WorldWideScience

Sample records for bilobalide modulates serotonin-controlled

  1. Bilobalide modulates serotonin-controlled behaviors in the nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Luo Yuan

    2009-06-01

    Full Text Available Abstract Background Dysfunctions in the serotonergic system have been implicated in several neurological disorders such as depression. Elderly individuals who have been diagnosed with clinical depression show elevated cases of neurodegenerative diseases. This has led to suggestions that modulating the serotonin (5-HT system could provide an alternative method to current therapies for alleviating these pathologies. The neuroprotective effects of bilobalide in vitro have been documented. We aim to determine whether bilobalide affects the 5-HT system in the nematode C. elegans. The wild type worms, as well as well-characterized 5-HT mutants, were fed with bilobalide in a range of concentrations, and several 5-HT controlled behaviors were tested. Results We observed that bilobalide significantly inhibited 5-HT-controlled egg-laying behavior in a dose-dependent manner, which was blocked in the 5-HT receptor mutants (ser-4, mod-1, but not in the 5-HT transporter (mod-5 or synthesis (tph-1 mutants. Bilobalide also potentiated a 5-HT-controlled, experience-dependent locomotory behavior, termed the enhanced slowing response in the wild type animals. However, this effect was fully blocked in 5-HT receptor mod-1 and dopamine defective cat-2 mutants, but only partially blocked in ser-4 mutants. We also demonstrated that acetylcholine transmission was inhibited in a transgenic C. elegans strain that constitutively expresses Aβ, and bilobalide did not significantly affect this inhibition. Conclusion These results suggest that bilobalide may modulate specific 5-HT receptor subtypes, which involves interplay with dopamine transmission. Additional studies for the function of bilobalide in neurotransmitter systems could aid in our understanding of its neuroprotective properties.

  2. Bilobalide, a unique constituent of Ginkgo biloba, inhibits inflammatory pain in rats.

    Science.gov (United States)

    Goldie, Michelle; Dolan, Sharron

    2013-08-01

    Standardized Ginkgo biloba extract EGb 761 has been shown to inhibit inflammatory hyperalgesia in rats; however, the mechanism of action is not known. This study set out to investigate the anti-inflammatory and analgesic potential of bilobalide, a unique G. biloba constituent, in three well-characterized models of acute inflammatory pain. The effect of oral, intraplantar or intrathecal administration of bilobalide or drug-vehicle (0.25% agar; 10% ethanol in H2O) on responses to noxious thermal and mechanical stimulation of the hindpaw, and paw oedema were assessed in adult male Wistar rats before and after intradermal hindpaw injection of carrageenan (3%; 50 μl) or capsaicin (10 μg; 50 μl) or after hindpaw incision (n=6-8/group). Oral administration of bilobalide (10-30 mg/kg) significantly inhibited thermal hyperalgesia in response to carrageenan, capsaicin and paw incision, independent of dose, with an efficacy similar to that of diclofenac. In the carrageenan model, mechanical hypersensitivity and paw oedema were also significantly reduced after treatment with bilobalide (10-30 mg/kg). Intrathecal administration of bilobalide (0.5-1 μg) inhibited carrageenan-induced thermal hyperalgesia, but had no effect on mechanical hypersensitivity or paw oedema (application≥2 μg induced adverse effects, precluding testing of higher doses). Intraplantar administration of bilobalide (30-100 μg) had no effect. These data show that bilobalide is a potent anti-inflammatory and antihyperalgesic agent, the therapeutic effects of which are mediated in part through a central site of action, and may account for the therapeutic action of the whole extract G. biloba.

  3. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway.

    Science.gov (United States)

    Liu, Mei; Guo, Jingjing; Wang, Juan; Zhang, Luyong; Pang, Tao; Liao, Hong

    2014-08-01

    Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.

  4. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Serotonergic modulation of spinal motor control

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; Cotel, Florence

    2015-01-01

    Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either...

  6. A Catuama e o bilobalide na regeneração nervosa periférica de ratos submetidos à secção do nervo isquiático

    Directory of Open Access Journals (Sweden)

    Rodrigo Norberto Pereira

    2014-05-01

    Full Text Available A Catuama® é a associação de quatro extratos hidroalcoolicos obtidos de plantas brasileiras (Paullinia cupana, Trichilia catigua, Ptychopetalum olacoides e Zingiber officinale com conhecida ação neuroprotetora, anti-inflamatória, antioxidante e antidepressiva. O bilobalide é um componente extraído das folhas do Ginkgo biloba, que tem comprovada ação neuroprotetora nos sistemas nervosos central e periférico. O presente estudo avaliou os efeitos da Catuama® e do bilobalide na regeneração nervosa periférica de ratos submetidos à secção do nervo isquiático. Foram utilizados 40 ratos com implante de tubo de silicone preenchido por colágeno líquido, deixando-se um intervalo entre os segmentos nervosos de 10mm. Os animais foram divididos em 4 grupos: o grupo controle (A; os grupos que receberam a Catuama® administrada por via oral nos primeiros 28 dias de pós-operatório, nas doses de 100 (B e 400mg.kg-1 (C; e o grupo que recebeu o bilobalide na dose de 200µM (D, este, adicionado ao colágeno líquido utilizado no implante de silicone. Os animais foram avaliados na primeira, quinta e décima semanas de pós-operatório pelo teste de marcha. Na décima semana, foi realizada avaliação eletrofisiológica e análises quantitativa e qualitativa dos cortes histológicos de amostras do nervo isquiático e do músculo gastrocnêmio. Em todas as análises utilizadas observou-se excelente regeneração dos nervos, no entanto, não foi encontrada diferença significativa (P>0,05 entre os grupos experimentais e controle.

  7. Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement

    Science.gov (United States)

    Rashid, Mohammed; Ribeiro, Paula

    2014-01-01

    Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni. PMID:24453972

  8. Brain serotonin content regulates the manifestation of tramadol-induced seizures in rats: disparity between tramadol-induced seizure and serotonin syndrome.

    Science.gov (United States)

    Fujimoto, Yohei; Funao, Tomoharu; Suehiro, Koichi; Takahashi, Ryota; Mori, Takashi; Nishikawa, Kiyonobu

    2015-01-01

    Tramadol-induced seizures might be pathologically associated with serotonin syndrome. Here, the authors investigated the relationship between serotonin and the seizure-inducing potential of tramadol. Two groups of rats received pretreatment to modulate brain levels of serotonin and one group was treated as a sham control (n = 6 per group). Serotonin modulation groups received either para-chlorophenylalanine or benserazide + 5-hydroxytryptophan. Serotonin, dopamine, and histamine levels in the posterior hypothalamus were then measured by microdialysis, while simultaneously infusing tramadol until seizure onset. In another experiment, seizure threshold with tramadol was investigated in rats intracerebroventricularly administered with either a serotonin receptor antagonist (methysergide) or saline (n = 6). Pretreatment significantly affected seizure threshold and serotonin fluctuations. The threshold was lowered in para-chlorophenylalanine group and raised in benserazide + 5-hydroxytryptophan group (The mean ± SEM amount of tramadol needed to induce seizures; sham: 43.1 ± 4.2 mg/kg, para-chlorophenylalanine: 23.2 ± 2.8 mg/kg, benserazide + 5-hydroxytryptophan: 59.4 ± 16.5 mg/kg). Levels of serotonin at baseline, and their augmentation with tramadol infusion, were less in the para-chlorophenylalanine group and greater in the benserazide + 5-hydroxytryptophan group. Furthermore, seizure thresholds were negatively correlated with serotonin levels (correlation coefficient; 0.71, P seizure threshold (P seizures, and that serotonin concentrations were negatively associated with seizure thresholds. Moreover, serotonin receptor antagonism precipitated seizure manifestation, indicating that tramadol-induced seizures are distinct from serotonin syndrome.

  9. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    Science.gov (United States)

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Role of Serotonin (5-HT) in Behavioral Control: Findings from Animal Research and Clinical Implications

    Science.gov (United States)

    Sanchez, CL; Biskup, CS; Herpertz, S; Gaber, TJ; Kuhn, CM; Hood, SH

    2015-01-01

    The neurotransmitters serotonin and dopamine both have a critical role in the underlying neurobiology of different behaviors. With focus on the interplay between dopamine and serotonin, it has been proposed that dopamine biases behavior towards habitual responding, and with serotonin offsetting this phenomenon and directing the balance toward more flexible, goal-directed responding. The present focus paper stands in close relationship to the publication by Worbe et al. (2015), which deals with the effects of acute tryptophan depletion, a neurodietary physiological method to decrease central nervous serotonin synthesis in humans for a short period of time, on the balance between hypothetical goal-directed and habitual systems. In that research, acute tryptophan depletion challenge administration and a following short-term reduction in central nervous serotonin synthesis were associated with a shift of behavioral performance towards habitual responding, providing further evidence that central nervous serotonin function modulates the balance between goal-directed and stimulus-response habitual systems of behavioral control. In the present focus paper, we discuss the findings by Worbe and colleagues in light of animal experiments as well as clinical implications and discuss potential future avenues for related research. PMID:25991656

  11. Thalamic synaptic transmission of sensory information modulated by synergistic interaction of adenosine and serotonin.

    Science.gov (United States)

    Yang, Ya-Chin; Hu, Chun-Chang; Huang, Chen-Syuan; Chou, Pei-Yu

    2014-03-01

    The thalamic synapses relay peripheral sensory information to the cortex, and constitute an important part of the thalamocortical network that generates oscillatory activities responsible for different vigilance (sleep and wakefulness) states. However, the modulation of thalamic synaptic transmission by potential sleep regulators, especially by combination of regulators in physiological scenarios, is not fully characterized. We found that somnogen adenosine itself acts similar to wake-promoting serotonin, both decreasing synaptic strength as well as short-term depression, at the retinothalamic synapse. We then combined the two modulators considering the coexistence of them in the hypnagogic (sleep-onset) state. Adenosine plus serotonin results in robust synergistic inhibition of synaptic strength and dramatic transformation of short-term synaptic depression to facilitation. These synaptic effects are not achievable with a single modulator, and are consistent with a high signal-to-noise ratio but a low level of signal transmission through the thalamus appropriate for slow-wave sleep. This study for the first time demonstrates that the sleep-regulatory modulators may work differently when present in combination than present singly in terms of shaping information flow in the thalamocortical network. The major synaptic characters such as the strength and short-term plasticity can be profoundly altered by combination of modulators based on physiological considerations. © 2013 International Society for Neurochemistry.

  12. Modulation of defensive reflex conditioning in snails by serotonin

    Science.gov (United States)

    Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  13. Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish.

    Science.gov (United States)

    Fotowat, Haleh; Harvey-Girard, Erik; Cheer, Joseph F; Krahe, Rüdiger; Maler, Leonard

    2016-01-01

    Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus . These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory-motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.

  14. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  15. Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1.

    Science.gov (United States)

    Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Nieder, Andreas; Pourriahi, Paria; Nienborg, Hendrikje

    2017-11-22

    Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This

  16. Positive regulation of raphe serotonin neurons by serotonin 2B receptors.

    Science.gov (United States)

    Belmer, Arnauld; Quentin, Emily; Diaz, Silvina L; Guiard, Bruno P; Fernandez, Sebastian P; Doly, Stéphane; Banas, Sophie M; Pitychoutis, Pothitos M; Moutkine, Imane; Muzerelle, Aude; Tchenio, Anna; Roumier, Anne; Mameli, Manuel; Maroteaux, Luc

    2018-06-01

    Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT 2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT 2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT 2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT 2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT 2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT 2B -receptor stimulation by BW723C86 counteracted 5-HT 1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT 2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT 2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT 1A -autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT 2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT 2B receptor acts as a direct positive modulator of serotonin Pet1

  17. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yinxia Li

    Full Text Available Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  18. Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727

  19. Regulating prefrontal cortex activation: an emerging role for the 5-HT₂A serotonin receptor in the modulation of emotion-based actions?

    Science.gov (United States)

    Aznar, Susana; Klein, Anders B

    2013-12-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.

  20. Serotonin: Modulator of a Drive to Withdraw

    Science.gov (United States)

    Tops, Mattie; Russo, Sascha; Boksem, Maarten A. S.; Tucker, Don M.

    2009-01-01

    Serotonin is a fundamental neuromodulator in both vertebrate and invertebrate nervous systems, with a suspected role in many human mental disorders. Yet, because of the complexity of serotonergic function, researchers have been unable to agree on a general theory. One function suggested for serotonin systems is the avoidance of threat. We propose…

  1. Serotonin 6 receptor controls Alzheimer's disease and depression.

    Science.gov (United States)

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-09-29

    Alzheimer's disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression.

  2. Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response.

    Science.gov (United States)

    Brindley, Rebecca L; Bauer, Mary Beth; Blakely, Randy D; Currie, Kevin P M

    2017-05-17

    Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT 1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca 2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.

  3. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  4. Common selective serotonin reuptake inhibitor side effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: data from a randomized controlled trial.

    Science.gov (United States)

    Garfield, Lauren D; Dixon, David; Nowotny, Petra; Lotrich, Francis E; Pollock, Bruce G; Kristjansson, Sean D; Doré, Peter M; Lenze, Eric J

    2014-10-01

    Antidepressant side effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation, and, rarely, significant harm. Older adults assume the largest and most serious burden of medication side effects. We investigated the association between antidepressant side effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Adults (N = 177) aged ≥ 60 years were randomized to active treatment or placebo for 12 weeks. Side effects were assessed using the Udvalg fur Kliniske Undersøgelser side-effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR [L/S + rs25531], HTR1A rs6295, HTR2A rs6311, respectively). Four significant drug-placebo side-effect differences were found: increased duration of sleep, dry mouth, diarrhea, and diminished sexual desire. Analyses using putative high- versus low-transcription genotype groupings revealed six pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing serotonin transporter genotypes, respectively, and greater diarrhea with the 1A receptor low-transcription genotype. Diminished sexual desire was experienced significantly more by high-expressing genotypes in the serotonin transporter, 1A, or 2A receptors. There was not a significant relationship between drug concentration and side effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Genetic variation in the serotonin system may predict who develops common SSRI side effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. Published by Elsevier Inc.

  5. Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus.

    Directory of Open Access Journals (Sweden)

    Cecilia Berg

    Full Text Available The selective serotonin reuptake inhibitor (SSRI fluoxetine (FLU, Prozac® is commonly prescribed for depression in pregnant women. This results in SSRI exposure of the developing fetus. However, there are knowledge gaps regarding the impact of SSRI exposure during development. Given the role of serotonin in brain development and its cross-talk with sex hormone function, we investigated effects of developmental exposure to pharmacologically relevant concentrations of FLU (3 and 30 nM (measured on brain neurotransmitter levels, gonadal differentiation, aromatase activity in brain and gonads, and the thyroid system, using the Xenopus tropicalis model. Tadpoles were chronically exposed (8 weeks until metamorphosis. At metamorphosis brains were cryosectioned and levels of serotonin, dopamine, norepinephrine, and their metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were measured in discrete regions (telencephalon, hypothalamus and the reticular formation of the cryosections using high-performance liquid chromatography. Exposure to 30 nM FLU increased the concentration of 5-hydroxyindoleacetic acid in hypothalamus compared with controls. FLU exposure did not affect survival, time to metamorphosis, thyroid histology, gonadal sex differentiation, or aromatase activity implying that the effect on the serotonergic neurotransmitter system in the hypothalamus region was specific. The FLU concentration that impacted the serotonin system is lower than the concentration measured in umbilical cord serum, suggesting that the serotonin system of the developing brain is highly sensitive to in utero exposure to FLU. To our knowledge this is the first study showing effects of developmental FLU exposure on brain neurochemistry. Given that SSRIs are present in the aquatic environment the current results warrant further investigation into the neurobehavioral effects of SSRIs in aquatic wildlife.

  6. The influence of serotonin on fear learning.

    Directory of Open Access Journals (Sweden)

    Catherine Hindi Attar

    Full Text Available Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI and dietary tryptophan depletion to reduce brain serotonin (5-HT levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  7. Serotonin and noradrenaline reuptake inhibitors improve micturition control in mice.

    Directory of Open Access Journals (Sweden)

    Marco Redaelli

    Full Text Available Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg, to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition.

  8. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  9. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  10. Serotonin enhances the impact of health information on food choice.

    Science.gov (United States)

    Vlaev, Ivo; Crockett, Molly J; Clark, Luke; Müller, Ulrich; Robbins, Trevor W

    2017-06-01

    Serotonin has been implicated in promoting self-control, regulation of hunger and physiological homeostasis, and regulation of caloric intake. However, it remains unclear whether the effects of serotonin on caloric intake reflect purely homeostatic mechanisms, or whether serotonin also modulates cognitive processes involved in dietary decision making. We investigated the effects of an acute dose of the serotonin reuptake inhibitor citalopram on choices between food items that differed along taste and health attributes, compared with placebo and the noradrenaline reuptake inhibitor atomoxetine. Twenty-seven participants attended three sessions and received single doses of atomoxetine, citalopram, and placebo in a double-blind randomised cross-over design. Relative to placebo, citalopram increased choices of more healthy foods over less healthy foods. Citalopram also increased the emphasis on health considerations in decisions. Atomoxetine did not affect decision making relative to placebo. The results support the hypothesis that serotonin may influence food choice by enhancing a focus on long-term goals. The findings are relevant for understanding decisions about food consumption and also for treating health conditions such as eating disorders and obesity.

