemical and radiochemical purity and of high specific activity. This paper will review examples of previous and current attempts by radiopharmaceutical chemists to meet these demands for new positron emitter-labeled radioligands for PET studies of a wide array of neurotransmitter binding sites

  2. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-C{beta} antibody

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jin, Aishun [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Immunology, College of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin 150081 (China); Kishi, Hiroyuki, E-mail: immkishi@med.u-toyama.ac.jp [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Muraguchi, Atsushi [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V

  3. Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Grum-Schwensen, Birgitte; Beck, Mette K

    2012-01-01

    microenvironment, making it an attractive target for anti-cancer therapy. In this study, we produced a function-blocking anti-S100A4 monoclonal antibody with metastasis-suppressing activity. Antibody treatment significantly reduced metastatic burden in the lungs of experimental animals by blocking the recruitment...... of T cells to the site of the primary tumor. In vitro studies demonstrated that this antibody efficiently reduced the invasion of T cells in a fibroblast monolayer. Moreover, it was capable of suppressing the invasive growth of human and mouse fibroblasts. We presume therefore that the antibody exerts...... its activity by suppressing stroma cell recruitment to the site of the growing tumor. Our epitope mapping studies suggested that the antibody recognition site overlaps with the target binding interface of human S100A4. We conclude here that this antibody could serve as a solid basis for development...

  4. Identification of epitopes within integrin β4 for binding of auto-antibodies in ocular cicatricial and mucous membrane pemphigoid: preliminary report.

    Science.gov (United States)

    Rashid, Khwaja Aftab; Foster, C Stephen; Ahmed, A Razzaque

    2013-11-19

    To identify the epitopes on human β4 integrin to which the sera of patients with ocular cicatricial pemphigoid (OCP) and mucous membrane pemphigoid (MMP) without ocular involvement bind. Fragments of the intracellular domain of the β4 molecule were cloned, expressed, purified and peptides were synthesized. Antibodies to various fragments and peptides were produced in rabbits. Binding specificity was determined via Western blot and blocking experiments. Test sera and controls were injected into neonatal BALB/c mice for in vivo passive transfer. Sera from patients with OCP, MMP, and both OCP and MMP were bound to cloned fragments of IC3.0. Its subcloned fragments IC3.4 (1489 aa-1572 aa) and IC3.4.1 (1489 aa-1510 aa) were bound with the sera from patients with OCP only. Subcloned fragments IC3.6 (1573 aa-1822 aa) and IC3.6.1 (1689 aa-1702 aa) were bound with MMP sera only. No cross-reactivity in binding was observed. Immuno-affinity-purified sera from patients with OCP, MMP, and rabbit antibodies to IC3.0, IC3.4, IC3.4.1, IC3.6, and IC3.6.1, when injected in neonatal BALB/c mice, produced subepidermal blisters in their skin. These preliminary observations identified IC3.4.1 as the possible epitope for the binding of OCP auto-antibody and IC3.6.1 as the possible epitope for the binding of MMP auto-antibody without ocular disease. Antibodies specific to these peptides produced blisters when injected in mice. Still-unidentified epitopes may exist. These observations may enhance our understanding of the role of β4 integrin in the pathobiology of OCP and MMP. Early diagnosis may be possible if serologic tests with specificity and sensitivity can be developed.

  5. Flow-cytometric determination of high-density-lipoprotein binding sites on human leukocytes

    International Nuclear Information System (INIS)

    Schmitz, G.; Wulf, G.; Bruening, T.A.; Assmann, G.

    1987-01-01

    In this method, leukocytes were isolated from 6 mL of EDTA-blood by density-gradient centrifugation and subsequently incubated with rhodamine isothiocyanate (RITC)-conjugated high-density lipoproteins (HDL). The receptor-bound conjugate particles were determined by fluorescent flow cytometry and compared with 125 I-labeled HDL binding data for the same cells. Human granulocytes express the highest number of HDL binding sites (9.4 x 10(4)/cell), followed by monocytes (7.3 x 10(4)/cell) and lymphocytes (4.0 x 10(4)/cell). Compared with conventional analysis of binding of 125 I-labeled HDL in tissue-culture dishes, the present determination revealed significantly lower values for nonspecific binding. In competition studies, the conjugate competes for the same binding sites as 125 I-labeled HDL. With the use of tetranitromethane-treated HDL3, which fails to compete for the HDL receptor sites while nonspecific binding is not affected, we could clearly distinguish between 37 degrees C surface binding and specific 37 degrees C uptake of RITC-HDL3, confirming that the HDL receptor leads bound HDL particles into an intracellular pathway rather than acting as a docking type of receptor. Patients with familial dysbetalipoproteinemia showed a significantly higher number of HDL binding sites in the granulocyte population but normal in lymphocytes and monocytes, indicating increased uptake of cholesterol-containing lipoproteins. In patients with familial hypercholesterolemia, HDL binding was increased in all three cell types, indicating increased cholesterol uptake and increased cholesterol synthesis. The present method allows rapid determination of HDL binding sites in leukocytes from patients with various forms of hyper- and dyslipoproteinemias

  6. Site-Selective Orientated Immobilization of Antibodies and Conjugates for Immunodiagnostics Development

    Science.gov (United States)

    Rusling, James

    2016-01-01

    Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay. PMID:27876681

  7. Distribution of [3H]diadenosine tetraphosphate binding sites in rat brain

    International Nuclear Information System (INIS)

    Miras-Portugal, M.T.; Palacios, J.M.; Torres, M.; Cortes, R.; Rodriguez-Pascual, F.

    1997-01-01

    The distribution of the diadenosine tetraphosphate high-affinity binding sites has been studied in rat brain by an autoradiographic method using [ 3 H]diadenosine tetraphosphate as the ligand. The binding characteristics are comparable to those described in studies performed on rat brain synaptosomes. White matter is devoid of specific binding. The range of binding site densities in gray matter varies from 3 to 15 fmol/mg of tissue, exhibiting a widespread but heterogeneous distribution. The highest densities correspond to the seventh cranial nerve, medial superior olive, pontine nuclei, glomerular and external plexiform layers of the olfactory bulb, and the granule cell layer of the cerebellar cortex. Intermediate density levels of binding correspond to different cortical areas, several nuclei of the amygdala, and the oriens and pyramidal layers of the hippocampal formation.The localization of diadenosine tetraphosphate binding sites in the brain may provide information on the places where diadenosine polyphosphate compounds can be expected to function in the central nervous system. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFβ1 antibody

    Science.gov (United States)

    Honey, Denise M.; Best, Annie; Qiu, Huawei

    2018-01-01

    ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938

  9. The antibody response of pregnant Cameroonian women to VAR2CSA ID1-ID2a, a small recombinant protein containing the CSA-binding site

    DEFF Research Database (Denmark)

    Babakhanyan, Anna; Leke, Rose G F; Salanti, Ali

    2014-01-01

    In pregnant women, Plasmodium falciparum-infected erythrocytes expressing the VAR2CSA antigen bind to chondroitin sulfate A in the placenta causing placental malaria. The binding site of VAR2CSA is present in the ID1-ID2a region. This study sought to determine if pregnant Cameroonian women natura...

  10. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Zachary A. Bornholdt

    2016-02-01

    Full Text Available The filovirus surface glycoprotein (GP mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics.

  11. Predicting Flavin and Nicotinamide Adenine Dinucleotide-Binding Sites in Proteins Using the Fragment Transformation Method

    Directory of Open Access Journals (Sweden)

    Chih-Hao Lu

    2015-01-01

    Full Text Available We developed a computational method to identify NAD- and FAD-binding sites in proteins. First, we extracted from the Protein Data Bank structures of proteins that bind to at least one of these ligands. NAD-/FAD-binding residue templates were then constructed by identifying binding residues through the ligand-binding database BioLiP. The fragment transformation method was used to identify structures within query proteins that resembled the ligand-binding templates. By comparing residue types and their relative spatial positions, potential binding sites were identified and a ligand-binding potential for each residue was calculated. Setting the false positive rate at 5%, our method predicted NAD- and FAD-binding sites at true positive rates of 67.1% and 68.4%, respectively. Our method provides excellent results for identifying FAD- and NAD-binding sites in proteins, and the most important is that the requirement of conservation of residue types and local structures in the FAD- and NAD-binding sites can be verified.

  12. Quantitative autoradiography of [3H]ouabain binding sites in rat brain

    International Nuclear Information System (INIS)

    Spyropoulos, A.C.; Rainbow, T.C.

    1984-01-01

    In vitro quantitative autoradiography was used to localize in rat brain binding sites for [ 3 H]ouabain, an inhibitor of the Na + ,K + -ATPase. High levels of [ 3 H]ouabain sites were found in the superior and inferior colliculi, the mammillary nucleus, the interpeduncular nucleus, and in various divisions of the olfactory, auditory and somatomotor systems. The heterogeneous distribution of [ 3 H]ouabain binding closely parallels the regional brain glucose consumption as determined by the [ 14 C]deoxyglucose method. Lesion studies of the rat hippocampus using the excitotoxin, ibotenic acid, showed both a marked decrease of neuronal cell types on the injected side and a corresponding decrease in [ 3 H]ouabain binding, indicating that some of the [ 3 H]ouabain binding sites are localized to neurons. The close correlation between [ 3 H]ouabain binding and regional glucose utilization provides further evidence for a linkage between glucose utilization and the neuronal Na + ,K + -ATPase. (Auth.)

  13. Crystal structure of snake venom acetylcholinesterase in complex with inhibitory antibody fragment Fab410 bound at the peripheral site: evidence for open and closed states of a back door channel.

    Science.gov (United States)

    Bourne, Yves; Renault, Ludovic; Marchot, Pascale

    2015-01-16

    The acetylcholinesterase found in the venom of Bungarus fasciatus (BfAChE) is produced as a soluble, non-amphiphilic monomer with a canonical catalytic domain but a distinct C terminus compared with the other vertebrate enzymes. Moreover, the peripheral anionic site of BfAChE, a surface site located at the active site gorge entrance, bears two substitutions altering sensitivity to cationic inhibitors. Antibody Elec410, generated against Electrophorus electricus acetylcholinesterase (EeAChE), inhibits EeAChE and BfAChE by binding to their peripheral sites. However, both complexes retain significant residual catalytic activity, suggesting incomplete gorge occlusion by bound antibody and/or high frequency back door opening. To explore a novel acetylcholinesterase species, ascertain the molecular bases of inhibition by Elec410, and document the determinants and mechanisms for back door opening, we solved a 2.7-Å resolution crystal structure of natural BfAChE in complex with antibody fragment Fab410. Crystalline BfAChE forms the canonical dimer found in all acetylcholinesterase structures. Equally represented open and closed states of a back door channel, associated with alternate positions of a tyrosine phenol ring at the active site base, coexist in each subunit. At the BfAChE molecular surface, Fab410 is seated on the long Ω-loop between two N-glycan chains and partially occludes the gorge entrance, a position that fully reflects the available mutagenesis and biochemical data. Experimentally based flexible molecular docking supports a similar Fab410 binding mode onto the EeAChE antigen. These data document the molecular and dynamic peculiarities of BfAChE with high frequency back door opening, and the mode of action of Elec410 as one of the largest peptidic inhibitors targeting the acetylcholinesterase peripheral site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. [Adenylate cyclase from rabbit heart: substrate binding site].

    Science.gov (United States)

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  15. Binding of C-reactive protein to human polymorphonuclear leukocytes: evidence for association of binding sites with Fc receptors

    International Nuclear Information System (INIS)

    Mueller, H.; Fehr, J.

    1986-01-01

    The functional similarities between C-reactive protein (CRP) and IgG raised the question as to whether human phagocytes are stimulated by CRP in the same way as by binding of antigen-complexes or aggregated IgG to their Fc receptors. Studies with the use of highly purified 125 I-labeled CRP showed specific and saturable binding to human polymorphonuclear leukocytes (PNM) with a K/sub D/ of 10.5 +/- 5.7 x 10 -8 M only when carried out in heat-inactivated plasma. The number of specific binding sites per cell was estimated at 1 to 3 x 10 6 . Competitive inhibition of CRP binding by antigen-complexed or aggregated IgG suggests CRP binding sites to be associated IgG suggests CRP binding sites to be associated with PMN Fc receptors. Only when assayed in heat-inactivated plasma did CRP binding induce adherence of cells to tissue culture dishes. However, no metabolic and potentially cytotoxic simulation of PMN was detected during CRP plasma-dependent attachment to surfaces: induction of aggregation, release of secondary granule constituents, and activation of the hexose monophosphate pathway were not observed. These results imply that CRP-PMN interactions is dependent on an additional factor present in heat-inactivated plasma and is followed only by a complement-independent increase in PMN attachment to surfaces. Because CRP was found to be deposits at sites of tissue injury, the CRP-mediated adherence of PMN may be an important step in localizing an inflammatory focus

  16. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants.

    Science.gov (United States)

    Hehle, Verena K; Lombardi, Raffaele; van Dolleweerd, Craig J; Paul, Mathew J; Di Micco, Patrizio; Morea, Veronica; Benvenuto, Eugenio; Donini, Marcello; Ma, Julian K-C

    2015-02-01

    Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Characterization of [3H] oxymorphone binding sites in mouse brain

    DEFF Research Database (Denmark)

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza

    2017-01-01

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear....... This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [3H]oxymorphone revealed high affinity binding sites in mouse......]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [3H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP...

  18. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-01-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining [ 3 H]nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure [ 3 H]nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-[ 3 H]nicotine-binding characteristics

  19. Characteristics Studies of 125I- and total PSA antibody's Binding with prostate specific antigen (PSA) in Human Uterus Tumors

    International Nuclear Information System (INIS)

    Al-Mudaffar, S.; Al-Salihi, J.

    2005-01-01

    Two groups of uterus tumors (benign and malignant) postmenopausal patients were used to investigate the presence of prostate specific antigen (PSA). Preliminary experiments were performed to follow the binding of '1 25 I-anti total PSA antibody with PSA in uterus tissues homogenates of the two groups with their corresponding antigen and found to be (8.8,7.1%) for benign and malignant tumors, respectively. An Immuno Radio Metric Assay (IRMA) procedure was developed for measuring PSA in benign and malignant uterus tumors homogenates. The optimum conditions of the binding of 125 I-anti total PSA antibody with PSA were as follows: PSA concentration (150,200 μg protein),tracer antibody concentration (125,250 μg protein), p H (7.6,7.2), temp (15,25?C) and time (1.5 hrs) for postmenopausal benign and malignant uterus tumors tissue homogenates, respectively. The use of different concentrations of Na + and Mg 2+ ions were shown to cause an increase in the binding at concentration of (125,75 mΜ) of Na 1+ ions (75,225 mΜ) of Mg 2+ ions for benign and malignant uterus tumors homogenates, respectively, while the use of different concentrations of urea and polyethylene glycol (PEG) Caused a decrease in the binding with the increase in the concentration of each of urea and PEG in the both cases

  20. Nonequivalence of alpha-bungarotoxin binding sites in the native nicotinic receptor molecule

    International Nuclear Information System (INIS)

    Conti-Tronconi, B.M.; Tang, F.; Walgrave, S.; Gallagher, W.

    1990-01-01

    In the native, membrane-bound form of the nicotinic acetylcholine receptor (M-AcChR) the two sites for the cholinergic antagonist alpha-bungarotoxin (alpha-BGT) have different binding properties. One site has high affinity, and the M-AcChR/alpha-BGT complexes thus formed dissociate very slowly, similar to the complexes formed with detergent-solubilized AcChR (S-AcChR). The second site has much lower affinity (KD approximately 59 +/- 35 nM) and forms quickly reversible complexes. The nondenaturing detergent Triton X-100 is known to solubilize the AcChR in a form unable, upon binding of cholinergic ligands, to open the ion channel and to become desensitized. Solubilization of the AcChR in Triton X-100 affects the binding properties of this second site and converts it to a high-affinity, slowly reversible site. Prolonged incubation of M-AcChR at 4 degrees C converts the low-affinity site to a high-affinity site similar to those observed in the presence of Triton X-100. Although the two sites have similar properties when the AcChR is solubilized in Triton X-100, their nonequivalence can be demonstrated by the effect on alpha-BGT binding of concanavalin A, which strongly reduces the association rate of one site only. The Bmax of alpha-BGT to either Triton-solubilized AcChR or M-AcChR is not affected by the presence of concanavalin A. Occupancy of the high-affinity, slowly reversible site in M-AcChR inhibits the Triton X-100 induced conversion to irreversibility of the second site. At difference with alpha-BGT, the long alpha-neurotoxin from Naja naja siamensis venom (alpha-NTX) binds with high affinity and in a very slowly reversible fashion to two sites in the M-AcChR. We confirm here that Triton-solubilized AcChR or M-AcChR binds in a very slowly reversible fashion the same amount of alpha-NTX

  1. Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies

    OpenAIRE

    Davidson, Edgar; Bryan, Christopher; Fong, Rachel H.; Barnes, Trevor; Pfaff, Jennifer M.; Mabila, Manu; Rucker, Joseph B.; Doranz, Benjamin J.

    2015-01-01

    Cocktails of monoclonal antibodies (MAbs) that target the surface glycoprotein (GP) of Ebola virus (EBOV) are effective in nonhuman primate models and have been used under emergency compassionate-treatment protocols in human patients. However, the amino acids that form the detailed binding epitopes for the MAbs in the ZMapp, ZMAb, and the related MB-003 cocktails have yet to be identified. Other binding properties that define how each MAb functionally interacts with GP—such as affinity, epito...

  2. Attachment Site Cysteine Thiol pKa Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody-Drug Conjugates.

    Science.gov (United States)

    Vollmar, Breanna S; Wei, Binqing; Ohri, Rachana; Zhou, Jianhui; He, Jintang; Yu, Shang-Fan; Leipold, Douglas; Cosino, Ely; Yee, Sharon; Fourie-O'Donohue, Aimee; Li, Guangmin; Phillips, Gail L; Kozak, Katherine R; Kamath, Amrita; Xu, Keyang; Lee, Genee; Lazar, Greg A; Erickson, Hans K

    2017-10-18

    The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pK a . We measured the cysteine thiol pK a using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pK a (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pK a and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pK a of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pK a . The influence of cysteine thiol pK a on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.

  3. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Amaro, Itzel; Ortíz, Ernesto; Becerril, Baltazar; Ibarra, Jorge E; Bravo, Alejandra; Soberón, Mario

    2015-04-01

    Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior*

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki

    2016-01-01

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  6. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  7. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    Science.gov (United States)

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  8. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  9. Probing the stereoselective interaction of ofloxacin enantiomers with corresponding monoclonal antibodies by multiple spectrometry

    Science.gov (United States)

    Mu, Hongtao; Xu, Zhenlin; Liu, Yingju; Sun, Yuanming; Wang, Baoling; Sun, Xiulan; Wang, Zhanhui; Eremin, Sergei; Zherdev, Anatoly V.; Dzantiev, Boris B.; Lei, Hongtao

    2018-04-01

    Although stereoselective antibody has immense potential in chiral compounds detection and separation, the interaction traits between stereoselective antibody and the corresponding antigenic enantiomers are not yet fully exploited. In this study, the stereospecific interactions between ofloxacin isomers and corresponding monoclonal antibodies (McAb-WR1 and McAb-MS1) were investigated using time-resolved fluorescence, steady-state fluorescence, and circular dichroism (CD) spectroscopic methods. The chiral recognition discrepancies of antibodies with ofloxacin isomers were reflected through binding constant, number of binding sites, driving forces and conformational changes. The major interacting forces of McAb-WR1 and McAb-MS1 chiral interaction systems were hydrophobic force and van der Waals forces joined up with hydrogen bonds, respectively. Synchronous fluorescence spectra and CD spectra results showed that the disturbing of tyrosine and tryptophan micro-environments were so slightly that no obvious secondary structure changes were found during the chiral hapten binding. Clarification of stereospecific interaction of antibody will facilitate the application of immunoassay to analyze chiral contaminants in food and other areas.

  10. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    Science.gov (United States)

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25.

    Science.gov (United States)

    Scally, Stephen W; McLeod, Brandon; Bosch, Alexandre; Miura, Kazutoyo; Liang, Qi; Carroll, Sean; Reponen, Sini; Nguyen, Ngan; Giladi, Eldar; Rämisch, Sebastian; Yusibov, Vidadi; Bradley, Allan; Lemiale, Franck; Schief, William R; Emerling, Daniel; Kellam, Paul; King, C Richter; Julien, Jean-Philippe

    2017-11-16

    The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens.

  12. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.

