WorldWideScience

Sample records for binary solvent mixtures

  1. Measurement and correlation of solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Jinxiu; Xie, Chuang; Yin, Qiuxiang; Tao, Linggang; Lv, Jun; Wang, Yongli; He, Fang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of cefmenoxime hydrochloride in pure and binary solvents was determined. • The experimental solubility data were correlated by thermodynamic models. • A model was employed to calculate the melting temperature of cefmenoxime hydrochloride. • Mixing thermodynamic properties of cefmenoxime hydrochloride were calculated. - Abstract: The solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures was measured at temperatures from (283.15 to 313.15) K by using the UV spectroscopic method. The results reveal that the solubility of cefmenoxime hydrochloride increases with increasing temperature in all solvent selected. The solubility of cefmenoxime hydrochloride reaches its maximum value when the mole fraction of isopropanol is 0.2 in the binary solvent mixtures of (isopropanol + water). The modified Apelblat equation and the NRTL model were successfully used to correlate the experimental solubility in pure solvents while the modified Apelblat equation, the CNIBS/R–K model and the Jouyban–Acree model were applied to correlate the solubility in binary solvent mixtures. In addition, the mixing thermodynamic properties of cefmenoxime hydrochloride in different solvents were also calculated based on the NRTL model and experimental solubility data.

  2. Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures

    International Nuclear Information System (INIS)

    Jozefowicz, Marek; Heldt, Janina R.

    2003-01-01

    Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures has been studied using steady-state spectroscopic measurements. This study concerns the solvent-induced shift of the absorption and fluorescence spectra of both molecules in two solvent mixtures, i.e., cyclohexane-tetrahydrofuran and cyclohexane-ethanol. The first system contains polar solute molecules, fluorenone and 4-hydroxyfluorenone, in a mixture of polar aprotic (tetrahydrofuran) and non-polar (cyclohexane) solvents. In the second solvents mixture, hydrogen bonding with solute molecules (ethanol) may occur. The results of spectroscopic measurements are analysed using theoretical models of Bakshiev, Mazurenko and Suppan which describe preferential solvation phenomena. In the case of cyclohexane-tetrahydrofuran mixtures, the deviation from linearity in the absorption and fluorescence solvatochromic shifts vs. the solution polarity is due to non-specific dipolar solvent-solute interactions. For cyclohexane-ethanol binary mixtures, both non-specific and specific (hydrogen bond and proton-relay tautomerization) interactions contribute to the observed solvatochromism

  3. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    Science.gov (United States)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  4. Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei

    2015-01-01

    Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated

  5. Enzymatic synthesis of 6-O-glucosyl-poly(3-hydroxyalkanoate) in organic solvents and their binary mixture.

    Science.gov (United States)

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2013-04-01

    The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Environment effects on the optical properties of some fluorinated poly(oxadiazole ether)s in binary solvent mixtures

    International Nuclear Information System (INIS)

    Homocianu, Mihaela; Ipate, Alina Mirela; Hamciuc, Corneliu; Airinei, Anton

    2015-01-01

    The solvatochromic behavior of some fluorinated poly(oxadiazole ether)s was studied using UV–vis absorption and fluorescence spectroscopy in neat solvents and in their solvent mixtures at several ratios of cosolvents. Quantitative investigations of the spectral changes caused by solvent polarity were discussed using the Lippert‐Mataga, Bakhshiev and Kawski–Chamma–Viallet polarity functions. Repartitioning of cosolvent between local (solvation shell) and bulk phase was investigated by means of a solvatochromic shift method in chloroform–N,N-dimethylformamide (CHCl 3 /DMF) and chloroform–dimethyl sulfoxide (CHCl 3 /DMSO) solvent mixtures. Solvatochromic properties in the binary solvent environments were predominantly influenced by the acidity and basicity of the solvent systems. The fluorescence quenching process by nitrobenzene was characterized by Stern–Volmer plots which display a positive deviation from linearity. This was explained by static and dynamic quenching mechanisms. - Highlights: • Solvatochromic behavior in solvent mixtures was studied. • Stokes shift and local environments in binary mixed solvent were discussed. • Repartitioning of cosolvent between local and bulk phase in solvent mixture has been investigated. • Fluorescence intensity was quenched in presence of nitrobenzene

  7. Stability studies of colloidal silica dispersions in binary solvent mixtures

    International Nuclear Information System (INIS)

    Bean, Keith Howard

    1997-01-01

    A series of monodispersed colloidal silica dispersions, of varying radii, has been prepared. These particles are hydrophilic in nature due to the presence of surface silanol groups. Some of the particles have been rendered hydrophobic by terminally grafting n-alkyl (C 18 ) chains to the surface. The stability of dispersions of these various particles has been studied in binary mixtures of liquids, namely (i) ethanol and cyclohexane, and (ii) benzene and n-heptane. The ethanol - cyclohexane systems have been studied using a variety of techniques. Adsorption excess isotherms have been established and electrophoretic mobility measurements have been made. The predicted stability of the dispersions from D.V.L.O. calculations is compared to the observed stability. The hydrophilic silica particles behave as predicted by the calculations, with the zeta potential decreasing and the van der Waals attraction increasing with increasing cyclohexane concentration. The hydrophobic particles behave differently than expected, and the stability as a function of solvent mixture composition does not show a uniform trend. The effect of varying the coverage of C 18 chains on the surface and the effect of trace water in the systems has also been investigated. Organophilic silica dispersions in benzene - n-heptane solvent mixtures show weak aggregation and phase separation into a diffuse 'gas-like' phase and a more concentrated 'liquid-like' phase, analogous to molecular condensation processes. Calculations of the van der Waals potential as a function of solvent mixture composition show good agreement with the observed stability. Determination of the number of particles in each phase at equilibrium allows the energy of flocculation to be determined using a simple thermodynamic relationship. Finally, the addition of an AB block copolymer to organophilic silica particles in benzene n-heptane solvent mixtures has been shown to have a marked effect on the dispersion stability. This stability

  8. Solubility determination and thermodynamic modelling of allisartan isoproxil in different binary solvent mixtures from T = (278.15 to 313.15) K and mixing properties of solutions

    International Nuclear Information System (INIS)

    Yang, Yaoyao; Yang, Peng; Du, Shichao; Li, Kangli; Zhao, Kaifei; Xu, Shijie; Hou, Baohong; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of allisartan isoproxil in binary solvent mixtures were determined. • Apelblat, CNIBS/R-K and Jouyban-Acree models were used to correlate the solubility. • Solubility parameter theory was used to explain the co-solvency phenomenon. • Regular mixing rules were used to calculate solubility parameter of binary solvents. • The mixing thermodynamics were calculated and discussed based on NRTL model. - Abstract: In this work, the solubility of allisartan isoproxil in binary solvent mixtures, including (acetone + water), (acetonitrile + water) and (methanol + water), was determined by a gravimetric method with the temperature ranging from (278.15 to 313.15) K at atmospheric pressure (p = 0.1 MPa). The solubility of allisartan isoproxil in three binary solvent mixtures all increased with the rising of temperature at a constant solvent composition. For the binary solvent mixtures of (methanol + water), the solubility increased with the increasing of methanol fraction, while it appeared maximum value at a certain solvent composition in the other two binary solvent mixtures (acetone + water and acetonitrile + water). Based on the theory of solubility parameter, Fedors method and two mixing rules were employed to calculate the solubility parameters, by which the proximity of solubility parameters between allisartan isoproxil and binary solvent mixtures explained the co-solvent phenomenon. Additionally, the modified Apelblat equation, CNIBS/R-K model and Jouyban-Acree model were used to correlate the solubility data in binary solvent mixtures, and it turned out that all the three correlation models could give a satisfactory result. Furthermore, the mixing thermodynamic properties were calculated based on NRTL model, which indicated that the mixing process was spontaneous and exothermic.

  9. Thermodynamic equilibrium of hydroxyacetic acid in pure and binary solvent systems

    International Nuclear Information System (INIS)

    Huang, Qiaoyin; Xie, Chuang; Li, Yang; Su, Nannan; Lou, Yajing; Hu, Xiaoxue; Wang, Yongli; Bao, Ying; Hou, Baohong

    2017-01-01

    Highlights: • Solubility of hydroxyacetic acid in mono-solvents and binary solvent mixtures was measured. • Modified Apelblat, NRTL and Wilson model were used to correlate the solubility data in pure solvents. • CNIBS/R-K and Jouyban-Acree model were used to correlate the solubility in binary solvent mixtures. • The mixing properties were calculated based on the NRTL model. - Abstract: The solubility of hydroxyacetic acid in five pure organic solvents and two binary solvent mixtures were experimentally measured from 273.15 K to 313.15 K at atmospheric pressure (p = 0.1 MPa) by using a dynamic method. The order of solubility in pure organic solvents is ethanol > isopropanol > n-butanol > acetonitrile > ethyl acetate within the investigated temperature range, except for temperature lower than 278 K where the solubility of HA in ethyl acetate is slightly larger than that in acetonitrile. Furthermore, the solubility data in pure solvents were correlated with the modified Apelblat model, NRTL model, and Wilson model and that in the binary solvents mixtures were fitted to the CNIBS/R-K model and Jouyban-Acree model. Finally, the mixing thermodynamic properties of hydroxyacetic acid in pure and binary solvent systems were calculated and discussed.

  10. High temperature solvent extraction of oil shale and bituminous coal using binary solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, G.K.E. [Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle, RWTH Aachen (Germany)

    1997-12-31

    A high volatile bituminous coal from the Saar Basin and an oil shale from the Messel deposit, both Germany, were extracted with binary solvent mixtures using the Advanced Solvent Extraction method (ASE). Extraction temperature and pressure were kept at 100 C, respectively 150 C, and 20,7 MPa. After the heating phase (5 min) static extractions were performed with mixtures (v:v, 1:3) of methanol with toluene, respectively trichloromethane, for further 5 min. Extract yields were the same or on a higher level compared to those from classical soxhlet extractions (3 days) using the same solvents at 60 C. Comparing the results from ASE with those from supercritical fluid extraction (SFE) the extract yields were similar. Increasing the temperature in ASE releases more soluble organic matter from geological samples, because compounds with higher molecular weight and especially more polar substances were solubilized. But also an enhanced extraction efficiency resulted for aliphatic and aromatic hydrocarbons which are used as biomarkers in Organic Geochemistry. Application of thermochemolysis with tetraethylammonium hydroxide (TEAH) using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) on the extraction residues shows clearly that at higher extraction temperatures minor amounts of free fatty acids or their methyl esters (original or produced by ASE) were trapped inside the pore systems of the oil shale or the bituminous coal. ASE offers a rapid and very efficient extraction method for geological samples reducing analysis time and costs for solvents. (orig.)

  11. Determination and correlation of solubility and thermodynamic properties of pyraclostrobin in pure and binary solvents

    International Nuclear Information System (INIS)

    Yang, Peng; Du, Shichao; Qin, Yujia; Zhao, Kaifei; Li, Kangli; Hou, Baohong; Gong, Junbo

    2016-01-01

    Highlights: • The solubility data of pyraclostrobin in pure and binary solvents were determined and correlated. • The theory of solubility parameter was used to explain the cosolvency in binary solvents. • A modified mixing rule was proposed to calculate the solubility parameter of binary solvents. • The dissolution thermodynamic properties were calculated and discussed. - Abstract: The solubility of pyraclostrobin in five pure solvents and two binary solvent mixtures was measured from 283.15 K to 308.15 K using a static analytical method. Solubility in five pure solvents was well correlated by the modified Apelblat equation and Wilson model. While the CNIBS/R–K model was applied to correlate the solubility in two binary solvent mixtures, the correlation showed good agreement with experimental results. The solubility of pyraclostrobin reaches its maximum value at a certain cyclohexane mole fraction in the two binary solvent mixtures. The solubility parameter of pyraclostrobin was calculated by the Fedors method and a new modified mixing rule with preferable applicability was proposed to determine the solubility parameter of solvents. Then the co-solvency in the binary solvent mixtures can be explained based on the obtained solubility parameters. In a addition, the dissolution thermodynamic properties were calculated from the experimental values using the Wilson model.

  12. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    International Nuclear Information System (INIS)

    Czaja, MaIgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech

    2005-01-01

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K a (HA), cationic acid, K a (BH + ), of anionic and cationic homoconjugation, K AHA - andK BHB + , respectively, and of molecular heteroconjugation, K AHB (K BHA ), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK a (HA) and pK a (BH + ), as well as lgK AHA - values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity

  13. Determination and modeling of the solubility of (limonin in methanol or acetone + water) binary solvent mixtures at T = 283.2 K to 318.2 K

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Zheng, Bing; Liao, Dan-Dan; Yu, Jia-Xin; Cao, Ya-Hui; Zhang, Xue-Hong; Zhu, Jian-Hang

    2016-01-01

    Highlights: • The solubilities of limonin were measured in the binary solvent mixtures methanol + water and acetone + water. • The solubility data were correlated by nine models. • The solubility of limonin had a maximum point at 0.9 mol fraction of acetone in acetone + water mixtures. - Abstract: The solubility of limonin in the binary solvent mixtures (methanol + water) and (acetone + water) with various initial mole fractions of methanol or acetone was measured by high-performance liquid chromatography (HPLC) at different temperatures ranging from 283.2 K to 318.2 K. The solubility of limonin increased with increasing initial mole fraction of methanol in (methanol + water) mixtures, whereas it had a maximum point at 0.9 mol fraction of acetone in (acetone + water) mixtures. The solubility of limonin increased with increasing temperature in the two binary solvent mixtures. The solubility of limonin was correlated with temperature by the van’t Hoff model and the modified Apelblat model, and the fitting results showed that the modified Apelblat model had better correlation. The CNIBS/Redlich–Kister model and the simplified CNIBS/Redlich–Kister model were used to correlate the solubility data with the initial solvent composition, the results show that the CNIBS/Redlich–Kister model reveals better agreement with the experimental values. Furthermore, to illustrate the effects of both temperature and initial solvent composition on the changes in the solubility of limonin, the solubility values were fitted by the Jouyban–Acree, van’t Hoff–Jouyban–Acree, modified Apelblat–Jouyban–Acree, Ma and Sun models. Among the five models, the Jouyban–Acree model give the best correlation results for (methanol + water) binary solvent mixtures, while the experimental solubility in the (acetone + water) system was most accurately correlated by the van’t Hoff–Jouyban–Acree model.

  14. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, MaIgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kozak, Anna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2005-08-15

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K{sub a}(HA), cationic acid, K{sub a}(BH{sup +}), of anionic and cationic homoconjugation, K{sub AHA{sup -}}andK{sub BHB{sup +}}, respectively, and of molecular heteroconjugation, K{sub AHB} (K{sub BHA}), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK{sub a}(HA) and pK{sub a}(BH{sup +}), as well as lgK{sub AHA{sup -}} values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity.

  15. ANALYSIS OF THE KINETICS OF SOLVOLYSIS OF P-NITROPHENYLSULFONYLMETHYL PERCHLORATE IN BINARY ALCOHOLIC MIXTURES IN TERMS OF THE THERMODYNAMIC PROPERTIES OF THE SOLVENT MIXTURES

    NARCIS (Netherlands)

    Wijnen, J W; Engberts, J B F N; Blandamer, Michael J

    Rate constants are reported for the solvolysis of p-nitrophenylsulfonylmethyl perchlorate in binary ethanolic and methanolic mixtures at 298.2 K. Co-solvents include hydrocarbons, chlorinated hydrocarbons and 1,4-dioxane. The kinetic data are examined in terms of the effect of decreasing mole

  16. Determination and correlation of pyridoxine hydrochloride solubility in different binary mixtures at temperatures from (278.15 to 313.15) K

    International Nuclear Information System (INIS)

    Han, Dandan; Li, Xiaona; Wang, Haisheng; Wang, Yan; Du, Shichao; Yu, Bo; Liu, Yumin; Xu, Shijie; Gong, Junbo

    2016-01-01

    Highlights: • Solubility of pyridoxine hydrochloride in three binary mixtures was determined. • Experimental solubility of pyridoxine hydrochloride was correlated by four models. • Mixing thermodynamics of pyridoxine hydrochloride were calculated and discussed. - Abstract: The solubility of pyridoxine hydrochloride in binary solvent mixtures, including (acetone + water), (methanol + water) and (ethanol + water), was measured over temperature range from (278.15 to 313.15) K by a gravimetric method at atmospheric pressure (P = 0.1 MPa). The solubility increased with increasing temperature in binary solvent mixtures at constant solvent composition. Besides, the dissolving capacity of pyridoxine hydrochloride in the three binary solvent mixtures at constant temperature ranked as (methanol + water > ethanol + water > acetone + water) in general, partly depending on the polarity of the solvents. Additionally, the modified Apelblat equation, van’t Hoff equation, CNIBS/R–K model and Jouyban–Acree model were used to correlate the solubility data in binary mixtures, it turned out that all the selected thermodynamic models could give satisfactory results. Furthermore, the mixing thermodynamic properties of pyridoxine hydrochloride in different binary solvent mixtures were also calculated and discussed. The results indicate that the mixing process of pyridoxine hydrochloride in the selected solvents is exothermic.

  17. Physico-chemical properties of binary mixtures of aliphatic and aromatic solvents at 313 K on acoustical data

    Science.gov (United States)

    Dahire, S. L.; Morey, Y. C.; Agrawal, P. S.

    2015-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) of binary mixtures of aliphatic solvents like dimethylformamide (DMF) and dimethylsulfoxide (DMSO) with aromatic solvents viz. chlorobenzene (CB), bromobenzene (BB), and nitrobenzene (NB) have been determined at 313 K. These parameters were used to calculate the adiabatic compressibility (β), intermolecular free length ( L f), molar volume ( V m), and acoustic impedance ( Z). From the experimental data excess molar volume ( V m E ), excess intermolecular free length ( L f E )), excess adiabatic compressibility (βE), and excess acoustic impedance ( Z E) have been computed. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations (σ).

  18. Separation of toluene from n-heptane by liquid–liquid extraction using binary mixtures of [bpy][BF4] and [4bmpy][Tf2N] ionic liquids as solvent

    International Nuclear Information System (INIS)

    García, Silvia; Larriba, Marcos; García, Julián; Torrecilla, José S.; Rodríguez, Francisco

    2012-01-01

    Highlights: ► Binary mixtures of ionic liquids as extraction solvents of aromatics. ► [4bmpy][Tf 2 N] shows higher capacity but lower selectivity than sulfolane. ► [bpy][BF 4 ] shows lower capacity but higher selectivity than sulfolane. ► Mixed {[4bmpy][Tf 2 N] + [bpy][BF 4 ]} improves both extractive properties. - Abstract: The use of binary mixture of ionic liquids N-butylpyridinium tetrafluoroborate ([bpy][BF 4 ]), and 1-butyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide ([4bmpy][Tf 2 N]) in the liquid–liquid extraction of toluene from n-heptane has been investigated at 313.2 K and atmospheric pressure. The experimental capacity of extraction and selectivity for this binary mixture has proved to be intermediate to those corresponding to the pure ionic liquids, and they can be predicted using a logarithmic–linear model of solubility. Furthermore, the results showed that the use of binary mixture of {[bpy][BF 4 ] + [4bmpy][Tf 2 N]} at a mole solvent composition around 0.7 for [bpy][BF 4 ] improves both the capacity of extraction of toluene and the selectivity with respect to those of sulfolane, the organic solvent taken as a benchmark. Thus, this mixed ionic liquid could be likely to be used in the extraction of aromatic from aliphatic in replacement to sulfolane.

  19. Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

    International Nuclear Information System (INIS)

    Ciocirlan, Oana; Croitoru, Oana; Iulian, Olga

    2016-01-01

    Highlights: • Viscosities of four binary mixtures of [Emim][BF4] with organic solvents. • Viscosity models based on Eyring’s theory. • Excess functions calculated. • Data for binaries new in the literature, except for system with DMSO. - Abstract: This paper reports experimental values of dynamic viscosity for four binary systems of 1-ethyl-3-methylimidazolium tetrafluoroborate, [Emim][BF4], with dimethyl sulfoxide (DMSO), acetonitrile (ACN), ethylene glycol (EG) and 1,4-dioxane over the temperature ranges from 293.15 K to 353.15 K at p = 0.1 MPa. All binary mixtures were completely miscible over the entire range of mole fraction, except the system with 1,4-dioxane. The viscosity results have been correlated by the one parameter Grunberg–Nissan and Fang and He equations and the two-parameter McAllister, Eyring-UNIQUAC, Eyring-NRTL and Eyring-Wilson models and the results were compared. Additionally, the viscosity deviations, Δη, and the excess Gibbs energy of activation for viscous flow, G"∗"E, were calculated and fitted to the Redlich–Kister equation. The results show that all Δη values are negative over the whole composition range and the G"∗"E values are positive, except for the system with EG. The results of the excess functions are discussed in terms of molecular interactions.

  20. Effects of concentration, temperature and solvent composition on density and apparent molar volume of the binary mixtures of cationic-anionic surfactants in methanol-water mixed solvent media.

    Science.gov (United States)

    Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad

    2013-01-01

    The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.

  1. Measurement and correlation of solubility of xylitol in binary water+ethanol solvent mixtures between 278.00 K and 323.00K

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhanzhong; Wang, Qian; Liu, Xiangshan; Fang, Wenzhi; Li, Yan; Xiao, Huazhi [Tianjin University, Tianjin (China)

    2013-04-15

    The solubility of xylitol in ethanol+water solvent mixtures was measured at temperatures ranging from 278.00 K to 323.00 K at atmospheric pressure by using a laser technique. The results of these measurements were correlated by the combined nearly ideal binary solvent CNIBS/Redlich-Kister equation. The experimental solubility and correlation equation in this work can be used as essential data and models in the purification process of xylitol. The variant 2 in the CNIBS/R-K models was confirmed to be more adaptable to predict solubility of xylitol in binary ethanol+water system. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of xylitol, such as Gibbs energy, molar enthalpy of dissolution, and molar entropy of dissolution, were calculated.

  2. Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene

    Science.gov (United States)

    Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.

  3. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  4. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  5. Prediction of surface tension of binary mixtures with the parachor method

    Directory of Open Access Journals (Sweden)

    Němec Tomáš

    2015-01-01

    Full Text Available The parachor method for the estimation of the surface tension of binary mixtures is modified by considering temperature-dependent values of the parachor parameters. The temperature dependence is calculated by a least-squares fit of pure-solvent surface tension data to the binary parachor equation utilizing the Peng-Robinson equation of state for the calculation of equilibrium densities. A very good agreement between experimental binary surface tension data and the predictions of the modified parachor method are found for the case of the mixtures of carbon dioxide and butane, benzene, and cyclohexane, respectively. The surface tension is also predicted for three refrigerant mixtures, i.e. propane, isobutane, and chlorodifluoromethane, with carbon dioxide.

  6. Solid–liquid equilibrium and thermodynamic research of 3-Thiophenecarboxylic acid in (water + acetic acid) binary solvent mixtures

    International Nuclear Information System (INIS)

    Liu, Xiang; Liang, Mengmeng; Hu, Yonghong; Yang, Wenge; Shi, Ying; Yin, Jingjing; Liu, Yan

    2014-01-01

    Highlights: • The solubility was measured in (water + acetic acid) from 283.15 to 338.15 K. • The solubility increased with increasing temperature and water contents. • The modified Apelblat equation was more accurate than the λh equation. - Abstract: In this study, the solubility of 3-thiophenecarboxylic acid was measured in (water + acetic acid) binary solvent mixtures in the temperature ranging from 283.15 to 338.15 K by the analytical stirred-flask method under atmospheric pressure. The experimental data were well-correlated with the modified Apelblat equation and the λh equation. In addition, the calculated solubilities showed good agreement with the experimental results. It was found that the modified Apelblat equation could obtain the better correlation results than the λh equation. The experiment results indicated that the solubility of 3-thiophenecarboxylic acid in the binary solvents increased with increasing temperature, increases with increasing water contents, but the increments with temperature differed from different water contents. In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing the process of purification of 3-thiophenecarboxylic acid in industry

  7. A potentiometric study of molecular heteroconjugation equilibria in (n-butylamine+acetic acid) systems in binary (acetonitrile +1,4-dioxane) solvent mixtures

    International Nuclear Information System (INIS)

    Czaja, Malgorzata; Makowski, Mariusz; Chmurzynski, Lech

    2006-01-01

    By using the potentiometric method the following quantities have been determined: acidity constants of molecular acid, K a (HA), of cationic acid, K a (BH + ), anionic and cationic homoconjugation constants, K AHA - and K BHB + , respectively, as well as molecular heteroconjugation constants, K AHB , in (n-butylamine+acetic acid) systems without proton transfer in binary (acetonitrile+1,4-dioxane), AN+D, solvent mixtures. The results of these measurements have shown that the magnitudes of the molecular heteroconjugation constants do not depend on the 1,4-dioxane content in the mixed solvent, i.e., on solvent polarity. It has also been found that in the (acid+base) systems without proton transfer, the manner of carrying out the titration (direct B+HA vs. reverse HA+B) does not affect the magnitudes of the molecular heteroconjugation constants

  8. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  9. Thermodynamic models for determination of solid–liquid equilibrium of the 6-benzyladenine in pure and binary organic solvents

    International Nuclear Information System (INIS)

    Li, Tao; Deng, Renlun; Wu, Gang; Gu, Pengfei; Hu, Yonghong; Yang, Wenge; Yu, Yemin; Zhang, Yuhao; Yang, Chen

    2017-01-01

    Highlights: • The solubility increased with increasing temperature. • Data were fitted using the modified Apelblat equation and other models in pure solvents. • Data were fitted using the modified Apelblat equation and other models in binary solvent mixture. - Abstract: Data on corresponding solid–liquid equilibrium of 6-benzyladenine in different solvents are essential for a preliminary study of industrial applications. In this paper, the solid–liquid equilibrium of 6-benzyladenine in methanol, ethanol, 1-butanol, acetone, acetonitrile, ethyl acetate, dimethyl formamide and tetrahydrofuran pure solvents and (dimethyl formamide + actone) mixture solvents was explored within the temperature range from (278.15 to 333.15) K under 0.1 MPa. For the temperature range investigated, the solubility of 6-benzyladenine in the solvents increased with increasing temperature. The solubility of 6-benzyladenine in dimethyl formamide is superior to other selected pure solvents. The modified Apelblat model, the Buchowski-Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model has more advantages than the other two models. The solubility results were fitted using a modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redich-Kister (CNIBS/R-K) model, Jouyban-Acree model and Ma model in (dimethyl formamide + acetone) binary solvent mixture. Computational results showed that the modified Apelblat model is superior to the other equations.

  10. A potentiometric study of molecular heteroconjugation equilibria in (n-butylamine+acetic acid) systems in binary (acetonitrile +1,4-dioxane) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Malgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2006-05-15

    By using the potentiometric method the following quantities have been determined: acidity constants of molecular acid, K{sub a}(HA), of cationic acid, K{sub a}(BH{sup +}), anionic and cationic homoconjugation constants, K{sub AHA{sup -}} and K{sub BHB{sup +}}, respectively, as well as molecular heteroconjugation constants, K{sub AHB}, in (n-butylamine+acetic acid) systems without proton transfer in binary (acetonitrile+1,4-dioxane), AN+D, solvent mixtures. The results of these measurements have shown that the magnitudes of the molecular heteroconjugation constants do not depend on the 1,4-dioxane content in the mixed solvent, i.e., on solvent polarity. It has also been found that in the (acid+base) systems without proton transfer, the manner of carrying out the titration (direct B+HA vs. reverse HA+B) does not affect the magnitudes of the molecular heteroconjugation constants.

  11. Determination and correlation thermodynamic models for solid–liquid equilibrium of the Nifedipine in pure and mixture organic solvents

    International Nuclear Information System (INIS)

    Wu, Gang; Hu, Yonghong; Gu, Pengfei; Yang, Wenge; Wang, Chunxiao; Ding, Zhiwen; Deng, Renlun; Li, Tao; Hong, Housheng

    2016-01-01

    Highlights: • The solubility increased with increasing temperature. • The data were fitted using the modified Apelblat equation in pure solvents. • The data were fitted using the CNIBS/R-K model in binary solvent mixture. - Abstract: Knowledge of thermodynamic parameters on corresponding solid-liquid equilibrium of nifedipine in different solvents is essential for a preliminary study of pharmaceutical engineering and industrial applications. In this paper, a gravimetric method was used to correct the solid-liquid equilibrium of nifedipine in methanol, ethanol, 1-butanol, acetone, acetonitrile, ethyl acetate and tetrahydrofuran pure solvents as well as in the (tetrahydrofuran + acetonitrile) mixture solvents at temperatures from 278.15 K to 328.15 K under 0.1 MPa. For the temperature range investigation, the solubility of nifedipine in the solvents increased with increasing temperature. The solubility of nifedipine in tetrahydrofuran is superior to other selected pure solvents. The modified Apelblat model, the Buchowski-Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model stood out to be more suitable with the higher accuracy. The solubility values were fitted using a modified Apelblat model, a variant of the combined nearly ideal binary solvent/Redich-Kister (CNIBS/R-K) model and Jouyban-Acree model in (tetrahydrofuran + acetonitrile) binary solvent mixture. Computational results showed that the CNIBS/R-K model had more advantages than other models.

  12. Permeation of aromatic solvent mixtures through nitrile protective gloves.

    Science.gov (United States)

    Chao, Keh-Ping; Hsu, Ya-Ping; Chen, Su-Yi

    2008-05-30

    The permeation of binary and ternary mixtures of benzene, toluene, ethyl benzene and p-xylene through nitrile gloves were investigated using the ASTM F739 test cell. The more slowly permeating component of a mixture was accelerated to have a shorter breakthrough time than its pure form. The larger differences in solubility parameter between a solvent mixture and glove resulted in a lower permeation rate. Solubility parameter theory provides a potential approach to interpret the changes of permeation properties for BTEX mixtures through nitrile gloves. Using a one-dimensional diffusion model based on Fick's law, the permeation concentrations of ASTM F739 experiments were appropriately simulated by the estimated diffusion coefficient and solubility. This study will be a fundamental work for the risk assessment of the potential dermal exposure of workers wearing protective gloves.

  13. Measurement and prediction of dabigatran etexilate mesylate Form II solubility in mono-solvents and mixed solvents

    International Nuclear Information System (INIS)

    Xiao, Yan; Wang, Jingkang; Wang, Ting; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun; Bao, Ying; Fang, Wen; Yin, Qiuxiang

    2016-01-01

    Highlights: • Solubility of DEM Form II in mono-solvents and binary solvent mixtures was measured. • Regressed UNIFAC model was used to predict the solubility in solvent mixtures. • The experimental solubility data were correlated by different models. - Abstract: UV spectrometer method was used to measure the solubility data of dabigatran etexilate mesylate (DEM) Form II in five mono-solvents (methanol, ethanol, ethane-1,2-diol, DMF, DMAC) and binary solvent mixtures of methanol and ethanol in the temperature range from 287.37 K to 323.39 K. The experimental solubility data in mono-solvents were correlated with modified Apelblat equation, van’t Hoff equation and λh equation. GSM model and Modified Jouyban-Acree model were employed to correlate the solubility data in mixed solvent systems. And Regressed UNIFAC model was used to predict the solubility of DEM Form II in the binary solvent mixtures. Results showed that the predicted data were consistent with the experimental data.

  14. Excess molar volume and viscosity deviation for binary mixtures of γ-butyrolactone with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Krakowiak, Joanna; Śmiechowski, Maciej

    2017-01-01

    Highlights: • Densities and viscosities of DMSO-GBL binary liquid mixtures were measured. • The volumetric parameters and excess quantities were obtained. • Ab initio calculations were performed for single molecules and dimers in the studied mixture. • The interactions in solutions are weaker than in pure solvents. - Abstract: The densities of binary liquid mixtures of dimethyl sulfoxide and γ-butyrolactone at (293.15, 298.15, 303.15 and 313.15) K and viscosity at T = 298.15 K have been measured at atmospheric pressure over the entire range of concentration. From these data the excess molar volumes V E at (293.15, 298.15, 303.15 and 313.15) K and the viscosity deviation, the excess entropy, and the excess Gibbs energy of activation for viscous flow at T = 298.15 K have been determined. These data were mathematically represented by the Redlich-Kister polynomial. Partial and apparent molar volumes have been calculated for better understanding of the interactions in the binary systems. The obtained data indicate the lack of specific interactions between unlike molecules, which seem to be a little weaker as compared to the interactions in pure solvents.

  15. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    Science.gov (United States)

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A binary mixture operated heat pump

    International Nuclear Information System (INIS)

    Hihara, E.; Saito, T.

    1991-01-01

    This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance

  17. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  18. Fluorescence quenching of newly synthesized biologically active coumarin derivative by aniline in binary solvent mixtures

    International Nuclear Information System (INIS)

    Evale, Basavaraj G.; Hanagodimath, S.M.

    2009-01-01

    The fluorescence quenching of newly synthesized coumarin (chromen-2-one) derivative, 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one (MFBMC) by aniline in different solvent mixtures of benzene and acetonitrile was determined at room temperature (296 K) by steady-state fluorescence measurements. The quenching is found to be appreciable and positive deviation from linearity was observed in the Stern-Volmer (S-V) plots in all the solvent mixtures. This could be explained by static and dynamic quenching models. The positive deviation in the S-V plot is interpreted in terms of ground-state complex formation model and sphere of action static quenching model. Various rate parameters for the fluorescence quenching process have been determined by using the modified Stern-Volmer equation. The sphere of action static quenching model agrees very well with experimental results. The dependence of Stern-Volmer constant K SV , on dielectric constant ε of the solvent mixture suggests that the fluorescence quenching is diffusion-limited. Further with the use of finite sink approximation model, it is concluded that these bimolecular quenching reactions are diffusion-limited. Using lifetime (τ o ) data, the distance parameter R' and mutual diffusion coefficient D are estimated independently.

  19. Reference value standards and primary standards for pH measurements in D2O and aqueous-organic solvent mixtures: new accessions and assessments

    International Nuclear Information System (INIS)

    Mussini, P.R.; Mussini, T.; Rondinini, S.

    1997-01-01

    Recommended Reference Value Standards based on the potassium hydro-genphthalate buffer at various temperatures are reported for pH measurements in various binary solvent mixtures of water with eight organic solvents: methanol, ethanol, 2-propanol, 1,2-ethanediol, 2-methoxyethanol (''methylcellosolve''), acetonitrile, 1,4-dioxane, and dimethyl sulfoxide, together with Reference Value Standard based on the potassium deuterium phthalate buffer for pD measurements in D 2 O. In addition are reported Primary Standards for pH based on numerous buffers in various binary solvent mixtures of water with methanol, ethanol, and dimethyl sulfoxide, together with Primary Standards for pD in D 2 O based on the citrate, phosphate and carbonate buffers. (author)

  20. Structural transition of a homopolymer in solvents mixture

    International Nuclear Information System (INIS)

    Guettari, Moez; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh

    2008-01-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M w = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X A is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X A = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture

  1. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    Science.gov (United States)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  2. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures

    DEFF Research Database (Denmark)

    Karunanithi, A.T.; Achenie, L.E.K.; Gani, Rafiqul

    2005-01-01

    This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective is to be optim......This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective...... is to be optimized subject to structural, property, and process constraints. The general molecular/mixture design problem is divided into two parts. For optimal single-compound design, the first part is solved. For mixture design, the single-compound design is first carried out to identify candidates...... and then the second part is solved to determine the optimal mixture. The decomposition of the CAMD MINLP model into relatively easy to solve subproblems is essentially a partitioning of the constraints from the original set. This approach is illustrated through two case studies. The first case study involves...

  3. Structural transition of a homopolymer in solvents mixture

    Energy Technology Data Exchange (ETDEWEB)

    Guettari, Moez [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)], E-mail: gtarimoez@yahoo.fr; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)

    2008-07-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M{sub w} = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X{sub A} is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X{sub A} = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture.

  4. Ternary and binary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether) + furfural + water between 298 and 343 K

    International Nuclear Information System (INIS)

    Männistö, Mikael; Pokki, Juha-Pekka; Fournis, Ludivine; Alopaeus, Ville

    2017-01-01

    Highlights: • Novel LLE of 2-methyltetrahydrofuran or cyclopentyl methyl ether + furfural + water. • High performance solvents for liquid-liquid extraction exhibited. • Modelled with UNIQUAC-HOC activity coefficient model. • Comparison to other industrial solvents with distribution coefficient and selectivity. - Abstract: The suitability of two solvents for the extraction of furfural from aqueous streams is assessed through novel ternary and binary liquid-liquid equilibria data for mixtures of solvent (2-methyltetrahydrofuran or cyclopentyl methyl ether) + furfural + water. The measured data are reported along with regressed binary interaction parameters for UNIQUAC-HOC activity coefficient model and further analyzed through distribution coefficients and selectivity for furfural. Out of the two solvents, cyclopentyl methyl ether presents a very high selectivity along with good distribution coefficient in the entire temperature range.

  5. Influence of evaporation and solvent mixtures on the absorption of toluene and n-butanol in human skin in vitro.

    Science.gov (United States)

    Boman, A; Maibach, H I

    2000-03-01

    The influence of forced ventilation on the percutaneous absorption of butanol and toluene was studied in vitro. Human skin was exposed to the neat solvents and the solvents in binary mixtures with each other and in ternary mixtures with chloroform:methanol. The exposure was either unventilated or ventilated with various flow rates. At the ventilated exposure the skin absorption of all solvents and solvent mixtures was markedly reduced compared to unventilated exposure. Exposure with solvent mixtures increased the amounts of solvent absorbed as well as absorption rates. The absorption of the butanol component was most influenced. Increase in absorption was 11 to 9 times depending on whether toluene or chloroform/methanol was cosolvent. There was also an interindividual variation of absorption rate, varying with a factor of 3.5 for toluene and 4.3 for n-butanol within the 3 skin donors used. Skin absorption of volatile organic solvents at continuous ventilated conditions is related to their volatility and to the ventilation rate.A sufficient workplace ventilation is an important occupational hygienic measure not only to reduce exposure via respiration but to reduce absorption via the skin of volatile compounds as well.

  6. Solution thermodynamics of creatine monohydrate in binary (water + ethanol) solvent systems at T = (278.15 to 328.15) K

    International Nuclear Information System (INIS)

    Song, Liangcheng; Wei, Lihua; Si, Tao; Guo, Huai; Yang, Chunhui

    2016-01-01

    Highlights: • The solubilities of creatine monohydrate in (ethanol + water) mixtures were investigated. • The solubility data were well correlated by Jouyban–Acree model. • Solution thermodynamic properties were calculated. • The dissolving process of creatine monohydrate in was endothermic and entropy-driven. - Abstract: In order to optimize the crystallization process of creatine monohydrate, the solubility of creatine monohydrate in the binary (water + ethanol) mixture was measured at temperatures ranging from 278.15 K to 328.15 K using the laser monitoring technique. The solubility increased with both the temperature and the mole fraction of water in the solvent mixture. The experimental solubility was well correlated by the Jouyban–Acree model, which generated a sensitive solubility surface for creatine monohydrate. Furthermore, the thermodynamic parameters of this dissolution process were also estimated. The results showed that the dissolution process of creatine monohydrate in each solvent mixture was endothermic and entropy-driven, and that the dissolution of creatine monohydrate became much easier when the mole fraction of water in the solvent mixture increased.

  7. The ultrasound-assisted oxidative scission of monoenic fatty acids by ruthenium tetroxide catalysis: influence of the mixture of solvents.

    Science.gov (United States)

    Rup, Sandrine; Zimmermann, François; Meux, Eric; Schneider, Michel; Sindt, Michele; Oget, Nicolas

    2009-02-01

    Carboxylic acids and diacids were synthesized from monoenic fatty acids by using RuO4 catalysis, under ultrasonic irradiation, in various mixtures of solvents. Ultrasound associated with Aliquat 336 have promoted in water, the quantitative oxidative cleavage of the CH=CH bond of oleic acid. A design of experiment (DOE) shows that the optimal mixture of solvents (H2O/MeCN, ratio 1/1, 2.2% RuCl3/4.1 eq. NaIO4) gives 81% azelaic acid and 97% pelargonic acid. With the binary heterogeneous mixture H2O/AcOEt, the oxidation of the oleic acid leads to a third product, the alpha-dione 9,10-dioxostearic acid.

  8. Coordination conversion of cobalt(II) in binary aqueous-organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Khvostova, N.O.; Karapetyan, G.O.; Yanush, O.V.

    1985-11-01

    It has been shown that the thermochromic conversions of cobalt(II) in binary solvents are influenced by a number of factors: the nature of the solvent, the strength of the complexes of octahedral symmetry formed, the outer-sphere influence of the solvent on the complexes, the form of the anion, the solvation of the participants in the reaction, and the interaction of the components of the solvent with one another. A correlation between the strength and the spectral position of the absorption bands of the complexes of the activator has been established, and a spectroscopic criterion for selecting the solvents has been proposed. The expediency of using binary solvents to create effective thermochromic media with variable phototransmission has been substantiated.

  9. Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K

    International Nuclear Information System (INIS)

    Rafiee, Hamid Reza; Ranjbar, Shahram; Poursalman, Fariborz

    2012-01-01

    Graphical abstract: For binary and ternary mixtures of the following liquids the densities and viscosities have been determined at several temperatures and over the entire range of composition. Also the Δη and excess molar volumes for binary mixtures determined and have been fitted to the Redlich–Kister equation. The interaction parameters, G 12 in the Grunberg–Nissan equation have been found to be negative for all binary mixtures which indicates decreasing the interaction between unlike molecules. Highlights: ► Experimental data for viscosity and density of binary and ternary mixtures reported. ► The considered solvents are Cyclohexanone, 1,4-Dioxane and Isooctane. ► Temperature ranges from 288.15 to 313.15 K and entire range of composition is considered. ► G 12 , in Grunberg–Nissan equation was negative in all binary mixtures at all temperatures. ► V E and Δη for binary mixtures have been fitted to Redlich–Kister equation. - Abstract: Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane have been measured at temperatures from 288.15 K to 313.15 K and over the entire composition range, under atmospheric pressure. From these binary data, the excess molar volumes have been determined and then fitted to Redlich–Kister equation to determine the appropriate coefficients. This work also provides a test of the Grunberg and Nissan equation for correlation the dynamic viscosities of binary mixtures with mole fractions. The interaction parameters for this equation, G 12 were negative for all binary mixtures at different temperatures over entire range of composition which attributed to decreasing the strength of interaction between unlike molecules in mixture.

  10. A thermodynamic study of complexation process between N, N'-dipyridoxylidene(1,4-butanediamine) and Cd2+ in some binary mixed solvents using conductometry

    Science.gov (United States)

    Ebrahimpoor, Sonia; Khoshnood, Razieh Sanavi; Beyramabadi, S. Ali

    2016-12-01

    Complexation of the Cd2+ ion with N, N'-dipyridoxylidene(1,4-butanediamine) Schiff base was studied in pure solvents including acetonitrile (AN), ethanol (EtOH), methanol (MeOH), tetrahydrofuran (THF), dimethylformamide (DMF), water (H2O), and various binary solvent mixtures of acetonitrile-ethanol (AN-EtOH), acetonitrile-methanol (AN-MeOH), acetonitrile-tetrahydrofuran (AN-THF), acetonitrile-dimethylformamide (AN-DMF), and acetonitrile-water (AN-H2O) systems at different temperatures using the conductometric method. The conductance data show that the stoichiometry of complex is 1: 1 [ML] in all solvent systems. A non-linear behavior was observed for changes of log K f of [Cd( N, N'-dipyridoxylidene(1,4-butanediamine)] complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions. The results show that the thermodynamics of complexation reaction is affected by the nature and composition of the mixed solvents.

  11. Transport properties of binary liquid mixtures - candidate solvents for optimized flue gas cleaning processes

    Directory of Open Access Journals (Sweden)

    Stanimirović Andrej M.

    2016-01-01

    Full Text Available Thermal conductivities and viscosities of three pure chemicals, monoethanol amine (MEA, tetraethylene glycol dimethyl ether (TEGDME and polyethylene glycol 200 (PEG 200 and two binary mixtures (MEA + + TEGDME and MEA + PEG 200 were measured at six temperatures: 298.15, 303.15, 308.15, 313.15, 318.15 and 323.15 K and atmospheric pressure. Measurement of thermal conductivities was based on a transient hot wire measurement setup, while viscosities were measured with a digital Stabinger SVM 3000/G2 viscometer. From these data, deviations in thermal conductivity and viscosity were calculated and fitted to the Redlich-Kister equation. Thermal conductivities of mixtures were correlated using Filippov, Jamieson, Baroncini and Rowley models, while viscosity data were correlated with the Eyring-UNIQUAC, Eyring-NRTL and McAlistermodels. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  12. Measurement and correlation of critical properties for binary mixtures and ternary mixtures containing gasoline additives

    International Nuclear Information System (INIS)

    Wang, Lipu; Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou

    2014-01-01

    Highlights: • A high-pressure view cell was used to measure the critical properties of mixtures. • Three binary mixtures’ and three ternary mixtures’ critical properties were reported. • The experimental data of each system covered the whole mole fraction range. • The critical properties of the ternary mixtures were predicted with the PR–WS model. • Empirical equations were used to correlate the experimental results. - Abstract: The critical properties of three binary mixtures and three ternary mixtures containing gasoline additives (including methanol + 1-propanol, heptane + ethanol, heptane + 1-propanol, methanol + 1-propanol + heptane, methanol + 1-propanol + methyl tert-butyl ether (MTBE), and ethanol + heptane + MTBE) were determined by a high-pressure cell. All the critical lines of binary mixtures belong to the type I described by Scott and van Konynenburg. The system of methanol + 1-propanol showed little non-ideal behavior due to their similar molecular structures. The heptane + ethanol and heptane + 1-propanol systems showed visible non-ideal behavior for their great differences in molecular structure. The Peng–Robinson equation of state combined with the Wong–Sandler mixing rule (PR–WS) was applied to correlate the critical properties of binary mixtures. The critical points of the three ternary mixtures were predicted by the PR–WS model with the binary interaction parameters using the procedure proposed by Heidemann and Khalil. The predicted critical temperatures were in good agreement with the experimental values, while the predicted critical pressures differed from the measured values. The experimental values of binary mixtures were fitted well with the Redlich–Kister equation. The critical properties of ternary mixtures were correlated with the Cibulka’s equation, and the critical surfaces were plotted using the Cibulka’s equations

  13. Analysis of organic solvents and liquid mixtures using a fiber-tip evaporation sensor

    Science.gov (United States)

    Preter, Eyal; Donlagic, Denis; Artel, Vlada; Katims, Rachel A.; Sukenik, Chaim N.; Zadok, Avi

    2014-05-01

    The instantaneous size and rate of evaporation of pendant liquid droplets placed on the cleaved facet of a standard fiber are reconstructed based on reflected optical power. Using the evaporation dynamics, the relative contents of ethanol in ethanol-water binary mixtures are assessed with 1% precision and different blends of methanol in gasoline are properly recognized. The latter application, in particular, is significant for the use of alternative fuels in the automotive sector. Also, ten organic solvents are identified based on their evaporation from a fiber facet coated with a hydrophobic, selfassembled monolayer.

  14. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    NARCIS (Netherlands)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-01-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute

  15. Synergic effects in the extraction of paracetamol from aqueous NaCl solution by the binary mixtures of diethyl ether and low molecular weight primary alcohols

    Science.gov (United States)

    Nikolić, G. M.; Živković, J. V.; Atanasković, D. S.; Nikolić, M. G.

    2013-12-01

    Liquid-liquid extraction of paracetamol from aqueous NaCl solutions was performed with diethyl ether, 1-propanol, 1-butanol, isobutanol, 1-pentanol, and binary mixtures diethyl ether/1-propanol, diethyl ether/1-butanol, and diethyl ether/isobutanol. Among the pure solvents investigated in this study best extraction efficacy was obtained with 1-butanol. Synergic effects in the extraction with binary mixtures was investigated and compared with some other systems used for the extraction of poorly extractable compounds. Results obtained in this study may be of both fundamental and practical importance.

  16. Thermodynamic models for determination of the solubility of omeprazole in pure and mixture organic solvents from T = (278.15 to 333.15) K

    International Nuclear Information System (INIS)

    Hu, Yonghong; Wu, Gang; Gu, Pengfei; Yang, Wenge; Wang, Chunxiao; Ding, Zhiwen; Cao, Yang

    2016-01-01

    Highlights: • The solubility increased with increasing temperature. • The data were fitted using the modified Apelblat equation and other models. • The Gibbs energy, enthalpy and entropy were calculated by the van’t Hoff analysis. - Abstract: Data on corresponding (solid + liquid) equilibrium of omeprazole in different solvents are essential for a preliminary study of industrial applications. In this paper, the (solid + liquid) equilibrium of omeprazole in water, methanol, ethanol, 1-butanol, acetonitrile, acetone, ethyl acetate, tetrahydrofuran pure solvents and (tetrahydrofuran + ethyl acetate) mixture solvents were explored within the temperatures from 278.15 K to 333.15 K under atmosphere pressure. For the temperature range investigated, the solubility of omeprazole in the solvents increased with increasing temperature. From (278.15 to 333.15) K, the solubility of omeprazole in tetrahydrofuran is superior to other selected pure solvents. The modified Apelblat model, the Buchowski–Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model has advantages than the other two models. Numerical values of the solubility were fitted using a modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redich–Kister (CNIBS/R–K) model and Jouyban–Acree model in (tetrahydrofuran + ethyl acetate) binary solvent mixture. Computational results showed that the CNIBS/R–K model is superior to the other equations. In addition, the calculated thermodynamic parameters indicate that in each solvent studied the dissolution of omeprazole is endothermic, non-spontaneous and is an entropy-driven process.

  17. Laser photolysis study of anthraquinone in binary mixtures ofionic liquid [bmim][PF6] and organic solvent

    Directory of Open Access Journals (Sweden)

    Side Yao

    2006-12-01

    Full Text Available Photochemical properties of the ionic liquid (RTIL 1-butyl-3-methylimidazoliumhexafluorophosphate [bmim][PF6] and its binary mixed solutions with organic solvent(DMF and MeCN were investigated by laser photolysis at an excitation wavelength of 355nm, using anthraquinone (AQ as a probe molecule. It was indicated that the triplet excitedstate of AQ (3AQ* can abstract hydrogen from [bmim][PF6]. Moreover, along with thechange of the ratio of RTIL and organic solvent, the reaction rate constant changes regularly.Critical points were observed at volume fraction VRTIL = 0.2 for RTIL/MeCN and VRTIL =0.05 for RTIL/DMF. For both systems, before the critical point, the rate constant increasesrapidly with increasing VRTIL; however, it decreases obviously with VRTIL after the criticalpoint. We conclude that the concentration dependence is dominant at lower VRTIL, while theviscosity and phase transformation are dominant at higher VRTIL for the effect of ionic liquidon the decay of rate constant.

  18. Generation of two-dimensional binary mixtures in complex plasmas

    Science.gov (United States)

    Wieben, Frank; Block, Dietmar

    2016-10-01

    Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.

  19. Measurement and correlation of solubility of thiourea in two solvent mixtures from T = (283.15 to 313.15) K

    International Nuclear Information System (INIS)

    Wang, Yanmeng; Yin, Qiuxiang; Sun, Xiaowei; Bao, Ying; Gong, Junbo; Hou, Baohong; Wang, Yongli; Zhang, Meijing; Xie, Chuang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of thiourea in methanol + ethanol and methanol + propanol was studied. • Experimental and calculated (NIBS/R-K) data are in a good agreement. • Interaction between solute and solvent are calculated by Molecular simulation. • Thermodynamic properties of both dissolving and mixing process are calculated. - Abstract: The solubility data of thiourea in methanol + ethanol mixtures and methanol + n-propanol mixtures were determined from T = (283.15 to 313.15) K by gravimetric method under atmospheric pressure. Effects of solvent composition and temperature on solubility of thiourea were discussed. Molecular simulation results indicate that solubility of thiourea will be influenced by interaction energy and a quantitative conclusion can be drawn from the modeling result. To extend the applicability of the solubility data, experimental solubility data in two kinds of binary solvent mixtures were correlated by the modified Apelblat equation, λ–h equation and (NIBS)/Redlich–Kister model. It was found that all the three models could satisfactorily correlate the experimental data and the (NIBS)/Redlich–Kister model could give better correlation results. Furthermore, thermodynamic properties of dissolving and mixing process of thiourea, including the enthalpy, the Gibbs energy and the entropy, were also calculated and analyzed.