  11. Serotonin-induced down-regulation of cell surface serotonin transporter

    DEFF Research Database (Denmark)

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    The serotonin transporter (SERT) terminates serotonergic signaling and enables refilling of synaptic vesicles by mediating reuptake of serotonin (5-HT) released into the synaptic cleft. The molecular and cellular mechanisms controlling SERT activity and surface expression are not fully understood...

  12. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes...

  13. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites

    DEFF Research Database (Denmark)

    Sørensen, Lena; Strømgaard, Kristian; Kristensen, Anders S

    2014-01-01

    In the central nervous system, synaptic levels of the monoamine neurotransmitter serotonin are mainly controlled by the serotonin transporter (SERT), and drugs used in the treatment of various psychiatric diseases have SERT as primary target. SERT is a phosphoprotein that undergoes phosphorylation....../dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including...

  14. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    Science.gov (United States)

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Can a Selective Serotonin Reuptake Inhibitor Act as a Glutamatergic Modulator?

    Directory of Open Access Journals (Sweden)

    Marcos Emilio Frizzo, PhD

    2017-01-01

    Full Text Available Sertraline (Zoloft and fluoxetine (Prozac are selective serotonin reuptake inhibitors whose antidepressant mechanism of action is classically attributed to an elevation of the extracellular levels of serotonin in the synaptic cleft. However, the biological effects of these drugs seem to be more complex than their traditionally described mechanism of action. Among their actions is the inhibition of different types of Na+ and K+ channels, as well as of glutamate uptake activity. The clearance of extracellular glutamate is essential to maintain the central nervous system within physiological conditions, and this excitatory neurotransmitter is removed from the synaptic cleft by astrocyte transporters. This transport depends upon a hyperpolarized membrane potential in astrocytes that is mainly maintained by Kir4.1 K+ channels. The impairment of the Kir4.1 channel activity reduces driving force for the glutamate transporter, resulting in an accumulation of extracellular glutamate. It has been shown that sertraline and fluoxetine inhibit Kir4.1 K+ channels. Recently, we demonstrated that sertraline reduces glutamate uptake in human platelets, which contain a high-affinity Na+-dependent glutamate uptake system, with kinetic and pharmacological properties similar to astrocytes in the central nervous system. Considering these similarities between human platelets and astrocytes, one might ask if sertraline could potentially reduce glutamate clearance in the synaptic cleft and consequently modulate glutamatergic transmission. This possibility merits investigation, since it may provide additional information regarding the mechanism of action and perhaps the side effects of these antidepressants.

  16. Serotonin blockade delays learning performance in a cooperative fish.

    Science.gov (United States)

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger.

  17. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  18. Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Hauser Michael A

    2011-05-01

    Full Text Available Abstract Background Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD. Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4 have been shown to modulate amygdala and prefrontal cortex (PFC activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined. Methods We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531 and several downstream single nucleotide polymorphisms (SNPs modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22 and a trauma-exposed control group (n = 20 in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants. Results In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD. Conclusions The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify

  19. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.; Hendriks, H.F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  20. Modulation of the intrinsic properties of motoneurons by serotonin

    DEFF Research Database (Denmark)

    Perrier, Jean-François; Rasmussen, Hanne Borger; Christensen, Rasmus Kordt

    2013-01-01

    Serotonin (5-HT) is one of the main transmitters in the nervous system. Serotonergic neurons in the raphe nuclei in the brainstem innervate most parts of the central nervous system including motoneurons in the spinal cord and brainstem. This review will focus on the modulatory role that 5-HT exerts...... a sustained depolarization and an amplification of synaptic inputs. Under pathological conditions, such as after a spinal cord injury, the promotion of persistent inward currents by serotonin and/or the overexpression of autoactive serotonergic receptors may contribute to motoneuronal excitability, muscle...

  1. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, Dina; Wielen, van der Nikkie; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  2. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    Science.gov (United States)

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. © FASEB.

  3. ROLE OF SEROTONIN IN FISH REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Parvathy ePrasad

    2015-06-01

    Full Text Available The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviours, gonadotropin release and gonadotropin-release hormone (GnRH secretion. However, the serotonin system in teleost may play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.

  4. Modulation for emergent networks: serotonin and dopamine.

    Science.gov (United States)

    Weng, Juyang; Paslaski, Stephen; Daly, James; VanDam, Courtland; Brown, Jacob

    2013-05-01

    In autonomous learning, value-sensitive experiences can improve the efficiency of learning. A learning network needs be motivated so that the limited computational resources and the limited lifetime are devoted to events that are of high value for the agent to compete in its environment. The neuromodulatory system of the brain is mainly responsible for developing such a motivation system. Although reinforcement learning has been extensively studied, many existing models are symbolic whose internal nodes or modules have preset meanings. Neural networks have been used to automatically generate internal emergent representations. However, modeling an emergent motivational system for neural networks is still a great challenge. By emergent, we mean that the internal representations emerge autonomously through interactions with the external environments. This work proposes a generic emergent modulatory system for emergent networks, which includes two subsystems - the serotonin system and the dopamine system. The former signals a large class of stimuli that are intrinsically aversive (e.g., stress or pain). The latter signals a large class of stimuli that are intrinsically appetitive (e.g., pleasure or sweet). We experimented with this motivational system for two settings. The first is a visual recognition setting to investigate how such a system can learn through interactions with a teacher, who does not directly give answers, but only punishments and rewards. The second is a setting for wandering in the presence of a friend and a foe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  6. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study

    Science.gov (United States)

    de Abajo, Francisco José; Rodríguez, Luis Alberto García; Montero, Dolores

    1999-01-01

    Objective To examine the association between selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding. Design Population based case-control study. Setting General practices included in the UK general practice research database. Subjects 1651 incident cases of upper gastrointestinal bleeding and 248 cases of ulcer perforation among patients aged 40 to 79 years between April 1993 and September 1997, and 10 000 controls matched for age, sex, and year that the case was identified. Interventions Review of computer profiles for all potential cases, and an internal validation study to confirm the accuracy of the diagnosis on the basis of the computerised information. Main outcome measures Current use of selective serotonin reuptake inhibitors or other antidepressants within 30 days before the index date. Results Current exposure to selective serotonin reuptake inhibitors was identified in 3.1% (52 of 1651) of patients with upper gastrointestinal bleeding but only 1.0% (95 of 10 000) of controls, giving an adjusted rate ratio of 3.0 (95% confidence interval 2.1 to 4.4). This effect measure was not modified by sex, age, dose, or treatment duration. A crude incidence of 1 case per 8000 prescriptions was estimated. A small association was found with non-selective serotonin reuptake inhibitors (relative risk 1.4, 1.1 to 1.9) but not with antidepressants lacking this inhibitory effect. None of the groups of antidepressants was associated with ulcer perforation. The concurrent use of selective serotonin reuptake inhibitors with non-steroidal anti-inflammatory drugs increased the risk of upper gastrointestinal bleeding beyond the sum of their independent effects (15.6, 6.6 to 36.6). A smaller interaction was also found between selective serotonin reuptake inhibitors and low dose aspirin (7.2, 3.1 to 17.1). Conclusions Selective serotonin reuptake inhibitors increase the risk of upper gastrointestinal bleeding. The absolute effect is, however

  7. Uremic anorexia: a consequence of persistently high brain serotonin levels? The tryptophan/serotonin disorder hypothesis.

    Science.gov (United States)

    Aguilera, A; Selgas, R; Codoceo, R; Bajo, A

    2000-01-01

    Anorexia is a frequent part of uremic syndrome, contributing to malnutrition in dialysis patients. Many factors have been suggested as responsible for uremic anorexia. In this paper we formulate a new hypothesis to explain the appetite disorders in dialysis patients: "the tryptophan/serotonin disorder hypothesis." We review current knowledge of normal hunger-satiety cycle control and the disorders described in uremic patients. There are four phases in food intake regulation: (1) the gastric phase, during which food induces satiety through gastric distention and satiety peptide release; (2) the post absorptive phase, during which circulating compounds, including glucose and amino acids, cause satiety by hepatic receptors via the vagus nerve; (3) the hepatic phase, during which adenosine triphosphate (ATP) concentration is the main stimulus inducing hunger or satiety, with cytokines inhibiting ATP production; and (4) the central phase, during which appetite is regulated through peripheral (circulating plasma substances and neurotransmitters) and brain stimuli. Brain serotonin is the final target for peripheral mechanisms controlling appetite. High brain serotonin levels and a lower serotonin/dopamine ratio cause anorexia. Plasma and brain amino acid concentrations are recognized factors involved in neurotransmitter synthesis and appetite control. Tryptophan is the substrate of serotonin synthesis. High plasma levels of anorectics such as tryptophan (plasma and brain), cholecystokinin, tumor necrosis factor alpha, interleukin-1, and leptin, and deficiencies of nitric oxide and neuropeptide Y have been described in uremia; all increase intracerebral serotonin. We suggest that brain serotonin hyperproduction due to a uremic-dependent excess of tryptophan may be the final common pathway involved in the genesis of uremic anorexia. Various methods of ameliorating anorexia by decreasing the central effects of serotonin are proposed.

  8. [Effect of serotonin-modulated anticonsolidation protein on formation of long-term memory in carps Cyprinus carpio in the model of active avoidance learning].

    Science.gov (United States)

    Garina, D V; Mekhtiev, A A

    2014-01-01

    Effect of serotonin-modulated anticonsolidation protein (SMAP) that has property of disturbing formation of memory trace in mammals and of learning and memory in teleost fish was studied in the model of active avoidance learning. The experiment was performed in three stages: (1) fry of carps Cyprinus carpio L. was injected intracerebrovenricularly with the SMAP protein at a dose of 0.3 μg/g; control individuals were administered with equal amount of the buffered saline for poikilothermic animals; (2) 24 h after the injection, fish were learnt during 8 sèances for 2 days the conditioned reflex of active avoidance; (3) 48 h after the learning the testing of the skill was performed. The administration of the protein was shown to lead to disturbance of reproduction of the skill in the fish: the latent time of the skill reproduction in experimental individuals exceeded that in control fish more than two times, while the number of individuals succeeding the task in the experimental group was non-significantly lower than in the control group. However, unlike mammals, injection of the SMAP protein in this model produced no effect on the process of learning in carps. Thus, there was first demonstrated the inhibiting effect of the SMAP protein whose concentration correlated positively with the content of the neurotransmitter serotonin in brain on consolidation of memory traces in teleost fish.

  9. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    Science.gov (United States)

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic

  10. Salivary serotonin does not correlate with central serotonin turnover in adult phenylketonuria (PKU patients

    Directory of Open Access Journals (Sweden)

    Joseph Leung

    2018-06-01

    Full Text Available Introduction: Phenylketonuria (PKU is an inborn error of metabolism associated with an increased risk of behavioural and mood disorders. There are currently no reliable markers for monitoring mood in PKU. The purpose of this study was to evaluate salivary serotonin as a possible non-invasive marker of long-term mood symptoms and central serotonin activity in patients with PKU. Methods: 20 patients were recruited from our Adult Metabolic Diseases Clinic. Age, sex, plasma phenylalanine (Phe level, DASS (Depression Anxiety Stress Scales depression score, DASS anxiety score, BMI, salivary serotonin, salivary cortisol, 2-year average Phe, 2-year average tyrosine (Tyr, and 2-year average Phe:Tyr ratio were collected for each patient. Spearman's ρ correlation analysis was used to determine if there was any relationship between any of the parameters. Results: There were positive correlations between DASS anxiety and DASS depression scores (Spearman's ρ = 0.8708, p-value < 0.0001, BMI and plasma Phe level (Spearman's ρ = 0.6228, p-value = .0034, and 2-year average Phe and BMI (Spearman's ρ = 0.5448, p-value = .0130. There was also a negative correlation between salivary cortisol and plasma Phe level (Spearman's ρ = −0.5018, p-value = .0338. All other correlations were not statistically significant. Conclusion: Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, implying that salivary serotonin does not reflect central serotonin turnover. Additionally, this study suggests that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU. Synopsis: Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, suggesting that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU

  11. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options.

    Science.gov (United States)

    Croft, Harry A

    2017-12-01

    The neurobiology of sexual response is driven in part by dopamine and serotonin-the former modulating excitatory pathways and the latter regulating inhibitory pathways. Neurobiological underpinnings of hypoactive sexual desire disorder (HSDD) are seemingly related to overactive serotonin activity that results in underactive dopamine activity. As such, pharmacologic agents that decrease serotonin, increase dopamine, or some combination thereof, have therapeutic potential for HSDD. To review the role of serotonin in female sexual function and the effects of pharmacologic interventions that target the serotonin system in the treatment of HSDD. Searches of the Medline database for articles on serotonin and female sexual function. Relevant articles from the peer-reviewed literature were included. Female sexual response is regulated not only by the sex hormones but also by several neurotransmitters. It is postulated that dopamine, norepinephrine, oxytocin, and melanocortins serve as key neuromodulators for the excitatory pathways, whereas serotonin, opioids, and endocannabinoids serve as key neuromodulators for the inhibitory pathways. Serotonin appears to be a key inhibitory modulator of sexual desire, because it decreases the ability of excitatory systems to be activated by sexual cues. Centrally acting drugs that modulate the excitatory and inhibitory pathways involved in sexual desire (eg, bremelanotide, bupropion, buspirone, flibanserin) have been investigated as treatment options for HSDD. However, only flibanserin, a multifunctional serotonin agonist and antagonist (5-hydroxytryptamine [5-HT] 1A receptor agonist and 5-HT 2A receptor antagonist), is currently approved for the treatment of HSDD. The central serotonin system is 1 biochemical target for medications intended to treat HSDD. This narrative review integrates findings from preclinical studies and clinical trials to elucidate neurobiological underpinnings of HSDD but is limited to 1 neurotransmitter system

  12. Serotonin transporter genotype modulates subgenual response to fearful faces using an incidental task.

    Science.gov (United States)

    O'Nions, Elizabeth J P; Dolan, Raymond J; Roiser, Jonathan P

    2011-11-01

    This study assessed the impact of serotonin transporter genotype (5-HTTLPR) on regional responses to emotional faces in the amygdala and subgenual cingulate cortex (sgACC), while subjects performed a gender discrimination task. Although we found no evidence for greater amygdala reactivity or reduced amygdala-sgACC coupling in short variant 5-HTTLPR homozygotes (s/s), we observed an interaction between genotype and emotion in sgACC. Only long variant homozygotes (la/la) exhibited subgenual deactivation to fearful versus neutral faces, whereas the effect in s/s subjects was in the other direction. This absence of subgenual deactivation in s/s subjects parallels a recent finding in depressed subjects [Grimm, S., Boesiger, P., Beck, J., Schuepbach, D., Bermpohl, F., Walter, M., et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology, 34, 932-943, 2009]. Taken together, the findings suggest that subgenual cingulate activity may play an important role in regulating the impact of aversive stimuli, potentially conferring greater resilience to the effects of aversive stimuli in la/la subjects. Using dynamic causal modeling of functional magnetic resonance imaging data, we explored the effects of genotype on effective connectivity and emotion-specific changes in coupling across a network of regions implicated in social processing. Viewing fearful faces enhanced bidirectional excitatory coupling between the amygdala and the fusiform gyrus, and increased the inhibitory influence of the amygdala over the sgACC, although this modulation of coupling did not differ between the genotype groups. The findings are discussed in relation to the role of sgACC and serotonin in moderating responses to aversive stimuli [Dayan, P., & Huys, Q. J., Serotonin, inhibition, and negative mood. PLoS Comput Biol, 4, e4, 2008; Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., et

  13. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  14. A new Drosophila octopamine receptor responds to serotonin.

    Science.gov (United States)

    Qi, Yi-Xiang; Xu, Gang; Gu, Gui-Xiang; Mao, Fen; Ye, Gong-Yin; Liu, Weiwei; Huang, Jia

    2017-11-01

    As the counterparts of the vertebrate adrenergic transmitters, octopamine and tyramine are important physiological regulators in invertebrates. They control and modulate many physiological and behavioral functions in insects. In this study, we reported the pharmacological properties of a new α2-adrenergic-like octopamine receptor (CG18208) from Drosophila melanogaster, named DmOctα2R. This new receptor gene encodes two transcripts by alternative splicing. The long isoform DmOctα2R-L differs from the short isoform DmOctα2R-S by the presence of an additional 29 amino acids within the third intracellular loop. When heterologously expressed in mammalian cell lines, both receptors were activated by octopamine, tyramine, epinephrine and norepinephrine, resulting in the inhibition of cAMP production in a dose-dependent manner. The long form is more sensitive to the above ligands than the short form. The adrenergic agonists naphazoline, tolazoline and clonidine can stimulate DmOctα2R as full agonists. Surprisingly, serotonin and serotoninergic agonists can also activate DmOctα2R. Several tested adrenergic antagonists and serotonin antagonists blocked the action of octopamine or serotonin on DmOctα2R. The data presented here reported an adrenergic-like G protein-coupled receptor activated by serotonin, suggesting that the neurotransmission and neuromodulation in the nervous system could be more complex than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin-dopamine activity modulator.