    Science.gov (United States)

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J

    2011-04-27

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.

  13. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    International Nuclear Information System (INIS)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-01-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125 I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells

  14. Identification of an allosteric binding site for RORγt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Scheepstra, Marcel; Leysen, Seppe; vanAlmen, Geert C.; Miller, J. Richard; Piesvaux, Jennifer; Kutilek, Victoria; van Eenennaam, Hans; Zhang, Hongjun; Barr, Kenneth; Nagpal, Sunil; Soisson, Stephen M.; Kornienko, Maria; Wiley, Kristen; Elsen, Nathaniel; Sharma, Sujata; Correll, Craig C.; Trotter, B. Wesley; van der Stelt, Mario; Oubrie, Arthur; Ottmann, Christian; Parthasarathy, Gopal; Brunsveld, Luc (Merck); (Eindhoven)

    2015-12-07

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.

  15. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  16. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    Science.gov (United States)

    Horton, R W; Lowther, S; Chivers, J; Jenner, P; Marsden, C D; Testa, B

    1988-08-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites. 8. Clebopride and Delagrange 2674 are structurally dissimilar to other BDZ ligands and represent another chemical structure to probe brain BDZ binding sites.

  17. Generation of HER2 monoclonal antibodies using epitopes of a rabbit polyclonal antibody.

    Science.gov (United States)

    Hu, Francis Jingxin; Uhlen, Mathias; Rockberg, Johan

    2014-01-25

    One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    Science.gov (United States)

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cooperative binding of anti-tetanus toxin monoclonal antibodies: Implications for designing an efficient biclonal preparation to prevent tetanus toxin intoxication.

    Science.gov (United States)

    Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Marinkovic, Emilija; Miljkovic, Radmila; Stojanovic, Marijana

    2018-05-15

    Oligoclonal combinations of several monoclonal antibodies (MAbs) are being considered for the treatment of various infectious pathologies. These combinations are less sensitive to antigen structural changes than individual MAbs; at the same time, their characteristics can be more efficiently controlled than those of polyclonal antibodies. The main goal of this study was to evaluate the binding characteristics of six biclonal equimolar preparations (BEP) of tetanus toxin (TeNT)-specific MAbs and to investigate how the MAb combination influences the BEPs' protective capacity. We show that a combination of TeNT-specific MAbs, which not only bind TeNT but also exert positive cooperative effects, results in a BEP with superior binding characteristics and protective capacity, when compared with the individual component MAbs. Furthermore, we show that a MAb with only partial protective capacity but positive effects on the binding of the other BEP component can be used as a valuable constituent of the BEP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  1. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Dimiter S. Dimitrov

    2009-11-01

    Full Text Available Several human monoclonal antibodies (hmAbs and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i antibodies in HIV-1-infected patients (X5 is a CD4i antibody as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and

  2. Targeted Delivery of LXR Agonist Using a Site-Specific Antibody-Drug Conjugate.

    Science.gov (United States)

    Lim, Reyna K V; Yu, Shan; Cheng, Bo; Li, Sijia; Kim, Nam-Jung; Cao, Yu; Chi, Victor; Kim, Ji Young; Chatterjee, Arnab K; Schultz, Peter G; Tremblay, Matthew S; Kazane, Stephanie A

    2015-11-18

    Liver X receptor (LXR) agonists have been explored as potential treatments for atherosclerosis and other diseases based on their ability to induce reverse cholesterol transport and suppress inflammation. However, this therapeutic potential has been hindered by on-target adverse effects in the liver mediated by excessive lipogenesis. Herein, we report a novel site-specific antibody-drug conjugate (ADC) that selectively delivers a LXR agonist to monocytes/macrophages while sparing hepatocytes. The unnatural amino acid para-acetylphenylalanine (pAcF) was site-specifically incorporated into anti-CD11a IgG, which binds the α-chain component of the lymphocyte function-associated antigen 1 (LFA-1) expressed on nearly all monocytes and macrophages. An aminooxy-modified LXR agonist was conjugated to anti-CD11a IgG through a stable, cathepsin B cleavable oxime linkage to afford a chemically defined ADC. The anti-CD11a IgG-LXR agonist ADC induced LXR activation specifically in human THP-1 monocyte/macrophage cells in vitro (EC50-27 nM), but had no significant effect in hepatocytes, indicating that payload delivery is CD11a-mediated. Moreover, the ADC exhibited higher-fold activation compared to a conventional synthetic LXR agonist T0901317 (Tularik) (3-fold). This novel ADC represents a fundamentally different strategy that uses tissue targeting to overcome the limitations of LXR agonists for potential use in treating atherosclerosis.

  3. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel

    DEFF Research Database (Denmark)

    Long, Katherine S; Porse, Bo T

    2003-01-01

    , of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site...... on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome....

  4. Well-oriented ZZ–PS-tag with high Fc-binding onto polystyrene surface for controlled immobilization of capture antibodies

    International Nuclear Information System (INIS)

    Tang, Jin-Bao; Sun, Xi-Feng; Yang, Hong-Ming; Zhang, Bao-Gang; Li, Zhi-Jian; Lin, Zhi-Juan; Gao, Zhi-Qin

    2013-01-01

    Graphical abstract: -- Highlights: •A versatile platform for immobilizing functionally intact IgG is proposed. •The mechanism relies on properly oriented ZZ–PS-tag onto a hydrophilic PS surface. •The oriented ZZ–PS-tag presents ∼fivefold higher IgG-binding activity. •The platform shows tenfold higher sensitivity and a wider linear range in ELISA. -- Abstract: The site specificity and bioactivity retention of antibodies immobilized on a solid substrate are crucial requirements for solid phase immunoassays. A fusion protein between an immunoglobulin G (IgG)-binding protein (ZZ protein) and a polystyrene-binding peptide (PS-tag) was constructed, and then used to develop a simple method for the oriented immobilization of the ZZ protein onto a PS support by the specific attachment of the PS-tag onto a hydrophilic PS. The orientation of intact IgG was achieved via the interaction of the ZZ protein and the constant fragment (Fc), thereby displayed the Fab fragment for binding antigen. The interaction between rabbit IgG anti-horseradish peroxidase (anti-HRP) and its binding partner HRP was analyzed. Results showed that the oriented ZZ–PS-tag yielded an IgG-binding activity that is fivefold higher than that produced by the passive immobilization of the ZZ protein. The advantage of the proposed immunoassay strategy was demonstrated through an enzyme-linked immunosorbent assay, in which monoclonal mouse anti-goat IgG and HRP-conjugated rabbit F(ab′) 2 anti-goat IgG were used to detect goat IgG. The ZZ–PS-tag presented a tenfold higher sensitivity and a wider linear range than did the passively immobilized ZZ protein. The proposed approach may be an attractive strategy for a broad range of applications involving the oriented immobilization of intact IgGs onto PS supports, in which only one type of phi-PS (ZZ–PS-tag) surface is used

  5. Well-oriented ZZ–PS-tag with high Fc-binding onto polystyrene surface for controlled immobilization of capture antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jin-Bao, E-mail: tangjinbao@yahoo.com.cn [School of Pharmacy and Biology, Weifang Medical University, Weifang 261053 (China); Sun, Xi-Feng [Clinical Laboratory, Weifang People' s Hospital, Weifang 261041 (China); Yang, Hong-Ming [School of Pharmacy and Biology, Weifang Medical University, Weifang 261053 (China); Zhang, Bao-Gang [School of Basic Medicine, Weifang Medical University, Weifang 261053 (China); Li, Zhi-Jian [School of Pharmacy and Biology, Weifang Medical University, Weifang 261053 (China); Lin, Zhi-Juan [School of Basic Medicine, Weifang Medical University, Weifang 261053 (China); Gao, Zhi-Qin, E-mail: zhiqingao@yahoo.cn [School of Pharmacy and Biology, Weifang Medical University, Weifang 261053 (China)

    2013-05-07

    Graphical abstract: -- Highlights: •A versatile platform for immobilizing functionally intact IgG is proposed. •The mechanism relies on properly oriented ZZ–PS-tag onto a hydrophilic PS surface. •The oriented ZZ–PS-tag presents ∼fivefold higher IgG-binding activity. •The platform shows tenfold higher sensitivity and a wider linear range in ELISA. -- Abstract: The site specificity and bioactivity retention of antibodies immobilized on a solid substrate are crucial requirements for solid phase immunoassays. A fusion protein between an immunoglobulin G (IgG)-binding protein (ZZ protein) and a polystyrene-binding peptide (PS-tag) was constructed, and then used to develop a simple method for the oriented immobilization of the ZZ protein onto a PS support by the specific attachment of the PS-tag onto a hydrophilic PS. The orientation of intact IgG was achieved via the interaction of the ZZ protein and the constant fragment (Fc), thereby displayed the Fab fragment for binding antigen. The interaction between rabbit IgG anti-horseradish peroxidase (anti-HRP) and its binding partner HRP was analyzed. Results showed that the oriented ZZ–PS-tag yielded an IgG-binding activity that is fivefold higher than that produced by the passive immobilization of the ZZ protein. The advantage of the proposed immunoassay strategy was demonstrated through an enzyme-linked immunosorbent assay, in which monoclonal mouse anti-goat IgG and HRP-conjugated rabbit F(ab′){sub 2} anti-goat IgG were used to detect goat IgG. The ZZ–PS-tag presented a tenfold higher sensitivity and a wider linear range than did the passively immobilized ZZ protein. The proposed approach may be an attractive strategy for a broad range of applications involving the oriented immobilization of intact IgGs onto PS supports, in which only one type of phi-PS (ZZ–PS-tag) surface is used.

  6. Monoclonal antibodies to human chorionic gonadotropin and their application to two-site sandwich radioimmunoassay

    International Nuclear Information System (INIS)

    Mizuchi, A.; Iio, M.; Miyachi, Y.

    1984-01-01

    Monoclonal antibodies were prepared against human chorionic gonadotropin (HCG). One monoclonal antibody recognized a conformational determinant expressed only on native HCG molecule and another monoclonal antibody had the specificity for the epitopes located on the β-subunit of HCG. Monoclonal antibodies reacting with different antigenic determinants on the HCG molecule were used to develop a simplified 2-site sandwich radioimmunoassay in which one monoclonal antibody was immobilized and another labeled with 125 iodine. This assay was highly specific for HCG and there was no cross-reactivity with α,β-subunit of HCG, luteinizing hormone and follicle stimulating hormone. (Auth.)

  7. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    Science.gov (United States)

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  8. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission

    DEFF Research Database (Denmark)

    Maric, Hans Michael; Hausrat, Torben Johann; Neubert, Franziska

    2017-01-01

    is associated with perturbation of the basic physiological action. Here we pursue a fundamentally different approach, by instead targeting the intracellular receptor-gephyrin interaction. First, we defined the gephyrin peptide-binding consensus sequence, which facilitated the development of gephyrin super......-binding peptides and later effective affinity probes for the isolation of native gephyrin. Next, we demonstrated that fluorescent super-binding peptides could be used to directly visualize inhibitory postsynaptic sites for the first time in conventional and super-resolution microscopy. Finally, we demonstrate...

  9. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures.

    Science.gov (United States)

    Parca, Luca; Ferré, Fabrizio; Ausiello, Gabriele; Helmer-Citterich, Manuela

    2013-07-01

    Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.

  10. Application of murine monoclonal antibodies to the serodiagnosis of tuberculosis

    International Nuclear Information System (INIS)

    Ivanyl, J.; Coates, A.R.M.; Krambovitis, E.

    1982-01-01

    The immune response during infectious diseases leads to a rise in antibody titre to the various different antigenic determinants of the causative organism. The response is further complicated by the fact that it is relatively unusual for one individual to respond to all antigenic components of an organism. Demonstration of the specific immune response of an infected host by serological tests is often hampered by the broad cross-reactivity between several bacterial antigens. The authors report on a serodiagnostic application of murine monoclonal antibodies (MAB), specific for a human pathogen, M. tuberculosis by a technique which is applicable in principle to the serodiagnosis of many other infectious diseases. The serum diagnostic test is based on the competitive inhibition by human sera of the binding of 125 I-labelled murine monoclonal antibodies to M. tuberculosis-coated polyvinyl plates. Five monoclonal antibodies binding to distinct antigenic determinants of the organism were used as structural probes which conferred their stringent combining site specificities to the polyclonal mixture of antibodies from patients' sera. When compared with healthy controls, increased titres of inhibitory antibodies were found in about 70% of patients with active tuberculosis. The diagnostic value of the individual monoclonal antibodies as well as the benefit from the use of multiple specificity probes has been qualified

  11. A Rational Engineering Strategy for Designing Protein A-Binding Camelid Single-Domain Antibodies

    Science.gov (United States)

    Henry, Kevin A.; Sulea, Traian; van Faassen, Henk; Hussack, Greg; Purisima, Enrico O.; MacKenzie, C. Roger; Arbabi-Ghahroudi, Mehdi

    2016-01-01

    Staphylococcal protein A (SpA) and streptococcal protein G (SpG) affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs) in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs) are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species. PMID:27631624

  12. Binding of antibodies to dsDNA by UVB-irradiated spermatozoa in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wollina, U; Schaarschmidt, H; Thiel, W; Knopf, B

    1986-08-01

    Human spermatozoa were exposed to monochromatic UVB light (300 nm) at a dosage range from 1-10/sup 3/ J/m/sup 2/ (xenon-mercury short-arc lamp) and 10/sup -2/-10/sup -1/ J/m/sup 2/ (xenon lamp). UVB irradiation >= 10 J/m/sup 2/ resulted in a subsequent binding of antibodies to double-stranded (ds) DNA. A strong homogeneous head fluorescence was visible. There was no immunoglobulin class restriction. The results were discussed in regards to lupus antigen expression by UV light.

  13. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Amy L Bauer

    2010-11-01

    Full Text Available An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF. Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  14. Distribution of [{sup 3}H]diadenosine tetraphosphate binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Miras-Portugal, M.T. [Departamento de Bioquimica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain); Palacios, J.M. [Laboratorios Almirall, Research Center, Cardener 68, 08024 Barcelona (Spain); Torres, M. [Departamento de Bioquimica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain); Cortes, R. [Departamento de Neuroquimica, Centro de Investigacion y Desarrollo, CSIC Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Pascual, F. [Departamento de Bioquimica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain)

    1997-01-06

    The distribution of the diadenosine tetraphosphate high-affinity binding sites has been studied in rat brain by an autoradiographic method using [{sup 3}H]diadenosine tetraphosphate as the ligand. The binding characteristics are comparable to those described in studies performed on rat brain synaptosomes. White matter is devoid of specific binding. The range of binding site densities in gray matter varies from 3 to 15 fmol/mg of tissue, exhibiting a widespread but heterogeneous distribution. The highest densities correspond to the seventh cranial nerve, medial superior olive, pontine nuclei, glomerular and external plexiform layers of the olfactory bulb, and the granule cell layer of the cerebellar cortex. Intermediate density levels of binding correspond to different cortical areas, several nuclei of the amygdala, and the oriens and pyramidal layers of the hippocampal formation.The localization of diadenosine tetraphosphate binding sites in the brain may provide information on the places where diadenosine polyphosphate compounds can be expected to function in the central nervous system. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. 125I-Clq-binding and specific antibodies as indicators of pulmonary disease activity in cystic fibrosis

    International Nuclear Information System (INIS)

    Moss, R.B.; Hsu, Y.P.; Lewiston, N.J.

    1981-01-01

    We studied the incidence and levels of circulating immune complexes by the 125 I-Clq-binding assay in patients with cystic fibrosis in relation to clinical respiratory status and specific IgG and IgE antibodies to Pseudomonas aeruginosa. Staphylococcus aureus, Aspergillus fumigatus, and Candida albicans. Overall prevalence of CIC was 43%, but 86% of serially studied patients had evidence of CIC at some time. Patients with acute respiratory exacerbations and deteriorating pulmonary function had a higher incidence of CIC (76%) as compared to stable patients (36%, P less than 0.01), as well as significantly higher levels of CIC. Acute exacerbations were also associated with significant increases in IgG antibody to Pseudomonas (P less than 0.005) but not in other antibodies. CIC did not correlate with Pseudomonas-specific IgG nor with any other specific antibody studied. A variety of age-related differences in specific antibody levels were seen. The episodic appearance of CIC is common in CF and is usually associated with exacerbation of lung disease

  16. Bispecific small molecule-antibody conjugate targeting prostate cancer.

    Science.gov (United States)

    Kim, Chan Hyuk; Axup, Jun Y; Lawson, Brian R; Yun, Hwayoung; Tardif, Virginie; Choi, Sei Hyun; Zhou, Quan; Dubrovska, Anna; Biroc, Sandra L; Marsden, Robin; Pinstaff, Jason; Smider, Vaughn V; Schultz, Peter G

    2013-10-29

    Bispecific antibodies, which simultaneously target CD3 on T cells and tumor-associated antigens to recruit cytotoxic T cells to cancer cells, are a promising new approach to the treatment of hormone-refractory prostate cancer. Here we report a site-specific, semisynthetic method for the production of bispecific antibody-like therapeutics in which a derivative of the prostate-specific membrane antigen-binding small molecule DUPA was selectively conjugated to a mutant αCD3 Fab containing the unnatural amino acid, p-acetylphenylalanine, at a defined site. Homogeneous conjugates were generated in excellent yields and had good solubility. The efficacy of the conjugate was optimized by modifying the linker structure, relative binding orientation, and stoichiometry of the ligand. The optimized conjugate showed potent and selective in vitro activity (EC50 ~ 100 pM), good serum half-life, and potent in vivo activity in prophylactic and treatment xenograft mouse models. This semisynthetic approach is likely to be applicable to the generation of additional bispecific agents using drug-like ligands selective for other cell-surface receptors.

  17. Bispecific small molecule–antibody conjugate targeting prostate cancer

    Science.gov (United States)

    Kim, Chan Hyuk; Axup, Jun Y.; Lawson, Brian R.; Yun, Hwayoung; Tardif, Virginie; Choi, Sei Hyun; Zhou, Quan; Dubrovska, Anna; Biroc, Sandra L.; Marsden, Robin; Pinstaff, Jason; Smider, Vaughn V.; Schultz, Peter G.

    2013-01-01

    Bispecific antibodies, which simultaneously target CD3 on T cells and tumor-associated antigens to recruit cytotoxic T cells to cancer cells, are a promising new approach to the treatment of hormone-refractory prostate cancer. Here we report a site-specific, semisynthetic method for the production of bispecific antibody-like therapeutics in which a derivative of the prostate-specific membrane antigen-binding small molecule DUPA was selectively conjugated to a mutant αCD3 Fab containing the unnatural amino acid, p-acetylphenylalanine, at a defined site. Homogeneous conjugates were generated in excellent yields and had good solubility. The efficacy of the conjugate was optimized by modifying the linker structure, relative binding orientation, and stoichiometry of the ligand. The optimized conjugate showed potent and selective in vitro activity (EC50 ∼100 pM), good serum half-life, and potent in vivo activity in prophylactic and treatment xenograft mouse models. This semisynthetic approach is likely to be applicable to the generation of additional bispecific agents using drug-like ligands selective for other cell-surface receptors. PMID:24127589

  18. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor

    Directory of Open Access Journals (Sweden)

    Kala Mrinalini

    2005-12-01

    . Conclusion The results demonstrate the biochemical modulation of scFv binding. Also, the scFvs bound to the active site and denied the access to the substrate. The selection strategy could generate specific anti-enzyme antibodies to PLAP that can potentially be used for targeting, for modulating enzyme activity in in vitro and in vivo and as probes for the active site. This strategy also has a general application in selecting antibodies from combinatorial libraries to closely related molecules and conformations.

  19. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system

    International Nuclear Information System (INIS)

    Greenamyre, J.T.; Young, A.B.; Penney, J.B.

    1984-01-01

    Quantitative autoradiography was used to determine the distribution of L-[3H]glutamate-binding sites in the rat central nervous system. Autoradiography was carried out in the presence of Cl- and Ca2+ ions. Scatchard plots and Hill coefficients of glutamate binding suggested that glutamate was interacting with a single population of sites having a K-D of about 300 nM and a capacity of 14.5 pmol/mg of protein. In displacement studies, ibotenate also appeared to bind to a single class of non-interacting sites with a KI of 28 microM. However, quisqualate displacement of [3H]glutamate binding revealed two well-resolved sites with KIS of 12 nM and 114 microM in striatum. These sites were unevenly distributed, representing different proportions of specific glutamate binding in different brain regions. The distribution of glutamate-binding sites correlated very well with the projection areas of putative glutamatergic pathways. This technique provides an extremely sensitive assay which can be used to gather detailed pharmacological and anatomical information about L-[3H]glutamate binding in the central nervous system

  20. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat

    International Nuclear Information System (INIS)

    Lopez-Gonzalez, M.A.; Calvo, J.R.; Rubio, A.; Goberna, R.; Guerrero, J.M.