  20. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures

    International Nuclear Information System (INIS)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi; Shamsipur, Mojtaba

    2007-01-01

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter (π * ) and hydrogen-bond basicity (β), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (log P) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents

  1. Properties of L-ascorbic acid in water and binary aqueous mixtures of D-glucose and D-fructose at different temperatures

    Science.gov (United States)

    Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh

    2017-12-01

    Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.

  2. Segregation of granular binary mixtures by a ratchet mechanism.

    Science.gov (United States)

    Farkas, Zénó; Szalai, Ferenc; Wolf, Dietrich E; Vicsek, Tamás

    2002-02-01

    We report on a segregation scheme for granular binary mixtures, where the segregation is performed by a ratchet mechanism realized by a vertically shaken asymmetric sawtooth-shaped base in a quasi-two-dimensional box. We have studied this system by computer simulations and found that most binary mixtures can be segregated using an appropriately chosen ratchet, even when the particles in the two components have the same size and differ only in their normal restitution coefficient or friction coefficient. These results suggest that the components of otherwise nonsegregating granular mixtures may be separated using our method.

  3. Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.

    Science.gov (United States)

    Dorsaz, N; Foffi, G

    2010-03-17

    We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.

  4. Study of complexation process between 4'-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

    Science.gov (United States)

    Habibi, N.; Rounaghi, G. H.; Mohajeri, M.

    2012-12-01

    The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

  5. Noble gas, binary mixtures for commercial gas-cooled reactor systems

    International Nuclear Information System (INIS)

    El-Genk, M. S.; Tournier, J. M.

    2007-01-01

    Commercial gas cooled reactors employ helium as a coolant and working fluid for the Closed Brayton Cycle (CBC) turbo-machines. Helium has the highest thermal conductivity and lowest dynamic viscosity of all noble gases. This paper compares the relative performance of pure helium to binary mixtures of helium and other noble gases of higher molecular weights. The comparison is for the same molecular flow rate, and same operating temperatures and geometry. Results show that although helium is a good working fluid because of its high heat transfer coefficient and significantly lower pumping requirement, a binary gas mixture of He-Xe with M = 15 gm/mole has a heat transfer coefficient that is ∼7% higher than that of helium and requires only 25% of the number stages of the turbo-machines. The binary mixture, however, requires 3.5 times the pumping requirement with helium. The second best working fluid is He-Kr binary mixture with M = 10 gm/mole. It has 4% higher heat transfer coefficient than He and requires 30% of the number of stages in the turbo-machines, but requires twice the pumping power

  6. Experimental study on thermal storage performance of binary mixtures of fatty acids

    Science.gov (United States)

    Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu

    2018-02-01

    We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.

  7. Depleted depletion drives polymer swelling in poor solvent mixtures.

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M; Stuehn, Torsten; Kremer, Kurt

    2017-11-09

    Establishing a link between macromolecular conformation and microscopic interaction is a key to understand properties of polymer solutions and for designing technologically relevant "smart" polymers. Here, polymer solvation in solvent mixtures strike as paradoxical phenomena. For example, when adding polymers to a solvent, such that all particle interactions are repulsive, polymer chains can collapse due to increased monomer-solvent repulsion. This depletion induced monomer-monomer attraction is well known from colloidal stability. A typical example is poly(methyl methacrylate) (PMMA) in water or small alcohols. While polymer collapse in a single poor solvent is well understood, the observed polymer swelling in mixtures of two repulsive solvents is surprising. By combining simulations and theoretical concepts known from polymer physics and colloidal science, we unveil the microscopic, generic origin of this collapse-swelling-collapse behavior. We show that this phenomenon naturally emerges at constant pressure when an appropriate balance of entropically driven depletion interactions is achieved.

  8. Dielectric dispersion and thermodynamic behavior of stearic acid binary mixtures with alcohol as co-solvent using time domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Maria Sylvester

    2017-08-01

    Full Text Available Dielectric permittivity and relaxation dynamics of binary and ternary mixture of stearic acid on various concentration and their thermodynamic effects are studied. The static dielectric constant (ε0, dielectric permittivity (ε′ and dielectric loss (ε′′ are found by bilinear calibration. The relaxation time (τ, dielectric strength (Δε and the excess permittivity (εE are found. The thermodynamic parameters such as enthalpy (ΔH, entropy (ΔS and Gibb’s free energy (ΔG are evolved. The significant changes in dielectric parameters are due to the intramolecular and intermolecular interactions in response to the applied frequency. The permittivity spectra of stearic acid–alcohol in the frequency range of 10MHz to 30GHz have been measured using picoseconds Time Domain Reflectometry (TDR. The dielectric parameters (ε0, ε′, ε′′ are found by bilinear calibration method. Influence of temperature in intermolecular interaction and the relaxation process are also studied. The FT-IR spectral analysis reveals that the conformation of functional groups and formation for hydrogen bonding are present in both binary and ternary mixtures of stearic acid.

  9. Thermodynamic models for determination of 3-chloro-N-phenylphthalimide solubility in binary solvent mixtures of (acetone, ethyl acetate or 1,4-dioxane + methanol)

    International Nuclear Information System (INIS)

    Xie, Yong; Shi, Hongwei; Du, Cunbin; Cong, Yang; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 3-chloro-N-phenylphthalimide in binary mixed solvents were determined. • Solubility data were correlated and calculated by five models. • The standard molar enthalpy for the dissolution processes were calculated. - Abstract: The solubility of 3-chloro-N-phenylphthalimide in binary mixed solvents of (acetone + methanol, ethyl acetate + methanol and 1,4-dioxane + methanol) were determined experimentally by using the isothermal dissolution equilibrium method within the temperature range from (288.15 to 323.15) K under atmosphere pressure. For the binary systems of (acetone + methanol) and (1,4-dioxane + methanol), the solubility of 3-chloro-N-phenylphthalimide increased with increasing temperature and mass fraction of acetone or 1,4-dioxane; and for the (ethyl acetate + methanol) system, at a given composition of ethyl acetate, the solubility of 3-chloro-N-phenylphthalimide increased with an increase in temperature; nevertheless at the same temperature, they increased at first and then decreased with increasing mass fraction of 1,4-dioxane. At the same temperature and mass fraction of acetone, ethyl acetate or 1,4-dioxane, the solubility of 3-chloro-N-phenylphthalimide was greater in (1,4-dioxane + methanol) than in the other two mixed solvents. The solubility values were correlated by employing the Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, Apelblat–Jouyban–Acree model, Ma model, and Sun model. On the whole, the Ma model and Sun model were proven to provide good representation of the experimental solubility results. Furthermore, the dissolution enthalpies of the dissolution process were calculated. The dissolution process of 3-chloro-N-phenylphthalimide in these mixed solvents is endothermic. The experimental solubility and the models in this study could be helpful in purifying 3-chloro-N-phenylphthalimide.

  10. Binary and ternary gas mixtures for use in glow discharge closing switches

    Science.gov (United States)

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  11. Relationship between surface tension and refractive index in binary non-electrolyte mixtures

    International Nuclear Information System (INIS)

    Acevedo, I.L.; Pedrosa, G.C.; Katz, M.

    1990-01-01

    Lorentz-Lorenz equation for molecular refraction has been combined with Sugden's parachor equation for binary non-electrolyte mixtures at 298.15 K. The obtained equation has been shown successful in calculating values of surface tensions, by measuring refractive indices of the binary mixtures at the same mole fractions. The estimated error decreases when the mixtures present possible isorefractives. (Author) [es

  12. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    Science.gov (United States)

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  13. RELATIONSHIP BETWEEN FLASH POINTS OF SOME BINARY ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Miscellaneous binary blends containing solvent neutral-150 (SN-150), ... viscosity, the flash point test has always been a standard part of a lubricant's specification. ... between structure and flash points of organic compounds [5-12] and fuels [13, 14]. ... in binary mixtures, the gaps between flash points would be high enough.

  14. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  15. Dielectric Behaviour of Binary Mixture of 2-Chloroaniline with 2-Methoxyethanol and 2-Ethoxyethanol

    Directory of Open Access Journals (Sweden)

    Bhupesh G. Nemmaniwar

    2013-05-01

    Full Text Available Densities, viscosities, refractive indices, dielectric constant (ε' and dielectric loss (ε'' of 2-chloroaniline (2CA + 2-methoxyethanol (2ME and 2-chloroaniline (2CA + 2-ethoxyethanol (2EE for different mole fractions of 2-chloroaniline in binary mixture have been measured at single microwave frequency 10.985 GHz at 300C by Surber method using microwave X-band. The values of dielectric parameters (ε' and ε''   have been used to evaluate the molar polarization (P12 loss tangent (tanδ, viscosity (η, activation energy (Ea, excess permittivity (Δε', excess dielectric loss (Δε'', excess viscosities (Δη, excess polarization (ΔP12 and excess activation energy (ΔEa  have also been estimated. These parameters have been used to explain the formation of complexes in the system. It is found that dielectric constant (ε', dielectric loss (ε'', loss tangent (tanδ, molar polarization (P12 varies non-linearly but activation energy (Ea , viscosity (η ,density (ρ, and refractive index (n varies linearly with increasing mole fraction in binary mixture of 2-chloroaniline (2-CA + 2-methoxyethanol (2-ME and 2-chloroaniline (2-CA + 2-ethoxyethanol (2-EE. Hence, solute-solvent molecular associations have been reported. 

  16. Anomalous relaxation in binary mixtures: a dynamic facilitation picture

    International Nuclear Information System (INIS)

    Moreno, A J; Colmenero, J

    2007-01-01

    Recent computational investigations of polymeric and non-polymeric binary mixtures have reported anomalous relaxation features when both components exhibit very different mobilities. Anomalous relaxation is characterized by sublinear power-law behaviour for mean-squared displacements, logarithmic decay in dynamic correlators, and a striking concave-to-convex crossover in the latter by tuning the relevant control parameter, in analogy with predictions of the mode-coupling theory for state points close to higher-order transitions. We present Monte Carlo simulations on a coarse-grained model for relaxation in binary mixtures. The liquid structure is substituted by a three-dimensional array of cells. A spin variable is assigned to each cell, representing unexcited and excited local states of a mobility field. Changes in local mobility (spin flip) are permitted according to kinetic constraints determined by the mobilities of the neighbouring cells. We introduce two types of cell ('fast' and 'slow') with very different rates for spin flip. This coarse-grained model qualitatively reproduces the mentioned anomalous relaxation features observed for real binary mixtures

  17. Study on complex formation of dicyclohexyl-18-crown-6 with Mg2+, Ca2+ and Sr2+ in acetonitrile-water binary mixtures by conductometry

    OpenAIRE

    Mallika Sanyal

    2017-01-01

    The complexation reactions between Mg2+, Ca2+ and Sr2+ cations and dicyclohexyl-18-crown-6 (DCH 18C6) have been studied in acetonitrile–water binary mixtures at different temperatures by conductometry. The formation constants of the resulting 1:1 (M:L) complexes for all the three cations were determined from computer fitting of the molar conductance versus mole ratio data. The results show that the selectivity order of DCH 18C6 for the metal cations in the acetonitrile-water binary solvent at...

  18. Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design.

    Science.gov (United States)

    Yoshiara, Luciane Yuri; Madeira, Tiago Bervelieri; Delaroza, Fernanda; da Silva, Josemeyre Bonifácio; Ida, Elza Iouko

    2012-12-01

    The objective of this study was to optimize the extraction of different isoflavone forms (glycosidic, malonyl-glycosidic, aglycone and total) from defatted cotyledon soy flour using the simplex-centroid experimental design with four solvents of varying polarity (water, acetone, ethanol and acetonitrile). The obtained extracts were then analysed by high-performance liquid chromatography. The profile of the different soy isoflavones forms varied with different extractions solvents. Varying the solvent or mixture used, the extraction of different isoflavones was optimized using the centroid-simplex mixture design. The special cubic model best fitted to the four solvents and its combination for soy isoflavones extraction. For glycosidic isoflavones extraction, the polar ternary mixture (water, acetone and acetonitrile) achieved the best extraction; malonyl-glycosidic forms were better extracted with mixtures of water, acetone and ethanol. Aglycone isoflavones, water and acetone mixture were best extracted and total isoflavones, the best solvents were ternary mixture of water, acetone and ethanol.

  19. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  20. Optimal (Solvent) Mixture Design through a Decomposition Based CAMD methodology

    DEFF Research Database (Denmark)

    Achenie, L.; Karunanithi, Arunprakash T.; Gani, Rafiqul

    2004-01-01

    Computer Aided Molecular/Mixture design (CAMD) is one of the most promising techniques for solvent design and selection. A decomposition based CAMD methodology has been formulated where the mixture design problem is solved as a series of molecular and mixture design sub-problems. This approach is...

  1. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng

    2015-02-04

    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described in the presence of capillarity, wettability, and mixing effects. In the present work, we apply Onsager\\'s variational principle to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the dynamic equations in two spatial dimensions, one along the substrate and the other normal to the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one spatial dimension along the substrate. This enables us to establish the connection between the present variational approach and the gradient dynamics formulation for thin films. It is shown that for the mobility matrix in the gradient dynamics description, Onsager\\'s reciprocal symmetry is automatically preserved by the variational derivation. Furthermore, using local hydrodynamic variables, our variational approach is capable of introducing diffusive dissipation beyond the limit of dilute solute. Supplemented with a Flory-Huggins-type mixing free energy, our variational approach leads to a thin film model that treats solvent and solute in a symmetric manner. Our approach can be further generalized to include more complicated free energy and additional dissipative processes.

  2. Shear viscosity of binary mixtures: The Gay–Berne potential

    International Nuclear Information System (INIS)

    Khordad, R.

    2012-01-01

    Highlights: ► Most useful potential model to study the real systems is the Gay–Berne (GB) potential. ► We use GB model to examine thermodynamical properties of some anisotropic binary mixtures in two different phases. ► The integral equation methods are applied to solve numerically the Percus–Yevick (PY) equation. ► We obtain expansion coefficients of correlation functions needed to calculate the properties of studied mixtures. ► The results are compared with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, etc.] - Abstract: The Gay–Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus–Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  3. A classification system for tableting behaviors of binary powder mixtures

    Directory of Open Access Journals (Sweden)

    Changquan Calvin Sun

    2016-08-01

    Full Text Available The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system (TCS of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture, three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.

  4. Interaction of organic solvent with a subbituminous coal below pyrolysis temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, D.; Grens, E.A.

    1978-06-01

    The interactions of a subbituminous coal with certain binary organic solvent mixtures have been studied at 250/sup 0/C. Mixtures of pyridine, quinoline, piperidine, tetrahydroquinoline, and ethylenediamine with either toluene or tetralin were contacted with coal in a successive batch, stirred reactor, the extractions being carried to near completion. Two distinct behaviors of extraction yield as a function of composition have been identified. In the majority of the solvent mixtures the extraction yield increases linearly with increasing concentration of the more active solvent. When the active solvent is ethylenediamine, however, the extraction yield increases rapidly when small concentrations of ethylenediamine are used but then levels out close to its maximum value in a 50 to 50 mix. This behavior is an indication that, except in the case of ethylenediamine, the activity of solvent mixtures is a function of bulk solution properties.

  5. Spectrophotometric determination of rare earths in binary mixtures

    International Nuclear Information System (INIS)

    Krasnova, A.V.; Shvarev, V.S.

    1978-01-01

    The possibility was investigated of using the reaction with brompyrogallol red (BPR) (dibrompyrogallosulfophthalein) for analyzing binary mixtures of rare earth metals close in ordinal numbers (La-Y, La-Eu, La-Sm, La-Nd, Nd-Y, Nd-Eu). Heavy REM are masked by nitrile-acetic acid (NAA). The experimental design method was used to determine optimum conditions. The optimizing parameters were the optical density measured with respect to water and the amount of the component bound into the complex. It was found that optimum conditions for the analysis of investigated mixtures differ only in the amount of NAA necessary to mask the heavy element [NAA]/[Sm 3+ ]=4; [NAA]/[Eu 3+ ]=5; [NAA]/Nb 3+ ]=10; [NAA]/[Y 3+ ]=2.5. The optimum acidity and the amount of BPR are always the same: pH 6.5; [BPR]/[La 3+ ]=[BPR]/[Nd 3+ ]=4. The given method for analyzing binary mixtures of lanthanoids surpasses considerably in sensitivity the methods based on intrinsic absorption spectra, while retaining the same reproducibility

  6. The effects of binary UV filter mixtures on the midge Chironomus riparius

    International Nuclear Information System (INIS)

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-01-01

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1 mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10 mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. - Highlights: • Chironomus riparius is sensitive to UV filter binary mixtures. • UV filters binary mixtures show antagonism on survival of 4th instar larvae. • BP-3 and OMC antagonize the stimulatory effect of 4MBC on EcR gene. • 4MBC, OMC, and BP-3 induce hsp70

  7. The effects of binary UV filter mixtures on the midge Chironomus riparius

    Energy Technology Data Exchange (ETDEWEB)

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis, E-mail: jlmartinez@ccia.uned.es

    2016-06-15

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1 mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10 mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. - Highlights: • Chironomus riparius is sensitive to UV filter binary mixtures. • UV filters binary mixtures show antagonism on survival of 4th instar larvae. • BP-3 and OMC antagonize the stimulatory effect of 4MBC on EcR gene. • 4MBC, OMC, and BP-3 induce hsp70

  8. Photonic crystal based sensor for organic solvents and for solvent-water mixtures.

    Science.gov (United States)

    Fenzl, Christoph; Hirsch, Thomas; Wolfbeis, Otto S

    2012-12-12

    Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v) of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v) results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  9. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Otto S. Wolfbeis

    2012-12-01

    Full Text Available Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  10. The solvent extraction of ytterbium from a molten eutectic

    International Nuclear Information System (INIS)

    Lengyel, T.

    1977-01-01

    The paper summarizes the results which were obtained in measurements performed with different binary mixtures of solvents being capable of effectively extracting ytterbium from the molten eutectic lithium nitrate--ammonium nitrate. In the course of elaborating the possible ways of extractive separation of rare earths systematic investigations regarding the individual members of the group are required. The binary solvent mixtures consisted of thenoyl-trifluoracetone (TTA), β-isopropil-tropolone (IPT), tributyl phosphate (TBP), di-2-ethylhexyl phosphoric acid (HDEHP), 2,2'-bipyridyl (bipy), dibutyl phtalate (DBP) and Amberlite LA-2 (LA-2). The concentration of the central ion was kept at 5x10 -6 M by using Yb-169 of high specific activity as a tracer for the radiometric assay. (T.I.)

  11. Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.

    Science.gov (United States)

    Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank

    2018-05-21

    Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O

  12. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Lazerges, Mathieu [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Corvis, Yohann; Ceolin, Rene; Espeau, Philippe [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France)

    2010-01-10

    The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 {+-} 0.007 lidocaine mole-fraction, melts at 18.2 {+-} 0.5 {sup o}C with an enthalpy of 17.3 {+-} 0.5 kJ mol{sup -1}. This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.

  13. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram

    International Nuclear Information System (INIS)

    Lazerges, Mathieu; Rietveld, Ivo B.; Corvis, Yohann; Ceolin, Rene; Espeau, Philippe

    2010-01-01

    The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 ± 0.007 lidocaine mole-fraction, melts at 18.2 ± 0.5 o C with an enthalpy of 17.3 ± 0.5 kJ mol -1 . This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.

  14. Separating Iso-Propanol-Toluene mixture by azeotropic distillation

    Science.gov (United States)

    Iqbal, Asma; Ahmad, Syed Akhlaq

    2018-05-01

    The separation of Iso-Propanol-Toluene azeotropic mixture using Acetone as an entrainer has been simulated on Aspen Plus software package using rigorous methods. Calculations of the vapor-liquid equilibrium for the binary system are done using UNIQUAC-RK model which gives a good agreement with the experimental data reported in literature. The effects of the Reflux ratio (RR), distillate-to-feed molar ratio (D/F), feed stage, solvent feed stage, Total no. of stages and solvent feed temperature on the product purities and recoveries are studied to obtain their optimum values that give the maximum purity and recovery of products. The configuration consists of 20 theoretical stages with an equimolar feed of binary mixture. The desired separation of binary mixture has been achieved at the feed stage and an entrainer feeding stage of 15 and 12 respectively with the reflux ratios of 2.5 and 4.0, and D/F ratio of 0.75 and 0.54 respectively in the two columns. The simulation results thus obtained are useful to setup the optimal column configuration of the azeotropic distillation process.

  15. nth-Nearest neighbour distribution functions of a binary fluid mixture ...

    Indian Academy of Sciences (India)

    Administrator

    for ob- taining the NND functions for single component flu- ids, to binary fluid mixtures. The MD simulation and computation details are presented in section 4. Results are elaborated in section 5 and conclusions are provided in section 6. 2. n-Particle distribution function. Considering a binary system of Nα and Nβ particles.

  16. Composition measurements of binary mixture droplets by rainbow refractometry.

    Science.gov (United States)

    Wilms, J; Weigand, B

    2007-04-10

    So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.

  17. Composition measurements of binary mixture droplets by rainbow refractometry

    International Nuclear Information System (INIS)

    Wilms, J.; Weigand, B.

    2007-01-01

    So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model

  18. 133Cs NMR study of Cs+ ion complexes with dibenzo-21-crown-7 and dibenzo-24-crown-8 in some mixed solvents

    International Nuclear Information System (INIS)

    Rounaghi, G.; Popov, A.I.

    1986-01-01

    Complexation of the cesium ion with macrocyclic ligands, dibenzo-21-crown-7 and dibenzo-24-crown-8, was studied in binary solvent mixtures of dimethylsulfoxide with acetone, acetonitrile, propylene carbonate, pyridine and hexamethylphosphoramide (HMPA) as well as in pyridine-methanol mixtures. In the first four binary mixtures the complexation constants increased with decreasing amounts of dimethylsulfoxide (DMSO), the trend is reversed in the DMSO-HMPA system. In all of the above cases, the variation of the stability constant with composition was monotonic and showed good correlation with the inherent solvating ability of the neat solvents which form the mixture. In the pyridine-methanol system, however, for both complexes, the log Ksub(f) vs composition plots show several changes in direction. This behavior is probably due to a change in the structure of this binary solvent as the composition of the medium is varied. (author)

  19. Solvatochromism of naringenin in aqueous alcoholic mixtures

    Directory of Open Access Journals (Sweden)

    Faraji Mohammad

    2016-01-01

    Full Text Available The spectral change of naringenin was studied by Uv-vis spectrophotometric method in binary mixtures of water with methanol, ethanol and 1-propanol at 25°C. The effect of solvent was investigated by analysis of electron transition energy at the maximum absorption wavelength as a function of Kamlet and Taft parameters of mixtures by means of linear solvation energy relationships. The nonlinear response of solvatochromism was explained based on solute-solvent and solvent-solvent interactions. The possible preferential solvation of naringenin by each of solvents was studied through a modified preferential solvation model which considers the hydrogen bonding interactions between the prior solvents due to solvent-solvent interactions. The preferential solvation parameters and local mole fraction distribution around the solute were calculated. Results indicate that naringenin prefers to be more solvated by the complex solvating species and organic solvents than water.

  20. /sup 133/Cs NMR study of Cs/sup +/ ion complexes with dibenzo-21-crown-7 and dibenzo-24-crown-8 in some mixed solvents

    Energy Technology Data Exchange (ETDEWEB)

    Rounaghi, G.; Popov, A.I.

    1986-01-01

    Complexation of the cesium ion with macrocyclic ligands, dibenzo-21-crown-7 and dibenzo-24-crown-8, was studied in binary solvent mixtures of dimethylsulfoxide with acetone, acetonitrile, propylene carbonate, pyridine and hexamethylphosphoramide (HMPA) as well as in pyridine-methanol mixtures. In the first four binary mixtures the complexation constants increased with decreasing amounts of dimethylsulfoxide (DMSO), the trend is reversed in the DMSO-HMPA system. In all of the above cases, the variation of the stability constant with composition was monotonic and showed good correlation with the inherent solvating ability of the neat solvents which form the mixture. In the pyridine-methanol system, however, for both complexes, the log Ksub(f) vs composition plots show several changes in direction. This behavior is probably due to a change in the structure of this binary solvent as the composition of the medium is varied.

  1. Capillary condensation and adsorption of binary mixtures.

    Science.gov (United States)

    Weinberger, B; Darkrim-Lamari, F; Levesque, D

    2006-06-21

    The adsorption of equimolar binary mixtures of hydrogen-carbon dioxide, hydrogen-methane, and methane-carbon dioxide in porous material models is determined by grand canonical Monte Carlo simulations. The material models have an adsorbent surface similar to that of nanofibers with a herringbone structure. Our main result, which is relevant for hydrogen purification and carbon dioxide capture, is that the adsorption selectivities calculated for the mixtures can differ significantly from those deduced from simulations of the adsorption of pure gases, in particular, when one of the adsorbed gases presents a capillary condensation induced by confinement within the pore network. A comparison of our data is also made with theoretical models used in the literature for predicting the properties of the mixture adsorption.

  2. Shear viscosity of binary mixtures: The Gay-Berne potential

    Science.gov (United States)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  3. Low-temperature behaviour of the Kob-Andersen binary mixture

    International Nuclear Information System (INIS)

    Ashwin S S; Sastry, Srikanth

    2003-01-01

    The dynamical behaviours of glass-forming liquids have been analysed extensively via computer simulations of model liquids, among which the Kob-Andersen binary Lennard-Jones mixture has been a widely studied system. Typically, studies of this model have been restricted to temperatures above the mode coupling temperature. Preliminary results concerning the dynamics of the Kob-Andersen binary mixture are presented at temperatures that extend below the mode coupling temperature, along with properties of the local energy minima sampled. These results show that a crossover in the dynamics occurs alongside changes in the properties of the inherent structures sampled. Furthermore, a crossover is observed from non-Arrhenius behaviour of the diffusivity above the mode coupling temperature to Arrhenius behaviour at lower temperatures

  4. Modeling the effects of binary mixtures on survival in time.

    NARCIS (Netherlands)

    Baas, J.; van Houte, B.P.P.; van Gestel, C.A.M.; Kooijman, S.A.L.M.

    2007-01-01

    In general, effects of mixtures are difficult to describe, and most of the models in use are descriptive in nature and lack a strong mechanistic basis. The aim of this experiment was to develop a process-based model for the interpretation of mixture toxicity measurements, with effects of binary

  5. Light scattering from a binary-liquid entanglement gel

    Science.gov (United States)

    Xia, K.-Q.; Maher, J. V.

    1987-09-01

    Light-scattering experiments have been carried out on an entanglement gel with a binary-liquid mixture as solvent. The onset temperature for critical opalescence has a composition dependence which is similar to the coexistence curve of the free-liquid mixture. This system resembles previously reported work on the cross-linked gel polyacrylamide in two ways: (1) As temperature is lowered toward the critical temperature of the free-liquid mixture, the binary-fluid gel exhibits a strong and increasing light scattering over a broad temperature region of several kelvins, and (2) no appreciable temporal fluctuations are observed throughout this temperature region. Two added features are observed in the present, entanglement-gel measurements: (a) Gel samples with solvent composition both near and off the critical composition of the free-liquid mixture exhibit similar light-scattering behavior, and (b) a Lorentzian-squared fit to the light-scattering angular distributions yields a characteristic wave number which does not change with temperature and an amplitude which shows a very strong dependence on the temperature.

  6. Superlattice configurations in linear chain hydrocarbon binary mixtures

    Indian Academy of Sciences (India)

    Unknown

    Long-chain alkanes; binary mixtures; superlattices; discrete orientational changes. 1. Introduction ... tem and a model of superlattice configuration was proposed4, in terms of .... C18 system,4 the angle with value = 3⋅3° was seen to play an ...

  7. in Binary Liquid Mixtures of Ethyl benzoate

    Directory of Open Access Journals (Sweden)

    Shaik Babu

    2012-01-01

    Full Text Available Ultrasonic velocity is measured at 2MHz frequency in the binary mixtures of Ethyl Benzoate with 1-Propanol, 1-Butanol, 1-Pentanol and theoretical values of ultrasonic velocity have been evaluated at 303K using Nomoto's relation, Impedance relation, Ideal mixture relation, Junjie's method and free length theory. Theoretical values are compared with the experimental values and the validity of the theories is checked by applying the chi-square test for goodness of fit and by calculating the average percentage error (APE. A good agreement has been found between experimental and Nomoto’s ultrasonic velocity.

  8. Noble gas binary mixtures for gas-cooled reactor power plants

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2008-01-01

    This paper examines the effects of using noble gases and binary mixtures as reactor coolants and direct closed Brayton cycle (CBC) working fluids on the performance of terrestrial nuclear power plants and the size of the turbo-machines. While pure helium has the best transport properties and lowest pumping power requirement of all noble gases and binary mixtures, its low molecular weight increases the number of stages of the turbo-machines. The heat transfer coefficient for a He-Xe binary mixture having a molecular weight of 15 g/mole is 7% higher than that of helium, and the number of stages in the turbo-machines is 24-30% of those for He working fluid. However, for the same piping and heat exchange components design, the loop pressure losses with He-Xe are ∼3 times those with He. Consequently, for the same reactor exit temperature and pressure losses in piping and heat exchange components, the higher pressure losses in the nuclear reactor decrease the net peak efficiency of the plant with He-Xe working fluid (15 g/mole) by a little more than ∼2% points, at higher cycle compression ratio than with He working fluid

  9. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... Hydrocarbon Solvent Mixtures 2B Table 2B to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Averageboiling point * (degrees F) Criteria Reactivityfactor 1 80-205 Alkanes... + Dry Point) / 2 (b) Aromatic Hydrocarbon Solvents ...

  10. Composition dependent non-ideality in aqueous binary mixtures as ...

    Indian Academy of Sciences (India)

    understanding in the molecular level. The origin of the .... analysis of inherent structures (IS) of binary mixture in ... liminary molecular dynamics simulation to equilibrate the system at ..... the clusters gradually increase as the concentration of.

  11. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  12. Determination and correlation of solubility and solution thermodynamics of oxiracetam in three (alcohol + water) binary solvents

    International Nuclear Information System (INIS)

    Li, Kangli; Du, Shichao; Wu, Songgu; Cai, Dongchen; Wang, Jinxu; Zhang, Dejiang; Zhao, Kaifei; Yang, Peng; Yu, Bo; Guo, Baisong; Li, Daixi; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of racemic oxiracetam in three binary solvents were determined. • The experimental solubility of racemic oxiracetam were correlated by four models. • The dissolution thermodynamic properties of racemic oxiracetam were calculated. - Abstract: In this paper, we proposed a static analysis method to experimentally determine the (solid + liquid) equilibrium of racemic oxiracetam in (methanol + water), (ethanol + water) and (isopropanol + water) binary solvents with alcohol mole fraction ranging from 0.30 to 0.90 at atmosphere pressure (p = 0.1 MPa). For the experiments, the temperatures range from (283.15 to 308.15) K. The results showed that the solubility of oxiracetam increased with the increasing temperature, while decreased with the increasing organic solvent fraction in all three tested binary solvent systems. The modified Apelblat model, the CNIBS/Redlich–Kister model, the combined version of Jouyban–Acree model and the NRTL model were employed to correlate the measured solubility values, respectively. Additionally, some of the thermodynamic properties which can help to evaluate its dissolution behavior were obtained based on the NRTL model.

  13. Abnormal scattering of polymer in binary solvent

    Science.gov (United States)

    To, Kiwing; Kim, Chul A.; Choi, Hyoung J.

    The behavior of a high molecular weight polymer (polyethylene-oxide, PEO) in a binary liquid mixture (nitroethane/3-methyl-pentane, NE/MP) is studied at the one-phase temperature of NE/MP by static and dynamic light scattering methods. We found that the scattering intensity increased abruptly near the critical composition of NE/MP although the sample was very far from the critical temperature of NE/MP. Explanations in terms of critical opalescence and wetting layer inversion are discussed.

  14. Thermodynamic behavior of binary mixtures CnMpyNTf2 ionic liquids with primary and secondary alcohols

    International Nuclear Information System (INIS)

    Calvar, N.; Gómez, E.; Domínguez, Á.; Macedo, E.A.

    2012-01-01

    Highlights: ► Osmotic coefficients of alcohols with C n MpyNTf 2 (n = 2, 3, 4) are determined. ► Experimental data were correlated with Extended Pitzer model of Archer and MNRTL. ► Mean molal activity coefficients and excess Gibbs free energies were calculated. ► The results have been interpreted in terms of interactions. - Abstract: In this paper, the osmotic and activity coefficients and vapor pressures of the binary mixtures containing the ionic liquids 1-ethyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide, C 2 MpyNTf 2 , and 1-methyl-3-propylpyridinium bis(trifluoromethylsulfonyl)imide, C 3 MpyNTf 2 , with 1-propanol, or 2-propanol and the ionic liquid 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide, C 4 MpyNTf 2 , with 1-propanol or 2-propanol or 1-butanol or 2-butanol were determined at T = 323.15 K using the vapor pressure osmometry technique. The influence of the structure of the alcohol and of the ionic liquid on both coefficients and vapor pressures is discussed and a comparison with literature data on binary mixtures containing ionic liquids with different cations and anion is also performed. Besides, the results have been interpreted in terms of solute–solvent and ion–ion interactions. The experimental osmotic coefficients were correlated using the Extended Pitzer model of Archer and the Modified Non-Random Two Liquids model obtaining standard deviations lower than 0.059 and 0.102 respectively, and the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated.

  15. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  16. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2013-01-01

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  17. Quantitative Characterization of the Toxicities of Cd-Ni and Cd-Cr Binary Mixtures Using Combination Index Method

    Directory of Open Access Journals (Sweden)

    Lingyun Mo

    2016-01-01

    Full Text Available Direct equipartition ray design was used to construct Cd-Ni and Cd-Cr binary mixtures. Microplate toxicity analysis was used to evaluate the toxicity of individual substance and the Cd-Ni and Cd-Cr mixtures on Chlorella pyrenoidosa and Selenastrum capricornutum. The interacting toxicity of the mixture was analyzed with concentration addition (CA model. In addition, combination index method (CI was proposed and used to quantitatively characterize the toxicity of the binary mixtures of Cd-Ni and Cd-Cr observed in experiment and find the degree of deviation from the predicted outcome of the CA model, that is, the intensity of interacting toxicity. Results indicate that most of the 20 binary mixtures exhibit enhancing and synergistic effect, and only Cd-Cr-R4 and Cd-Cr-R5 mixtures have relatively high antagonistic effects against C. pyrenoidosa. Based on confidence interval, CI can compare the intensities of interaction of the mixtures under varying levels of effect. The characterization methods are applicable for analyzing binary mixture with complex interaction.

  18. Experimental vapor-liquid equilibria data for binary mixtures of xylene isomers

    Directory of Open Access Journals (Sweden)

    W.L. Rodrigues

    2005-09-01

    Full Text Available Separation of aromatic C8 compounds by distillation is a difficult task due to the low relative volatilities of the compounds and to the high degree of purity required of the final commercial products. For rigorous simulation and optimization of this separation, the use of a model capable of describing vapor-liquid equilibria accurately is necessary. Nevertheless, experimental data are not available for all binaries at atmospheric pressure. Vapor-liquid equilibria data for binary mixtures were isobarically obtained with a modified Fischer cell at 100.65 kPa. The vapor and liquid phase compositions were analyzed with a gas chromatograph. The methodology was initially tested for cyclo-hexane+n-heptane data; results obtained are similar to other data in the literature. Data for xylene binary mixtures were then obtained, and after testing, were considered to be thermodynamically consistent. Experimental data were regressed with Aspen Plus® 10.1 and binary interaction parameters were reported for the most frequently used activity coefficient models and for the classic mixing rules of two cubic equations of state.

  19. Binary Solvents Dispersive Liquid-Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography.

    Science.gov (United States)

    Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri

    2014-02-03

    Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.

  20. Surface tension of decane binary and ternary mixtures with eicosane, docosane, and tetracosane

    DEFF Research Database (Denmark)

    Queimada, Antonio; Cao, A.I.; Marrucho, I.M.

    2005-01-01

    -C24H50 and the ternary n-C10H22 + n-C20H42 + n-C24H50 were measured from 293.15 K (or above the solution melting temperature) up to 343.15 K. An average absolute deviation of 1.3% was obtained in comparison with pure component literature data. No mixture information for the reported systems was found......A tensiometer operating on the Wilhelmy plate method was employed to measure liquid-vapor interfacial tensions of three binary mixtures and one ternary mixture of decane with eicosane, docosane, and tetracosane. Tensions of binary mixtures n-C10H22 + n-C20H42, n-C10H22 + n-C22H46, and n-C10H22 + n...

  1. Singlet oxygen reactivity in water-rich solvent mixtures

    Directory of Open Access Journals (Sweden)

    Cristina Sousa

    2008-01-01

    Full Text Available The 3-methylindole (3MI oxygenation sensitized by psoralen (PSO has been investigated in 100%, 20% and 5% O2-saturated water/dioxane (H2O/Dx mixtures. The lowering of the ¹O2* chemical rate when water (k chem∆3MI = 1.4 × 109 M-1 s-1 is replaced by deuterated water (k chem∆3MI = 1.9 × 108 M-1 s-1 suggests that hydrogen abstraction is involved in the rate determining step. A high dependence of the chemical rate constant on water concentration in H2O/Dx mixtures was found showing that water molecules are absolutely essential for the success of the 3MI substrate oxidation by ¹O2* in water-rich solvent mixtures.

  2. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  3. Steady-state organization of binary mixtures by active impurities

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Gilhøj, Henriette; Mouritsen, Ole G.

    1998-01-01

    The structural reorganization of a phase-separated binary mixture in the presence of an annealed dilution of active impurities is studied by computer-simulation techniques via a simple two-dimensional lattice-gas model. The impurities, each of which has two internal states with different affinity...

  4. Quantitative structure activity relationships (QSAR) for binary mixtures at non-equitoxic ratios based on toxic ratios-effects curves.

    Science.gov (United States)

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang

    2013-01-01

    The present study proposed a QSAR model to predict joint effects at non-equitoxic ratios for binary mixtures containing reactive toxicants, cyanogenic compounds and aldehydes. Toxicity of single and binary mixtures was measured by quantifying the decrease in light emission from the Photobacterium phosphoreum for 15 min. The joint effects of binary mixtures (TU sum) can thus be obtained. The results showed that the relationships between toxic ratios of the individual chemicals and their joint effects can be described by normal distribution function. Based on normal distribution equations, the joint effects of binary mixtures at non-equitoxic ratios ( [Formula: see text]) can be predicted quantitatively using the joint effects at equitoxic ratios ( [Formula: see text]). Combined with a QSAR model of [Formula: see text]in our previous work, a novel QSAR model can be proposed to predict the joint effects of mixtures at non-equitoxic ratios ( [Formula: see text]). The proposed model has been validated using additional mixtures other than the one used for the development of the model. Predicted and observed results were similar (p>0.05). This study provides an approach to the prediction of joint effects for binary mixtures at non-equitoxic ratios.

  5. VISCOSITY OF BINARY NON-ELECTROLYTE LIQUID MIXTURES: PREDICTION AND CORRELATION

    Directory of Open Access Journals (Sweden)

    Mirjana Lj. Kijevčanin

    2008-11-01

    Full Text Available The viscosity of 31 binary liquid mixtures containing diverse groups of organic compounds, determined at atmospheric pressure: alcohols, alkanes (cyclo and aliphatic, esters, aromatics, ketones etc., were calculated using two different approaches, correlative (with Teja-Rice and McAllister models and predictive by group contribution models (UNIFAC-VISCO, ASOG-VISCO and Grunberg-Nissan. The obtained results were analysed in terms of the applied approach and model, the structure of the investigated mixtures, the nature of components of the mixtures and the influence of alkyl chain length of the alcohol molecule.

  6. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2011-01-01

    In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid–liqu...

  7. Excess molar enthalpies for binary mixtures of different amines with water

    International Nuclear Information System (INIS)

    Zhang, Ruilei; Chen, Jian; Mi, Jianguo

    2015-01-01

    Highlights: • Isothermal excess molar enthalpies for binary mixtures of different amines with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The excess molar enthalpies were discussed with different structures of amines. - Abstract: The isothermal excess molar enthalpies for binary mixtures of different amines with water were measured with a C-80 Setaram calorimeter. The experimental results indicate that the excess molar enthalpy is related to the molecular structure. The experimental excess molar enthalpies were satisfactorily fitted with the Redlich–Kister equation. They were also used to test the suitability of the NRTL model, and the deviations are a little larger than the R–K equation

  8. High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds

    Science.gov (United States)

    Zhang, Shao-Lin; Zhang, Zhijun; Yang, Woo-Chul

    2016-01-01

    Despite the great progress in the theory and experimental verification we made in past decade, the practical application of graphene is still hindered by the lack of efficient, economical, scalable, ease-processing exfoliation method. Herein, we propose a facile, low-cost, and efficient liquid-phase exfoliation process using low boiling-temperature solvent mixture to fabricate few-layer graphene in large scale. The Hansen solubility parameter theory was applied to help optimize the composition of solvent mixture. Aqueous-based ternary-solvent mixture, for the first time, was adapted to exfoliate graphene. We demonstrate that the exfoliation efficiency using ternary-solvent mixture surpasses that from binary-solvent approach. The final product concentration after optimization was over 260 μg/ml. The concentrated graphene dispersion was used to fabricate gas sensor for detecting volatile organic gases. Taking advantage of large surface area, large number of adsorption sites, and well-preserved basal plane, the mass-produced graphene nanosheets exhibited promising sensing potential toward ethanol and methanol vapors.

  9. Microwave dielectric characterization of binary mixture of formamide ...

    Indian Academy of Sciences (India)

    are fitted to the three different relaxation models [24–27] by the non-linear least squares fit method. It is observed that the Davidson–Cole model is adequate to describe major dispersion of the various solute and solvent mixtures over this fre- quency range. Static dielectric constant and dielectric relaxation time could be.

  10. Investigation on some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures

    International Nuclear Information System (INIS)

    Moosavi, Mehrdad; Motahari, Ahmad; Omrani, Abdollah; Rostami, Abbas Ali

    2013-01-01

    Highlights: ► Measuring densities and viscosities for binary mixtures of PEG + water or alcohols. ► Finding excess molar volume, refractive index and coefficient of thermal expansion. ► Estimating binary coefficients using Redlich–Kister polynomial equation. ► Deducing excess Gibbs free energy of activation and other activation parameters. ► Correlation of viscosity data with Grunberg–Nissan and Tamura–Kurata equations. -- Abstract: Densities ρ and viscosities η for the binary mixtures of poly(ethylene glycol) + water, + 1,2-ethanediol, + 1,3-propanediol, + 1,4-butanediol over the entire concentration range were determined at temperatures (298.15 to 308.15) K with 5 K interval. The experimental data were used to calculate the excess molar volume V m E , coefficient of thermal expansion α, excess coefficient of thermal expansion α E , excess Gibbs free energy of activation ΔG ∗E , and other activation parameters (i.e., ΔG ∗ ,ΔH ∗ ,ΔS ∗ ). The values of excess properties were fitted to Redlich–Kister polynomial equation to estimate the binary coefficients. The excess refractive index n E and electronic polarizability α e of PEG + water binary mixtures were also determined from the experimental values of refractive indices. The viscosity data were correlated with Grunberg–Nissan and Tamura–Kurata equations. Moreover, the Prigogine–Flory–Patterson theory has been used to correlate the excess molar volumes of the studied mixtures

  11. Microscopic dynamics of binary mixtures and quasi-colloidal systems

    International Nuclear Information System (INIS)

    Smorenburg, H.E.

    1996-01-01

    In the study on the title subject two questions are addressed. One is whether the microscopic dynamics of binary mixtures and quasi-colloidal systems can be understood theoretically with kinetic theories for equivalent hard sphere mixtures. The other question that arises is whether the similarity in the dynamics of dense simple fluids and concentrated colloidal suspensions also holds for binary mixtures and quasi-colloidal systems. To answer these questions, we have investigated a number of binary gas mixtures and quasi-colloidal system with different diameter ratios and concentrations. We obtain the experimental dynamic structure factors S expt (κ,ω) of the samples from inelastic neutron scattering. We compare S expt (κ,ω) with the dynamic structure S HS (κ,ω) of an equivalent hard sphere fluid, that we calculate with the Enskog theory. In chapter 2, 3 and 4 we study dense He-Ar gas mixtures (diameter ratio R=1.4, and mass ratio M=10) at low and high Ar concentrations. Experiment and kinetic theory are in good agreement. In chapter 5 we study dilute quasi-colloidal suspensions of fullerene C60 molecules dissolved in liquid CS2. The diameter ratio R=2.2 is larger than in previous experiments while the mass ratio M=9.5 is more or less the same. We obtain the self diffusion coefficient D S of one C60 molecule in CS2 and find D s ≤D SE ≤D E , with D E obtained from kinetic theory and D SE from the Stokes-Einstein description. It appears that both descriptions are relevant but not so accurate. In chapter 6 we study three dense mixtures of neopentane in 40 Ar (diameter ratio R=1.7, mass ratio M=2) at low and high neopentane concentrations. At low concentration, we find a diffusion coefficient of neopentane in Ar, which is in good agreement with kinetic theory and in moderate agreement with the Stokes-Einstein description. At high concentration the collective translational dynamics of neopentane shows a similar behaviour as in dense colloids and simple fluids

  12. Flash-Point prediction for binary partially miscible aqueous-organic mixtures

    OpenAIRE

    Liaw, Horng-Jang; Chen, Chien Tsun; Gerbaud, Vincent

    2008-01-01

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes and heterogeneous distillation processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of aqueous-organic system. To confirm the predictive efficiency of the derived flash points, the model was verified by comparing the ...

  13. Photoacoustic study of heated binary mixtures containing whey and skimmed-milk powders

    NARCIS (Netherlands)

    Doka, O.; Bicanic, D.; Frankhuizen, R.

    1999-01-01

    A novel methodology is proposed to determine the amount of whey powder in a binary mixture containing whey and skimmed-milk powders. This new approach is based on measurement of the amplitude of the photoacoustic (PA) signal obtained when the mixture is exposed to a controlled thermal treatment; the

  14. Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble

    Science.gov (United States)

    Dunne, Lawrence J.; Manos, George

    2018-03-01

    Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO2 and CH4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO2 and CH4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes. This article is part of the theme issue `Modern theoretical chemistry'.

  15. Binary Solvents Dispersive Liquid—Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography

    Science.gov (United States)

    2014-01-01

    Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475

  16. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    parameter B/A of four binary liquid mixtures using Tong and Dong equation at high pressures and .... in general as regular or ideal as no recognized association takes place between the unlike molecules. In this case ... Using the definition and.

  17. Prediction of the Flash Point of Binary and Ternary Straight-Chain Alkane Mixtures

    Directory of Open Access Journals (Sweden)

    X. Li

    2014-01-01

    Full Text Available The flash point is an important physical property used to estimate the fire hazard of a flammable liquid. To avoid the occurrence of fire or explosion, many models are used to predict the flash point; however, these models are complex, and the calculation process is cumbersome. For pure flammable substances, the research for predicting the flash point is systematic and comprehensive. For multicomponent mixtures, especially a hydrocarbon mixture, the current research is insufficient to predict the flash point. In this study, a model was developed to predict the flash point of straight-chain alkane mixtures using a simple calculation process. The pressure, activity coefficient, and other associated physicochemical parameters are not required for the calculation in the proposed model. A series of flash points of binary and ternary mixtures of straight-chain alkanes were determined. The results of the model present consistent experimental results with an average absolute deviation for the binary mixtures of 0.7% or lower and an average absolute deviation for the ternary mixtures of 1.03% or lower.

  18. Excess Molar Volumes and Viscosities of Binary Mixture of Diethyl Carbonate+Ethanol at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    MA Peisheng; LI Nannan

    2005-01-01

    The purpose of this work was to report excess molar volumes and dynamic viscosities of the binary mixture of diethyl carbonate (DEC)+ethanol. Densities and viscosities of the binary mixture of DEC+ethanol at temperatures 293.15 K-343.15 K and atmospheric pressure were determined over the entire composition range. Densities of the binary mixture of DEC+ethanol were measured by using a vibrating U-shaped sample tube densimeter. Viscosities were determined by using Ubbelohde suspended-level viscometer. Densities are accurate to 1.0×10-5 g·cm-3, and viscosities are reproducible within ±0.003 mPa·s. From these data, excess molar volumes and deviations in viscosity were calculated. Positive excess molar volumes and negative deviations in viscosity for DEC+ethanol system are due to the strong specific interactions.All excess molar vo-lumes and deviations in viscosity fit to the Redlich-Kister polynomial equation.The fitting parameters were presented,and the average deviations and standard deviations were also calculated.The errors of correlation are very small.It proves that it is valuable for estimating densities and viscosities of the binary mixture by the correlated equation.

  19. Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method.

    Science.gov (United States)

    Selvaraju, R; Raja, A; Thiruppathi, G

    2013-10-01

    In the present study the human urinary stones were observed in their different chemical compositions of calcium oxalate monohydrate, calcium oxalate dihydrate, calcium phosphate, struvite (magnesium ammonium phosphate), uric acid, cystine, oxammite (ammonium oxalate monohydrate), natroxalate (sodium oxalate), glushinkite (magnesium oxalate dihydrate) and moolooite (copper oxalate) were analyzed using Fourier Transform-Raman (FT-Raman) spectroscopy. For the quantitative analysis, various human urinary stone samples are used for ratios calculation of binary mixtures compositions such as COM/COD, HAP/COD, HAP/COD, Uric acid/COM, uric acid/COD and uric acid/HAP. The calibration curve is used for further analysis of binary mixture of human urinary stones. For the binary mixture calculation the various intensities bands at 1462 cm(-1) (I(COM)), 1473 cm(-1) (I(COD)), 961 cm(-1) (I(HAP)) and 1282 cm(-1) (I(UA)) were used. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junfeng [State Key Lab. of Chem. Resource Eng, College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China)], E-mail: Licx@mail.buct.edu.cn; Li Xuemei; Meng Hong [College of Chem. Eng.., Beijing Univ. of Chem. Tech. Beijing 100029 (China); Li Chunxi [State Key Lab. of Chem. Resource Eng, College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China); Wang Zihao [College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China)

    2009-02-15

    The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration.

  1. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa

    International Nuclear Information System (INIS)

    Wang Junfeng; Li Xuemei; Meng Hong; Li Chunxi; Wang Zihao

    2009-01-01

    The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration

  2. Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones

    International Nuclear Information System (INIS)

    Radhamma, M.; Venkatesu, P.; Rao, M.V. Prabhakara; Prasad, D.H.L.

    2007-01-01

    Excess enthalpies (H E ), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The H E values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (G E ). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties

  3. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290 Aromatic...

  4. Diode Laser-Based Sensor for Fast Measurement of Binary Gas Mixtures

    National Research Council Canada - National Science Library

    McNesby, Kevin

    1999-01-01

    The development and characterization of a gas sensor to measure binary mixtures of oxygen and the vapor from a series of volatile organic compounds, with a time resolution of 10 milliseconds, is described...

  5. Asymptotic Limits for Transport in Binary Stochastic Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, A. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    The Karhunen-Loeve stochastic spectral expansion of a random binary mixture of immiscible fluids in planar geometry is used to explore asymptotic limits of radiation transport in such mixtures. Under appropriate scalings of mixing parameters - correlation length, volume fraction, and material cross sections - and employing multiple- scale expansion of the angular flux, previously established atomic mix and diffusion limits are reproduced. When applied to highly contrasting material properties in the small cor- relation length limit, the methodology yields a nonstandard reflective medium transport equation that merits further investigation. Finally, a hybrid closure is proposed that produces both small and large correlation length limits of the closure condition for the material averaged equations.