    Science.gov (United States)

    Yoshimi, Noriko; Futamura, Takashi; Hashimoto, Kenji

    2015-03-01

    Cognitive impairment, including impaired social cognition, is largely responsible for the deterioration in social life suffered by patients with psychiatric disorders, such as schizophrenia and major depressive disorder (MDD). Brexpiprazole (7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one), a novel serotonin-dopamine activity modulator, was developed to offer efficacious and tolerable therapy for different psychiatric disorders, including schizophrenia and adjunctive treatment of MDD. In this study, we investigated whether brexpiprazole could improve social recognition deficits (one of social cognition deficits) in mice, after administration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine). Dosing with dizocilpine (0.1mg/kg) induced significant impairment of social recognition in mice. Brexpiprazole (0.01, 0.03, 0.1mg/kg, p.o.) significantly ameliorated dizocilpine-induced social recognition deficits, without sedation or a reduction of exploratory behavior. In addition, brexpiprazole alone had no effect on social recognition in untreated control mice. By contrast, neither risperidone (0.03mg/kg, p.o.) nor olanzapine (0.03mg/kg, p.o.) altered dizocilpine-induced social recognition deficits. Finally, the effect of brexpiprazole on dizocilpine-induced social recognition deficits was antagonized by WAY-100,635, a selective serotonin 5-HT1A antagonist. These results suggest that brexpiprazole could improve dizocilpine-induced social recognition deficits via 5-HT1A receptor activation in mice. Therefore, brexpiprazole may confer a beneficial effect on social cognition deficits in patients with psychiatric disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  16. [Metabolism of serotonin in autism in children].

    Science.gov (United States)

    Bursztejn, C; Ferrari, P; Dreux, C; Braconnier, A; Lancrenon, S

    1988-01-01

    In this controlled study of 22 autistic children and 22 normal controls matched for age and sex, the frequency of hyperserotonemia in infantile autism was confirmed. Platelet serotonin was elevated in patients. Comparative to controls, serotonin was also high in urine of autistic patients, while, on the contrary there was no difference for the urinary excretion of 5-HIAA. No difference was observed either for serotonin uptake and efflux or for MAO activity, in isolated platelets. The elevation of plasma free tryptophan - significant only with the Kolmogorov Smirnov test - suggests that 5-HT biosynthesis might be enhanced. In the group of patient reported in this study, disorders of serotonin metabolism are associated with disturbances of platelet catecholamines, and also with elevated immunoglobulins and enhanced cellular immunity reactions.

  17. Decreased uptake of 3H-serotonin and endogenous content of serotonin in blood platelets in hypertensive patients

    International Nuclear Information System (INIS)

    Kamal, L.A.; Le Quan-Bui, K.H.; Meyer, P.

    1984-01-01

    The uptake and content of serotonin in blood platelets were studied in patients with essential hypertension and in five families in which at least one member was hypertensive. Blood was obtained from male and female normotensive volunteers and hypertensive patients who were free of medication. Lineweaver-Burk plots of 3H-serotonin uptake from both control subjects and hypertensive patients were linear, which suggested simple Michaelis-Menten uptake kinetics. The maximal uptake velocity (Vmax) in hypertensive patients was significantly lower than in control subjects (control . 41.7 +/- 3.3 pmol/min/10(8) platelets, n . 17; hypertensive . 26.6 +/- 3.0 pmol/min/10(8) platelets, n . 16; p less than 0.005). The affinity constant (Km) was slightly but significantly lower in hypertensive patients (control . 0.70 +/- 0.08 microM; hypertensive . 0.46 +/- 0.08 microM; p less than 0.05). The serotonin content in blood platelets determined by high pressure liquid chromatography with electrochemical detection was significantly lower in hypertensive patients (control . 165.0 +/- 12.9 nmol/10(11) platelets, n . 29; hypertensive . 105.9 +/- 10.4 nmol/10(11) platelets, n . 27; p less than 0.001). In the five families investigated, the lowered serotonin content was observed in some normotensive members. The reduced number of carriers of serotonin uptake and the slight decrease in the affinity constant observed in platelets of patients with essential hypertension suggest that serotonin metabolism is altered in essential hypertension and that blood platelets may be a useful model in studying the serotonergic modifications at the molecular level

  18. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    Directory of Open Access Journals (Sweden)

    Bryon Silva

    Full Text Available Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA including serotonin (5HT participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB. The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd-instar exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  19. Serotonin-mediated modulation of Na+/K+ pump current in rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Zhang, Li Nan; Su, Su Wen; Guo, Fang; Guo, Hui Cai; Shi, Xiao Lu; Li, Wen Ya; Liu, Xu; Wang, Yong Li

    2012-01-19

    The aim of this study was to investigate whether serotonin (5-hydroxytryptamine, 5-HT) can modulate Na+/K+ pump in rat hippocampal CA1 pyramidal neurons. 5-HT (0.1, 1 mM) showed Na+/K+ pump current (Ip) densities of 0.40 ± 0.04, 0.34 ± 0.03 pA/pF contrast to 0.63 ± 0.04 pA/pF of the control of 0.5 mM strophanthidin (Str), demonstrating 5-HT-induced inhibition of Ip in a dose-dependent manner in hippocampal CA1 pyramidal neurons. The effect was partly attenuated by ondasetron, a 5-HT3 receptor (5-HT3R) antagonist, not by WAY100635, a 5-HT1AR antagonist, while 1-(3-Chlorophenyl) biguanide hydrochloride (m-CPBG), a 5-HT3R specific agonist, mimicked the effect of 5-HT on Ip. 5-HT inhibits neuronal Na+/K+ pump activity via 5-HT3R in rat hippocampal CA1 pyramidal neurons. This discloses novel mechanisms for the function of 5-HT in learning and memory, which may be a useful target to benefit these patients with cognitive disorder.

  20. Association between salivary serotonin and the social sharing of happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Although human saliva contains the monoamine serotonin, which plays a key role in the modulation of emotional states, the association between salivary serotonin and empathic ability remains unclear. In order to elucidate the associations between salivary serotonin levels, trait empathy, and the sharing effect of emotions (i.e., sharing emotional experiences with others, we performed a vignette-based study. Participants were asked to evaluate their happiness when they experience several hypothetical life events, whereby we manipulated the valence of the imagined event (positive, neutral, or negative, as well as the presence of a friend (absent, positive, or negative. Results indicated that the presence of a happy friend significantly enhanced participants' happiness. Correlation analysis demonstrated that salivary serotonin levels were negatively correlated with happiness when both the self and friend conditions were positive. Correlation analysis also indicated a negative relationship between salivary serotonin levels and trait empathy (particularly in perspective taking, which was measured by the Interpersonal Reactivity Index. Furthermore, an exploratory multiple regression analysis suggested that mothers' attention during childhood predicted salivary serotonin levels. Our findings indicate that empathic abilities and the social sharing of happiness decreases as a function of salivary serotonin levels.

  1. Association between salivary serotonin and the social sharing of happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Ishii, Keiko; Ohtsubo, Yohsuke; Noguchi, Yasuki; Ochi, Misaki; Yamasue, Hidenori

    2017-01-01

    Although human saliva contains the monoamine serotonin, which plays a key role in the modulation of emotional states, the association between salivary serotonin and empathic ability remains unclear. In order to elucidate the associations between salivary serotonin levels, trait empathy, and the sharing effect of emotions (i.e., sharing emotional experiences with others), we performed a vignette-based study. Participants were asked to evaluate their happiness when they experience several hypothetical life events, whereby we manipulated the valence of the imagined event (positive, neutral, or negative), as well as the presence of a friend (absent, positive, or negative). Results indicated that the presence of a happy friend significantly enhanced participants' happiness. Correlation analysis demonstrated that salivary serotonin levels were negatively correlated with happiness when both the self and friend conditions were positive. Correlation analysis also indicated a negative relationship between salivary serotonin levels and trait empathy (particularly in perspective taking), which was measured by the Interpersonal Reactivity Index. Furthermore, an exploratory multiple regression analysis suggested that mothers' attention during childhood predicted salivary serotonin levels. Our findings indicate that empathic abilities and the social sharing of happiness decreases as a function of salivary serotonin levels.

  2. Affective neural responses modulated by serotonin transporter genotype in clinical anxiety and depression.

    Directory of Open Access Journals (Sweden)

    Desmond J Oathes

    Full Text Available Serotonin transporter gene variants are known to interact with stressful life experiences to increase chances of developing affective symptoms, and these same variants have been shown to influence amygdala reactivity to affective stimuli in non-psychiatric populations. The impact of these gene variants on affective neurocircuitry in anxiety and mood disorders has been studied less extensively. Utilizing a triallelic assay (5-HTTLPR and rs25531 to assess genetic variation linked with altered serotonin signaling, this fMRI study investigated genetic influences on amygdala and anterior insula activity in 50 generalized anxiety disorder patients, 26 of whom also met DSM-IV criteria for social anxiety disorder and/or major depressive disorder, and 39 healthy comparison subjects. A Group x Genotype interaction was observed for both the amygdala and anterior insula in a paradigm designed to elicit responses in these brain areas during the anticipation of and response to aversive pictures. Patients who are S/L(G carriers showed less activity than their L(A/L(A counterparts in both regions and less activity than S/L(G healthy comparison subjects in the amygdala. Moreover, patients with greater insula responses reported higher levels of intolerance of uncertainty, an association that was particularly pronounced for patients with two LA alleles. A genotype effect was not established in healthy controls. These findings link the serotonin transporter gene to affective circuitry findings in anxiety and depression psychopathology and further suggest that its impact on patients may be different from effects typically observed in healthy populations.

  3. Modulation of rat blood phagocyte activity by serotonin

    Czech Academy of Sciences Publication Activity Database

    Okénková, Kateřina; Lojek, Antonín; Kubala, Lukáš; Číž, Milan

    2007-01-01

    Roč. 101, č. 14 (2007), s245-s246 E-ISSN 1213-7103. [Mezioborová česko-slovenská toxikologická konference /12./. Praha, 11.06.2007-13.06.2007] R&D Projects: GA ČR(CZ) GA524/04/0897 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : phagocytes * serotonin * reactive oxygen species Subject RIV: BO - Biophysics

  4. Intrinsic neuromodulation in the Tritonia swim CPG: serotonin mediates both neuromodulation and neurotransmission by the dorsal swim interneurons.

    Science.gov (United States)

    Katz, P S; Frost, W N

    1995-12-01

    1. Neuromodulation has previously been shown to be intrinsic to the central pattern generator (CPG) circuit that generates the escape swim of the nudibranch mollusk Tritonia diomedea; the dorsal swim interneurons (DSIs) make conventional monosynaptic connections and evoke neuromodulatory effects within the swim motor circuit. The conventional synaptic potentials evoked by a DSI onto cerebral neuron 2 (C2) and onto the dorsal flexion neurons (DFNs) consist of a fast excitatory postsynaptic potential (EPSP) followed by a prolonged slow EPSP. In their neuromodulatory role, the DSIs produce an enhancement of the monosynaptic connections made by C2 onto other CPG circuit interneurons and onto efferent flexion neurons. Previous work showed that the DSIs are immunoreactive for serotonin. Here we provide evidence that both the neurotransmission and the neuromodulation evoked by the DSIs are produced by serotonin, and that these effects may be pharmacologically separable. 2. Previously it was shown that bath-applied serotonin both mimics and occludes the modulation of the C2 synapses by the DSIs. Here we find that pressure-applied puffs of serotonin mimic both the fast and slow EPSPs evoked by a DSI onto a DFN, whereas high concentrations of bath-applied serotonin occlude both of these synaptic components. 3. Consistent with the hypothesis that serotonin mediates the actions of the DSIs, the serotonin reuptake inhibitor imipramine prolongs the duration of the fast DSI-DFN EPSP, increases the amplitude of the slow DSI-DFN EPSP, and increases both the amplitude and duration of the modulation of the C2-DFN synapse by the DSIs. 4. Two serotonergic antagonists were found that block the actions of the DSIs. Gramine blocks the fast DSI-DFN EPSP, and has far less of an effect on the slow EPSP and the modulation. Gramine also diminishes the depolarization evoked by pressure-applied serotonin, showing that it is a serotonin antagonist in this system. In contrast, methysergide greatly

  5. Modulation of Tryptophan and Serotonin Metabolism as a Biochemical Basis of the Behavioral Effects of Use and Withdrawal of Androgenic-Anabolic Steroids and Other Image- and Performance-Enhancing Agents

    Directory of Open Access Journals (Sweden)

    Abdulla A-B Badawy

    2018-02-01

    Full Text Available Modulation of tryptophan (Trp metabolism may underpin the behavioral effects of androgenic-anabolic steroids (AAS and associated image and performance enhancers. Euphoria, arousal, and decreased anxiety observed with moderate use and exercise may involve enhanced cerebral serotonin synthesis and function by increased release of albumin-bound Trp and estrogen-mediated liver Trp 2,3-dioxygenase (TDO inhibition and enhancement of serotonin function. Aggression, anxiety, depression, personality disorders, and psychosis, observed on withdrawal of AAS or with use of large doses, can be caused by decreased serotonin synthesis due to TDO induction on withdrawal, excess Trp inhibiting the 2 enzymes of serotonin synthesis, and increased cerebral levels of neuroactive kynurenines. Exercise and excessive protein and branched-chain amino acid intakes may aggravate the effects of large AAS dosage. The hypothesis is testable in humans and experimental animals by measuring parameters of Trp metabolism and disposition and related metabolic processes.

  6. Serotonin Modulation of Prefronto-Hippocampal Rhythms in Health and Disease.

    Science.gov (United States)

    Puig, M Victoria; Gener, Thomas

    2015-07-15

    There is mounting evidence that most cognitive functions depend upon the coordinated activity of neuronal networks often located far from each other in the brain. Ensembles of neurons synchronize their activity, generating oscillations at different frequencies that may encode behavior by allowing an efficient communication between brain areas. The serotonin system, by virtue of the widespread arborisation of serotonergic neurons, is in an excellent position to exert strong modulatory actions on brain rhythms. These include specific oscillatory activities in the prefrontal cortex and the hippocampus, two brain areas essential for many higher-order cognitive functions. Psychiatric patients show abnormal oscillatory activities in these areas, notably patients with schizophrenia who display psychotic symptoms as well as affective and cognitive impairments. Synchronization of neural activity between the prefrontal cortex and the hippocampus seems to be important for cognition and, in fact, reduced prefronto-hippocampal synchrony has been observed in a genetic mouse model of schizophrenia. Here, we review recent advances in the field of neuromodulation of brain rhythms by serotonin, focusing on the actions of serotonin in the prefrontal cortex and the hippocampus. Considering that the serotonergic system plays a crucial role in cognition and mood and is a target of many psychiatric treatments, it is surprising that this field of research is still in its infancy. In that regard, we point to future investigations that are much needed in this field.

  7. Serotonin syndrome

    Science.gov (United States)

    Hyperserotonemia; Serotonergic syndrome; Serotonin toxicity; SSRI - serotonin syndrome; MAO - serotonin syndrome ... brain area. For example, you can develop this syndrome if you take migraine medicines called triptans together ...

  8. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  9. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    Science.gov (United States)

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-02

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling.

  10. Modulation of leak K(+) channel in hypoglossal motoneurons of rats by serotonin and/or variation of pH value.

    Science.gov (United States)

    Xu, Xue-Feng; Tsai, Hao-Jan; Li, Lin; Chen, Yi-Fan; Zhang, Cheng; Wang, Guang-Fa

    2009-08-25

    The cloned TWIK-related acid-sensitive K(+) channel (TASK-1) is sensitive to the pH changes within physiological pH range (pK~7.4). Recently, the native TASK-1-like channel was suggested to be the main contributor to the background (or leak) K(+) conductance in the motoneurons of the brain stem. Serotonin (5-HT) and variation of pH value in perfused solution could modulate these currents. Here we aimed to examine the properties and modulation of the currents by serotonin or variation of pH value in hypoglossal motoneurons of rats. Transverse slices were prepared from the brainstem of neonatal Sprague-Dawley rats (postnatal days 7-8). Hypoglossal motoneurons were used for the study. The leak K(+) current (TASK-1-like current) and hyperpolarization-activated cationic current (I(h)) were recorded with the whole-cell patch-clamp technique. The results showed that these currents were inhibited by acidified artificial cerebrospinal fluid (ACSF, pH 6.0) and activated by alkalized ACSF (pH 8.5). 5-HT (10 mumol/L) significantly inhibited both leak K(+) current and I(h) with depolarization of membrane potential and the occurrence of oscillation and/or spikes. Bath application of Ketanserine, an antagonist of 5-HT₂ receptor, reversed or reduced the inhibitory effect of acidified solution on leak K(+) current and I(h). The results suggest that 5-HT₂ receptors mediate the effects of acidified media on leak K(+) current and I(h) in hypoglossal motoneurons.

  11. Immunohistological localization of serotonin in the CNS and feeding system of the stable fly stomoxys calcitrans L. (Diptera: muscidae)

    Science.gov (United States)

    Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR)to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stab...