    1991-01-01

    The characterization of specific melatonin binding sites in the Harderian gland (HG) and median eminence (ME) of the rat was studied using [ 125 I]melatonin. Binding of melatonin to membrane crude preparations of both tissues was dependent on time and temperature. Thus, maximal binding was obtained at 37 degree C after 30-60 min incubation. Binding was also dependent on protein concentration. The specific binding of [ 125 I]melatonin was saturable, exhibiting only the class of binding sites in both tissues. The dissociation constants (Kd) were 170 and 190 pM for ME and HG, respectively. The concentration of the binding sites in ME was 8 fmol/mg protein, and in the HG 4 fmol/mg protein. In competition studies, binding of [ 125 I]melatonin to ME or HG was inhibited by increasing concentration of native melatonin; 50% inhibition was observed at about 702 and 422 nM for ME and HG, respectively. Additionally, the [ 125 I]melatonin binding to the crude membranes was not affected by the addition of different drugs such as norepinephrine, isoproterenol, phenylephrine, propranolol, or prazosin. The results confirm the presence of melatonin binding sites in median eminence and show, for the first time, the existence of melatonin binding sites in the Harderian gland

  1. A murine monoclonal anti-idiotypic antibody detects a common idiotope on human, mouse and rabbit antibodies to allergen Lol p IV.

    Science.gov (United States)

    Zhou, E M; Dzuba-Fischer, J M; Rector, E S; Sehon, A H; Kisil, F T

    1991-09-01

    A syngeneic mouse monoclonal anti-idiotypic antibody (anti-Id), designated as B1/1, was generated against a monoclonal antibody (MoAb 91) specific for Ryegrass pollen allergen Lol p IV. This anti-Id recognized an idiotope (Id) that was also present on other monoclonal antibodies with the same specificity as MoAb 91. Observations that (i) the anti-Id inhibited the binding of MoAb 91 to Lol p IV and (ii) the Id-anti-Id interaction could be inhibited by Lol p IV indicated that the Id was located within or near the antigen combining site. These properties served to characterize B1/1 as an internal image anti-Id. Evidence that an immune response in different species to Lol p IV elicits the formation of antibodies which express a common Id was provided by the observations that (i) the Id-anti-Id interactions could be inhibited by mouse, human and rabbit antisera to Lol p IV and (ii) the binding of these antisera to Lol p IV could be inhibited by the anti-Id. Interestingly, the internal image anti-Id B1/1 also recognized an Id on a monoclonal antibody which was directed to an epitope of Lol p IV, different from that recognized by MoAb 91.

  2. Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography

    International Nuclear Information System (INIS)

    Gillberg, P.-G.; Aquilonius, S.-M.

    1985-01-01

    Binding sites for the receptor ligands 3 H-quinuclidinylbenzilate, 3 H-alpha-bungarotoxin ( 3 H-alpha-Btx), 3 H-etorphine and 3 H-strychnine were localized autoradiographically at cervical, thoracic and lumbar levels of spinal cords from post-mortem human control subjects and subjects with amyotrophic lateral sclerosis (ALS). The highest densities of muscarinic binding sites were found in the motor neuron areas and in the substantia gelatinosa, while the grey matter binding was very low within Clarke's column. Both 3 H-alpha-Btx and opioid receptor binding sites were numerous within the substantia gelatinosa, while glycine receptor binding sites were more uniformly distribute within the spinal grey matter. In ALS cases, muscarinic receptor binding sites were markedly reduced in motor neuron areas and slightly reduced in the dorsal horn, while the other binding sites studied were relatively unchanged. (author)

  3. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    International Nuclear Information System (INIS)

    Gil, D.W.; Wolfe, B.B.

    1986-01-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands [ 3 H]quinuclidinyl benzilate or [ 3 H]PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of [ 3 H]quinuclidinyl benzilate in a biphasic manner

  4. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  5. High affinity [3H]glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    International Nuclear Information System (INIS)

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D.

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea [3H] glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of [3H] glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer [3H]glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of [3H]glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats

  6. Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia: An autoradiographic and immunohistochemical study

    International Nuclear Information System (INIS)

    Hof, P.R.; Dietl, M.M.; Charnay, Y.; Martin, J.L.; Bouras, C.; Palacios, J.M.; Magistretti, P.J.

    1991-01-01

    The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves

  7. Nanostructured Membranes Functionalized with Gold Nanoparticles for Separation and Recovery of Monoclonal Antibodies

    KAUST Repository

    Soldan, Giada

    2017-11-01

    The need of purified biomolecules, such as proteins or antibodies, has required the biopharmaceutical industries to look for new recovering solutions to reduce time and costs of bioseparations. In the last decade, the emergent field of membrane chromatography has gained attention as possible substituent of the common used protein A affinity chromatography for bioseparations. In this scenario, gold nanoparticles can be used as means for offering affinity, mainly because of their biocompatible and reversible binding behavior, together with their high surface area-to-volume ratio, which offers a large number of binding sites. This work introduces a new procedure for purification of monoclonal antibodies based on polymeric membranes functionalized with gold nanoparticles. This novel approach shortens the process of purification by promoting selective binding of antibodies, while separating a mixture of biomolecules during a filtration process. The effects of gold nanoparticles and the surrounding ligand on the proteins adsorption and filtration are investigated. The results confirm that the functionalization helps in inducing a selective binding, preventing the non-selective one, and it also improves the selectivity of the separation process.

  8. Autoradiographic localization of peptide YY and neuropeptide Y binding sites in the medulla oblongata

    International Nuclear Information System (INIS)

    Leslie, R.A.; McDonald, T.J.; Robertson, H.A.

    1988-01-01

    Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared [ 125 I]PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of [ 125 I]PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of [ 125 I]PYY binding sites throughout the rat brain was seen to be similar to the distribution of [ 125 I]NPY binding sites

  9. Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity.

    Directory of Open Access Journals (Sweden)

    Lorenzo Asti

    2016-04-01

    Full Text Available The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6, outperforming other sequence- and structure-based models.

  10. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  11. Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin

    International Nuclear Information System (INIS)

    Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.; MacDonald, A.B.; Eidels, L.

    1989-01-01

    An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of 125 I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of 125 I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry an internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies

  12. Relationship between natural and heme-mediated antibody polyreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Hadzhieva, Maya; Vassilev, Tchavdar [Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France); Dimitrov, Jordan D., E-mail: jordan.dimitrov@crc.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France)

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.

  13. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  14. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  15. Serotoninergic receptors in brain tissue: properties and identification of various 3H-ligand binding sites in vitro

    International Nuclear Information System (INIS)

    Leysen, J.E.

    1981-01-01

    In vitro binding studies to serotoninergic receptors were performed using 3 H-LSD, 3 H-5-HT and 3 H-spiperone. An overwiew is given on findings using these three ligands with respect to the following: localization of specific binding sites, in various animal species, the regional distribution in the brain and periphery, the subcellular and cellular distribution. Properties of the binding sites, influence of the composition of the assay medium, binding kinetic properties, receptor regulation in vivo. Identity of the binding sites, differences between site for various 3 H-ligands, pharmacological specificity of the membranous binding sites, chemical composition of the macromolecular complex constituting the binding site. Function of the receptor. Binding affinities of 44 compounds were measured in binding assays using 3 H-spiperone and 3 H-LSD with rat frontal cortex membrane preparations and using 3 H-5-HT and 3 H-LSD with rat hippocampal membrane preparations

  16. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  17. Genotoxic effect and antigen binding characteristics of SLE auto-antibodies to peroxynitrite-modified human DNA.

    Science.gov (United States)

    Khan, Md Asad; Alam, Khursheed; Mehdi, Syed Hassan; Rizvi, M Moshahid A

    2017-12-01

    Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by auto-antibodies against native deoxyribonucleic acid after modification and is one of the reasons for the development of SLE. Here, we have evaluated the structural perturbations in human placental DNA by peroxynitrite using spectroscopy, thermal denaturation and high-performance liquid chromatography (HPLC). Peroxynitrite is a powerful potent bi-functional oxidative/nitrative agent that is produced both endogenously and exogenously. In experimental animals, the peroxynitrite-modified DNA was found to be highly immunogenic. The induced antibodies showed cross-reactions with different types of DNA and nitrogen bases that were modified with peroxynitrite by inhibition ELISA. The antibody activity was inhibited by approximately 89% with its immunogen as the inhibitor. The antigen-antibodies interaction between induced antibodies with peroxynitrite-modified DNA showed retarded mobility as compared to the native form. Furthermore, significantly increased binding was also observed in SLE autoantibodies with peroxynitrite-modified DNA than native form. Moreover, DNA isolated from lymphocyte of SLE patients revealed significant recognition of anti-peroxynitrite-modified DNA immunoglobulin G (IgG). Our data indicates that DNA modified with peroxynitrite presents unique antigenic determinants that may induce autoantibody response in SLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Laminin binding protein, 34/67 laminin receptor, carries stage-specific embryonic antigen-4 epitope defined by monoclonal antibody Raft.2

    International Nuclear Information System (INIS)

    Katagiri, Yohko U.; Kiyokawa, Nobutaka; Nakamura, Kyoko; Takenouchi, Hisami; Taguchi, Tomoko; Okita, Hajime; Umezawa, Akihiro; Fujimoto, Junichiro

    2005-01-01

    We previously produced monoclonal antibodies against the detergent-insoluble microdomain, i.e., the raft microdomain, of the human renal cancer cell line ACHN. Raft.2, one of these monoclonal antibodies, recognizes sialosyl globopentaosylceramide, which has the stage-specific embryonic antigen (SSEA)-4 epitope. Although the mouse embryonal carcinoma (EC) cell line F9 does not express SSEA-4, some F9 cells stained with Raft.2. Western analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry identified the Raft.2 binding molecule as laminin binding protein (LBP), i.e., 34/67 laminin receptor. Weak acid treatment or digestion with Clostridium perfringens sialidase reduced Raft.2 binding to LBP on nitrocellulose sheets and [ 14 C]galactose was incorporated into LBP, indicating LBP to have a sialylated carbohydrate moiety. Subcellular localization analysis by sucrose density-gradient centrifugation and examination by confocal microscopy revealed LBP to be localized on the outer surface of the plasma membrane. An SSEA-4-positive human EC cell line, NCR-G3 cells, also expressed Raft.2-binding LBP

  19. Eel calcitonin binding site distribution and antinociceptive activity in rats

    International Nuclear Information System (INIS)

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-01-01

    The distribution of binding site for [ 125 I]-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing [ 125 I]-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain

  20. GABAA [gamma-aminobutyric acid] type binding sites on membranes of spermatozoa

    International Nuclear Information System (INIS)

    Erdoe, S.L.; Wekerle, L.

    1990-01-01

    The binding of [ 3 H] gamma-aminobutyric acid (GABA) to seminal membranes of swines and rams was examined. Specific, GABA binding was demonstrated in both species, which showed the features of GABA A type receptors. The affinity of binding was similar in both species, whereas the density of seminal GABA binding sites was 5 times higher in swine. Our findings suggest that GABA may have a direct effect on spermatozoa

  1. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  2. Stimulation of chymosin secretion by simultaneous expression with chymosin-binding llama single-domain antibody fragments in yeast

    NARCIS (Netherlands)

    Harmsen, M.M.; Smits, C.B.; Geus, de B.

    2002-01-01

    We studied the effect of coexpression of chymosin and chymosin-binding llama single-domain antibody fragments (VHHs) on the secretion of chymosin by Saccharomyces cerevisiae cells. A VHH expression library containing chymosin-specific VHHs was obtained by immunization of a llama and coexpressed with

  3. A novel TNFα antagonizing peptide-Fc fusion protein designed based on CDRs of TNFα neutralizing monoclonal antibody

    International Nuclear Information System (INIS)

    Qin Weisong; Feng Jiannan; Zhang Wei; Li Yan; Shen, Beifen

    2004-01-01

    The variable regions of antibody molecules bind antigens with high affinity and specificity. The binding sites are imparted largely to the hypervariable portions (i.e., CDRs) of the variable region. Peptides derived from CDRs can bind antigen with similar specificity acting as mimic of antibody and become drug-designing core, although with markedly lower affinity. In order to increase the affinity and bioactivity, in this study, a novel peptide (PT) designed on CDRs of a TNFα neutralizing monoclonal antibody Z12 was linked with Fc fragment of human IgG1. The interaction mode of PT-linker-Fc (PLF) with TNFα was analyzed with computer-guided molecular modeling method. After expression in Escherichia coli and purification, recombinant PT-linker-Fc could bind directly with the TNFα coated on the ELISA plates. Furthermore, PLF could competitively inhibit the binding of Z12 to TNFα and also inhibit the TNFα-induced cytotoxicity on L929 cells. The TNFα antagonizing activity of PLF was significantly higher than that of the free peptide. This study highlights the potential of human Fc to enhance the potency of peptides designed on the CDRs of antibodies and could be useful in developing new TNFα antagonists

  4. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  5. Ropizine concurrently enhances and inhibits [3H] dextromethorpan binding to different structures of the guinea pig brain: Autoradiographic evidence for multiple binding sites

    International Nuclear Information System (INIS)

    Canoll, P.D.; Smith, P.R.; and Musacchio, J.M.

    1990-01-01

    Ropizine produces a simultaneous enhancement and inhibition of [ 3 H] dextromethorphan (DM) high-affinity binding to different areas of the guinea pig brain. These results imply that there are two distinct types of high-affinity [ 3 H]DM binding sites, which are present in variable proportions in different brain structures. The ropizine-enhances [ 3 H]DM binding type was preferentially inhibited by (+)-pentazocine. This is consistent with the presumption that the (+)-pentazocine-sensitive site is identical with the common site for DM and 3-(-3-Hydroxphenyl)-N-(1-propyl)piperidine ((+)-3-PPP). The second binding type, which is inhibited by ropizine and is not so sensitive to (+)- pentazocine, has not been fully characterized. This study demonstrates that the biphasic effects to ropizine are due, at least in part, to the effects of ropizine on two different types of [ 3 H]DM binding sites. However, this study does not rule out that the common DM/(+)-3-PPP site also might be inhibited by higher concentrations of ropizine

  6. Evidence for a non-opioid sigma binding site din the guinea-pig myenteric plexus

    International Nuclear Information System (INIS)

    Roman, F.; Pascaud, X.; Vauche, D.; Junien, J.

    1988-01-01

    The presence of a binding site to (+)-( 3 H)SKF 10,047 was demonstrated in a guinea-pig myenteric plexus (MYP) membrane preparation. Specific binding to this receptor was saturable, reversible, linear with protein concentration and consisted of two components, a high affinity site and a low affinity site. Morphine and naloxone 10 -4 M were unable to displace (+)-( 3 H)SKF 10,047 binding. Haloperidol, imipramine, ethylketocyclazocine and propranolol were among the most potent compounds to inhibit this specific binding. These results suggest the presence of a non-opioid haloperidol sensitive sigma receptor in the MYP of the guinea-pig

  7. Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein

    International Nuclear Information System (INIS)

    Su, Hua-Poo; Golden, Joseph W.; Gittis, Apostolos G.; Hooper, Jay W.; Garboczi, David N.

    2007-01-01

    Medical countermeasures to prevent or treat smallpox are needed due to the potential use of poxviruses as biological weapons. Safety concerns with the currently available smallpox vaccine indicate a need for research on alternative poxvirus vaccine strategies. Molecular vaccines involving the use of proteins and/or genes and recombinant antibodies are among the strategies under current investigation. The poxvirus L1 protein, encoded by the L1R open reading frame, is the target of neutralizing antibodies and has been successfully used as a component of both protein subunit and DNA vaccines. L1-specific monoclonal antibodies (e.g., mouse monoclonal antibody mAb-7D11, mAb-10F5) with potent neutralizing activity bind L1 in a conformation-specific manner. This suggests that proper folding of the L1 protein used in molecular vaccines will affect the production of neutralizing antibodies and protection. Here, we co-crystallized the Fab fragment of mAb-7D11 with the L1 protein. The crystal structure of the complex between Fab-7D11 and L1 reveals the basis for the conformation-specific binding as recognition of a discontinuous epitope containing two loops that are held together by a disulfide bond. The structure of this important conformational epitope of L1 will contribute to the development of molecular poxvirus vaccines and also provides a novel target for anti-poxvirus drugs. In addition, the sequence and structure of Fab-7D11 will contribute to the development of L1-targeted immunotherapeutics

  8. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M. (UCSC)

    2016-11-02

    ABSTRACT

    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  9. Identification of an allosteric binding site for RORγt inhibition

    NARCIS (Netherlands)

    Scheepstra, M.; Leysen, S.; van Almen, G.; Miller, J.R.; Piesvaux, J.; Kutilek, V.; van Eenennaam, H.; Zhang, H.; Barr, K.; Nagpal, S.; Soisson, S.M.; Kornienko, M.; Wiley, K.; Elsen, N.; Sharma, S.; Correll, C.C.; Trotter, B.W.; Stelt, van der M.; Oubrie, A.; Ottmann, C.; Parthasarathy, G.; Brunsveld, L.

    2015-01-01

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of

  10. Copper(II) Binding Sites in N-Terminally Acetylated α-Synuclein: A Theoretical Rationalization.

    Science.gov (United States)

    Ramis, Rafael; Ortega-Castro, Joaquín; Vilanova, Bartolomé; Adrover, Miquel; Frau, Juan

    2017-08-03

    The interactions between N-terminally acetylated α-synuclein and Cu(II) at several binding sites have been studied with DFT calculations, specifically with the M06 hybrid functional and the ωB97X-D DFT-D functional. In previous experimental studies, Cu(II) was shown to bind several α-synuclein residues, including Met1-Asp2 and His50, forming square planar coordination complexes. Also, it was determined that a low-affinity binding site exists in the C-terminal domain, centered on Asp121. However, in the N-terminally acetylated protein, present in vivo, the Met1 site is blocked. In this work, we simplify the representation of the protein by modeling each experimentally found binding site as a complex between an N-terminally acetylated α-synuclein dipeptide (or several independent residues) and a Cu(II) cation, and compare the results with a number of additional, structurally analogous sites not experimentally found. This way of representing the binding sites, although extremely simple, allows us to reproduce experimental results and to provide a theoretical rationale to explain the preference of Cu(II) for certain sites, as well as explicit geometrical structures for the complexes formed. These results are important to understand the interactions between α-synuclein and Cu(II), one of the factors inducing structural changes in the protein and leading to aggregated forms of it which may play a role in neurodegeneration.

  11. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    International Nuclear Information System (INIS)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-01-01

    Forskolin labelled with [ 3 H] bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg 2+ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no further increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins

  12. Photoaffinity labeling of the pactamycin binding site on eubacterial ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.

    1985-01-01

    Pactamycin, an inhibitor of the initial steps of protein synthesis, has an acetophenone group in its chemical structure that makes the drug a potentially photoreactive molecule. In addition, the presence of a phenolic residue makes it easily susceptible to radioactive labeling. Through iodination, one radioactive derivative of pactamycin has been obtained with biological activities similar to the unmodified drug when tested on in vivo and cell-free systems. With the use of [ 125 I]iodopactamycin, ribosomes of Escherichia coli have been photolabeled under conditions that preserve the activity of the particles and guarantee the specificity of the binding sites. Under these conditions, RNA is preferentially labeled when free, small ribosomal subunits are photolabeled, but proteins are the main target in the whole ribosome. This indicates that an important conformational change takes place in the binding site on association of the two subunits. The major labeled proteins are S2, S4, S18, S21, and L13. These proteins in the pactamycin binding site are probably related to the initiation step of protein synthesis

  13. Diagnostic and prognostic value of factor VIII binding antibodies in acquired hemophilia A: data from the GTH-AH 01/2010 study.