  6. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  7. Thermophysical properties of binary mixtures of N,N-dimethylformamide with three cyclic ethers

    Directory of Open Access Journals (Sweden)

    Sinha Biswajit

    2013-01-01

    Full Text Available Densities and viscosities of the binary mixtures consisting of tetrahydrofuran (THF, 1,3-dioxolane (1,3-DO and 1,4-dioxane (1,4-DO with N,N-dimethylformamide (DMF over the entire range of composition were measured at temperatures 298.15, 308.15 and 318.15 K and at atmospheric pressure. Ultrasonic speeds of sound of these binary mixtures were measured at ambient temperature and atmospheric pressure (T = 298.15 K and P = 1.01×105 Pa. The various experimental data were utilized to derive excess molar volumes (VmE, excess viscosities (ηE, and excess isentropic compressibilities (κsE. Using the excess molar volumes (VmE, excess partial molar volumes (and and excess partial molar volumes at infinite dilution (and of each liquid component in the mixtures were derived and discussed. Excess molar volumes (VmE as a function of composition at ambient temperature and atmospheric pressure were used further to test the applicability of the Prigogine-Flory-Patterson (PFP theory to the experimental binaries. The excess properties were found to be either negative or positive depending on the nature of molecular interactions and structural effects of liquid mixtures. Em,1V Em,2VE0,m,1VE0,m,2V.

  8. Pycnonuclear reaction rates for binary ionic mixtures

    Science.gov (United States)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  9. Conductance Studies on Complex Formation between c-Methylcalix[4]resorcinarene and Titanium (III in Acetonitrile-H2O Binary Solutions

    Directory of Open Access Journals (Sweden)

    Naghmeh Saadati

    2013-09-01

    Full Text Available Calixresorcinarenes have proved to be unique molecules for molecular recognition via hydrogen bonding, hydrophobic and ionic interactions with suitable substrates such as cations. The study of the interactions involved in the complexation of different cations with calixresorcinarenes in solvent mixtures is important for a better understanding of the mechanism of biological transport, molecular recognition, and other analytical applications. This article summarizes different aspects of the complexes of the Ti3+ metal cation with c-methylcalix[4]resorcinarene (CMCR as studied by conductometry in acetonitrile (AN–water (H2O binary mixtures at different temperatures. Conductance data show that the metal cation/ligand (ML stoichiometry of the complexes in solution is 1:1 in all cases. Non-linear behaviour was observed for the variation of logKf of the complexes vs. the composition of the binary solvent mixtures. Selectivity of CMCR for the Ti3+ cation is sensitive to solvent composition; in some cases and at certain compositions of the mixed solvent systems, the selectivity order is changed. Values of thermodynamic parameters (, for formation of the CMCR–Ti3+ complexes in AN–H2O binary systems were obtained from the temperature dependence of stability constants, and the results show that the thermodynamics of complexation reactions are affected by the nature and composition of the mixed solvents.

  10. Study of acid-base properties in various water-salt and water-organic solvent mixtures

    International Nuclear Information System (INIS)

    Lucas, M.

    1969-01-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H + + B ↔ HB + in salt-water mixtures and found a relation between the pK A value, the solubility of the base and water activity. The reaction HO - + H + ↔ H 2 O has been investigated and a relation been found between pK i values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [fr

  11. Investigation of the powder flow behaviour of binary mixtures of microcrystalline celluloses and paracetamol

    Directory of Open Access Journals (Sweden)

    Ira Soppela

    2010-03-01

    Full Text Available The flow behaviour of binary mixtures of paracetamol and different grades of microcrystalline celluloses (Avicel® PH101, PH102 and PH200 was studied using a new testing method. The effect of physical characteristics of the powder including tribocharging and the addition of lubricant on the flow properties of the different mixtures was investigated. As expected, the flowability of the samples was affected both by the amount of paracetamol and the physical properties of microcrystalline celluloses (MCC and the mixtures. The effect of lubricant varied depending on the MCC grade: magnesium stearate was able to improve the flowability of the mixtures containing PH102 and PH200 while it did not affect the flowability of PH101. Multivariate analysis showed that the flow of the binary excipient-drug mixtures through an orifice is affected by several phenomena, such as charging, surface moisture, carrier payload and particle size.

  12. Forage production of grass-legume binary mixtures on Intermountain Western USA irrigated pastures

    Science.gov (United States)

    A well-managed irrigated pasture is optimized for forage production with the use of N fertilizer which incurs extra expense. The objective was to determine which binary grass-legume mixture and mixture planting ratio of tall fescue (Festuca arundinacea Schreb.) (TF), meadow brome (Bromus bieberstei...

  13. Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2

    International Nuclear Information System (INIS)

    Hayamizu, Kikuko; Aihara, Yuichi

    2004-01-01

    Two binary mixed solvent systems typically used for lithium batteries were studied by measuring the self-diffusion coefficients of the solvent, lithium ion and anion, independently by using the multi-nuclear pulsed field-gradient spin-echo (PGSE) 1 H, 7 Li and 19 F NMR method. One system was propylene carbonate (PC) and diethyl carbonate (DEC) system and the other binary system was PC and 1,2-dimethoxyethane (DME), and the lithium salt used was LiN(SO 2 CF 3 ) 2 (LiTFSI). The relative ratio of the PC was changed from zero (pure DME and DEC) to 100% (pure PC) in the DME-PC and the DEC-PC systems, respectively. The self-diffusion coefficients of the solvents were measured with and without the lithium salt, and the two solvents had almost the same diffusion coefficient in the DEC-PC system, while DME diffused faster than PC in the DME-PC system. In the electrolytes the solvents diffused the fastest, followed by the anion with the lithium ion diffusing the slowest. The degree of ion dissociation was estimated for each electrolyte by comparing the ionic conductivities estimated from the ion diffusion and those measured directly by the electrochemical method

  14. Dielectric Properties of Binary Solvent Mixtures of Dimethyl Sulfoxide with Water

    Science.gov (United States)

    Yang, Li-Jun; Yang, Xiao-Qing; Huang, Ka-Ma; Jia, Guo-Zhu; Shang, Hui

    2009-01-01

    In this paper, the dielectric properties of water-dimethylsulfoxide (DMSO) mixtures with different mole ratios have been investigated in the range of 1 GHz to 40 GHz at 298 K by using a molecular dynamics (MD) simulation. Only one dielectric loss peak was observed in the frequency range and the relaxation in these mixtures can be described by a single relaxation time of the Davidson-Cole. It was observed that within experimental error the dielectric relaxation can be described by the Debye-like model (β ≈ 1, S.M. Puranik, et al. J. Chem. Soc. Faraday Trans. 1992, 88, 433 – 435). In general, the results are very consistent with the experimental measurements. PMID:19399247

  15. Dielectric Properties of Binary Solvent Mixtures of Dimethyl Sulfoxide with Water

    Directory of Open Access Journals (Sweden)

    Li-Jun Yang

    2009-03-01

    Full Text Available In this paper, the dielectric properties of water-dimethylsulfoxide (DMSO mixtures with different mole ratios have been investigated in the range of 1 GHz to 40 GHz at 298 K by using a molecular dynamics (MD simulation. Only one dielectric loss peak was observed in the frequency range and the relaxation in these mixtures can be described by a single relaxation time of the Davidson-Cole. It was observed that within experimental error the dielectric relaxation can be described by the Debye-like model (β ≈ 1, S.M. Puranik, et al. J. Chem. Soc. Faraday Trans.1992, 88, 433 - 435. In general, the results are very consistent with the experimental measurements.

  16. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  17. Collection methodology evaluation and solvents analysis/mixtures solvents in the air in work ambient: methanol in MEG mixture (methanol 33%, ethanol 60% and gasoline 7%); Avaliacao de metodologia de coleta e analise de solventes/misturas de solventes no ar em ambiente de trabalho: metanol em mistura MEG (metanol 33%, etanol 60% e gasolina 7%)

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Luiza Maria Nunes

    1995-07-01

    This thesis presents a proposal for evaluation of collection and solvent/solvent mixtures analysis methodology for the air in the work environment by studying the following issues of present solvents: historical aspects; methanol - properties and toxicity; collection methodology evaluation, and gases and vapors analysis in the air; experimental data. The denominated mixture MEG - methanol, ethanol and gasoline is analyzed in terms of its chemical characteristics. The author concludes the work detaching that the methodology presented can only be used for short duration measurements in concentrations peaks studies.

  18. Excess molar volumes and viscosities of binary mixtures of 1,2

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 3. Excess molar volumes and viscosities of binary mixtures of 1,2-diethoxyethane with chloroalkanes ... The Bloomfield and Dewan model has been used to calculate viscosity ...

  19. Exact results in a lattice model of a binary reactant mixture

    International Nuclear Information System (INIS)

    Thomas, P.B.

    1995-01-01

    We study phase separation in a binary mixture of two particles, which can react with each other and form a third compound. We determine the exact phase boundaries for a restricted range of the interaction parameters

  20. Synthesis of silver nanocubes in a hydrophobic binary organic solvent.

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.; Sun, Y. (Center for Nanoscale Materials)

    2010-01-01

    Synthesis of metal nanoparticles with controlled shapes in hydrophobic solvents is challenging because homogeneous nucleation with high rate in these solvents is favorable for the formation of multiply twinned (MT) nanoparticles with spherical morphology. In this work, we report an inhomogeneous nucleation strategy in a binary hydrophobic solvent mediated by dimethyldistearylammonium chloride (DDAC), resulting in the coexistence of single-crystalline Ag polyhedrons and MT Ag quasi-spheres at the beginning of the reaction. In the consequent step, the MT Ag nanoparticles are selectively etched and dissolved through oxidation by NO{sub 3}{sup -} ions (from the Ag precursor, AgNO{sub 3}) with the assistance of Cl{sup -} ions (from DDAC). The dissolved Ag species are then reduced and deposited on the more stable single-crystalline polyhedrons to form Ag nanocubes. Synergy of the oxidative etching of MT particles and growth of single-crystalline particles leads to Ag nanocubes with high purity when the ripening time is long enough. For example, refluxing a mixing solvent of octyl ether and oleylamine containing AgNO{sub 3} (0.02 M) and DDAC (0.03 M) at 260 C for 1 h results in Ag nanocubes with an average edge length of 34 nm and a purity higher than 95%.

  1. Study of structural and transport properties of argon, krypton, and their binary mixtures at different temperatures.

    Science.gov (United States)

    Ghimire, Sunil; Adhikari, Narayan Prasad

    2017-03-01

    Molecular dynamics simulation of argon, krypton, and their binary mixtures were performed at different temperatures and constant pressure (P = 1.013 bar) using GROMACS - Groningen Machine for Chemical Simulations. The gases are modeled by Lennard-Jones pair potential, with parameters taken from the literature. The study of radial distribution functions (RDFs) shows a single peak which indicates that there is no packing effect in gaseous state for argon, krypton, and their binary mixtures. The self-diffusion coefficients of argon and krypton is determined by using mean-square displacement(MSD) method and the mutual diffusion coefficients of binary mixtures are determined using Darken's relation. The values of simulated diffusion coefficients are compared with their corresponding theoretical values, numerical estimation, and experimental data. A good agreement between these sets of data is found. The diffusion coefficients obey Arrhenius behavior to a good extent for both pure components and binary mixtures. The values of simulated diffusion coefficient are used to estimate viscosities and thermal conductivities which agree with theoretical values, numerical estimation, and experimental data within 10 %. These results support that the LJ potential is sufficient for description of molecular interactions in argon and krypton.

  2. Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations.

    Science.gov (United States)

    De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C

    2012-03-08

    In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.

  3. Transport benchmarks for one-dimensional binary Markovian mixtures revisited

    International Nuclear Information System (INIS)

    Malvagi, F.

    2013-01-01

    The classic benchmarks for transport through a binary Markovian mixture are revisited to look at the probability distribution function of the chosen 'results': reflection, transmission and scalar flux. We argue that the knowledge of the ensemble averaged results is not sufficient for reliable predictions: a measure of the dispersion must also be obtained. An algorithm to estimate this dispersion is tested. (author)

  4. Volumetric and viscometric properties of binary and ternary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate, monoethanolamine and water

    International Nuclear Information System (INIS)

    Yin, Yaran; Zhu, Chunying; Ma, Youguang

    2016-01-01

    Highlights: • Densities and viscosities of [Bmim][BF 4 ] + MEA + H 2 O solutions were measured. • Volumetric and viscometric properties were deduced from experimental results. • Intermolecular interactions were analysed by volumetric and viscometric properties. - Abstract: Densities and viscosities of binary {[Bmim][BF 4 ] + H 2 O}, {[Bmim][BF 4 ] + MEA}, (MEA + H 2 O) and ternary mixtures {[Bmim][BF 4 ] + MEA + H 2 O} were measured at T = (293.15–333.15) K. The volumetric and viscometric properties, such as excess molar volume V E , viscosity deviation Δη, and excess Gibbs energy of activation of viscous flow ΔG ∗E for all mixtures, and apparent molar volume, excess partial molar volume and Grunberg-Nissan interaction parameter G 12 for binary mixtures, were deduced from experimental results, and the intermolecular interactions in solutions were also analysed. The excess molar volumes were correlated using the Redlich-Kister polynomial equation for binary mixtures, and Singh et al. equation for the ternary mixture with corresponding binary parameters. The viscosities of binary and ternary solutions were respectively fitted by Jouyban-Acree equation and its extended equation at each measurement temperature, the correlated values are in good agreement with the corresponding experimental data.

  5. Adsorption chromatographic separation of radioiodine-labelled compounds using binary eluents

    International Nuclear Information System (INIS)

    Toth, G.

    1980-01-01

    An adsorption chromatographic method using Sephadex LH-20 dextran gel as adsorbent and water-organic solvent binary eluents was developed for the systematic separation of low molecular weight radioiodine-labelled substances like iodothyronines, iodobenzoic acids and iodotyrosine methyl ester derivatives of prostaglandins, steroids etc. The adsorbed iodine compounds were separated by water-organic solvent mixture, and the order of the compounds is in accordance with the increasing number of iodine substituents per molecule. A method is reported which enables the calculation of the eluent strength of the water-organic solvent eluents. (author)

  6. Phase behaviors of binary mixtures composed of electron-rich and electron-poor triphenylene discotic liquid crystals

    International Nuclear Information System (INIS)

    An Lingling; Jing Min; Xiao Bo; Bai Xiao-Yan; Zhao Ke-Qing; Zeng Qing-Dao

    2016-01-01

    Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. (special topic)

  7. Simultaneous spectrophotometric determination of binary mixtures of surfactants using continuous wavelet transformation

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Nematollahi, Davood; Madrakian, Tayyebeh; Abbasi-Tarighat, Maryam; Hajihadi, Mitra

    2009-01-01

    This work presents a simple, rapid, and novel method for simultaneous determination of binary mixtures of some surfactants using continuous wavelet transformation. The method is based on the difference in the effect of surfactants Cetyltrimethylammoniumbromide (CTAB), dodecyl trimethylammonium bromide (DTAB), cetylpyridinium bromide (CPB) and TritonX-100 (TX-100) on the absorption spectra of complex of Beryllium with Chrome Azurol S (CAS) at pH 5.4. Binary mixtures of CTAB-DTAB, DTAB-CPB and CTAB-TX-100 were analyzed without prior separation steps. Different mother wavelets from the family of continuous wavelet transforms were selected and applied under the optimal conditions for simultaneous determinations. The proposed methods, under the working conditions, were successfully applied to simultaneous determination of surfactants in hair conditioner and mouthwash samples.

  8. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C1-C4) and dimethyl carbonate

    International Nuclear Information System (INIS)

    Matsuda, Hiroyuki; Fukano, Makoto; Kikkawa, Shinichiro; Constantinescu, Dana; Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji; Gmehling, Juergen

    2012-01-01

    Highlights: → The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. → VLE data for ternary and binary mixtures containing alcohol and DMC were measured. → Several activity coefficient models were used for data reduction or prediction. → Valley line, i.e., distillation boundary, was observed for the ternary mixture. → Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {methanol + propan-1-ol + dimethyl carbonate (DMC)}, and four binary mixtures, namely an {alcohol (C 3 or C 4 ) + DMC}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  9. A quantitative analysis on latent heat of an aqueous binary mixture.

    Science.gov (United States)

    Han, Bumsoo; Choi, Jeung Hwan; Dantzig, Jonathan A; Bischof, John C

    2006-02-01

    The latent heat during phase change of water-NaCl binary mixture was measured using a differential scanning calorimeter, and the magnitude for two distinct phase change events, water/ice and eutectic phase change, were analyzed considering the phase change characteristics of a binary mixture. During the analysis, the latent heat associated with each event was calculated by normalizing the amount of each endothermic peak with only the amount of sample participating in each event estimated from the lever rule for the phase diagram. The resulting latent heat of each phase change measured is 303.7 +/- 2.5 J/g for water/ice phase change, and 233.0 +/- 1.6 J/g for eutectic phase change, respectively regardless of the initial concentration of mixture. Although the latent heats of water/ice phase change in water-NaCl mixtures are closely correlated, further study is warranted to investigate the reason for smaller latent heat of water/ice phase change than that in pure water (335 J/g). The analysis using the lever rule was extended to estimate the latent heat of dihydrate as 115 J/g with the measured eutectic and water/ice latent heat values. This new analysis based on the lever rule will be useful to estimate the latent heat of water-NaCl mixtures at various concentrations, and may become a framework for more general analysis of latent heat of various biological solutions.

  10. Easy prediction of the refractive index for binary mixtures of ionic liquids with water or ethanol

    International Nuclear Information System (INIS)

    Rilo, E.; Domínguez-Pérez, M.; Vila, J.; Segade, L.; García, M.; Varela, L.M.; Cabeza, O.

    2012-01-01

    Highlights: ► We measure refractive index, n, in seven systems formed by IL + water or ethanol. ► Independently, theoretical estimations of the refractive index values were performed. ► To do that we use Gladstone–Dale and Newton models, relating n and density. ► We calculate density of each system from the value of the pure components. ► The agreement between experimental and calculated n values is about 99.8%. - Abstract: In this paper, we demonstrate that it is possible to know the refractive index, n D , of every given mixture of 1-alkyl-3methyl imidazolium tetrafluoroborate with water and ethanol just from the knowledge of the refractive index and density of pure components. To do that, we measured n D for seven different mixtures in all range of existing concentrations and, independently, we deduce n D theoretically. Both sets of values differ less than a 0.2% on average. The theoretical deduction takes into account that these mixtures are quasi-ideal from the molar volume point of view, as recently published, and so density for any composition of the mixture can be obtained with a precision better than 0.5% from the pure compounds value. Now we simply apply Newton or Gladstone–Dale models, which relate the refractive index of a binary mixture with its density from the value of both pure components, without any fitting parameter. Both models are very similar in form and in the values they deduce (less than a 0.2% of difference), but while that of Newton performs slightly better for ethanol mixtures, the model of Gladstone–Dale gives some better results for aqueous mixtures. We think that these results can be extended to the majority of ionic liquid plus solvent systems.

  11. A comparison of the activities of three beta-galactosidases in aqueous-organic solvent mixtures

    NARCIS (Netherlands)

    Yoon, JH; Mckenzie, D

    2005-01-01

    The hydrolytic activities of beta-galactosidases from three different sources have been determined in various 50% (v/v) organic solvent-buffer mixtures with a view to finding solvent systems of reduced water content suitable for the synthesis of glycosides and oligosaccharides. K. fragilis

  12. Improvement of supercritical CO2 Brayton cycle using binary gas mixture

    International Nuclear Information System (INIS)

    Jeong, Woo Seok

    2011-02-01

    simple recuperated layout and recompression layout Brayton cycles. For verification, existing design values of GTHTR 300, based on helium Brayton cycle, were used. Main input parameters were referred to Dostal's work as a reference cycle. The cycle performance evaluations were conducted for CO 2 -He, CO 2 -Ar, CO 2 -N 2 and CO 2 -O 2 binary mixtures by the developed cycle code. CO 2 -Xe mixture cycle was excluded in the pre-analysis since there is no mixture data. The mixed ratio of adding component was adjusted to specify the same critical temperature to be unbiased. The difference of binary gas mixture cycles compared to S-CO 2 cycle was decrease in minimum cycle temperature and changes in minimum pressure and working fluids. Through the simulation, the CO 2 -He binary mixture was found out to be the highest increase of cycle efficiency: 1.73 % when the critical temperature was at 292 K for recompression cycle layout. Unlike the CO 2 -He binary mixture, the cycle efficiencies of CO 2 -Ar, CO 2 -N 2 , and CO 2 -O 2 binary mixtures decreased compared to the pure S-CO 2 cycle: -0.71 %, -1.35 % and -1.16 %, respectively. It was found that the increment of critical pressure led to a decrease in cycle operating pressure ratio which resulted in a negative effect on total cycle efficiency. The validation for the simulation was conducted by measuring the critical point of CO 2 -He mixture. The result clearly showed that the both critical temperature and critical pressure increase while the amount of added helium increases. The prediction of the property program indicates the opposite result and it means that the simulated CO 2 -He cycle is not a supercritical Brayton cycle. For the option of CO 2 -Xe mixture, the properties can be calculated based on ideal mixing rule and also can be modified with experimental data. With the proposed method, the efficiency of CO 2 -Xe mixture cycle is expected to increase by 1.28 %

  13. Modeling the Phase Behavior in Mixtures of Pharmaceuticals with Liquid or Supercritical Solvents

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Economou, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    of the studied pharmaceuticals in liquid solvents was calculated. The average root-mean-square deviation between experimental and calculated solubilities is 0.190 and 0.037 in log10 units for prediction (calculations without a binary interaction parameter adjustment) and for correlation (calculations using one...

  14. Binary and ternary LLE data of the system (ethylbenzene + styrene + 1-ethyl-3-methylimidazolium thiocyanate) and binary VLE data of the system (styrene + 1-ethyl-3-methylimidazolium thiocyanate)

    International Nuclear Information System (INIS)

    Jongmans, Mark T.G.; Schuur, Boelo; Haan, André B. de

    2012-01-01

    Highlights: ► LLE data have been measured for the system {ethylbenzene + styrene + [EMIM][SCN]}. ► VLE was determined for the system {styrene + [EMIM][SCN]} at vacuum conditions. ► All experimental data were correlated well with the NRTL model. ► [EMIM][SCN] has a much larger selectivity than the benchmark solvent sulfolane. - Abstract: The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.

  15. Diffusion in Poiseuille and Couette flows of binary mixtures of incompressible newtonian fluids

    International Nuclear Information System (INIS)

    Caetano Filho, E.; Qassim, R.Y.

    1981-07-01

    Using the continuum theory of binary mixtures of incompressible Newtonian fluids, Poiseuille and Couette flows are studied with a view to determining whether diffusion occurs in such flows. It is shown that diffusion is absent in the Couette case. However, in Poiseuille flow there are significant differences between the velocities of the species comprising the mixture. This result is in broad agreement with that of Mills for similar mixtures of nonuniform composition. (Author) [pt

  16. Properties of noble gases and binary mixtures for closed Brayton Cycle applications

    International Nuclear Information System (INIS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    A review is conducted of the properties of the noble gases, helium, neon, argon, krypton and xenon, and their binary mixtures at pressures from 0.1 to 20 MPa and temperatures up to 1400 K. An extensive database of experimental measurements is compiled and used to develop semi-empirical properties correlations. The correlations accurately account for the effects of pressure and temperature on the thermodynamic and transport properties of these gases for potential uses in space (∼2 MPa and up to 1400 K) and terrestrial (∼7.0 MPa and up to 1200 K) applications of Closed Brayton Cycle (CBC). The developed correlations are based on the Chapman-Enskog kinetic theory for dilute gases, and on the application of the law of corresponding states to account for the dependence of properties on pressure. The correlations use the critical temperature and density of the gases as scaling parameters, and their predictions are compared with the compiled database. At temperatures ≥400 K and pressures ≤2 MPa in CBC space power systems, He and Ne, and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole behave essentially like a perfect gas, and the error of neglecting the effect of pressure on their compressibility factor, specific heats and transport properties is ≤1%. At a typical operating pressure of 7.0 MPa and up to 1200 K in terrestrial CBC power plants, neglecting the effect of pressure can result in ∼4% error in the properties of noble gases and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole, and as much as 20% error for pure argon. Therefore, when operating at pressures >2.0 MPa and/or using noble gases or binary mixtures with molecular weights > 40 g/mole, the present correlations should be used to accurately predict the thermodynamic and transport properties

  17. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures.

    Science.gov (United States)

    Liaw, Horng-Jang; Wang, Tzu-Ai

    2007-03-06

    Flash point is one of the major quantities used to characterize the fire and explosion hazard of liquids. Herein, a liquid with dissolved salt is presented in a salt-distillation process for separating close-boiling or azeotropic systems. The addition of salts to a liquid may reduce fire and explosion hazard. In this study, we have modified a previously proposed model for predicting the flash point of miscible mixtures to extend its application to solvent/salt mixtures. This modified model was verified by comparison with the experimental data for organic solvent/salt and aqueous-organic solvent/salt mixtures to confirm its efficacy in terms of prediction of the flash points of these mixtures. The experimental results confirm marked increases in liquid flash point increment with addition of inorganic salts relative to supplementation with equivalent quantities of water. Based on this evidence, it appears reasonable to suggest potential application for the model in assessment of the fire and explosion hazard for solvent/salt mixtures and, further, that addition of inorganic salts may prove useful for hazard reduction in flammable liquids.

  18. Diffusive flux of energy in binary mixtures

    International Nuclear Information System (INIS)

    Sampaio, R.S.

    1976-04-01

    The diffusive flux of energy j tilde is studied through the reduced diffusive flux of energy K tilde, which obeys equations of the form: sim(delta K tilde/delta grad rho sub(α))= sim(delta K tilde/delta grad theta)=0. By a representation theorem, herein proved, is obtained a general representation for K tilde which is simplified, for the case of binary mixtures, using the principle of objectivity. Some consequences of this representation are discussed such as the symmetry of the partial stresses T 1 tilde and T 2 tilde and the difference between the normal stresses [pt

  19. Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Mendes, Luiz Fernando; Stevani, Cassius Vinicius; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Colepicolo, Pio

    2014-01-01

    The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.

  20. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol

    Science.gov (United States)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh

    2017-07-01

    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  1. Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.

    2007-01-01

    Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, eve...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....... though pure-component liquid densities and vapour pressures are predicted equally accurately for the associating compound. As was the case in the study of pure components, there exists some confusion in the literature about the correct interpretation and comparison of experimental data and theoretical...

  2. Dynamics of glycerine and water transport across human skin from binary mixtures.

    Science.gov (United States)

    Ventura, S A; Kasting, G B

    2017-04-01

    Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water

  3. Composition inversion in mixtures of binary colloids and polymer

    Science.gov (United States)

    Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick

    2018-05-01

    Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.

  4. Solid-Liquid Equilibria for the Binary Mixtures 1,4-Xylene + Ethylbenzene and 1,4-Xylene + Toluene

    DEFF Research Database (Denmark)

    Huyghe, Raphaël; Rasmussen, Peter; Thomsen, Kaj

    2004-01-01

    Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K.......Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K....

  5. CONSOLIDATION AND COMPACTION OF POWDER MIXTURES .2. BINARY-MIXTURES OF DIFFERENT PARTICLE-SIZE FRACTIONS OF ALPHA-LACTOSE MONOHYDRATE

    NARCIS (Netherlands)

    RIEPMA, KA; VEENSTRA, J; DEBOER, AH; BOLHUIS, GK; ZUURMAN, K; LERK, CF; VROMANS, H

    1991-01-01

    Binary mixtures of different particle size fractions of alpha-lactose monohydrate were compacted into tablets. The results showed decreased crushing strengths and decreased internal specific surface areas of the tablets as compared with the values calculated by linear interpolation of the data

  6. Optical properties of binary and ternary liquid mixtures containing tetralin, isobutylbenzene and dodecane

    International Nuclear Information System (INIS)

    Sechenyh, Vitaliy V.; Legros, Jean-Claude; Shevtsova, Valentina

    2013-01-01

    Highlights: ► The refractive indices in binary and ternary mixtures of hydrocarbons were measured. ► The error of the theoretical prediction of the refractive indices does not exceed 0.13%. ► The error of the prediction of concentration derivatives is unsatisfactory large. ► Feasibility of application of optical methods to measuring mass transport coefficients is studied. -- Abstract: Refractive indices of binary and ternary mixtures formed by tetralin (1,2,3,4-tetrahydronaphthalene), isobutylbenzene (2-methyl-1-propyl benzene) and n-dodecane are presented over a wide range of compositions. All measurements of the refractive index have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The concentration derivatives of the refractive index have been determined. The mixture compositions, where these two wavelengths are applicable for the measurements of mass transport coefficients by interferometry, are estimated and discussed

  7. Determination of solvents permeating through chemical protective clothing with a microsensor array.

    Science.gov (United States)

    Park, J; Zellers, E T

    2000-08-01

    The performance of a novel prototype instrument in determining solvents and solvent mixtures permeating through samples of chemical protective clothing (CPC) materials was evaluated. The instrument contains a mini-preconcentrator and an array of three polymer-coated surface-acoustic-wave (SAW) microsensors whose collective response patterns are used to discriminate among multiple permeants. Permeation tests were performed with a 2.54 cm diameter test cell in an open-loop configuration on samples of common glove materials challenged with four individual solvents, three binary mixtures, and two ternary mixtures. Breakthrough times, defined as the times required for the permeation rate to reach a value of 1 microg cm(-2) min(-1), determined by the instrument were within 3 min of those determined in parallel by manual sampling and gas chromatographic analysis. Permeating solvents were recognized (identified) from their response patterns in 59 out of 64 measurements (92%) and their vapor concentrations were quantified to an accuracy of +/- 31% (typically +/- 10%). These results demonstrate the potential for such instrumentation to provide semi-automated field or bench-top screening of CPC permeation resistance.

  8. Selective nonspecific solvation under dielectric saturation and fluorescence spectra of dye solutions in binary solvents.

    Science.gov (United States)

    Bakhshiev, N G; Kiselev, M B

    1991-09-01

    The influence of selective nonspecific solvation on the fluorescence spectra of three substitutedN-methylphthalimides in a binary solvent system consisting of a nonpolar (n-heptane) and a polar (pyridine) component has been studied under conditions close to dielectric saturation. The substantially nonlinearity of the effect is confirmation that the spectral shifts of fluorescence bands depend on the number of polar solvent molecules involved in solvating the dye molecule. The measured fluorescence spectral shifts determined by substituting one nonpolar solvent molecula with a polar one in the proximity of the dye molecule agree quantitatively with the forecasts of the previously proposed semiempirical theory which describes this nonlinear solvation phenomenon.

  9. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain)

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  10. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    International Nuclear Information System (INIS)

    Martínez-Ruiz, F. J.; Blas, F. J.; Moreno-Ventas Bravo, A. I.

    2015-01-01

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ 11 = σ 22 , with the same dispersive energy between like species, ϵ 11 = ϵ 22 , but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r c and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r c is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the

  11. Thermodiffusion, molecular diffusion and Soret coefficient of binary and ternary mixtures of n-hexane, n-dodecane and toluene.

    Science.gov (United States)

    Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M

    2014-11-01

    In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.

  12. Thermodynamic properties of binary mixtures containing dimethyl carbonate+2-alkanol: Experimental data, correlation and prediction by ERAS model and cubic EOS

    International Nuclear Information System (INIS)

    Almasi, Mohammad

    2013-01-01

    Densities and viscosities for binary mixtures of dimethyl carbonate with 2-propanol up to 2-heptanol were measured at various temperatures and ambient pressure. From experimental data, excess molar volumes, V m E . were calculated and correlated by the Redlich–Kister equation to obtain the binary coefficients and the standard deviations. Excess molar volumes, V m E , are positive for all studied mixtures over the entire range of the mole fraction. The ERAS-model has been applied for describing the binary excess molar volumes and also Peng–Robinson–Stryjek–Vera (PRSV) equation of state (EOS) has been used to predict the binary excess molar volumes and viscosities. Also several semi-empirical models were used to correlate the viscosity of binary mixtures

  13. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  14. Investigation of Boiling Heat Transfer of Binary Mixture from Vertical Tube Embedded in porous Media

    Institute of Scientific and Technical Information of China (English)

    HailongMo; TongzeMa; 等

    1996-01-01

    Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment.The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whise diameters range from 0.5 to 4.3mm.Due to the effect of composition,the trend of combination of vapor bubbles was reduced.resulting in the increase of peak heat flux of binary mixture,With the increase of ethanol mole fraction,0.5mm diameter bead of peak heat flux of binary mixture.with the increase of ethanol mole fraction.0.5mm diameter bead had lower value of peak heat flux,while for pure liquid the critical state is difficult to appear,with given diameter of glass bead,there existed an optimum value of mole fraction of ethanol,which was decreased with the increase of bead diameter,A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix which agreed with the experimental results satisfactorily.

  15. Comparative conductimetric studies of salicylic acid in methanol–water mixtures at 25 °C

    Directory of Open Access Journals (Sweden)

    Zahra Chaaraoui

    2017-05-01

    Full Text Available Conductivity data of salicylic acid in methanol–water mixtures were measured at 25 °C. The data were analyzed in two methods, the Hsia–Fuoss’s and Fuoss 78’s conductance equations and a comparison was made. The two methods concern the derivation of thermodynamic association constants and limiting molar conductivities for all solvent compositions. The limiting equivalent conductance decreases with the increase of methanol content in the binary mixtures over the whole range of the solvent composition, but the variation does not give a constant value of Walden product. The electrolytes were found to be practically completely associated in all studied solvent mixtures. The association constant of acid decreases with the increase in relative permittivity of the mixtures. The values of ionic coefficients of self diffusion and the ionic conductance at infinite solutions were estimated.

  16. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    Science.gov (United States)

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  17. Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water.

    Science.gov (United States)

    Romanos, George E; Zubeir, Lawien F; Likodimos, Vlassis; Falaras, Polycarpos; Kroon, Maaike C; Iliev, Boyan; Adamova, Gabriela; Schubert, Thomas J S

    2013-10-10

    Absorption of carbon dioxide and water in 1-butyl-3-methylimidazoliun tricyanomethanide ([C4C1im][TCM]) and 1-octyl-3-methylimidazolium tricyanomethanide ([C8C1im][TCM]) ionic liquids (ILs) was systematically investigated for the first time as a function of the H2O content by means of a gravimetric system together with in-situ Raman spectroscopy, excess molar volume (V(E)), and viscosity deviation measurements. Although CO2 absorption was marginally affected by water at low H2O molar fractions for both ILs, an increase of the H2O content resulted in a marked enhancement of both the CO2 solubility (ca. 4-fold) and diffusivity (ca. 10-fold) in the binary [C(n)C1im][TCM]/H2O systems, in contrast to the weak and/or detrimental influence of water in most physically and chemically CO2-absorbing ILs. In-situ Raman spectroscopy on the IL/CO2 systems verified that CO2 is physically absorbed in the dry ILs with no significant effect on their structural organization. A pronounced variation of distinct tricyanomethanide Raman modes was disclosed in the [C(n)C1im][TCM]/H2O mixtures, attesting to the gradual disruption of the anion-cation coupling by the hydrogen-bonded water molecules to the [TCM](-) anions, in accordance with the positive excess molar volumes and negative viscosity deviations for the binary systems. Most importantly, CO2 absorption in the ILs/H2O mixtures at high water concentrations revealed that the [TCM](-) Raman modes tend to restore their original state for the heavily hydrated ILs, in qualitative agreement with the intriguing nonmonotonous transients of CO2 absorption kinetics unveiled by the gravimetric measurements for the hybrid solvents. A molecular exchange mechanism between CO2 in the gas phase and H2O in the liquid phase was thereby proposed to explain the enhanced CO2 absorption in the hybrid [C(n)C1im][TCM]//H2O solvents based on the subtle competition between the TCM-H2O and TCM-CO2 interactions, which renders these ILs very promising for CO2

  18. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C{sub 1}-C{sub 4}) and dimethyl carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroyuki, E-mail: matsuda@chem.cst.nihon-u.ac.jp [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Fukano, Makoto; Kikkawa, Shinichiro [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Constantinescu, Dana [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany); Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Gmehling, Juergen [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany)

    2012-01-15

    Highlights: > The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. > VLE data for ternary and binary mixtures containing alcohol and DMC were measured. > Several activity coefficient models were used for data reduction or prediction. > Valley line, i.e., distillation boundary, was observed for the ternary mixture. > Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {l_brace}methanol + propan-1-ol + dimethyl carbonate (DMC){r_brace}, and four binary mixtures, namely an {l_brace}alcohol (C{sub 3} or C{sub 4}) + DMC{r_brace}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  19. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    Science.gov (United States)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  20. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels

    KAUST Repository

    Wang, Yu; Raj, Abhijeet Dhayal; Chung, Suk-Ho

    2015-01-01

    of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified

  1. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water

    International Nuclear Information System (INIS)

    Ma, Chunyan; Guo, Yanhua; Li, Dongxue; Zong, Jianpeng; Ji, Xiaoyan; Liu, Chang

    2017-01-01

    Highlights: • Molar enthalpy of mixing and refractive indices for binary mixtures of different deep eutectic solvents with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The NRTL model with fitted parameters were used to predict the vapour pressure and compared with experimental data. - Abstract: The molar enthalpies of mixing were measured for binary systems of choline chloride-based deep eutectic solvents (glycerol, ethylene glycol and malonic acid) with water at 298.15 K and 308.15 K, and atmospheric pressure with an isothermal calorimeter. Refractive indices were also measured at 303.15 K and atmospheric pressure. The binary mixtures of {chcl/glycerol (1:2) + water, chcl/ethylene glycol (1:2) + water} showed exothermic behaviour over the entire range of composition, while the binary mixture of {chcl/malonic acid (1:1) + water} showed endothermic behaviour at first and then changed to be exothermic with the increasing content of chcl/malonic acid (1:1). Experimental refractive indices were fitted with the Redlich–Kister equation, and experimental molar enthalpies of mixing were correlated with the Redlich–Kister equation and the non-random two-liquid (NRTL) model. The NRTL model with the fitted parameters was used to predict the vapour pressures of these three mixtures. For mixtures of {chcl/glycerol (1:2) + water} and {chcl/ethylene glycol (1:2) + water}, the predicted vapour pressures agreed well with the experimental results from the literature. While for mixture of {chcl/malonic acid (1:1) + water}, the predicted vapour pressures showed deviation at the high concentration of chcl/malonic acid (1:1), and this was probably because of the complex molecular interaction between chcl/malonic acid (1:1) and water.

  2. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded plga microparticles via spray-drying.

    Science.gov (United States)

    Wan, Feng; Bohr, Adam; Maltesen, Morten Jonas; Bjerregaard, Simon; Foged, Camilla; Rantanen, Jukka; Yang, Mingshi

    2013-04-01

    It is imperative to understand the particle formation mechanisms when designing advanced nano/microparticulate drug delivery systems. We investigated how the solvent power and volatility influence the texture and surface chemistry of celecoxib-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles prepared by spray-drying. Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties and drug release profile. The evaporation profiles of the feed solutions were investigated using thermogravimetric analysis (TGA). Spherical PLGA microparticles were obtained, irrespectively of the solvent composition. The particle size and surface chemistry were highly dependent on the solvent power of the feed solution. An obvious burst release was observed for the microparticles prepared by the feed solutions with the highest amount of poor solvent for PLGA. TGA analysis revealed distinct drying kinetics for the binary mixtures. The particle formation process is mainly governed by the PLGA precipitation rate, which is solvent-dependent, and the migration rate of celecoxib molecules during drying. The texture and surface chemistry of the spray-dried PLGA microparticles can therefore be tailored by adjusting the solvent composition.

  3. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying.

    Science.gov (United States)

    Paudel, Amrit; Van den Mooter, Guy

    2012-01-01

    To investigate the influence of solvent properties on the phase behavior and physical stability of spray-dried solid dispersions containing naproxen and PVP K 25 prepared from binary cosolvent systems containing methanol, acetone and dichloromethane. The viscosity, polymer globular size and evaporation rate of the spray-drying feed solutions were characterized. The solid dispersions were prepared by spray-drying drug-polymer solutions in binary solvent blends containing different proportions of each solvent. The phase behavior was investigated with mDSC, pXRD, FT-IR and TGA. Further, physical stability of solid dispersions was assessed by analyzing after storage at 75% RH. The solid dispersions prepared from solvent/anti-solvent mixture showed better miscibility and physical stability over those prepared from the mixtures of good solvents. Thus, solid dispersions prepared from dichloromethane-acetone exhibited the best physicochemical attributes followed by those prepared from methanol-acetone. FT-IR analysis revealed differential drug-polymer interaction in solid dispersions prepared from various solvent blends, upon the exposure to elevated humidity. Spray-drying from a cocktail of good solvent and anti-solvent with narrower volatility difference produces solid dispersions with better miscibility and physical stability resulting from the simultaneous effect on the polymer conformation and better dispersivity of drug.

  4. Influence of solvents on species crossover and capacity decay in non-aqueous vanadium redox flow batteries: Characterization of acetonitrile and 1, 3 dioxolane solvent mixture

    Science.gov (United States)

    Bamgbopa, Musbaudeen O.; Almheiri, Saif

    2017-02-01

    The importance of the choice of solvent in a non-aqueous redox flow battery (NARFB) cannot be overemphasized. Several studies demonstrated the influence of the solvent on electrolyte performance in terms of reaction rates, energy/power densities, and efficiencies. In this work, we investigate capacity decay as a direct consequence of varying reactant crossover rates through membranes in different solvent environments. Specifically, we demonstrate the superiority of an 84/16 vol% acetonitrile/1,3 dioxolane solvent mixture over pure acetonitrile in terms of energy efficiency (up to 89%) and capacity retention for vanadium NARFBs - while incorporating a Nafion 115 membrane. The permeability of Nafion to the vanadium acetylacetonate active species is an order of magnitude lower when pure acetonitrile is replaced by the solvent mixture. A method to estimate relative membrane permeability is formulated from numerical analysis of self-discharge experimental data. Furthermore, tests on a modified Nafion/SiO2 membrane, which generally offered low species permeability, also show that different solvents alter membrane permeability. Elemental and morphological analyses of cycled Nafion and NafionSi membranes in different solvent environments indicate that different crossover rates induced by the choice of solvent during cycling are due to changes in the membrane microstructure, intrinsic permeability, swelling rates, and chemical stability.

  5. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [College of Environmental Science and Engineering, Anhui Normal University, South Jiuhua Road, 189, 241002 Wuhu (China); Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Fiol, Núria [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Villaescusa, Isabel, E-mail: Isabel.Villaescusa@udg.edu [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Poch, Jordi [Applied Mathematics Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain)

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data.

  6. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    International Nuclear Information System (INIS)

    Liu, Chang; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2016-01-01

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data

  7. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R. [Post-Graduate Department of Physics, Government College (Autonomous), Mandya-571401 (India); Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N. [Government College for Boys, Kolar-563101 (India)

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  8. Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane

    International Nuclear Information System (INIS)

    Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou; Liu, Tao

    2013-01-01

    Highlights: • The critical properties of seven binary mixtures related to gasoline were measured. • The critical properties of the five systems containing MTBE were reported for the first time. • Binary interaction parameters were fitted by experimental data using PR EOS with Wong–Sandler mixing rule. • Redlich–Kister equation was used to correlate the experimental data. -- Abstract: A set of high-pressure view apparatus was designed for determining the critical properties of chemicals. In order to check the reliability of the apparatus, the critical temperatures (T c ) and critical pressures (P c ) of pure n-heptane, cyclohexane, methanol, ethanol, 1-propanol, methyl tert-butyl ether (MTBE), and binary mixture n-hexane + ethanol were measured. The experimental data were in good agreement with the literature data, which proves the reliability of the apparatus used in the work. The critical temperatures and critical pressures of five binary mixtures containing gasoline additive (MTBE + n-heptane, MTBE + cyclohexane, MTBE + methanol, MTBE + ethanol, MTBE + 1-propanol) were measured using the high-pressure view cell with visual observation. The critical temperatures and critical pressures for the five binary mixtures were all reported for the first time. In addition, the critical temperatures and critical pressures of the binary mixture n-heptane + cyclohexane (two of main components in gasoline) were also measured. All the critical lines for the mixtures studied are continuous which connect the critical points of the two pure components, indicating their phase diagrams belong to type I proposed by Scott and van Konynenburg. The critical points of these systems were calculated by the Peng–Robinson equation of state with the Wong–Sandler mixing rule. This model could calculate the critical properties of the mixtures well with the binary interaction parameter k ij obtained by fitting the experimental critical data. And the experimental data were all

  9. Modeling diffusion coefficients in binary mixtures of polar and non-polar compounds

    DEFF Research Database (Denmark)

    Medvedev, Oleg; Shapiro, Alexander

    2005-01-01

    The theory of transport coefficients in liquids, developed previously, is tested on a description of the diffusion coefficients in binary polar/non-polar mixtures, by applying advanced thermodynamic models. Comparison to a large set of experimental data shows good performance of the model. Only f...

  10. A comparative study on the thermophysical properties for two bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids containing the trimethyl-sulfonium or the trimethyl-ammonium cation in molecular solvents.

    Science.gov (United States)

    Couadou, Erwan; Jacquemin, Johan; Galiano, Hervé; Hardacre, Christopher; Anouti, Mérièm

    2013-02-07

    Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl)sulfonyl]imide, [S(111)][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN(111)][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, x(s), in each solvent to the pure solvent. In this case, x(s) is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm(-1) were observed in the case of the [S(111)][TFSI] + ACN and [HN(111)][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid

  11. Interfacial tensions of binary mixtures of ethanol with octane, decane, dodecane, and tetradecane

    International Nuclear Information System (INIS)

    Mejia, Andres; Cartes, Marcela; Segura, Hugo

    2011-01-01

    Highlights: → Experimental interfacial tensions in binary mixtures with aneotropic behavior. → Experimental interfacial tensions for ethanol + hydrocarbon mixtures. → Aneotropic displacement in ethanol mixtures. - Abstract: This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K. Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy. For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase. Finally, the experimental data of interfacial tensions were smoothed with the Scott-Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.

  12. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  13. Volumetric and viscometric study of aqueous binary mixtures of some glycol ethers at T = (275.15 and 283.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Sheikh, Shaziya; Deshmukh, Dinesh W.

    2011-01-01

    Graphical abstract: Highlights: → Study of aqueous solutions of glycol ethers at low temperatures is presented. → Glycol ethers are industrially important liquids. → Reduction in the volume was observed upon addition of all glycol ethers to water. → Glycol ethers act as structure makers in aqueous medium. - Abstract: The experimental data for the density (ρ) and viscosity (η) are reported for aqueous binary mixtures of different glycol ethers, namely ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE), at different temperatures (T = 275.15 K and 283.15 K) within the concentration range 0 mol . kg -1 to 0.1 mol . kg -1 . The values of density (ρ) and viscosity (η) of the solutions were used to compute different derived parameters, such as apparent molar volume (φ V ) of the solute, excess molar volume (V E ) of the solution, viscosity B and D coefficients of solution and temperature coefficient of viscosity B-coefficient (dB/dT) of solution. The limiting apparent molar volume of the solutes (φ V 0 ) have been obtained for aqueous binary mixtures of these glycol ethers by smooth extrapolation of φ V -m curves to zero concentration. By using the values of φ V 0 , the limiting excess partial molar volumes (V-bar 2 0E ) have also been calculated. The results are interpreted in term of various interactions such as solute-solvent interactions and hydrogen bonding.

  14. Prediction of the solubility in lipidic solvent mixture: Investigation of the modeling approach and thermodynamic analysis of solubility.

    Science.gov (United States)

    Patel, Shruti V; Patel, Sarsvatkumar

    2015-09-18

    Self-micro emulsifying drug delivery system (SMEDDS) is one of the methods to improve solubility and bioavailability of poorly soluble drug(s). The knowledge of the solubility of pharmaceuticals in pure lipidic solvents and solvent mixtures is crucial for designing the SMEDDS of poorly soluble drug substances. Since, experiments are very time consuming, a model, which allows for solubility predictions in solvent mixtures based on less experimental data is desirable for efficiency. Solvents employed were Labrafil® M1944CS and Labrasol® as lipidic solvents; Capryol-90®, Capryol-PGMC® and Tween®-80 as surfactants; Transcutol® and PEG-400 as co-solvents. Solubilities of both drugs were determined in single solvent systems at temperature (T) range of 283-333K. In present study, we investigated the applicability of the thermodynamic model to understand the solubility behavior of drugs in the lipiodic solvents. By using the Van't Hoff and general solubility theory, the thermodynamic functions like Gibbs free energy, enthalpy and entropy of solution, mixing and solvation for drug in single and mixed solvents were understood. The thermodynamic parameters were understood in the framework of drug-solvent interaction based on their chemical similarity and dissimilarity. Clotrimazole and Fluconazole were used as active ingredients whose solubility was measured in single solvent as a function of temperature and the data obtained were used to derive mathematical models which can predict solubility in multi-component solvent mixtures. Model dependent parameters for each drug were calculated at each temperature. The experimental solubility data of solute in mixed solvent system were measured experimentally and further correlated with the calculates values obtained from exponent model and log-linear model of Yalkowsky. The good correlation was observed between experimental solubility and predicted solubility. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Vapor-liquid equilibria of binary and ternary mixtures of acetaldehyde with Versatic 9 and Veova 9

    NARCIS (Netherlands)

    Raeissi, S.; Florusse, L.J.; Kroon, M.C.; Peters, C.J.

    2016-01-01

    In continuation of our earlier publication on the phase behavior of binary and ternary mixtures involving acetaldehyde, Versatic 10, and Veova 10, in this work we present bubble-point pressures of the binary and ternary systems of acetaldehyde, Versatic 9, and Veova 9. The measurements were carried

  16. Diffusion measurements in binary liquid mixtures by Raman spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Hansen, Susanne Brunsgaard; Shapiro, Alexander

    2007-01-01

    It is shown that Raman spectroscopy allows determination of the molar fractions in mixtures subjected to molecular diffusion. Spectra of three binary systems, benzene/n-hexane, benzene/cyclohexane, and benzene/ acetone, were obtained during vertical (exchange) diffusion at several different heights...... in the literature were found, even in a thermostatically controlled diffusion cell, recording spectra through circulating water. For the system benzene/acetone, the determined diffusion coefficients were in good agreement with the literature data. The limitations of the Raman method are discussed...

  17. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination.

    Science.gov (United States)

    Galpothdeniya, Waduge Indika S; Regmi, Bishnu P; McCarter, Kevin S; de Rooy, Sergio L; Siraj, Noureen; Warner, Isiah M

    2015-04-21

    There is a continuing need to develop high-performance sensors for monitoring organic solvents, primarily due to the environmental impact of such compounds. In this regard, colorimetric sensors have been a subject of intense research for such applications. Herein, we report a unique virtual colorimetric sensor array based on a single ionic liquid (IL) for accurate detection and identification of similar organic solvents and mixtures of such solvents. In this study, we employ eight alcohols and seven binary mixtures of ethanol and methanol as analytes to provide a stringent test for assessing the capabilities of this array. The UV-visible spectra of alcoholic solutions of the IL used in this study show two absorption bands. Interestingly, the ratio of absorbance for these two bands is found to be extremely sensitive to alcohol polarity. A virtual sensor array is created by using four different concentrations of IL sensor, which allowed identification of these analytes with 96.4-100% accuracy. Overall, this virtual sensor array is found to be very promising for discrimination of closely related organic solvents.

  18. A globally accurate theory for a class of binary mixture models

    Science.gov (United States)

    Dickman, Adriana G.; Stell, G.