  12. Radio-prophylactic treatment with imidazole and/or Serotonin for Modulation of Tissue Catecholamines in whole body gamma irradiated Rats

    International Nuclear Information System (INIS)

    Hassan, S.H.M.; Roushdy, H.M.; Maklaad, Y.A.; El-Sayed, M.E.

    1995-01-01

    The present study has been conducted to evaluate the radioprotective effects of imidazole, serotonin and their combination on radiation induced reduction in catecholamine contents of the heart and adrenal glands in albino rat. The contribution of catecholamines in the radioprotective role of these agents has been evaluated. Whole-body gamma-irradiation (6 Gy) induced a significant reduction in heart and adrenal glands contents of catecholamine (epinephrine, norepinephrine and dopamine) one day post irradiation. Such reduction in catecholamine contents was more pronounced on the seventh day post exposure. Administration of imidazole (350 mg kg-1) or serotonin. (15 mg. kg-1) controlled the radiation induced reduction in catecholamine contents of heart as well as adrenal glands. Whereas, combination of imidazole (17 mg kg-1) serotonin (15 mg. kg-1) afforded a better protection than either agent given alone, in view that all the measured parameters could be fully restored to the values pre-irradiation. This study appreciate the usage of such combination as a prophylactic treatment for controlling the stress-state induced by irradiation which is associated with disturbed level of endogenous catecholamine contents in those sensitive patients undergoing radiotherapy. 2 tabs

  13. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Saravanan Rajendiran

    2016-03-01

    Full Text Available The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of

  14. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus.

    Science.gov (United States)

    Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar

    2016-03-01

    The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the

  15. Serotonin Regulates the Feeding and Reproductive Behaviors of Pratylenchus penetrans.

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E

    2017-07-01

    The success of all plant-parasitic nematodes is dependent on the completion of several complex behaviors. The lesion nematode Pratylenchus penetrans is an economically important parasite of a diverse range of plant hosts. Unlike the cyst and root-knot nematodes, P. penetrans moves both within and outside of the host roots and can feed from both locations. Adult females of P. penetrans require insemination by actively moving males for reproduction and can lay eggs both within and outside of the host roots. We do not have a complete understanding of the molecular basis for these behaviors. One candidate modulator of these behaviors is the neurotransmitter serotonin. Previous research demonstrated an effect of exogenously applied serotonin on the feeding and male mating behaviors of cyst and root-knot nematodes. However, there are no data on the role of exogenous serotonin on lesion nematodes. Similarly, there are no data on the presence and function of endogenous serotonin in any plant-parasitic nematode. Here, we establish that exogenous serotonin applied to P. penetrans regulates both feeding and sex-specific behaviors. Furthermore, using immunohistochemistry and pharmacological assays, our data suggest that P. penetrans utilizes endogenous serotonin to regulate both feeding and sex-specific behaviors.

  16. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter.

    Science.gov (United States)

    Neumeister, Alexander; Young, Theresa; Stastny, Juergen

    2004-08-01

    Serotonin systems appear to play a key role in the pathophysiology of major depressive disorder. Consequently, ongoing research determines whether serotonin related genes account for the very robust differential behavioral and neural mechanisms that discriminate patients with depression from healthy controls. Serotonin type 1(A) receptors and the serotonin transporters are reduced in depression, and recent genetic research in animals and humans has implicated both in depression. Preclinical studies have utilized a variety of animal models that have been used to explain pathophysiological mechanisms in humans, although it is not clear at all whether these models constitute relevant models for depression in humans. However, data from preclinical studies can generate hypotheses that are tested in humans by combining genetic data with behavioral and physiological challenge paradigms and neuroimaging. These studies will enhance our understanding about combined influences from multiple interacting genes, as well as from environmental factors on brain circuits and their function, and about how these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders.

  17. Serotonin transporter genotype modulates social reward and punishment in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Karli K Watson

    Full Text Available Serotonin signaling influences social behavior in both human and nonhuman primates. In humans, variation upstream of the promoter region of the serotonin transporter gene (5-HTTLPR has recently been shown to influence both behavioral measures of social anxiety and amygdala response to social threats. Here we show that length polymorphisms in 5-HTTLPR predict social reward and punishment in rhesus macaques, a species in which 5-HTTLPR variation is analogous to that of humans.In contrast to monkeys with two copies of the long allele (L/L, monkeys with one copy of the short allele of this gene (S/L spent less time gazing at face than non-face images, less time looking in the eye region of faces, and had larger pupil diameters when gazing at photos of a high versus low status male macaques. Moreover, in a novel primed gambling task, presentation of photos of high status male macaques promoted risk-aversion in S/L monkeys but promoted risk-seeking in L/L monkeys. Finally, as measured by a "pay-per-view" task, S/L monkeys required juice payment to view photos of high status males, whereas L/L monkeys sacrificed fluid to see the same photos.These data indicate that genetic variation in serotonin function contributes to social reward and punishment in rhesus macaques, and thus shapes social behavior in humans and rhesus macaques alike.

  18. Role of serotonin in pathogenesis of analgesic induced headache

    Energy Technology Data Exchange (ETDEWEB)

    Srikiatkhachorn, A.

    1999-12-16

    Analgesic abuse has recently been recognized as a cause of deterioration in primary headache patients. Although the pathogenesis of this headache transformation is still obscure, and alteration of central pain control system is one possible mechanism. A number of recent studies indicated that simple analgesics exert their effect by modulating the endogenous pain control system rather than the effect at the peripheral tissue, as previously suggested. Serotonin (5-hydroxytryptamine ; 5-HT) has long been known to play a pivotal role in the pain modulatory system in the brainstem. In the present study, we investigated the changes in 5-HT system in platelets and brain tissue. A significant decrease in platelet 5-HT concentration (221.8{+-}30.7, 445.3{+-}37.4 and 467.2{+-}38.5 ng/10{sup 9} platelets, for patients with analgesic-induced headache and migraine patients, respectively, p<0.02) were evident in patients with analgesic induced headache. Chronic paracetamol administration induced a decrease in 5-HT{sub 2} serotonin receptor in cortical and brain stem tissue in experimental animals (B{sub max}=0.93{+-}0.04 and 1.79{+-}0.61 pmol/mg protein for paracetamol treated rat and controls, respectively, p<0.05). Our preliminary results suggested that chronic administration of analgesics interferes with central and peripheral 5-HT system and therefore possibly alters the 5-HT dependent antinociceptive system. (author)

  19. Rescuing cholinergic neurons from apoptotic degeneration by targeting of serotonin modulator- and apolipoprotein E-conjugated liposomes to the hippocampus

    Directory of Open Access Journals (Sweden)

    Kuo YC

    2016-12-01

    Full Text Available Yung-Chih Kuo, Yin-Jung Lee Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China Abstract: β-Amyloid (Aβ-targeting liposomes (LIP with surface serotonin modulator (SM and apolipoprotein E (ApoE were utilized to facilitate the delivery of nerve growth factor (NGF across the blood–brain barrier (BBB for neuroprotection in the hippocampus. The therapeutic efficacy of SM- and ApoE-grafted LIP carrying NGF (NGF-SM-ApoE-LIP was assessed by an in vitro Alzheimer’s disease (AD model of degenerated SK-N-MC cells and an in vivo AD model of Aβ-insulted Wistar rats. The experimental evidences revealed that the modified SM and ApoE on the surface of LIP increased the permeation of NGF across the BBB without serious damage to structural integrity of tight junction. When compared with free NGF, NGF-SM-ApoE-LIP upregulated the expression of phosphorylated neurotrophic tyrosine kinase receptor type 1 on cholinergic neurons and significantly improved their survival. In addition, NGF-SM-ApoE-LIP could reduce the secretion of acetylcholinesterase and malondialdehyde and rescue hippocampal neurons from apoptosis in rat brains. The synergistic effect of SM and ApoE is promising in the induction of NGF to inhibit the neurotoxicity of Aβ and NGF-SM-ApoE-LIP can be a potent antiapoptotic pharmacotherapy for clinical care of patients with AD. Keywords: Alzheimer’s disease, blood–brain barrier, serotonin modulator, apolipoprotein E, nerve growth factor, liposome

  20. Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate.

    Science.gov (United States)

    Lefevre, Arthur; Richard, Nathalie; Jazayeri, Mina; Beuriat, Pierre-Aurélien; Fieux, Sylvain; Zimmer, Luc; Duhamel, Jean-René; Sirigu, Angela

    2017-07-12

    Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT 1A R) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [ 11 C]DASB and [ 18 F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT 1A R, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [ 11 C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [ 18 F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [ 11 C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT 1A R. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT 1A R receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders. SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical

  1. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  2. Decoupled Modulation Control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaobu; Huang, Renke; Huang, Zhenyu; Diao, Ruisheng

    2016-06-03

    The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulation control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.

  3. Common SSRI side-effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: Data from a randomized controlled trial

    Science.gov (United States)

    Garfield, Lauren D.; Dixon, David; Nowotny, Petra; Lotrich, Francis E.; Pollock, Bruce G.; Kristjansson, Sean D.; Doré, Peter M.; Lenze, Eric J.

    2013-01-01

    Objective Antidepressant side-effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation and in rare cases significant harm. This is especially relevant for older adults, who assume the largest and most serious burden of medication side-effects. We investigated the association between antidepressant side-effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the SSRI escitalopram. Method Adults (n=177) aged ≥ 60 years were randomized to active treatment or placebo for 12-weeks. Side-effects were assessed using the UKU side effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR (L/S + rs25531), HTR1A rs6295, HTR2A rs6311, respectively). Results Four significant drug-placebo side-effect differences were found, including increased duration of sleep, dry mouth, diarrhea and diminished sexual desire. Analyses using putative high- vs low-transcription genotype groupings revealed 6 pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing genotypes of the serotonin transporter, respectively, and greater diarrhea with the low-transcription genotype of the 1A receptor. Diminished sexual desire was experienced significantly more in those with high-expressing genotype and either the serotonin transporter, 1A or 2A receptors. There was not a significant relationship between drug concentration and side-effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Conclusion Genetic variation in the 5HT system may predict who develops common SSRI side-effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. PMID:24021217

  4. Serotonin and Blood Pressure Regulation

    Science.gov (United States)

    Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.

    2012-01-01

    5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614

  5. Different components of 3H-imipramine binding in rat brain membranes: relation to serotonin uptake sites

    International Nuclear Information System (INIS)

    Gobbi, M.; Taddei, C.; Mennini, T.

    1988-01-01

    In the present paper, the authors confirm and extend previous studies showing heterogeneous 3 H-imipramine ( 3 H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM 3 H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three 3 H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontonin uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific 3 H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables

  6. Serotonin modulates immune function in T cells from HIV-seropositive subjects

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Afzelius, P; Andresen, L

    1997-01-01

    We have shown earlier increased intracellular levels of cAMP in peripheral lymphocytes from HIV-seropositive subjects and that a chemically induced decrease in this level increases cell proliferation and cytotoxicity. Others have shown that serotonin indirectly decreases intracellular cAMP levels...

  7. Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the serotonin transporter and terminal autoreceptors.

    Science.gov (United States)

    Maswood, S; Truitt, W; Hotema, M; Caldarola-Pastuszka, M; Uphouse, L

    1999-06-12

    In vivo microdialysis was used to examine extracellular serotonin (5-HT) in the mediobasal hypothalamus (MBH) of male and female Fischer (CDF-344) rats. Females from the stages of diestrus, proestrus, and estrus were used. Additionally, ovariectomized rats, primed subcutaneously (s.c.) with estradiol benzoate or estradiol benzoate plus progesterone were examined. Extracellular 5-HT in the MBH varied with stage of the estrous cycle and with the light/dark cycle. Proestrous females had the highest microdialysate concentrations of 5-HT during the light portion of the light/dark cycle and lowest concentrations during the dark portion of the cycle. Diestrous females had the highest levels during the dark portion of the cycle, while males and estrous females showed little change between light and dark portions of the cycle. In ovariectomized rats, there was no effect of 2.5 microg or 25 microg estradiol benzoate (s.c.) on extracellular 5-HT; but the addition of 500 microg progesterone, 48 h after estrogen priming, reduced microdialysate 5-HT near the threshold for detection. In intact females and in males, reverse perfusion with 3 microM fluoxetine, a selective serotonin reuptake inhibitor (SSRI), or 2 microM methiothepin, a 5-HT receptor antagonist, increased microdialysate concentrations of 5-HT. Estrous females and males showed nearly a 4-fold increase in microdialysate 5-HT in response to fluoxetine while smaller responses were seen in diestrous and proestrous rats. In contrast, proestrous rats showed the largest response to methiothepin. Estrous females showed a delayed response to methiothepin, but there was no methiothepin-induced increase in extracellular 5-HT in males. These findings are discussed in reference to the suggestion that extracellular 5-HT in the MBH is regulated in a manner that is gender and estrous cycle dependent. The 5-HT terminal autoreceptor may exert a greater role in proestrous females; the serotonin transporter appears to play a more active

  8. Ca++ dependent bistability induced by serotonin in spinal motoneurons

    DEFF Research Database (Denmark)

    Hounsgaard, J.; Kiehn, O.

    1985-01-01

    The plateau potential, responsible for the bistable state of spinal motoneurons, recently described in the decerebrate cat, was suggested to depend on serotonin (Hounsgaard et al. 1984). In an in vitro preparation of the spinal cord of the turtle we now show that serotonin, applied directly...... to the bath, transforms the intrinsic response properties of motoneurons, uncovering a plateau potential and voltage sensitive bistability. The changes induced by serotonin were blocked by Mn++, while the plateau potential and the bistability remained after application of tetrodotoxin. We conclude...... that serotonin controls the expression of a Ca++ dependent plateau potential in motoneurons....

  9. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.

    Science.gov (United States)

    Spencer, William C; Deneris, Evan S

    2017-01-01

    The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling

  10. Immunomodulatory Effects Mediated by Serotonin

    Directory of Open Access Journals (Sweden)

    Rodrigo Arreola

    2015-01-01

    Full Text Available Serotonin (5-HT induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b downstream signaling transduction proteins; and (c enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.

  11. Triptans, serotonin agonists, and serotonin syndrome (serotonin toxicity): a review.

    Science.gov (United States)

    Gillman, P Ken

    2010-02-01

    The US Food and Drug Administration (FDA) have suggested that fatal serotonin syndrome (SS) is possible with selective serotonin reuptake inhibitors (SSRIs) and triptans: this warning affects millions of patients as these drugs are frequently given simultaneously. SS is a complex topic about which there is much misinformation. The misconception that 5-HT1A receptors can cause serious SS is still widely perpetuated, despite quality evidence that it is activation of the 5-HT2A receptor that is required for serious SS. This review considers SS involving serotonin agonists: ergotamine, lysergic acid diethylamide, bromocriptine, and buspirone, as well as triptans, and reviews the experimental foundation underpinning the latest understanding of SS. It is concluded that there is neither significant clinical evidence, nor theoretical reason, to entertain speculation about serious SS from triptans and SSRIs. The misunderstandings about SS exhibited by the FDA, and shared by the UK Medicines and Healthcare products Regulatory Agency (in relation to methylene blue), are an important issue with wide ramifications.

  12. The effect of an inhibitor of gut serotonin (LP533401) during the induction of periodontal disease.

    Science.gov (United States)

    Lima, G M G; Corazza, B J M; Moraes, R M; de Oliveira, F E; de Oliveira, L D; Franco, G C N; Perrien, D S; Elefteriou, F; Anbinder, A L

    2016-10-01

    LP533401 is an inhibitor of tryptophan hydroxylase 1, which regulates serotonin production in the gut. Previous work indicates that LP533401 has an anabolic effect in bone. Thus, we hypothesized that inhibition of gut serotonin production may modulate the host response in periodontal disease. In this study, we aimed to analyze the effects of LP533401 in a rat periodontitis model to evaluate the role of gut serotonin in periodontitis pathophysiology. Twenty-four rats were divided into three groups: treated group (T: ligature-induced periodontal disease and LP533401, 25 mg/kg/d) by gavage; ligature group (L: ligature-induced periodontal disease only); and control group (C: without ligature-induced periodontal disease). After 28 d, radiographic alveolar bone support was measured on digital radiographs, and alveolar bone volume fraction, tissue mineral density and trabeculae characteristics were quantified by microcomputed tomography in the right hemi-mandible. Left hemi-mandibles were decalcified and alveolar bone loss, attachment loss and area of collagen in the gingiva were histologically analyzed. Significant difference between the L and C groups was found, confirming that periodontal disease was induced. We observed no difference between the T and L groups regarding alveolar bone destruction and area of collagen. LP533401 (25 mg/kg/d) for 28 d does not prevent bone loss and does not modulate host response in a rat model of induced periodontal disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    Rationale The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  14. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    RATIONALE: The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  15. Affective startle modulation : psychopharmacological studies on the roles of CRF and serotonin in the regulation of emotions

    NARCIS (Netherlands)

    Bijlsma, E.Y.