    Science.gov (United States)

    Werwitzke, S; Geisen, U; Nowak-Göttl, U; Eichler, H; Stephan, B; Scholz, U; Holstein, K; Klamroth, R; Knöbl, P; Huth-Kühne, A; Bomke, B; Tiede, A

    2016-05-01

    Essentials Factor VIII (FVIII) binding IgG detected by ELISA could be an alternative to the Bethesda assay. We studied the performance of anti-FVIII IgG ELISA in patients with acquired hemophilia and controls. Anti-FVIII IgG > 99th percentile of controls was highly sensitive and specific. Patients with high anti-FVIII IgG have a lower chance of achieving remission. Background Acquired hemophilia A is a severe bleeding disorder that requires fast and accurate diagnosis as it occurs often unexpectedly in previously healthy men and women of every age. The Nijmegen-modified Bethesda assay is the diagnostic reference standard for detecting neutralizing autoantibodies against factor VIII (FVIII), but is not widely available, not ideal for quantifying the complex type 2 inhibitors seen in acquired hemophilia, and suffers from high inter-laboratory variability. Objectives To assess the diagnostic and prognostic value of FVIII-binding antibodies as detected by ELISA compared with the Nijmegen Bethesda assay. Methods Samples from the time of first diagnosis and clinical data were available from 102 patients with acquired hemophilia enrolled in the prospective GTH-AH 01/2010 study. Controls (n = 102) were matched for gender and age. Diagnostic cut-offs were determined by receiver-operator curve analysis. The prognostic value was assessed in 92 of the 102 patients by Cox regression analysis of time to partial remission. Results Anti-FVIII IgG above the 99th percentile (> 15 arbitrary units per mL) revealed high sensitivity and specificity (both 0.99; 95% confidence interval, 0.95-1.0) for diagnosing acquired hemophilia. The likelihood of achieving partial remission was related to anti-FVIII IgG concentration ( 1050, 0.39). The Bethesda titer was only associated with the likelihood of partial remission when analyzed in the central laboratory, but not when data from local GTH study sites were used. Conclusion Although the Nijmegen-modified Bethesda assay is the reference

  14. GenProBiS: web server for mapping of sequence variants to protein binding sites.

    Science.gov (United States)

    Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka

    2017-07-03

    Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. The 1.7 Å X-ray crystal structure of the porcine factor VIII C2 domain and binding analysis to anti-human C2 domain antibodies and phospholipid surfaces.

    Directory of Open Access Journals (Sweden)

    Caileen M Brison

    Full Text Available The factor VIII C2 domain is essential for binding to activated platelet surfaces as well as the cofactor activity of factor VIII in blood coagulation. Inhibitory antibodies against the C2 domain commonly develop following factor VIII replacement therapy for hemophilia A patients, or they may spontaneously arise in cases of acquired hemophilia. Porcine factor VIII is an effective therapeutic for hemophilia patients with inhibitor due to its low cross-reactivity; however, the molecular basis for this behavior is poorly understood. In this study, the X-ray crystal structure of the porcine factor VIII C2 domain was determined, and superposition of the human and porcine C2 domains demonstrates that most surface-exposed differences cluster on the face harboring the "non-classical" antibody epitopes. Furthermore, antibody-binding results illustrate that the "classical" 3E6 antibody can bind both the human and porcine C2 domains, although the inhibitory titer to human factor VIII is 41 Bethesda Units (BU/mg IgG versus 0.8 BU/mg IgG to porcine factor VIII, while the non-classical G99 antibody does not bind to the porcine C2 domain nor inhibit porcine factor VIII activity. Further structural analysis of differences between the electrostatic surface potentials suggest that the C2 domain binds to the negatively charged phospholipid surfaces of activated platelets primarily through the 3E6 epitope region. In contrast, the G99 face, which contains residue 2227, should be distal to the membrane surface. Phospholipid binding assays indicate that both porcine and human factor VIII C2 domains bind with comparable affinities, and the human K2227A and K2227E mutants bind to phospholipid surfaces with similar affinities as well. Lastly, the G99 IgG bound to PS-immobilized factor VIII C2 domain with an apparent dissociation constant of 15.5 nM, whereas 3E6 antibody binding to PS-bound C2 domain was not observed.

  16. Monoclonal Antibodies Against Fusicoccin with Binding Characteristics Similar to the Putative Fusicoccin Receptor of Higher Plants 1

    Science.gov (United States)

    Feyerabend, Martin; Weiler, Elmar W.

    1987-01-01

    Monoclonal antibodies were raised against fusicoccin. The toxin, linked to bovine serum albumin through its t-pentenyl moiety, served as immunogen. Hybridomas secreting anti-fusicoccin antibodies were screened by radioimmunoassay employing a novel radioactive derivative, [3H]-nor-fusicoccin-alcohol of high specific activity (1.5 × 1014Bq/mole). The two monoclonal antibodies reported here are of high apparent affinity for fusicoccin (0.71 × 10−9 molar and 1.85 × 10−9 molar). This is comparable to the apparent affinity of rabbit antiserum raised against the same type of conjugate (9.3 × 10−9 molar). A method for the single step purification of the monoclonal antibodies from ascites fluid is reported. A solid-phase immunoassay, using alkaline phosphatase as enzyme, exhibits a measuring range from 0.1 to 1.5 picomoles (about 70 picograms to 1 nanogram) of fusicoccin. The displacement of [3H]-nor-fusicoccin-alcohol from the antibodies by compounds structurally related to fusicoccin exhibits similar selectivity as a microsomal binding assay with the same tracer as radiolabeled probe. Images Fig. 2 PMID:16665786

  17. The detection of hemorrhagic proteins in snake venoms using monoclonal antibodies against Virginia opossum (Didelphis virginiana) serum.

    Science.gov (United States)

    Sánchez, E E; García, C; Pérez, J C; De La Zerda, S J

    1998-10-01

    , reacted with all the hemorrhagic venoms except for the venom of the King cobra (Ophiophagus hannah) and did not react with the non-hemorrhagic venoms. The hemorrhagic binding site of CAH monoclonal antibody and the antihemorrhagin in Virginia opossum are different binding sites. The five-step western blot will be a very useful assay for determining hemorrhagic activity without using live animals.

  18. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.

    Science.gov (United States)

    Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W

    2011-05-01

    Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development.

    Science.gov (United States)

    Agarwal, Paresh; Bertozzi, Carolyn R

    2015-02-18

    Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.

  20. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  1. Generation and characterization of function-blocking anti-ectodysplasin A (EDA) monoclonal antibodies that induce ectodermal dysplasia.

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J; Schneider, Pascal

    2014-02-14

    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.

  2. Generation and Characterization of Function-blocking Anti-ectodysplasin A (EDA) Monoclonal Antibodies That Induce Ectodermal Dysplasia*

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J.; Schneider, Pascal

    2014-01-01

    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated. PMID:24391090

  3. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB- E. coli cytoplasm

    Directory of Open Access Journals (Sweden)

    Markiv Anatoliy

    2011-11-01

    Full Text Available Abstract Background Antibody-fluorophore conjugates are invaluable reagents used in contemporary molecular cell biology for imaging, cell sorting and tracking intracellular events. However they suffer in some cases from batch to batch variation, partial loss of binding and susceptibility to photo-bleaching. In theory, these issues can all be addressed by using recombinant antibody fused directly to genetically encoded fluorescent reporters. However, single-chain fragment variable domains linked by long flexible linkers are themselves prone to disassociation and aggregation, and in some cases with isoelectric points incompatible with use in physiologically relevant milieu. Here we describe a general approach that permits fully functional intracellular production of a range of coloured fluorescent recombinant antibodies with optimally orientated VH/VL interfaces and isoelectric points compatible for use in physiological solutions at pH 7.4 with a binding site to fluorophore stoichiometry of 1:1. Results Here we report the design, assembly, intracellular bacterial production and purification of a panel of novel antibody fluorescent protein fusion constructs. The insertion of monomeric fluorescent protein derived from either Discosoma or Aequorea in-between the variable regions of anti-p185HER2-ECD antibody 4D5-8 resulted in optimal VH/VL interface interactions to create soluble coloured antibodies each with a single binding site, with isoelectric points of 6.5- 6. The fluorescent antibodies used in cell staining studies with SK-BR-3 cells retained the fluorophore properties and antibody specificity functions, whereas the conventional 4D5-8 single chain antibody with a (Gly4Ser3 linker precipitated at physiological pH 7.4. Conclusions This modular monomeric recombinant fluorescent antibody platform may be used to create a range of recombinant coloured antibody molecules for quantitative in situ, in vivo and ex vivo imaging, cell sorting and cell

  5. Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin

    Energy Technology Data Exchange (ETDEWEB)

    Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.; MacDonald, A.B.; Eidels, L.

    1989-03-01

    An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of /sup 125/I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of /sup 125/I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry an internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies.

  6. Optimization of the Small Glycan Presentation for Binding a Tumor-Associated Antibody

    DEFF Research Database (Denmark)

    Kveton, Filip; Blšáková, Anna; Hushegyi, Andras

    2017-01-01

    on the immobilization of the Tn antigen on a mixed self-assembled monolayer (SAM) (2D biosensor) and the third one utilizing a layer of a human serum albumin (HSA) for the immobilization of a glycan forming a 3D interface. Results showed that the 3D interface with the immobilized Tn antigen is the most effective...... bioreceptive surface for binding its analyte. The 3D impedimetric glycan biosensor exhibited a limit of detection of 1.4 aM, a wide linear range (6 orders of magnitude), and high assay reproducibility with an average relative standard deviation of 4%. The buildup of an interface was optimized using various...... techniques with the visualization of the glycans on the biosensor surface by atomic force microscopy. The study showed that the 3D biosensor is not only the most sensitive compared to other two biosensor platforms but that the Tn antigen on the 3D biosensor surface is more accessible for antibody binding...

  7. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    International Nuclear Information System (INIS)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-01-01

    Autoradiography using 125 I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat

  8. Bivalent Llama Single-Domain Antibody Fragments against Tumor Necrosis Factor Have Picomolar Potencies due to Intramolecular Interactions

    Directory of Open Access Journals (Sweden)

    Els Beirnaert

    2017-07-01

    Full Text Available The activity of tumor necrosis factor (TNF, a cytokine involved in inflammatory pathologies, can be inhibited by antibodies or trap molecules. Herein, llama-derived variable heavy-chain domains of heavy-chain antibody (VHH, also called Nanobodies™ were generated for the engineering of bivalent constructs, which antagonize the binding of TNF to its receptors with picomolar potencies. Three monomeric VHHs (VHH#1, VHH#2, and VHH#3 were characterized in detail and found to bind TNF with sub-nanomolar affinities. The crystal structures of the TNF–VHH complexes demonstrate that VHH#1 and VHH#2 share the same epitope, at the center of the interaction area of TNF with its TNFRs, while VHH#3 binds to a different, but partially overlapping epitope. These structures rationalize our results obtained with bivalent constructs in which two VHHs were coupled via linkers of different lengths. Contrary to conventional antibodies, these bivalent Nanobody™ constructs can bind to a single trimeric TNF, thus binding with avidity and blocking two of the three receptor binding sites in the cytokine. The different mode of binding to antigen and the engineering into bivalent constructs supports the design of highly potent VHH-based therapeutic entities.

  9. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.

    Science.gov (United States)

    Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried

    2017-06-01

    Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p

  10. Physiochemical and biochemical factors influencing the pharmacokinetics of antibody therapeutics.

    Science.gov (United States)

    Bumbaca, Daniela; Boswell, C Andrew; Fielder, Paul J; Khawli, Leslie A

    2012-09-01

    Monoclonal antibodies are increasingly being developed to treat multiple disease areas, including those related to oncology, immunology, neurology, and ophthalmology. There are multiple factors, such as charge, size, neonatal Fc receptor (FcRn) binding affinity, target affinity and biology, immunoglobulin G (IgG) subclass, degree and type of glycosylation, injection route, and injection site, that could affect the pharmacokinetics (PK) of these large macromolecular therapeutics, which in turn could have ramifications on their efficacy and safety. This minireview examines how characteristics of the antibodies could be altered to change their PK profiles. For example, it was observed that a net charge modification of at least a 1-unit shift in isoelectric point altered antibody clearance. Antibodies with enhanced affinity for FcRn at pH 6.0 display longer serum half-lives and slower clearances than wild type. Antibody fragments have different clearance rates and tissue distribution profiles than full length antibodies. Fc glycosylation is perceived to have a minimal effect on PK while that of terminal high mannose remains unclear. More investigation is warranted to determine if injection route and/or site impacts PK. Nonetheless, a better understanding of the effects of all these variations may allow for the better design of antibody therapeutics.

  11. Heparin binding sites on Ross River virus revealed by electron cryo-microscopy

    International Nuclear Information System (INIS)

    Zhang Wei; Heil, Marintha; Kuhn, Richard J.; Baker, Timothy S.

    2005-01-01

    Cell surface glycosaminoglycans play important roles in cell adhesion and viral entry. Laboratory strains of two alphaviruses, Sindbis and Semliki Forest virus, have been shown to utilize heparan sulfate as an attachment receptor, whereas Ross River virus (RRV) does not significantly interact with it. However, a single amino acid substitution at residue 218 in the RRV E2 glycoprotein adapts the virus to heparan sulfate binding and expands the host range of the virus into chicken embryo fibroblasts. Structures of the RRV mutant, E2 N218R, and its complex with heparin were determined through the use of electron cryo-microscopy and image reconstruction methods. Heparin was found to bind at the distal end of the RRV spikes, in a region of the E2 glycoprotein that has been previously implicated in cell-receptor recognition and antibody binding

  12. Cortisol decreases 2[125I] iodomelatonin binding sites in the duck thymus

    International Nuclear Information System (INIS)

    Poon, A.M.S.; Liu, Z.M.; Tang, F.; Pang, S.F.

    1994-01-01

    The immunosuppressive effect of chronic glucocorticoid treatment on 2[ 125 I] iodomelatonin binding in the duck thymus was studied. Two-week-old ducks were injected intraperitoneally with either 1 mg of cortisol per day (experimental group) or an equivalent volume of vehicle (control group) in the middle of the light period for seven days. 2[ 125 I] iodomelatonin binding assays were performed on thymic membranes. Cortisol injection reduced the body weight gain, size of the bursa of Fabricius and absolute weights of the primary lymphoid organs but had no effect on the spleen weights. The relative weights of the spleen were increased while those of the primary lymphoid organs were unchanged. The density of the thymus 2[ 125 I] iodomelatonin binding sites was decreased while the affinity was not affected. The modulation of the thymic 2[ 125 I] iodomelatonin binding sites by changes in the immune status of the duck suggests that these binding sites represent physiologically relevant melatonin receptors and that melatonin exerts its action on the lymphoid tissues directly. The authors findings support the hypothesis that the thymus is the target site for the immunomodulatory interactions between the pineal melatonin and the adrenal steroids. A possible inhibitory influence of adrenal steroids on the immuno-enhancing effect of melatonin is also suggested. 34 refs., 3 tabs

  13. Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details.

    Science.gov (United States)

    Rosenhouse-Dantsker, Avia

    2018-01-01

    In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocampal GIRK channels. In particular, the principal cholesterol-binding site was located in the center of the transmembrane domain in between the inner and outer α-helices of 2 adjacent subunits. Further studies pointed to a similar cholesterol-binding site in GIRK4, a major subunit in atrial GIRK channels. However, a close look at a sequence alignment of the transmembrane helices of the 2 channels reveals surprising differences among the residues that interact with the cholesterol molecule in these 2 channels. Here, we compare the residues that form putative cholesterol-binding sites in GIRK2 and GIRK4 and discuss the similarities and differences among them.

  14. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    Science.gov (United States)

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Antibody Binding Selectivity: Alternative Sets of Antigen Residues Entail High-Affinity Recognition.

    Directory of Open Access Journals (Sweden)

    Yves Nominé

    Full Text Available Understanding the relationship between protein sequence and molecular recognition selectivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM affinity a decapeptide (sequence 6TAMFQDPQER15 derived from the N-terminal end of human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previously shown that only the wild type amino-acid or conservative replacements were allowed at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Nevertheless phenylalanine (F was equally well tolerated as the wild type glutamine (Q at position 13, while all other amino acids led to weaker scFv binding. The interfaces of complexes involving either Q or F are expected to diverge, due to the different physico-chemistry of these residues. This would imply that high-affinity binding can be achieved through distinct interfacial geometries. In order to investigate this point, we disrupted the scFv-peptide interface by modifying one or several peptide positions. We then analyzed the effect on binding of amino acid changes at the remaining positions, an altered susceptibility being indicative of an altered role in complex formation. The 23 starting variants analyzed contained replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permutation analysis (effect of replacing each peptide position by all other amino acids except cysteine was carried out on the 23 variants using the PEPperCHIP® Platform technology. A comparison of their permutation patterns with that of the wild type peptide indicated that starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes at the other two positions. The interdependence between the three positions was confirmed by SPR (Biacore® technology. Our data demonstrate that binding selectivity does not preclude the existence of alternative high-affinity recognition modes.

  16. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of genetic engineering on the pharmacokinetics of antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Goel, A.; Pavlinkova, G.; Beresford, G.; Booth, B.; Batra, S.K.

    1999-01-01

    Monoclonal antibodies (MAbs) may be considered 'magic bullets' due to their ability to recognize and eradicate malignant cells. MAbs, however, have practical limitations for their rapid application in the clinics. The structure of the antibody molecules can be engineered to modify functional domains such as antigen-binding sites and/or effectors functions. Advanced in genetic engineering have provided rapid progress the development of new immunoglobulin constructs of MAbs with defined research and therapeutic application. Recombinant antibody constructs are being engineered, such as human mouse chimeric, domain-dispositioned, domain-deleted, humanized and single-chain Fv fragments. Genetically-engineered antibodies differ in size and rate of catabolism. Pharmacokinetics studies show that the intact IgG (150 kD), enzymatically derived fragments Fab' (50 kD) and single chain Fv (28 kD) have different clearance rates. These antibody forms clear 50% from the blood pool in 2.1 days, 30 minutes and 10 minutes, respectively. Genetically-engineered antibodies make a new class of immunotherapeutic tracers for cancer treatment

  18. Development of a Recombinant Antibody with Specificity for Chelated Uranyl Ions

    International Nuclear Information System (INIS)

    X. Li; A.M. Kriegel; T.C. Bishop; R.C. Blake; E. Figueiredo; H. Yu; D.A. Blake

    2005-01-01

    The goal of our project is to continue the development of new techniques for rapid, automated identification of radionuclides, metals, and chelators that may contaminant sur face and groundwater at DOE sites. One of the four specific aims of the present project is to develop new technologies in antibody engineering that will enhance our immunosensor program. Recombinant antibodies have potential advantages over monoclonal antibodies produced by standard hybridoma technology. The cloned genes represent a stable, recoverable source for antibody production. In addition, the recombinant format offers opportunities for protein engineering that enhances antibody performance and for studies that relate antibody sequence to binding activity. In this study, a hybridoma that synthesized an antibody (12F6) that recognized a 1:1 complex between 2,9-dicarboxyl-1,10- phenanthroline (DCP) and UO 2 2+ was used as a source of RNA for the development of a recombinant (Fab) 2 fragment. RNA was isolated from the 12F6 hybridoma and the cDNA encoding the entire κ light chain and the linked VH and C1 portions of the heavy chain were amplified from total RNA. cDNA sequences were verified by comparison with the N-terminal amino acid sequences of the light and heavy chains of the native 12F6 monoclonal antibody. A leader sequence and appropriate restriction sites were added to each chain, and the fragments were ligated into a commercial dicistronic vector (pBudCE4.1, Invitrogen, Inc.). COS-1 cells were transfected with this vector and the culture supernatant was assayed for activity and the (Fab) 2 protein. Cells transfected with vector containing 12F6 cDNA synthesized and secreted recombinant (Fab) 2 fragments that bound to the UO 2 2+ -DCP complex with an affinity indistinguishable from that of a (Fab) 2 fragment prepared from the native antibody. Molecular models of the heavy and light chain variable domains were constructed according to the canonical structures method detailed by Morea

  19. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE*

    Science.gov (United States)

    Syson, Karl; Stevenson, Clare E. M.; Miah, Farzana; Barclay, J. Elaine; Tang, Minhong; Gorelik, Andrii; Rashid, Abdul M.; Lawson, David M.; Bornemann, Stephen

    2016-01-01

    GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential. PMID:27531751

  20. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob...... gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes...... to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C...

  1. Penicillin-binding site on the Escherichia coli cell envelope

    International Nuclear Information System (INIS)

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-01-01

    The binding of 35 S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin

  2. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  3. Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41.

    Science.gov (United States)

    Sabin, Charles; Corti, Davide; Buzon, Victor; Seaman, Mike S; Lutje Hulsik, David; Hinz, Andreas; Vanzetta, Fabrizia; Agatic, Gloria; Silacci, Chiara; Mainetti, Lara; Scarlatti, Gabriella; Sallusto, Federica; Weiss, Robin; Lanzavecchia, Antonio; Weissenhorn, Winfried

    2010-11-18

    The human monoclonal antibody (mAb) HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1) of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool.