    The self-consistent Ornstein-Zernike approximation results for the 3D Ising model are used to obtain phase diagrams for binary mixtures described by decorated models, yielding the plait point, binodals, and closed-loop coexistence curves for the models proposed by Widom, Clark, Neece, and Wheeler. The results are in good agreement with series expansions and experiments.

  19. Systematic investigations on acyclic organic carbonate solvents for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, J.; Peter, S.; Novak, P.

    2003-03-01

    Electrochemical cycling tests on cells with graphite electrodes and several alkyl methyl carbonates were performed. Experiments with mixed binary solvent electrolytes with ethylene carbonate (EC) showed that the alkyl methyl carbonates H{sub 3}CO(CO)O(CH{sub 2}){sub n}H (n = 3-5) are suitable as co-solvents in lithium-ion batteries. Ternary mixtures of EC, BMC, and propylene carbonate (PC) showed better overall performances than EC/PC electrolytes. The branched isobutyl methyl carbonate (i-BMC) outperforms its linear isomer (BMC) in terms of electrochemical performance. LiPF{sub 6} is superior to LiClO{sub 4} as conducting salt in both EC/BMC and EC/i-BMC mixtures in terms of electrolyte conductivity, rate capability, and cycling stability. (author)

  20. Experimental, theoretical and numerical interpretation of thermodiffusion separation for a non-associating binary mixture in liquid/porous layers

    International Nuclear Information System (INIS)

    Ahadi, Amirhossein; Jawad, H.; Saghir, M.Z.; Giraudet, C.; Croccolo, F.; Bataller, H.

    2014-01-01

    Thermodiffusion in a hydrocarbon binary mixture has been investigated experimentally and numerically in a liquid-porous cavity. The solutal separation of the 50% toluene and 50% n-hexane binary mixture induced by a temperature difference at atmospheric pressure has been performed in a new thermodiffusion cell. A new optimized cell design is used in this study. The inner part of the cell is a cylindrical porous medium sandwiched between two liquid layers of the same binary hydrocarbon mixture. Experimental measurement and theoretical estimation of the molecular diffusion and thermodiffusion coefficients showed a good agreement. In order to understand the different regimes occurring in the different parts of the cell, a full transient numerical simulation of the solutal separation of the binary mixture has been performed. Numerical results showed that the lighter species, which are of n-hexane migrated toward the hot surface, while the denser species, which is toluene migrated towards the cold surface. Also, it was found that a good agreement has been reached between experimental measurements and numerical calculations for the solutal separation between the hot and cold surface for different medium porosity. In addition, we used the numerical results to analyse convection and diffusion regions in the cell precisely. (authors)

  1. Cosolvent effect on the dynamics of water in aqueous binary mixtures

    Science.gov (United States)

    Zhang, Xia; Zhang, Lu; Jin, Tan; Zhang, Qiang; Zhuang, Wei

    2018-04-01

    Water rotational dynamics in the mixtures of water and amphiphilic molecules, such as acetone and dimethyl sulfoxide (DMSO), measured by femtosecond infrared, often vary non-monotonically as the amphiphilic molecule's molar fraction changes from 0 to 1. Recent study has attributed the non-ideal water rotation with concentration in DMSO-water mixtures to different microscopic hydrophilic-hydrophobic segregation structure in water-rich and water-poor mixtures. Interestingly, the acetone molecule has very similar molecular structure to DMSO, but the extremum of the water rotational time in the DMSO-water mixtures significantly shifts to lower concentration and the rotation of water is much faster than those in acetone-water mixtures. The simulation results here shows that the non-ideal rotational dynamics of water in both mixtures are due to the frame rotation during the interval of hydrogen bond (HB) switchings. A turnover of the frame rotation with concentration takes place as the structure transition of mixture from the hydrogen bond percolation structure to the hydrophobic percolation structure. The weak acetone-water hydrogen bond strengthens the hydrophobic aggregation and accelerates the relaxation of the hydrogen bond, so that the structure transition takes places at lower concentration and the rotation of water is faster in acetone-water mixture than in DMSO-water mixture. A generally microscopic picture on the mixing effect on the water dynamics in binary aqueous mixtures is presented here.

  2. Effect of exposure to a mixture of organic solvents on hearing thresholds in petrochemical industry workers.

    Science.gov (United States)

    Loukzadeh, Ziba; Shojaoddiny-Ardekani, Ahmad; Mehrparvar, Amir Houshang; Yazdi, Zohreh; Mollasadeghi, Abolfazl

    2014-10-01

    Hearing loss is one of the most common occupational diseases. In most workplaces, workers are exposed to noise and solvents simultaneously, so the potential risk of hearing loss due to solvents may be attributed to noise. In this study we aimed to assess the effect of exposure to mixed aromatic solvents on hearing in the absence of exposure to hazardous noise. In a cross-sectional study, 99 workers from the petrochemical industry with exposure to a mixture of organic solvents whose noise exposure was lower than 85 dBA were compared with 100 un-exposed controls. After measuring sound pressure level and mean concentration of each solvent in the workplace, pure-tone-audiometry was performed and the two groups were compared in terms of high-frequency and low-frequency hearing loss. T-tests and Chi-square tests were used to compare the two groups. The mean hearing threshold at all frequencies among petrochemical workers was normal (below 25 dB). We did not observe any significant association between solvent exposure and high-frequency or low-frequency hearing loss. This study showed that temporary exposure (less than 4 years) to a mixture of organic solvents, without exposure to noise, does not affect workers' hearing threshold in audiometry tests.

  3. CONSOLIDATION AND COMPACTION OF POWDER MIXTURES .1. BINARY-MIXTURES OF SAME PARTICLE-SIZE FRACTIONS OF DIFFERENT TYPES OF CRYSTALLINE LACTOSE

    NARCIS (Netherlands)

    RIEPMA, KA; LERK, CF; DEBOER, AH; BOLHUIS, GK; KUSSENDRAGER, KD

    1990-01-01

    Binary powder mixtures of four different types of crystalline lactose: alpha-lactose monohydrate, anhydrous alpha-lactose, roller-dried beta-lactose and crystalline beta-lactose, were compressed into tablets. The results showed a proportional intercorrelation of the crushing strength and internal

  4. Solubility of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols 400 or 600, propylene glycol and water at 298.2K - experimental data and modeling

    Directory of Open Access Journals (Sweden)

    Bastami Zahra

    2014-01-01

    Full Text Available Experimental molar solubilities of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols (PEGs 400 or 600, propylene glycol (PG and water (138 data points along with the density of the saturated solutions at 298.2K were reported. The Jouyban-Acree model was used to fit to the measurements for providing a computational method. Employing the solubilities in the mono-solvents, the measured solubilities in mixed solvents were back-calculated and the overall mean percentage deviations (OMPDs of the model were 16.0 % and 19.2% for diazepam and clonazepam, respectively. Addition of the Hansen solubility parameters to the model helps us to train all the data sets (clonazepam and diazepam at once and the back-calculated OMPD for this analysis was 19.3%.

  5. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    Science.gov (United States)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  6. Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures.

    Science.gov (United States)

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-02-01

    Electric discharge phenomena in metal-solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere.

  7. Evidences for decarbonation and exfoliation of layered double hydroxide in N,N-dimethylformamide-ethanol solvent mixture

    International Nuclear Information System (INIS)

    Gordijo, Claudia R.; Leopoldo Constantino, Vera R.; Oliveira Silva, Denise de

    2007-01-01

    The behavior of a Hydrotalcite-like material (carbonate-containing Mg,Al-layered double hydroxide) in N,N-dimethylformamide (DMF)-ethanol mixture, at ambient temperature, has been investigated. The releasing of CO 2 and production of a formate-containing material occurred mainly for 1:1 (v/v) solvent mixture. Decarbonation of Hydrotalcite is promoted by DMF hydrolysis followed by neutralization of brucite-like layers through HCOO - intercalation. Translucent colloidal dispersion of LDH nanoparticles from the formate-containing phase was characterized by transmission electron (TEM) and atomic force (AFM) microscopies. The absence of (00l) reflection at X-ray diffraction (XRD) pattern for dried colloidal dispersion indicated delamination of Hydrotalcite. The restacked sample exhibited broad reflections and typical hydroxide ordered layers non-basal (110) diffraction peaks. A LDH-HCOO - material was also prepared and characterized by FTIR and FT-Raman spectroscopies. Decarbonation and exfoliation of Hydrotalcite in N,N-dimethylformamide-ethanol mixed solvent provide an interesting method for preparation of new intercalated LDH materials. - Graphical abstract: Hydrotalcite suspended in 1:1 (v/v) N,N-dimethylformamide-ethanol solvent mixture, at ambient temperature, undergoes decarbonation and exfoliation. The process is promoted by DMF hydrolysis. Restacking of LDH layers is achieved by evaporating the solvent

  8. Computer simulation of solid-liquid coexistence in binary hard sphere mixtures

    NARCIS (Netherlands)

    Kranendonk, W.G.T.; Frenkel, D.

    1991-01-01

    We present the results of a computer simulation study of the solid-liquid coexistence of a binary hard sphere mixture for diameter ratios in the range 0·85 ⩽ ğa ⩽ 1>·00. For the solid phase we only consider substitutionally disordered FCC and HCP crystals. For 0·9425 < α < 1·00 we find a

  9. Ideal and non-ideal behaviour of {1-butyl-1-methylpyrrolydinium bis(trifluoromethylsulfonyl)imide + γ-butyrolactone} binary mixtures

    International Nuclear Information System (INIS)

    Vraneš, Milan; Tot, Aleksandar; Papović, Snežana; Zec, Nebojša; Dožić, Sanja; Gadžurić, Slobodan

    2015-01-01

    Graphical abstract: - Highlights: • Excess properties of ([bmpyrr][NTf 2 ] + γ-butyrolactone) mixtures are reported. • An ideal behaviour of the mixture was observed. • Interactions in the mixtures are weaker comparing to pure IL and GBL. • Calculated Angell’s strength parameter indicates a “fragile” ionic liquid. • [bmpyrr] + forms micellar structures when x IL > 0.6. - Abstract: Density, electrical conductivity and viscosity of binary liquid mixtures of 1-butyl-1-methylpyrrolydinium bis(trifluoromethylsulfonyl)imide, [bmpyrr][NTf 2 ], with γ-butyrolactone (GBL) were measured at temperatures from (293.15 to 323.15) K and at atmospheric pressure over the whole composition range. Excess molar volumes have been calculated from the experimental densities and fitted with the Redlich–Kister polynomial equation. These values are positive over the whole range of ionic liquid mole fraction and at all temperatures. In the range between 0.55 and 0.6 [bmpyrr][NTf 2 ] mole fraction, an ideal behaviour of the ionic liquid mixture with molecular solvent was observed for the first time. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes and partial molar volumes at infinite dilution have been also calculated, in order to obtain information about interactions between GBL and selected ionic liquid. Positive values of these properties for both components also indicate weaker interactions between GBL and IL compared to the pure components. From the viscosity results, the Angell strength parameter was calculated and found to be 3.24 indicating that [bmpyrr][NTf 2 ] is a “fragile” liquid. From the volumetric and transport properties obtained, formation of the [bmpyrr] + micellar structures was also discussed. All the results are compared to those obtained for imidazolium-based ionic liquid with GBL

  10. Thermodynamic properties of L-Theanine in different solvents

    International Nuclear Information System (INIS)

    Zhou, Fuli; Hou, Baohong; Tao, Xiaolong; Hu, Xiaoxue; Huang, Qiaoyin; Zhang, Zaixiang; Wang, Yongli; Hao, Hongxun

    2017-01-01

    Highlights: • The solubility data of L-Theanine in different solvents were measured by using an equilibrium method. • Several models were used to correlate the experimental solubility data. • The mixing thermodynamic properties were calculated. - Abstract: The solubility data of L-Theanine in pure water and three kinds of water + organic solvent mxitures were measured in temperature ranges from (278.15 to 13.15) K by using an equilibrium method. The results show that the solubility of L-Theanine increases with the increasing of temperature in all selected solvents. The modified Apelblat equation and the λ-h model were applied to correlate the solubility data in pure water, while the modified Apelblat equation, the λ-h model, the NRTL model and the Jouyban–Acree model were applied to correlate the solubility data in binary solvent mixtures. Furthermore, the mixing thermodynamic properties of L-Theanine in different solvents were also calculated based on the NRTL model and experimental solubility data.

  11. Experimental measurement and modelling of solubility of inosine-5′-monophosphate disodium in pure and mixed solvents

    International Nuclear Information System (INIS)

    Zou, Fengxia; Zhuang, Wei; Wu, Jinglan; Zhou, Jingwei; Liu, Qiyan; Chen, Yong; Xie, Jingjing; Zhu, Chenjie; Guo, Ting; Ying, Hanjie

    2014-01-01

    Graphical abstract: - Highlights: • Solubility of 5′-IMPNa 2 in various solvents was studied for the first time. • The solubility could be ranked as follows: water > methanol > ethanol > acetone. • Modified Apelblat equation gave the best correlating results. • Mixing Gibbs free energies, enthalpies, and entropies were predicted. • Solubility data and equations can optimise the crystallization conditions. - Abstract: The solubility of biological chemicals in solvents provide important fundamental data and is generally considered as an essential factor in the design of crystallization processes. The equilibrium solubility data of inosine-5′-monophosphate disodium (5′-IMPNa 2 ) in water, methanol, ethanol, acetone, as well as in the solvent mixtures (methanol + water, ethanol + water, acetone + water), were measured by an isothermal method at temperatures ranging from (293.15 to 313.15) K. The measured data in pure and mixed solvents were then modelled using the modified Apelblat equation, van’t Hoff equation, λh equation, ideal model and the Wilson model. The modified Apelblat equation showed the best modelling results, and it was therefore used to predict the mixing Gibbs free energies, enthalpies, and entropies of 5′-IMPNa 2 in pure and binary solvents. The positive values of the calculated partial molar Gibbs free energies indicated the variations in the solubility trends of 5′-IMPNa 2 . Water and ethanol (in the binary mixture with water) were found to be the most effective solvent and anti-solvent, respectively

  12. Dissolution of South African Eucalyptus sawdust wood in [Emim][OAc]/Co-solvent mixtures

    CSIR Research Space (South Africa)

    Tywabi, Zikhona

    2017-03-01

    Full Text Available The paper presents a method of obtaining wood cellulose by dissolution of eucalyptus sawdust in a mixture of ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate [Emim][OAc] together with co-solvents; dimethylformamide (DMF) and dimethylsulphoxide...

  13. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment

    Energy Technology Data Exchange (ETDEWEB)

    Barata, Carlos [Laboratory of Environmental Toxicology, Universitat Poltiecnica de Catalunya, CN 150 Km 14.5, Terrassa 08220 (Spain)]. E-mail: barata@intexter.upc.edu; Baird, D.J. [National Water Research Institute (Environment Canada) at Canadian Rivers Institute, 10 Bailey Drive, PO Box 45111, University of New Brunswick, Fredericton E3B 6E1, New Brunswick (Canada); Nogueira, A.J.A. [Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Soares, A.M.V.M. [Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Riva, M.C. [Laboratory of Environmental Toxicology, Universitat Poltiecnica de Catalunya, CN 150 Km 14.5, Terrassa 08220 (Spain)

    2006-06-10

    Two different concepts, termed concentration addition (CA) and independent action (IA), describe general relationships between the effects of single substances and their corresponding mixtures allowing calculation of an expected mixture toxicity on the basis of known toxicities of the mixture components. Both concepts are limited to cases in which all substances in a mixture influence the same experimental endpoint, and are usually tested against a 'fixed ratio design' where the mixture ratio is kept constant throughout the studies and the overall concentration of the mixture is systematically varied. With this design, interaction among toxic components across different mixture ratios and endpoints (i.e. lethal versus sublethal) is not assessed. In this study lethal and sublethal (feeding) responses of Daphnia magna individuals to single and binary combinations of similarly and dissimilarly acting chemicals including the metals (cadmium, copper) and the pyrethroid insecticides ({lambda}-cyhalothrin and deltamethrin) were assayed using a composite experimental design to test for interactions among toxic components across mixture effect levels, mixture ratios, lethal and sublethal toxic effects. To account for inter-experiment response variability, in each binary mixture toxicity assay the toxicity of the individual mixture constituents was also assessed. Model adequacy was then evaluated comparing the slopes and elevations of predicted versus observed mixture toxicity curves with those estimated for the individual components. Model predictive abilities changed across endpoints. The IA concept was able to predict accurately mixture toxicities of dissimilarly acting chemicals for lethal responses, whereas the CA concept did so in three out of four pairings for feeding response, irrespective of the chemical mode of action. Interaction effects across mixture effect levels, evidenced by crossing slopes, were only observed for the binary mixture Cd and Cu for

  14. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment

    International Nuclear Information System (INIS)

    Barata, Carlos; Baird, D.J.; Nogueira, A.J.A.; Soares, A.M.V.M.; Riva, M.C.

    2006-01-01

    Two different concepts, termed concentration addition (CA) and independent action (IA), describe general relationships between the effects of single substances and their corresponding mixtures allowing calculation of an expected mixture toxicity on the basis of known toxicities of the mixture components. Both concepts are limited to cases in which all substances in a mixture influence the same experimental endpoint, and are usually tested against a 'fixed ratio design' where the mixture ratio is kept constant throughout the studies and the overall concentration of the mixture is systematically varied. With this design, interaction among toxic components across different mixture ratios and endpoints (i.e. lethal versus sublethal) is not assessed. In this study lethal and sublethal (feeding) responses of Daphnia magna individuals to single and binary combinations of similarly and dissimilarly acting chemicals including the metals (cadmium, copper) and the pyrethroid insecticides (λ-cyhalothrin and deltamethrin) were assayed using a composite experimental design to test for interactions among toxic components across mixture effect levels, mixture ratios, lethal and sublethal toxic effects. To account for inter-experiment response variability, in each binary mixture toxicity assay the toxicity of the individual mixture constituents was also assessed. Model adequacy was then evaluated comparing the slopes and elevations of predicted versus observed mixture toxicity curves with those estimated for the individual components. Model predictive abilities changed across endpoints. The IA concept was able to predict accurately mixture toxicities of dissimilarly acting chemicals for lethal responses, whereas the CA concept did so in three out of four pairings for feeding response, irrespective of the chemical mode of action. Interaction effects across mixture effect levels, evidenced by crossing slopes, were only observed for the binary mixture Cd and Cu for lethal effects

  15. Binary mixtures of condensates in generic confining potentials

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, P [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S; Pepe, F V, E-mail: Francesco.Pepe@ba.infn.it [INFN, Sezione di Bari, I-70126 Bari (Italy)

    2011-12-16

    We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species. (paper)

  16. Binary mixtures of condensates in generic confining potentials

    Science.gov (United States)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F. V.

    2011-12-01

    We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species.

  17. Binary mixtures of condensates in generic confining potentials

    International Nuclear Information System (INIS)

    Facchi, P; Florio, G; Pascazio, S; Pepe, F V

    2011-01-01

    We study a binary mixture of Bose–Einstein condensates, confined in a generic potential, in the Thomas–Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species. (paper)

  18. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    Science.gov (United States)

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  19. Separation of Binary Mixtures of Propylene and Propane by Facilitated Transport through Silver Incorporated Poly(Ether-Block-Amide Membranes

    Directory of Open Access Journals (Sweden)

    Surya Murali R.

    2015-02-01

    Full Text Available The separation of propylene and propane is a challenging task in petroleum refineries due to the similar molecular sizes and physical properties of two gases. Composite Poly(ether-block-amide (Pebax-1657 membranes incorporated with silver tetra fluoroborate (AgBF4 in concentrations of 0-50% of the polymer weight were prepared by solution casting and solvent evaporation technique. The membranes were characterized by Scanning Electron Microscopy (SEM, Fourier Transform InfraRed (FTIR and wide-angle X-ray Diffraction (XRD to study surface and cross-sectional morphologies, effect of incorporation on intermolecular interactions and degree of crystallinity, respectively. Experimental data was measured with an indigenously built high-pressure gas separation manifold having an effective membrane area of 42 cm2. Permeability and selectivity of membranes were determined for three different binary mixtures of propylene-propane at pressures varying in the range 2-6 bar. Selectivity of C3H6/C3H8 enhanced from 2.92 to 17.22 and 2.11 to 20.38 for 50/50 and 66/34 C3H6+C3H8 feed mixtures, respectively, with increasing loading of AgBF4. Pebax membranes incorporated with AgBF4 exhibit strong potential for the separation of C3H6/C3H8 mixtures in petroleum refineries.

  20. Effect of Exposure to a Mixture of Organic Solvents on Hearing Thresholds in Petrochemical Industry Workers

    Directory of Open Access Journals (Sweden)

    Ziba Loukzadeh

    2014-10-01

    Full Text Available Introduction: Hearing loss is one of the most common occupational diseases. In most workplaces, workers are exposed to noise and solvents simultaneously, so the potential risk of hearing loss due to solvents may be attributed to noise.  In this study we aimed to assess the effect of exposure to mixed aromatic solvents on hearing in the absence of exposure to hazardous noise.   Materials and Methods: In a cross-sectional study, 99 workers from the petrochemical industry with exposure to a mixture of organic solvents whose noise exposure was lower than 85 dBA were compared with 100 un-exposed controls. After measuring sound pressure level and mean concentration of each solvent in the workplace, pure-tone-audiometry was performed and the two groups were compared in terms of high-frequency and low-frequency hearing loss. T-tests and Chi-square tests were used to compare the two groups.   Results: The mean hearing threshold at all frequencies among petrochemical workers was normal (below 25 dB. We did not observe any significant association between solvent exposure and high-frequency or low-frequency hearing loss.   Conclusion:  This study showed that temporary exposure (less than 4 years to a mixture of organic solvents, without exposure to noise, does not affect workers’ hearing threshold in audiometry tests.

  1. Control of Native Spoilage Yeast on Dealcoholized Red Wine by Preservatives Alone and in Binary Mixtures.

    Science.gov (United States)

    Sánchez-Rubio, Marta; Guerrouj, Kamal; Taboada-Rodríguez, Amaury; López-Gómez, Antonio; Marín-Iniesta, Fulgencio

    2017-09-01

    In order to preserve a commercial dealcoholized red wine (DRW), a study with 4 preservatives and binary mixtures of them were performed against 2 native spoilage yeasts: Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for potassium sorbate, sodium benzoate, sodium metabisulfite and dimethyl dicarbonate (DMDC) were evaluated in DRW stored at 25 °C. MICs of potassium sorbate and sodium metabisulfite were 250 and 60 mg/kg, respectively for both target strains. However for sodium benzoate, differences between yeasts were found; R. mucilaginosa was inhibited at 125 mg/kg, while S. cerevisiae at 250 mg/kg. Regarding MFC, differences between strains were only found for sodium metabisulfite obtaining a MFC of 500 mg/kg for R. mucilaginosa and a MFC of 250 mg/kg for S. cerevisiae. Potassium sorbate and sodium benzoate showed the MFC at 1000 mg/kg and DMDC at 200 mg/kg. Regarding the effect of binary mixtures the Fractional Fungicidal Concentration Index (FFC i ) methodology showed that binary mixtures of 100 mg/kg DMDC/200 mg/kg potassium sorbate (FFC i = 0.7) and 50 mg/kg DMDC / 400 mg/kg sodium benzoate (FFC i = 0.65) have both synergistic effect against the 2 target strains. These binary mixtures can control the growth of spoilage yeasts in DRW without metabisulfite addition. The results of this work may be important in preserving the health of DRW consumers by eliminating the use of metabisulfite and reducing the risk of growth of R. mucilagosa, recently recognized as an emerging pathogen. © 2017 Institute of Food Technologists®.

  2. Direct numerical simulations of nucleate boiling flows of binary mixtures

    International Nuclear Information System (INIS)

    Didier Jamet; Celia Fouillet

    2005-01-01

    phenomena. Namely, it is numerically observed that, for binary mixtures involving small amounts of a quasi non-condensable gas, the large decrease of the heat transfer coefficient observed is mostly due to the concentration distribution close to the triple line. Therefore, for direct numerical simulations of nucleate boiling of binary mixtures to provide quantitative results, it is important to account for the variations of the interface temperature with the local concentration of the mixture components in the close vicinity of the triple line. This knowledge requires a better modeling of the triple line motion of binary mixtures during liquid-vapor phase-change, which is still a very difficult modeling task. (author)

  3. Dielectric study of molecular association in the binary mixtures (2-ethyl-1-hexanol + alcohol) and (cyclohexane + alcohol) at 298.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Ghanadzadeh, A. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of)]. E-mail: aggilani@guilan.ac.ir; Ghanadzadeh, H. [Department of Chemical Engineering, Guilan University, Rasht (Iran, Islamic Republic of); Sariri, R. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of); Ebrahimi, L. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of)

    2005-04-15

    Experimental results of dielectric investigations of three binary mixtures (ethanol + 2-ethyl-1-hexanol), (n-butanol + 2-ethyl-1-hexanol), and (tert-butanol + 2-ethyl-1-hexanol) were reported for various mole fractions at 298.2 K. The variations of dipole moment and correlation factor, g, with mole fraction in these mixtures were investigated using a unified quasichemical method described by Durov. The molecular associations of (ethanol + cyclohexane), (n-butanol + cyclohexane), and (tert-butanol + cyclohexane) binary mixtures were also investigated using the static dielectric method. A similar trend was observed in the variation of the dipole moments with the solute mole fractions in the both binary systems (i.e., alcohol + 2-ethyl-1-hexanol and alcohol + cyclohexane)

  4. Separation of Pr and Nd from La in chloride solution by extraction with a mixture of Cyanex 272 and Alamine 336

    Science.gov (United States)

    Liu, Yang; Jeon, Ho Seok; Lee, Man Seung

    2015-09-01

    The possibility of separation of Pr and Nd from La in a chloride leaching solution of monazite sand has been investigated by using a binary mixture of Cyanex 272 (bis(2,4,4-trimethylpentyl) phosphinic acid) and Alamine 336 (tri-octyl/decyl amine). The binary mixture showed synergism on the extraction of the three metals and led to an increase in the separation factor between Pr/Nd and La compared to Cyanex 272 alone. Although the addition of chloride ion into aqueous increased the extraction of the metals, this addition had negative effect on the separation of Nd/Pr and La. McCabe-Thiele diagrams for the extraction of Pr and Nd with the binary mixture were constructed. Stripping of metals from the loaded organic phase was achieved with 0.7 M HCl. The difference in the solvent extraction of the rare earth elements from chloride solution between the binary mixture and saponified extractants was also discussed.

  5. On the Lyapunov stability of a plane parallel convective flow of a binary mixture

    Directory of Open Access Journals (Sweden)

    Giuseppe Mulone

    1991-05-01

    Full Text Available The nonlinear stability of plane parallel convective flows of a binary fluid mixture in the Oberbeck-Boussinesq scheme is studied in the stress-free boundary case. Nonlinear stability conditions independent of Reynolds number are proved.

  6. Behavior of the Thermodynamic Properties of Binary Mixtures near the Critical Azeotrope

    Directory of Open Access Journals (Sweden)

    Azzedine Abbaci

    2003-12-01

    Full Text Available Abstract: In this work we investigate the critical line of binary azeotropic mixtures of acetone-n-pentane. We pinpoint the abnormal behavior of the critical density line as a function of the mole fraction of one of the component and show its influence on other thermodynamic properties such as the volume, the enthalpy and the entropy.

  7. Estimation of diffusion coefficients in bitumen solvent mixtures as derived from low field NMR spectra

    International Nuclear Information System (INIS)

    Wen, Y.; Bryan, J.; Kantzas, A.

    2005-01-01

    Use of solvents for the extraction of heavy oil and bitumen appears to be an increasingly feasible technology. Both vapour extraction and direct solvent injection are considered for conventional exploration and production schemes, while solvent dilution of bitumen is a standard technique in oil sands mining. Mass transfer between solvent and bitumen is a poorly understood process. In some cases, it is totally ignored compared to viscous force effects. In other cases, phenomenological estimations of diffusion and dispersion coefficients are used. Low field NMR has been used successfully in determining both solvent content and viscosity reduction in heavy oil and bitumen mixtures with various solvents. As a solvent comes into contact with a heavy oil or bitumen sample, the mobility of hydrogen bearing molecules of both solvent and oil changes. These changes are detectable through changes in the NMR relaxation characteristics of both solvent and oil. Relaxation changes can then be correlated to mass flux and concentration changes. Based on Fick's Second Law, a diffusion coefficient, which is independent of concentration, was calculated against three oils and six solvents. (author)

  8. Experimental investigation on the minimum ignition temperature of hybrid mixtures of dusts and gases or solvents.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-15

    Investigations on the minimum ignition temperatures (MIT) of hybrid mixtures of dusts with gases or solvents were performed in the modified Godbert-Greenwald (GG) furnace. Five combustible dusts and six flammable gases (three ideal and three real) were used. The test protocol was according to EN 50281-2-1 for dust-air mixtures whereas in the case of gases, solvents and hybrid mixtures this standard was used with slight modification. The experimental results demonstrated a significant decrease of the MIT of gas, solvent or dust and an increase in the likelihood of explosion when a small amount of dust, which was either below the minimum explosion concentration or not ignitable by itself, was mixed with gas and vice versa. For example, the MIT of toluene decreased from 540°C to 455°C when small amount of lycopodium was added. It was also confirmed that a hybrid mixture explosion is possible even when both dust and vapour or gas concentrations are respectively lower than their minimum explosion concentration (MEC) and lower explosion limit (LEL). Another example is CN4, the MEC of which of 304 g/m(3) decreased to 37 g/m(3) when propane was added, even though the concentrations of the gas was below its LEL. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Study of the refractive index of gasoline+alcohol pseudo-binary mixtures

    Directory of Open Access Journals (Sweden)

    Nita Irina

    2017-02-01

    Full Text Available The properties of gasoline change as a result of blending with a bioalcohol, affecting the behavior of the pseudo-binary system. The aim of this paper is to present experimental data of the refractive index for pseudobinary mixtures of a reformate gasoline with ethanol, isopropanol and n-butanol over the entire composition range and for temperature ranging from 293.15 K to 313.15 K. The accuracy of different equations to predict the refractive index of the mixtures was tested. The best prediction accuracy (the lower AAD corresponded to Eykman and Lorentz-Lorenz mixing rules. A logarithmic equation proposed to correlate the refractive index with composition and temperature of gasoline+alcohol mixtures showed a good accuracy (the absolute average deviation AAD < 0.052%. The deviations in refractive index for investigated systems are negative over the entire composition range and at all investigated temperatures.

  10. Turbidity of a Binary Fluid Mixture: Determining Eta

    Science.gov (United States)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  11. Surface tension of heptane, decane, hexadecane, eicosane, and some of their binary mixtures

    DEFF Research Database (Denmark)

    Rolo, Lara I.; Caco, Ana I.; Queimada, Antonio

    2002-01-01

    Surface tension measurements were performed by the Wilhelmy plate method. Measured systems included pure heptane, decane, hexadecane, eicosane, and some of their binary mixtures at temperatures from 293.15 K to 343.15 K with an average absolute deviation of 1.6%. The results were compared with a ...

  12. Study of thermodynamic and transport properties of binary liquid mixture of diesel with biodiesel at 298.15K

    Science.gov (United States)

    Suthar, Shyam Sunder; Purohit, Suresh

    2018-05-01

    Properties of diesel and biodiesel (produced from corn oil) are used. Densities and viscosities of binary mixture of diesel with biodiesel (produced from corn oil) have been computed by using liquid binary mixture law over the entire range of compositions at T=298.15K and atmospheric pressure. From the computed values of density and viscosities, viscosity deviation (Δη), the excess molar volume (VE) and excess Gibbs energy of activation of viscous flow (ΔG#E) have been calculated. The results of excess volume, excess Gibbs energy of activation of viscous flow and viscosity deviation have been fitted to Redlich -Kister models to estimate the binary coefficients. The results are communicated in terms of the molecular interactions and the best suited composition has been found.

  13. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae.

    Science.gov (United States)

    Zhu, Wanyi; Schmehl, Daniel R; Mullin, Christopher A; Frazier, James L

    2014-01-01

    Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax--fluvalinate, coumaphos, chlorothalonil, and chloropyrifos--tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common 'inert' ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.

  14. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae.

    Directory of Open Access Journals (Sweden)

    Wanyi Zhu

    Full Text Available Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L. health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax--fluvalinate, coumaphos, chlorothalonil, and chloropyrifos--tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common 'inert' ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.

  15. Morphological transformations of diblock copolymers in binary solvents: A simulation study

    Science.gov (United States)

    Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui

    2017-12-01

    Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer-solvent interactions ɛ ij ( i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ɛ AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ɛ BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ɛ AS2.

  16. Osmotic and apparent molar properties of binary mixtures alcohol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid

    International Nuclear Information System (INIS)

    González, Emilio J.; Calvar, Noelia; Domínguez, Ángeles; Macedo, Eugénia A.

    2013-01-01

    Highlights: ► Osmotic and physical properties of binary mixtures {alcohol + [BMim][TfO]} were measured. ► From experimental data, apparent molar properties and osmotic coefficients were calculated. ► The apparent properties were fitted using a Redlich–Meyer type equation. ► The osmotic coefficients were correlated using the Extended Pitzer model. -- Abstract: In this work, physical properties (densities and speeds of sound) for the binary systems {1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate} were experimentally measured from T = (293.15 to 323.15) K and at atmospheric pressure. These data were used to calculate the apparent molar volume and apparent molar isentropic compression which were fitted to a Redlich–Meyer type equation. This fit was used to obtain the corresponding apparent molar properties at infinite dilution. On the other hand, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The Extended Pitzer model of Archer was employed to correlate the experimental osmotic coefficients. From the parameters obtained in the correlation, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated

  17. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    Science.gov (United States)

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-09-01

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  18. Selective micellar electrokinetic chromatographic method for simultaneous determination of some pharmaceutical binary mixtures containing non-steroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Michael E. El-Kommos

    2013-02-01

    Full Text Available A simple and selective micellar electrokinetic chromatographic (MEKC method has been developed for the analysis of five pharmaceutical binary mixtures containing three non-steroidal anti-inflammatory drugs (NSAIDs. The investigated mixtures were Ibuprofen (IP–Paracetamol (PC, Ibuprofen (IP–Chlorzoxazone (CZ, Ibuprofen (IP–Methocarbamol (MC, Ketoprofen (KP–Chlorzoxazone (CZ and Diclofenac sodium (DS–Lidocaine hydrochloride (LC. The separation was run for all mixtures using borate buffer (20 mM, pH 9 containing 15% (v/v methanol and 100 mM sodium dodecyl sulphate (SDS at 15 kV and the components were detected at 214 nm. Different factors affecting the electrophoretic mobility of the seven investigated drugs were studied and optimized. The method was validated according to international conference of harmonization (ICH guidelines and United States pharmacopoeia (USP. The method was applied to the analysis of five pharmaceutical binary mixtures in their dosage forms. The results were compared with other reported high performance liquid chromatographic methods and no significant differences were observed. Keywords: Capillary electrophoresis, Micellar electrokinetic chromatographic method, Non-steroidal anti-inflammatory drugs, Pharmaceutical binary mixtures, Pharmaceutical analysis

  19. Modeling adsorption of binary and ternary mixtures on microporous media

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2007-01-01

    it possible using the same equation of state to describe the thermodynamic properties of the segregated and the bulk phases. For comparison, we also used the ideal adsorbed solution theory (IAST) to describe adsorption equilibria. The main advantage of these two models is their capabilities to predict......The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes...... multicomponent adsorption equilibria on the basis of single-component adsorption data. We compare the MPTA and IAST models to a large set of experimental data, obtaining reasonable good agreement with experimental data and high degree of predictability. Some limitations of both models are also discussed....

  20. An odor interaction model of binary odorant mixtures by a partial differential equation method.

    Science.gov (United States)

    Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong

    2014-07-09

    A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.

  1. A combined experimental and theoretical approach to the study of hydrogen bond interaction in the binary mixture of N-methylimidazole with water

    International Nuclear Information System (INIS)

    Huang, Rongyi; Du, Rongbin; Liu, Guangxiang; Zhao, Xiuqin; Ye, Shiyong; Wu, Genhua

    2012-01-01

    Highlights: ► Densities of N-methylimidazole with water binary mixture were measured. ► Excess molar volumes were fitted to Redlich–Kister polynomial equation. ► Excess molar volumes are negative in the whole mole fraction range. ► 1:1 Hydrogen complex formation between the unlike components was observed. ► Formation of hydrogen bonds in the binary mixture was confirmed by DFT//B3LYP. - Abstract: The intermolecular hydrogen bond interactions in the N-methylimidazole (MeIm) with water binary mixture have been studied by a combined experimental and theoretical approach. The densities of the binary mixture have been measured at T = (288.15 to 323.15) K and at atmospheric pressure. From the experimental data, excess molar volumes were determined as a function of composition at each temperature. The results reveal the formation of 1:1 hydrogen bond complex between MeIm with water at the maximal excess molar volume. Meanwhile, the formation of hydrogen bonds in the binary mixture was further confirmed by high level theoretical calculation. The structures, interactional energies and bond characteristics of the hydrogen bond complexes were calculated in the gas phase using density functional theory (DFT) at the B3LYP/6-311++G(d, p) theory levels. The changes of thermodynamic properties from the monomers to hydrogen bond complexes with the temperature ranging from (288.15 to 323.15) K were obtained using the statistical thermodynamic method. Thermodynamic analyses have been interpreted in terms of intermolecular interactions and excess molar volume changes in the binary mixture. It was also found that the formation reaction of the hydrogen bond complex of MeIm with water was an exothermic, entropy reduced and spontaneous thermodynamic process at all the temperature studied.

  2. Thermodynamic properties of binary liquid mixtures of diethylenetriamine with alcohols at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Gyan Prakash, E-mail: gyan.dubey@rediffmail.com [Department of Chemistry, Kurukshetra University, Kurukshetra 136119 (India); Kumar, Krishan [Department of Chemistry, Kurukshetra University, Kurukshetra 136119 (India)

    2011-09-20

    Highlights: {yields} Thermodynamic study of diethylenetriamine + 2-methyl-1-propanol, +2-propanol or +1-butanol have been made. {yields} Excess molar volumes and isentropic compressibility were determined. {yields} Types of interactions were discussed based on derived properties. - Abstract: Densities, {rho}, viscosities, {eta}, and speeds of sound, u, were measured for the binary liquid mixtures containing diethylenetriamine with 2-methyl-1-propanol, 2-propanol and 1-butanol at 293.15, 298.15, 303.15, 308.15 and 313.15 K. From density and speed of sound data, excess molar volumes, V{sub m}{sup E} and deviations in isentropic compressibility, {Delta}{kappa}{sub s}, and speed of sound, {Delta}u have been evaluated. Viscosity data were used to compute deviations in viscosity and excess Gibbs energy of activation of viscous flow {Delta}G*{sup E} at 298.15, 303.15 and 308.15 K. A Redlich-Kister type equation was applied to fit the excess molar volumes and deviations in isentropic compressibility, speed of sound and viscosity data. The viscosity data have been correlated with the equations of Grunberg-Nissan, Tamura-Kurata, Heric-Brewer and of Hind et al. All the binary systems of the present study have negative values of excess molar volumes and deviations in isentropic compressibility over whole composition range and at all temperatures which indicates strong interactions between the components of binary mixtures.

  3. Thermodynamic properties of binary liquid mixtures of diethylenetriamine with alcohols at different temperatures

    International Nuclear Information System (INIS)

    Dubey, Gyan Prakash; Kumar, Krishan

    2011-01-01

    Highlights: → Thermodynamic study of diethylenetriamine + 2-methyl-1-propanol, +2-propanol or +1-butanol have been made. → Excess molar volumes and isentropic compressibility were determined. → Types of interactions were discussed based on derived properties. - Abstract: Densities, ρ, viscosities, η, and speeds of sound, u, were measured for the binary liquid mixtures containing diethylenetriamine with 2-methyl-1-propanol, 2-propanol and 1-butanol at 293.15, 298.15, 303.15, 308.15 and 313.15 K. From density and speed of sound data, excess molar volumes, V m E and deviations in isentropic compressibility, Δκ s , and speed of sound, Δu have been evaluated. Viscosity data were used to compute deviations in viscosity and excess Gibbs energy of activation of viscous flow ΔG* E at 298.15, 303.15 and 308.15 K. A Redlich-Kister type equation was applied to fit the excess molar volumes and deviations in isentropic compressibility, speed of sound and viscosity data. The viscosity data have been correlated with the equations of Grunberg-Nissan, Tamura-Kurata, Heric-Brewer and of Hind et al. All the binary systems of the present study have negative values of excess molar volumes and deviations in isentropic compressibility over whole composition range and at all temperatures which indicates strong interactions between the components of binary mixtures.

  4. Dielectric studies on binary mixtures of Tri-n-butyl phosphate (TBP) and long-chain primary alcohols (modifiers)

    International Nuclear Information System (INIS)

    Dash, S.K.; Swain, B.B.

    1993-01-01

    Dielectric constant (ε) of Tri-n-butyl phosphate (TBP), in binary mixtures with five long-chain primary alcohols viz; 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol and 1-octanol has been measured at ν = 455 kHz and at temperature 302 K. The data is used to evaluate mutual correlation factor g ab , excess molar polarization ΔP and excess free energy of mixing ΔF ab by using Winkelmann-Quitzsch eqn. for binary mixtures to assess the suitability of the alcohols as modifiers. The trend of variation of these parameters exhibit marked dependence on chain-length of the alcohols indicating 1-heptanol to be an efficient modifier. (author)

  5. Estimation of the minimum Prandtl number for binary gas mixtures formed with light helium and certain heavier gases: Application to thermoacoustic refrigerators

    International Nuclear Information System (INIS)

    Campo, Antonio; Papari, Mohammad M.; Abu-Nada, Eiyad

    2011-01-01

    This paper addresses a detailed procedure for the accurate estimation of low Prandtl numbers of selected binary gas mixtures. In this context, helium (He) is the light primary gas and the heavier secondary gases are nitrogen (N 2 ), oxygen (O 2 ), xenon (Xe), carbon dioxide (CO 2 ), methane (CH 4 ), tetrafluoromethane or carbon tetrafluoride (CF 4 ) and sulfur hexafluoride (SF 6 ). The three thermophysical properties forming the Prandtl number of binary gas mixtures Pr mix are heat capacity at constant pressure C p,mix (thermodynamic property), viscosity η mix (transport property) and thermal conductivity λ mix (transport property), which in general depend on temperature T and molar gas composition w. The precise formulas for the calculation of the trio C p,mix , η mix , and λ mix are gathered from various dependable sources. When the set of computed Pr mix values for the seven binary gas mixtures He + N 2 , He + O 2 , He + Xe, He + CO 2 , He + CH 4 , He + CF 4 , He + SF 6 at atmospheric conditions T = 300 K, p = 1 atm is plotted against the molar gas composition w on the w-domain [0,1], the family of Pr mix (w) curves exhibited distinctive concave shapes. In the curves format, all Pr mix (w) curves initiate with Pr ∼ 0.7 at w = 0 (associated with light primary He). Forthwith, each Pr mix (w) curve descends to a unique minimum and thereafter ascend back to Pr ∼ 0.7 at the terminal point w = 1 (connected to heavier secondary gases). Overall, it was found that among the seven binary gas mixtures tested, the He + Xe gas mixture delivered the absolute minimum Prandtl number Pr mix,min = 0.12 at the optimal molar gas composition w opt = 0.975. - Highlights: →Accurate estimation of low Prandtl numbers for some helium-based binary gas mixtures. →The thermophysical properties of the gases are calculated with precise formulas. →The absolute minimum Prandtl number is delivered by the He + Xe binary gas mixture. →Application to experimental thermoacoustic

  6. Thermodynamic properties of (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures at T = (298.15, 303.15, and 308.15) K

    International Nuclear Information System (INIS)

    Mutalik, Venkatesh; Manjeshwar, Lata S.; Sairam, Malladi; Aminabhavi, Tejraj M.

    2006-01-01

    Density ρ, viscosity η, and refractive index n D , values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume V E , deviations in viscosity Δη, Lorentz-Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δk s have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components

  7. Solvation of hydrocarbons in aqueous-organic mixtures

    International Nuclear Information System (INIS)

    Sedov, I.A.; Magsumov, T.I.; Solomonov, B.N.

    2016-01-01

    Highlights: • Thermodynamic functions of solvation in mixtures of water with acetone and acetonitrile are measured at T = 298.15 K. • Solvation of n-octane and toluene in aqueous-organic mixtures is studied. • When increasing water content, Gibbs free energies grow up steadily, while enthalpies have a maximum. • Hydrocarbons are preferentially solvated with organic cosolvent even in mixtures with rather high water content. • Acetonitrile suppresses the hydrophobic effect less than acetone. - Abstract: We study the solvation of two hydrocarbons, n-octane and toluene, in binary mixtures of water with organic cosolvents. Two polar aprotic cosolvents that are miscible with water in any proportions, acetonitrile and acetone, were considered. We determine the magnitudes of thermodynamic functions of dissolution and solvation at T = 298.15 K in the mixtures with various compositions. Solution calorimetry was used to measure the enthalpies of solution, and GC headspace analysis was applied to obtain limiting activity coefficients of solutes in the studied systems. For the first time, the enthalpies of solution of alkane in the mixtures with high water content were measured directly. We observed well-pronounced maxima of the dependencies of enthalpies of solvation from the composition of solvent and no maxima for the Gibbs free energies of solvation. Two factors are concluded to be important to explain the observed tendencies: high energy cost of reorganization of binary solvent upon insertion of solute molecules and preferential surrounding of hydrocarbons with the molecules of organic cosolvent. Enthalpy-entropy compensation leads to a steady growth of the Gibbs free energies with increasing water content. On the other hand, consideration of the plots of the Gibbs free energy against enthalpy of solvation clearly shows that the solvation properties are changed dramatically after addition of a rather small amount of organic cosolvents. It is shown that they

  8. Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}

    International Nuclear Information System (INIS)

    Alvarez, Victor H.; Mattedi, Silvana; Martin-Pastor, Manuel; Aznar, Martin; Iglesias, Miguel

    2011-01-01

    Research highlights: → This paper reports the density and speed of sound data of binary mixtures {2-hydroxy ethylammonium acetate + (water, or methanol, or ethanol)} measured between the temperatures (298.15 and 313.15) K at atmospheric pressure. → The aggregation, dynamic behavior, and hydrogen-bond network were studied using thermo-acoustic, X-ray, and NMR techniques. → The Peng-Robinson equation of state, coupled with the Wong-Sandler mixing rule using the COSMO-SAC model predicted the density of the solutions with relative mean deviations below than 3.0%. - Abstract: In this work, density and speed of sound data of binary mixtures of an ionic liquid consisting of {2-hydroxy ethylammonium acetate (2-HEAA) + (water, methanol, or ethanol)} have been measured throughout the entire concentration range, from the temperature of (288.15 to 323.15) K at atmospheric pressure. The excess molar volumes, variations of the isentropic compressibility, the apparent molar volume, isentropic apparent molar compressibility, and thermal expansion coefficient were calculated from the experimental data. The excess molar volumes were negative throughout the whole composition range. Compressibility data in combination with low angle X-ray scattering and NMR measurements proved that the presence of micelles formed due to ion pair interaction above a critical concentration of the ionic liquid in the mixtures. The Peng-Robinson equation of state coupled with the Wong-Sandler mixing rule and COSMO-SAC model was used to predict densities and the calculated deviations were lower than 3%, for binary mixtures in all composition range.

  9. Configuration-specific kinetic theory applied to an ideal binary gas mixture.

    Science.gov (United States)

    Wiseman, Floyd L

    2006-10-05

    This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.

  10. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    Science.gov (United States)

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  11. Bubble-point measurement for the binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Baek, Seung-Hyun; Byun, Hun-Soo

    2016-01-01

    Highlights: • Phase behaviours for the (CO_2 + propargyl (meth)acrylate) systems by static method were measured. • (P, x) isotherms is obtained at pressures up to 19.14 MPa and at temperature of (313.2 to 393.2) K. • The (CO_2 + propargyl acrylate) and (CO_2 + propargyl methacrylate) systems exhibit type-I behaviour. - Abstract: Acrylate and methacrylate (acrylic acid type) are compounds with weak polarity which show a non-ideal behaviour. Phase behaviour of these systems play a significant role as organic solvents in industrial processes. High pressure phase behaviour data were reported for binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide. The bubble-point curves for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) mixtures were measured by static view cell apparatus at temperature range from 313.2 K to 393.2 K and at pressures below 19.14 MPa. The (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems exhibit type-I phase behaviour. The (carbon dioxide + (meth)acrylate) systems had continuous critical mixture curves with maximums in pressure located between the critical temperatures of carbon dioxide and propargyl acrylate or carbon dioxide and propargyl methacrylate. The solubility behaviour of propargyl (meth)acrylate in the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl acrylate) systems increases as the temperature increases at a fixed pressure. The experimental results for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems correlate with the Peng–Robinson equation of state using a van der Waals one-fluid mixing rule. The critical properties of propargyl acrylate and propargyl methacrylate were predicted with the Joback–Lyderson group contribution and Lee–Kesler method.

  12. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    Science.gov (United States)

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  13. Heat and mass transfer prediction of binary refrigerant mixtures condensing in a horizontal microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shigeru; Yu, Jian; Ishibashi, Akira

    1999-07-01

    In the face of the phase-out of HCFC22 for its effect on globe environment, the alternative refrigerant has been paid attention in the refrigeration and heat pump industry. In the present stage, it is found that any pure refrigerant is not a good substitute of HCFC22 for the system in use. The authors have to use binary or ternary refrigerant mixtures as the substitute to meet industrial requirement. But until now, although the heat transfer characteristics of the refrigerant mixtures can be measured in experiments and predicted in some degree, the mass transfer characteristics in condensation process, which is a main part in most systems, can not be clarified by both experimental and theoretical methods. In the present study a non-equilibrium model for condensation of binary refrigerant mixtures inside a horizontal microfin tube is proposed. In this model it is assumed that the phase equilibrium is only established at the vapor-liquid interface, while the bulk vapor and the bulk liquid are in non-equilibrium in the same cross section. The mass transfer characteristic in vapor core is obtained from the analogy between mass and momentum transfer. In the liquid layer, the mass fraction distribution is neglected, but the mass transfer coefficient is treated as infinite that can keep a finite value for the mass transfer rate in liquid phase. From the calculation results compared with the experimental ones for the condensation of HFC134a/HCFC123 and HCFC22/CFC114 mixtures, it is found that the calculated heat flux distribution along the tube axis is in good agreement with that of experiment, and the calculated values of condensing length agree well with the experimental ones. Using the present model, the local mass faction distribution, the diffusion mass transfer rate and the mass transfer characteristics in both vapor and liquid phase are demonstrated. From these results, the effect of mass transfer resistance on condensation heat transfer characteristics for binary

  14. Predictive simulation of the solvent extraction of aromatics from middle distillates

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.

    1983-03-01

    This work describes a predictive method for calculating liquid-liquid aromatics extracton from a middle distillate. Group contribution models of the ASOG and UNIFAC type are investigated. Four vapor-liquid equilibria (VLE) on the binary of naphthalene - n-dodecane, naphthalene - n-tetradecane, phenanthrene - n-hexadecane and transdecaline - benzene and two solid-liquid equilibria (SLE) on the binary of naphthalene - n-hexadecane and phenanthrene - n-hexadecane were measured. Dimethylformamide (DMF) was chosen as an extracting solvent. Three liquid-liquid equilibria (LLE) on the binary of DMF with n-hexadecane, n-tetradecane or trans + cis decaline and six ternary LLE on the mixture of DMF - n-hexadecane with octyl benzene, tetralin, 1 methyl naphthalene, phenanthrene or benzothiophene and on the mixture of decaline - DMF with benzothiophene were also measured. The parameters of the models are based mainly on the data for the systems composed by hydrocarbons with a 10-20 carbon number. The data for VLE, SLE and the infinite dilution activity coefficient (17-245/sup 0/C) were used to calculate interaction parameters between hydrocarbon groups, and LLE data (20-80/sup 0/C) for interaction parameters of dimethylformamide - hydrocarbon groups. The validity of the models for predicting the LLE of DMF - hydrocarbon multicomponent mixture (8 components) was verified. Middle distillate representation is based on mass spectrometric and gas chromatographic analysis and on limited data on middle distillate - DMF LLE. Two models for middle-distillate representation were investigated. It is shown that the performance of ASOG and UNIFAC are sufficiently valid for representing of basic data and for the predicting the solvent extraction of aromatics from middle distillates. The method investigated can be useful for the rapid preliminary study of extraction processes.