    2010-01-01

    Major depression and anxiety disorders are the most prevalent psychiatric disorders. The high co-morbidity and strong overlap in symptoms suggest that neurobiological mechanisms may also overlap. Two neuromodulators have received much attention. First, serotonin: Selective serotonin reuptake

  16. Serotonin modulates the oxidative burst of human phagocytes via various mechanisms

    Czech Academy of Sciences Publication Activity Database

    Číž, Milan; Komrsková, Daniela; Prachařová, Lucie; Okénková, Kateřina; Čížová, Hana; Moravcová, Aneta; Jančinová, V.; Petríková, M.; Lojek, Antonín; Nosál, R.

    2007-01-01

    Roč. 18, č. 18 (2007), s. 583-590 ISSN 0953-7104 R&D Projects: GA ČR(CZ) GA524/04/0897 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : antioxidants * chemiluminescence * serotonin Subject RIV: BO - Biophysics Impact factor: 1.915, year: 2007

  17. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration.

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.J.A.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; Bruin, A. de

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver

  18. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; de Bruin, A.

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver

  19. Serotonin is critical for rewarded olfactory short-term memory in Drosophila.

    Science.gov (United States)

    Sitaraman, Divya; LaFerriere, Holly; Birman, Serge; Zars, Troy

    2012-06-01

    The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels. Could the function of serotonin be restricted to the aversive domain, suggesting a more specific dopamine/serotonin system interaction? The function of the serotonergic system in appetitive olfactory memory was examined. By targeting the tetanus toxin light chain (TNT) and the human inwardly rectifying potassium channel (Kir2.1) to the serotonin neurons with two different GAL4 driver combinations, the serotonergic system was inhibited. Additional use of the GAL80(ts1) system to control expression of transgenes to the adult stage of the life cycle addressed a potential developmental role of serotonin in appetitive memory. Reduction in appetitive olfactory memory performance in flies with these transgenic manipulations, without altering control behaviors, showed that the serotonergic system is also required for normal appetitive memory. Thus, serotonin appears to have a more general role in Drosophila memory, and implies an interaction with both the dopaminergic and octopaminergic systems.

  20. Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Brask, Dorthe; Knudsen, Gitte M.

    2006-01-01

    Tracking serotonergic pathways in the brain through immunodetection of serotonin has widely been used for the anatomical characterization of the serotonergic system. Immunostaining for serotonin is also frequently applied for the visualization of individual serotonin containing fibers...... and quantification of serotonin positive fibers has been widely used to detect changes in the serotonergic innervation. However, particularly in conditions with enhanced serotonin metabolism the detection level of serotonin may lead to an underestimation of the true number of serotonergic fibers. The serotonin...... immunostained for serotonin and SERT protein and colocalization was quantified in several brain areas by confocal microscopy. In comparison with untreated rats, MAO inhibitor treated rats had a significantly higher number (almost 200% increase) of serotonin immunopositive fibers whereas no difference...

  1. Plasma serotonin in horses undergoing surgery for small intestinal colic

    Science.gov (United States)

    Torfs, Sara C.; Maes, An A.; Delesalle, Catherine J.; Pardon, Bart; Croubels, Siska M.; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those for 24 healthy control animals. The serotonin concentrations in PPP were significantly lower (P serotonin was not a suitable prognostic factor in horses with SI surgical colic. PMID:25694668

  2. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Miller, Jeffrey M; Hesselgrave, Natalie; Ogden, R Todd; Sullivan, Gregory M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V

    2013-08-15

    Several lines of evidence implicate abnormal serotonergic function in suicidal behavior and completed suicide, including low serotonin transporter binding in postmortem studies of completed suicide. We have also reported low in vivo serotonin transporter binding in major depressive disorder (MDD) during a major depressive episode using positron emission tomography (PET) with [(11)C]McN5652. We quantified regional brain serotonin transporter binding in vivo in depressed suicide attempters, depressed nonattempters, and healthy controls using PET and a superior radiotracer, [(11)C]DASB. Fifty-one subjects with DSM-IV current MDD, 15 of whom were past suicide attempters, and 32 healthy control subjects underwent PET scanning with [(11)C]DASB to quantify in vivo regional brain serotonin transporter binding. Metabolite-corrected arterial input functions and plasma free-fraction were acquired to improve quantification. Depressed suicide attempters had lower serotonin transporter binding in midbrain compared with depressed nonattempters (p = .031) and control subjects (p = .0093). There was no difference in serotonin transporter binding comparing all depressed subjects with healthy control subjects considering six a priori regions of interest simultaneously (p = .41). Low midbrain serotonin transporter binding appears to be related to the pathophysiology of suicidal behavior rather than of major depressive disorder. This is consistent with postmortem work showing low midbrain serotonin transporter binding capacity in depressed suicides and may partially explain discrepant in vivo findings quantifying serotonin transporter in depression. Future studies should investigate midbrain serotonin transporter binding as a predictor of suicidal behavior in MDD and determine the cause of low binding. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat.

    Science.gov (United States)

    Bannister, K; Lockwood, S; Goncalves, L; Patel, R; Dickenson, A H

    2017-04-01

    Following neuropathy α2-adrenoceptor-mediated diffuse noxious inhibitory controls (DNIC), whereby a noxious conditioning stimulus inhibits the activity of spinal wide dynamic range (WDR) neurons, are abolished, and spinal 5-HT7 receptor densities are increased. Here, we manipulate spinal 5-HT content in spinal nerve ligated (SNL) animals and investigate which 5-HT receptor mediated actions predominate. Using in vivo electrophysiology we recorded WDR neuronal responses to von frey filaments applied to the hind paw before, and concurrent to, a noxious ear pinch (the conditioning stimulus) in isoflurane-anaesthetised rats. The expression of DNIC was quantified as a reduction in WDR neuronal firing in the presence of conditioning stimulus and was investigated in SNL rats following spinal application of (1) selective serotonin reuptake inhibitors (SSRIs) citalopram or fluoxetine, or dual application of (2) SSRI plus 5-HT7 receptor antagonist SB269970, or (3) SSRI plus α2 adrenoceptor antagonist atipamezole. DNIC were revealed in SNL animals following spinal application of SSRI, but this effect was abolished upon joint application of SSRI plus SB269970 or atipamezole. We propose that in SNL animals the inhibitory actions (quantified as the presence of DNIC) of excess spinal 5-HT (presumed present following application of SSRI) were mediated via 5-HT7 receptors. The anti-nociception depends upon an underlying tonic noradrenergic inhibitory tone via the α2-adrenoceptor. Following neuropathy enhanced spinal serotonin availability switches the predominant spinal 5-HT receptor-mediated actions but also alters noradrenergic signalling. We highlight the therapeutic complexity of SSRIs and monoamine modulators for the treatment of neuropathic pain. © 2016 European Pain Federation - EFIC®.

  4. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  5. Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert⁺/⁻) mice.

    Science.gov (United States)

    Kyzar, Evan J; Stewart, Adam Michael; Kalueff, Allan V

    2016-01-01

    Serotonin (5-HT) plays a crucial role in the brain, modulating mood, cognition and reward. The serotonin transporter (SERT) is responsible for the reuptake of 5-HT from the synaptic cleft and regulates serotonin signaling in the brain. In humans, SERT genetic variance is linked to the pathogenesis of various psychiatric disorders, including anxiety, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Rodent self-grooming is a complex, evolutionarily conserved patterned behavior relevant to stress, ASD and OCD. Genetic ablation of mouse Sert causes various behavioral deficits, including increased anxiety and grooming behavior. The hallucinogenic drug lysergic acid diethylamide (LSD) is a potent serotonergic agonist known to modulate human and animal behavior. Here, we examined heterozygous Sert(+/-) mouse behavior following acute administration of LSD (0.32 mg/kg). Overall, Sert(+/-) mice displayed a longer duration of self-grooming behavior regardless of LSD treatment. In contrast, LSD increased serotonin-sensitive behaviors, such as head twitching, tremors and backwards gait behaviors in both Sert(+/+) and Sert(+/-) mice. There were no significant interactions between LSD treatment and Sert gene dosage in any of the behavioral domains measured. These results suggest that Sert(+/-) mice may respond to the behavioral effects of LSD in a similar manner to wild-type mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Science.gov (United States)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  7. Amphetamine Action at the Cocaine- and Antidepressant-Sensitive Serotonin Transporter Is Modulated by αCaMKII

    DEFF Research Database (Denmark)

    Steinkellner, Thomas; Montgomery, Therese R; Hofmaier, Tina

    2015-01-01

    Serotonergic neurotransmission is terminated by reuptake of extracellular serotonin (5-HT) by the high-affinity serotonin transporter (SERT). Selective 5-HT reuptake inhibitors (SSRIs) such as fluoxetine or escitalopram inhibit SERT and are currently the principal treatment for depression and anx...... and efflux at monoamine transporters are asymmetric processes that can be targeted separately. Ultimately, this may provide a molecular mechanism for putative drug developments to treat amphetamine addiction....

  8. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor dependent manner

    Science.gov (United States)

    Garcia-Garcia, Alvaro L.; Canetta, Sarah; Stujenske, Joseph M.; Burghardt, Nesha S.; Ansorge, Mark S.; Dranovsky, Alex; Leonardo, E. David

    2017-01-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT1A antagonist. Finally, we demonstrate that activation of 5-HT1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT1A receptors under naturalistic conditions. PMID:28761080

  9. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Science.gov (United States)

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  10. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    Science.gov (United States)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  11. SEROTONIN METABOLISM FOLLOWING PLATINUM-BASED CHEMOTHERAPY COMBINED WITH THE SEROTONIN TYPE-3 ANTAGONIST TROPISETRON

    NARCIS (Netherlands)

    SCHRODER, CP; VANDERGRAAF, WTA; KEMA, IP; GROENEWEGEN, A; SLEIJFER, DT; DEVRIES, EGE

    1995-01-01

    The administration of platinum-based chemotherapy induces serotonin release from the enterochromaffin cells, causing nausea and vomiting. This study was conducted to evaluate parameters of serotonin metabolism following platinum-based chemotherapy given in combination with the serotonin type-3

  12. Approach to novel functional foods for stress control 4. Regulation of serotonin transporter by food factors.

    Science.gov (United States)

    Ito, Mikiko; Haito, Sakiko; Furumoto, Mari; Kawai, Yoshichika; Terao, Junji; Miyamoto, Ken-ichi

    2005-11-01

    Serotonin transporters (SERTs) are pre-synaptic proteins specialized for the clearance of serotonin following vesicular release at central nervous system (CNS) and enteric nervous system synapses. SERTs are high affinity targets in vivo for antidepressants such as serotonin selective reuptake inhibitors (SSRIs). These include 'medical' psychopharmacological agents such as analgesics and antihistamines, a plant extract called St John's Wort (Hypericum). Osteoclasts are the primary cells responsible for bone resorption. They arise by the differentiation of osteoclast precursors of the monocyte/macrophage lineage. The expression of SERTs was increased in RANKL-induced osteoclast-like cells. Using RANKL stimulation of RAW264.7 cells as a model system for osteoclast differentiation, we studied the direct effects of food factor on serotonin uptake. The SSRIs (fluoxetine and fluvoxamine) inhibited markedly (approximately 95%) in serotonin transport in differentiated osteoclast cells. The major components of St. John's Wort, hyperforin and hypericine were significantly decreased in serotonin transport activity. Thus, a new in vitro model using RANKL-induced osteoclast-like cells may be useful to analyze the regulation of SERT by food factors and SSRIs.

  13. Effect of serotonin infusions on the mean plasma concentrations of ...

    African Journals Online (AJOL)

    SERVER

    hhazali@hotmail.com, tabeshyarnoor@yahoo.com. neurotransmitters. It has been shown that neurons secreting serotonin may be co-locolized with neurons secreting GHRH and TRH (Bujatti et al., 1976; Bulsa et al., 1998; Savard et al., 1986; Savard et al., 1983). This indicate that serotonin as a neurotransmitter may control.

  14. Characterization of the effects of serotonin on the release of [3H]dopamine from rat nucleus accumbens and striatal slices

    International Nuclear Information System (INIS)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-01-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [ 3 H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal 3 H overflow and reduced K+-induced release of [ 3 H]DA from nucleus accumbens slices. The effect of serotonin on basal 3 H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [ 3 H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [ 3 H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens

  15. Serotonin 1B Receptors Regulate Prefrontal Function by Gating Callosal and Hippocampal Inputs

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Athilingam, Jegath; Robinson, Sarah E

    2016-01-01

    Both medial prefrontal cortex (mPFC) and serotonin play key roles in anxiety; however, specific mechanisms through which serotonin might act on the mPFC to modulate anxiety-related behavior remain unknown. Here, we use a combination of optogenetics and synaptic physiology to show that serotonin...... acts presynaptically via 5-HT1B receptors to selectively suppress inputs from the contralateral mPFC and ventral hippocampus (vHPC), while sparing those from mediodorsal thalamus. To elucidate how these actions could potentially regulate prefrontal circuit function, we infused a 5-HT1B agonist...... into the mPFC of freely behaving mice. Consistent with previous studies that have optogenetically inhibited vHPC-mPFC projections, activating prefrontal 5-HT1B receptors suppressed theta-frequency mPFC activity (4-12 Hz), and reduced avoidance of anxiogenic regions in the elevated plus maze. These findings...

  16. Selective serotonin reuptake inhibitor (SSRI antidepressants, prolactin and breast cancer

    Directory of Open Access Journals (Sweden)

    Janet eAshbury

    2012-12-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are a widely prescribed class of anti-depressants. Laboratory and epidemiologic evidence suggests that a prolactin-mediated mechanism secondary to increased serotonin levels at neuronal synapses could lead to a potentially carcinogenic effect of SSRIs. In this population-based case-control study, we evaluated the association between SSRI use and breast cancer risk as a function of their relative degree of inhibition of serotonin reuptake as a proxy for their impact on prolactin levels. Cases were 2,129 women with primary invasive breast cancer diagnosed from 2003-2007, and controls were 21,297 women randomly selected from the population registry. Detailed information for each SSRI prescription dispensed was compiled using the Saskatchewan prescription database. Logistic regression was used to evaluate the impact of use of high and lower inhibitors of serotonin reuptake and duration of use, as well as to assess the effect of individual high inhibitors on the risk of breast cancer. Exclusive users of high or lower inhibitors of serotonin reuptake were not at increased risk for breast cancer compared with nonusers of SSRIs (OR = 1.01, CI = 0.88-1.17 and OR = 0.91, CI = 0.67-1.25 respectively, regardless of their duration of use or menopausal status. While we cannot rule out the possibility of a clinically important risk increase (OR = 1.83, CI = 0.99-3.40 for long-term users of sertraline (≥24 prescriptions, given the small number of exposed cases (n=12, the borderline statistical significance and the wide confidence interval, these results need to be interpreted cautiously. In this large population-based case-control study, we found no conclusive evidence of breast cancer risk associated with the use of SSRIs even after assessing the degree of serotonin reuptake inhibition and duration of use. Our results do not support the serotonin-mediated pathway for the prolactin-breast cancer hypothesis.

  17. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  18. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB.20

    International Nuclear Information System (INIS)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT 1C receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing [ 3 H]serotonin, [ 3 H]lysergic acid diethylamide or [ 3 H]dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor

  19. Individual differences in emotion-cognition interactions: Emotional valence interacts with serotonin transporter genotype to influence brain systems involved in emotional reactivity and cognitive control

    Directory of Open Access Journals (Sweden)

    Melanie eStollstorff

    2013-07-01

    Full Text Available The serotonin transporter gene (5-HTTLPR influences emotional reactivity and attentional bias towards or away from emotional stimuli and has been implicated in psychopathological states, such as depression and anxiety disorder. The short allele is associated with increased reactivity and attention towards negatively-valenced emotional information, whereas the long allele is associated with that towards positively-valenced emotional information. The neural basis for individual differences in the ability to exert cognitive control over these bottom-up biases in emotional reactivity and attention is unknown, an issue investigated in the present study. Two groups, homozygous 5-HTTLPR long allele carriers or homozygous short allele carriers, underwent functional magnetic resonance imaging (fMRI while completing an Emotional Stroop-like task that varied with regards to the congruency of task-relevant and task-irrelevant information and the emotional valence of the task-irrelevant information. Behaviorally, participants demonstrated the classic Stroop effect (slower responses for incongruent than congruent trials, which did not differ by 5-HTTLPR genotype. However, fMRI results revealed that genotype influenced the degree to which neural systems were engaged depending on the valence of the conflicting task-irrelevant information. While the Long group recruited prefrontal control regions and superior temporal sulcus during conflict when task-irrelevant information was positively-valenced, the "Short" group recruited these regions when task-irrelevant information was negatively-valenced. Thus, participants successfully engaged cognitive control to overcome conflict in an emotional context using similar neural circuitry, but the engagement of this circuitry depended on emotional valence and 5-HTTLPR status. These results suggest that the interplay between emotion and cognition is modulated, in part, by a genetic polymorphism that influences serotonin

  20. Combined Effect of food deprivation and serotonin injection on plasma prolactin and glucose levels in irradiated rats

    International Nuclear Information System (INIS)

    Girgis, R.B.; Abdel-Fattah, K.I.; Khamis, F.I.; Abu Zaid, N.M.