  4. Asap: a framework for over-representation statistics for transcription factor binding sites

    DEFF Research Database (Denmark)

    Marstrand, Troels T; Frellsen, Jes; Moltke, Ida

    2008-01-01

    -founded choice. METHODOLOGY: We introduce a software package, Asap, for fast searching with position weight matrices that include several standard methods for assessing over-representation. We have compared the ability of these methods to detect over-represented transcription factor binding sites in artificial......BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory...... regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well...

  5. Tumor necrosis factor-alpha binding capacity and anti-infliximab antibodies measured by fluid-phase radioimmunoassays as predictors of clinical efficacy of infliximab in Crohn's disease

    DEFF Research Database (Denmark)

    Ainsworth, Mark A; Bendtzen, Klaus; Brynskov, Jørn

    2007-01-01

    To investigate if the combined assessment of anti-infliximab antibodies (Ab) and the degree of TNF-alpha binding capacity (TNF-alpha-BC) afforded by infliximab may predict the response to infliximab treatment in patients with Crohn's disease (CD).......To investigate if the combined assessment of anti-infliximab antibodies (Ab) and the degree of TNF-alpha binding capacity (TNF-alpha-BC) afforded by infliximab may predict the response to infliximab treatment in patients with Crohn's disease (CD)....

  6. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  7. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies.

    Science.gov (United States)

    Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2015-01-01

    Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.

  8. Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation.

    Science.gov (United States)

    Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2011-03-07

    The design and synthesis of functional chemical derivatives of small organic molecules is usually a key step for the intricate production of a variety of bioconjugates. In this respect, the derivatization site at which the spacer arm is introduced in immunizing conjugates constitutes a highly critical parameter for the generation of high-affinity and selective antibodies. However, due to the usual complexity of the required synthetic procedures, the appropriate comparison of alternative tethering positions has often been neglected. In the present study, meticulous strategies were followed to prepare synthetic derivatives of pyraclostrobin with the same linkers located at diverse rationally-chosen sites. Activity appraisal of antibodies and bioconjugates was carried out by bidimensional competitive direct and indirect immunoassays, and a superior performance of two of the three synthesized haptens was found. Finally, a detailed analysis of the conformations of the target molecule and the synthesized haptens in aqueous solution was done using computer assisted molecular modeling techniques. This study suggested that the lower titers and affinities of one set of antibodies are most probably due to conformational effects of the spacer arm in the immunizing bioconjugate.

  9. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  10. Human monoclonal antibodies: the residual challenge of antibody immunogenicity.

    Science.gov (United States)

    Waldmann, Herman

    2014-01-01

    One of the major reasons for seeking human monoclonal antibodies has been to eliminate immunogenicity seen with rodent antibodies. Thus far, there has yet been no approach which absolutely abolishes that risk for cell-binding antibodies. In this short article, I draw attention to classical work which shows that monomeric immunoglobulins are intrinsically tolerogenic if they can be prevented from creating aggregates or immune complexes. Based on these classical studies two approaches for active tolerization to therapeutic antibodies are described.

  11. Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex

    International Nuclear Information System (INIS)

    John, D.; Fox, I.V.

    1986-01-01

    The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A 1 and A 2 adenosine binding sites. The ligands used were 2-chloro(8- 3 H) adenosine and N 6 -(adenine-2, 8- 3 H) cyclohexayladenosine. Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The kinetic constant determinations from binding studies of the adenosine receptor are presented. Utilizing tritium-cyclohexyladenosine as ligand the authors observed evidence for a high affinity binding site in human brain cortical membranes with a kd of 5 nM

  12. 8-anilino-1-naphthaline sulfonate binds at the hemoglobin allosteric regulatory sites: inhibitory analyses

    International Nuclear Information System (INIS)

    Bokut', S.B.; Parul', D.A.; Yachnik, N.N.; Milyutin, A.A.

    2001-01-01

    The present study focused on the localization at least one of the ANS binding sites in the major form of human hemoglobin HbA. High-resolution docking predict ANS binding to the hemoglobin central cavity. Steady-state fluorescence titration data obtained in the absence/presence of natural effector inositol hexaphosphate (IHP) allowed to conclude that IHP competitively inhibited ANS binding to HbA. Thus, we must conclude that one of the ANS binding sites is central cavity, which makes it possible to monitor changes at this region upon ligation/deligation, effector binding and changes in hemoglobin structure

  13. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shima, K.; Kitayama, S.; Nakano, R.

    1987-05-01

    Gonadotropin binding sites were localized by autoradiography after incubation of human ovarian sections with /sup 125/I-labeled gonadotropins. The binding sites for /sup 125/I-labeled human follicle-stimulating hormone (/sup 125/I-hFSH) were identified in the granulosa cells and in the newly formed corpora lutea. The /sup 125/I-labeled human luteinizing hormone (/sup 125/I-hLH) binding to the thecal cells increased during follicular maturation, and a dramatic increase was preferentially observed in the granulosa cells of the large preovulatory follicle. In the corpora lutea, the binding of /sup 125/I-hLH increased from the early luteal phase and decreased toward the late luteal phase. The changes in 3 beta-hydroxysteroid dehydrogenase activity in the corpora lutea corresponded to the /sup 125/I-hLH binding. Thus, the changes in gonadotropin binding sites in the follicles and corpora lutea during the menstrual cycle may help in some important way to regulate human ovarian function.

  14. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    Science.gov (United States)

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  15. New human erythrocyte protein with binding sites for both spectrin and calmodulin

    International Nuclear Information System (INIS)

    Gardner, K.; Bennett, V.

    1986-01-01

    A new cytoskeletal protein that binds calmodulin has been purified to greater than 95% homogeneity from human erythrocyte cytoskeletons. The protein is a heterodimer with subunits of 103,000 and 97,000 and M/sub r/ = 197,000 calculated from its Stokes radius of 6.9 nm and sedimentation coefficient of 6.8. A binding affinity of this protein for calmodulin has been estimated to be 230 nM by displacement of two different concentrations of 125 I-azidocalmodulin with increasing concentrations of unmodified calmodulin followed by Dixon plot analysis. This protein is present in red cells at approximately 30,000 copies per cell and contains a very tight binding site(s) on cytoskeletons. The protein can be only partially solubilized from isolated cytoskeletons in buffers containing high salt, but can be totally solubilized from red cell ghost membranes by extraction in low ionic strength buffers. Affinity purified IgG against this calmodulin-binding protein identifies crossreacting polypeptide(s) in brain, kidney, testes and retina. Visualization of the calmodulin-binding protein by negative staining, rotary shadowing and unidirectional shadowing indicate that it is a flattened circular molecule with molecular height of 5.4 nm and a diameter of 12.4 nm. Preliminary cosedimentation studies with purified spectrin and F-actin indicate that the site of interaction of this calmodulin-binding protein with the cytoskeleton resides on spectrin

  16. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  17. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  18. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  19. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  20. Development of radioactivity labelling method of new antibody by using the antibody engineering

    International Nuclear Information System (INIS)

    Yamazaki, Takeshi; Nakajima, Osamu; Saito, Yoshiro; Hachisuka, Akiko; Tanaka, Toichi; Sawada, Junichi

    1999-01-01

    With an aim to develop a method to produce labelled antibodies with low immunogenicity, two recombinant fusion proteins; scFv-His and scFv-MTβ were produced using gene engineering techniques. The former was constructed with scFv-antibody and histidine hexamer, a metal-chelated protein (or peptide). The latter was done with scFv-antibody and β-domain of metallothionein. Then, antigen-binding activity and metal-binding activity of these fusion proteins were determined using gel-filtration chromatography and ELISA. The main antigen-binding activity of scFv-His preparation was detected in a domain of about 25-30 kDa, which agreed with the peak of 29 kDa corresponding to the presumed molecular weight for the protein. Whereas the antigen-binding activity of scFv-MTβ was found in a domain of 30-35 kDa, which agreed with 32 kDa, the presumed molecular weight of scFv-MTβ. Gel-filtration chromatography of scFv-His preparation after the addition of Cu 2+ ion revealed an optical absorption at 280 nm and a Cu-peak near at 14 kDa. These results suggested that the metal affinity of the histidine-hexamer was too weak to chelate Cu 2+ in a solution. The chromatography of scFv-MTβ preparation added with Cd 2+ showed a peak of Cd appeared around a position of about 20 kDa but the peak was not coincident with that of the antigen-binding activity (ca. 30 kDa), suggesting that the present preparation of scFv-MTβ had no Cd-binding activity due to metal-exchange reaction. Based on these results, problems on the production of recombinant scFv-antibody fused with metal-binding domain of cystein-binding type or histidine-binding one were discussed. (M.N.)

  1. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.

    Science.gov (United States)

    Keilwagen, Jens; Grau, Jan; Paponov, Ivan A; Posch, Stefan; Strickert, Marc; Grosse, Ivo

    2011-02-10

    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open

  2. Vasoactive intestinal peptide (VIP) binds to guinea pig peritoneal eosinophils: A single class of binding sites with low affinity and high capacity

    International Nuclear Information System (INIS)

    Sakakibara, H.; Shima, K.; Takamatsu, J.; Said, S.I.

    1990-01-01

    VIP binds to specific receptors on lymphocytes and mononuclear cells and exhibits antiinflammatory properties. Eosinophils (Eos) contribute to inflammatory reactions but the regulation of Eos function is incompletely understood. The authors examined the binding of monoradioiodinated VIP, [Tyr( 125 I) 10 ] VIP ( 125 I-VIP), to Eos in guinea pigs. The interaction of 125 i-VIP with Eos was rapid, reversible, saturable and linearly dependent on the number of cells. At equilibrium the binding was competitively inhibited by native peptide or by the related peptide helodermin. Scatchard analysis suggested the presence of a single class of VIP binding sites with a low affinity and a high capacity. In the presence of isobutyl-methylxanthine, VIP, PHI or helodermin did not stimulate cyclic AMP accumulation in intact Eos, while PGE 2 or 1-isoproterenol did. VIP also did not inhibit superoxide anion generation from Eos stimulated by phorbol myristate acetate. The authors conclude that: (1) VIP binds to low-affinity, specific sites on guinea pig peritoneal eosinophils; (2) this binding is not coupled to stimulation of adenylate cyclase; and (3) the possible function of these binding sites is at present unknown

  3. Incorporating evolution of transcription factor binding sites into ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate ... alignments with parts annotated as gap lessly aligned TFBSs (pair-profile hits) are generated. Moreover, the pair- profile related parameters are derived in a sound statistical framework. ... Much research has gone into the study of the evolution of.

  4. Cation binding at the node of Ranvier: I. Localization of binding sites during development.

    Science.gov (United States)

    Zagoren, J C; Raine, C S; Suzuki, K

    1982-06-17

    Cations are known to bind to the node of Ranvier and the paranodal regions of myelinated fibers. The integrity of these specialized structures is essential for normal conduction. Sites of cation binding can be microscopically identified by the electrondense histochemical reaction product formed by the precipitate of copper sulfate/potassium ferrocyanide. This technique was used to study the distribution of cation binding during normal development of myelinating fibers. Sciatic nerves of C57B1 mice, at 1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 24 and 30 days of age, were prepared for electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde and 1% osmic acid, microdissection and incubation in phosphate-buffered 0.1 M cupric sulfate followed by 0.1 M potassium ferrocyanide. Localization of reaction product was studied by light and electron microscopy. By light microscopy, no reaction product was observed prior to 9 days of age. At 13 days, a few nodes and paranodes exhibited reaction product. This increased in frequency and intensity up to 30 days when almost all nodes or paranodes exhibited reaction product. Ultrastructurally, diffuse reaction product was first observed at 3 days of age in the axoplasm of the node, in the paranodal extracellular space of the terminal loops, in the Schwann cell proper and in the terminal loops of Schwann cell cytoplasm. When myelinated axons fulfilled the criteria for mature nodes, reaction product was no longer observed in the Schwann cell cytoplasm, while the intensity of reaction product in the nodal axoplasm and paranodal extracellular space of the terminal loops increased. Reaction product in the latter site appeared to be interrupted by the transverse bands. These results suggest that cation binding accompanies nodal maturity and that the Schwann cell may play a role in production or storage of the cation binding substance during myelinogenesis and development.

  5. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  6. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...

  7. At least two Fc Neu5Gc residues of monoclonal antibodies are required for binding to anti-Neu5Gc antibody

    OpenAIRE

    Yu, Chuanfei; Gao, Kai; Zhu, Lei; Wang, Wenbo; Wang, Lan; Zhang, Feng; Liu, Chunyu; Li, Meng; Wormald, Mark R.; Rudd, Pauline M.; Wang, Junzhi

    2016-01-01

    Two non-human glycan epitopes, galactose-Į-1,3-galactose (Į-gal) and Neu5Gc-Į-2-6-galactose (Neu5Gc) have been shown to be antigenic when attached to Fab oligosaccharides of monoclonal antibodies (mAbs) , while Į-gal attached to Fc glycans were not. However, the antigenicity of Neu5Gc on the Fc glycans remains unclear in the context that most mAbs carry only Fc glycans. After studying two clinical mAbs carrying significant amounts of Fc Neu5Gc, we show that their binding activity with anti-Ne...

  8. Identification of metal ion binding sites based on amino acid sequences.

    Science.gov (United States)

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  9. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    Directory of Open Access Journals (Sweden)

    Jose L S Lopes

    Full Text Available Diacylglycerol acyltransferase 1 (DGAT1 is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  10. Binding sites for luminescent amyloid biomarkers from non-biased molecular dynamics simulations.

    Science.gov (United States)

    König, Carolin; Skånberg, Robin; Hotz, Ingrid; Ynnerman, Anders; Norman, Patrick; Linares, Mathieu

    2018-03-25

    A very stable binding site for the interaction between a pentameric oligothiophene and an amyloid-β(1-42) fibril has been identified by means of non-biased molecular dynamics simulations. In this site, the probe is locked in an all-trans conformation with a Coulombic binding energy of 1200 kJ mol -1 due to the interactions between the anionic carboxyl groups of the probe and the cationic ε-amino groups in the lysine side chain. Upon binding, the conformationally restricted probes show a pronounced increase in molecular planarity. This is in line with the observed changes in luminescence properties that serve as the foundation for their use as biomarkers.

  11. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Larsen, Carsten Schade

    2000-01-01

    Neutralizing cytokine antibodies are found in healthy and diseased individuals, including patients treated with recombinant cytokines. Identification of CCR-5 as co-receptor for HIV has focused interest on CC chemokines and their potential therapeutic use. Chemokine-binding components in plasma...

  12. Discovery of a Prefusion Respiratory Syncytial Virus F-Specific Monoclonal Antibody That Provides Greater In Vivo Protection than the Murine Precursor of Palivizumab.

    Science.gov (United States)

    Zhao, Min; Zheng, Zi-Zheng; Chen, Man; Modjarrad, Kayvon; Zhang, Wei; Zhan, Lu-Ting; Cao, Jian-Li; Sun, Yong-Peng; McLellan, Jason S; Graham, Barney S; Xia, Ning-Shao

    2017-08-01

    Palivizumab, a humanized murine monoclonal antibody that recognizes antigenic site II on both the prefusion (pre-F) and postfusion (post-F) conformations of the respiratory syncytial virus (RSV) F glycoprotein, is the only prophylactic agent approved for use for the treatment of RSV infection. However, its relatively low neutralizing potency and high cost have limited its use to a restricted population of infants at high risk of severe disease. Previously, we isolated a high-potency neutralizing antibody, 5C4, that specifically recognizes antigenic site Ø at the apex of the pre-F protein trimer. We compared in vitro and in vivo the potency and protective efficacy of 5C4 and the murine precursor of palivizumab, antibody 1129. Both antibodies were synthesized on identical murine backbones as either an IgG1 or IgG2a subclass and evaluated for binding to multiple F protein conformations, in vitro inhibition of RSV infection and propagation, and protective efficacy in mice. Although 1129 and 5C4 had similar pre-F protein binding affinities, the 5C4 neutralizing activity was nearly 50-fold greater than that of 1129 in vitro In BALB/c mice, 5C4 reduced the peak titers of RSV 1,000-fold more than 1129 did in both the upper and lower respiratory tracts. These data indicate that antibodies specific for antigenic site Ø are more efficacious at preventing RSV infection than antibodies specific for antigenic site II. Our data also suggest that site Ø-specific antibodies may be useful for the prevention or treatment of RSV infection and support the use of the pre-F protein as a vaccine antigen. IMPORTANCE There is no vaccine yet available to prevent RSV infection. The use of the licensed antibody palivizumab, which recognizes site II on both the pre-F and post-F proteins, is restricted to prophylaxis in neonates at high risk of severe RSV disease. Recommendations for using passive immunization in the general population or for therapy in immunocompromised persons with

  13. Depigmented allergoids reveal new epitopes with capacity to induce IgG blocking antibodies.

    Science.gov (United States)

    López-Matas, M Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo

    2013-01-01

    The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT.

  14. Localized conformational interrogation of antibody and antibody-drug conjugates by site-specific carboxyl group footprinting.

    Science.gov (United States)

    Pan, Lucy Yan; Salas-Solano, Oscar; Valliere-Douglass, John F

    Establishing and maintaining conformational integrity of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) during development and manufacturing is critical for ensuring their clinical efficacy. As presented here, we applied site-specific carboxyl group footprinting (CGF) for localized conformational interrogation of mAbs. The approach relies on covalent labeling that introduces glycine ethyl ester tags onto solvent-accessible side chains of protein carboxylates. Peptide mapping is used to monitor the labeling kinetics of carboxyl residues and the labeling kinetics reflects the conformation or solvent-accessibility of side chains. Our results for two case studies are shown here. The first study was aimed at defining the conformational changes of mAbs induced by deglycosylation. We found that two residues in C H 2 domain (D268 and E297) show significantly enhanced side chain accessibility upon deglycosylation. This site-specific result highlighted the advantage of monitoring the labeling kinetics at the amino acid level as opposed to the peptide level, which would result in averaging out of highly localized conformational differences. The second study was designed to assess conformational effects brought on by conjugation of mAbs with drug-linkers. All 59 monitored carboxyl residues displayed similar solvent-accessibility between the ADC and mAb under native conditions, which suggests the ADC and mAb share similar side chain conformation. The findings are well correlated and complementary with results from other assays. This work illustrated that site-specific CGF is capable of pinpointing local conformational changes in mAbs or ADCs that might arise during development and manufacturing. The methodology can be readily implemented within the industry to provide comprehensive conformational assessment of these molecules.

  15. (+)- and (-)-N-allylnormetazocine binding sites in mouse brain: in vitro and in vivo characterization and regional distribution

    International Nuclear Information System (INIS)

    Compton, D.R.; Bagley, R.B.; Katzen, J.S.; Martin, B.R.

    1987-01-01

    In vivo and in vitro binding studies, both in whole brain and in selected areas, indicate that non-identical (+)- and (-)-NANM sites exist in the mouse brain, and each exhibits a different regional distribution. The in vivo binding of (+)- 3 H-NANM was found to be saturable at pharmacologically relevant doses, and represents a relatively small (10 - 22%) portion of total brain (+)- 3 H-NANM concentrations. The in vivo binding of (+)- 3 H-NANM was selectively displaced by (+)-NANM and PCP, and more sensitive to haloperidol and (+)-ketocyclazocine than the (-)- 3 H-NANM site. The in vivo binding of (-)- 3 H-NANM was selectively displaced by (-)-NANM, and more sensitive to naloxone and (-) ketocyclazocine than the (+)- 3 H-NANM site, and insensitive to PCP. This study indicates that the investigation of NANM binding sites is possible using in vivo binding techniques, and that each isomer apparently binds, in the mouse brain, to a single class of distinct sites. 32 references, 4 figures, 2 tables

  16. In Vitro Methods for Comparing Target Binding and CDC Induction Between Therapeutic Antibodies: Applications in Biosimilarity Analysis.