  15. Stability indicating HPLC-DAD method for analysis of Ketorolac binary and ternary mixtures in eye drops: Quantitative analysis in rabbit aqueous humor.

    Science.gov (United States)

    El Yazbi, Fawzy A; Hassan, Ekram M; Khamis, Essam F; Ragab, Marwa A A; Hamdy, Mohamed M A

    2017-11-15

    Ketorolac tromethamine (KTC) with phenylephrine hydrochloride (PHE) binary mixture (mixture 1) and their ternary mixture with chlorpheniramine maleate (CPM) (mixture 2) were analyzed using a validated HPLC-DAD method. The developed method was suitable for the in vitro as well as quantitative analysis of the targeted mixtures in rabbit aqueous humor. The analysis in dosage form (eye drops) was a stability indicating one at which drugs were separated from possible degradation products arising from different stress conditions (in vitro analysis). For analysis in aqueous humor, Guaifenesin (GUF) was used as internal standard and the method was validated according to FDA regulation for analysis in biological fluids. Agilent 5 HC-C18(2) 150×4.6mm was used as stationary phase with a gradient eluting solvent of 20mM phosphate buffer pH 4.6 containing 0.2% triethylamine and acetonitrile. The drugs were resolved with retention times of 2.41, 5.26, 7.92 and 9.64min for PHE, GUF, KTC and CPM, respectively. The method was sensitive and selective to analyze simultaneously the three drugs in presence of possible forced degradation products and dosage form excipients (in vitro analysis) and also with the internal standard, in presence of aqueous humor interferences (analysis in biological fluid), at a single wavelength (261nm). No extraction procedure was required for analysis in aqueous humor. The simplicity of the method emphasizes its capability to analyze the drugs in vivo (in rabbit aqueous humor) and in vitro (in pharmaceutical formulations). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermodynamic study of binary mixture of x1[C6mim][BF4] + x21-propanol: Measurements and molecular modeling

    International Nuclear Information System (INIS)

    Kermanpour, F.; Sharifi, T.

    2012-01-01

    Highlights: ► Densities and viscosities for binary mixture of {x 1 [C 6 mim][BF 4 ] + x 2 1-propanol} were measured at different temperatures. ► The excess molar functions were calculated from the obtained experimental data. ► These data were correlated with the Redlich–Kister equation and PFP model to obtain the coefficients and standard deviations. - Abstract: Densities, ρ, and viscosities, η, of pure 1-hexyl-3-methylimidazoliumtetrafluoro borate ([C 6 mim][BF 4 ]) and 1-propanol, and their binary mixture {x 1 [C 6 mim][BF 4 ] + x 2 1-propanol} were measured at atmospheric pressure and in the temperature range of 293.15–333.15 K. The excess molar volumes, V m E , thermal expansion coefficients, α, and their excess values, α E , isothermal coefficient of excess molar enthalpy, (∂H m E /∂p) T,x and excess viscosities, η E , were calculated from the experimental values of densities and viscosities. The excess molar volumes of the binary mixture are negative over the entire mole fraction range and increase with increasing temperature. Excess viscosities are negative over the entire mole fraction range of the mixture and decrease with increasing temperature. The obtained excess molar volumes and excess viscosities were correlated with the Redlich–Kister equation. The experimental results have also been used to examine the applicability of Prigogine–Flory–Patterson (PFP) theory in predicting the excess molar volume of the binary mixture. It is indicated that agreement between excess molar volumes calculated via PFP theory and the experimental results is good in all temperatures.

  17. Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model

    International Nuclear Information System (INIS)

    Almasi, Mohammad

    2014-01-01

    Experimental and calculated partial molar volumes (V ¯ m,1 ) of MIK with (♦) 2-PrOH, (♢) 2-BuOH, (●) 2-PenOH at T = 298.15 K. (—) PC-SAFT model. - Highlights: • Densities and viscosities of the mixtures (MIK + 2-alkanols) were measured. • PC-SAFT model was applied to correlate the volumetric properties of binary mixtures. • Agreement between experimental data and calculated values by PC-SAFT model is good. - Abstract: Densities and viscosities of binary mixtures of methyl isobutyl ketone (MIK) with polar solvents namely, 2-propanol, 2-butanol and 2-pentanol, were measured at 7 temperatures (293.15–323.15 K) over the entire range of composition. Using the experimental data, excess molar volumes V m E , isobaric thermal expansivity α p , partial molar volumes V ¯ m,i and viscosity deviations Δη, have been calculated due to their importance in the study of specific molecular interactions. The observed negative and positive values of deviation/excess parameters were explained on the basis of the intermolecular interactions occur in these mixtures. The Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) has been used to correlate the volumetric behavior of the mixtures

  18. Dual-Mode Measurement and Theoretical Analysis of Evaporation Kinetics of Binary Mixtures

    Science.gov (United States)

    Song, Hanyu; He, Chi-Ruei; Basdeo, Carl; Li, Ji-Qin; Ye, Dezhuang; Kalonia, Devendra; Li, Si-Yu; Fan, Tai-Hsi

    Theoretical and experimental investigations are presented for the precision measurement of evaporation kinetics of binary mixtures using a quartz crystal resonator. A thin layer of light alcohol mixture including a volatile (methanol) and a much less volatile (1-butanol) components is deployed on top of the resonator. The normal or acoustic mode is to detect the moving liquid-vapor interface due to evaporation with a great spatial precision on the order of microns, and simultaneously the shear mode is used for in-situ detection of point viscosity or concentration of the mixture near the resonator. A one-dimensional theoretical model is developed to describe the underlying mass transfer and interfacial transport phenomena. Along with the modeling results, the transient evaporation kinetics, moving interface, and the stratification of viscosity of the liquid mixture during evaporation are simultaneously measured by the impedance response of the shear and longitudinal waves emitted from the resonator. The system can be used to characterize complicated evaporation kinetics involving multi-component fuels. American Chemical Society Petroleum Research Fund, NSF CMMI-0952646.

  19. Solubility measurement and correlation of 4-nitrophthalimide in (methanol, ethanol, or acetone) + N,N-dimethylformamide mixed solvents at temperatures from 273.15 K to 323.15 K

    International Nuclear Information System (INIS)

    Li, Rongrong; Han, Shuo; Du, Cunbin; Cong, Yang; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 4-nitrophthalimide in binary mixed solvents were determined. • Solubility data were correlated and calculated by four models. • The standard dissolution enthalpy for the dissolution processes were calculated. - Abstract: The solubility of 4-nitrophthalimide in binary (methanol + N,N-dimethylformamide (DMF), ethanol + DMF) and (acetone + DMF) solvent mixtures were investigated by the isothermal dissolution equilibrium method under atmosphere pressure. These studies were carried out at different mass fractions of methanol, ethanol or acetone ranging from 0.1 to 0.9 at temperature T = (273.15–323.15) K. For the nine groups of each solvent mixture studied, the solubility of 4-nitrophthalimide in mixed solutions increased with increasing temperature and mass fraction of methanol, ethanol or acetone for the three systems including (methanol + DMF), (ethanol + DMF) and (acetone + DMF). At the same temperature and mass fraction of methanol, ethanol or acetone, the mole fraction solubility of 4-nitrophthalimide in (acetone + DMF) was greater than that in the other two binary solvents. In addition, the experimental mole fraction solubility was correlated by four models (Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model and Sun model). The Jouyban–Acree model gave best representation for the experimental solubility values. Furthermore, the standard molar enthalpies of 4-nitrophthalimide during the dissolving process (Δ sol H o ) were also obtained in this work, and the results show that the dissolution process is endothermic. The experimental solubility and the models used in this work will be helpful in separating 4-nitrophthalimide from its isomeric mixtures.

  20. Application of the finite volume method in the simulation of saturated flows of binary mixtures

    International Nuclear Information System (INIS)

    Murad, M.A.; Gama, R.M.S. da; Sampaio, R.

    1989-12-01

    This work presents the simulation of saturated flows of an incompressible Newtonian fluid through a rigid, homogeneous and isotropic porous medium. The employed mathematical model is derived from the Continuum Theory of Mixtures and generalizes the classical one which is based on Darcy's Law form of the momentum equation. In this approach fluid and porous matrix are regarded as continuous constituents of a binary mixture. The finite volume method is employed in the simulation. (author) [pt

  1. Critical solvent thermodynamic effect on molecular recognition: The case of the complex formation of carboxylates and ammonium-squaramido based receptors

    Energy Technology Data Exchange (ETDEWEB)

    Piña, M. Nieves, E-mail: neus.pinya@uib.es; López, Kenia A.; Costa, Antoni; Morey, Jeroni, E-mail: jeroni.morey@uib.es

    2013-10-10

    Graphical abstract: - Highlights: • The enthalpy–entropy compensation in the complex is independent of the spacer used. • The enthalpy–entropy compensation is dependent on the microscopic nature of the binary mixture. • The enthalpy–entropy compensation is dependent on the proportion of the components of the binary mixture. - Abstract: An isothermal titration microcalorimetry (ITC) study on the supramolecular complex formation between carboxylates and ammonium-squaramido based receptors at different ethanol:water proportions is reported. The results obtained show that the formation enthalpy sign of a supramolecular complex in a water–ethanol binary mixture can be influenced by the proportion of the cosolvent. Moreover there is an enthalpy–entropy compensation process in the supramolecular complex formation; in poor water mixtures the process is endothermic, whilst in reach water mixtures the process is exothermic. This behavior is mostly due to the intrinsic nature of the mixture between water and ethanol, and particularly the process of solvation and desolvation of receptor, substrate and complex. When this study is repeated with binary mixtures of water–methanol and water–DMSO it is observed that the nature of the organic solvent affects the results. While the mixture water–methanol has a behavior similar to water–ethanol mixture, the water–DMSO mixture shows clear differences. In order to check this compensation process, △Cp values are calculated at two different proportions water–ethanol, and they are consistent with an enthalpy–entropy compensation process similar to that described by the inclusion process for certain hydrophilic cyclodextrines. The results obtained show that the enthalpy–entropy compensation detected in the supramolecular complex formation between carboxylates and ammonium-squaramido receptors is independent of the spacer used, and more dependent on the microscopic nature and proportion of the binary mixture.

  2. Critical solvent thermodynamic effect on molecular recognition: The case of the complex formation of carboxylates and ammonium-squaramido based receptors

    International Nuclear Information System (INIS)

    Piña, M. Nieves; López, Kenia A.; Costa, Antoni; Morey, Jeroni

    2013-01-01

    Graphical abstract: - Highlights: • The enthalpy–entropy compensation in the complex is independent of the spacer used. • The enthalpy–entropy compensation is dependent on the microscopic nature of the binary mixture. • The enthalpy–entropy compensation is dependent on the proportion of the components of the binary mixture. - Abstract: An isothermal titration microcalorimetry (ITC) study on the supramolecular complex formation between carboxylates and ammonium-squaramido based receptors at different ethanol:water proportions is reported. The results obtained show that the formation enthalpy sign of a supramolecular complex in a water–ethanol binary mixture can be influenced by the proportion of the cosolvent. Moreover there is an enthalpy–entropy compensation process in the supramolecular complex formation; in poor water mixtures the process is endothermic, whilst in reach water mixtures the process is exothermic. This behavior is mostly due to the intrinsic nature of the mixture between water and ethanol, and particularly the process of solvation and desolvation of receptor, substrate and complex. When this study is repeated with binary mixtures of water–methanol and water–DMSO it is observed that the nature of the organic solvent affects the results. While the mixture water–methanol has a behavior similar to water–ethanol mixture, the water–DMSO mixture shows clear differences. In order to check this compensation process, △Cp values are calculated at two different proportions water–ethanol, and they are consistent with an enthalpy–entropy compensation process similar to that described by the inclusion process for certain hydrophilic cyclodextrines. The results obtained show that the enthalpy–entropy compensation detected in the supramolecular complex formation between carboxylates and ammonium-squaramido receptors is independent of the spacer used, and more dependent on the microscopic nature and proportion of the binary mixture

  3. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    Science.gov (United States)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  4. Excess Volumes and Excess Isentropic Compressibilities of Binary Liquid Mixtures of Trichloroethylene with Esters at 303.15 K

    Science.gov (United States)

    Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.

    2015-11-01

    Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.

  5. Effect of Dielectric Properties of a Solvent-Water Mixture Used in Microwave-Assisted Extraction of Antioxidants from Potato Peels

    Directory of Open Access Journals (Sweden)

    Ashutosh Singh

    2014-02-01

    Full Text Available The dielectric properties of a methanol-water mixture were measured at different temperatures from 20 to 80 °C at two frequencies 915 MHz and 2450 MHz. These frequencies are most commonly used on industrial and domestic scales respectively. In this study, the dielectric properties of a methanol-water mixture were found to be dependent on temperature, solvent concentration, and presence of plant matrix. Linear and quadratic equations were developed to establish the dependency between factors. At 2450 MHz, the dielectric constant of methanol-water mixtures was significantly affected by concentration of methanol rather than by temperature, whereas the dielectric loss factor was significantly affected by temperature rather than by methanol concentration. Introduction of potato peel led to an increase in the effect of temperature on the dielectric properties of the methanol fractions. At 915 MHz, both the dielectric properties were significantly affected by the increase in temperature and solvent concentration, while the presence of potato peel had no significant effect on the dielectric properties. Statistical analysis of the dissipation factor at 915 and 2450 MHz revealed that both temperature and solvent concentration had a significant effect on it, whereas introduction of potato peels at 915 MHz reduced the effect of temperature as compared to 2450 MHz. The total phenolic yield of the microwave-assisted extraction process was significantly affected by the solvent concentration, the dissipation factor of the methanol-water mixture and the extraction time.

  6. Thermodynamic properties of fluid mixtures at high pressures and high temperatures. Application to high explosives and to phase diagrams of binary mixtures

    International Nuclear Information System (INIS)

    Pittion-Rossillon, Gerard

    1982-01-01

    The free energy for mixtures of about ten species which are chemically reacting is calculated. In order to have accurate results near the freezing line, excess properties are deduced from a modern statistical mechanics theory. Intermolecular potentials for like molecules are fitted to give good agreement with shock experiments in pure liquid samples, and mixture properties come naturally from the theory. The stationary Chapman-Jouguet detonation wave is calculated with a chemical equilibrium computer code and results are in good agreement with experiment for a lot of various explosives. One then study gas-gas equilibria in a binary mixture and show the extreme sensitivity of theoretical phase diagrams to the hypothesis of the model (author) [fr

  7. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  8. Dynamics of binary mixtures in inhomogeneous temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gonnella, G; Piscitelli, A [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Lamura, A [Istituto Applicazioni Calcolo, CNR, via Amendola 122/D, 70126 Bari (Italy)

    2008-03-14

    A dynamical description for fluid binary mixtures with variable temperature and concentration gradient contributions to entropy and internal energy is given. By using mass, momentum and energy balance equations together with the standard expression for entropy production, a generalized Gibbs-Duhem relation is obtained which takes into account thermal and concentration gradient contributions. Then an expression for the pressure tensor is derived. As examples of applications, interface behavior and phase separation have been numerically studied in two dimensions neglecting the contributions of the velocity field. In the simplest case with a constant thermal gradient, the growth exponent for the averaged size of domains is found to have the usual value z = 1/3 and the domains appear elongated in the direction of the thermal gradient. When the system is quenched by contact with external walls, the evolution of temperature profiles in the system is shown and the domain morphology is characterized by interfaces perpendicular to the thermal gradient.

  9. Experimental determination of (p, ρ, T) data for binary mixtures of methane and helium

    International Nuclear Information System (INIS)

    Hernández-Gómez, R.; Tuma, D.; Segovia, J.J.; Chamorro, C.R.

    2016-01-01

    Highlights: • Accurate density data for two binary mixtures of methane and helium are presented. • Experimental data are compared with the densities calculated from different EOS. • Deviations from GERG-2008 exceeded the 3% for some points. • Deviations from AGA8-DC92 did not exceed the 0.3% at any experimental point. • The relative deviations are clearly higher for GERG-2008 than for AGA8-DC92. - Abstract: The basis for the development and evaluation of equations of state for mixtures is experimental data for several thermodynamic properties. The quality and the availability of experimental data limit the achievable accuracy of the equation. Referring to the fundamentals of GERG-2008 wide-range equation of state, no suitable data were available for many mixtures containing secondary natural gas components. This work provides accurate experimental (p, ρ, T) data for two binary mixtures of methane with helium (0.95 (amount-of-substance fraction) CH_4 + 0.05 He and 0.90 CH_4 + 0.10 He). Density measurements were performed at temperatures between (250 and 400) K and pressures up to 20 MPa by using a single-sinker densimeter with magnetic suspension coupling. Experimental data were compared with the corresponding densities calculated from the GERG-2008 and the AGA8-DC92 equations of state. Deviations from GERG-2008 were found within a 2% band for the (0.95 CH_4 + 0.05 He) mixture but exceeded the 3% limit for the (0.95 CH_4 + 0.05 He) mixture. The highest deviations were observed at T = 250 K and pressures between (17 and 19) MPa. Values calculated from AGA8-DC92, however, deviated from the experimental data by only 0.1% at high pressures and exceeded the 0.2% limit only at temperatures of 300 K and above, for the (0.90 CH_4 + 0.10 He) mixture.

  10. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded PLGA microparticles via spray-drying

    DEFF Research Database (Denmark)

    Wan, Feng; Bohr, Adam; Maltesen, Morten Jonas

    2013-01-01

    ) microparticles prepared by spray-drying. METHODS: Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties...... and drug release profile. The evaporation profiles of the feed solutions were investigated using thermogravimetric analysis (TGA). RESULTS: Spherical PLGA microparticles were obtained, irrespectively of the solvent composition. The particle size and surface chemistry were highly dependent on the solvent...

  11. Extraction of Betulin, Trimyristin, Eugenol and Carnosic Acid Using Water-Organic Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Fulgentius N. Lugemwa

    2012-08-01

    Full Text Available A solvent system consisting of ethyl acetate, ethyl alcohol and water, in the volume ratio of 4.5:4.5:1, was developed and used to extract, at room temperature, betulin from white birch bark and antioxidants from spices (rosemary, thyme, sage, and oregano and white oak chips. In addition, under reflux conditions, trimyristin was extracted from nutmeg using the same solvent system, and eugenol from olives was extracted using a mixture of salt water and ethyl acetate. The protocol demonstrates the use of water in organic solvents to extract natural products from plants. Measurement of the free-radical scavenging activity using by 2,2-diphenyl-1-picrylhydrazyl (DPPH indicated that the extraction of plant material using ethyl acetate, ethyl alcohol and water (4.5:4.5:1, v/v/v was exhaustive when carried out at room temperature for 96 h.

  12. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    Science.gov (United States)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  13. Application of wavelet and Fuorier transforms as powerful alternatives for derivative spectrophotometry in analysis of binary mixtures: A comparative study

    Science.gov (United States)

    Hassan, Said A.; Abdel-Gawad, Sherif A.

    2018-02-01

    Two signal processing methods, namely, Continuous Wavelet Transform (CWT) and the second was Discrete Fourier Transform (DFT) were introduced as alternatives to the classical Derivative Spectrophotometry (DS) in analysis of binary mixtures. To show the advantages of these methods, a comparative study was performed on a binary mixture of Naltrexone (NTX) and Bupropion (BUP). The methods were compared by analyzing laboratory prepared mixtures of the two drugs. By comparing performance of the three methods, it was proved that CWT and DFT methods are more efficient and advantageous in analysis of mixtures with overlapped spectra than DS. The three signal processing methods were adopted for the quantification of NTX and BUP in pure and tablet forms. The adopted methods were validated according to the ICH guideline where accuracy, precision and specificity were found to be within appropriate limits.

  14. Continuous Wavelet Transform, a powerful alternative to Derivative Spectrophotometry in analysis of binary and ternary mixtures: A comparative study.

    Science.gov (United States)

    Elzanfaly, Eman S; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2015-12-05

    A comparative study was established between two signal processing techniques showing the theoretical algorithm for each method and making a comparison between them to indicate the advantages and limitations. The methods under study are Numerical Differentiation (ND) and Continuous Wavelet Transform (CWT). These methods were studied as spectrophotometric resolution tools for simultaneous analysis of binary and ternary mixtures. To present the comparison, the two methods were applied for the resolution of Bisoprolol (BIS) and Hydrochlorothiazide (HCT) in their binary mixture and for the analysis of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) as an example for ternary mixtures. By comparing the results in laboratory prepared mixtures, it was proven that CWT technique is more efficient and advantageous in analysis of mixtures with severe overlapped spectra than ND. The CWT was applied for quantitative determination of the drugs in their pharmaceutical formulations and validated according to the ICH guidelines where accuracy, precision, repeatability and robustness were found to be within the acceptable limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dynamic depletion attraction between colloids suspended in a phase-separating binary liquid mixture

    International Nuclear Information System (INIS)

    Araki, Takeaki; Tanaka, Hajime

    2008-01-01

    Understanding interactions between colloids (or nanoparticles) immersed in a phase-separating binary mixture is of both fundamental and technological importance. Here we report a novel type of interparticle attractive interaction of a purely dynamic origin, which is found by a coarse-grained numerical simulation. Due to surface wetting effects, there are strong diffusion fluxes towards particles just after the initiation of phase separation of the matrix binary liquid mixture. The flux in the region between particles soon becomes weaker than that in the other regions since the depletion zones formed around particles overlap selectively between the particles. The resulting imbalance of the diffusion flux induces interparticle attractive interactions, i.e., the osmotic force pushes particles closer. We confirm that this wetting-induced 'dynamic' depletion force can be stronger than a van der Waals force and a capillary force that is induced by the interfacial tension, and thus plays a dominant role in the early stage of particle aggregation. We note that this novel interaction originating from the momentum conservation law may be generic to particles acting as diffusional sinks or sources. (fast track communication)

  16. Toxicity of a binary mixture on Daphnia magna: biological effects of uranium and selenium isolated and in mixture

    International Nuclear Information System (INIS)

    Zeman, F.

    2008-10-01

    Among the multiple substances that affect freshwater ecosystems, uranium and selenium are two pollutants found worldwide in the environment, alone and in mixture. The aim of this thesis work was to investigate the effect of uranium and selenium mixture on daphnia (Daphnia magna). Studying effects of a mixture requires the assessment of the effect of single substances. Thus, the first experiments were performed on single substance. Acute toxicity data were obtained: EC 50 48h = 0, 39±0, 04 mg.L -1 for uranium and EC 50 48h 1, 86±0, 85 mg.L -1 for selenium. Chronic effects were also studied. Data on fecundity showed an EC 10 reproduction of 14±7 μg. L -1 for uranium and of 215±25 μg. L -1 for selenium. Uranium-selenium mixture toxicity experiments were performed and revealed an antagonistic effect. This study further demonstrates the importance of taking into consideration different elements in binary mixture studies such as the choice of reference models (concentration addition or independent action), statistical method, time exposure and endpoints. Using integrated parameters like energy budget was shown to be an interesting way to better understand interactions. An approach including calculation of chemical speciation in the medium and bioaccumulation measurements in the organism permits assumptions to be made on the nature of possible interactions between mixture components (toxico-dynamic et toxico-kinetic interactions). (author)

  17. Hydrodynamic 'memory' of binary fluid mixtures

    International Nuclear Information System (INIS)

    Kalashnik, M. V.; Ingel, L. Kh.

    2006-01-01

    A theoretical analysis is presented of hydrostatic adjustment in a two-component fluid system, such as seawater stratified with respect to temperature and salinity. Both linear approximation and nonlinear problem are investigated. It is shown that scenarios of relaxation to a hydrostatically balanced state in binary fluid mixtures may substantially differ from hydrostatic adjustment in fluids that can be stratified only with respect to temperature. In particular, inviscid two-component fluids have 'memory': a horizontally nonuniform disturbance in the initial temperature or salinity distribution does not vanish even at the final stage, transforming into a persistent thermohaline 'trace.' Despite stability of density stratification and convective stability of the fluid system by all known criteria, an initial temperature disturbance may not decay and may even increase in amplitude. Moreover, its sign may change (depending on the relative contributions of temperature and salinity to stable background density stratification). Hydrostatic adjustment may involve development of discontinuous distributions from smooth initial temperature or concentration distributions. These properties of two-component fluids explain, in particular, the occurrence of persistent horizontally or vertically nonuniform temperature and salinity distributions in the ocean, including discontinuous ones

  18. Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolium dicyanamide mixed with primary and secondary alcohols

    International Nuclear Information System (INIS)

    Calvar, Noelia; González, Emilio J.; Domínguez, Ángeles; Macedo, Eugénia A.

    2012-01-01

    Highlights: ► Physical and osmotic properties of binary mixtures {alcohol + [BMim][dca]} were measured. ► From experimental data, apparent molar properties and osmotic coefficients were calculated. ► The apparent properties were fitted using a Redlich–Meyer type equation. ► The osmotic coefficients were correlated using the Extended Pitzer and the MNRTL models. - Abstract: In this paper, densities and speeds of sound for five binary systems {alcohol + 1-butyl-3-methylimidazolium dicyanamide} were measured from T = (293.15 to 323.15) K and atmospheric pressure. From these experimental data, apparent molar volume and apparent molar isentropic compression have been calculated and fitted to a Redlich–Meyer type equation. This fit was also used to calculate the apparent molar volume and apparent molar isentropic compression at infinite dilution for the studied binary mixtures. Moreover, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The experimental osmotic coefficients were correlated using the Extended Pitzer model of Archer. The mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated from the parameters obtained in the correlation.

  19. Solvent freeze out crystallization of lysozyme from a lysozyme-ovalbumin mixture

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Borbon, V.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaft, Verfahrenstechnik/TVT, 06099 Halle Saale (Germany)

    2012-05-15

    Hen egg white lysozyme (HEWL) crystallization conditions from an ovalbumin-lysozyme mixture were found by screening tests and further located in pseudo-phase diagrams. This information was used to set up the initial conditions for the solvent freeze out (SFO) process. The process uses the freezing of ice to create the supersaturation for the proteins to crystallize out of the solution. The crystallization of HEWL (15 mg/mL) out of a lysozyme-ovalbumin mixture (1.7 mg/mL) is carried out by SFO. Under the reported conditions, a crystallization yield of 69 % was obtained. A mean crystal size of 77.8 {mu}m was enhanced in a crystallization time of 15.1 h. The lysozyme nature of the crystals is proven by SDS PAGE and enzymatic activity tests. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Excess Molar Volume of Binary Mixtures of Methylheptenone+Alkanols at 298.15 K

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Excess molar volume(VE) data on binary liquid mixtures of methylheptenone (MHO) with methanol, ethanol, n-propanol or n-butanol have been determined from the density measurements at 298.15 K and atmospheric pressure. The values of VE in all the systems over the entire composition range are quantified by the Redlich-Kister equation. The effects of the chain length of alkanols on VE are discussed.

  1. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids.

    Science.gov (United States)

    Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D

    2008-02-28

    This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

  2. Vapor-liquid equilibrium prediction with pseudo-cubic equation of state for binary mixtures containing hydrogen, helium, or neon

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Tanaka, H. (Nihon Univ.,Fukushima, (Japan). Faculty of Enineering)

    1990-03-01

    As an equation of state of vapor-liquid equilibrium, an original pseudo-cubic equation of state was previously proposed by the authors of this report and its study is continued. In the present study, new effective critical values of hydrogen, helium and neon were determined empirically from vapor-liquid equilibrium data of literature values against their critical temperatures, critical pressures and critical volumes. The vapor-liquid equilibrium relations of binary system quantum gas mixtures were predicted combining the conventinal pseudo-cubic equation of state and the new effective critical values, and without using binary heteromolecular interaction parameter. The predicted values of hydrogen-ethylene, helium-propane and neon-oxygen systems were compared with literature values. As a result, it was indicated that the vapor-liquid relations of binary system mixtures containing hydrogen, helium and neon can be predicted with favorable accuracy combining the effective critical values and the three parameter pseudo-cubic equation of state. 37 refs., 3 figs., 4 tabs.

  3. Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches

    International Nuclear Information System (INIS)

    Almasi, Mohammad

    2014-01-01

    Graphical abstract: Viscosity deviations △η vs. mole fraction of FA, for binary mixtures of FA with (□) 2-PrOH, (●) 2-BuOH, (■) 2-PenOH, (◀) 2-HexOH, (◊) 2-HepOH at T = 298.15 K. The solid curves were calculated from Redlich–Kister type equation. -- Highlights: • Densities and viscosities of the mixtures (formamide + 2-alkanols) were measured. • Experiments were performed over the entire mole fraction at four temperatures. • SAFT and PC-SAFT were applied to predict the volumetric behavior of mixtures. • PRSV equation of state (EOS) has been used to predict the binary viscosities. -- Abstract: Densities and viscosities of binary liquid mixtures of formamide (FA) with polar solvents namely, 2-PrOH, 2-BuOH, 2-PenOH, 2-HexOH, and 2-HepOH, have been measured as a function of composition range at temperatures (298.15, 303.15, 308.15, 313.15) K and ambient pressure. From experimental data, excess molar volumes, V m E and viscosity deviations Δη, were calculated and correlated by Redlich–Kister type function. The effect of temperature and chain-length of the 2-alkanols on the excess molar volumes and viscosity deviations are discussed in terms of molecular interaction between unlike molecules. The statistical associating fluid theory (SAFT), and perturbed chain statistical associating fluid theory (PC-SAFT) were applied to correlate and predict the volumetric behavior of the mixtures. The best predictions were achieved with the PC-SAFT equation of state. Also the Peng–Robinson–Stryjek–Vera equation of state has been used to predict the viscosity of binary mixtures

  4. Study of decolorisation of binary dye mixture by response surface methodology.

    Science.gov (United States)

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cytotoxicity of binary mixtures of human pharmaceuticals in a fish cell line: approaches for non-monotonic concentration-response relationships.

    Science.gov (United States)

    Bain, Peter A; Kumar, Anupama

    2014-08-01

    Predicting the effects of mixtures of environmental micropollutants is a priority research area. In this study, the cytotoxicity of ten pharmaceuticals to the rainbow trout cell line RTG-2 was determined using the neutral red uptake assay. Fluoxetine (FL), propranolol (PPN), and diclofenac (DCF) were selected for further study as binary mixtures. Biphasic concentration-response relationships were observed in cells exposed to FL and PPN. In the case of PPN, microscopic examination revealed lysosomal swelling indicative of direct uptake and accumulation of the compound. Three equations describing non-monotonic concentration-response relationships were evaluated and one was found to consistently provide more accurate estimates of the median and 10% effect concentrations compared with a sigmoidal concentration-response model. Predictive modeling of the effects of binary mixtures of FL, PPN, and DCF was undertaken using an implementation of the concentration addition (CA) conceptual model incorporating non-monotonic concentration-response relationships. The cytotoxicity of the all three binary combinations could be adequately predicted using CA, suggesting that the toxic mode of action in RTG-2 cells is unrelated to the therapeutic mode of action of these compounds. The approach presented here is widely applicable to the study of mixture toxicity in cases where non-monotonic concentration-response relationships are observed. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. Study of the Transformations of Micro/Nano-crystalline Acetaminophen Polymorphs in Drug-Polymer Binary Mixtures.

    Science.gov (United States)

    Maniruzzaman, Mohammed; Lam, Matthew; Molina, Carlos; Nokhodchi, Ali

    2017-07-01

    This study elucidates the physical properties of sono-crystallised micro/nano-sized acetaminophen/paracetamol (PMOL) and monitors its possible transformation from polymorphic form I (monoclinic) to form II (orthorhombic). Hydrophilic Plasdone® S630 copovidone (S630), N-vinyl-2-pyrrolidone and vinyl acetate copolymer, and methacrylate-based cationic copolymer, Eudragit® EPO (EPO), were used as polymeric carriers to prepare drug/polymer binary mixtures. Commercially available PMOL was crystallised under ultra sound sonication to produce micro/nano-sized (0.2-10 microns) crystals in monoclinic form. Homogeneous binary blends of drug-polymer mixtures at various drug concentrations were obtained via a thorough mixing. The analysis conducted via the single X-ray crystallography determined the detailed structure of the crystallised PMOL in its monoclinic form. The solid state and the morphology analyses of the PMOL in the binary blends evaluated via differential scanning calorimetry (DSC), modulated temperature DSC (MTDSC), scanning electron microscopy (SEM) and hot stage microscopy (HSM) revealed the crystalline existence of the drug within the amorphous polymeric matrices. The application of temperature controlled X-ray diffraction (VTXRPD) to study the polymorphism of PMOL showed that the most stable form I (monoclinic) was altered to its less stable form II (orthorhombic) at high temperature (>112°C) in the binary blends regardless of the drug amount. Thus, VTXRD was used as a useful tool to monitor polymorphic transformations of crystalline drug (e.g. PMOL) to assess their thermal stability in terms of pharmaceutical product development and research.

  7. Physicochemical analysis and nonisothermal kinetic study of sertraline–lactose binary mixtures

    Directory of Open Access Journals (Sweden)

    Faranak Ghaderi

    2017-07-01

    Full Text Available In the present study the physicochemical stability of sertraline with lactose was evaluated in drug-excipient binary mixtures. Different physicochemical methods such as differential scanning calorimetry (DSC, Fourier-transform infrared spectroscopy, and mass spectrometry were applied to confirm the incompatibility. The final aim of this study was to evaluate the kinetic parameters using a fast and sensitive DSC method. Solid-state kinetic parameters were derived from nonisothermally stressed physical mixtures using different thermal models such as Friedman, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose. Overall, the instability of sertraline with lactose was successfully evaluated. Further confirmation was made by tracking the Maillard reaction product of sertraline and lactose by mass spectrometry. DSC scans provided important information about the stability of sertraline in solid-state condition and also revealed the related thermokinetic parameters in order to understand the nature of the chemical instability.

  8. Physicochemical analysis and nonisothermal kinetic study of sertraline-lactose binary mixtures.

    Science.gov (United States)

    Ghaderi, Faranak; Nemati, Mahboob; Siahi-Shadbad, Mohammad Reza; Valizadeh, Hadi; Monajjemzadeh, Farnaz

    2017-07-01

    In the present study the physicochemical stability of sertraline with lactose was evaluated in drug-excipient binary mixtures. Different physicochemical methods such as differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy, and mass spectrometry were applied to confirm the incompatibility. The final aim of this study was to evaluate the kinetic parameters using a fast and sensitive DSC method. Solid-state kinetic parameters were derived from nonisothermally stressed physical mixtures using different thermal models such as Friedman, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose. Overall, the instability of sertraline with lactose was successfully evaluated. Further confirmation was made by tracking the Maillard reaction product of sertraline and lactose by mass spectrometry. DSC scans provided important information about the stability of sertraline in solid-state condition and also revealed the related thermokinetic parameters in order to understand the nature of the chemical instability. Copyright © 2016. Published by Elsevier B.V.

  9. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.

    1996-12-01

    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  10. Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Fazli, Mostafa; Bakhshaei, Malihe

    2016-01-01

    Highlights: • Surface tension of DMSO + alcohol (methanol, ethanol and isopropanol) at various temperatures was measured. • The surface tension data of binary mixtures were correlated with four equations. • Intermolecular interaction of DMSO with alcohol was discussed. • The surface mole fraction of alcohol increase with increasing the length of alcohol chain. - Abstract: Surface tension of binary mixtures of methanol, ethanol and isopropanol with DMSO (dimethyl sulfoxide) was measured over the whole range of composition at atmospheric pressure of 82.5 kPa within the temperatures between (298.15 and 328.15) K. The experimental measurements were used to calculate in surface tension deviations (Δσ). The sign of Δσ for all temperatures is negative (except of methanol/DMSO system) because of the factors of hydrogen bonding and dipole–dipole interactions in the DMSO-alcohol systems. Surface tension values of the binary systems were correlated with FLW, MS, RK and LWW models. The mean standard deviation obtained from the comparison of experimental and calculated surface tension values for binary systems with three models (FLW, MS and RK) at various temperatures is less than 0.83. Also, the results of the LWW model were used to account for the interaction energy between alcohols and DMSO in binary mixtures. The temperature dependence of σ (surface tension) at fixed composition of solutions was used to estimate surface enthalpy, H s , and surface entropy, S s . The results obtained show that the values of the thermodynamic parameters for alcohol/DMSO mixtures decrease with increasing alkyl chain length of alcohol. Finally, the results are discussed in terms of surface mole fraction and lyophobicity using the extended Langmuir (EL) isotherm.

  11. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    Science.gov (United States)

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  12. Excess molar volumes and dynamic viscosities for binary mixtures of toluene + n-alkanes (C5-C10) at T = 298.15 K - Comparison with Prigogine-Flory-Patterson theory

    International Nuclear Information System (INIS)

    Iloukhani, Hossein; Rezaei-Sameti, Mahdi; Basiri-Parsa, Jalal

    2006-01-01

    Densities ρ, dynamic viscosities η, for binary mixtures of toluene with some n-alkanes, namely, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane have been measured over the complete composition range. Excess molar volumes V E , viscosity deviations Δη, and excess Gibbs free energy of activation ΔG * E , were calculated there from and were correlated by Redlich-Kister type function in terms of mole fractions. For mixtures of toluene with n-pentane and n-hexane the V E is negative and for the remaining systems is positive. The Δη values are negative for all the studied mixtures. The ΔG * E values shows the positive values for the binary mixtures with n-decane, whereas the negative values have been observed for all the remaining binary mixtures. From the results, the excess thermal expansivities at constant pressure α E , is also estimated. The Prigogine-Flory-Patterson (PFP) theory and its applicability in predicting V E is tested. The results obtained for viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg and Nissan, Tamura and Kurata, Hind et al., Katti and Chaudhri, McAllister, Heric, Kendall, and Monroe. The experimental on the constituted binaries are analyzed to discus the nature and strength of intermolecular interactions in these mixtures

  13. Development of a New Binary Solvent System Using Ionic Liquids as Additives to Improve Rotenone Extraction Yield from Malaysia Derris sp.

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2015-01-01

    Full Text Available Rotenone is one of the prominent insecticidal isoflavonoid compounds which can be isolated from the extract of Derris sp. plant. Despite being an effective compound in exterminating pests in a minute concentration, procuring a significant amount of rotenone in the extracts for commercialized biopesticides purposes is a challenge to be attained. Therefore, the objective of this study was to determine the best ionic liquid (IL which gives the highest yield of rotenone. The normal soaking extraction (NSE method was carried out for 24 hrs using five different types of binary solvent systems comprising a combination of acetone and five respective ionic liquids (ILs of (1 [BMIM] Cl; (2 [BMIM] OAc; (3 [BMIM] NTf2; (4 [BMIM] OTf; and (5 [BMPy] Cl. Next, the yield of rotenone, % (w/w, and its concentration (mg/mL in dried roots were quantitatively determined by means of RP-HPLC and TLC. The results showed that a binary solvent system of [BMIM] OTf + acetone was the best solvent system combination as compared to other solvent systems (P<0.05. It contributed to the highest rotenone content of 2.69 ± 0.21% (w/w (4.04 ± 0.34 mg/mL at 14 hrs of exhaustive extraction time. In conclusion, a combination of the ILs with a selective organic solvent has been proven to increase a significant amount of bioactive constituents in the phytochemical extraction process.

  14. Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Mohammad, E-mail: m.almasi@khouzestan.srbiau.ac.ir

    2014-09-10

    Experimental and calculated partial molar volumes (V{sup ¯}{sub m,1}) of MIK with (♦) 2-PrOH, (♢) 2-BuOH, (●) 2-PenOH at T = 298.15 K. (—) PC-SAFT model. - Highlights: • Densities and viscosities of the mixtures (MIK + 2-alkanols) were measured. • PC-SAFT model was applied to correlate the volumetric properties of binary mixtures. • Agreement between experimental data and calculated values by PC-SAFT model is good. - Abstract: Densities and viscosities of binary mixtures of methyl isobutyl ketone (MIK) with polar solvents namely, 2-propanol, 2-butanol and 2-pentanol, were measured at 7 temperatures (293.15–323.15 K) over the entire range of composition. Using the experimental data, excess molar volumes V{sub m}{sup E}, isobaric thermal expansivity α{sub p}, partial molar volumes V{sup ¯}{sub m,i} and viscosity deviations Δη, have been calculated due to their importance in the study of specific molecular interactions. The observed negative and positive values of deviation/excess parameters were explained on the basis of the intermolecular interactions occur in these mixtures. The Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) has been used to correlate the volumetric behavior of the mixtures.

  15. Eutectic behaviour of binary mixtures composed of two isomeric lactic acid derivatives

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Podoliak, Natalia; Hamplová, Věra; Tomášková, Petra; Havlíček, Jaroslav; Kašpar, Miroslav

    2016-01-01

    Roč. 495, č. 1 (2016), s. 105-115 ISSN 0015-0193 R&D Projects: GA ČR GA16-12150S; GA MŠk(CZ) LH15305; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : ferroelectric smectic phase * binary mixture * lactic acid derivative * isomer * phase diagram * self-assembling behaviour Subject RIV: JJ - Other Materials Impact factor: 0.551, year: 2016

  16. The structure of n-alkane binary mixtures adsorbed on graphite

    International Nuclear Information System (INIS)

    Espeau, Philippe; White, John W.; Papoular, Robert J.

    2005-01-01

    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A 1-x B x try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations

  17. The structure of n-alkane binary mixtures adsorbed on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Espeau, Philippe [Laboratoire de Chimie Physique et Minerale, Faculte de Pharmacie, Universite Rene Descartes-Paris V, F-75006 Paris (France)]. E-mail: philippe.espeau@univ-paris5.fr; White, John W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Papoular, Robert J. [Laboratoire Leon Brillouin, CEA-CEN Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2005-12-15

    The thermodynamics and structure of the surface adsorbed phase in binary C15-C16 and C15-C17 n-alkane mixtures confined in graphite pores have been studied by differential scanning calorimetry and small-angle X-ray scattering. The previously observed selective adsorption of the longer alkane for chain length differences greater than five carbon atoms is verified but reduced for chain length differences less than or equal to two. With a difference in chain length of one carbon atom, Vegard's law is followed for the melting points of the adsorbed mixture and the (0 2) d-spacing is a continuous function of the mole fraction x. With a two-carbon atom difference, samples aged for 1 week have a lamellar structure for which the entities A{sub 1-x}B {sub x} try to be commensurate with the substrate. The same samples aged for 1 month show a continuous parabolic x-dependence for both the melting points and the d-spacings. An explanation in terms of selective probability of adsorption is proposed based on crystallographic considerations.

  18. Density, electrical conductivity, viscosity and excess properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + propylene carbonate binary mixtures

    International Nuclear Information System (INIS)

    Vraneš, Milan; Zec, Nebojša; Tot, Aleksandar; Papović, Snežana; Dožić, Sanja; Gadžurić, Slobodan

    2014-01-01

    Highlights: • Densities of [bmim][NTf 2 ] mixtures with propylene carbonate were measured. • Excess properties were calculated. • Formation of hydrogen bonds between IL and PC was discussed. • Electrical conductivity and viscosity were also measured. • Influence of temperature and composition on mixture properties were studied. -- Abstract: Densities of binary liquid mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][NTf 2 ], with propylene carbonate (PC) were measured at temperatures from (293.15 to 323.15) K and at atmospheric pressure over the whole composition range. The electrical conductivity was measured in the range from (293.15 to 328.15) K. Also, viscosity of [bmim][NTf 2 ] + PC binary mixtures was measured from (298.15 to 333.15) K. Excess molar volumes, V E , have been obtained from the experimental densities and were fitted to Redlich–Kister polynomial equation. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes, apparent molar volumes and partial molar volumes at infinite dilution have been also calculated, in order to obtain information about interactions between PC and selected ionic liquid. Results are discussed in order to understand the hydrogen bonds formation between components of the mixture

  19. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera)

    Science.gov (United States)

    Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures ...

  20. Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures

    International Nuclear Information System (INIS)

    Pandey, Puneet Kumar; Pandey, Vrijesh Kumar; Awasthi, Anjali; Nain, Anil Kumar; Awasthi, Aashees

    2014-01-01

    Graphical abstract: The densities and ultrasonic speeds of the binary mixtures over the entire composition range were measured at various temperatures at atmospheric pressure. The excess molar volumes, isentropic compressibilities, and molar isentropic compressions have been calculated. The variations of these parameters with composition and temperature are discussed. The IR spectra were recorded they further supported the conclusion drawn from excess parameters, which indicates the presence of intermolecular hydrogen bonding between the oxygen atom of DMAE molecules and hydrogen atom of methanol and ethanol molecules in these mixtures.. - Highlights: • The study reports density and ultrasonic velocity data of 2-(dimethylamino)ethanol + methanol/ethanol mixtures. • To elucidate the interactions in 2-(dimethylamino)ethanol + methanol/ethanol binary mixtures. • Provides information on nature and relative strength of interactions in these mixtures. • Correlates physicochemical properties with interactions in these mixtures. - Abstract: The densities, ρ and ultrasonic speeds, u of the binary mixtures of 2-(dimethylamino)ethanol (DMAE) with methanol/ethanol, including those of pure liquids, over the entire composition range were measured at 298.15, 308.15 and 318.15 K. From the experimental data, the excess molar volumes, V m E and excess isentropic compressibilities, κ s E have been calculated. The excess partial molar volumes, V ¯ m,1 E and V ¯ m,2 E and excess partial molar isentropic compressions, K ¯ s,m,1 E and K ¯ s,m,2 E over the whole composition range; and partial molar volumes, V ¯ m,1 ° and V ¯ m,2 ° , partial molar isentropic compressions, K ¯ s,m,1 ° and K ¯ s,m,2 ° , excess partial molar volumes, V ¯ m,1 °E and V ¯ m,2 °E , and excess partial molar isentropic compressions, K ¯ s,m,1 °E and K ¯ s,m,2 °E at infinite dilution have also been calculated. The variations of these parameters with composition and temperature are

  1. Thermodynamics of organic mixtures containing amines

    International Nuclear Information System (INIS)

    Gonzalez, Juan Antonio; Mozo, Ismael; Fuente, Isaias Garcia de la; Cobos, Jose Carlos

    2006-01-01

    Binary mixtures containing pyridine (PY), or 2-methylpyridine (2MPY) or 3-methylpyridine (3MPY) or 4-methylpyridine (4MPY) and an organic solvent as benzene, toluene, alkane, or 1-alkanol are investigated in the framework of DISQUAC. The corresponding interaction parameters are reported. The model describes accurately a whole set of thermodynamic properties: vapor-liquid equilibria (VLE), liquid-liquid equilibria (LLE), solid-liquid equilibria (SLE), molar excess Gibbs energies (G E ), molar excess enthalpies (H E ), molar excess heat capacities at constant pressure (C P E ) and the concentration-concentration structure factor (S CC (0)). It is remarkable that DISQUAC correctly predicts the W-shaped curve of the C P E of the pyridine + n-hexadecane system. The model can be applied successfully to mixtures with strong positive or negative deviations from the Raoult's law. DISQUAC improves the theoretical results from UNIFAC (Dortmund version). The replacement of pyridine by a methylpyridine leads to a weakening of the amine-amine interactions, ascribed to the steric effect caused by the methyl group attached to the aromatic ring. This explains that for a given solvent (alkane, 1-alkanol) H E (pyridine)>H E (methylpyridine)

  2. Heterogeneous structure and solvation dynamics of DME/water binary mixtures: A combined spectroscopic and simulation investigation

    Science.gov (United States)

    Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar

    2018-05-01

    Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.

  3. On the Origin of Microheterogeneity : A Mass Spectrometric Study of Dimethyl Sulfoxide-Water Binary Mixture

    NARCIS (Netherlands)

    Shin, Dong Nam; Wijnen, Jan W.; Engberts, Jan B.F.N.; Wakisaka, Akihiro

    2001-01-01

    We have studied the microscopic solvent structure of dimethyl sulfoxide-water mixtures and its influence on the solvation structure of solute from a clustering point of View, by means of a specially designed mass spectrometric system. It was observed that the propensity to the cluster formation is

  4. On the Origin of Microheterogeneity : Mass Spectrometric Studies of Acetonitrile-Water and Dimethyl Sulfoxide-Water Binary Mixtures (Part 2)

    NARCIS (Netherlands)

    Shin, Dong Nam; Wijnen, Jan W.; Engberts, Jan B.F.N.; Wakisaka, Akihiro

    2002-01-01

    The microscopic structures of acetonitrile-water and DMSO-water binary mixed solvents and their influence on the solvation for solutes (some alcohols and phenol) have been studied on the basis of the cluster structures observed through a specially designed mass spectrometer. In acetonitrile-water

  5. An Odor Interaction Model of Binary Odorant Mixtures by a Partial Differential Equation Method

    Directory of Open Access Journals (Sweden)

    Luchun Yan

    2014-07-01

    Full Text Available A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE method. Based on the measurement method (tangent-intercept method of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture’s odor intensity to the individual odorant’s relative odor activity value (OAV. Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.

  6. Crystal nucleation in binary hard-sphere mixtures: the effect of order parameter on the cluster composition

    NARCIS (Netherlands)

    Ni, R.; Smallenburg, F.; Filion, L.C.; Dijkstra, M.

    2011-01-01

    We study crystal nucleation in a binary mixture of hard spheres and investigate the composition and size of the (non)critical clusters using Monte Carlo simulations. In order to study nucleation of a crystal phase in computer simulations, a one-dimensional order parameter is usually defined to

  7. Volumetric and surface properties of pure ionic liquid n-octyl-pyridinium nitrate and its binary mixture with alcohol

    International Nuclear Information System (INIS)

    Jiang Haichao; Wang Jianying; Zhao Fengyun; Qi Guodi; Hu Yongqi

    2012-01-01

    Highlights: ► Density and surface tension of [Ocpy][NO 3 ] were measured. ► Thermal expansion coefficient, molecular volume, and standard entropies were obtained. ► The critical temperature and enthalpy of vaporization were discussed. ► Density and surface tension were measured for (ionic liquid + alcohols) mixtures. ► Excess molar volumes and surface tension deviations were fitted to Redlich–Kister equation. - Abstract: The density and surface tension for pure ionic liquid N-octyl-pyridinium nitrate were measured from (293.15 to 328.15) K. The coefficient of thermal expansion, molecular volume, standard entropies, and lattice energy were calculated from the experimental density values. The critical temperature, surface entropy, surface enthalpy, and enthalpy of vaporization were also studied from the experimental surface tension results. Density and surface tension were also determined for binary mixtures of (N-octyl-pyridinium nitrate + alcohol) (methanol, ethanol, and 1-butanol) systems over the whole composition range at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich–Kister equation to determine the fitting parameters and the root mean square deviations. The partial molar volume, excess partial molar volume, and apparent molar volume of the component IL and alcohol in the binary mixtures were also discussed.

  8. Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Bascetin, Elvan [Cekmece Nuclear Research and Training Center, P.K.1 34149, Atatuerk Airport, Istanbul (Turkey); Atun, Guelten [Engineering Faculty, Chemistry Department, Istanbul University, 34850 Avcilar, Istanbul (Turkey)]. E-mail: gultena@istanbul.edu.tr

    2006-08-15

    The adsorption behavior of kaolinite and montmorillonite minerals and their mixtures in respect of Sr ion were studied by means of a batch method using {sup 90}Sr as a radio tracer. The effect of several parameters such as temperature, pH, Sr concentration and supporting electrolyte were investigated. Experimentally measured distribution coefficients showed a good agreement to within 98.5-99.7% with theoretically calculated values. The values of adsorption capacity of adsorbents and mean adsorption energy of adsorption were calculated by fitting the adsorption data to Dubinin-Radushkevich isotherm. The adsorption capacity of clay mixtures decreased as kaolinite fractions increased. The mean adsorption energy values of 8.0-9.5 kJ mol{sup -1} showed that adsorption was governed by ion exchange. The Freundlich parameters were used to characterize a site distribution function for binary exchange between Sr and Na.