    2004-01-01

    The present study aims to investigate the role of serotonin (5-HT) on the homeostasis of plasma prolactin and glucose in rats induced by gamma irradiation and food deprivation. Animals were divided into seven groups; control, irradiated at a dose level of 6 Gy, injected with 500 mg/kg b.wt. 5-HT intra-peritoneally, injected with 5-HT before irradiation food deprived for 48 hrs then irradiated, food deprived then injected with 5-HT, and food deprived then injected with 5-HT before whole body irradiation. Samples were collected at 1,3, 7 and 14 days post irradiation. The results showed that gamma irradiation firstly elevated prolactin (PRL) levels in plasma (1 and 3 days) then the levels decreased after 7 and 14 days as compared to control values. Rats received serotonin before irradiation exhibited an increased level of PRL after 14 days post irradiation compared to control value, while the level decreased after 1, 3, 7 days post irradiation. Food deprivation for 48 hrs altered the effect of serotonin and /or irradiation on PRL levels in plasma. Rats injected with serotonin showed a decreased level of plasma prolactin in food deprived rats, 3 days post injection. The obtained results showed that serotonin causes variable effects on plasma prolactin compared to control values. Glucose plasma levels were increased in both irradiated and serotonin injected rats before irradiation, and also in serotonin injected rats as compared to control values. Irradiation of rats after 48 hrs food deprivation induced an increase in plasma glucose levels measured throughout the different experimental periods. Injection of serotonin to rats after 48 hrs food deprivation before irradiation increased plasma glucose levels after 1, 3, 7 and 14 days compared to control value. Also, injection of serotonin to 48 hrs food deprived rats increased glucose levels during all examined days of experiment.It could be concluded that serotonin may have a variable mechanism controlling prolactin

  1. Do serotonin(1-7) receptors modulate short and long-term memory?

    Science.gov (United States)

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  2. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor-dependent manner.

    Science.gov (United States)

    Garcia-Garcia, A L; Canetta, S; Stujenske, J M; Burghardt, N S; Ansorge, M S; Dranovsky, A; Leonardo, E D

    2017-08-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT 1A antagonist. Finally, we demonstrate that activation of 5-HT 1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT 1A receptors under naturalistic conditions.Molecular Psychiatry advance online publication, 1 August 2017; doi:10.1038/mp.2017.165.

  3. Docosahexaenoyl serotonin emerges as most potent inhibitor of IL-17 and CCL-20 released by blood mononuclear cells from a series of N-acyl serotonins identified in human intestinal tissue.

    Science.gov (United States)

    Wang, Ya; Balvers, Michiel G J; Hendriks, Henk F J; Wilpshaar, Tessa; van Heek, Tjarda; Witkamp, Renger F; Meijerink, Jocelijn

    2017-09-01

    Fatty acid amides (FAAs), conjugates of fatty acids with ethanolamine, mono-amine neurotransmitters or amino acids are a class of molecules that display diverse functional roles in different cells and tissues. Recently we reported that one of the serotonin-fatty acid conjugates, docosahexaenoyl serotonin (DHA-5-HT), previously found in gut tissue of mouse and pig, attenuates the IL-23-IL-17 signaling axis in LPS-stimulated mice macrophages. However, its presence and effects in humans remained to be elucidated. Here, we report for the first time its identification in human intestinal (colon) tissue, along with a series of related N-acyl serotonins. Furthermore, we tested these fatty acid conjugates for their ability to inhibit the release of IL-17 and CCL-20 by stimulated human peripheral blood mononuclear cells (PBMCs). Serotonin conjugates with palmitic acid (PA-5-HT), stearic acid (SA-5-HT) and oleic acid (OA-5-HT) were detected in higher levels than arachidonoyl serotonin (AA-5-HT) and DHA-5-HT, while eicosapentaenoyl serotonin (EPA-5-HT) could not be quantified. Among these, DHA-5-HT was the most potent in inhibiting IL-17 and CCL-20, typical Th17 pro-inflammatory mediators, by Concanavalin A (ConA)-stimulated human PBMCs. These results underline the idea that DHA-5-HT is a gut-specific endogenously produced mediator with the capacity to modulate the IL-17/Th17 signaling response. Our findings may be of relevance in relation to intestinal inflammatory diseases like Crohn's disease and Ulcerative colitis. Copyright © 2017. Published by Elsevier B.V.

  4. The Effects of Serotonin in Immune Cells

    OpenAIRE

    Herr, Nadine; Bode, Christoph; Duerschmied, Daniel

    2017-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] plays an important role in many organs as a peripheral hormone. Most of the body’s serotonin is circulating in the bloodstream, transported by blood platelets and is released upon activation. The functions of serotonin are mediated by members of the 7 known mammalian serotonin receptor subtype classes (15 known subtypes), the serotonin transporter (SERT), and by covalent binding of serotonin to different effector proteins. Almost all immune cells express...

  5. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    Science.gov (United States)

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  6. Lower serotonin level and higher rate of fibromyalgia syndrome with advancing pregnancy.

    Science.gov (United States)

    Atasever, Melahat; Namlı Kalem, Muberra; Sönmez, Çiğdem; Seval, Mehmet Murat; Yüce, Tuncay; Sahin Aker, Seda; Koç, Acar; Genc, Hakan

    2017-09-01

    The aim of the study is to investigate the relationship between changes in serotonin levels during pregnancy and fibromyalgia syndrome (FS) and the relationships between FS and the physical/psychological state, biochemical and hormonal parameters, which may be related to the musculoskeletal system. This study is a prospective case-control study conducted with 277 pregnant women at the obstetric unit of Ankara University Faculty of Medicine, in the period between January and June 2015. FS was determined based on the presence or absence of the 2010 ACR diagnostic criteria and all the volunteers were asked to answer the questionnaires as Fibromyalgia Impact Criteria (FIQ), Widespread Pain Index (WPI), Symptom Severity Scale (SS), Beck Depression Inventory and Visual Analog Scale (VAS). Biochemical and hormonal markers (glucose, TSH, T4, Ca (calcium), P (phosphate), PTH (parathyroid hormone) and serotonin levels) relating to muscle and bone metabolism were measured. In the presence of fibromyalgia, the physical and psychological parameters are negatively affected (p serotonin levels may contribute to the development of fibromyalgia but this was not statistically significant. The Beck Depression Inventory scale statistically showed that increasing scores also increase the risk of fibromyalgia (p serotonin levels in women with FS are lower than the control group and that serotonin levels reduce as pregnancy progresses. Anxiety and depression in pregnant women with FS are higher than the control group. The presence of depression increases the likelihood of developing FS at a statistically significant level. Serotonin impairment also increases the chance of developing FS, but this correlation has not been shown to be statistically significant.

  7. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT₄ receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  8. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT4 receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  9. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  10. Radioprotective action of serotonin

    Energy Technology Data Exchange (ETDEWEB)

    Vodop' yanova, L G; Vinogradova, M F [Leningradskij Gosudarstvennyj Univ. (USSR). Biologicheskij Nauchno-Issledovatel' skij Inst.

    1975-09-01

    Tests in vitro were performed to study the effect of serotonin on oxidative phosphorylation in the mitochondria of rat liver. Serotonin (2.10/sup -4/ M) was shown to suppress oxidation of ..cap alpha..-ketoglutaric acid without significantly changing succinic acid consumption. A comparison of the results obtained with those from the literature allowed to assume that the radioprotective effect of serotonin was based not only on its previously known ability to cause tissue hypoxia, but also on its ability to affect oxidation processes in mitochondria.

  11. Interaction between serotonin transporter and serotonin receptor 1 B genes polymorphisms may be associated with antisocial alcoholism.

    Science.gov (United States)

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Wang, Chen-Lin; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Lu, Ru-Band

    2012-07-11

    Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR) and serotonin 1 B receptor (5-HT1B), may be associated with alcoholism, but their results are contradictory because of alcoholism's heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD) [antisocial alcoholism (AS-ALC) group (n=120) and antisocial non-alcoholism (AS-N-ALC) group (n=153)] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan's Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  12. Tryptophan Depletion Promotes Habitual over Goal-Directed Control of Appetitive Responding in Humans.

    Science.gov (United States)

    Worbe, Yulia; Savulich, George; de Wit, Sanne; Fernandez-Egea, Emilio; Robbins, Trevor W

    2015-02-05

    Optimal behavioral performance results from a balance between goal-directed and habitual systems of behavioral control, which are modulated by ascending monoaminergic projections. While the role of the dopaminergic system in behavioral control has been recently addressed, the extent to which changes in global serotonin neurotransmission could influence these 2 systems is still poorly understood. We employed the dietary acute tryptophan depletion procedure to reduce serotonin neurotransmission in 18 healthy volunteers and 18 matched controls. We used a 3-stage instrumental learning paradigm that includes an initial instrumental learning stage, a subsequent outcome-devaluation test, and a slip-of-action stage, which directly tests the balance between hypothetical goal-directed and habitual systems. We also employed a separate response inhibition control test to assess the behavioral specificity of the results. Acute tryptophan depletion produced a shift of behavioral performance towards habitual responding as indexed by performance on the slip-of-action test. Moreover, greater habitual responding in the acute tryptophan depletion group was predicted by a steeper decline in plasma tryptophan levels. In contrast, acute tryptophan depletion left intact the ability to use discriminative stimuli to guide instrumental choice as indexed by the instrumental learning stage and did not impair inhibitory response control. The major implication of this study is that serotonin modulates the balance between goal-directed and stimulus-response habitual systems of behavioral control. Our findings thus imply that diminished serotonin neurotransmission shifts behavioral control towards habitual responding. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  13. A role for the serotonin reuptake transporter in the brain and intestinal features of autism spectrum disorders and developmental antidepressant exposure.

    Science.gov (United States)

    Margolis, Kara Gross

    2017-10-01

    Many disease conditions considered CNS-predominant harbor significant intestinal comorbidities. Serotonin (5-HT) and the serotonin reuptake transporter (SERT) have increasingly been shown to play important roles in both brain and intestinal development and long-term function. 5-HT and SERT may thus modulate critical functions in the development and perpetuation of brain-gut axis disease. We discuss the potential roles of 5-HT and SERT in the brain and intestinal manifestations of autism spectrum disorders and developmental antidepressant exposure. The potential therapeutic value of 5-HT 4 modulation in the subsequent treatment of these conditions is also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Serotonin inhibits low-threshold spike interneurons in the striatum

    Science.gov (United States)

    Cains, Sarah; Blomeley, Craig P; Bracci, Enrico

    2012-01-01

    Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583

  15. The evolution of violence in men: the function of central cholesterol and serotonin.

    Science.gov (United States)

    Wallner, Bernard; Machatschke, Ivo H

    2009-04-30

    Numerous studies point to central serotonin as an important modulator of maladaptive behaviors. In men, for instance, low concentrations of this neurotransmitter are related to hostile aggression. A key player in serotonin metabolism seems to be central cholesterol. It plays a fundamental role in maintaining the soundness of neuron membranes, especially in the exocytosis transport of serotonin vesicles into the synaptic cleft. In this review, we attempt an evolutionary approach to the neurobiological basis of human male violence. Hominid evolution was shaped by periods of starvation but also by energy demands of an increasingly complex brain. A lack of food resources reduces uptake of glucose and results in a decreased energy-supply for autonomous brain cholesterol synthesis. Consequently, concentrations of neuromembrane cholesterol decrease, which lead to a failure of the presynaptic re-uptake mechanism of serotonin and ultimately to low central serotonin. We propose that starvation might have affected the larger male brains earlier than those of females. Furthermore, this neurophysiological process diminished the threshold for hostile aggression, which in effect represented a prerequisite for being a successful hunter or scavenger. In a Darwinian sense, the odds to acquire reliable energetic resources made those males to attractive spouses in terms of paternal care and mate support. To underpin these mechanisms, a hypothetical four-stage model of synaptic membrane destabilization effected by a prolonged shortage of high-energy, cholesterol-containing food is illustrated.

  16. Rotavirus and Serotonin Cross-Talk in Diarrhoea

    Science.gov (United States)

    Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p serotonin receptor antagonist significantly (p serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  17. Plasma serotonin level is a predictor for recurrence and poor prognosis in colorectal cancer patients.

    Science.gov (United States)

    Xia, Yan; Wang, Dawei; Zhang, Nan; Wang, Zhihao; Pang, Li

    2018-02-01

    To investigate the prognostic value of plasma serotonin levels in colorectal cancer (CRC). Preoperative plasma serotonin levels of 150 healthy control (HC) cases, 150 benign colorectal polyp (BCP) cases, and 176 CRC cases were determined using radioimmunoassay assay. Serotonin levels were compared between HC, BCP, and CRC cases, and those in CRC patients were related to 5-year outcome. Plasma serotonin levels were markedly higher in CRC patients than in either HCs or BCP cases. An elevated serotonin level was significantly associated with advanced tumor node metastasis. Receiver operating characteristic curve analysis showed that the level of serotonin had a high predictive value for disease recurrence and mortality. Multivariate analysis revealed that high serotonin level was significantly associated with poor recurrence-free survival and overall survival. Our results suggest that a high peri-operative plasma serotonin level is useful as a prognostic biomarker for CRC recurrence and poor survival. © 2017 Wiley Periodicals, Inc.

  18. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience

    Science.gov (United States)

    Hanson, Jessica L.; Hurley, Laura M.

    2014-01-01

    In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity. PMID:24198252

  19. Modulation of [3H]-glutamate binding by serotonin in the rat hippocampus: An autoradiographic study

    International Nuclear Information System (INIS)

    Mennini, T.; Miari, A.

    1991-01-01

    Serotonin (5-HT) added in vitro increased [ 3 H]-glutamate specific binding in the rat hippocampus, reaching statistical significance in layers rich in N-Methyl-D-Aspartate sensitive glutamate receptors. This effect was explained by a significant increase in the apparent affinity of [ 3 H]-glutamate when 5-HT is added in vitro. Two days after lesion of serotonergic afferents to the hippocampus with 5,7- Dihydroxytryptamine [ 3 H]-glutamate binding was significantly decreased in the CA3 region and stratum lacunosum moleculare of the hippocampus, this reduction being reversed by in vitro addition of 10 μM 5-HT. The decrease observed is due to a significant reduction of quisqualate-insensitive (radiatum CA3) and kainate receptors (strata oriens, radiatum, pyramidal of CA3). Five days after lesion [ 3 H]-glutamate binding increased significantly in the CA3 region of the hippocampus but was not different from sham animals in the other hippocampal layers. Two weeks after lesion [ 3 H]-glutamate binding to quisqualate-insensitive receptors was increased in all the hippocampal layers, while kainate and quisqualate-sensitive receptors were not affected. These data are consistent with the possibility that 5-HT is a direct positive modulator of glutamate receptor subtypes

  20. Characterization of an allosteric citalopram-binding site at the serotonin transporter

    DEFF Research Database (Denmark)

    Chen, Fenghua; Breum Larsen, Mads; Neubauer, Henrik Amtoft

    2005-01-01

    The serotonin transporter (SERT), which belongs to a family of       sodium/chloride-dependent transporters, is the major pharmacological       target in the treatment of several clinical disorders, including       depression and anxiety. In the present study we show that the dissociation......       rate, of [3H]S-citalopram from human SERT, is retarded by the presence of       serotonin, as well as by several antidepressants, when present in the       dissociation buffer. Dissociation of [3H]S-citalopram from SERT is most       potently inhibited by S-citalopram followed by R......-citalopram, sertraline,       serotonin and paroxetine. EC50 values for S- and R-citalopram are 3.6 +/-       0.4 microm and 19.4 +/- 2.3 microm, respectively. Fluoxetine, venlafaxine       and duloxetine have no significant effect on the dissociation of       [3H]S-citalopram. Allosteric modulation of dissociation...

  1. The Robust Control Mixer Module Method for Control Reconfiguration

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, M.

    1999-01-01

    into a LTI dynamical system, and furthermore multiple dynamical control mixer modules can be employed in our consideration. The H_{\\infty} control theory is used for the analysis and design of the robust control mixer modules. Finally, one practical robot arm system as benchmark is used to test the proposed......The control mixer concept is efficient in improving an ordinary control system into a fault tolerant one, especially for these control systems of which the real-time and on-line redesign of the control laws is very difficult. In order to consider the stability, performance and robustness...... of the reconfigurated system simultaneously, and to deal with a more general controller reconfiguration than the static feedback mechanism by using the control mixer approach, the robust control mixer module method is proposed in this paper. The form of the control mixer module extends from a static gain matrix...

  2. Serotonin: A mediator of the gut-brain axis in multiple sclerosis.

    Science.gov (United States)

    Malinova, Tsveta S; Dijkstra, Christine D; de Vries, Helga E

    2017-11-01

    The significance of the gut microbiome for the pathogenesis of multiple sclerosis (MS) has been established, although the underlying signaling mechanisms of this interaction have not been sufficiently explored. We address this point and use serotonin (5-hydroxytryptamine (5-HT))-a microbial-modulated neurotransmitter (NT) as a showcase to demonstrate that NTs regulated by the gut microbiome are potent candidates for mediators of the gut-brain axis in demyelinating disorders. Methods, Results, and Conclusion: Our comprehensive overview of literature provides evidence that 5-HT levels in the gut are controlled by the microbiome, both via secretion and through regulation of metabolites. In addition, we demonstrate that the gut microbiome can influence the formation of the serotonergic system (SS) in the brain. We also show that SS alterations have been related to MS directly-altered expression of 5-HT transporters in central nervous system (CNS) and indirectly-beneficial effects of 5-HT modulating drugs on the course of the disease and higher prevalence of depression in patients with MS. Finally, we discuss briefly the role of other microbiome-modulated NTs such as γ-aminobutyric acid and dopamine in MS to highlight a new direction for future research aiming to relate microbiome-regulated NTs to demyelinating disorders.