    Science.gov (United States)

    Salinas-Jazmín, Nohemi; González-González, Edith; Vásquez-Bochm, Luz X; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2017-05-04

    Therapeutic monoclonal antibodies (mAbs) are relevant to the treatment of different pathologies, including cancers. The development of biosimilar mAbs by pharmaceutical companies is a market opportunity, but it is also a strategy to increase drug accessibility and reduce therapy-associated costs. The protocols detailed here describe the evaluation of target binding and CDC induction by rituximab in Daudi cells. These two functions require different structural regions of the antibody and are relevant to the clinical effect induced by rituximab. The protocols allow the side-to-side comparison of a reference rituximab and a marketed rituximab biosimilar. The evaluated products showed differences both in target binding and CDC induction, suggesting that there are underlying physicochemical differences and highlighting the need to analyze the impact of those differences in the clinical setting. The methods reported here constitute simple and inexpensive in vitro models for the evaluation of the activity of rituximab biosimilars. Thus, they can be useful during biosimilar development, as well as for quality control in biosimilar production. Furthermore, the presented methods can be extrapolated to other therapeutic mAbs.

  17. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2010-03-01

    Full Text Available The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates.We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data.Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct-interaction detection and TFBS-discovery accuracy. We estimated the accuracy

  18. Radiolabelling of phoneutria nigriventer spider toxin (Tx1): a tool to study its binding site

    International Nuclear Information System (INIS)

    Santos, Raquel Gouvea dos; Diniz, Carlos Roberto; Nascimento, Marta Cordeiro; Lima, Maria Elena de

    1996-01-01

    The neurotoxin Tx1, isolated from the venom of the South American spider Phoneutria nigriventer produces tail elevation and spastic paralysis of posterior limbs after intracerebral ventricular injection in mice. Tx1 also produces ileum contraction in bioassay. We have investigated the binding of radioiodinated-Tx1 ( 125 I-Tx1) on the preparation of myenteric plexus-longitudinal muscle membrane from guinea pig ileum (MPLM) as a tool to characterize the interaction of this neurotoxin with its site. The neurotoxin Tx1 was radioiodinated with Na 125 I by the lactoperoxidase method. 125 I-Tx1 specifically binds to a single class of noninteracting binding sites of high affinity (Kd= 3.5 x 10 -10 M) and low capacity (1.2 pmol/mg protein). The specific binding increased in parallel with the protein concentration. In competition experiments the ligands of ionic channels used (sodium, potassium and calcium) did not affect the binding of 125 I-Tx1 to MPLM neither did the cholinergic ligands (hemicholinium-3, hexamethonium, d-tubocurarine and atropine). Another neurotoxin (Tx2-6, one of the isoforms of Tx2 pool) decreased toxin with MPLM and showed that toxin has a specific and saturable binding site in guinea pig ileum and this binding site appears to be related to the Tx2 site. (author)

  19. 2-[125I]iodomelatonin binding sites in hamster brain membranes: pharmacological characteristics and regional distribution

    International Nuclear Information System (INIS)

    Duncan, M.J.; Takahashi, J.S.; Dubocovich, M.L.

    1988-01-01

    Studies in a variety of seasonally breeding mammals have shown that melatonin mediates photoperiodic effects on reproduction. Relatively little is known, however, about the site(s) or mechanisms of action of this hormone for inducing reproductive effects. Although binding sites for [3H]melatonin have been reported previously in bovine, rat, and hamster brain, the pharmacological selectivity of these sites was never demonstrated. In the present study, we have characterized binding sites for a new radioligand, 2-[125I]iodomelatonin, in brains from a photoperiodic species, the Syrian hamster. 2-[125I]Iodomelatonin labels a high affinity binding site in hamster brain membranes. Specific binding of 2-[125I]iodomelatonin is rapid, stable, saturable, and reversible. Saturation studies demonstrated that 2-[125I]iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 3.3 +/- 0.5 nM and a total binding capacity (Bmax) of 110.2 +/- 13.4 fmol/mg protein (n = 4). The Kd value determined from kinetic analysis (3.1 +/- 0.9 nM; n = 5) was very similar to that obtained from saturation experiments. Competition experiments showed that the relative order of potency of a variety of indoles for inhibition of 2-[125I]iodomelatonin binding site to hamster brain membranes was as follows: 6-chloromelatonin greater than or equal to 2-iodomelatonin greater than N-acetylserotonin greater than or equal to 6-methoxymelatonin greater than or equal to melatonin greater than 6-hydroxymelatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 5-methoxytryptophol greater than 5-methoxytryptamine greater than or equal to 5-methoxy-N,N-dimethyltryptamine greater than N-acetyltryptamine greater than serotonin greater than 5-methoxyindole (inactive)

  20. Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP. The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation.

  1. Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Fijten, H.P.D.; Setten, van M.C.

    2005-01-01

    The therapeutic parenteral application of llama single-domain antibody fragments (VHHs) is hampered by their small size, resulting in a fast elimination from the body. Here we describe a method to increase the serum half-life of VHHs in pigs by fusion to another VHH binding to porcine immunoglobulin

  2. Autoradiographic localization of GABA-regulated chloride ionophore binding site using t-[3H]butylbicycloorthobenzoate (TBOB)

    International Nuclear Information System (INIS)

    O'Connor, L.H.; McEwen, B.S.

    1986-01-01

    t-Butylbicycloorthobenzoate (TBOB) has been shown to bind with high affinity to sites on or near the chloride ionophore in rat brain membrane preparations. The present study used in vitro quantitative autoradiography to localize the regional distribution of [ 3 H]TBOB binding sites in rat forebrain. Receptors were labelled with 10 nM [ 3 H]TBOB. Nonspecific binding was determined by adding 10 μM picrotoxin to the incubation. Autoradiograms were generated using LKB Ultrofilm and then quantitated using computer-assisted spot-densitometry. The highest specific binding was found in frontal cortex layer 4, islands of Calleja, and ventral palladium. High binding was also found in many regions including anterior hypothalamic n., ventromedial hypothalamic n., dentate gyrus, stratum oriens and stratum lacunosum moleculare of hippocampus, and substantia nigra. Nonspecific binding represented 5 to 15% of total binding and was uniformly low throughout all brain regions. Thus, this selective probe for GABA-regulated chloride ionophore binding sites should provide a useful tool for characterizing this system and its relationship to convulsant and depressant drug action

  3. Hoogsteen base pairs proximal and distal to echinomycin binding sites on DNA

    International Nuclear Information System (INIS)

    Mendel, D.; Dervan, P.B.

    1987-01-01

    Forms of the DNA double helix containing non-Watson-Crick base-pairing have been discovered recently based on x-ray diffraction analysis of quionoxaline antibiotic-oligonucleotide complexes. In an effort to find evidence for Hoogsteen base-pairing at quinoxaline-binding sites in solution, chemical footprinting (differential cleavage reactivity) of echinomycin bound to DNA restriction fragments was examined. The authors report that purines (A>G) in the first and/or fourth base-pair positions of occupied echinomycin-binding sites are hyperreactive to diethyl pyrocarbonate. The correspondence of the solid-state data and the sites of diethyl pyrocarbonate hyperreactivity suggests that diethyl pyrocarbonate may be a sensitive reagent for the detection of Hoogsteen base-pairing in solution. Moreover, a 12-base-pair segment of alternating A-T DNA, which is 6 base pairs away from the nearest strong echinomycin-binding site, is also hyperreactive to diethyl pyrocarbonate in the presence of echinomycin. This hyperreactive segment may be an altered form of right-handed DNA that is entirely Hoogsteen base-paired

  4. Characterization of [125I]endothelin-1 binding sites in rat cardiac membrane fragments

    International Nuclear Information System (INIS)

    Gu, X.H.; Casley, D.J.; Nayler, W.G.

    1989-01-01

    Standard binding and displacement techniques were used to identify high-affinity binding sites for [ 125 I]-labeled endothelin-1 (ET-1) in membranes harvested from the hearts of adult female Sprague-Dawley rats. A single population of binding sites was identified, with a KD of 0.20 +/- 0.03 nM at 37 degrees C, and a Bmax of 93.5 +/- 6.4 fmol/mg protein. Bound [ 125 I]ET-1 was displaced by ET-1 (10(-13)-10(-8) M), with a Ki of 0.08 nM. Neither (-)Bay K 8644 (10(-11)-10(-5) M), prenylamine (10(-11)-10(-5) M), (+)-cis-diltiazem (10(-10)-10(-5) M), (-)D888 (10(-10)-10(-5) M), nicardipine (10(-10)-10(-5) M), lidoflazine (10(-11)-10(-5) M), flunarizine (10(-11)-10(-5) M), omega-conotoxin (10(-13)-10(-7) M), nor prazosin (10(-10)-10(-5) M) displaced the bound ligand. Binding occurred in the absence of Ca2+ and was absent in heat-denatured membranes. These results are interpreted to mean that [ 125 I]ET-1 binds to a single class of high-affinity binding sites that differ from those occupied by known regulators of voltage activated L- and N-type Ca2+ channels

  5. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments

    International Nuclear Information System (INIS)

    Kirley, Terence L.; Greis, Kenneth D.; Norman, Andrew B.

    2016-01-01

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab’) 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab’) 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. - Highlights: • TCEP agarose is effective for selective reduction of a single Fab disulfide bond. • This disulfide is solvent accessible and distant from the antigen binding site. • A variety of buffers of varying pHs can be used, simplifying

  6. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Felix Hart

    2017-05-01

    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  7. Boronated monoclonal antibody conjugates for neutron capture therapy

    International Nuclear Information System (INIS)

    Borg, D.C.; Elmore, J.J. Jr.; Ferrone, S.

    1986-01-01

    This paper describes the effectiveness of 10 B-labeled monoclonal antibodies against Colo-38 human melanoma in vitro. The authors obtained high boron to antibody ratios while maintaining antibody activity by using dextran intermediate carriers to link 10 B to the antibody. They developed a double cell quasi-competitive binding bioassay to minimize the effects of nonspecific binding of boronated complexes to cells. 1 fig., 2 tabs

  8. SP-A binding sites on bovine alveolar macrophages.

    Science.gov (United States)

    Plaga, S; Plattner, H; Schlepper-Schaefer, J

    1998-11-25

    Surfactant protein A (SP-A) binding to bovine alveolar macrophages was examined in order to characterize SP-A binding proteins on the cell surface and to isolate putative receptors from these cells that could be obtained in large amounts. Human SP-A, unlabeled or labeled with gold particles, was bound to freshly isolated macrophages and analyzed with ELISA or the transmission electron microscope. Binding of SP-A was inhibited by Ca2+ chelation, by an excess of unlabeled SP-A, or by the presence of 20 mg/ml mannan. We conclude that bovine alveolar macrophages expose binding sites for SP-A that are specific and that depend on Ca2+ and on mannose residues. For isolation of SP-A receptors with homologous SP-A as ligand we isolated SP-A from bovine lung lavage. SDS-PAGE analysis of the purified SP-A showed a protein of 32-36 kDa. Functional integrity of the protein was demonstrated. Bovine SP-A bound to Dynabeads was used to isolate SP-A binding proteins. From the fractionated and blotted proteins of the receptor preparation two proteins bound SP-A in a Ca2+-dependent manner, a 40-kDa protein showing mannose dependency and a 210-kDa protein, showing no mannose sensitivity. Copyright 1998 Academic Press.

  9. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  10. Mapping the heparin-binding site of the BMP antagonist gremlin by site-directed mutagenesis based on predictive modelling.

    Science.gov (United States)

    Tatsinkam, Arnold Junior; Mulloy, Barbara; Rider, Christopher C

    2015-08-15

    Gremlin is a member of the CAN (cerberus and DAN) family of secreted BMP (bone morphogenetic protein) antagonists and also an agonist of VEGF (vascular endothelial growth factor) receptor-2. It is critical in limb skeleton and kidney development and is re-expressed during tissue fibrosis. Gremlin binds strongly to heparin and heparan sulfate and, in the present study, we sought to investigate its heparin-binding site. In order to explore a putative non-contiguous binding site predicted by computational molecular modelling, we substituted a total of 11 key arginines and lysines located in three basic residue sequence clusters with homologous sequences from cerberus and DAN (differential screening selected gene abberative in neuroblastoma), CAN proteins which lack basic residues in these positions. A panel of six Myc-tagged gremlin mutants, MGR-1-MGR-6 (MGR, mutant gremlin), each containing different combinations of targeted substitutions, all showed markedly reduced affinity for heparin as demonstrated by their NaCl elution on heparin affinity chromatography, thus verifying our predictions. Both MGR-5 and MGR-6 retained BMP-4-binding activity comparable to that of wild-type gremlin. Low-molecular-mass heparin neither promoted nor inhibited BMP-4 binding. Finally, glutaraldehyde cross-linking demonstrated that gremlin forms non-covalent dimers, similar behaviour to that of DAN and also PRDC (protein related to cerberus and DAN), another CAN protein. The resulting dimer would possess two heparin-binding sites, each running along an exposed surface on the second β-strand finger loop of one of the monomers. © 2015 Authors; published by Portland Press Limited.

  11. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    Directory of Open Access Journals (Sweden)

    Deng W-M

    2009-02-01

    Full Text Available Abstract Background Dystroglycan (Dg is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C-terminal PPXY motif has been established as a binding site for Dystrophin (Dys WW-domain. However, our previous studies indicate that both Dystroglycan PPXY motives, WWbsI and WWbsII can bind Dystrophin protein in vitro. Results We now find that both WW binding sites are important for maintaining full Dg function in the establishment of oocyte polarity in Drosophila. If either WW binding site is mutated, the Dg protein can still be active. However, simultaneous mutations in both WW binding sites abolish the Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo. Additionally, sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal a high level of conservation. This preservation throughout evolution supports the idea that both WW binding sites are functionally required. Conclusion Based on the obtained results we propose that the presence of the two WW binding sites in Dystroglycan secures the essential interaction between Dg and Dys and might further provide additional regulation for the cytoskeletal interactions of this complex.

  12. Entamoeba histolytica and E. dispar trophozoites in the liver of hamsters: in vivo binding of antibodies and complement

    Directory of Open Access Journals (Sweden)

    Gomes Maria A

    2010-03-01

    Full Text Available Abstract Background Human amoebiasis is caused by the parasitic protozoan Entamoeba histolytica that lives in the large intestine of hosts, where can produce asymptomatic colonization until severe invasive infections with blood diarrhea and spreading to other organs. The amoebic abscesses in liver are the most frequent form of amoebiasis outside intestine and still there are doubts about the pathogenic mechanisms involved in their formation. In this study we evaluated the in situ binding of antibodies, C3 and C9 complement components on trophozoites, in livers of hamsters infected with E. histolytica or E. dispar. These parameters were correlated with the extension of the hepatic lesions observed in these animals and with trophozoites survivor. Methods Hamsters were inoculated intra-hepatically with 100,000 trophozoites of E. histolytica or E. dispar strain and necropsied 12, 24, 48, 72, 144 and 192 h after inoculation. Antibodies, C3 and C9 binding to trophozoites were detected by immunohistochemistry. The estimation of the necrosis area and the number of labeled trophozoites was performed using digital morphometry analysis. Results In the liver sections of animals inoculated with the amoebas, the binding of antibodies to E. histolytica trophozoites was significantly lower than to E. dispar trophozoites. Trophozoites of E. dispar were also more frequently vacuolated and high labeled cellular debris observed in the lesions. Positive diffuse reaction to C3 complement component was more intense in livers of animals inoculated with E. histolytica after 24 and 72 h of infection. C3(+ and C9(+ trophozoites were detected in the vascular lumen, granulomas and inside and in the border of necrotic areas of both infected group animals. C3(+ and C9(+ trophozoite debris immunostaining was higher in livers of E. dispar than in livers of E. histolytica. A positive correlation between necrotic areas and number of C9(+ trophozoites was observed in animals

  13. Identification of nucleic acid binding sites on translin-associated factor X (TRAX protein.

    Directory of Open Access Journals (Sweden)

    Gagan Deep Gupta

    Full Text Available Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity.

  14. Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    Science.gov (United States)

    Gupta, Gagan Deep; Kumar, Vinay

    2012-01-01

    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937

  15. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lin, David Yin-wei; Tanaka, Yoshimasa; Iwasaki, Masashi; Gittis, Apostolos G.; Su, Hua-Poo; Mikami, Bunzo; Okazaki, Taku; Honjo, Tasuku; Minato, Nagahiro; Garboczi, David N. (NIH); (Kyoto)

    2008-07-29

    Signaling through the programmed death 1 (PD-1) inhibitory receptor upon binding its ligand, PD-L1, suppresses immune responses against autoantigens and tumors and plays an important role in the maintenance of peripheral immune tolerance. Release from PD-1 inhibitory signaling revives 'exhausted' virus-specific T cells in chronic viral infections. Here we present the crystal structure of murine PD-1 in complex with human PD-L1. PD-1 and PD-L1 interact through the conserved front and side of their Ig variable (IgV) domains, as do the IgV domains of antibodies and T cell receptors. This places the loops at the ends of the IgV domains on the same side of the PD-1/PD-L1 complex, forming a surface that is similar to the antigen-binding surface of antibodies and T cell receptors. Mapping conserved residues allowed the identification of residues that are important in forming the PD-1/PD-L1 interface. Based on the structure, we show that some reported loss-of-binding mutations involve the PD-1/PD-L1 interaction but that others compromise protein folding. The PD-1/PD-L1 interaction described here may be blocked by antibodies or by designed small-molecule drugs to lower inhibitory signaling that results in a stronger immune response. The immune receptor-like loops offer a new surface for further study and potentially the design of molecules that would affect PD-1/PD-L1 complex formation and thereby modulate the immune response.

  16. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis.

    Science.gov (United States)

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Ootsubo, Michiko; Izawa, Ken-ichi; Kohroki, Junya; Masuho, Yasuhiko

    2016-01-01

    The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.

    Science.gov (United States)

    Bhagavat, Raghu; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-09-01

    Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Radioimmunological proof of thyroglobulin antibodies in humans by the use of a double antibody method

    International Nuclear Information System (INIS)

    Waller, V.

    1982-01-01

    Thyroid antibodies, especially thyroglobulin antibodies, allow themselves to be proven with the double antibody method, in competitive radio binding assays and with the solid phase technique. These methods offer advantages relative to sensitivity and quantifiability. In this work a sensitive radioimmunoassay as a double antibody method was worked out whereby a 125 I-thyroglobulin/thyroglobulin antibody immune complex was precipitated out using anti-human immunoglobulin. The measured results from the radioimmunoassay show a good correlation with the results of the immune histological findings. A high to very high Tg antibody level occurs with autoimmune thyroiditis (80%), primary hypothyroidism (74%) and hyperthyroidism (70%). The control values with healthy people came to less than 5% specific binding. In correlation with the results of other authors this method is advantageous relative to test start and evaluation procedures. (orig.) [de

  19. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  20. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  1. Crystal structure of the anti-(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts.

    Science.gov (United States)

    Boehm, M K; Corper, A L; Wan, T; Sohi, M K; Sutton, B J; Thornton, J D; Keep, P A; Chester, K A; Begent, R H; Perkins, S J

    2000-03-01

    MFE-23 is the first single-chain Fv antibody molecule to be used in patients and is used to target colorectal cancer through its high affinity for carcinoembryonic antigen (CEA), a cell-surface member of the immunoglobulin superfamily. MFE-23 contains an N-terminal variable heavy-chain domain joined by a (Gly(4)Ser)(3) linker to a variable light-chain (V(L)) domain (kappa chain) with an 11-residue C-terminal Myc-tag. Its crystal structure was determined at 2.4 A resolution by molecular replacement with an R(cryst) of 19.0%. Five of the six antigen-binding loops, L1, L2, L3, H1 and H2, conformed to known canonical structures. The sixth loop, H3, displayed a unique structure, with a beta-hairpin loop and a bifurcated apex characterized by a buried Thr residue. In the crystal lattice, two MFE-23 molecules were associated back-to-back in a manner not seen before. The antigen-binding site displayed a large acidic region located mainly within the H2 loop and a large hydrophobic region within the H3 loop. Even though this structure is unliganded within the crystal, there is an unusually large region of contact between the H1, H2 and H3 loops and the beta-sheet of the V(L) domain of an adjacent molecule (strands DEBA) as a result of intermolecular packing. These interactions exhibited remarkably high surface and electrostatic complementarity. Of seven MFE-23 residues predicted to make contact with antigen, five participated in these lattice contacts, and this model for antigen binding is consistent with previously reported site-specific mutagenesis of MFE-23 and its effect on CEA binding.

  2. Binding sites for 3H-LTC4 in membranes from guinea pig ileal longitudinal muscle

    International Nuclear Information System (INIS)

    Nicosia, S.; Crowley, H.J.; Oliva, D.; Welton, A.F.