  9. Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite

    International Nuclear Information System (INIS)

    Bascetin, Elvan; Atun, Guelten

    2006-01-01

    The adsorption behavior of kaolinite and montmorillonite minerals and their mixtures in respect of Sr ion were studied by means of a batch method using 90 Sr as a radio tracer. The effect of several parameters such as temperature, pH, Sr concentration and supporting electrolyte were investigated. Experimentally measured distribution coefficients showed a good agreement to within 98.5-99.7% with theoretically calculated values. The values of adsorption capacity of adsorbents and mean adsorption energy of adsorption were calculated by fitting the adsorption data to Dubinin-Radushkevich isotherm. The adsorption capacity of clay mixtures decreased as kaolinite fractions increased. The mean adsorption energy values of 8.0-9.5 kJ mol -1 showed that adsorption was governed by ion exchange. The Freundlich parameters were used to characterize a site distribution function for binary exchange between Sr and Na

  10. Measurement and modeling of osmotic coefficients of binary mixtures (alcohol + 1,3-dimethylpyridinium methylsulfate) at T = 323.15 K

    International Nuclear Information System (INIS)

    Gomez, Elena; Calvar, Noelia; Dominguez, Angeles; Macedo, Eugenia A.

    2011-01-01

    Research highlights: → The osmotic coefficients of binary mixtures (alcohol + ionic liquid) were determined. → The measurements were carried out with a vapor pressure osmometer at 323.15 K. → The Pitzer-Archer, and the MNRTL models were used to correlate the experimental data. → Mean molal activity coefficients and excess Gibbs free energies were calculated. - Abstract: Measurement of osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1,3-dimethylpyridinium methylsulfate were performed at T = 323.15 K using the vapor pressure osmometry technique, and from experimental data, vapor pressure, and activity coefficients were determined. The extended Pitzer model modified by Archer, and the NRTL model modified by Jaretun and Aly (MNRTL) were used to correlate the experimental osmotic coefficients, obtaining standard deviations lower than 0.017 and 0.054, respectively. From the parameters obtained with the extended Pitzer model modified by Archer, the mean molal activity coefficients and the excess Gibbs free energy for the studied binary mixtures were calculated. The effect of the cation is studied comparing the experimental results with those obtained for the ionic liquid 1,3-dimethylimidazolium methylsulfate.

  11. Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data.

    Directory of Open Access Journals (Sweden)

    Leendert van Maanen

    Full Text Available The notion of "mixtures" has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied-for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes.

  12. Solvatochromism and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by UV-vis absorption and laser-induced fluorescence measurements

    Science.gov (United States)

    Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.

    2008-12-01

    Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.

  13. Temperature Induced Solubility Transitions of Various Poly(2-oxazolines in Ethanol-Water Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Hanneke M. L. Lambermont-Thijs

    2010-08-01

    Full Text Available The solution behavior of a series of poly(2-oxazolines with different side chains, namely methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, phenyl and benzyl, are reported in ethanol-water solvent mixtures based on turbidimetry investigations. The LCST transitions of poly(2-oxazolines with propyl side chains and the UCST transitions of the poly(2-oxazolines with more hydrophobic side chains are discussed in relation to the ethanol-water solvent composition and structure. The poly(2-alkyl-2-oxazolines with side chains longer than propyl only dissolved during the first heating run, which is discussed and correlated to the melting transition of the polymers.

  14. Viscosities of binary mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol

    Directory of Open Access Journals (Sweden)

    VASILE DUMITRESCU

    2005-11-01

    Full Text Available The viscosities of binary liquid mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol have been determined at 298.15, 303.15, 308.15, 313.15 and 318.15 K over the whole concentration range. The Hind, Grunberg–Nissan, Wijk, Auslander and McAllister models were used to calculate the viscosity coefficients and these were compared with the experimental data for the mixtures. Excess viscosities were also calculated and fitted to the Redlich–Kister equation. Various thermodynamic properties of viscous flow activation were determined and their variations with composition are discussed.

  15. The precise measurement of the (vapour + liquid) equilibrium properties for (CO2 + isobutane) binary mixtures

    International Nuclear Information System (INIS)

    Nagata, Y.; Mizutani, K.; Miyamoto, H.

    2011-01-01

    Recently, it has been suggested that natural working fluids, such as CO 2 , hydrocarbons, and their mixtures, could provide a long-term alternative to fluorocarbon refrigerants. (Vapour + liquid) equilibrium (VLE) data for these fluids are essential for the development of equations of state, and for industrial process such as separation and refinement. However, there are large inconsistencies among the available literature data for (CO 2 + isobutane) binary mixtures, and therefore provision of reliable and new measurements with expanded uncertainties is required. In this study, we determined precise VLE data using a new re-circulating type apparatus, which was mainly designed by Akico Co., Japan. An equilibrium cell with an inner volume of about 380 cm 3 and two optical windows was used to observe the phase behaviour. The cell had re-circulating loops and expansion loops that were immersed in a thermostatted liquid bath and air bath, respectively. After establishment of a steady state in these loops, the compositions of the samples were measured by a gas chromatograph (GL Science, GC-3200). The VLE data were measured for CO 2 /propane and CO 2 /isobutane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were compared with the available literature data and with values predicted by thermodynamic property models.

  16. Viscosities of binary mixtures of some n-ethoxyethanols with ethyl tert-butyl ether at T = (293.15, 298.15, and 303.15) K

    International Nuclear Information System (INIS)

    Cwiklinska, Aneta; Dzikowski, Tomasz; Szychowski, Dariusz; Kinart, Wojciech J.; Kinart, Cezary M.

    2007-01-01

    Viscosities at T = (293.15, 298.15, and 303.15) K in the binary mixtures of ethyl tert-butyl ether with 2-ethoxyethanol, 2-(2-ethoxyethoxy)ethanol, and 2-[2-(2-ethoxyethoxy)ethoxy]ethanol have been measured over the entire range of mixture compositions. From the experimental data, deviations in the viscosity (Δln η) and excess energies of activation for viscous flow (ΔG *E ) have been calculated. The viscosity data were correlated with equations of Hind et al., Grunberg and Nissan, Auslaender, and McAllister. The results for Δln η and ΔG *E are discussed in terms of intermolecular interactions and structure of studied binary mixtures

  17. (Vapour + liquid) equilibria for binary and ternary mixtures of 2-propanol, tetrahydropyran, and 2,2,4-trimethylpentane at P = 101.3 kPa

    International Nuclear Information System (INIS)

    Lin, Dun-Yi; Tu, Chein-Hsiun

    2012-01-01

    Highlights: ► We report the VLE data at P = 101.3 kPa involving a cyclic ether. ► The activity coefficients of mixtures were obtained from modified Raoult’s law. ► The VLE data were correlated by four liquid activity coefficient models. ► The ternary VLE data were predicted from binary parameters of the four models. - Abstract: (Vapour + liquid) equilibrium (VLE) at P = 101.3 kPa have been determined for a ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane), and (tetrahydropyran + 2,2,4-trimethylpentane). Analysis of VLE data reveals that two binary systems (2-propanol + tetrahydropyran) and (2-propanol + 2,2,4-trimethylpentane) have a minimum boiling azeotrope. No azeotrope was found for the ternary system. The activity coefficients of liquid mixtures were obtained from the modified Raoult’s law and were used to calculate the reduced excess molar Gibbs free energy (g E /RT). Thermodynamic consistency tests were performed for all VLE data using the Van Ness direct test for the binary systems and the test of McDermott–Ellis as modified by Wisniak and Tamir for the ternary system. The VLE data of the binary mixtures were correlated using the three-suffix Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The models with their best-fitted interaction parameters of the binary systems were used to predict the ternary (vapour + liquid) equilibrium.

  18. Potentiometric pKa Determination of Piroxicam and Tenoxicam in Acetonitrile-Water Binary Mixtures

    OpenAIRE

    Çubuk Demiralay, Ebru; Yılmaz, Hülya

    2012-01-01

    Abstract: Ionization constant (pKa) is one among the parameter to be estimated with accuracy, irrespective of solubility constraints. In the present study, acid-base behaviour of the piroxicam and tenoxicam was studied. By using the potentiometric method, pKa values of piroxicam and tenoxicam have been determined in different percentage of acetonitrile-water binary mixtures (acetonitrile content between 30 and 45% in volume). Aqueous pKa values of these compounds were calculated by mole fract...

  19. Intermolecular interactions in mixtures of poly (ethylene glycol) with methoxybenzene and ethoxybenzene: Volumetric and viscometric studies

    International Nuclear Information System (INIS)

    Zafarani-Moattar, Mohammed Taghi; Dehghanian, Saeedeh

    2014-01-01

    Highlights: • Density and viscosity values of PEG400 + methoxybenzene or + ethoxybenzene were measured. • The excess molar volume and thermodynamic functions of activation were calculated. • The results were interpreted in light of polymer–solvent interactions. • The changes in activation function indicate the viscous flow process. • The thermodynamic functions were correlated with the suitable equations. -- Abstract: The density and viscosity values of the binary mixtures of {poly (ethylene glycol) (PEG400) + methoxybenzene, or + ethoxybenzene} have been measured at T = (298.15, 308.15, and 318.15) K. From these experimental values, the excess molar volume, apparent specific volume, partial specific volume of solute, partial specific volume of solvent and excess Gibbs free energy of activation have been computed over the entire range of composition at three temperatures. From the experimental data, the thermodynamic functions of activation have been estimated for each binary mixture. The obtained results have been interpreted in light of polymer–solvent interactions and packing effects. The signs of excess molar volume and deviations of excess Gibbs free energy of activation have been used to obtain some information in regard to existence of specific interactions between PEG400 and solvents molecules. The changes in entropy and enthalpy of activation from the initial state to the transition state were also calculated in order to see which one of these functions controls viscous flow process in the studied polymer solutions. The excess molar volume and excess Gibbs free energy of activation values have been adequately fitted to the Redlich–Kister polynomial. Apparent specific volume values were correlated with the suitable equation. The different models proposed for correlating the viscosity of polymer solutions or liquid mixtures (segment-based-Eyring–NRTL, segment-based-Eyring–Wilson, Grunbreg–Nissan, Frenkel, Hind et al., Katti

  20. Extraction of oil from pequi fruit (Caryocar Brasiliense, Camb. using several solvents and their mixtures

    Directory of Open Access Journals (Sweden)

    Antoniassi, R.

    2011-09-01

    Full Text Available In this study, the oil extraction process from pequi pulp using different solvents (hexane, acetone and ethyl alcohol and their mixtures was investigated, using a simplex-centroid design. The extraction occurred at 50°C, under stirring (22 Hz, for 16 hours. The solid-liquid ratio used was 1:10 (w/w. Higher yield values were obtained for extractions with acetone and hexane, especially their mixtures with ethanol. Iodine value, saponification value and refractive index did not differ significantly among the treatments. A higher acid value was obtained for the extraction with ethyl alcohol. Higher carotenoid contents were obtained for the extraction with acetone and ethyl alcohol as pure solvents. The fatty acid profile in the oil fraction of the extracts did not vary among the different types of solvents and their mixtures.En este trabajo fue estudiado el proceso de extracción de aceite de la pulpa de pequi utilizando diferentes disolventes (n-hexano, acetona y etanol y sus mezclas, empleando diseño central simplex. Las extracciones fueron realizadas a 50°C, durante 16 horas de agitación (22 Hz. La proporción sólido:líquido empleada fue 1:10 (p/p. Los mayores rendimientos fueron obtenidos para las extracciones con acetona y con hexano, especialmente cuando fueron mezclados con etanol. El índice de yodo, el índice de saponificación y el índice de refracción no difirieron significativamente entre los tratamientos. Los mayores valores de acidez se obtuvieron en la extracción con etanol. Los mayores contenidos en carotenoides se obtuvieron en las extracciones con acetona y etanol como disolventes puros. El perfil de los ácidos grasos en las fracciones de aceite de los extractos no presentó variación entre los diferentes tipos de disolventes y sus mezclas.

  1. Global phase equilibrium calculations: Critical lines, critical end points and liquid-liquid-vapour equilibrium in binary mixtures

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht

    2007-01-01

    A general strategy for global phase equilibrium calculations (GPEC) in binary mixtures is presented in this work along with specific methods for calculation of the different parts involved. A Newton procedure using composition, temperature and Volume as independent variables is used for calculation...

  2. studies dielectric behaviour of some long chain alcohols and their mixtures with a non-polar solvent at various concentration

    International Nuclear Information System (INIS)

    Yaqub, M.; Ahmed, S.S.; Hussain, A.

    2006-01-01

    Dielectric constant, refractive index and the Kirkwood linear correlation factor of 1-propanol, 1-butanol and 1-pentanol in mixtures with carbon tetrachloride at various concentration have been measured at fixed frequency (100 KHz) at 303.15 K. For the study of dielectric properties of polar molecules in a non-polar solvent at different concentrations, polarization per unit volume and excess free-energy of mixing were evaluated at this temperature. In order to study the association of polar molecules in such a non-polar solvent, the Kirkwood correlation factor (g) between molecular pairs, which exists due to the hydrogen bond association suggesting the presence of some dimension in the liquid phase with a number of dimmers, was determined. The refractive index and dielectric constant measurements are expected to shed some light on the configuration of molecules in various mixtures, and give some idea about the specific interactions between components, which decrese with the increase in the concentration of alcohol. All the three mixtures showed different behaviour for the value of correlation factor (g) as a function of concentration. The response of 1-pentanol was broadly identical to that of small chain alcohols. The different behaviour of the correlation factor (g) was interpreted in terms of the Kirkwood-Frohlich theory, as it takes into account, explicitly, such type of short and long range interactions of a mixture of polar molecules with non-polar solvents. (author)

  3. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    Science.gov (United States)

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  4. The effect of vapor polarity and boiling point on breakthrough for binary mixtures on respirator carbon.

    Science.gov (United States)

    Robbins, C A; Breysse, P N

    1996-08-01

    This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.

  5. Solvent dependence of organic exciplex fluorescence studied by magnetic effect on reaction yield (M.A.R.Y) spectroscopy

    International Nuclear Information System (INIS)

    Pal, K.

    2011-01-01

    This work aims at understanding the various facets of one of the elementary reactions in nature, the electron transfer reaction using MARY (Magnetic effect on Reaction Yield) spectroscopy as a tool. The prime focus of study by the use this technique was the solvent dependence of organic exciplex fluorescence. Apart from that temperature dependent measurements using MARY spectroscopy have been performed to extract the activation energy parameters of electron transfer reaction. The discovery of magnetic field effect on new system was also a part of our study. The study of solvent dependence of organic exciplex fluorescence using MARY spectroscopy was carried out on the system of 9,10-dimethylanthracene (as the fluorophore) and N,N'-dimethylaniline and 4,4'-Bis(dimethylamino) diphenylmethane (as quenchers) in binary solvent mixtures of toluene/dimethylsulfoxide, benzylacetate/dimethylsulfoxide, toluene/propylenecarbonate and propylacetate/butyronitrile. The work focuses on the use of solvent mixtures rather than pure solvents. The solvent mixtures, tailored to simulate different microenvironemets, were employed to find out the effect of preferential solvation on electron transfer reaction. The contrast in the absolute field effect and linewidth values of the MARY spectra obtained in the four system as a function of dielectric constant scan suggest the imperative effect of concentration fluctuation on the electron transfer reaction. Temperature dependent measurements were performed on the system of N,N,N',N'- tetramethylparaphenylendiamin, photo-ionizing in a mixture of toluene/dimethylsulfoxide. However the sluggish response of the system to temperature changes does not really permit us to extract fruitful results. The magnetic field effect on the much studied system of Perylene/ N.N'-dimethylaniline was discovered for the first time. (author) [de

  6. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  7. The potential energy landscape in the Lennard-Jones binary mixture model

    International Nuclear Information System (INIS)

    Sampoli, M; Benassi, P; Eramo, R; Angelani, L; Ruocco, G

    2003-01-01

    The potential energy landscape in the Kob-Andersen Lennard-Jones binary mixture model has been studied carefully from the liquid down to the supercooled regime, from T = 2 down to 0.46. One thousand independent configurations along the time evolution locus have been examined at each temperature investigated. From the starting configuration, we searched for the nearest saddle (or quasi-saddle) and minimum of the potential energy. The vibrational densities of states for the starting and the two derived configurations have been evaluated. Besides the number of negative eigenvalues of the saddles other quantities show some signature of the approach of the dynamical arrest temperature

  8. Physicochemical properties of green solvent 1-ethyl-3-methylimidazolium tetrafluoroborate with aniline from T = (293.15 to 323.15) K at atmospheric pressure

    International Nuclear Information System (INIS)

    Srinivasa Rao, V.; Vijaya Krishna, T.; Madhu Mohan, T.; Madhusudana Rao, P.

    2017-01-01

    Highlights: • Nature of interactions in the binary mixture of [Emim][BF 4 ] + aniline are studied. • Excess properties are calculated and correlated using Redlich–Kister equation. • Temperature dependence of the calculated thermophysical propertiesis discussed. - Abstract: Density and speed of sound values are measured for the binary mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and aniline over the entire range of mole fraction at temperatures from T = (293.15 to 323.15) K under atmospheric pressure. Using the basic experimental results for the molar volume, isentropic compressibility, molar isentropic compressibility, inter molecular free length, excess molar volume, excess isentropic compressibility, excess molar isentropic compressibility and excess intermolecular free length, these values are calculated. The partial molar volumes and partial molar isentropic compressibilities at infinite dilutions have also been calculated. The trends of variation of the properties have been interpreted in light of the solute–solvent interactions occurring in the system. The excess values are fitted to Redlich–Kister polynomial equation to estimate the binary coefficients and standard deviation between the experimental and calculated values. Further, the molecular interactions in the binary mixture system are analysed using the experimental FT-IR spectrum recorded at room temperature.

  9. An improved molecular dynamics algorithm to study thermodiffusion in binary hydrocarbon mixtures

    Science.gov (United States)

    Antoun, Sylvie; Saghir, M. Ziad; Srinivasan, Seshasai

    2018-03-01

    In multicomponent liquid mixtures, the diffusion flow of chemical species can be induced by temperature gradients, which leads to a separation of the constituent components. This cross effect between temperature and concentration is known as thermodiffusion or the Ludwig-Soret effect. The performance of boundary driven non-equilibrium molecular dynamics along with the enhanced heat exchange (eHEX) algorithm was studied by assessing the thermodiffusion process in n-pentane/n-decane (nC5-nC10) binary mixtures. The eHEX algorithm consists of an extended version of the HEX algorithm with an improved energy conservation property. In addition to this, the transferable potentials for phase equilibria-united atom force field were employed in all molecular dynamics (MD) simulations to precisely model the molecular interactions in the fluid. The Soret coefficients of the n-pentane/n-decane (nC5-nC10) mixture for three different compositions (at 300.15 K and 0.1 MPa) were calculated and compared with the experimental data and other MD results available in the literature. Results of our newly employed MD algorithm showed great agreement with experimental data and a better accuracy compared to other MD procedures.

  10. Properties for binary mixtures of (acetamide + KSCN) eutectic ionic liquid with ethanol at several temperatures

    International Nuclear Information System (INIS)

    Liu, Baoyou; Liu, Yaru

    2016-01-01

    Graphical abstract: Viscosity deviation (Δη) against mole fraction of ethanol for [ethanol(1) + [(acetamide + KSCN)](2)] mixtures at several temperatures. The solid lines represent the corresponding correlation by the Redlich–Kister equation. - Highlights: • Density, viscosity and conductivity of (acetamide + KSCN) ethanol solution were measured. • V"E and Δη were calculated from the measured density and viscosity respectively. • V"E and Δη were both well fitted by a third order Redlich–Kister equation. • The conductivity was described by a Castell–Amis equation. - Abstract: Density, viscosity and conductivity were determined for the binary mixture of (acetamide + KSCN) eutectic ionic liquid with ethanol at T = (298.15, 303.15, 308.15, 313.15, 318.15) K and atmospheric pressure. The density, viscosity values decrease with the increase of temperature while the conductivity values increase over the whole concentration range. The density and viscosity values decrease monotonically with the increase of the mole content of ethanol. From the experimental values, excess molar volumes V"E and viscosity deviations Δη for the binary mixture were calculated and V"E and Δη were both well fitted by a third order Redlich–Kister equation. With the increase mole fraction of ethanol, the conductivity values of the mixture increase gradually first and then decrease dramatically, and the highest conductivity values appear at 0.8562 mol fraction of ethanol. The relationship between the conductivity and the mole fraction of ethanol can be well described by a Castell–Amis equation. The interactions with ethanol molecular and ions of (acetamide + KSCN) ionic liquid were discussed by FTIR spectra.

  11. Vapour pressures, osmotic and activity coefficients for binary mixtures containing (1-ethylpyridinium ethylsulfate + several alcohols) at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gomez, Elena; Dominguez, Angeles; Macedo, Eugenia A.

    2010-01-01

    Osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1-ethylpyridinium ethylsulfate were determined at T = 323.15 K using the vapour pressure osmometry technique. From the experimental results, vapour pressure and activity coefficients can be determined. For the correlation of osmotic coefficients, the extended Pitzer model modified by Archer, and the modified NRTL (MNRTL) model were used, obtaining deviations lower than 0.017 and 0.047, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the binary mixtures studied were determined from the parameters obtained with the extended Pitzer model modified by Archer.

  12. Physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol at different temperatures

    International Nuclear Information System (INIS)

    AlTuwaim, Mohammad S.; Alkhaldi, Khaled H.A.E.; Al-Jimaz, Adel S.; Mohammad, Abubaker A.

    2013-01-01

    Highlights: ► Physical properties of binary mixtures of DMF+1-octanol, 1-nonanol or 1-decanol at different temperatures were investigated. ► Densities, refractive indices and speed of sound were measured. ► V E , K s E , u D and n D E were calculated using the experimental data. ► Speed of sound data were analyzed using different theories and relations. -- Abstract: The density, refractive index and speed of sound for binary mixtures of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol were measured at several temperatures and atmospheric pressure over the entire range of mole fraction. Excess molar volumes, isentropic and excess isentropic compressibilities, excess refractive indices and deviations in speed of sound for the above systems were calculated from the experimental results. Furthermore, excess properties and deviations in speed of sound were fitted to the Redlich–Kister polynomial. The Lorentz–Lorenz, Dale–Gladstone, Eykman and Arago–Biot mixing rules were used to calculate the refractive indices of the binary mixtures. The speeds of sound have been analyzed in term of Schaaffs’ collision factor theory, Jacobson’s intermolecular free length theory of solutions, Nomoto relation and Van Deal ideal mixture relation. The calculated excess molar properties have been qualitatively used to explain the intermolecular interaction between the mixed components as well as the effects of n-alkanol chain length

  13. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  14. A numerical analysis of an anisotropic phase-field model for binary-fluid mixtures in the presence of magnetic-field

    OpenAIRE

    Belmiloudi , Aziz; Rasheed , Amer

    2015-01-01

    In this paper we propose a numerical scheme and perform its numerical analysis devoted to an anisotropic phase-field model with convection under the influence of magnetic field for the isother-mal solidification of binary mixtures in two-dimensional geometry. Precisely, the numerical stability and error analysis of this approximation scheme which is based on mixed finite-element method are performed. The particular application of a nickelcopper (NiCu) binary alloy, with real physical paramete...

  15. Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures.

    Science.gov (United States)

    Demuth, Dominik; Haase, Nils; Malzacher, Daniel; Vogel, Michael

    2015-08-01

    We use (13)C CP MAS NMR to investigate the dependence of elastin dynamics on the concentration and composition of the solvent at various temperatures. For elastin in pure glycerol, line-shape analysis shows that larger-scale fluctuations of the protein backbone require a minimum glycerol concentration of ~0.6 g/g at ambient temperature, while smaller-scale fluctuations are activated at lower solvation levels of ~0.2 g/g. Immersing elastin in various glycerol-water mixtures, we observe at room temperature that the protein mobility is higher for lower glycerol fractions in the solvent and, thus, lower solvent viscosity. When decreasing the temperature, the elastin spectra approach the line shape for the rigid protein at 245 K for all studied samples, indicating that the protein ceases to be mobile on the experimental time scale of ~10(-5) s. Our findings yield evidence for a strong coupling between elastin fluctuations and solvent dynamics and, hence, such interaction is not restricted to the case of protein-water mixtures. Spectral resolution of different carbon species reveals that the protein-solvent couplings can, however, be different for side chain and backbone units. We discuss these results against the background of the slaving model for protein dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electro-optic and dielectric properties of new binary ferroelectric and antiferroelectric liquid crystalline mixtures

    Czech Academy of Sciences Publication Activity Database

    Fitas, J.; Marzec, M.; Kurp, K.; Żurowska, M.; Tykarska, M.; Bubnov, Alexej

    2017-01-01

    Roč. 44, č. 9 (2017), s. 1468-1476 ISSN 0267-8292 R&D Projects: GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : liquid crystals * ferroelectric and antiferroelectric phase * binary mixture * dielectric spectroscopy * switching time * tilt angle Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.661, year: 2016

  17. NMR study of thallium(I) ions in molten binary mixtures of nitrates and chlorides

    International Nuclear Information System (INIS)

    Nakamura, Yoshio; Kitazawa, Yukiharu; Shimoji, Mitsuo; Shimokawa, Shigezo.

    1983-01-01

    The chemical shifts of 205 Tl NMR in molten binary mixtures of nitrates and those of chlorides have been measured as a function of composition and temperature. The shifts increase in the diamagnetic direction with decreasing the size of foreign cations and increase in the paramagnetic direction with increasing temperature. These results are interpreted by changes in the overlap of orbitals of the Tl + ion and the anion, which depend upon composition and temperature. (author)

  18. Thin-layer chromatography of 49 metal ions on stannic antimonate in aqueous and mixed solvent systems containing dimethylsulfoxide: quantitative separation of uranium from numerous metal ions

    International Nuclear Information System (INIS)

    Qureshi, M.; Varshney, K.G.; Rajput, R.P.S.

    1976-01-01

    Thin-layer chromatography of 40 metal ions in 31 aqueous and mixed solvent systems has been performed on stannic antimonate ion-exchange material. Dimethylsulfoxide has been utilized to resolve such binary mixtures as La 3+ and Ce 3+ from Pr 3+ , Nd 3+ , and Sm 3+ ; VO 2+ from Ti 4+ , Nb 5+ , and Ta 5+ ; Ga 3+ from In 3+ , Tl + , and Y 3+ ; Fe 3+ from VO 2+ ; and Mg 2+ from Al 3+ . Quantitative separation of 200 to 800 μg U from its binary mixtures and from the synthetic mixtures containing Mg 2+ , Bi 3+ , Fe 3+ , Th 4+ , Ce 4+ , Cr 3+ , Zr 4+ , Hf 4+ , Ti 4+ Mn 2+ , Cu 2+ , Ce 3+ , In 3+ , Y 3+ , Ca 2+ , Co 2+ , Tl + , Nb 5+ , and Ag + has been obtained

  19. Thermophysical properties of binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at various temperatures

    International Nuclear Information System (INIS)

    Zhang, Yindi; Dong, Hong; Wu, Chuan; Yu, Lijiao

    2014-01-01

    Highlights: • Values of ρ and n D of binary mixtures containing organosilicon compounds at different temperatures were measured. • α, V m E , V ¯ i E,∞ , (n 2 ) E , R m and ΔR m were studied. • The excess molar volumes, excess squared refraction indices and the deviations in molar refractions were negative. - Abstract: The density and refractive index were determined for binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at different temperatures (T = 288.15, 298.15, 308.15, 318.15 and 328.15 K) and atmospheric pressure using a DMA4500 and RXA170 combined system. The excess molar volume (V m E ), partial excess volume at infinite dilution (V ¯ i E,∞ ), isobaric coefficient of thermal expansion (α), excess squared refraction indices [(n 2 ) E ], Lorentz–Lorenz molar refraction (R m ) and the deviation in molar refraction (ΔR m ) have been calculated using this data. The results have been incorporated into the Redlich–Kister equation and used to estimate the binary interaction parameter and standard deviation. In addition, the excess molar volume (V m E ) was calculated and correlated using the Legendre polynomials. The value of partial excess volume at infinite dilution (V ¯ i E,∞ ) for these binary systems at different temperatures was calculated from either the adjustable parameters of Redlich–Kister smoothing equation or the Legendre polynomials. The isobaric coefficient of thermal expansion (α) of the binary systems was estimated using the temperature dependence of the densities. The results indicate that the excess molar volumes, excess squared refraction indices and the deviations in molar refractions at each temperature were negative. These phenomena are a result of a number of factors including: the partial interstitial accommodation effect, disruption in the orientational order of the pure components and steric structure

  20. Measurements and correlation of viscosities and conductivities for the mixtures of ethylammonium nitrate with organic solvents

    International Nuclear Information System (INIS)

    Litaeim, Yousra; Zarrougi, Ramzi; Dhahbi, Mahmoud

    2009-01-01

    Room temperature ionic liquids (IL) as a new class of organic molten salts have been considered as an alternative of traditional organic solvents (OS). The physico-chemical transport properties of mixtures IL/OS were investigated and described by ion-ion, ion solvent and solvent-solvent interactions. Ethylammonium nitrate (EAN) was studied in presence of two types of organic solvents: the dimethyl carbonate (DMC) and the formamide (FA). The variation of the viscosity with salt concentration and temperature shows that EAN ions behave as a structure breaker for the DMC. However, no effect was recorded in the case of FA. Concentrated electrolyte solutions behave as very structured media and checked a theory of pseudo-lattice. The existence of a conductivity maximum indicates two competing effects; the increasing number of charge carriers and the higher viscosity of the electrolyte as the salt concentration was raised. The use of the Walden product to investigate ionic interactions of EAN with both solvents was discussed. A study of the effect of temperature on the conductivity and viscosity reveals that both systems (EAN/DMC and EAN/FA) obey an Arrhenius low. The activation energies for the tow transport process (Ea,L and Ea,h) as a function of the salt concentration were evaluated.

  1. NON-EQUILIBRIUM MOLECULAR DYNAMICS USED TO OBTAIN SORET COEFFICIENTS OF BINARY HYDROCARBON MIXTURES

    Directory of Open Access Journals (Sweden)

    F. A. Furtado

    2015-09-01

    Full Text Available AbstractThe Boundary Driven Non-Equilibrium Molecular Dynamics (BD-NEMD method is employed to evaluate Soret coefficients of binary mixtures. Using a n-decane/n-pentane mixture at 298 K, we study several parameters and conditions of the simulation procedure such as system size, time step size, frequency of perturbation, and the undesired warming up of the system during the simulation. The Soret coefficients obtained here deviated around 20% when comparing with experimental data and with simulated results from the literature. We showed that fluctuations in composition gradients and the consequent deviations of the Soret coefficient may be due to characteristic fluctuations of the composition gradient. Best results were obtained with the smallest time steps and without using a thermostat, which shows that there is room for improvement and/or development of new BD-NEMD algorithms.

  2. Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material

    International Nuclear Information System (INIS)

    Jo, Byeongnam; Banerjee, Debjyoti

    2014-01-01

    This study investigated the effect of nanoparticle dispersion on the specific heat capacity for carbonate salt mixtures doped with graphite nanoparticles. The effect of the solvent material was also examined. Binary carbonate salt mixtures consisting of lithium carbonate and potassium carbonate were used as the base material for the graphite nanomaterial. The different dispersion uniformity of the nanoparticles was created by employing two distinct synthesis protocols for the nanomaterial. Different scanning calorimetry was employed to measure the specific heat capacity in both solid and liquid phases. The results showed that doping the molten salt mixture with the graphite nanoparticles significantly raised the specific heat capacity, even in minute concentrations of graphite nanoparticles. Moreover, greater enhancement in the specific heat capacity was observed from the nanomaterial samples with more homogeneous dispersion of the nanoparticles. A molecular dynamics simulation was also performed for the nanomaterials used in the specific heat capacity measurements to explain the possible mechanisms for the enhanced specific heat capacity, including the compressed layering and the species concentration of liquid solvent molecules

  3. Vapour pressure and excess Gibbs free energy of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane at temperature of 182.33K

    International Nuclear Information System (INIS)

    Lobo, L.Q.; Ferreira, A.G.M.; Fonseca, I.M.A.; Senra, A.M.P.

    2006-01-01

    The vapour pressure of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane was measured at T=182.33K covering most of the composition range. The excess Gibbs free energy of these mixtures has been derived from the measurements made. For the equimolar mixtures G m E (x 1 =0.5)=(835.5+/-5.8)J.mol -1 for (H 2 S+C 2 H 6 ) (820.1+/-2.4)J.mol -1 for (H 2 S+C 3 H 8 ), and (818.6+/-0.9)J.mol -1 for (H 2 S+n-C 4 H 10 ). The binary mixtures of H 2 S with ethane and with propane exhibit azeotropes, but that with n-butane does not

  4. Experimental and theoretical study of surface tension of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene)

    International Nuclear Information System (INIS)

    Rafati, Amir Abbas; Ghasemian, Ensieh

    2009-01-01

    Surface properties of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene) have been measured by surface tension method at T = 298.15 K and atmospheric pressure. Also, the surface tension has been predicted based on the Suarez method. This method combines a model for the description of surface tension of liquid mixtures with a group contribution method for the calculation of activity coefficient. The mean relative standard deviations obtained from the comparison of experimental (measured) and calculated surface tension values for the eight binary systems are less than 1.5%, which leads to concluding that the model shows a good accuracy in different situations in comparison with other predicted equations. In addition, the relative Gibbs adsorption and the surface mole fraction have been evaluated using this model. The surface tension deviations were calculated from experimental results and have been fitted to the Redlich-Kister type polynomial relation

  5. COMPARISON OF SORPTION ENERGTICS FOR HYDROPHOBIC ORGANIC CHEMICALS BY SYNTHETIC AND NATURAL SORBENTS FROM METHANOL/WATER SOLVENT MIXTURES

    Science.gov (United States)

    Reversed-phase liquid chromatography (RPLC) was used to investigate the thermodynamics and mechanisms of hydrophobic organic chemical (HOC) retention from methanol/water solvent mixtures. The enthalpy-entropy compensation model was used to infer that the hydro- phobic sorptive me...

  6. Appearance of enhancement effect in adsorption of binary gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, T. [Ajinomoto General Foods, Inc., Tokyo (Japan); Tamon, H.; Okazaki, M. [Kyoto University, Kyoto (Japan)

    1997-10-20

    The properties of adsorbents and adsorbates contributing to the enhancement in adsorption of binary gas mixtures were experimentally investigated. It is found that adsorbent is required to maintain the phenolic hydroxyl group and the carbonyl group as acidic surface oxides on the carbon surface, and to have a microporous structure for the main adsorption sites. Each gas component is required to be chemisorbed on the phenolic hydroxyl group or the carbonyl group on the adsorbent, and that both components are adsorbed in the micropores together. From the characterization of adsorbents after adsorption-desorption runs, it is demonstrated that the adsorbates in the micropores exist at a higher density than in the bulk state through the promotion of micropore filling when adsorption enhancement appears. 17 refs., 7 figs., 5 tabs.

  7. Thermophysical properties of binary mixtures of {l_brace}ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol){r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Victor H. [School of Chemical Engineering, State University of Campinas (UNICAMP), P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Chemical Engineering Department, ETSE, University of Santiago de Compostela (USC), P.O. Box 15782, Santiago de Compostela (Spain); Mattedi, Silvana [Chemical Engineering Department, Polytechnic School, Federal University of Bahia (UFBA), 40210-630 Salvador-BA (Brazil); Martin-Pastor, Manuel [Unidade de Resonancia Magnetica, RIAIDT, edif. CACTUS, University of Santiago de Compostela (USC), P.O. Box 15706, Santiago de Compostela (Spain); Aznar, Martin [School of Chemical Engineering, State University of Campinas (UNICAMP), P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Iglesias, Miguel, E-mail: miguel.iglesias@usc.es [Chemical Engineering Department, ETSE, University of Santiago de Compostela (USC), P.O. Box 15782, Santiago de Compostela (Spain)

    2011-07-15

    Research highlights: > This paper reports the density and speed of sound data of binary mixtures {l_brace}2-hydroxy ethylammonium acetate + (water, or methanol, or ethanol){r_brace} measured between the temperatures (298.15 and 313.15) K at atmospheric pressure. > The aggregation, dynamic behavior, and hydrogen-bond network were studied using thermo-acoustic, X-ray, and NMR techniques. > The Peng-Robinson equation of state, coupled with the Wong-Sandler mixing rule using the COSMO-SAC model predicted the density of the solutions with relative mean deviations below than 3.0%. - Abstract: In this work, density and speed of sound data of binary mixtures of an ionic liquid consisting of {l_brace}2-hydroxy ethylammonium acetate (2-HEAA) + (water, methanol, or ethanol){r_brace} have been measured throughout the entire concentration range, from the temperature of (288.15 to 323.15) K at atmospheric pressure. The excess molar volumes, variations of the isentropic compressibility, the apparent molar volume, isentropic apparent molar compressibility, and thermal expansion coefficient were calculated from the experimental data. The excess molar volumes were negative throughout the whole composition range. Compressibility data in combination with low angle X-ray scattering and NMR measurements proved that the presence of micelles formed due to ion pair interaction above a critical concentration of the ionic liquid in the mixtures. The Peng-Robinson equation of state coupled with the Wong-Sandler mixing rule and COSMO-SAC model was used to predict densities and the calculated deviations were lower than 3%, for binary mixtures in all composition range.

  8. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  9. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  10. Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures

    Science.gov (United States)

    Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-04-01

    The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.

  11. Poisson-Box Sampling algorithms for three-dimensional Markov binary mixtures

    Science.gov (United States)

    Larmier, Coline; Zoia, Andrea; Malvagi, Fausto; Dumonteil, Eric; Mazzolo, Alain

    2018-02-01

    Particle transport in Markov mixtures can be addressed by the so-called Chord Length Sampling (CLS) methods, a family of Monte Carlo algorithms taking into account the effects of stochastic media on particle propagation by generating on-the-fly the material interfaces crossed by the random walkers during their trajectories. Such methods enable a significant reduction of computational resources as opposed to reference solutions obtained by solving the Boltzmann equation for a large number of realizations of random media. CLS solutions, which neglect correlations induced by the spatial disorder, are faster albeit approximate, and might thus show discrepancies with respect to reference solutions. In this work we propose a new family of algorithms (called 'Poisson Box Sampling', PBS) aimed at improving the accuracy of the CLS approach for transport in d-dimensional binary Markov mixtures. In order to probe the features of PBS methods, we will focus on three-dimensional Markov media and revisit the benchmark problem originally proposed by Adams, Larsen and Pomraning [1] and extended by Brantley [2]: for these configurations we will compare reference solutions, standard CLS solutions and the new PBS solutions for scalar particle flux, transmission and reflection coefficients. PBS will be shown to perform better than CLS at the expense of a reasonable increase in computational time.

  12. Solid-state characterization of paracetamol metastable polymorphs formed in binary mixtures with hydroxypropylmethylcellulose

    International Nuclear Information System (INIS)

    Rossi, Alessandra; Savioli, Alessandra; Bini, Marcella; Capsoni, Doretta; Massarotti, Vincenzo; Bettini, Ruggero; Gazzaniga, Andrea; Sangalli, Maria Edvige; Giordano, Ferdinando

    2003-01-01

    Two metastable polymorphs of paracetamol (forms II and III) were prepared by appropriate thermal methods from binary mixtures containing 10% (w/w) of hydroxypropylmethylcellulose. By controlling the reheating step, it was possible to address the recrystallization of the drug either into form II or III. Moreover, it was observed that form III transforms either into form II or I depending on the preparation method. The physical characterization of the polymorphs was performed by means of micro-Fourier transform infrared spectroscopy (MFTIR) and powder X-ray diffractometry (PXRD), both temperature controlled

  13. Solid-state characterization of paracetamol metastable polymorphs formed in binary mixtures with hydroxypropylmethylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Alessandra; Savioli, Alessandra; Bini, Marcella; Capsoni, Doretta; Massarotti, Vincenzo; Bettini, Ruggero; Gazzaniga, Andrea; Sangalli, Maria Edvige; Giordano, Ferdinando

    2003-11-28

    Two metastable polymorphs of paracetamol (forms II and III) were prepared by appropriate thermal methods from binary mixtures containing 10% (w/w) of hydroxypropylmethylcellulose. By controlling the reheating step, it was possible to address the recrystallization of the drug either into form II or III. Moreover, it was observed that form III transforms either into form II or I depending on the preparation method. The physical characterization of the polymorphs was performed by means of micro-Fourier transform infrared spectroscopy (MFTIR) and powder X-ray diffractometry (PXRD), both temperature controlled.

  14. Comparative study on the selectivity of various spectrophotometric techniques for the determination of binary mixture of fenbendazole and rafoxanide.

    Science.gov (United States)

    Saad, Ahmed S; Attia, Ali K; Alaraki, Manal S; Elzanfaly, Eman S

    2015-11-05

    Five different spectrophotometric methods were applied for simultaneous determination of fenbendazole and rafoxanide in their binary mixture; namely first derivative, derivative ratio, ratio difference, dual wavelength and H-point standard addition spectrophotometric methods. Different factors affecting each of the applied spectrophotometric methods were studied and the selectivity of the applied methods was compared. The applied methods were validated as per the ICH guidelines and good accuracy; specificity and precision were proven within the concentration range of 5-50 μg/mL for both drugs. Statistical analysis using one-way ANOVA proved no significant differences among the proposed methods for the determination of the two drugs. The proposed methods successfully determined both drugs in laboratory prepared and commercially available binary mixtures, and were found applicable for the routine analysis in quality control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The (gas + liquid) critical properties and phase behaviour of some binary alkanol (C2-C5) + alkane (C5-C12) mixtures

    International Nuclear Information System (INIS)

    Morton, David W.; Lui, Matthew P.W.; Young, Colin L.

    2003-01-01

    Previously, the investigation of the (gas + liquid) critical properties of (alkanol + alkane) mixtures has focussed on (primary alkanol + straight chain alkane) mixtures. The experimental data available for (alkanol + alkane) mixtures, which include secondary or tertiary alcohols and/or branched chain alkanes, are extremely limited. This work extends the existing body of data on (alkanol + alkane) mixtures to include mixtures containing these components. Here the (gas + liquid) critical temperatures of 29 {alkanol (C 2 -C 5 ) + alkane (C 5 -C 12 )} mixtures are reported. All the (gas + liquid) critical lines for the binary mixtures studied are continuous, indicating they obey either Type I or Type II phase behaviour

  16. Recoil implantation reactions in binary mixtures of catcher complexes and in mixed ligand catchers

    International Nuclear Information System (INIS)

    Sekine, Tsutomu; Sano, Masaaki; Yoshihara, Kenji

    1989-01-01

    Recoil implantation reactions were studied in binary mixtures of catcher complexes of tris(β-diketonato)metal(III) and in single-component catcher complexes of Cr(acac) n (dbm) 3-n where n=1 and 2. For the mixtures of M(acac) 3 and M(dbm) 3 , the products of 51 Cr(acac) 3 and 51 Cr(dbm) 3 were obtained as major components while 51 Cr(acac) 2 (dbm) and 51 Cr(acac)(dbm) 2 were seen as minor components. For the single component catcher complexes, predominant chemical species were parent retention type compounds. In addition to retentions there were product distributions which indicated a strong preference for acac pickup. The results were interpreted by a model which involves displacement reaction as a main process and ligand pickup reactions as side processes. (orig.)

  17. Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells

    Science.gov (United States)

    Zhu, Leize; Yuh, Brian; Schoen, Stefan; Li, Xinpei; Aldighaithir, Mohammed; Richardson, Beau J.; Alamer, Ahmed; Yu, Qiuming

    2016-03-01

    Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI). Followed by dimethylsulfoxide (DMSO) vapor-assisted thermal annealing, small, faceted perovskite grains grew into large, smooth grains via the possible mechanism involving bond breaking and reforming mediated by DMSO solvent molecules. The absorption onset was extended to 950 and 1010 nm for the CH3NH3SnxPb1-xI3 perovskites with x = 0.1 and 0.25, respectively. The highest PCE of 10.25% was achieved from the planar perovskite solar cell with the CH3NH3Sn0.1Pb0.9I3 layer prepared via the thermal plus DMSO vapor-assisted thermal annealing. This research provides a way to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, which opens an avenue to grow perovskite materials with desired properties to enhance device performance.Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI

  18. Insecticide solvents: interference with insecticidal action.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans.

  19. Radiation grafting from binary monomer mixtures. II. Vinyl ether of monoethanolamine and N-vinylpyrrolidone

    International Nuclear Information System (INIS)

    Nurkeeva, Zauresh S.; Abdel Aal, A.-S.; Kupchishin, Anatoliy I.; Khutoryanskiy, Vitaliy V.; Mun, Grigoriy A.; Beksyrgaeva, Aida G.

    2003-01-01

    Radiation grafting from binary monomer mixtures of vinyl ether of monoethanolamine and N-vinylpyrrolidone onto polyethylene films has been studied. The structure of the grafted films was characterized by FTIR spectroscopy. Water uptake and contact angle measurements confirmed that the grafting leads to a considerable hydrophilization of the films surface. The presence of the more active N-vinylpyrrolidone enhances the grafting of the less active vinyl ether of monoethanolamine. Sorption properties of grafted films with respect to copper (II) ions have been studied

  20. Luminescence study on solvation of americium(III), curium(III) and several lanthanide(III) ions in nonaqueous and binary mixed solvents

    International Nuclear Information System (INIS)

    Kimura, T.; Nagaishi, R.; Kato, Y.; Yoshida, Z.

    2001-01-01

    The luminescence lifetimes of An(III) and Ln(III) ions [An=Am and Cm; Ln=Nd, Sm, Eu, Tb and Dy] were measured in dimethyl sulfoxide(DMSO), N,N-dimethylformamide(DMF), methanol(MeOH), water and their perdeuterated solvents. Nonradiative decay rates of the ions were in the order of H 2 O > MeOH > DMF > DMSO, indicating that O-H vibration is more effective quencher than C-H, C=O, and S=O vibrations in the solvent molecules. Maximal lifetime ratios τ D /τ H were observed for Eu(III) in H 2 O, for Sm(III) in MeOH and DMF, and for Sm(III) and Dy(III) in DMSO. The solvent composition in the first coordination sphere of Cm(III) and Ln(III) in binary mixed solvents was also studied by measuring the luminescence lifetime. Cm(III) and Ln(III) were preferentially solvated by DMSO in DMSO-H 2 O, by DMF in DMF-H 2 O, and by H 2 O in MeOH-H 2 O over the whole range of the solvent composition. The order of the preferential solvation, i.e., DMSO > DMF > H 2 O > MeOH, correlates with the relative basicity of these solvents. The Gibbs free energy of transfer of ions from water to nonaqueous solvents was further estimated from the degree of the preferential solvation. (orig.)

  1. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  2. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy

    Science.gov (United States)

    Ghoraishi, M. S.; Hawk, J. E.; Phani, Arindam; Khan, M. F.; Thundat, T.

    2016-04-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20-100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures.

  3. An Exercise on Calibration: DRIFTS Study of Binary Mixtures of Calcite and Dolomite with Partially Overlapping Spectral Features

    Science.gov (United States)

    De Lorenzi Pezzolo, Alessandra

    2013-01-01

    Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…

  4. Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone, and ethylacetate from T = (293.15 to 313.15) K

    International Nuclear Information System (INIS)

    Gadžurić, Slobodan; Nikolić, Aleksandar; Vraneš, Milan; Jović, Branislav; Damjanović, Marko; Dožić, Sanja

    2012-01-01

    Highlights: ► Densities of N-ethylformamide mixtures with ketones and esters were measured. ► Excess molar volumes were fitted to Redlich–Kister polynomial equation. ► Excess molar volumes are negative in the whole mole fraction range. ► Increase of the temperature has influence on N-ethylformamide self-association. ► Complex formation between the components was not observed. - Abstract: Densities of binary liquid mixtures of N-ethylformamide (NEF) with tetrahydrofuran (THF), 2-butanone (B), and ethylacetate (EA) were measured at temperatures from (293.15 to 313.15) K and at atmospheric pressure over the whole composition range. Excess molar volumes, V E , have been obtained from values of the experimental density and were fitted to the Redlich–Kister polynomial equation. The V E values for all three mixtures are negative over the entire composition and temperature ranges. The V E values become more negative as the temperature increases for all binary mixtures studied. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes, apparent molar volumes, partial molar excess volumes and excess thermal expansions have been calculated.

  5. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .1. SOLUBILITY OF CYCLOHEXENE IN AQUEOUS SULFOLANE MIXTURES

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    The solubility of cyclohexene in different water-sulfolane mixtures was measured between 313 and 413 K. The results demonstrate a sharp increase of the solubility of cyclohexene with increasing percentages of sulfolane in the solvent mixture. Without sulfolane the increase of the solubility with

  6. Bubble-point and dew-point equation for binary refrigerant mixture R22-R142b

    Energy Technology Data Exchange (ETDEWEB)

    Liancheng Tan; Zhongyou Zhao; Yonghong Duan (Xi' an Jiaotong Univ., Xi' an (China). Dept. of Power Machinery Engineering)

    1992-01-01

    A bubble-point and dew-point equation (in terms either of temperature or of pressure is suggested for the refrigerant mixture R22-R142b), which is regarded as one of the alternatives to R12. This equation has been examined with experimental data. A modified Rackett equation for the calculation of the bubble-point volume is also proposed. Compared with the experimental data, the rms errors in the calculated values of the bubble-point temperature, the dew-point temperature, and the bubble-point volume are 1.093%, 0.947%, and 1.120%, respectively. The calculation covers a wide range of temperatures and pressures, even near the critical point. It is shown how the equations are extrapolated to calculate other binary refrigerant mixtures. (author)

  7. Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species

    Energy Technology Data Exchange (ETDEWEB)

    Du, Huihui; Qu, ChenChen; Liu, Jing; Chen, Wenli; Cai, Peng; Shi, Zhihua; Yu, Xiao-Ying; Huang, Qiaoyun

    2017-10-01

    Bacteria and phyllosilicate commonly coexist in the natural environment, producing various bacteria–clay complexes that are capable of immobilizing heavy metals, such as cadmium, via adsorption. However, the molecular binding mechanisms of heavy metals on these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive B. subtilis, Gram-negative P. putida and their binary mixtures with montmorillonite (Mont) using the Cd K-edge x-ray absorption spectroscopy (XAS) and isothermal titration calorimetry (ITC). We observed a lower adsorptive capacity for P. putida than B. subtilis, whereas P. putida–Mont and B. subtilis–Mont mixtures showed nearly identical Cd adsorption behaviors. EXAFS fits and ITC measurements demonstrated more phosphoryl binding of Cd in P. putida. The decreased coordination of C atoms around Cd and the reduced adsorption enthalpies and entropies for the binary mixtures compared to that for individual bacteria suggested that the bidentate Cd-carboxyl complexes in pure bacteria systems were probably transformed into monodentate complexes that acted as ionic bridging structure between bacteria and motmorillonite. This study clarified the binding mechanism of Cd at the bacteria–phyllosilicate interfaces from a molecular and thermodynamic view, which has an environmental significance for predicting the chemical behavior of trace elements in complex mineral–organic systems.