  3. Serotonin induces ecdysteroidogenesis and methyl farnesoate synthesis in the mud crab, Scylla serrata.

    Science.gov (United States)

    Girish, B P; Swetha, C H; Reddy, P Sreenivasula

    2017-09-02

    In the current study, we have examined the role of serotonin in regulating the levels of methyl farnesoate and ecdysteroids in the giant mud crab Scylla serrata and validated that serotonin indeed is a reproductive hormone. Administration of serotonin elevated circulatory levels of methyl farnesoate and ecdysteroids in crabs. Since methyl farnesoate and ecdysteroid act through retinoid X receptor (RXR) and ecdysteroid receptor (EcR) respectively and these receptors are involved in the regulation of reproduction in crustaceans, we have determined the mRNA levels of RXR and EcR in hepatopancreas and ovary after serotonin administration. The expression levels of both RXR and EcR increased significantly in the hepatopancreas and ovary of serotonin injected crabs when compared to the controls. In vitro organ culture studies revealed that incubation of Y-orgas and mandibular organ explants in the presence of serotonin resulted in a significant increase in the secretion of ecdysteroids by Y-organs, but without alterations in MF synthesis in mandibular organs. From the above studies it is evident that serotonin stimulates Y organs resulting in increased ecdysteroidogenesis. Though the circulatory levels methyl farnesoate elevated after serotonin administration, organ culture studies revealed serotonin mediated methyl farnesaote synthesis is indirect probably by inhibiting release of mandibular organ inhibiting hormone from eyestalks. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Genetics of premenstrual syndrome: investigation of specific serotonin receptor polymorphisms

    OpenAIRE

    Dhingra, Vandana

    2014-01-01

    Premenstrual dysphoric disorder (PMDD) is a distressing and disabling syndrome causing a significant degree of impairment on daily functioning and interpersonal relationships in 3-8% of the women. With the convincing evidence that PMS is inheritable and that serotonin is important in the pathogenesis of PMS, and failure of initial studies to demonstrate significant associations between key genes controlling the synthesis, reuptake and catabolism of serotonin and PMDD, the main aim of this the...

  5. Interaction between Serotonin Transporter and Serotonin Receptor 1 B genes polymorphisms may be associated with antisocial alcoholism

    Directory of Open Access Journals (Sweden)

    Wang Tzu-Yun

    2012-07-01

    Full Text Available Abstract Background Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR and serotonin 1 B receptor (5-HT1B, may be associated with alcoholism, but their results are contradictory because of alcoholism’s heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. Methods We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD [antisocial alcoholism (AS-ALC group (n = 120 and antisocial non-alcoholism (AS-N-ALC group (n = 153] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. Results There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Conclusion Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan’s Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  6. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    Science.gov (United States)

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Incidence and prognostic value of serotonin secretion in pancreatic neuroendocrine tumours.

    Science.gov (United States)

    Zandee, Wouter T; van Adrichem, Roxanne C; Kamp, Kimberly; Feelders, Richard A; van Velthuysen, Marie-Louise F; de Herder, Wouter W

    2017-08-01

    Serotonin secretion occurs in approximately 1%-4% of patients with a pancreatic neuroendocrine tumour (PNET), but the incidence is not well defined. The aim of this study was to determine the incidence of serotonin secretion with and without carcinoid syndrome and the prognostic value for overall survival (OS). Data were collected from 255 patients with a PNET if 24-hours urinary 5-hydroxyindoleacetic acid excretion (5-HIAA) was assessed. Patients were diagnosed with serotonin secretion if 24-hours urinary 5-HIAA excretion was more than 3× the upper limit of normal (ULN) of 50 μmol/24 hours during follow-up. The effect of serotonin secretion on OS was estimated with uni- and multivariate analyses using a Cox regression. Two (0.8%) patients were diagnosed with carcinoid syndrome, and another 20 (7.8%) had a serotonin-secreting PNET without symptoms. These patients mostly had ENETS stage IV disease with high chromogranin A (CgA). Serotonin secretion was a negative prognostic factor in univariate analysis (HR 2.2, 95% CI: 1.27-3.81), but in multivariate analysis, only CgA>10× ULN (HR: 1.81, 95% CI: 1.10-2.98) and neuron-specific enolase (NSE) >ULN (HR: 3.51, 95% CI: 2.26-5.46) were predictors for OS. Immunohistochemical staining for serotonin was positive in 28.6% of serotonin-secreting PNETs (one with carcinoid syndrome) and negative in all controls. Carcinoid syndrome is rare in patients with a PNET, but serotonin secretion occurs often. This is a negative prognostic factor for OS, but after correction for CgA and NSE, it is no longer a predictor and probably only a "not-so innocent bystander" in patients with high tumour burden. © 2017 John Wiley & Sons Ltd.

  8. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.

    Science.gov (United States)

    Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao

    2018-05-07

    Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.

  9. Serotonergic modulation of reward and punishment: evidence from pharmacological fMRI studies.

    Science.gov (United States)

    Macoveanu, Julian

    2014-03-27

    Until recently, the bulk of research on the human reward system was focused on studying the dopaminergic and opioid neurotransmitter systems. However, extending the initial data from animal studies on reward, recent pharmacological brain imaging studies on human participants bring a new line of evidence on the key role serotonin plays in reward processing. The reviewed research has revealed how central serotonin availability and receptor specific transmission modulates the neural response to both appetitive (rewarding) and aversive (punishing) stimuli in putative reward-related brain regions. Thus, serotonin is suggested to be involved in behavioral control when there is a prospect of reward or punishment. The new findings may have implications in understanding psychiatric disorders such as major depression which is characterized by abnormal serotonergic function and reward-related processing and may also provide a neural correlated for the emotional blunting observed in the clinical treatment of psychiatric disorders with selective serotonin reuptake inhibitors. Given the unique profile of action of each serotonergic receptor subtype, future pharmacological studies may favor receptor specific investigations to complement present research mainly focused on global serotonergic manipulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Validation of infrared thermography in serotonin-induced itch model in rats

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Jasemian, Yousef; Gazerani, Parisa

    The number of scratching bouts is generally used as a standard method in animal models of itch. The aim of the present study was to validate the application of infrared thermography (IR-Th) in a serotonin-induced itch model in rats. Adult Sprague-Dawley male rats (n = 24) were used in 3 consecutive...... experiments. The first experiment evaluated vasomotor response (IR-Th) and scratching behavior (number of bouts) induced by intradermal serotonin (10 μl, 2%). Isotonic saline (control: 10 μl, 0.9%) and Methysergide (antagonist: 10 μl, 0.047 mg/ml) were used. The second experiment evaluated the dose......-response effect of intradermal serotonin (1%, 2% and 4%) on local temperature. The third experiment evaluated the anesthetized rats to test the local vasomotor responses in absent of scratching. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A dose...

  11. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  12. Preparation and evaluation of serotonin labelled with 125I

    International Nuclear Information System (INIS)

    Sivaprasad, N.; Geetha, R.; Ghodke, A.S.; Karmalkar, C.P.; Pilkhwal, N.S.; Sarnaik, J.S.; Borkute, S.D.; Nadkarni, G.D.

    1999-01-01

    Radiolabelled serotonin is an important tool for studying serotonin receptors and estimating serotonin levels in plants and animals. In this paper we report the synthesis of serotonin - 125 I. Tyrosine Methyl Ester (TME) was first labelled with 125 I using chloramine-T method. 125 I-TME was then conjugated with serotonin using carbodimide. The labelled conjugate was purified using gel filtration. Yield and radiochemical purity were estimated using electrophoresis and ITLC in different solvent systems. The binding of the purified tracer to serotonin receptors and serotonin antibodies was studied. (author)

  13. Serotonin shapes risky decision making in monkeys.

    Science.gov (United States)

    Long, Arwen B; Kuhn, Cynthia M; Platt, Michael L

    2009-12-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in part due to the lack of a good animal model. We used dietary rapid tryptophan depletion (RTD) to acutely lower brain serotonin in three macaques performing a simple gambling task for fluid rewards. To confirm the efficacy of RTD experiments, we measured total plasma tryptophan using high-performance liquid chromatography (HPLC) with electrochemical detection. Reducing brain serotonin synthesis decreased preference for the safe option in a gambling task. Moreover, lowering brain serotonin function significantly decreased the premium required for monkeys to switch their preference to the risky option, suggesting that diminished serotonin signaling enhances the relative subjective value of the risky option. These results implicate serotonin in risk-sensitive decision making and, further, suggest pharmacological therapies for treating pathological risk preferences in disorders such as problem gambling and addiction.

  14. Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide.

    Science.gov (United States)

    Thompson, P M; Cruz, D A; Olukotun, D Y; Delgado, P L

    2012-09-01

    This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels. © 2011 John Wiley & Sons A/S.

  15. Brain serotonin, psychoactive drugs, and effects on reproduction.

    Science.gov (United States)

    Ayala, María Elena

    2009-12-01

    Serotonin, a biogenic amine, is present in significant amounts in many structures of the CNS. It is involved in regulation of a wide variety of physiological functions, such as sensory and motor functions, memory, mood, and secretion of hormones including reproductive hormones. It has also been implicated in the etiology of a range of psychiatric disorders such as anxiety, depression, and eating disorders, along with other conditions such as obesity and migraine. While some drugs that affect serotonin, such as fenfluramine and fluoxetine, have been successfully used in treatment of a range of psychiatric diseases, others, such as the amphetamine analogues MDMA and METH, are potent psychostimulant drugs of abuse. Alterations in serotonergic neurons caused by many of these drugs are well characterized; however, little is known about the reproductive consequences of such alterations. This review evaluates the effects of drugs such as MDMA, pCA, fenfluramine, and fluoxetine on serotonergic transmission in the brain, examines the relationships of these drug effects with the neuroendocrine mechanisms modulating reproductive events such as gonadotropin secretion, ovulation, spermatogenesis, and sexual behavior in animal models, and discusses possible reproductive implications of these drugs in humans.

  16. Review article: the many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease.

    Science.gov (United States)

    Coates, M D; Tekin, I; Vrana, K E; Mawe, G M

    2017-09-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important mediator of every major gut-related function. Recent investigations also suggest that 5-HT can influence the development and severity of inflammation within the gut, particularly in the setting of inflammatory bowel disease (IBD). To review the roles that the intestinal serotonin signalling system plays in gut function, with a specific focus on IBD. We reviewed manuscripts from 1952 to 2017 that investigated and discussed roles for 5-HT signalling in gastrointestinal function and IBD, as well as the influence of inflammation on 5-HT signalling elements within the gut. Inflammation appears to affect every major element of intestinal 5-HT signalling, including 5-HT synthesis, release, receptor expression and reuptake capacity. Importantly, many studies (most utilising animal models) also demonstrate that modulation of selective serotonergic receptors (via agonism of 5-HT 4 R and antagonism of 5-HT 3 R) or 5-HT signal termination (via serotonin reuptake inhibitors) can alter the likelihood and severity of intestinal inflammation and/or its complicating symptoms. However, there are few human studies that have studied these relationships in a targeted manner. Insights discussed in this review have strong potential to lead to new diagnostic and therapeutic tools to improve the management of IBD and other related disorders. Specifically, strategies that focus on modifying the activity of selective serotonin receptors and reuptake transporters in the gut could be effective for controlling disease activity and/or its associated symptoms. Further studies in humans are required, however, to more completely understand the pathophysiological mechanisms underlying the roles of 5-HT in this setting. © 2017 John Wiley & Sons Ltd.

  17. APRESS: apical regulatory super system, serotonin, and dopamine interaction

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-08-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc, Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3DBS Labs, Duluth, MN, USABackground: The monoamines serotonin and dopamine are known to exist in two separate states: the endogenous state and the competitive inhibition state. The presence of the competitive inhibition state has been known to science for many years, but from a functional standpoint it has been noted in the literature as being "meaningless."Methods: A large database of monoamine transporter response to amino acid precursor administration variations with clinical outcomes was accumulated. In the process, a new organic cation transporter (OCT model has been published, and OCT functional status determination along with amino acid precursor manipulation methods have been invented and refined.Results: Methodology was developed whereby manipulation of the OCT, in the competitive inhibition state, is carried out in a predictable manner. This, in turn, has disproved the long-held assertion that the monoamine competitive inhibition state is functionally meaningless.Conclusion: The most significant aspect of this paper is the documentation of newly recognized relationships between serotonin and dopamine. When transport of serotonin and dopamine are both in the competitive inhibition state, manipulation of the concentrations of one will lead to predictable changes in concentrations of the other. From a functional standpoint, processes regulated and controlled by changes to only serotonin can now be controlled by changes to dopamine, and vice versa, in a predictable manner.Keywords: catecholamine, monoamine, competitive inhibition state

  18. Changes in EEG indices and serotonin concentrations in depression and anxiety disorders

    Directory of Open Access Journals (Sweden)

    I. V. Kichuk

    2016-01-01

    Full Text Available Electroencephalogram (EEG is an important tool to study brain function. EEG can evaluate the current functional state of the brain with high temporal resolution and identify metabolic and ion disorders that cannot be detected by magnetic resonance imaging.Objective: to analyze the relationship between some neurophysiological and biochemical parameters with a Neuro-KM hardware-software complex for the topographic mapping of brain electrical activity.Patients and methods. 75 patients with depression, 101 with anxiety disorders (AD, and 86 control individuals were examined. EEG spectrum and coherence changes were estimated in the depression and AD groups versus the control group. Correlation analysis of EEG indices and blood serotonin concentrations was carried out.Results and discussion. The patients with depression and those with AD as compared to the controls were observed to have similar EEG spectral changes in the beta band. Coherence analysis in the beta-band showed that both disease groups versus the control group had oppositely directed changes: a reduction in intra- and interhemispheric coherence for depression and its increase for AD (p < 0.001. That in the theta and alpha bands revealed that both disease groups had unidirectional interhemispheric coherence changes: a decrease in integration in the alpha band and its increase in the theta and delta bands in the depression and AD groups (p < 0.05 and multidirectional changes in intrahemispheric coherence: its reduction in the depression group and an increase in the AD group (p < 0.05. Correlation analysis of EEG parameters and platelet serotonin concentrations showed opposite correlations of serotonin concentrations and EEG percentage power in the theta and beta bands. When there were higher serotonin concentrations in the patients with depression, EEG demonstrated a preponderance of a synchronization pattern; when these were in the patients with AD, there was a predominance

  19. Ecstasy use and serotonin syndrome: a neglected danger to adolescents and young adults prescribed selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Dobry, Yuriy; Rice, Timothy; Sher, Leo

    2013-01-01

    At present, there are scarce clinical and basic lab data concerning the risk of acute serotonin toxicity from selective serotonin reuptake inhibitors (SSRIs) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) co-administration. The health care community can strongly benefit from efforts to address the high risks associated with serotonin syndrome from this specific drug combination. The aim of this work is to review the risk of serotonin syndrome in adolescents and young adults prescribed with SSRIs and are concurrently using ecstasy. An electronic search of the major behavioral science bibliographic databases (Pubmed, PsycINFO, Medline) was conducted to retrieve peer-reviewed articles, which detail the clinical characteristics, biological mechanisms and social implications of SSRIs, MDMA, and their potential synergism in causing serotonin syndrome in the pediatric and young adult population. Search terms included "serotonin syndrome", "ecstasy", "MDMA", "pediatric", and "SSRI". Additional references were incorporated from the bibliographies of these retrieved articles. MDMA, in combination with the widely-prescribed SSRI antidepressant class, can lead to rapid, synergistic rise of serotonin (5-HT) concentration in the central nervous system, leading to the acute medical emergency known as serotonin syndrome. This review addresses such complication through an exploration of the theoretical mechanisms and clinical manifestations of this life-threatening pharmacological interaction. The increasing incidences of recreational ecstasy use and SSRI pharmacotherapy among multiple psychiatric disorders in the adolescent population have made this an overlooked yet increasingly relevant danger, which poses a threat to public health. This can be curbed through further research, as well as greater health care provision and attention from a regulatory body owing.

  20. Control module and module for priority set-up for the CAMAC universal branch driver

    International Nuclear Information System (INIS)

    Nguen Fuk; Smirnov, V.A.