    1984-01-01

    Leutriene (LTC4) is one of the components of Slow Reacting Substance of Anaphylaxis (SRS-A) and is a potent constrictor of guinea pig ilea. The contraction is likely to be a receptor-mediated process. Here the authors report the existence of specific binding sites for 3 H-LTC4 in a crude membrane preparation from guinea pig ileal longitudinal muscle. At 4 degrees C in the presence of 20 mM Serine-borate, binding increases linearly with protein concentration, reaches equilibrium in 10 minutes, and is reversible upon addition of 3 x 10(-5) M unlabelled LTC4. The dissociation curve is consistent with the existence of more than one class of binding site. Ca++ and Mg++ greatly enhance the binding of 3 H-LTC4 at equilibrium. In the presence of 5 mM CaCl 2 and MgCl 2 not only LTC4 (IC50 10(-7)M), but also LTD4 and the SRS-A antagonist FPL 55712 can compete with 3 H-LTC4 for its binding sites. FPL 55712 only displaces 60-70% of the total amount bound, while LTC4 displaces 90-95%. These studies indicate that multiple classes of binding sites exist for 3 H-LTC4 in guinea pig ileal longitudinal muscle, and that at least part of these binding sites might be related to the ability of LTC4 to contract guinea pig ilea

  3. Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41.

    Directory of Open Access Journals (Sweden)

    Charles Sabin

    Full Text Available The human monoclonal antibody (mAb HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1 of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool.

  4. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    OpenAIRE

    Horton, R. W.; Lowther, S.; Chivers, J.; Jenner, P.; Marsden, C. D.; Testa, B.

    1988-01-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiap...

  5. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    Science.gov (United States)

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  6. Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms.

    Science.gov (United States)

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2017-04-17

    Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) technology, the former has four flow cells connected by serial flow configuration, whereas the latter presents 36 reaction spots in parallel through an improvised 6 x 6 crisscross microfluidic channel configuration. The IBIS MX96 also operates based on the SPR sensor technology, with an additional imaging feature that provides detection in spatial orientation. This detection technique coupled with the Continuous Flow Microspotter (CFM) expands the throughput significantly by enabling multiplex array printing and detection of 96 reaction sports simultaneously. In contrast, the Octet RED384 is based on the BioLayer Interferometry (BLI) optical principle, with fiber-optic probes acting as the biosensor to detect interference pattern changes upon binding interactions at the tip surface. Unlike the SPR-based platforms, the BLI system does not rely on continuous flow fluidics; instead, the sensor tips collect readings while they are immersed in analyte solutions of a 384-well microplate during orbital agitation. Each of these biosensor platforms has its own advantages and disadvantages. To provide a direct comparison of these instruments' ability to provide quality kinetic data, the described protocols illustrate experiments that use the same assay format and the same high-quality reagents to characterize antibody-antigen kinetics that fit the simple 1:1 molecular interaction model.

  7. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    International Nuclear Information System (INIS)

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-01-01

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme

  8. A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules

    Czech Academy of Sciences Publication Activity Database

    Zhang, A.X.; Murelli, R.P.; Bařinka, Cyril; Michel, J.; Cocleaza, A.; Jorgensen, W.L.; Lubkowski, J.; Spiegel, D.A.

    2010-01-01

    Roč. 132, č. 36 (2010), s. 12711-12716 ISSN 0002-7863 Institutional research plan: CEZ:AV0Z50520701 Keywords : Prostate -specific membrane antigen * antibody recruiting molecules * Structure-activity relationship Subject RIV: CE - Biochemistry Impact factor: 9.019, year: 2010

  9. Mapping of monoclonal antibody- and receptor-binding domains on human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) using a surface plasmon resonance-based biosensor.

    Science.gov (United States)

    Laricchia-Robbio, L; Liedberg, B; Platou-Vikinge, T; Rovero, P; Beffy, P; Revoltella, R P

    1996-10-01

    An automated surface plasmon resonance (SPR)-based biosensor system has been used for mapping antibody and receptor-binding regions on the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) molecule. A rabbit antimouse IgG1-Fc antibody (RAM.Fc) was coupled to an extended carboxymethylated-hydrogel matrix attached to a gold surface in order to capture an anti-rhGM-CSF monoclonal antibody (MAb) injected over the sensing layer. rhGM-CSF was subsequently injected and allowed to bind to this antibody. Multisite binding assays were then performed, by flowing sequentially other antibodies and peptides over the surface, and the capacity of the latter to interact with the entrapped rhGM-CSF in a multimolecular complex was monitored in real time with SPR. Eleven MAb (all IgG1K), were analyzed: respectively, four antipeptide MAb raised against three distinct epitopes of the cytokine (two clones against residues 14-24, that includes part of the first alpha-helix toward the N-terminal region; one clone against peptide 30-41, an intrahelical loop; and one clone against residues 79-91, including part of the third alpha-helix) and seven antiprotein MAbs raised against the entire rhGM-CSF, whose target native epitopes are still undetermined. In addition, the binding capacity to rhGM-CSF of a synthetic peptide, corresponding to residues 238-254 of the extracellular human GM-CSF receptor alpha-chain, endowed with rhGM-CSF binding activity, was tested. The results from experiments performed with the biosensor were compared with those obtained by a sandwich enzyme-linked immunosorbent assay (ELISA), using the same reagents. The features of the biosensor technology (fully automated, measure in real time, sharpened yes/no response, less background disturbances, no need for washing step or labeling of the reagent) offered several advantages in these studies of MAb immunoreactivity and epitope mapping, giving a much better resolution and enabling more distinct

  10. Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Richter, Erik; Galbo, H

    1986-01-01

    ]ouabain-binding-site concentration in the diaphragm, but in the heart ventricles, the K+-dependent 3-O-methylfluorescein phosphatase activity increased by 20% (P less than 0.001). Muscle inactivity induced by denervation, plaster immobilisation or tenotomy reduced the [3H]ouabain-binding-site concentration by 20-30% (P less than 0...

  11. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    Science.gov (United States)

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  12. Epitope mapping of the alpha-chain of the insulin-like growth factor I receptor using antipeptide antibodies.

    Science.gov (United States)

    Delafontaine, P; Ku, L; Ververis, J J; Cohen, C; Runge, M S; Alexander, R W

    1994-12-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells (VSMC). The IGF I receptor (IGF IR) is a heterotetramer composed of two cross-linked extracellular alpha-chains and two membrane-spanning beta-chains that contain a tyrosine-kinase domain. It has a high degree of sequence similarity to the insulin receptor (IR), and the putative ligand-specific binding site has been localized to a cysteine-rich region (CRR) of the alpha-chain. To obtain insights into antigenic determinants of the IGF IR, we raised a panel of site-specific polyclonal antibodies against short peptide sequences N-terminal to and within the CRR. Several antibodies raised against linear epitopes within the CRR bound to solubilized and native rat and human IGF IR by ELISA, did not cross-react with IR, but unexpectedly failed to inhibit 125I-IGF I binding. A polyclonal antibody directed against a 48-amino acid synthetic peptide, corresponding to a region of the CRR postulated to be essential for ligand binding, failed to react with either solubilized, reduced or intact IGF IR. Three antibodies specific for the N-terminus of the alpha-chain reacted with solubilized and native IGF IR. One of these, RAB 6, directed against amino acids 38-44 of the IGF IR, inhibited 125I-IGF I binding to rat aortic smooth muscle cells (RASM) and to IGF IR/3T3 cells (overexpressing human IGF IR) by up to 45%. Immunohistochemical analysis revealed strong IGF IR staining in the medial smooth muscle cell layer of rat aorta. These findings are consistent with a model wherein conformational epitopes within the CRR and linear epitopes within the N-terminus of the alpha-chain contribute to the IGF I binding pocket. These antibodies should provide a valuable tool to study structure-function relationships and in vivo regulation of the IGF IR.

  13. Protein adsorption/desorption and antibody binding stoichiometry on silicon interferometric biosensors examined with TOF-SIMS

    Science.gov (United States)

    Gajos, Katarzyna; Budkowski, Andrzej; Petrou, Panagiota; Pagkali, Varvara; Awsiuk, Kamil; Rysz, Jakub; Bernasik, Andrzej; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios

    2018-06-01

    Time-of-flight secondary ion mass spectrometry has been employed to examine, with biomolecular discrimination, sensing arm areas (20 μm × 600 μm) of integrated onto silicon chips Mach-Zehnder interferometers aiming to optimize their biofunctionalization with regard to indirect immunochemical (competitive) detection of ochratoxin A. Sensing areas are examined after: modification with (3-aminopropyl)triethoxysilane, spotting of OTA-ovalbumin conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin, reaction with OTA-specific mouse monoclonal antibody followed by goat anti-mouse IgG secondary antibody. Component mass loadings of all proteins involved in immunodetection are determined from TOF-SIMS micro-analysis combined with ellipsometry of planar surfaces. These data show that partial desorption of surface-bound probe and blocking protein takes place upon primary immunoreaction to a degree that depends on probe concentration in spotting solution. Taking into account this desorption, apparent binding stoichiometry of both antibodies in immune complexes formed onto chip surface is determined more accurately than the respective evaluation based on real-time sensor response. In addition, mass loadings for probe and secondary antibody is observed to saturate for optimum probe concentrations. Also, principal component analysis of TOF-SIMS data could resolve both immunoreactions and biofunctionalization and discriminate surfaces prepared with optimum probe concentrations from those prepared using suboptimum ones.

  14. Protein adsorption/desorption and antibody binding stoichiometry on silicon interferometric biosensors examined with TOF-SIMS

    KAUST Repository

    Gajos, Katarzyna

    2018-03-05

    Time-of-flight secondary ion mass spectrometry has been employed to examine, with biomolecular discrimination, sensing arm areas (20 μm x 600 μm) of integrated onto silicon chips Mach-Zehnder interferometers aiming to optimize their biofunctionalization with regard to indirect immunochemical (competitive) detection of ochratoxin A. Sensing areas are examined after: modification with (3-aminopropyl)triethoxysilane, spotting of OTA-ovalbumin conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin, reaction with OTA-specific mouse monoclonal antibody followed by goat anti-mouse IgG secondary antibody. Component mass loadings of all proteins involved in immunodetection are determined from TOF-SIMS micro-analysis combined with ellipsometry of planar surfaces. These data show that partial desorption of surface-bound probe and blocking protein takes place upon primary immunoreaction to a degree that depends on probe concentration in spotting solution. Taking into account this desorption, apparent binding stoichiometry of both antibodies in immune complexes formed onto chip surface is determined more accurately than the respective evaluation based on real-time sensor response. In addition, mass loadings for probe and secondary antibody is observed to saturate for optimum probe concentrations. Also, principal component analysis of TOF-SIMS data could resolve both immunoreactions and biofunctionalization and discriminate surfaces prepared with optimum probe concentrations from those prepared using suboptimum ones.

  15. Protein adsorption/desorption and antibody binding stoichiometry on silicon interferometric biosensors examined with TOF-SIMS

    KAUST Repository

    Gajos, Katarzyna; Budkowski, Andrzej; Petrou, Panagiota; Pagkali, Varvara; Awsiuk, Kamil; Rysz, Jakub; Bernasik, Andrzej; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios

    2018-01-01

    Time-of-flight secondary ion mass spectrometry has been employed to examine, with biomolecular discrimination, sensing arm areas (20 μm x 600 μm) of integrated onto silicon chips Mach-Zehnder interferometers aiming to optimize their biofunctionalization with regard to indirect immunochemical (competitive) detection of ochratoxin A. Sensing areas are examined after: modification with (3-aminopropyl)triethoxysilane, spotting of OTA-ovalbumin conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin, reaction with OTA-specific mouse monoclonal antibody followed by goat anti-mouse IgG secondary antibody. Component mass loadings of all proteins involved in immunodetection are determined from TOF-SIMS micro-analysis combined with ellipsometry of planar surfaces. These data show that partial desorption of surface-bound probe and blocking protein takes place upon primary immunoreaction to a degree that depends on probe concentration in spotting solution. Taking into account this desorption, apparent binding stoichiometry of both antibodies in immune complexes formed onto chip surface is determined more accurately than the respective evaluation based on real-time sensor response. In addition, mass loadings for probe and secondary antibody is observed to saturate for optimum probe concentrations. Also, principal component analysis of TOF-SIMS data could resolve both immunoreactions and biofunctionalization and discriminate surfaces prepared with optimum probe concentrations from those prepared using suboptimum ones.

  16. (/sup 3/H)Spiperone binding sites in brain: autoradiographic localization of multiple receptors

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, J M; Niehoff, D L; Kuhar, M J [Johns Hopkins Univ., Baltimore, MD (USA). School of Medicine

    1981-01-01

    (/sup 3/H)Spiperone ((/sup 3/H)SP) binding sites were localized by light microscopic autoradiography, after in vitro labelling. The kinetic and pharmacological characteristics of these binding sites were studied in slide-mounted sections of rat forebrain, and optimal labeling conditions were defined. Autoradiograms were obtained by apposing emulsion-coated coverslips to labeled sections. Differential drug sensitivity allowed the selective displacement of (/sup 3/H)SP from dopamine receptors by ADTN, from serotonin receptors by cinanserin, from both by haloperidol and from unique spiperone sites by unlabeled spiperone. The various sites presented a differential anatomical localization. For example, only dopaminergic sites were found in the glomerular layer of the olfactory bulb; only serotonergic sites were found in lamina IV of the neocortex, and a high concentration of unique spiperone sites were found in parts of the hippocampus.

  17. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  18. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function.

    Science.gov (United States)

    Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M

    2018-04-15

    There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.

  19. PATTERN BASED DETECTION OF POTENTIALLY DRUGGABLE BINDING SITES BY LIGAND SCREENING

    Directory of Open Access Journals (Sweden)

    Uttam Pal

    2018-03-01

    Full Text Available This article describes an innovative way of finding the potentially druggable sites on a target protein, which can be used for orthosteric and allosteric lead detection in a single virtual screening setup. Druggability estimation for an alternate binding site other than the canonical ligand-binding pocket of an enzyme is rewarding for several inherent benefits. Allostery is a direct and efficient way of regulating biomacromolecule function. The allosteric modulators can fine-tune protein mechanics. Besides, allosteric sites are evolutionarily less conserved/more diverse even in very similarly related proteins, thus, provides high degree of specificity in targeting a particular protein. Therefore, targeting of allosteric sites is gaining attention as an emerging strategy in rational drug design. However, the experimental approaches provide a limited degree of characterization of new allosteric sites. Computational approaches are useful to analyze and select potential allosteric sites for drug discovery. Here, the use of molecular docking, which has become an integral part of the drug discovery process, has been discussed to predict the druggability of novel allosteric sites as well as the active site on target proteins by ligand screening. Genetic algorithm was used for docking and the whole protein was placed in the search space. For each ligand in the library of small molecules, the genetic algorithm was run for multiple times to populate all the druggable sites in the target protein, which was then translated into two dimensional density maps or “patterns”. High density clusters were observed for lead like molecules in these pattern diagrams. Each cluster in such a pattern diagram indicated a plausible binding site and the density gave its druggability score in terms of weighted probabilities. The patterns were filtered to find the leads for each of the druggable sites on the target protein. Such a novel pattern based analysis of the

  20. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.

    Science.gov (United States)

    Pérot, Stéphanie; Sperandio, Olivier; Miteva, Maria A; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-08-01

    Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.

  1. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    Science.gov (United States)

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  2. Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP.

    Science.gov (United States)

    Page, Stephen H; Wright, Edward K; Gama, Lucio; Clements, Janice E

    2011-01-01

    CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity.

  3. Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1

    Directory of Open Access Journals (Sweden)

    Wang Pu

    2010-10-01

    Full Text Available Abstract The Epstein-Barr Virus (EBV Nuclear Antigen 1 (EBNA1 protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP, regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP combined with massively parallel deep-sequencing (ChIP-Seq was used to identify cellular sites bound by EBNA1. Sites identified by ChIP-Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A consensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, suggesting that some of these sites are indirectly bound by EBNA1. EBNA1 also bound close to the transcriptional start sites of a large number of cellular genes, including HDAC3, CDC7, and MAP3K1, which we show are positively regulated by EBNA1. EBNA1 binding sites were enriched in some repetitive elements, especially LINE 1 retrotransposons, and had weak correlations with histone modifications and ORC binding. We conclude that EBNA1 can interact with a large number of cellular genes and chromosomal loci in latently infected cells, but that these sites are likely to represent a complex ensemble of direct and indirect EBNA

  4. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Science.gov (United States)

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  5. Polar bear hemoglobin and human Hb A0: same 2,3-diphosphoglycerate binding site but asymmetry of the binding?

    Science.gov (United States)

    Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J

    2002-11-01

    Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.

  6. Assignment of C1q-binding HLA antibodies as unacceptable HLA antigens avoids positive CDC-crossmatches prior to transplantation of deceased donor organs.

    Science.gov (United States)

    Juhl, David; Marget, Matthias; Hallensleben, Michael; Görg, Siegfried; Ziemann, Malte

    2017-03-01

    Soon, a virtual crossmatch shall replace the complement-dependent cytotoxicity (CDC) allocation crossmatch in the Eurotransplant region. To prevent positive CDC-crossmatches in the recipient centre, careful definition of unacceptable antigens is necessary. For highly sensitized patients, this is difficult by CDC alone. Assignment of all antibodies detected by sensitive assays, however, could prevent organ allocation. To assess the usefulness of the Luminex C1q-assay to prevent positive CDC-crossmatches, all CDC-crossmatches performed prior to deceased kidney transplantation in a 16-month-period were reviewed. Sera causing positive crossmatches were investigated by the C1q-assay. 31 out of 1432 crossmatches (2.2%) were positive. Sera involved in 26 positive crossmatches were available. C1q-binding donor-specific antibodies were detected in 19 sera (73.1%). The other sera were from recipients without any HLA antibodies detectable by CDC or common solid phase assays. Three patients had known Non-HLA antibodies causing positive CDC-results. Four crossmatches were only weak positive. Therefore, avoidance of donors with HLA antigens against whom C1q-binding antibodies were detected would have prevented all positive crossmatches due to HLA antibodies. Provided that all HLA specificities against which antibodies are detected by the Luminex C1q-assay are considered as unacceptable antigens, CDC-crossmatches prior to transplantation might safely be omitted in many patients. They should be maintained in highly immunized patients, however, for whom assignment of all C1q-positive antibodies as unacceptable antigens could lead to a significant delay or even prevention of transplantation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A monoclonal antibody against PDGF B-chain inhibits PDGF-induced DNA synthesis in C3H fibroblasts and prevents binding of PDGF to its receptor.

    Science.gov (United States)

    Vassbotn, F S; Langeland, N; Hagen, I; Holmsen, H

    1990-09-01

    A monoclonal antibody (MAb 6D11) against platelet-derived growth factor (PDGF) was studied. We found that the MAb 6D11 in concentrations equimolar to PDGF blocked the [3H]thymidine incorporation in C3H/10T1/2 C18 fibroblasts stimulated by PDGF B-B and PDGF A-B. This inhibition was overcome by high doses of PDGF. The [3H]thymidine incorporation stimulated by other growth factors (aFGF, bFGF and bombesin) was not inhibited by the antibody. The MAb 6D11 blocked receptor binding of PDGF B-B, but not PDGF A-A. These findings suggest that the MAb 6D11 abolishes PDGF-induced DNA synthesis by blocking PDGF receptor binding. In this communication we demonstrate an isoform-specific monoclonal antibody against PDGF.

  8. Mechanistic insights into the neutralization of cytotoxic abrin by the monoclonal antibody D6F10.

    Directory of Open Access Journals (Sweden)

    Shradha Bagaria

    Full Text Available Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1∶10 molar concentration of abrin:antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.

  9. BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-01-01

    Full Text Available Abstract Background Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology. Results Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function, which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins. Conclusions This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.

  10. Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung

    International Nuclear Information System (INIS)

    Mak, J.C.; Barnes, P.J.

    1988-01-01

    125 I-Human calcitonin gene-related peptide (hCGRP) binding sites were localized in human and guinea pig lungs by an autoradiographic method. Scatchard analysis of saturation experiments from slide-mounted sections of guinea pig lung displayed specific 125 I-hCGRP binding sites with a dissociation constant (Kd) of 0.72 +/- 0.05 nM (mean +/- S.E.M., n = 3) and a maximal number of binding sites (Bmax) of 133.4 +/- 5.6 fmol/mg protein. In both human and guinea pig lung, autoradiography revealed that CGRP binding sites were widely distributed, with particularly dense labeling over bronchial and pulmonary blood vessels of all sizes and alveolar walls. Airway smooth muscle and epithelium of large airways was sparsely labeled but no labeling was found over submucosal glands. This localization corresponds well to the reported pattern of CGRP-like immunoreactive innervation. The findings of localization of CGRP binding sites on bronchial and pulmonary blood vessels indicate that CGRP may be important in the regulation of airway and pulmonary blood flow

  11. Effects of sodium on cell surface and intracellular 3H-naloxone binding sites

    International Nuclear Information System (INIS)

    Pollack, A.E.; Wooten, G.F.