  8. Osmotic properties of binary mixtures 1-butyl-1-methylpyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride with water: Effect of aggregation of ions

    International Nuclear Information System (INIS)

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2015-01-01

    Graphical abstract: Osmotic properties of binary mixture of two ionic liquids (ILs): 1-butyl-1-methyl pyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride with water was reported by using vapour pressure osmometry (VPO) method. - Highlights: • Osmotic properties of binary mixture of ionic liquids (ILs) with water by using vapour pressure osmometry (VPO) method. • The experimental osmotic coefficients were well correlated by Archer extension of Pitzer model. • From the experimental osmotic coefficient data the critical micellar concentration (cmc) of the ILs in water was estimated. • Mean molar activity coefficient and the excess Gibbs free energy was determine for the (ILs + water) binary mixture. - Abstract: In this work, the osmotic properties of the binary mixture of ionic liquids (ILs) and water were studied by using vapour pressure osmometry (VPO) method. We have used two ILs: 1-butyl-1-methyl pyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride. The aqueous solution of NaCl was used as the reference solution to precisely measure the osmotic coefficients of the above systems. We have calculated the activity of water in the above systems and the change of vapour pressure of water due to the addition of ILs in water. The experimental osmotic coefficients were correlated by the Archer extension of Pitzer model. The parameters of this Archer extension of Pitzer model were found from this data fitting. From the experimental osmotic coefficient value we have estimated the critical micellar concentration (cmc) of ILs in water. The experimental values of osmotic coefficient in the above systems were compared with the literature and the reason of variation was explained, in terms of the aggregation of ILs in water

  9. Study of Molecular Interactions in Binary Liquid Mixtures by Acoustical Method at 303K

    Directory of Open Access Journals (Sweden)

    P. Paul Divakar

    2012-01-01

    Full Text Available Ultrasonic velocity and density measurements were made in two binary liquid mixtures Isopropyl acetate (IPA and Isobutyl acetate (IBA with cyclohexanone (CY as a common component at 303K, at fixed frequency of 2MHz using single crystal variable path interferometer and specific gravity bottle respectively. The experimental data have been used to calculate the acoustic impedance, adiabatic compressibility, inter molecular free length and molar volume. The excess thermodynamic parameters have been evaluated and discussed in the light of molecular interactions.

  10. Diffusion-stress coupling in liquid phase during rapid solidification of binary mixtures

    International Nuclear Information System (INIS)

    Sobolev, S.L.

    2014-01-01

    An analytical model has been developed to describe the diffusion-viscous stress coupling in the liquid phase during rapid solidification of binary mixtures. The model starts with a set of evolution equations for diffusion flux and viscous pressure tensor, based on extended irreversible thermodynamics. It has been demonstrated that the diffusion-stress coupling leads to non-Fickian diffusion effects in the liquid phase. With only diffusive dynamics, the model results in the nonlocal diffusion equations of parabolic type, which imply the transition to complete solute trapping only asymptotically at an infinite interface velocity. With the wavelike dynamics, the model leads to the nonlocal diffusion equations of hyperbolic type and describes the transition to complete solute trapping and diffusionless solidification at a finite interface velocity in accordance with experimental data and molecular dynamic simulation. -- Highlights: •We propose the diffusion-stress coupling model for binary solidification. •The coupling arises at deep undercooling. •With diffusive dynamics, the models result in parabolic transfer equations. •With the wavelike dynamics, the models lead to hyperbolic transfer equations. •The coupling strongly affects the solute partition coefficient

  11. Phase equilibria of binary mixtures by molecular simulation and cubic equations of state

    Directory of Open Access Journals (Sweden)

    Cabral V.F.

    2001-01-01

    Full Text Available Molecular simulation data were used to study the performance of equations of state (EoS and combining rules usually employed in thermodynamic property calculations. The Monte Carlo method and the Gibbs ensemble technique were used for determining composition and densities of vapor and liquid phases in equilibrium for binary mixtures of Lennard-Jones fluids. Simulation results are compared to data in the literature and to those calculated by the t-PR-LJ EoS. The use of adequate combining rules has been shown to be very important for the satisfactory representation of molecular simulation data.

  12. Determination and thermodynamic modeling of solid–liquid phase equilibrium for 3,5-dichloroaniline in pure solvents and ternary 3,5-dichloroaniline + 1,3,5-trichlorobenzene + toluene system

    International Nuclear Information System (INIS)

    Li, Rongrong; Du, Cunbin; Meng, Long; Han, Shuo; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 3,5-dichloroaniline in seven organic solvents were determined. • Solid–liquid phase equilibrium for ternary system was measured. • The binary and ternary phase diagrams were constructed. • The phase diagrams were correlated with thermodynamic models. - Abstract: The solid–liquid phase equilibrium data for 3,5-dichloroaniline in n-propanol, isopropanol, n-butanol, isobutanol, toluene, ethyl acetate and acetone at (283.15 to 308.15) K were determined experimentally by gas chromatography under 101.3 kPa. The solubility of 3,5-dichloroaniline in these solvents decreased according to the following order: ethyl acetate > (acetone, toluene) for the solvents of ethyl acetate, acetone, and toluene; and for the other solvents, (isopropanol, n-butanol) > n-propanol > isobutanol. According to the solubility of 3,5-dichloroaniline in pure solvents, the solid–liquid phase equilibrium for the ternary mixture of 3,5-dichloroaniline + 1,3,5-trichlorobenzene + toluene were measured by using an isothermal saturation method at three temperatures of 283.15, 293.15, and 303.15 K under 101.3 kPa, and the corresponding isothermal phase diagrams were constructed. Two pure solids were formed in the ternary system at a fixed temperature, which were pure 3,5-dichloroaniline and pure 1,3,5-trichlorobenzene and were identified by Schreinemakers’ method of wet residue. The temperature dependence of 3,5-dichloroaniline solubility in pure solvents was correlated by the modified Apelblat equation, λh equation, Wilson model and NRTL model; and the ternary solid–liquid phase equilibrium of 3,5-dichloroaniline + 1,3,5-trichlorobenzene + toluene were described by the Wilson model and NRTL model. Results showed that calculated solubility values with these models agreed well with the experimental ones for the studied binary and ternary systems. The solid–liquid equilibrium and the thermodynamic models for the binary and ternary systems can offer the

  13. Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol) Part I: Acetaldehyde + (methanol or ethanol or 1-propanol)

    International Nuclear Information System (INIS)

    Jaubert, Silke; Maurer, Gerd

    2014-01-01

    Highlights: • Formation of hemiacetal/poly(oxymethylene) hemiacetals in liquid binary mixtures. • Acetaldehyde and a low molecular alcohol (methanol or ethanol or 1-propanol). • Quantitative 13 C NMR spectroscopy at temperatures between (255 and 295) K. • Hemiacetals are the predominant species. • (Acetaldehyde + methanol (50 + 50)) at 255 K: hemiacetal (polymers) >80% (≈10%). -- Abstract: Aldehydes react with alcohols to hemiacetals and poly(oxymethylene) hemiacetals. The chemical reaction equilibria of such reactions, in particular in the liquid state, can have an essential influence on the thermodynamic properties and related phenomena like, for example, on the vapour + liquid phase equilibrium. Therefore, thermodynamic models that aim to describe quantitatively such phase equilibria have to consider the chemical reaction equilibrium in the coexisting phases. This is well known in the literature for systems such as, for example, formaldehyde and methanol. However, experimental information on the chemical reaction equilibria in mixtures with other aldehydes (than formaldehyde) and alcohols is extremely scarce. Therefore, quantitative NMR spectroscopy was used to investigate the chemical reaction equilibria in binary mixtures of acetaldehyde and a single alcohol (here either methanol, ethanol or 1-propanol) at temperatures between (255 and 295) K. The results reveal that the majority of the constituents of the mixture is present as hemiacetal and the first two poly(oxymethylene) hemiacetals: in an equimolar mixture of (acetaldehyde + methanol or ethanol or 1-propanol), between about 90% at T = 255 K and about 75% at 295 K. The mole-fraction based chemical reaction equilibrium constants for the formation of those species were determined and some derived properties are reported

  14. Assessing interactions of binary mixtures of Penicillium mycotoxins (PMs) by using a bovine macrophage cell line (BoMacs)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se-Young, E-mail: ohs@uoguelph.ca [Department of Animal Biosciences, Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1 (Canada); Cedergreen, Nina [Department of Life Sciences, University of Copenhagen, Frederiksberg (Denmark); Yiannikouris, Alexandros [Alltech Inc., Nicholasville, KY (United States); Swamy, H.V.L.N. [Trouw Nutrition Pvt. Ltd. India, Karnataka State 560065 (India); Karrow, Niel A., E-mail: nkarrow@uoguelph.ca [Department of Animal Biosciences, Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1 (Canada)

    2017-03-01

    Penicillium mycotoxins (PMs) are toxic contaminants commonly found as mixtures in animal feed. Therefore, it is important to investigate potential joint toxicity of PM mixtures. In the present study, we assessed the joint effect of binary combinations of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA) using independent action (IA) and concentration addition (CA) concepts. Previously published toxicity data (i.e. IC25; PM concentration that inhibited bovine macrophage (BoMacs) proliferation by 25%) were initially analyzed, and both concepts agreed that OTA + PA demonstrated synergism (p < 0.05), while PAT + PA showed antagonism (p < 0.05). When a follow-up dilution study was carried out using binary combinations of PMs at three different dilution levels (i.e. IC25, 0.5 ∗ IC25, 0.25 ∗ IC25), only the mixture of CIT + OTA at 0.5 ∗ IC25 was determined to have synergism by both IA and CA concepts with Model Deviation Ratios (MDRs; the ratio of predicted versus observed effect concentrations) of 1.4 and 1.7, respectively. The joint effect of OTA + MPA, OTA + PA and CIT + PAT complied with the IA concept, while CIT + PA, PAT + MPA and PAT + PA were better predicted with the CA over the IA concept. The present study suggests to test both IA and CA concepts using multiple doses when assessing risk of mycotoxin mixtures if the mode of action is unknown. In addition, the study showed that the tested PMs could be predicted by IA or CA within an approximate two-fold certainty, raising the possibility for a joint risk assessment of mycotoxins in food and feed. - Highlights: • We investigated the potential joint toxicity of Penicillium mycotoxin (PM) mixtures. • Independent action (IA) and concentration addition (CA) concepts were used. • 7 out of 10 mixtures followed joint toxicity described by IA or CA concepts. • Both concepts agreed that CIT + OTA mixture had synergistic interaction.

  15. Assessing interactions of binary mixtures of Penicillium mycotoxins (PMs) by using a bovine macrophage cell line (BoMacs)

    International Nuclear Information System (INIS)

    Oh, Se-Young; Cedergreen, Nina; Yiannikouris, Alexandros; Swamy, H.V.L.N.; Karrow, Niel A.

    2017-01-01

    Penicillium mycotoxins (PMs) are toxic contaminants commonly found as mixtures in animal feed. Therefore, it is important to investigate potential joint toxicity of PM mixtures. In the present study, we assessed the joint effect of binary combinations of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA) using independent action (IA) and concentration addition (CA) concepts. Previously published toxicity data (i.e. IC25; PM concentration that inhibited bovine macrophage (BoMacs) proliferation by 25%) were initially analyzed, and both concepts agreed that OTA + PA demonstrated synergism (p < 0.05), while PAT + PA showed antagonism (p < 0.05). When a follow-up dilution study was carried out using binary combinations of PMs at three different dilution levels (i.e. IC25, 0.5 ∗ IC25, 0.25 ∗ IC25), only the mixture of CIT + OTA at 0.5 ∗ IC25 was determined to have synergism by both IA and CA concepts with Model Deviation Ratios (MDRs; the ratio of predicted versus observed effect concentrations) of 1.4 and 1.7, respectively. The joint effect of OTA + MPA, OTA + PA and CIT + PAT complied with the IA concept, while CIT + PA, PAT + MPA and PAT + PA were better predicted with the CA over the IA concept. The present study suggests to test both IA and CA concepts using multiple doses when assessing risk of mycotoxin mixtures if the mode of action is unknown. In addition, the study showed that the tested PMs could be predicted by IA or CA within an approximate two-fold certainty, raising the possibility for a joint risk assessment of mycotoxins in food and feed. - Highlights: • We investigated the potential joint toxicity of Penicillium mycotoxin (PM) mixtures. • Independent action (IA) and concentration addition (CA) concepts were used. • 7 out of 10 mixtures followed joint toxicity described by IA or CA concepts. • Both concepts agreed that CIT + OTA mixture had synergistic interaction.

  16. Preferential solvation of single ions in mixed solvents: Part 1. New experimental approach and solvation of monovalent ions in methanol-water and acetonitrile-water mixture. Part 2. Theoretical computation and comparison with experimental data

    International Nuclear Information System (INIS)

    Rege, Aarti C.; Venkataramani, B.; Gupta, A.R.

    1999-06-01

    Preferential solvation of single ion solutions has been studied with Li + , Na + , K + and Ag +- forms of Dowex 50W resins of different cross-linkings in methanol-water and acetonitrile (AN)- water mixtures. The solvent uptake by this alkali metal ionic forms of Dowex 50W resins was studied in an isopiestic set-up using 2,4,6 and 8 m LiCl solutions in 11.0, 20.8, 44.3 and 70.2 % (w/w) methanol-water mixtures and that of Na +- and Ag +- forms using 14.6 to 94.3 % (w/w) AN - water mixtures. The solvent sorbed in the resin phase was extracted by Rayleigh-type distillation and analysed gas chromatographically. The data were analysed by the N s (mole fraction of the organic solvent in the resin phase) vs n t au (total solvent content in the resin phase) plots and separation factor, alpha(ratio of mole fraction of the solvents in the resin and solution phases) or N s vs m (molality in the resin phase) plots. The limiting values of these plots gave the composition of the solvent in the primary solvation shell around the single ion. The compositions of the primary solvation shell around Li + , Na + , and K + in methanol-water mixtures and Na + and Ag + in acetonitrile (AN) - water mixtures have been computed using Franks equation and the approach of Marcus and compared with the experimental results obtained with the above mentioned ionic forms of Dowex 50W resins in different mixed solvents. The experimental results for Li + showed good agreement with the values computed using Franks equation for all methanol-water composition. However, in the case of Na + and K + in methanol-water mixtures and Na + in AN-water mixtures, there was agreement only at lower organic solvent content and the Franks equation predicted higher values for the organic solvent in the primary solvation shell around the cation at higher organic solvent content as compared to experimental results

  17. The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture

    International Nuclear Information System (INIS)

    Berthier, L; Kob, W

    2007-01-01

    We use a standard Monte Carlo algorithm to study the slow dynamics of a binary Lennard-Jones glass-forming mixture at low temperature. We find that the Monte Carlo approach is by far the most efficient way to simulate a stochastic dynamics since the relaxation is about 10 times faster than in Brownian dynamics and about 30 times faster than in stochastic dynamics. Moreover, the average dynamical behaviour of the system is in quantitative agreement with that obtained using Newtonian dynamics, apart from at very short times where thermal vibrations are suppressed. We show, however, that dynamic fluctuations quantified by four-point dynamic susceptibilities do retain a dependence on the microscopic dynamics, as recently predicted theoretically

  18. Ultrasonic absorption and velocity dispersion of binary mixture liquid crystal MBBA/EBBA

    International Nuclear Information System (INIS)

    Choi, K.

    1979-01-01

    The effect of phase transitions and the partial magnetic alignment for liquid crystal molecules on the ultrasonic absorption and velocity dispersion has been investigated. The binary mixture of Shiff base liquid crystals MBBA/EBBA (55:45 mole %) showed anomalous ultrasonic absorption and velocity dispersion at eutectic (Tsub(m) = -20 0 C) and clearing point (Tsub(c) = 50 0 C) at the frequency range of 5 MHz, 10MHz, 15MHz and 30 MHz. The experimental data were analyzed in terms of relaxation time and Fixman theory. The anisotropy of the propagation velocity due to the magnetic alignment was about 0.9% (the deviation between velocities propagating parallel and perpendicular to the applied field). (author)

  19. Glass transition behavior of octyl β-D-glucoside and octyl β-D-thioglucoside/water binary mixtures.

    Science.gov (United States)

    Ogawa, Shigesaburo; Asakura, Kouichi; Osanai, Shuichi

    2010-11-22

    The lyotropic behavior and glass-forming properties of octyl β-D-glucoside (C8Glu) and octyl β-D-thioglucoside (C8SGlu)/water binary mixtures were evaluated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The results clearly indicate that the mixture forms a glass in the supercooling state of liquid crystalline phases such as cubic, lamellar, and smectic. The glass transition temperature (T(g)) of the mixture was strongly dependent on solute concentration, with a higher concentration correlating with a higher T(g). The experimental T(g) was consistent with the predicted value calculated using the Couchman-Karasz equation in both the C8Glu and C8SGlu/water mixtures. The change of heat capacity at T(g) showed the two bending points under variation of concentrations. And the highest temperature of phase transition from lamellar to isotropic solution was observed at around 50% molar concentration. It was expected that non-percolated state of water existed in extremely higher concentration ranges. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Enthalpies of solution of ampicillin, amoxycillin and their binary mixtures at 310.15 K.

    Science.gov (United States)

    Jain, D V; Kashid, N; Kapoor, S; Chadha, R

    2000-05-15

    Enthalpies of solutions of ampicillin, amoxycillin and their binary mixtures have been determined at pH 2, 5, and 7 using C-80 calorimeter. The systems showed endothermic behaviour; molar enthalpies of solutions of ampicillin were determined to be 13.32, 15.89 and 23.21 kJ mol(-1) and amoxycillin were 16.32, 18.45 and 26. 25 kJ mol(-1) at pH 2, 5, and 7, respectively. The excess molar enthalpies of solution have also been calculated to find any interaction between these two drugs.

  1. Experimental determination and prediction of liquid-solid equilibria for binary (methyl palimitate + naphthalene mixture

    Directory of Open Access Journals (Sweden)

    Benziane M.

    2013-07-01

    Full Text Available Solid-liquid equilibria for binary mixtures of {Methyl palmitate (1 + Naphthalene (2} were measured using differential scanning calorimeter (DSC. Simple eutectic behaviours for this system are observed. The experimental results were correlated by means of the NRTL, Wilson, UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.5477 K (for UNIQUAC model to 3.34K; the deviation depend on the model used. The best solubility correlation was obtained with UNIQUAC model and this observation confirms previous results.

  2. Spectral luminescence studies of eosin solvation in water-alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ketsle, G.A.; Levshin, L.V.; Mel' nikov, G.V.; Saletskii, A.M.

    1987-11-01

    The authors investigate the effects of solvation of eosin molecules in binary water-propanol mixtures with the goal of assessing eosin as a candidate dye laser material. The fluorescence was measured with a Hitachi spectrofluorimeter and the absorption spectra were taken on a Specord spectrophotometer. Absorption and fluorescence were measured for different amounts of propanol in the solvent. Data are also given on excitation and de-excitation kinetics between ground and excited states. Values for quantum yields of fluorescence and phosphorescence, average excited state lifetime, and molecular volume of the dye with the solvated shell are tabulated.

  3. Ion-molecule reactions in the binary mixture of ethylene oxide and trioxane, 2

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Arakawa, Kazuo; Sugiura, Toshio.

    1978-01-01

    The ion-molecule reactions in the binary mixture of ethylene oxide and trioxane have been studied with use of a modified time-of-flight mass spectrometer. As cross-reaction product ions, C 3 H 5 O 2 + , C 3 H 6 O 2 +sup(, and C**3**H**7**O**2**)+sup( were observed under the conditions of long delay times and elevated pressure. It was found that these ions are formed by the dissociation of unstable intermediate-complex resulting from the reaction of ethylene oxide molecular ion with trioxane. It was proposed that the complex is of cyclic structure in which positive charge is delocalized. From the consideration of isotopic distribution of the product ions in ethylene-d**4** oxide-trioxane mixtures, the skeletal structures of the product ions were investigated. The rate constants of the formation reactions of C**3**H**5**O**2**)+sup(, C**3**H**6**O**2**)+sup(, and C**3**H**7**O**2**)+sup( in ethylene oxide-trioxane mixtures were found to be 2.20 x 10)-10sup(, 2.61 x 10)-10sup(, and 1.74 x 10)-10sup( cm)3sup( molecule)-1sup(s)-1 , respectively. (auth.)

  4. Osmotic Suppression of Positional Fluctuation of a Trapped Particle in a Near-Critical Binary Fluid Mixture in the Regime of the Gaussian Model

    Science.gov (United States)

    Fujitani, Youhei

    2017-11-01

    Suppose a spherical colloidal particle surrounded by a near-critical binary fluid mixture in the homogeneous phase. The particle surface usually preferentially attracts one component of the mixture, and the resultant concentration gradient, which causes the osmotic pressure, becomes significant in the ambient near-criticality. The concentration profile is deformed by the particle motion, and can generate a nonzero force exerted on the moving particle. This link was previously shown to slightly suppress the positional equal-time correlation of a particle trapped by a harmonic potential. This previous study presupposed a small fluctuation amplitude of a particle much larger than the correlation length, a weak preferential attraction, and the Gaussian model for the free-energy functional of the mixture. In the present study, we calculate the equal-time correlation without assuming the weak preferential attraction and show that the suppression becomes much more distinct in some range of the trap stiffness because of the increased induced mass. This suggests the possible experimental usage of a trapped particle as a probe for local environments of a near-critical binary fluid mixture.

  5. Thermodynamic and Interfacial Properties of DTABr/CTABr Mixed Surfactant Systems in Ethanolamine/Water Mixtures: A Conductometry Study

    OpenAIRE

    Esan, Olaseni Segun; Osundiya, Medinat Olubunmi; Aboluwoye, Christopher Olumuyiwa; Olanrewaju, Owoyomi; Ige, Jide

    2013-01-01

    Mixed-micelle formation in the binary mixtures of dodecyltrimethylammonium bromide (DTABr) and cetyltrimethylammonium bromide (CTABr) surfactants in water-ethanolamine mixed solvent systems has been studied by conductometric method in the temperature range of 298.1 to 313.1 K at 5 K intervals. It was observed that the presence of ethanolamine forced the formation of mixed micelle to lower total surfactant concentration than in water only. The synergistic interaction was quantitatively investi...

  6. The solvation of L-serine in mixtures of water with some aprotic solvents at 298.15 K

    Science.gov (United States)

    Mezhevoi, I. N.; Badelin, V. G.

    2009-03-01

    The integral enthalpies of solution Δsol H m of L-serine in mixtures of water with acetonitrile, 1,4-dioxane, dimethylsulfoxide (DMSO), and acetone were measured by solution calorimetry at organic component concentrations up to 0.31 mole fractions. The standard enthalpies of solution (Δsol H°), transfer (Δtr H°), and solvation (Δsolv H°) of L-serine from water into mixed solvents were calculated. The dependences of Δsol H°, Δsolv H°, and Δtr H° on the composition of aqueous-organic solvents contained extrema. The calculated enthalpy coefficients of pair interactions of the amino acid with cosolvent molecules were positive and increased in the series acetonitrile, 1,4-dioxane, DMSO, acetone. The results obtained were interpreted from the point of view of various types of interactions in solutions and the influence of the nature of organic solvents on the thermochemical characteristics of solutions.

  7. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Carareto, Natália D.D. [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil); Santos, Adenílson O. dos [Social Sciences, Health and Technology Center, University of Maranhão, UFMA, CEP 65900-410 Imperatriz, MA (Brazil); Rolemberg, Marlus P. [Institute of Science and Technology, University of Alfenas, UNIFAL, Rodovia José AurélioVilela, CEP 37715400 Poços de Caldas, MG (Brazil); Cardoso, Lisandro P. [Institute of Physics GlebWataghin, University of Campinas, UNICAMP, C.P. 6165, CEP 13083-970 Campinas, SP (Brazil); Costa, Mariana C. [School of Applied Science, University of Campinas, UNICAMP, CEP 13484-350 Limeira, SP (Brazil); Meirelles, Antonio J.A., E-mail: tomze@fea.unicamp.br [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil)

    2014-08-10

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min{sup −1} and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state.

  8. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    International Nuclear Information System (INIS)

    Carareto, Natália D.D.; Santos, Adenílson O. dos; Rolemberg, Marlus P.; Cardoso, Lisandro P.; Costa, Mariana C.; Meirelles, Antonio J.A.

    2014-01-01

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min −1 and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state

  9. Micellization behaviour and thermodynamic parameters of 12-2-12 gemini surfactant in (water + organic solvent) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: hakbas34@yahoo.com [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)

    2011-09-15

    Highlights: > The cmc and {alpha} values of surfactant increased with increasing solvent content and temperature. > The values of ({Delta}G{sub m}{sup 0}) are negative in all cases for the micelle formation becomes less favourable. > The values of negative enthalpy indicate importance of the London dispersion forces for the micellization. > The positive entropy is due to a contribution supplied from the solvent. - Abstract: The effect of organic solvents on micellization behaviour and thermodynamic parameters of a cationic gemini (dimeric) surfactant, C{sub 12}H{sub 25}(CH{sub 3}){sub 2}N{sup +}-(CH{sub 2}){sub 2}-N{sup +}(CH{sub 3}){sub 2}C{sub 12}H{sub 25}.2Br{sup -}, (12-2-12) was studied in aqueous solutions over the range of T = (293.15 to 323.15) K using the conductometric technique. Ethylene glycol (EG), dimethylsulfoxide (DMSO) and 1,4-dioxan (DO) were used as organic solvents with three different contents. The critical micelle concentration (cmc) and the degree of counter ion dissociation ({alpha}) of micelles in the water and in the (water + organic solvent) mixtures including 10%, 20%, and 30% solvent contents were determined. The standard Gibbs free energy ({Delta}G{sub m}{sup 0}), enthalpy ({Delta}H{sub m}{sup 0}) and entropy ({Delta}S{sub m}{sup 0}) of micellization were estimated from the temperature dependence of the cmc values. It was observed that the critical micelle concentration of the gemini surfactant and the degree of counter ion dissociation of the micelle increased as the volume percentage of organic solvent, and temperature increased. The standard Gibbs free energy of micellization was found to be less negative with the increase in the organic solvent content and temperature.

  10. Essential Oils of Hyptis pectinata Chemotypes: Isolation, Binary Mixtures and Acute Toxicity on Leaf-Cutting Ants.

    Science.gov (United States)

    Feitosa-Alcantara, Rosana B; Bacci, Leandro; Blank, Arie F; Alves, Péricles B; Silva, Indira Morgana de A; Soares, Caroline A; Sampaio, Taís S; Nogueira, Paulo Cesar de L; Arrigoni-Blank, Maria de Fátima

    2017-04-12

    Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides.

  11. Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio)

    DEFF Research Database (Denmark)

    Keiter, Susanne; Baumann, Lisa; Farber, H

    2012-01-01

    aimed at evaluating the long-term effects and toxicity-increasing behavior of PFOS in vivo using the zebrafish (Danio rerio). Fish were maintained in flow-through conditions and exposed to single and binary mixtures of PFOS and the endocrine disruptor bisphenol A (BPA) at nominal concentrations of 0...

  12. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S

    2018-04-05

    The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.

  13. Experimental and theoretical excess molar enthalpies of ternary and binary mixtures containing 2-Methoxy-2-Methylpropane, 1-propanol, heptane

    International Nuclear Information System (INIS)

    Mato, Marta M.; Cebreiro, Susana M.; Paz Andrade, María Inmaculada; Legido, José Luis

    2013-01-01

    Highlights: • Experimental enthalpies for the ternary system MTBE + propanol + heptane were measured. • No experimental ternary values were found in the currently available literature. • Experimental enthalpies for the binary system propanol + heptane were measured. • Excess molar enthalpies are positive over the whole range of composition. • The ternary contribution is also positive, and the representation is asymmetric. -- Abstract: Excess molar enthalpies, at the temperature of 298.15 K and atmospheric pressure, have been measured for the ternary system {x 1 2-Methoxy-2-Methylpropane (MTBE) + x 2 1-propanol + (1 − x 1 − x 2 ) heptane}, over the whole composition range. Also, experimental data of excess molar enthalpy for the involved binary mixture {x 1-propanol + (1 − x) heptane} at the 298.15 K and atmospheric pressure, are reported. We are not aware of any previous experimental measurement of excess enthalpy in the literature for the ternary system presented in this study. Values of the excess molar enthalpies were measured using a Calvet microcalorimeter. The ternary contribution to the excess enthalpy was correlated with the equation due to Morris et al. (1975) [15], and the equation proposed by Myers–Scott (1963) [14] was used to fitted the experimental binary mixture measured in this work. Additionally, the experimental results are compared with the estimations obtained by applying the group contribution model of UNIFAC, in the versions of Larsen et al. (1987) [16] and Gmehling et al. (1993) [17]. Several empirical expressions for estimating ternary properties from binary results were also tested

  14. Physical compatibility of binary and ternary mixtures of morphine and methadone with other drugs for parenteral administration in palliative care.

    Science.gov (United States)

    Destro, Massimo; Ottolini, Luca; Vicentini, Lorenza; Boschetti, Silvia

    2012-10-01

    The parenteral administration of combinations of drugs is often necessary in palliative medicine, particularly in the terminal stage of life, when patients are no longer able to take medication orally. The use of infusers to administer continuous subcutaneous infusions is a well-established practice in the palliative care setting and enables several drugs to be given simultaneously, avoiding the need for repeated administrations and the effects of peaks and troughs in the doses of medication. The method is also appreciated by patients and caregivers in the home care setting because the devices and infusion sites are easy to manage. Despite their frequent use, however, the mixtures of drugs adopted in clinical practice are sometimes not supported by reliable data concerning their chemical and physical compatibility. The present study investigates the chemical compatibility of binary mixtures (morphine with ketorolac) and the physical compatibility of binary (morphine or methadone with ketorolac) or ternary mixtures (morphine with ketorolac and/or haloperidol, and/or dexamethasone, and/or metoclopramide, and/or hyoscine butylbromide) with a view to reducing the aleatory nature of the empirical use of such combinations, thereby increasing their safety and clinical appropriateness.

  15. Solvent-free ZnO dye-sensitised solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, E.; Anta, J.A. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla (Spain); Fernandez-Lorenzo, C.; Alcantara, R.; Martin-Calleja, J. [Departamento de Quimica Fisica, Universidad de Cadiz, Cadiz (Spain)

    2009-10-15

    Dye-sensitised solar cells (DSSC) based on commercial nanostructured zinc oxide combined with imidazolium-based room temperature ionic-liquid electrolytes are characterized. The electrolytes are based on a binary mixture of two ionic liquids, one of them used as source of iodide ions. The composition of this solvent-free electrolyte is optimized with respect to the concentration of iodine and iodide and the effect of additives such as lithium and tert-butylpyridine (TBP) on the photovoltaic performance and the recombination rate is analyzed and discussed. A maximum photoconversion efficiency of 3.4% at 1 sun illumination has been obtained for cells of 0.64 cm{sup 2} active area with the best performing compositions. Diffusion limitations due to slow transport processes are analyzed and discussed. (author)

  16. Falling film evaporators: organic solvent regeneration in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Garcin, I.

    1989-01-01

    The aim of this work was to improve knowledge about working of falling film evaporators used in nuclear fuel reprocessing plants for organic solvent regeneration. The first part deals with a non evaporation film. An original film thickness measuring technique was used; infrared thermography. It gave indications on hydrodynamics and wave amplitude and pointed out thermocapillary forces to be the cause of bad wetting of the heated wall. By another way we showed that a small slit spacing on the film distributor, an enhanced surface roughness and an important liquid flow rate favour a better wetting. The second part deals with evaporation of a binary solvent mixture. Experiments in an industrial evaporator corroborated the fact that it is essential for the efficiency of the apparatus to work at high flow rates. We propose an over-simple model which can be used to estimate performances of co-current falling film evaporators of the process [fr

  17. Antagonism in the extraction of uranium(VI) by the binary mixture of PC88A and benzimidazole

    International Nuclear Information System (INIS)

    Mukherjee, A.; Kamila, S.; Chakravortty, V.

    1999-01-01

    Extraction studies of uranium(VI) by the binary mixture of PC88A and benzimidazole show an antagonistic behavior in the concentration range 10 -5 -10 -6 M of PC88A and 0.005M of benzimidazole. Antagonism is observed due to the deprotonation of PC88A by benzimidazole forming an adduct resulting in the virtual removal of PC88A from the system. (author)

  18. The wetting of planar solid surfaces by symmetric binary mixtures near bulk gas-liquid coexistence

    International Nuclear Information System (INIS)

    Woywod, Dirk; Schoen, Martin

    2004-01-01

    We investigate the wetting of planar, nonselective solid substrates by symmetric binary mixtures where the attraction strength between like molecules of components A and B is the same, that is ε AA ε BB AB vertical bar ≤ vertical bar ε AA vertical bar, that is by varying the attraction between a pair of unlike molecules. By means of mean-field lattice density functional calculations we observe a rich wetting behaviour as a result of the interplay between ε AB and the attraction of fluid molecules by the solid substrate ε W . In accord with previous studies we observe complete wetting only above the critical end point if the bulk mixture exhibits a moderate to weak tendency to liquid-liquid phase separation even for relatively strong fluid-substrate attraction. However, in this case layering transitions may arise below the temperature of the critical end point. For strongly phase separating mixtures complete wetting is observed for all temperatures T ≥0 along the line of discontinuous phase transitions in the bulk

  19. Sedimentation stacking diagram of binary colloidal mixtures and bulk phases in the plane of chemical potentials

    International Nuclear Information System (INIS)

    Heras, Daniel de las; Schmidt, Matthias

    2015-01-01

    We give a full account of a recently proposed theory that explicitly relates the bulk phase diagram of a binary colloidal mixture to its phase stacking phenomenology under gravity (de las Heras and Schmidt 2013 Soft Matter 9 8636). As we demonstrate, the full set of possible phase stacking sequences in sedimentation-diffusion equilibrium originates from straight lines (sedimentation paths) in the chemical potential representation of the bulk phase diagram. From the analysis of various standard topologies of bulk phase diagrams, we conclude that the corresponding sedimentation stacking diagrams can be very rich, even more so when finite sample height is taken into account. We apply the theory to obtain the stacking diagram of a mixture of nonadsorbing polymers and colloids. We also present a catalog of generic phase diagrams in the plane of chemical potentials in order to facilitate the practical application of our concept, which also generalizes to multi-component mixtures. (paper)

  20. Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures

    International Nuclear Information System (INIS)

    Lee, M.W.; Neufeld, P.; Bigeleisen, J.

    1977-01-01

    An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory

  1. Study of Physical Properties for Sodium acetate with Water and Water - Acetone mixtures at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Ahmed Mohammed Abbas

    2017-02-01

    Full Text Available In this study binary and ternary solutions are prepared by using the sodium acetate concentrations (0.1, 0.125, 0.2, 0.25, 0.4, 0.5, 0.8, 1 M in water and acetone –water mixtures .The important parameters such as apparent molal volume, the partial molal volume transfer,  apparent  molal compressibility, free energy of activation of viscous flow and thermodynamic activation parameter (enthalpy and entropy determined of sodium acetate in water , 20%, 40% ,60% and 80% V/V acetone –water mixtures at 298.15K, 303.15K, and 308.15K from density and viscosity measurements espectively. The limiting apparent molal volumes and experimental slopes were derived from the Masson equation, have been interpreted in terms of solute–solvent and solute–solute interactions  respectively. The viscosity data were analyzed using theJones–Dole equation and the derived parameter B - coefficient has also been interpreted in terms of solute–solvent interactions in the solutions.

  2. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules

    International Nuclear Information System (INIS)

    Cao, Siqin; Sheong, Fu Kit; Huang, Xuhui

    2015-01-01

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute

  3. Very low velocity ion slowing down in binary ionic mixtures: Charge- and mass-asymmetry effects

    Directory of Open Access Journals (Sweden)

    Patrice Fromy

    2010-10-01

    Full Text Available A binary ionic mixture (BIM in dense and hot plasmas of specific concern for inertial confinement fusion and white dwarf crust is considered as a target for incoming light ions with a velocity smaller than the thermal electron one. The given target stopping power, mostly BIM monitored, is specifically studied in terms of charge and mass asymmetry in its ionic component. The classical plasma target is worked out within a dielectric framework, and scanned with respect to density, temperature, and BIM composition.

  4. Density, viscosity and excess molar volume of binary mixtures of tri-n-octylamine + diluents (n-heptane, n-octane, n-nonane, and n-decane) at various temperatures

    International Nuclear Information System (INIS)

    Fang, Sheng; Zuo, Xiao-Bo; Xu, Xue-Jiao; Ren, Da-Hai

    2014-01-01

    Highlights: • Densities and viscosities of tri-n-octylamine + n-heptane, +n-octane, +n-nonane, or +n-decane are determined. • The excess molar volume is calculated. • The Grunberg and Nissan equation and Fang and He equation are used to correlate the binary viscosities. -- Abstract: Densities (ρ) and viscosities (η) for binary mixtures of tri-n-octylamine (TOA) + n-heptane, TOA + n-octane, TOA + n-nonane, and TOA + n-decane are determined at T (283.15, 293.15, and 303.15) K and atmospheric pressure. The excess molar volume is calculated from the density data and is correlated by a Redlich–Kister type equation. The excess molar volume is negative for all the four systems. The results show that the volume accommodation effect is predominant in these systems. The Grunberg and Nissan equation and Fang and He equation for binary mixtures are used to correlate the experimental viscosity data. The Fang and He equation gives an average absolute deviation (AAD%) of 0.8% for TOA with alkane mixtures, better than that of 3.8% given by the Grunberg and Nissan equation

  5. Thermodynamic properties of binary mixtures of tetrahydropyran with pyridine and isomeric picolines: Excess molar volumes, excess molar enthalpies and excess isentropic compressibilities

    International Nuclear Information System (INIS)

    Saini, Neeti; Jangra, Sunil K.; Yadav, J.S.; Sharma, Dimple; Sharma, V.K.

    2011-01-01

    Research highlights: → Densities, ρ and speeds of sound, u of tetrahydropyran (i) + pyridine or α-, β- or γ-picoline (j) binary mixtures at 298.15, 303.15 and 308.15 K and excess molar enthalpies, H E of the same set of mixtures at 308.15 K have been measured as a function of composition. → The observed densities and speeds of sound values have been employed to determine excess molar volumes, V E and excess isentropic compressibilities, κ S E . → Topology of the constituents of mixtures has been utilized (Graph theory) successfully to predict V E , H E and κ S E data of the investigated mixtures. → Thermodynamic data of the various mixtures have also been analyzed in terms of Prigogine-Flory-Patterson (PFP) theory. - Abstract: Densities, ρ and speeds of sound, u of tetrahydropyran (i) + pyridine or α-, β- or γ- picoline (j) binary mixtures at 298.15, 303.15 and 308.15 K and excess molar enthalpies, H E of the same set of mixtures at 308.15 K have been measured as a function of composition using an anton Parr vibrating-tube digital density and sound analyzer (model DSA 5000) and 2-drop micro-calorimeter, respectively. The resulting density and speed of sound data of the investigated mixtures have been utilized to predict excess molar volumes, V E and excess isentropic compressibilities, κ S E . The observed data have been analyzed in terms of (i) Graph theory; (ii) Prigogine-Flory-Patterson theory. It has been observed that V E , H E and κ S E data predicted by Graph theory compare well with their experimental values.

  6. (Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa

    International Nuclear Information System (INIS)

    Qian, Guo-fei; Liu, Wen; Wang, Li-tao; Wang, Dao-cai; Song, Hang

    2013-01-01

    Highlights: • We adopted a new extractive solvent “ethylene glycol” to separate the mixture. • We measured the VLE data of binary system n-propanol + ethylene glycol. • We reinforce the VLE data of binary system acetonitrile + ethylene glycol. • We predicted the VLE data for the ternary system successfully. -- Abstract: Experimental isobaric (Vapour + liquid) equilibrium (VLE) data at 101.3 kPa were determined for three binary systems, viz. {acetonitrile (1) + n-propanol (2)}, {acetonitrile (1) + ethylene glycol (3)} and {n-propanol (2) + ethylene glycol (3)} and for one ternary system {acetonitrile (1) + n-propanol (2) + ethylene glycol (3)}. The measurements were performed using an improved Rose equilibrium still. The VLE data of the binary systems passed thermodynamic consistency tests and were correlated by Wilson and NRTL models. Good results were achieved. The phase behaviour of the ternary system was predicted directly by the parameters of two models obtained from the experimental binary results. The results showed an excellent agreement with experimental values

  7. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  8. Batch extracting process using magnetic particle held solvents

    Science.gov (United States)

    Nunez, L.; Vandergrift, G.F.

    1995-11-21

    A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.

  9. Solubility of disodium cytidine 5′-monophosphate in different binary mixtures from 288.15 K to 313.15 K

    International Nuclear Information System (INIS)

    Yu, Jin; Ma, Tianle; Li, An; Chen, Xiaochun; Chen, Yong; Xie, Jingjing; Wu, Jinglan; Ying, Hanjie

    2013-01-01

    Highlights: • Solubility of 5′-CMPNa 2 in different systems was measured the first time. • Experimental data were correlated by CNIBS/Redlich–Kister model and Apelblat model. • Good agreement has been observed between the calculated and the experimental data. • Enthalpy and entropy were calculated by the van’t Hoff equation and Gibbs equation. - Abstract: The solubility of disodium cytidine 5′-monophosphate (5′-CMPNa 2 ) in methanol + water and ethanol + water binary mixtures was measured experimentally at the temperatures ranging from 288.15 to 313.15 K. The results showed that the solubility of 5′-CMPNa 2 increased with the increasing of temperature and the mole fraction of water in different binary mixtures. The (CNIBS)/Redlich–Kister model and the semi-empirical Apelblat model were applied for the prediction of the experimental data. Both models could give satisfactory simulation results. In addition, the thermodynamic properties of the dissolution process such as Gibbs energy, enthalpy, and entropy were calculated using the van’t Hoff equation and the Gibbs equation. The results indicated that the dissolution process was endothermic

  10. An evaluation of three-dimensional modeling of compaction cycles by analyzing the densification behavior of binary and ternary mixtures.

    Science.gov (United States)

    Picker, K M; Bikane, F

    2001-08-01

    The aim of the study is to use the 3D modeling technique of compaction cycles for analysis of binary and ternary mixtures. Three materials with very different deformation and densification characteristics [cellulose acetate (CAC), dicalcium phosphate dihydrate (EM) and theophylline monohydrate (TM)] have been tableted at graded maximum relative densities (rhorel, max) on an eccentric tableting machine. Following that, graded binary mixtures from CAC and EM have been compacted. Finally, the same ratios of CAC and EM have been tableted in a ternary mixture with 20 vol% TM. All compaction cycles have been analyzed by using different data analysis methods. Three-dimensional modeling, conventional determination of the slope of the Heckel function, determination of the elastic recovery during decompression, and calculations according to the pressure-time function were the methods of choice. The results show that the 3D model technique is able to gain the information in one step instead of three different approaches, which is an advantage for formulation development. The results show that this model enables one to better distinguish the compaction properties of mixtures and the interaction of the components in the tablet than 2D models. Furthermore, the information by 3D modeling is more precise since in the slope K of the Heckel-plot (in die) elasticity is included, and in the parameters of the pressure-time function beta and gamma plastic deformation due to pressure is included. The influence of time and pressure on the displacement can now be differentiated.

  11. Volumetric and transport properties of binary liquid mixtures of sulfolane with aniline, N,N-dimethylaniline and N,N-diethylaniline at different temperatures and atmospheric pressure

    International Nuclear Information System (INIS)

    Aftabuzzaman, M.; Islam, M. Monirul; Nasiruddin; Rima, Farhana Rahman; Islam, M. Nazrul; Ali, M. Azhar

    2016-01-01

    Highlights: • ρ and η of sulfolane + aniline, +N,N-DMA, +N,N-DEA binary mixtures were measured. • V"E values for sulfolane + aniline, +N,N-DMA, +N,N-DEA binary mixtures are negative. • Δη &d_1_2 are positive for sulfolane + aniline, and negative for +N,N-DMA, +N,N-DEA. • The chemical or strong specific interactions exist in sulfolane + aniline mixtures. • The structural effects are dominated in sulfolane +N,N-DMA, +N,N-DEA mixtures.​ - Abstract: Densities and viscosities of pure sulfolane, aniline, N,N-dimethylaniline, N,N-diethylaniline and their binary mixtures with sulfolane as common component were measured over the entire composition range at T = (303.15, 308.15, and 313.15) K and atmospheric pressure. A high precision vibrating-tube densitometer (DSA 5000, Anton-Paar, Austria) was used for the density measurements and a Cannon–Fenske routine type viscometer for the viscosity. The various thermodynamic properties such as excess molar volumes, deviation of viscosity, free energy and excess free energy of activation for viscous flow were calculated for each of the systems. The excess properties were fitted to the Redlich–Kister equation, and coefficients along with standard deviation of fit were also presented. All these properties were discussed in terms of molecular interactions. The experimental findings would be tremendous important for the accurate design of equipment, and controlling the process parameters of various chemical and industrial processes such as separation of chemicals, fluid flow, heat flow or chemical reactions.

  12. Modeling of columnar and equiaxed solidification of binary mixtures

    International Nuclear Information System (INIS)

    Roux, P.

    2005-12-01

    This work deals with the modelling of dendritic solidification in binary mixtures. Large scale phenomena are represented by volume averaging of the local conservation equations. This method allows to rigorously derive the partial differential equations of averaged fields and the closure problems associated to the deviations. Such problems can be resolved numerically on periodic cells, representative of dendritic structures, in order to give a precise evaluation of macroscopic transfer coefficients (Drag coefficients, exchange coefficients, diffusion-dispersion tensors...). The method had already been applied for a model of columnar dendritic mushy zone and it is extended to the case of equiaxed dendritic solidification, where solid grains can move. The two-phase flow is modelled with an Eulerian-Eulerian approach and the novelty is to account for the dispersion of solid velocity through the kinetic agitation of the particles. A coupling of the two models is proposed thanks to an original adaptation of the columnar model, allowing for undercooling calculation: a solid-liquid interfacial area density is introduced and calculated. At last, direct numerical simulations of crystal growth are proposed with a diffuse interface method for a representation of local phenomena. (author)

  13. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    Science.gov (United States)

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-05

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  14. Study of complex formation process between 4′-nitrobenzo-18-crown-6 and yttrium(III cation in some binary mixed non-aqueous solvents using the conductometry method

    Directory of Open Access Journals (Sweden)

    Mahboobeh Vafi

    2017-07-01

    Full Text Available The complexation reaction between Y3+ cation and macrocyclic ligand, 4′-nitrobenzo-18-crown-6 (4′NB18C6, was studied in acetonitrile–methanol (AN–MeOH, acetonitrile–1,2-dichloroethane (AN–DCE, acetonitrile–dimethylformamide (AN–DMF and acetonitrile–ethylacetate (AN–EtOAc binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that in most cases, the stoichiometry of the complex formed between 4′NB18C6 and Y3+ cation is 1:1 [M:L], but in the case of AN-DCE binary solution (mol% DCE = 50 at 15, 25 and 35 °C, a 2:1 [M2:L] and also a 2:2 [M2:L2] complexes are formed in solution. The results show that the stoichiometry of the complex formed between 4′NB18C6 and Y3+ cation changes with the composition of the mixed solvents and even with temperature. The stability constant of the 1:1 complex was determined using a computer program, GENPLOT. The stability order of (4′NB18C6.Y3+ complex in pure studied solvents at 25 °C was found to be: EtOAc > AN > MeOH > DMF and in the case of the mixed solvent solutions with 25 mol percent of AN at 25 °C was: AN-DCE > AN-EtOAc > AN-MeOH ∼ AN-DMF. The values of stability constant (logKf of (4′NB18C6.Y3+ complex which were obtained from conductometric data, show that the stability of the complex is not only affected by the nature and composition of the solvent system, but it is also influenced by the temperature. In all cases, a non-linear behavior is observed for changes of logKf of the (4′NB18C6.Y3+ complex versus the composition of the binary mixed solvents. The values of standard thermodynamic quantities (ΔH°c and ΔS°c for the complexation process which were obtained from temperature dependence of the stability constant of (4′NB18C6.Y3+ complex, show that depending on the solvent system, in most cases, the complex is enthalpy and also entropy stabilized, but in some cases, it is stabilized or

  15. Isothermal (vapour + liquid) equilibrium for binary mixtures of polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, or 2-propanol

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2011-01-01

    Highlights: → An autoclave apparatus was used for binary (vapour + liquid) equilibrium data measurement. → The studied systems are polyethylene glycol mono-4-nonylphenyl ether with alcohols. → The saturated pressure data were fitted accurately to the Antoine equation. → The NRTL model correlated well the phase equilibrium data. → The solvent activities have been calculated. - Abstract: Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.

  16. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  17. Pharmacokinetic and pharmacodynamic interaction for a binary mixture of chlorpyrifos and diazinon in the rat

    International Nuclear Information System (INIS)

    Timchalk, C.; Poet, T.S.; Hinman, M.N.; Busby, A.L.; Kousba, A.A.

    2005-01-01

    Chlorpyrifos (CPF) and diazinon (DZN) are two commonly used organophosphorus (OP) insecticides and a potential exists for concurrent exposures. The primary neurotoxic effects from OP pesticide exposures result from the inhibition of acetylcholinesterase (AChE). The pharmacokinetic and pharmacodynamic impact of acute binary exposures of rats to CPF and DZN was evaluated in this study. Rats were orally administered CPF, DZN, or a CPF/DZN mixture (0, 15, 30, or 60 mg/kg) and blood (plasma and RBC), and brain were collected at 0, 3, 6, 12, and 24 h postdosing, urine was also collected at 24 h. Chlorpyrifos, DZN, and their respective metabolites, 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP), were quantified in blood and/or urine and cholinesterase (ChE) inhibition was measured in brain, RBC, and plasma. Coexposure to CPF/DZN at the low dose of 15/15 mg/kg did not alter the pharmacokinetics of CPF, DZN, or their metabolites in blood. A high binary dose of 60/60 mg/kg increased the C max and AUC and decreased the clearance for both parent compounds, likely due to competition between CPF and DZN for CYP450 metabolism. At lower doses, most likely to be encountered in occupational or environmental exposures, the pharmacokinetics were linear. A dose-dependent inhibition of ChE was noted in tissues for both the single and coexposures, and the extent of inhibition was plasma > RBC ≥ brain. The overall relative potency for ChE inhibition was CPF/DZN > CPF > DZN. A comparison of the ChE response at the low binary dose (15/15 mg/kg), where there were no apparent pharmacokinetic interactions, suggested that the overall ChE response was additive. These experiments represent important data concerning the potential pharmacokinetic and pharmacodynamic interactions for pesticide mixtures and will provide needed insight for assessing the potential cumulative risk associated with occupational or environmental exposures to these insecticides

  18. Excess molar volumes and refractive indices of (methoxybenzene+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T=(288.15 to 303.15)K

    International Nuclear Information System (INIS)

    Al-Kandary, Jasem A.; Al-Jimaz, Adel S.; Abdul-Latif, Abdul-Haq M.

    2006-01-01

    Densities ρ and refractive indices n D for (anisole+benzene, or toluene, or o-xylene, or m-xylene or p-xylene or mesitylene) binary mixtures over the entire range of mole fraction, at temperatures (288.15, 293.15, 298.15, and 303.15)K and atmospheric pressure, have been measured. The excess molar volume V E and molar refraction deviation ΔR m , have been calculated and fitted to the Redlich-Kister polynomial relation to estimate the binary coefficients and standard errors. The excess molar volumes are positive for (anisole+mesitylene) binary mixtures and negative for (anisole+benzene, or toluene, or xylene isomers) binary mixtures at various temperatures. Partial molar volumes V-bar i and partial excess molar volumes V-bar i E have been also derived from the experimental data. The calculated values have been used to explain the dependency of intermolecular interaction between the mixing components on the alkyl substitution on benzene ring

  19. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  20. The risk of hearing loss associated with occupational exposure to organic solvents mixture with and without concurrent noise exposure: A systematic review and meta-analysis.