    1987-01-01

    The binding of the opiate antagonist 3 H-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, 3 H-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables

  12. Involvement of two classes of binding sites in the interactions of cyclophilin B with peripheral blood T-lymphocytes.

    Science.gov (United States)

    Denys, A; Allain, F; Carpentier, M; Spik, G

    1998-12-15

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway, and is released in biological fluids. We recently reported that CyPB specifically binds to T-lymphocytes and promotes enhanced incorporation of CsA. The interactions with cellular binding sites involved, at least in part, the specific N-terminal extension of the protein. In this study, we intended to specify further the nature of the CyPB-binding sites on peripheral blood T-lymphocytes. We first provide evidence that the CyPB binding to heparin-Sepharose is prevented by soluble sulphated glycosaminoglycans (GAG), raising the interesting possibility that such interactions may occur on the T-cell surface. We then characterized CyPB binding to T-cell surface GAG and found that these interactions involved the N-terminal extension of CyPB, but not its conserved CsA-binding domain. In addition, we determined the presence of a second CyPB binding site, which we termed a type I site, in contrast with type II for GAG interactions. The two binding sites exhibit a similar affinity but the expression of the type I site was 3-fold lower. The conclusion that CyPB binding to the type I site is distinct from the interactions with GAG was based on the findings that it was (1) resistant to NaCl wash and GAG-degrading enzyme treatments, (2) reduced in the presence of CsA or cyclophilin C, and (3) unmodified in the presence of either the N-terminal peptide of CyPB or protamine. Finally, we showed that the type I binding sites were involved in an endocytosis process, supporting the hypothesis that they may correspond to a functional receptor for CyPB.

  13. Depigmented Allergoids Reveal New Epitopes with Capacity to Induce IgG Blocking Antibodies

    Directory of Open Access Journals (Sweden)

    M. Angeles López-Matas

    2013-01-01

    Full Text Available Background. The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Methods. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Results. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Conclusions. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT.

  14. Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin.

    Science.gov (United States)

    Nakamura, Toshio; Tonozuka, Takashi; Ide, Azusa; Yuzawa, Takayuki; Oguma, Keiji; Nishikawa, Atsushi

    2008-02-22

    Clostridium botulinum type C 16S progenitor toxin contains a hemagglutinin (HA) subcomponent, designated HA1, which appears to play an important role in the effective internalization of the toxin in gastrointestinal epithelial cells and in creating a broad specificity for the oligosaccharide structure that corresponds to various targets. In this study, using the recombinant protein fused to glutathione S-transferase, we investigated the binding specificity of the HA1 subcomponent to sugars and estimated the binding sites of HA1 based on X-ray crystallography and soaking experiments using various sugars. N-Acetylneuraminic acid, N-acetylgalactosamine, and galactose effectively inhibited the binding that occurs between glutathione S-transferase-HA1 and mucins, whereas N-acetylglucosamine and glucose did not inhibit it. The crystal structures of HA1 complex with N-acetylneuraminic acid, N-acetylgalactosamine, and galactose were also determined. There are two sugar-binding sites, sites I and II. Site I corresponds to the electron densities noted for all sugars and is located at the C-terminal beta-trefoil domain, while site II corresponds to the electron densities noted only for galactose. An aromatic amino acid residue, Trp176, at site I has a stacking interaction with the hexose ring of the sugars. On the other hand, there is no aromatic residue at site II; thus, the interaction with galactose seems to be poor. The double mutant W176A at site I and D271F at site II has no avidity for N-acetylneuraminic acid but has avidity for galactose. In this report, the binding specificity of botulinum C16S toxin HA1 to various sugars is demonstrated based on its structural features.

  15. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingshu; Shi, Wei; Chappell, James D.; Joyce, M. Gordon; Zhang, Yi; Kanekiyo, Masaru; Becker, Michelle M.; van Doremalen, Neeltje; Fischer, Robert; Wang, Nianshuang; Corbett, Kizzmekia S.; Choe, Misook; Mason, Rosemarie D.; Van Galen, Joseph G.; Zhou, Tongqing; Saunders, Kevin O.; Tatti, Kathleen M.; Haynes, Lia M.; Kwong, Peter D.; Modjarrad, Kayvon; Kong, Wing-Pui; McLellan, Jason S.; Denison, Mark R.; Munster, Vincent J.; Mascola, John R.; Graham, Barney S.; Gallagher, Tom

    2018-03-07

    ABSTRACT

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ~35% mortality. The potential for a future pandemic originating from animal reservoirs or health care-associated events is a major public health concern. There are no vaccines or therapeutic agents currently available for MERS-CoV. Using a probe-based single B cell cloning strategy, we have identified and characterized multiple neutralizing monoclonal antibodies (MAbs) specifically binding to the receptor-binding domain (RBD) or S1 (non-RBD) regions from a convalescent MERS-CoV-infected patient and from immunized rhesus macaques. RBD-specific MAbs tended to have greater neutralizing potency than non-RBD S1-specific MAbs. Six RBD-specific and five S1-specific MAbs could be sorted into four RBD and three non-RBD distinct binding patterns, based on competition assays, mapping neutralization escape variants, and structural analysis. We determined cocrystal structures for two MAbs targeting the RBD from different angles and show they can bind the RBD only in the “out” position. We then showed that selected RBD-specific, non-RBD S1-specific, and S2-specific MAbs given prophylactically prevented MERS-CoV replication in lungs and protected mice from lethal challenge. Importantly, combining RBD- and non-RBD MAbs delayed the emergence of escape mutations in a cell-based virus escape assay. These studies identify MAbs targeting different antigenic sites on S that will be useful for defining mechanisms of MERS-CoV neutralization and for developing more effective interventions to prevent or treat MERS-CoV infections.

    IMPORTANCEMERS-CoV causes a highly lethal respiratory infection for which no vaccines or antiviral therapeutic options are currently available. Based on continuing exposure from established reservoirs in dromedary camels and bats, transmission of MERS-CoV into humans and future outbreaks are expected. Using

  16. A model-based approach to identify binding sites in CLIP-Seq data.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can identify ∼50% more validated binding targets than the original ad hoc method and two recently published methods. To facilitate the application of the algorithm, we have released an R package, MiClip (http://cran.r-project.org/web/packages/MiClip/index.html, and a public web-based graphical user interface software (http://galaxy.qbrc.org/tool_runner?tool_id=mi_clip for customized analysis.

  17. Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics

    Directory of Open Access Journals (Sweden)

    Gowda Veerabasappa T

    2007-12-01

    Full Text Available Abstract Background The snake venom group IIA secreted phospholipases A2 (SVPLA2, present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL at the membrane/water interface and by highly specific direct binding to: (i presynaptic membrane-bound or intracellular receptors; (ii natural PLA2-inhibitors from snake serum; and (iii coagulation factors present in human blood. Results Using surface plasmon resonance (SPR protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS. The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.

  18. DNA Binding Drugs Targeting the Regulatory DNA Binding Site of the ETS Domain Family Transcription Factor Associated With Human Breast Cancer

    National Research Council Canada - National Science Library

    Wang, Yong-Dong

    1999-01-01

    .... The key approach is to prevent the binding of two transcription factors, ESX and AP-2, to the consensus DNA binding sites contained within the Her2/neu promoter resulting in inhibition of transcription factor function...

  19. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  20. Specificity of cellular DNA-binding sites of microbial populations in a Florida reservoir

    International Nuclear Information System (INIS)

    Paul, J.H.; Pichard, S.L.

    1989-01-01

    The substrate specificity of the DNA-binding mechanism(s) of bacteria in a Florida reservoir was investigated in short- and long-term uptake studies with radiolabeled DNA and unlabeled competitors. Thymine oligonucleotides ranging in size from 2 base pairs to 19 to 24 base pairs inhibited DNA binding in 20-min incubations by 43 to 77%. Deoxynucleoside monophosphates, thymidine, and thymine had little effect on short-term DNA binding, although several of these compounds inhibited the uptake of the radiolabel from DNA in 4-h incubations. Inorganic phosphate and glucose-1-phosphate inhibited neither short- nor long-term binding of [ 3 H]- or [ 32 P]DNA, indicating that DNA was not utilized as a phosphorous source in this reservoir. RNA inhibited both short- and long-term radiolabeled DNA uptake as effectively as unlabeled DNA. Collectively these results indicate that aquatic bacteria possess a generalized nuclei acid uptake/binding mechanism specific for compounds containing phosphodiester bonds and capable of recognizing oligonucleotides as short as dinucleotides. This binding site is distinct from nucleoside-, nucleotide-, phosphomonoester-, and inorganic phosphate-binding sites. Such a nucleic acid-binding mechanism may have evolved for the utilization of extracellular DNA (and perhaps RNA), which is abundant in many marine and freshwater environments

  1. Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro

    International Nuclear Information System (INIS)

    Ebersole, B.L.J.

    1985-01-01

    The localization of [ 3 H]-d-lysergic acid diethylamide ([ 3 H]LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with [ 3 H]LSD in vitro revealed substantial specific [ 3 H]LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received [ 3 H]LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies of brain areas from mice that received injections of [ 3 H]LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free [ 3 H]LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of [ 3 H]LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of [ 3 H]LSD binding in hippocampus was attributable to a lower density of sites labeled by [ 3 H]LSD. The pharmacological identify of [ 3 H]LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens

  2. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    Science.gov (United States)

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-08

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids.

  3. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...

  4. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Directory of Open Access Journals (Sweden)

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  5. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  6. Phosphorus Binding Sites in Proteins: Structural Preorganization and Coordination

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Greisen, Per Junior; Junker, Märta Caroline

    2014-01-01

    to individual structures that bind to phosphate groups; here, we investigate a total of 8307 structures obtained from the RCSB Protein Data Bank (PDB). An analysis of the binding site amino acid propensities reveals very characteristic first shell residue distributions, which are found to be influenced...... by the characteristics of the phosphorus compound and by the presence of cobound cations. The second shell, which supports the coordinating residues in the first shell, is found to consist mainly of protein backbone groups. Our results show how the second shell residue distribution is dictated mainly by the first shell...

  7. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  8. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  9. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  10. Uses of monoclonal antibody 8H9

    Science.gov (United States)

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  11. Mechanism of adenylate kinase. Dose adenosine 5'-triphosphate bind to the adenosine 5'-monophosphate site

    Energy Technology Data Exchange (ETDEWEB)

    Shyy, Y.J.; Tian, G.; Tsai, M.D.

    1987-10-06

    Although the subtrate binding properties of adenylate kinase (AK) have been studied extensively by various biochemical and biophysical techniques, it remains controversial whether uncomplexed adenosine 5'-triphosphate (ATP) binds to the adenosine 5'-monophosphate (AMP) site of AK. The authors present two sets of experiments which argue against binding of ATP to the AMP site. (a) /sup 31/P nuclear magnetic resonance titration of ATP with AK indicated a 1:1 stoichiometry on the basis of changes in coupling constants and line widths. This ruled out binding of ATP to both sites. (b) ATP and MgATP were found to behave similarly by protecting AK from spontaneous inactivation while AMP showed only a small degree of protection. Such inactivation could also be protected or reversed by dithioerythritol and is most likely due to oxidation of sulfhydryl groups, one of which (cysteine-25) is located near the MgATP site. The results support binding of ATP to the MgATP site predominantly, instead of the AMP site, in the absence of Mg/sup 2 +/.

  12. Identification of leukotriene D4 specific binding sites in the membrane preparation isolated from guinea pig lung

    International Nuclear Information System (INIS)

    Mong, S.; Wu, H.L.; Clark, M.A.; Stadel, J.M.; Gleason, J.G.; Crooke, S.T.

    1984-01-01

    A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [ 3 H]-leukotriene D4 [( 3 H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, the authors have identified specific binding sites for [ 3 H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [ 3 H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37 degrees C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [ 3 H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320 +/- 200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5 +/- 4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [ 3 H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [ 3 H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung

  13. Pathogenic and Epiphenomenal Anti-DNA Antibodies in SLE

    Directory of Open Access Journals (Sweden)

    Mirjana Pavlovic

    2010-01-01

    Full Text Available The discoveries of natural and the development of manufactured highly efficient catalytic antibodies (abzymes opens the door to many practical applications. One of the most fascinating is the use of such antibodies in human therapy and prevention (vaccination, of cancer, AIDS, autoimmune diseases. A special entity of naturally occurring DNA hydrolytic anti-DNA antibodies is emerging within past decades linked to autoimmune and lymphoproliferative disorders, such as systemic lupus erythematosus (SLE, multiple sclerosis (MS, Sjogren Syndrome (SS, B - Chronic lymphocytic leucosis (B-CLL, and Multiple Myeloma (MM. The origin of the antibodies is unknown. The underlying mechanisms of these activities are suggested to be penetration into the living cells and translocation in the nucleus, with recognition of the specific binding sites at particular (ss or ds DNA. There are controversies in the literature whether hydrolysis is a sequence-specific event. The interplay between anti-DNA antibodies and DNA is not yet elucidated. This molecular “twist” also suggests that anti-DNA antibodies with DNA hydrolytic capacity could be the organism's immune response to a microbial attack, with microbial DNA, or specific genes within microbial DNA sequence, as a target for neutralization. The catalytic antibody-based approach can become a key tool in selective chemotherapeutic strategies.

  14. Neuropeptide Y binding sites in rat brain identified with purified neuropeptide Y-I125

    International Nuclear Information System (INIS)

    Walker, M.W.; Miller, R.J.

    1986-01-01

    Neuropeptide Y (NPY) is a widely distributed neuronally localized peptide with 36 amino acids, 5 of which are tyrosines. The authors wished to investigate the properties of specific receptors for NPY. They therefore labeled the tyrosines with I125 using chloramine T and then purified the peptide using HPLC. A single mono-iodinated species of NPY which yielded > 85% specific binding in rat forebrain synaptosomes was selected as the ligand for all subsequent experiments. A time course of binding showed that equilibrium conditions were reached in 60 minutes at 21 0 C. Scatchard plots revealed a single class of binding sites with a Kd and a Bmax of 3 x 10-10 M and 28 pmol/mg, respectively. Competition binding with unlabeled NPY showed 50% displacement of bound ligand at 1 x 10-10 M NPY. Competition binding with rat pancreatic polypeptide (RPP), a homologous peptide possessing little NPY-like activity, showed 50% displacement of bound ligand at 2 x 10 -7 M RPP. No binding was observed on F-11 or PC12 neuronal cell lines, or on HSWP fibroblast cells. They conclude that NPY-I125 purified to homogeneity with HPLC is a highly selective ligand for NPY receptor sites. They are currently investigating such sites in brain, gut, and other tissues

  15. Where's water? The many binding sites of hydantoin.

    Science.gov (United States)

    Gruet, Sébastien; Pérez, Cristóbal; Steber, Amanda L; Schnell, Melanie

    2018-02-21

    Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14 N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H 2 18 O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.

  16. Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy.

    Science.gov (United States)

    Valedkarimi, Zahra; Nasiri, Hadi; Aghebati-Maleki, Leili; Majidi, Jafar

    2017-11-01

    Cytokines are key players in the regulation of immune responses both in physiological and pathological states. A number of cytokines have been evaluated in clinical trials and shown promising results in the treatment of different malignancies. Despite this, the clinical application of these molecules may be plagued by undesirable side effects The development of recombinant antibody-cytokine fusion proteins, which offer a means for target delivery of cytokines toward the tumor site, has significantly improved the therapeutic index of these immunomodulatory molecules. Selective tumor localization is provided by the monoclonal antibody component of the fusion protein that binds to the molecules present on the surface of tumor cells or accumulated preferentially in the diseased site. In this manner, the cytokine element is specifically located at the tumor site and can stimulate immune cells with appropriate cytokine receptors. Over the recent years, several antibody-cytokine fusion proteins have been developed with the capacity to target a wide variety of cancers whose application, in some cases, has led to complete rejection of the tumor. These findings support the notion that antibody-cytokine fusion proteins represent huge potential for cancer therapy. This review presents an overview of the advances made in the field of targeted cytokine delivery, which is made possible by genetically engineering antibody-cytokine fusion proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Microbials for the production of monoclonal antibodies and antibody fragments.

    Science.gov (United States)

    Spadiut, Oliver; Capone, Simona; Krainer, Florian; Glieder, Anton; Herwig, Christoph

    2014-01-01

    Monoclonal antibodies (mAbs) and antibody fragments represent the most important biopharmaceutical products today. Because full length antibodies are glycosylated, mammalian cells, which allow human-like N-glycosylation, are currently used for their production. However, mammalian cells have several drawbacks when it comes to bioprocessing and scale-up, resulting in long processing times and elevated costs. By contrast, antibody fragments, that are not glycosylated but still exhibit antigen binding properties, can be produced in microbial organisms, which are easy to manipulate and cultivate. In this review, we summarize recent advances in the expression systems, strain engineering, and production processes for the three main microbials used in antibody and antibody fragment production, namely Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    Science.gov (United States)

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  19. Nanobody®-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites

    Science.gov (United States)

    Nguyen-Duc, Trong; Peeters, Eveline; Muyldermans, Serge; Charlier, Daniel; Hassanzadeh-Ghassabeh, Gholamreza

    2013-01-01

    Nanobodies® are single-domain antibody fragments derived from camelid heavy-chain antibodies. Because of their small size, straightforward production in Escherichia coli, easy tailoring, high affinity, specificity, stability and solubility, nanobodies® have been exploited in various biotechnological applications. A major challenge in the post-genomics and post-proteomics era is the identification of regulatory networks involving nucleic acid–protein and protein–protein interactions. Here, we apply a nanobody® in chromatin immunoprecipitation followed by DNA microarray hybridization (ChIP-chip) for genome-wide identification of DNA–protein interactions. The Lrp-like regulator Ss-LrpB, arguably one of the best-studied specific transcription factors of the hyperthermophilic archaeon Sulfolobus solfataricus, was chosen for this proof-of-principle nanobody®-assisted ChIP. Three distinct Ss-LrpB-specific nanobodies®, each interacting with a different epitope, were generated for ChIP. Genome-wide ChIP-chip with one of these nanobodies® identified the well-established Ss-LrpB binding sites and revealed several unknown target sequences. Furthermore, these ChIP-chip profiles revealed auxiliary operator sites in the open reading frame of Ss-lrpB. Our work introduces nanobodies® as a novel class of affinity reagents for ChIP. Taking into account the unique characteristics of nanobodies®, in particular, their short generation time, nanobody®-based ChIP is expected to further streamline ChIP-chip and ChIP-Seq experiments, especially in organisms with no (or limited) possibility of genetic manipulation. PMID:23275538

  20. Autoradiographic localization and characterization of atrial natriuretic peptide binding sites in the rat central nervous system and adrenal gland

    International Nuclear Information System (INIS)

    Gibson, T.R.; Wildey, G.M.; Manaker, S.; Glembotski, C.C.

    1986-01-01

    Atrial natriuretic peptides (ANP) have recently been identified in both heart and CNS. These peptides possess potent natriuretic, diuretic, and vasorelaxant activities, and are all apparently derived from a single prohormone. Specific ANP binding sites have been characterized in the adrenal zona glomerulosa and kidney cortex, and one study reported ANP binding sites in the CNS. However, a detailed examination of the localization of ANP binding sites throughout the brain has not been reported. In this study, quantitative autoradiography was employed to examine the distribution of ANP receptors in the rat CNS. The binding of (3- 125 I-iodotyrosyl28) rat ANP-28 to binding sites in the rat CNS was saturable, specific for ANP-related peptides, and displayed high affinity (Kd = 600 pM). When the relative concentrations of ANP binding sites were determined throughout the rat brain, the highest levels of ANP binding were localized to the circumventricular organs, including the area postrema and subfornical organ, and the olfactory apparatus. Moderate levels of ANP binding sites were present throughout the midbrain and brain stem, while low levels were found in the forebrain, diencephalon, basal ganglia, cortex, and cerebellum. The presence of ANP binding sites in the subfornical organ and the area postrema, regions considered to be outside the blood-brain barrier, suggests that peripheral ANP levels may regulate some aspects of CNS control of salt and water balance. The possible functions of ANP binding sites in other regions of the rat brain are not known, but, like many other peptides, ANP may act as a neurotransmitter or neuromodulator at these loci