    Science.gov (United States)

    Hormozi, Maryam; Ansari-Moghaddam, Alireza; Mirzaei, Ramazan; Dehghan Haghighi, Javid; Eftekharian, Fatemeh

    2017-06-19

    This study is a meta-analysis of the previous epidemiological studies which investigated the quantitative estimates of the association between independent or combined exposure to noise and mixed organic solvents and hearing loss until October 2014. Overall, 15 studies with information on 7530 individuals (6% female) were included. Having assessed - by puretone audiometry - the adjusted odds ratio estimates for the association between solvents mixture exposure and the risk of developing hearing loss stood at 2.05 (95% confidence interval (CI): 1.44-2.9). Similarly, for subjects who were concurrently exposed to noise and solvents mixture, an OR of 2.95 (95% CI: 2.1-4.17) was obtained. There was some evidence of heterogeneity within each of the 2 exposure groups (p heterogeneity hearing loss for workers exposed to organic solvents even at quite low concentration. Moreover, if such exposure is accompanied by noise, it will exacerbate the extent of hearing loss. Int J Occup Med Environ Health 2017;30(4):521-535. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  1. Synergistic solvent extraction of Eu(III) and Tb(III) with mixtures of various organophosphorus extractants

    International Nuclear Information System (INIS)

    Reddy, B.V.; Reddy, L.K.; Reddy, A.S.

    1994-01-01

    Synergistic solvent extraction of Eu(III) and Tb(III) from thiocyanate solutions with mixtures of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (EHPNA) and di-2-ethylhexylphosphoric acid (DEHPA) or tributyl phosphate (TBP) or trioctylphosphine oxide (TOPO) or triphenylphosphine oxide (TPhPO) in benzene has been studied. The mechanism of extraction can be explained by a simple chemically based model. The equilibrium constants of the mixed-ligand species of the various neutral donors have been determined by non-linear regression analysis. (author) 13 refs.; 9 figs.; 2 tabs

  2. Effect of the composition of a solution on the enthalpies of solvation of piperidine in methanol-acetonitrile and dimethylsulfoxide-acetonitrile mixed solvents

    Science.gov (United States)

    Kuz'mina, I. A.; Volkova, M. A.; Sitnikova, K. A.; Sharnin, V. A.

    2014-01-01

    Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H ○(ppd)AN-MeOH values obtained using the literature data on Δsol H ○ (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.

  3. Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Cárdenas, Zaira J.; Jiménez, Daniel M.; Delgado, Daniel R.; Almanza, Ovidio A.; Jouyban, Abolghasem; Martínez, Fleming; Acree, William E.

    2017-01-01

    Highlights: • Parabens equilibrium solubility was determined in methanol + water binary mixtures at 298.15 K. • Solubility values were correlated with the Jouyban-Acree model. • Preferential solvation parameters were derived by using the IKBI method. • δx 1,3 values are negative in water-rich mixtures but positive in the other mixtures. - Abstract: Methyl, ethyl and propyl parabens equilibrium solubility was determined in (methanol + water) binary mixtures at 298.15 K. The mole fraction solubility of these compounds increased in 503 (from 2.40 × 10 −4 to 0.121), 1377 (from 9.86 × 10 −5 to 0.136) and 4597 (from 3.73 × 10 −5 to 0.171) times when passing from neat water to neat methanol, for methyl, ethyl and propyl parabens, respectively. All these solubility values were correlated with the Jouyban-Acree model. Preferential solvation parameters by methanol (δx 1,3 ) of these parabens were derived from their thermodynamic solution properties using the inverse Kirkwood-Buff integrals (IKBI) method. For all compounds δx 1,3 values are negative in water-rich mixtures but positive in mixtures with methanol mole fraction greater than 0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of parabens plays a relevant role in the solvation. Besides, the preferential solvation of these solutes by methanol in mixtures of similar co-solvent compositions and in methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.

  4. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    DEFF Research Database (Denmark)

    Mishra, Jaya; Rades, Thomas; Löbmann, Korbinian

    2018-01-01

    Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA) mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated....... Mixtures of indomethacin (IND) and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a) ethanol and water mixtures and (b) acetone and water mixtures. Different ratios...... that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced...

  5. The performance of a residential heat pump operating with a nonazeotropic binary refrigerant mixture

    Science.gov (United States)

    Didion, D.; Mulroy, W.

    Results of laboratory measurement of the performance change of a substantially unmodified residential heat pump designed for 222 when charged with a non azeotropic, binary mixture of R1381 and R152a is presented. Results are presented for various sizes of fixed expansion devices. The effect of gliding temperature in the saturation zone was found to be small. The effect of compositions shift by flash distillation in the accumulator was found to measurably improve low temperature heating performance. It was further observed that some system modification (such as the addition of a receiver) could have further enhanced this low temperature heating performance improvement.

  6. Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Begona [Chemical Engineering Department, Vigo University, 36200 Vigo (Spain); Calvar, Noelia [Chemical Engineering Department, Vigo University, 36200 Vigo (Spain); Dominguez, Angeles [Chemical Engineering Department, Vigo University, 36200 Vigo (Spain)]. E-mail: admguez@uvigo.es; Tojo, Jose [Chemical Engineering Department, Vigo University, 36200 Vigo (Spain)

    2007-02-15

    In this work, dynamic viscosities, densities, and speed of sound have been measured over the whole composition range and 0.1 MPa for the binary mixtures (cyclopentane and cyclohexane with ethanol, 1-propanol, and 1-butanol) at several temperatures (293.15, 298.15, 303.15) K along with the properties of the pure components. Excess molar volumes, molar isentropic compression, excess molar isentropic compression, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. The interaction parameters of cycloalkanes with primary alcohol (CH{sub cy}/-OH) have been determined for their application in the predictive UNIFAC-VISCO method.

  7. Excess parameters for binary mixtures of ethyl benzoate with 1-propanol, 1-butanol and 1-pentanol at T=303, 308, 313, 318, and 323 K

    International Nuclear Information System (INIS)

    Sreehari Sastry, S.; Babu, Shaik; Vishwam, T.; Parvateesam, K.; Sie Tiong, Ha.

    2013-01-01

    Various thermo–acoustic parameters, such as excess isentropic compressibility (K s E ), excess molar volume (V E ), excess free length (L f E ), excess Gibb's free energy (ΔG *E ), and excess Enthalpy (H E ), have been calculated from the experimentally determined data of density, viscosity and speed of sound for the binary mixtures of ethyl benzoate+1-propanol, or +1-butanol, or +1-pentanol over the entire range of composition at different temperatures (303, 308, 313, 318 and 323 K). The excess functions have been fitted to the Redlich–Kister type polynomial equation. The deviations for excess thermo–acoustic parameters have been explained on the basis of the intermolecular interactions present in these binary mixtures

  8. Prediction of the binary density of the ILs+ water using back-propagated feed forward artificial neural network

    Directory of Open Access Journals (Sweden)

    Shojaee Safar Ali

    2014-01-01

    Full Text Available In this study, feasibility of a back-propagated artificial neural network to correlate the binary density of ionic liquids (ILs mixtures containing water as the common solvent has been investigated. To verify the optimized parameters of the neural network, total of 1668 data were collected and divided into two different subsets. The first subsets consisted of more than two-third (1251 data points of data bank was used to find the optimum parameters including weights and biases, number of neurons (7 neurons, transfer functions in hidden and output layer which were tansig and purelin, respectively. In addition, the correlative capability of network was examined using testing subset (417 data points not considered during the training stage. The overall obtained results revealed that the proposed network is accurate enough to correlate the binary density of the ionic liquids mixtures with average absolute relative deviation (AARD % and average relative deviation (ARD % of 1.56% and -0.04 %, respectively. Finally, the correlative capability of the proposed ANN model was compared with one of the available correlations proposed by Rodríguez and Brennecke.

  9. Relationships between surface coverage ratio and powder mechanics of binary adhesive mixtures for dry powder inhalers.

    Science.gov (United States)

    Rudén, Jonas; Frenning, Göran; Bramer, Tobias; Thalberg, Kyrre; Alderborn, Göran

    2018-04-25

    The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Coarse-grained modelling of triglyceride crystallisation: a molecular insight into tripalmitin tristearin binary mixtures by molecular dynamics simulations

    Science.gov (United States)

    Pizzirusso, Antonio; Brasiello, Antonio; De Nicola, Antonio; Marangoni, Alejandro G.; Milano, Giuseppe

    2015-12-01

    The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined.

  11. Coarse-grained modelling of triglyceride crystallisation: a molecular insight into tripalmitin tristearin binary mixtures by molecular dynamics simulations

    International Nuclear Information System (INIS)

    Pizzirusso, Antonio; De Nicola, Antonio; Milano, Giuseppe; Brasiello, Antonio; Marangoni, Alejandro G

    2015-01-01

    The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined. (paper)

  12. Generalisation to binary mixtures of the second gradient method and application to direct numerical simulation of nucleate boiling

    International Nuclear Information System (INIS)

    Fouillet, C.

    2003-01-01

    In this work, we simulate a nucleate boiling problem using direct numerical simulation. The numerical method used is the second gradient method based on a diffuse interface model which represents interfaces as volumetric regions of finite thickness across which the physical properties of the fluid vary continuously. First, this method is successfully applied to nucleate boiling of a pure fluid. Then, the model is extended to dilute binary mixtures. After studying its validity and its limits in simple configurations, it is then applied to nucleate boiling of a dilute mixture. These simulations show a strong decrease of the heat transfer coefficient as the concentration increases, in agreement with the numerous experimental studies published in this domain. (author) [fr

  13. Pattern selection near the onset of convection in binary mixtures in cylindrical cells

    International Nuclear Information System (INIS)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol

    2014-01-01

    We report numerical investigations of three-dimensional pattern formation of binary mixtures in a vertical cylindrical container heated from below. Negative separation ratio mixtures, for which the onset of convection occurs via a subcritical Hopf bifurcation, are considered. We focus on the dynamics in the neighbourhood of the initial oscillatory instability and analyze the spatio-temporal properties of the patterns for different values of the aspect ratio of the cell, 0.25≲Γ≲11 (Γ≡R/d, where R is the radius of the cell and d its height). Despite the oscillatory nature of the primary instability, for highly constrained geometries, Γ≲2.5, only pure thermal stationary modes are selected after long transients. As the aspect ratio of the cell increases, for intermediate aspect ratio cells such as Γ=3, multistability and coexistence of stationary and time-dependent patterns is observed. In highly extended cylinders, Γ≈11, the dynamics near the onset is completely different from the pure fluid case, and a startling diversity of confined patterns is observed. Many of these patterns are consistent with experimental observations. Remarkably, though, we have obtained persistent large amplitude highly localized states not reported previously. (paper)

  14. Pattern selection near the onset of convection in binary mixtures in cylindrical cells

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol, E-mail: arantxa@fa.upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, Mòdul B4, 08034 Barcelona (Spain)

    2014-08-01

    We report numerical investigations of three-dimensional pattern formation of binary mixtures in a vertical cylindrical container heated from below. Negative separation ratio mixtures, for which the onset of convection occurs via a subcritical Hopf bifurcation, are considered. We focus on the dynamics in the neighbourhood of the initial oscillatory instability and analyze the spatio-temporal properties of the patterns for different values of the aspect ratio of the cell, 0.25≲Γ≲11 (Γ≡R/d, where R is the radius of the cell and d its height). Despite the oscillatory nature of the primary instability, for highly constrained geometries, Γ≲2.5, only pure thermal stationary modes are selected after long transients. As the aspect ratio of the cell increases, for intermediate aspect ratio cells such as Γ=3, multistability and coexistence of stationary and time-dependent patterns is observed. In highly extended cylinders, Γ≈11, the dynamics near the onset is completely different from the pure fluid case, and a startling diversity of confined patterns is observed. Many of these patterns are consistent with experimental observations. Remarkably, though, we have obtained persistent large amplitude highly localized states not reported previously. (paper)

  15. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane-water.

    Science.gov (United States)

    Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A

    1998-12-01

    In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The

  16. Excess enthalpies of binary mixtures of 1-hexene with some branched alkanes at the temperature 298.15 K

    International Nuclear Information System (INIS)

    Wang, Zhaohui; Benson, George C.; Lu, Benjamin C.-Y.

    2004-01-01

    Measurements of excess molar enthalpies at the temperature 298.15 K in a flow microcalorimeter are reported for the five binary mixtures formed by mixing 1-hexene with the branched alkanes: 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, and 2,2,4-trimethylpentane. Smooth Redlich-Kister representations of the results are described. It was found that the Liebermann-Fried model also provided good representations of the results

  17. Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity

    Science.gov (United States)

    Shaikh, A. Y.

    2016-07-01

    A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.

  18. Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture.

    Science.gov (United States)

    Felderhof, B U

    2017-08-21

    The method employed by Einstein to derive his famous relation between the diffusion coefficient and the friction coefficient of a Brownian particle is used to derive a generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture. The expression is compared with the one derived by de Groot and Mazur from irreversible thermodynamics and later by Batchelor for a Brownian suspension. A different result was derived by several other workers in irreversible thermodynamics. For a nearly incompressible solution, the generalized Einstein relation agrees with the expression derived by de Groot and Mazur. The two expressions also agree to first order in solute density. For a Brownian suspension, the result derived from the generalized Smoluchowski equation agrees with both expressions.

  19. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    Directory of Open Access Journals (Sweden)

    Jaya Mishra

    2018-04-01

    Full Text Available Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated. Mixtures of indomethacin (IND and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a ethanol and water mixtures and (b acetone and water mixtures. Different ratios of these solvents were chosen to study the effect of solvent mixtures on co-amorphous formulation. Residual crystallinity, thermal properties, salt/partial salt formation, and powder dissolution profiles of the IND–AA mixtures were investigated and compared to pure crystalline and amorphous IND. It was found that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced dissolution rate and maintained supersaturation compared to the crystalline and amorphous IND itself. The spray-dried samples resulting in co-amorphous samples were stable for at least seven months of storage.

  20. Applicability of effective fragment potential version 2 - Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents

    Science.gov (United States)

    Kuroki, Nahoko; Mori, Hirotoshi

    2018-02-01

    Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.

  1. Solubility of disodium cytidine 5′-monophosphate in different binary mixtures from 288.15 K to 313.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Ma, Tianle; Li, An [National Engineering Technique Research Center for Biotechnology, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing (China); Chen, Xiaochun; Chen, Yong; Xie, Jingjing [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Wu, Jinglan, E-mail: yinghanjie@njut.edu.cn [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Ying, Hanjie [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing (China)

    2013-08-10

    Highlights: • Solubility of 5′-CMPNa{sub 2} in different systems was measured the first time. • Experimental data were correlated by CNIBS/Redlich–Kister model and Apelblat model. • Good agreement has been observed between the calculated and the experimental data. • Enthalpy and entropy were calculated by the van’t Hoff equation and Gibbs equation. - Abstract: The solubility of disodium cytidine 5′-monophosphate (5′-CMPNa{sub 2}) in methanol + water and ethanol + water binary mixtures was measured experimentally at the temperatures ranging from 288.15 to 313.15 K. The results showed that the solubility of 5′-CMPNa{sub 2} increased with the increasing of temperature and the mole fraction of water in different binary mixtures. The (CNIBS)/Redlich–Kister model and the semi-empirical Apelblat model were applied for the prediction of the experimental data. Both models could give satisfactory simulation results. In addition, the thermodynamic properties of the dissolution process such as Gibbs energy, enthalpy, and entropy were calculated using the van’t Hoff equation and the Gibbs equation. The results indicated that the dissolution process was endothermic.

  2. Thermodynamic properties of binary mixtures combining two pyridinium-based ionic liquids and two alkanols

    International Nuclear Information System (INIS)

    García-Mardones, Mónica; Barrós, Alba; Bandrés, Isabel; Artigas, Héctor; Lafuente, Carlos

    2012-01-01

    Highlights: ► Thermodynamic properties of an ionic liquid and an alkanol have been reported. ► The ionic liquids studied were 1-butyl-3 (or 4)-methylpyridinium tetrafluoroborate. ► The alkanols were methanol and ethanol. ► From measured data excess properties have been obtained and correlated. - Abstract: Densities and speeds of sound have been determined for the binary mixtures containing an ionic liquid (1-butyl-3-methylpyridinium tetrafluoroborate or 1-butyl-4-methylpyridinium tetrafluoroborate) and an alkanol (methanol or ethanol) over the temperature range (293.15 to 323.15) K. Excess volumes and excess isentropic compressibilities have been calculated from density and speed of sound data and correlated. All the mixtures show negative values for these excess properties. Furthermore, the isothermal (vapour + liquid) equilibrium has been measured at T = (303.15 and 323.15) K, and the corresponding activity coefficients and excess Gibbs functions have been obtained. In this case, positive excess Gibbs functions have been found. We have carried out an exhaustive interpretation of the experimental results in terms of structural and energetic effects taking also into account the thermodynamic information of pure compounds. Finally, in order to study the influence of both, the presence and the position of methyl group in the cation, we have compared the results of these systems with those obtained for the mixtures formed by 1-butylpyridinium tetrafluoroborate and methanol or ethanol.

  3. Novel ordered structures in the mixture of water/organic solvent/salts investigated by neutron scattering

    International Nuclear Information System (INIS)

    Sadakane, Koichiro

    2013-01-01

    The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of water/organic solvent was investigated by visual inspection, optical microscope, and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh 4 ), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. Furthermore, an ordered phase with multilamellar (onion) structures was confirmed in an off-critical mixture of D 2 O and 3-methylpyridine containing 85 mM of a NaBPh 4 although no surfactants or polymers are contained. (author)

  4. Excess molar volumes and deviation in viscosities of binary liquid mixtures of acrylic esters with hexane-1-ol at 303.15 and 313.15 K

    Directory of Open Access Journals (Sweden)

    Sujata S. Patil

    2014-12-01

    Full Text Available Densities and viscosities for the four binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with hexane-1-ol at temperatures 303.15 and 313.15 K and at atmospheric pressure were measured over the entire composition range. These values were used to calculate excess molar volumes and deviation in viscosities which were fitted to Redlich–Kister polynomial equation. Recently proposed Jouyban Acree model was also used to correlate the experimental values of density and viscosity. The mixture viscosities were correlated by several semi-empirical approaches like Hind, Choudhary–Katti, Grunberg–Nissan, Tamura and Kurata, McAllister three and four body model equations. A graphical representation of excess molar volumes and deviation in isentropic compressibility shows positive nature whereas deviation in viscosity shows negative nature at both temperatures for all four binary liquid mixtures. Positive values of excess molar volumes show that volume expansion is taking place causing rupture of H-bonds in self associated alcohols. The results were discussed in terms of molecular interactions prevailing in the mixtures.

  5. Polarographic behaviour and determination of selenite and tellurite in simple solutions or in a binary mixture

    International Nuclear Information System (INIS)

    Hassan, A.

    1991-01-01

    The polarographic behaviour of simple solutions of selenite and tellurite in 1 M ammonium salts of formate, acetate, tartrate, oxalate, and benzoate solutions in absence and in presence of Triton X-100 as a maximum suppressor and a temperature of 25 O C has been investigated. Schemes for the mechanism of reductions occuring at the DME have been deduced. A method for analytical determination of selenite and tellurite in simple solutions as well as in a binary mixture in the presence of 4-14 . 10 -3 % Triton X-100 is reported. (author)

  6. Use of recurrent neural networks for determination of 7-epiclusianone acidity constants in ethanol-water mixtures; Uso de redes neurais recorrentes na determinacao das constantes de acidez para a 7-epiclusianona em misturas etanol-agua

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ederson D' Martin; Lemes, Nelson Henrique Teixeira, E-mail: nelson.lemes@unifal-mg.edu.br [Instituto de Ciencias Exatas, Universidade Federal de Alfenas, Alfenas, MG (Brazil); Santos, Marcelo Henrique dos [Instituto de Ciencias Farmaceuticas, Universidade Federal de Alfenas, Alfenas, MG (Brazil); Braga, Joao Pedro [Departamento de Quimica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2012-07-01

    This work propose a recursive neural network to solve inverse equilibrium problem. The acidity constants of 7-epiclusianone in ethanol-water binary mixtures were determined from multiwavelength spectrophotometric data. A linear relationship between acidity constants and the % w/v of ethanol in the solvent mixture was observed. The proposed method efficiency is compared with the Simplex method, commonly used in nonlinear optimization techniques. The neural network method is simple, numerically stable and has a broad range of applicability. (author)

  7. Neurobehavioral evaluation of Venezuelan workers exposed to organic solvent mixtures.

    Science.gov (United States)

    Escalona, E; Yanes, L; Feo, O; Maizlish, N

    1995-01-01

    To assess the applicability of the World Health Organization (WHO) Neurobehavioral Core Test Battery (NCTB), we evaluated 53 male and 29 female Venezuelan workers exposed to mixtures of organic solvents in an adhesive factory, and 56 male and 11 female workers unexposed to any type of neurotoxic chemical. The average age of unexposed workers was 30 years and 33 years for those exposed, average schooling for both groups was 8 years, and the mean duration of exposure was 7 years. The NCTB, which assesses central nervous system functions, is composed of seven tests that measure simple motor function, short-term memory, eye-hand coordination, affective behavior, and psychomotor perception and speed. The battery includes: profile of mood states (POMS); Simple Reaction Time for attention and response speed; Digit Span for auditory memory; Santa Ana manual dexterity; Digit-Symbol for perceptual motor speed; the Benton visual retention for visual perception and memory; and Pursuit Aiming II for motor steadiness. In each of 13 subtests, the exposed group had a poorer performance than the nonexposed group. The range of differences in mean performance was between 5% and 89%, particularly in POMS (tension-anxiety, anger-hostility, depression-rejection, fatigue-inertia, confusion-bewilderment), Simple Reaction Time, Digit-Symbol, and Santa Ana Pegboard (p memory, confusion, paresthesias in upper and lower extremities, and sleep disturbances. We conclude that the methodology is applicable to the population studied. The tests of the NCTB were accepted by the subjects and were administered satisfactorily, except for occasional difficulties in verbal comprehension in subtests of POMS, which is the only test that requires more demanding verbal skills. The magnitude of the behavioral deficits is consistent with the probable high level of exposure and with the range of deficits previously reported in workers with long-term solvent exposures.

  8. Excess parameters for binary mixtures of ethyl benzoate with 1-propanol, 1-butanol and 1-pentanol at T=303, 308, 313, 318, and 323 K

    Energy Technology Data Exchange (ETDEWEB)

    Sreehari Sastry, S., E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Babu, Shaik, E-mail: babu.computers@gmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Vishwam, T., E-mail: vishwam@gitam.edu [Department of Engineering Physics, Gitam University, Hyderabad Campus, Andhra Pradesh 502 239 (India); Parvateesam, K., E-mail: kps27031966@gmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Sie Tiong, Ha., E-mail: hast@utar.edu.my [Faculty of Science, Department of Chemical Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak (Malaysia)

    2013-07-01

    Various thermo–acoustic parameters, such as excess isentropic compressibility (K{sub s}{sup E}), excess molar volume (V{sup E}), excess free length (L{sub f}{sup E}), excess Gibb's free energy (ΔG{sup *E}), and excess Enthalpy (H{sup E}), have been calculated from the experimentally determined data of density, viscosity and speed of sound for the binary mixtures of ethyl benzoate+1-propanol, or +1-butanol, or +1-pentanol over the entire range of composition at different temperatures (303, 308, 313, 318 and 323 K). The excess functions have been fitted to the Redlich–Kister type polynomial equation. The deviations for excess thermo–acoustic parameters have been explained on the basis of the intermolecular interactions present in these binary mixtures.

  9. Vapour pressures and osmotic coefficients of binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate with alcohols at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gonzalez, Begona; Dominguez, Angeles; Macedo, Eugenia A.

    2009-01-01

    Osmotic coefficients of binary mixtures containing alcohols (ethanol, 1-propanol, and 2-propanol) and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate were determined at T = 323.15 K. Vapour pressure and activity coefficients of the studied systems were calculated from experimental data. The extended Pitzer model modified by Archer, and the modified NRTL model (MNRTL) were used to correlate the experimental data, obtaining standard deviations lower than 0.012 and 0.031, respectively. The mean molal activity coefficients and the excess Gibbs free energy of the studied binary mixtures were calculated from the parameters obtained with the extended Pitzer model of Archer.

  10. The influence of thermodynamic self-consistency on the phase behaviour of symmetric binary mixtures

    CERN Document Server

    Scholl-Paschinger, E; Kahl, G

    2004-01-01

    We have investigated the phase behaviour of a symmetric binary mixture with particles interacting via hard-core Yukawa potentials. To calculate the thermodynamic properties we have used the mean spherical approximation (MSA), a conventional liquid state theory, and the closely related self-consistent Ornstein-Zernike approximation which is defined via an MSA-type closure relation, requiring, in addition, thermodynamic self-consistency between the compressibility and the energy-route. We investigate on a quantitative level the effect of the self-consistency requirement on the phase diagram and on the critical behaviour and confirm the existence of three archetypes of phase diagram, which originate from the competition between the first order liquid/vapour transition and the second order demixing transition.

  11. The effect of atom mismatch on the fragility of supercooled Lennard-Jones binary mixtures

    International Nuclear Information System (INIS)

    Sun Minhua; Sun Yongli; Wang Aiping; Ma Congxiao; Li Jiayun; Cheng Weidong; Liu Fang

    2006-01-01

    The shear viscosity of the well-known binary Lennard-Jones mixture is simulated under constant temperature and constant volume conditions (NVT) by a molecular-dynamics (MD) method. The effect of atomic size mismatch on the fragility parameter and glass-forming ability is studied. The fragility parameters calculated from shear viscosity data decrease with the increment of the atomic size mismatch. The value of the fragility changes from 168.963 to 22.976 when the mismatch changes from 0.023 to 0.25. It is shown that the fragility parameter is sensitive to the atomic size mismatch. The calculated pair distribution functions and mean square displacements indicate that the glass-forming ability increases with the atomic size mismatch

  12. Phase behavior of binary polybutadiene copolymer mixtures as an example of weakly interacting polymers

    CERN Document Server

    Schwahn, D

    2002-01-01

    Binary blends of statistical polybutadiene copolymers of different vinyl content and molar volume were explored by small-angle neutron scattering. These samples represent the most simple class of statistical copolymer mixtures. In spite of this simplicity, changes in vinyl content, molar volume, and deuterium and hydrogen content of the chains give rise to strong effects; phase separation occurs from minus 230 C to more than plus 200 C and can even reverse from an enthalpically driven one at low temperatures to an entropically driven one at high temperatures. The entropic and enthalpic terms of the Flory-Huggins parameter as determined from the experiment are in excellent agreement with lattice cluster theory calculations. (orig.)

  13. Measuring and modeling of binary mixture effects of pharmaceuticals and nickel on cell viability/cytotoxicity in the human hepatoma derived cell line HepG2

    International Nuclear Information System (INIS)

    Rudzok, S.; Schlink, U.; Herbarth, O.; Bauer, M.

    2010-01-01

    The interaction of drugs and non-therapeutic xenobiotics constitutes a central role in human health risk assessment. Still, available data are rare. Two different models have been established to predict mixture toxicity from single dose data, namely, the concentration addition (CA) and independent action (IA) model. However, chemicals can also act synergistic or antagonistic or in dose level deviation, or in a dose ratio dependent deviation. In the present study we used the MIXTOX model (EU project ENV4-CT97-0507), which incorporates these algorithms, to assess effects of the binary mixtures in the human hepatoma cell line HepG2. These cells possess a liver-like enzyme pattern and a variety of xenobiotic-metabolizing enzymes (phases I and II). We tested binary mixtures of the metal nickel, the anti-inflammatory drug diclofenac, and the antibiotic agent irgasan and compared the experimental data to the mathematical models. Cell viability was determined by three different methods the MTT-, AlamarBlue (registered) and NRU assay. The compounds were tested separately and in combinations. We could show that the metal nickel is the dominant component in the mixture, affecting an antagonism at low-dose levels and a synergism at high-dose levels in combination with diclofenac or irgasan, when using the NRU and the AlamarBlue assay. The dose-response surface of irgasan and diclofenac indicated a concentration addition. The experimental data could be described by the algorithms with a regression of up to 90%, revealing the HepG2 cell line and the MIXTOX model as valuable tool for risk assessment of binary mixtures for cytotoxic endpoints. However the model failed to predict a specific mode of action, the CYP1A1 enzyme activity.

  14. Ecotoxicity of binary mixtures of Microcystis aeruginosa and insecticides to Daphnia pulex

    International Nuclear Information System (INIS)

    Asselman, J.; Janssen, C.R.; Smagghe, G.; De Schamphelaere, K.A.C.

    2014-01-01

    In aquatic ecosystems, mixtures of chemical and natural stressors can occur which may significantly complicate risk assessment approaches. Here, we show that effects of binary combinations of four different insecticides and Microcystis aeruginosa, a toxic cyanobacteria, on Daphnia pulex exhibited distinct interaction patterns. Combinations with chlorpyrifos and tetradifon caused non-interactive effects, tebufenpyrad caused an antagonistic interaction and fenoyxcarb yielded patterns that depended on the reference model used (i.e. synergistic with independent action, additive with concentration addition). Our results demonstrate that interactive effects cannot be generalised across different insecticides, not even for those targeting the same biological pathway (i.e. tebufenpyrad and tetradifon both target oxidative phosphorylation). Also, the concentration addition reference model provided conservative predictions of effects in all investigated combinations for risk assessment. These predictions could, in absence of a full mechanistic understanding, provide a meaningful solution for managing water quality in systems impacted by both insecticides and cyanobacterial blooms. - Highlights:: • 2 of 4 insecticide-Microcystis combinations showed no interactive effect on Daphnia. • One insecticide showed antagonistic deviation patterns. • For one other insecticide the results depended on the reference model used. • Interactive effects between insecticides and Microcystis cannot be generalized. • The concentration addition model provides conservative estimates of mixture effects. - Interactive effects between insecticides and cyanobacterial stressors cannot be generalized, not even for insecticides with closely related known modes of action

  15. Thermodynamics Properties of Binary Gas Mixtures for Brayton Space Nuclear Power System

    International Nuclear Information System (INIS)

    You Ersheng; Shi Lei; Zhang Zuoyi

    2014-01-01

    Space nuclear power system with closed Brayton cycle has the potential advantages of high cycle efficiency. It can be achieved to limit the specific mass of the system with a competitive design scheme, so as to strengthen the advantage of the nuclear energy applying in space propulsion and electric generating compared to solar or chemical propellant. Whereby, the thermodynamic properties of working fluids have a significant influence on the performance of the plant. Therefore, two binary mixtures helium-nitrogen and helium-carbon dioxide are introduced to analysis the variation in the transport and heat transfer capacity of working fluids. Based on the parameters of pure gases, the heat transfer coefficient, pressure losses and aerodynamic loading are calculated as a function of mole fraction at the temperature of 400 K and 1200 K, as well as the typical operating pressure of 2 MPa. Results indicated that the mixture of helium-carbon dioxide with a mole fraction of 0.4 is a more attractive choice for the high heat transfer coefficient, low aerodynamic loading and acceptable pressure losses in contrast to helium-nitrogen and other mixing ratios of helium-carbon dioxide. Its heat transfer coefficient is almost 20% more than that of pure helium and the normalized aerodynamic loading is less than 34% at 1200 K. However; the pressure losses are a little higher with ~3.5 times those of pure helium. (author)

  16. Development of dispersive liquid-liquid microextraction technique using ternary solvents mixture followed by heating for the rapid and sensitive analysis of phthalate esters and di(2-ethylhexyl) adipate.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Khoshmaram, Leila

    2015-01-30

    In this study, for the first time, a dispersive liquid-liquid microextraction technique using a ternary solvent mixture is reported. In order to extract five phthalate esters and di(2-ethylhexyl) adipate with different polarities from aqueous samples, a simplex centroid experimental design method was used to select an optimal mixture of ternary solvents prior to gas chromatographyflame ionization detection. In this work, dimethyl formamide as a disperser solvent containing dichloromethane, chloroform, and carbon tetrachloride as a ternary extraction solvent mixture is injected into sample solution and a cloudy solution is formed. After centrifuging, 250μL of the obtained sedimented phase was transferred into another tube and 5μL DMF was added to it. Then, the tube was heated in a water bath at 75°C for 5min in order to evaporate the main portion of the extraction solvents. Finally, 2μL of the remained phase is injected into the separation system. Under the optimum extraction conditions, the method shows wide linear ranges and low limits of detection and quantification between 0.03-0.15 and 0.09-0.55μgL(-1), respectively. Enrichment factors and extraction recoveries are in the ranges of 980-4500 and 20-90%, respectively. The method is successfully applied in the determination of the target analytes in mineral water, soda, lemon juice, vinegar, dough, and yogurt packed in plastic packages. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Comparison of methods for calculating thermodynamic properties of binary mixtures in the sub and super critical state: Lee-Kesler and cubic equations of state for binary mixtures containing either CO2 or H2S

    International Nuclear Information System (INIS)

    Yang, Jyisy; Griffiths, Peter R.; Goodwin, Anthony R.H.

    2003-01-01

    The (ρ,T,p) and (vapor + liquid) equilibria for fluid mixtures containing either CO 2 or H 2 S have been determined from 13 equations of state. The estimated values have been compared with published experimental results. CO 2 and H 2 S were used to represent non-polar and polar fluids, respectively. The equations of state investigated were as follows: (a) the Lee-Kesler equation; (b) two equations that included new reference fluids for the Lee-Kesler method; (c) three so-called extended equations of state; and (d) seven cubic equations of state. After adjustment of the binary interaction parameters the predicted values differed from the experimental data by about 0.8% for CO 2 mixtures while for H 2 S mixtures the uncertainty was about ±2.8%. Somewhat larger errors, although still lower than ±5%, were obtained for co-existing phase densities; the Lee-Kesler method provided results of the highest accuracy. The cubic equations proposed by Schmidt and Wenzel and Valderrama provide the most reliable predictions of both single and co-existing phase densities. Comparison of the predicted (vapor + liquid) equilibrium with experiment shows that each of the seven cubic equations provides results of similar accuracy and all within ±6%

  18. Mixture for plugging absorption zones

    Energy Technology Data Exchange (ETDEWEB)

    Sitinkov, G V; Kovalenko, N G; Makarov, L V; Zinnatulchin, Ts Kh

    1981-01-17

    A mixture is proposed for plugging absorption zones. The mixture contains synthetic polymer and a solvent. So as to increase the penetrability of the mixture through a reduction in its viscosity and an increase in insulation properties, the compound contains either Capron or Neilon as the synthetic polyamide resin polmyer, and concentrated chloride as the solvent. The mixture is prepared in a special AzINMASh-30 unit (acid cart). After the mixture has been produced, it is injected into the borehole by means of an acid cart pump. So as to prevent coaggulation at the point when the mixture in injected into the stratum through tubes, the mixture is placed betwen chemically inert fluids, for example, a clay mortar. The inert and compressed fluids are injected by means of a cementing unit. The entire process of production and application of the mixture is simple and fully automated through the use of well-known equipment.

  19. Study of thermodynamic and transport properties of binary liquid mixtures of n-decane with hexan-2-ol, heptan-2-ol and octan-2-ol at T = 298.15 K. Experimental results and application of the Prigogine–Flory–Patterson theory

    International Nuclear Information System (INIS)

    Mahajan, Aravind R.; Mirgane, Sunil R.

    2013-01-01

    Highlights: • The large positive V m E values are obtained for the binary mixtures at 298.15 K. • Excess isentropic compressibilities for the binary mixtures are positive over the whole composition range. • The values of G ∗E for all binary mixtures are negative over entire mole fraction. • Viscosities measured for the binary mixtures were correlated with values calculated by various viscosity models. • PEP theory, Bloomfield and Dewan model and Jouyban–Acree model are also used to correlate the experimental data. -- Abstract: Densities and viscosities of binary mixtures of n-decane with hexan-2-ol, heptan-2-ol and octan-2-ol have been measured over the entire range of composition at T = 298.15 K and at atmospheric pressure. From the experimental values of density and viscosity, the excess molar volumes (V m E ) and excess Gibbs energy of activation of viscous flow (G ∗E ) have been calculated. These results were fitted to Redlich–Kister polynomial equations to estimate the binary coefficients and standard errors. Jouyban–Acree model is used to correlate the experimental values of density, viscosity and ultrasonic velocity at T = 298.15 K. The results of the viscosity-composition are discussed in the light of various viscosity semi-empirical equations. The experimental results have been used to test the applicability of the Prigogine–Flory–Patterson (PFP) theory. The values of Δln η have also been analysed using Bloomfield and Dewan model. The experimental and calculated quantities are used to study the nature of mixing behaviour between the mixtures

  20. Nickel and binary metal mixture responses in Daphnia magna: Molecular fingerprints and (sub)organismal effects

    International Nuclear Information System (INIS)

    Vandenbrouck, Tine; Soetaert, Anneleen; Ven, Karlijn van der; Blust, Ronny; Coen, Wim de

    2009-01-01

    The recent development of a custom cDNA microarray platform for one of the standard organisms in aquatic toxicology, Daphnia magna, opened up new ways to mechanistic insights of toxicological responses. In this study, the mRNA expression of several genes and (sub)organismal responses (Cellular Energy Allocation, growth) were assayed after short-term waterborne metal exposure. Microarray analysis of Ni-exposed daphnids revealed several affected functional gene classes, of which the largest ones were involved in different metabolic processes (mainly protein and chitin related processes), cuticula turnover, transport and signal transduction. Furthermore, transcription of genes involved in oxygen transport and heme metabolism (haemoglobin, δ-aminolevilunate synthase) was down-regulated. Applying a Partial Least Squares regression on nickel fingerprints and biochemical (sub)organismal parameters revealed a set of co-varying genes (haemoglobin, RNA terminal phosphate cyclase, a ribosomal protein and an 'unknown' gene fragment). An inverse relationship was seen between the mRNA expression levels of different cuticula proteins and available energy reserves. In addition to the nickel exposure, daphnids were exposed to binary mixtures of nickel and cadmium or nickel and lead. Using multivariate analysis techniques, the mixture mRNA expression fingerprints (Ni 2+ + Cd 2+ , Ni 2+ + Pb 2+ ) were compared to those of the single metal treatments (Ni 2+ , Cd 2+ , Pb 2+ ). It was hypothesized that the molecular fingerprints of the mixtures would be additive combinations of the gene transcription profiles of the individual compounds present in the mixture. However, our results clearly showed additionally affected pathways after mixture treatment (e.g. additional affected genes involved in carbohydrate catabolic processes and proteolysis), indicating interactive molecular responses which are not merely the additive sum of the individual metals. These findings, although indicative of

  1. Modeling Phase Equilibria for Acid Gas Mixtures Using the CPA Equation of State. I. Mixtures with H2S

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    (water, methanol, and glycols) are modeled assuming presence or not of cross-association interactions. Such interactions are accounted for using either a combining rule or a cross-solvation energy obtained from spectroscopic data. Using the parameters obtained from the binary systems, one ternary......The Cubic-Plus-Association (CPA) equation of state is applied to a large variety of mixtures containing H2S, which are of interest in the oil and gas industry. Binary H2S mixtures with alkanes, CO2, water, methanol, and glycols are first considered. The interactions of H2S with polar compounds...... and three quaternary mixtures are considered. It is shown that overall excellent correlation for binary, mixtures and satisfactory prediction results for multicomponent systems are obtained. There are significant differences between the various modeling approaches and the best results are obtained when...

  2. Palladium(II)-Catalysed Aminocarbonylation of Terminal Alkynes for the Synthesis of 2-Ynamides: Addressing the Challenges of Solvents and Gas Mixtures.

    Science.gov (United States)

    Hughes, N Louise; Brown, Clare L; Irwin, Andrew A; Cao, Qun; Muldoon, Mark J

    2017-02-22

    2-Ynamides can be synthesised through Pd II catalysed oxidative carbonylation, utilising low catalyst loadings. A variety of alkynes and amines can be used to afford 2-ynamides in high yields, whilst overcoming the drawbacks associated with previous oxidative methods, which rely on dangerous solvents and gas mixtures. The use of [NBu 4 ]I allows the utilisation of the industrially recommended solvent ethyl acetate. O 2 can be used as the terminal oxidant, and the catalyst can operate under safer conditions with low O 2 concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Experimental investigation of thermodynamic properties of binary mixture of acetic acid + n-butanol and acetic acid + water at temperature from 293.15 K to 343.15 K

    Science.gov (United States)

    Paul, M. Danish John; Shruthi, N.; Anantharaj, R.

    2018-04-01

    The derived thermodynamic properties like excess molar volume, partial molar volume, excess partial molar volume and apparent volume of binary mixture of acetic acid + n-butanolandacetic acid + water has been investigated using measured density of mixtures at temperatures from 293.15 K to 343.15.

  4. Thermodynamic Study of the Complexation of p-Isopropylcalix[6]arene with Cs+ Cation in Dimethylsulfoxide-Acetonitrile Binary Media

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Rounaghi

    2011-09-01

    Full Text Available The complexation reactions between the macrocyclic ionophore, p-isopropylcalix[6]arene and Cs+ cation were studied in dimethylsulfoxide–acetonitrile (DMSO-AN binary non-aqueous solvents at different temperatures using a conductometry method. The conductance data show that the stoichiometry of the (p-isopropylcalix[6]-arene·Cs+ complex in all binary mixed solvents is 1:1. The stability of the complexes is affected by the composition of the binary solvent media and a non-linear behavior was observed for changes of log Kf of the complex versus the composition of the binary mixed solvents. The thermodynamic parameters (DH°c and DS°c for formation of (p-isopropyl-calix[6]arene·Cs+ complex were obtained from temperature dependence of the stability constant and the obtained results show that the (p-isopropylcalix[6]arene·Cs+ complex is enthalpy destabilized, but entropy stabilized, and the values of the mentioned parameters are affected strongly by the nature and composition of the binary mixed solvents.

  5. Practical data correlation of flashpoints of binary mixtures by a reciprocal function: The concept and numerical examples

    Directory of Open Access Journals (Sweden)

    Hristova Mariana

    2011-01-01

    Full Text Available Simple data correlation of flashpoint data of binary mixture has been developed on a basic of rational reciprocal function. The new approximation requires has only two coefficients and needs the flashpoint temperature of the pure flammable component to be known. The approximation has been tested by literature data concerning aqueous-alcohol solution and compared to calculations performed by several thermodynamic models predicting flashpoint temperatures. The suggested approximation provides accuracy comparable and to some extent better than that of the thermodynamic methods.

  6. Diffusion coefficients in 4-component mixture expressed explicitly in terms of binary diffusion coefficients and mole fractions

    International Nuclear Information System (INIS)

    Furuta, Hiroshi; Yamamoto, Ichiro

    1996-01-01

    Diffusion coefficients in 4-component mixture D ij (4) were expressed explicitly in terms of binary diffusion coefficients and mole fractions by solving a ratio of determinants defined by Hirschfelder et al. The explicit expressions of D ij (4) were divided into two terms, a term due to the i-j pairs of attention and a term common to all the pairs out of the 4 components. The two terms of D ij (4) had extended structures similar to corresponding those of D ij (3) respectively. (author)

  7. PARIS II: Computer Aided Solvent Design for Pollution Prevention

    Science.gov (United States)

    This product is a summary of U.S. EPA researchers' work developing the solvent substitution software tool PARIS II (Program for Assisting the Replacement of Industrial Solvents, version 2.0). PARIS II finds less toxic solvents or solvent mixtures to replace more toxic solvents co...

  8. Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom

    DEFF Research Database (Denmark)

    Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.

    1991-01-01

    A two-dimensional Monte Carlo simulation method based on the NpT ensemble and the Voronoi tesselation, which was previously developed for single-species hard-disk systems, is extended, along with a version of scaled-particle theory, to many-component mixtures. These systems are unusual in the sense...... and internal degrees of freedom leads to a rich phase structure that includes solid-liquid transitions (governed by the translational variables) as well as transitions involving changes in average disk size (governed by the internal variables). The relationship between these two types of transitions is studied...... by the method in the case of a binary mixture, and results are presented for varying disk-size ratios and degeneracies. The results are also compared with the predictions of the extended scaled-particle theory. Applications of the model are discussed in relation to lipid monolayers spread on air...

  9. Study of the influence of diffusion on the flow velocity, for binary mixtures in Poiseuille and Couette flows

    International Nuclear Information System (INIS)

    Caetano Filho, E.

    1981-05-01

    The influence of diffusion on the flow of binary mixtures of incompressible fluids in POISEUILLE and COUETTE flows, is studied. The constitutive equations sugested by SAMPAIO and WILLIAMS and by STRUMINSKII for the constituent stress tensor and for the diffusive force are used. Results show that diffusion does not influence the flow in the case of planar and circular COUETTE flows. On the other hand, diffusion does play an important part in planar and circular POISEUILLE flows. (Author) [pt

  10. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Iswarya, V.; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, Amitava

    2016-01-01

    Highlights: • Individual, binary toxicity of anatase and rutile NPs studied on Ceriodaphnia dubia. • Anatase and rutile phases showed differential effect upon variation in irradiation. • Mixture induced antagonistic at visible and additive effect at UV-A irradiation. • Marking-Dawson model fitted more appropriately than Abbott model. • Agglomeration played a major role in the toxicity induced by the mixture. - Abstract: Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO_2) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC_5_0 of about 37.04 and 48 mg/L, respectively, under visible irradiation. However, lesser LC_5_0 values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest uptake under

  11. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia

    Energy Technology Data Exchange (ETDEWEB)

    Iswarya, V.; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com

    2016-09-15

    Highlights: • Individual, binary toxicity of anatase and rutile NPs studied on Ceriodaphnia dubia. • Anatase and rutile phases showed differential effect upon variation in irradiation. • Mixture induced antagonistic at visible and additive effect at UV-A irradiation. • Marking-Dawson model fitted more appropriately than Abbott model. • Agglomeration played a major role in the toxicity induced by the mixture. - Abstract: Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO{sub 2}) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC{sub 50} of about 37.04 and 48 mg/L, respectively, under visible irradiation. However, lesser LC{sub 50} values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest

  12. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  13. Co-non-solvency: Mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt [Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Marques, Carlos M. [Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Institut Charles Sadron, Université de Strasbourg, CNRS, Strasbourg (France)

    2015-03-21

    Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.

  14. Co-non-solvency: Mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents

    International Nuclear Information System (INIS)

    Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt; Marques, Carlos M.

    2015-01-01

    Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents

  15. Flory-Huggins parameter χ, from binary mixtures of Lennard-Jones particles to block copolymer melts

    International Nuclear Information System (INIS)

    Chremos, Alexandros; Nikoubashman, Arash; Panagiotopoulos, Athanassios Z.

    2014-01-01

    In this contribution, we develop a coarse-graining methodology for mapping specific block copolymer systems to bead-spring particle-based models. We map the constituent Kuhn segments to Lennard-Jones particles, and establish a semi-empirical correlation between the experimentally determined Flory-Huggins parameter χ and the interaction of the model potential. For these purposes, we have performed an extensive set of isobaric–isothermal Monte Carlo simulations of binary mixtures of Lennard-Jones particles with the same size but with asymmetric energetic parameters. The phase behavior of these monomeric mixtures is then extended to chains with finite sizes through theoretical considerations. Such a top-down coarse-graining approach is important from a computational point of view, since many characteristic features of block copolymer systems are on time and length scales which are still inaccessible through fully atomistic simulations. We demonstrate the applicability of our method for generating parameters by reproducing the morphology diagram of a specific diblock copolymer, namely, poly(styrene-b-methyl methacrylate), which has been extensively studied in experiments

  16. Flory-Huggins parameter χ, from binary mixtures of Lennard-Jones particles to block copolymer melts

    Energy Technology Data Exchange (ETDEWEB)

    Chremos, Alexandros, E-mail: achremos@imperial.ac.uk [Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Nikoubashman, Arash, E-mail: arashn@princeton.edu; Panagiotopoulos, Athanassios Z. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-02-07

    In this contribution, we develop a coarse-graining methodology for mapping specific block copolymer systems to bead-spring particle-based models. We map the constituent Kuhn segments to Lennard-Jones particles, and establish a semi-empirical correlation between the experimentally determined Flory-Huggins parameter χ and the interaction of the model potential. For these purposes, we have performed an extensive set of isobaric–isothermal Monte Carlo simulations of binary mixtures of Lennard-Jones particles with the same size but with asymmetric energetic parameters. The phase behavior of these monomeric mixtures is then extended to chains with finite sizes through theoretical considerations. Such a top-down coarse-graining approach is important from a computational point of view, since many characteristic features of block copolymer systems are on time and length scales which are still inaccessible through fully atomistic simulations. We demonstrate the applicability of our method for generating parameters by reproducing the morphology diagram of a specific diblock copolymer, namely, poly(styrene-b-methyl methacrylate), which has been extensively studied in experiments.

  17. Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture

    International Nuclear Information System (INIS)

    Stroev, N E; Iosilevskiy, I L

    2016-01-01

    Non-congruent gas-liquid phase transition (NCPT) have been studied previously in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a uniformly compressible ideal electronic background /BIM(∼)/. The features of NCPT in improved version of the BIM(∼) model for the same mixture on background of non-ideal electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to equation of state of electronic and ionic subsystems were used in present calculations within the Gibbs-Guggenheim conditions of non-congruent phase equilibrium. Parameters of critical point-line were calculated on the entire range of proportions of mixed ions 0 < X < 1. Strong “distillation” effect was found for NCPT in the present BIM(∼) model. Just similar distillation was obtained in the variant of NCPT in dense nuslear matter. The absence of azeotropic compositions was revealed in studied variants of BIM(∼) in contrast to an explicit existence of the azeotropic compositions for the NCPT in chemically reacting plasmas and in astrophysical applications. (paper)

  18. Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture

    Science.gov (United States)

    Stroev, N. E.; Iosilevskiy, I. L.

    2016-11-01

    Non-congruent gas-liquid phase transition (NCPT) have been studied previously in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a uniformly compressible ideal electronic background /BIM(∼)/. The features of NCPT in improved version of the BIM(∼) model for the same mixture on background of non-ideal electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to equation of state of electronic and ionic subsystems were used in present calculations within the Gibbs-Guggenheim conditions of non-congruent phase equilibrium. Parameters of critical point-line were calculated on the entire range of proportions of mixed ions 0 distillation” effect was found for NCPT in the present BIM(∼) model. Just similar distillation was obtained in the variant of NCPT in dense nuslear matter. The absence of azeotropic compositions was revealed in studied variants of BIM(∼) in contrast to an explicit existence of the azeotropic compositions for the NCPT in chemically reacting plasmas and in astrophysical applications.

  19. Simultaneous determination of a binary mixture: kinetic method for determination of uranium and vanadium

    International Nuclear Information System (INIS)

    Jianhua, W.; Ronghuan, H.

    1993-01-01

    A kinetic method for simultaneous determination of a binary mixture is proposed, and a procedure for simultaneous determination of uranium (IV) and vanadium (IV) is established based on their inductive effect on chromium (VI)-iodide redox reaction in a weak acidic medium. The reaction was monitored by FIA-spectrophotometry using the I 3 - -starch complex as indicator. The calibration graphs are linear for uranium (IV) and vanadium (IV) within the range of 0 ∼ 3.6 μg/ml and 0 ∼ 2.5 μg/ml respectively. Most foreign ions, except for iron (II) and antimony (III), do not interfere with the determination. The uranium and vanadium content in different samples was determined, and the results were satisfactory. (author). 2 tabs., 2 figs., 9 refs

  20. Densities and excess volumes of binary mixtures of N,N-dimethylformamide with aromatic hydrocarbon at different temperature

    International Nuclear Information System (INIS)

    Peng Sanjun; Hou Haiyun; Zhou Congshan; Yang Tao

    2007-01-01

    Density of three binary mixtures formed by N,N-dimethylformamide (DMF) with aromatic hydrocarbon (one of benzene, toluene, and ethylbenzene) has been determined over the full range of compositions at the temperatures range (293.15 to 353.15)K and atmospheric pressure using a vibrating-tube densimeter. From these experiments, excess molar volumes (V m E ) could be calculated and fitted by the fourth-order Redlich-Kister equation, so the coefficients and the standard error (σ) could be got. Our result shows V m E decreases when temperature increases in the studied systems