    1976-01-01

    Control module of BKD-871 universal branch driver operates as a controller in the control crate. This module performs synchronous data transmission to (from) the computer and shapes time signals for A-type controllers. The following regimes of data block transmission may be organized with the help of the control module: address scanning regime; repeated reference regime; stop regime. A priority driving module is required for organization of simultaneous operation from several control sources

  1. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  2. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  3. Escitalopram in painful polyneuropathy: A randomized, placebo-controlled, cross-over trial

    DEFF Research Database (Denmark)

    Otto, Marit; Bach, Flemming W; Jensen, Troels S

    2008-01-01

    Serotonin (5-HT) is involved in pain modulation via descending pathways in the central nervous system. The aim of this study was to test if escitalopram, a selective serotonin reuptake inhibitor (SSRI), would relieve pain in polyneuropathy. The study design was a randomized, double-blind, placebo......-controlled cross-over trial. The daily dose of escitalopram was 20mg once daily. During the two treatment periods of 5 weeks duration, patients rated pain relief (primary outcome variable) on a 6-point ordered nominal scale. Secondary outcome measures comprised total pain and different pain symptoms (touch...

  4. Selective serotonin reuptake inhibitors and gastrointestinal bleeding: a case-control study.

    Directory of Open Access Journals (Sweden)

    Alfonso Carvajal

    Full Text Available BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs have been associated with upper gastrointestinal (GI bleeding. Given their worldwide use, even small risks account for a large number of cases. This study has been conducted with carefully collected information to further investigate the relationship between SSRIs and upper GI bleeding. METHODS: We conducted a case-control study in hospitals in Spain and in Italy. Cases were patients aged ≥18 years with a primary diagnosis of acute upper GI bleeding diagnosed by endoscopy; three controls were matched by sex, age, date of admission (within 3 months and hospital among patients who were admitted for elective surgery for non-painful disorders. Exposures to SSRIs, other antidepressants and other drugs were defined as any use of these drugs in the 7 days before the day on which upper gastrointestinal bleeding started (index day. RESULTS: 581 cases of upper GI bleeding and 1358 controls were considered eligible for the study; no differences in age or sex distribution were observed between cases and controls after matching. Overall, 4.0% of the cases and 3.3% of controls used an SSRI antidepressant in the week before the index day. No significant risk of upper GI bleeding was encountered for SSRI antidepressants (adjusted odds ratio, 1.06, 95% CI, 0.57-1.96 or for whichever other grouping of antidepressants. CONCLUSIONS: The results of this case-control study showed no significant increase in upper GI bleeding with SSRIs and provide good evidence that the magnitude of any increase in risk is not greater than 2.

  5. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System

    DEFF Research Database (Denmark)

    Beliveau, Vincent; Ganz-Benjaminsen, Melanie; Feng, Ling

    2017-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4...... with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human...... brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system...

  6. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    International Nuclear Information System (INIS)

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-01-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression

  7. Effect of serotonin on the expression of antigens and DNA levels in Yersinia pestis cells with different plasmid content

    Science.gov (United States)

    Klueva, Svetlana N.; Korsukov, Vladimir N.; Schukovskaya, Tatyana N.; Kravtsov, Alexander L.

    2004-08-01

    Using flow cytometry (FCM) the influence of exogenous serotonin on culture growth, DNA content and fluorescence intensity of cells binding FITC-labelled plague polyclonal immunoglobulins was studied in Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-), Yersinia pestis KM 216 (pFra-, pCad-, pPst+). The results have been obtained by FCM showed serotonin accelerated Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-) culture growth during cultivation in Hottinger broth pH 7.2 at 28°C at concentration of 10-5 M. The presence of 10-5 M serotonin in nutrient broth could modulate DNA content in 37°C growing population of plague microbe independently of their plasmid content. Serotonin have been an impact on the distribution pattern of the cells according to their phenotypical characteristics, which was reflected in the levels of population heterogeneity in the intensity of specific immunofluorescence determined by FMC.

  8. Serotonin and brain function: a tale of two receptors.

    Science.gov (United States)

    Carhart-Harris, R L; Nutt, D J

    2017-09-01

    Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.

  9. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    Science.gov (United States)

    Serotonin and norepinephrine reuptake inhibitors (SNRIs) Antidepressant SNRIs help relieve depression symptoms, such as irritability and sadness, ... effects they may cause. By Mayo Clinic Staff Serotonin and norepinephrine reuptake inhibitors (SNRIs) are a class ...

  10. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  11. Serotonin-related gene expression in female monkeys with individual sensitivity to stress.

    Science.gov (United States)

    Bethea, C L; Streicher, J M; Mirkes, S J; Sanchez, R L; Reddy, A P; Cameron, J L

    2005-01-01

    Female cynomolgus monkeys exhibit different degrees of reproductive dysfunction with moderate metabolic and psychosocial stress. In this study, the expression of four genes pivotal to serotonin neural function was assessed in monkeys previously categorized as highly stress resistant (n=3; normal menstrual cyclicity through two stress cycles), medium stress resistant (n=5; ovulatory in the first stress cycle but anovulatory in the second stress cycle), or low stress resistant (i.e. stress-sensitive; n=4; anovulatory as soon as stress is initiated). In situ hybridization and quantitative image analysis was used to measure mRNAs coding for SERT (serotonin transporter), 5HT1A autoreceptor, MAO-A and MAO-B (monoamine oxidases) at six levels of the dorsal raphe nucleus (DRN). Optical density (OD) and positive pixel area were measured with NIH Image software. In addition, serotonin neurons were immunostained and counted at three levels of the DRN. Finally, each animal was genotyped for the serotonin transporter long polymorphic region (5HTTLPR). Stress sensitive animals had lower expression of SERT mRNA in the caudal region of the DRN (PMAO-A mRNA signal in the stress-sensitive group (PMAO-A OD was positively correlated with progesterone from a pre-stress control cycle (PMAO-B mRNA exhibited a similar downward trend in the stress-sensitive group. MAO-B OD also correlated with control cycle progesterone (PMAO-A) or exhibited a lower trend (5HT1A, MAO-B) in the stress sensitive animals, which probably reflects the lower number of serotonin neurons present.

  12. Providing straw to allow exploratory behaviour in a pig experimental system does not modify putative indicators of positive welfare: peripheral oxytocin and serotonin.

    Science.gov (United States)

    Marcet Rius, M; Cozzi, A; Bienboire-Frosini, C; Teruel, E; Chabaud, C; Monneret, P; Leclercq, J; Lafont-Lecuelle, C; Pageat, P

    2018-01-22

    Numerous studies have shown that providing straw to pigs can reduce undesirable behaviours such as aggression, tail biting and stereotypy. The measurement of various neuromodulators can be helpful in assessing the development of positive behaviours and overall animal welfare. The oxytocin release is frequently linked to positive emotions and positive welfare. It has been suggested that oxytocin modulates the serotoninergic system. This study aims to investigate the potential effect of straw provision in pigs on peripheral levels of oxytocin and serotonin. In total, 18 mini-pigs were involved in an exploratory study conducted in two parallel groups, Enriched (n=10) and Control (n=8) groups. Pigs were divided by group and housed in pens of two individuals. Straw was provided continuously only in Enriched group and renewed each day for 2 weeks. Two blood samples were drawn from each animal 5 to 10 min before providing the straw, and 15 min after providing straw, during the 1st week, to analyse peripheral changes in oxytocin and serotonin before and after straw provision, and determine the existence of a putative short-term effect. The same procedure was carried out for Control group, without straw provision. Long-term effects of straw provision were also examined using blood samples drawn at the same hour from each animal in the 2nd and 3rd weeks. During this time, animals had the permanent possibility to explore the straw in Enriched group but not in Control group. At the end of each week, one animal-keeper completed two visual analogue scales for each mini-pig regarding the difficulty/ease to work with and handle it and its trust in humans. Results showed peripheral oxytocin increases in both groups after 2 weeks (P=0.02). Results did not demonstrate any effect of providing straw to allow exploratory behaviour on peripheral serotonin. Other results were not significant. This preliminary study explored the relationship between peripheral oxytocin and serotonin and

  13. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus

    OpenAIRE

    Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar

    2016-01-01

    The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxid...

  14. Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats.

    Science.gov (United States)

    Valic, Maja; Pecotic, Renata; Pavlinac Dodig, Ivana; Valic, Zoran; Stipica, Ivona; Dogas, Zoran

    2016-02-01

    What is the central question of this study? Intermittent hypercapnia is a concomitant feature of breathing disorders. Hypercapnic stimuli evoke a form of respiratory plasticity known as phrenic long-term depression in experimental animals. This study was performed to investigate the putative role of serotonin receptors in the initiation of phrenic long-term depression in anaesthetized rats. What is the main finding and its importance? Phrenic nerve long-term depression was revealed in animals pretreated with the serotonin broad-spectrum antagonist, methysergide. This study highlights that serotonin receptors modulate respiratory plasticity evoked by acute intermittent hypercapnia in anaesthetized rats. This study was performed to test the hypothesis that intermittent hypercapnia can evoke a form of respiratory plasticity known as long-term depression of the phrenic nerve (pLTD) and that 5-HT receptors play a role in the initiation of pLTD. Adult male urethane-anaesthetized, vagotomized, paralysed, mechanically ventilated Sprague-Dawley rats were exposed to an acute intermittent hypercapnia protocol. One group received i.v. injection of the non-selective 5-HT receptor antagonist methysergide and another group received i.v. injection of the selective 5-HT1A receptor antagonist WAY-100635 20 min before exposure to intermittent hypercapnia. A control group received i.v. injection of saline. Peak phrenic nerve activity and respiratory rhythm parameters were analysed at baseline (T0), during each of five hypercapnic episodes, and 15, 30 and 60 min (T60) after the last hypercapnia. Intravenous injection of methysergide before exposure to acute intermittent hypercapnia induced development of amplitude pLTD at T60 (decreased by 46.1 ± 6.9%, P = 0.003). Conversely, in control and WAY-100635-pretreated animals, exposure to acute intermittent hypercapnia did not evoke amplitude pLTD. However, a long-term decrease in phrenic nerve frequency was evoked both in control (42 ± 4

  15. Altered expression and modulation of activity-regulated cytoskeletal associated protein (Arc) in serotonin transporter knockout rats.

    NARCIS (Netherlands)

    Molteni, R.; Calabrese, F.; Maj, P.F.; Olivier, J.D.A.; Racagni, G.; Ellenbroek, A.A.; Riva, M.A.

    2009-01-01

    A gene variant in the human serotonin transporter (SERT) can increase the vulnerability to mood disorders. SERT knockout animals show similarities to the human condition and represent an important tool to investigate the mechanisms underlying the pathologic condition in humans. Along this line of

  16. Elevating serotonin pre-partum alters the Holstein dairy cow hepatic adaptation to lactation

    Science.gov (United States)

    Weaver, Samantha R.; Prichard, Allan S.; Maerz, Noah L.; Prichard, Austin P.; Endres, Elizabeth L.; Hernández-Castellano, Lorenzo E.; Akins, Matthew S.; Bruckmaier, Rupert M.

    2017-01-01

    Serotonin is known to regulate energy and calcium homeostasis in several mammalian species. The objective of this study was to determine if pre-partum infusions of 5-hydroxytryptophan (5-HTP), the immediate precursor to serotonin synthesis, could modulate energy homeostasis at the level of the hepatocyte in post-partum Holstein and Jersey dairy cows. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 d pre-partum with either saline or 1 mg/kg bodyweight of 5-HTP. Blood was collected for 14 d post-partum and on d30 post-partum. Liver biopsies were taken on d1 and d7 post-partum. There were no changes in the circulating concentrations of glucose, insulin, glucagon, non-esterified fatty acids, or urea nitrogen in response to treatment, although there were decreased beta-hydroxybutyrate concentrations with 5-HTP treatment around d6 to d10 post-partum, particularly in Jersey cows. Cows infused with 5-HTP had increased hepatic serotonin content and increased mRNA expression of the serotonin 2B receptor on d1 and d7 post-partum. Minimal changes were seen in the hepatic mRNA expression of various gluconeogenic enzymes. There were no changes in the mRNA expression profile of cell-cycle progression marker cyclin-dependent kinase 4 or apoptotic marker caspase 3, although proliferating cell nuclear antigen expression tended to be increased in Holstein cows infused with 5-HTP on d1 post-partum. Immunofluorescence assays showed an increased number of CASP3- and Ki67-positive cells in Holstein cows infused with 5-HTP on d1 post-partum. Given the elevated hepatic serotonin content and increased mRNA abundance of 5HTR2B, 5-HTP infusions may be stimulating an autocrine-paracrine adaptation to lactation in the Holstein cow liver. PMID:28922379

  17. Elevating serotonin pre-partum alters the Holstein dairy cow hepatic adaptation to lactation.

    Directory of Open Access Journals (Sweden)

    Samantha R Weaver

    Full Text Available Serotonin is known to regulate energy and calcium homeostasis in several mammalian species. The objective of this study was to determine if pre-partum infusions of 5-hydroxytryptophan (5-HTP, the immediate precursor to serotonin synthesis, could modulate energy homeostasis at the level of the hepatocyte in post-partum Holstein and Jersey dairy cows. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 d pre-partum with either saline or 1 mg/kg bodyweight of 5-HTP. Blood was collected for 14 d post-partum and on d30 post-partum. Liver biopsies were taken on d1 and d7 post-partum. There were no changes in the circulating concentrations of glucose, insulin, glucagon, non-esterified fatty acids, or urea nitrogen in response to treatment, although there were decreased beta-hydroxybutyrate concentrations with 5-HTP treatment around d6 to d10 post-partum, particularly in Jersey cows. Cows infused with 5-HTP had increased hepatic serotonin content and increased mRNA expression of the serotonin 2B receptor on d1 and d7 post-partum. Minimal changes were seen in the hepatic mRNA expression of various gluconeogenic enzymes. There were no changes in the mRNA expression profile of cell-cycle progression marker cyclin-dependent kinase 4 or apoptotic marker caspase 3, although proliferating cell nuclear antigen expression tended to be increased in Holstein cows infused with 5-HTP on d1 post-partum. Immunofluorescence assays showed an increased number of CASP3- and Ki67-positive cells in Holstein cows infused with 5-HTP on d1 post-partum. Given the elevated hepatic serotonin content and increased mRNA abundance of 5HTR2B, 5-HTP infusions may be stimulating an autocrine-paracrine adaptation to lactation in the Holstein cow liver.

  18. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder

    DEFF Research Database (Denmark)

    Mc Mahon, Brenda; Andersen, Sofie B.; Madsen, Martin K.

    2016-01-01

    controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding...... between summer and winter (Psex-(P = 0.02) and genotype-(P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom...

  19. PLC control of 50 MW klystron modulators

    International Nuclear Information System (INIS)

    Shang Lei; Liu Gongfa; Chen Liping; Lu Yeming; Hong Jun; Zhang Yi; Zhao Feng

    2004-01-01

    Upgrade project of the 50 MW klystron modulators of Hefei Light Source (HLS) was firstly introduced. PLC control system of modulators was employed to replace the old control and monitor system, which was based on relay logic circuit and manual operation method. the PLC system becomes a sub system of the new EPICS control system of HLS. Constant-current, switch-mode and high voltage power supplies were adopted to replace the old 50 Hz power supplies. The technology of modulators was improved and operation was more reliable. The design method, hardware and software of PLC control of modulators were described and the performance was presented. (authors)

  20. Serotonin 6 receptor controls alzheimer?s disease and depression

    OpenAIRE

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-01-01

    Alzheimer?s disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of A? via the inhibition of ?-secretase activity and the inact...

  1. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    Science.gov (United States)

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  2. Effects of tryptophan depletion on selective serotonin reuptake inhibitor-remitted patients with obsessive compulsive disorder.

    Science.gov (United States)

    Hood, Sean D; Broyd, Annabel; Robinson, Hayley; Lee, Jessica; Hudaib, Abdul-Rahman; Hince, Dana A

    2017-12-01

    Serotonergic antidepressants are first-line medication therapies for obsessive-compulsive disorder, however it is not known if synaptic serotonin availability is important for selective serotonin reuptake inhibitor efficacy. The present study tested the hypothesis that temporary reduction in central serotonin transmission, through acute tryptophan depletion, would result in an increase in anxiety in selective serotonin reuptake inhibitor-remitted obsessive-compulsive disorder patients. Eight patients (four males) with obsessive-compulsive disorder who showed sustained clinical improvement with selective serotonin reuptake inhibitor treatment underwent acute tryptophan depletion in a randomized, double-blind, placebo-controlled, within-subjects design, over two days one week apart. Five hours after consumption of the depleting/sham drink the participants performed a personalized obsessive-compulsive disorder symptom exposure task. Psychological responses were measured using the Spielberger State Anxiety Inventory, Yale-Brown Obsessive Compulsive Scale and Visual Analogue Scales. Free plasma tryptophan to large neutral amino acid ratio decreased by 93% on the depletion day and decreased by 1% on the sham day, as anticipated. Psychological rating scores as measured by Visual Analogue Scale showed a significant decrease in perceived control and increase in interfering thoughts at the time of provocation on the depletion day but not on the sham day. A measure of convergent validity, namely Visual Analogue Scale Similar to past, was significantly higher at the time of provocation on both the depletion and sham days. Both the depletion and time of provocation scores for Visual Analogue Scale Anxiety, Spielberger State Anxiety Inventory, Yale-Brown Obsessive Compulsive Scale and blood pressure were not significant. Acute tryptophan depletion caused a significant decrease in perceived control and increase in interfering thoughts at the time of provocation. Acute tryptophan

  3. Serotonin Test

    Science.gov (United States)

    ... microscope. (For more, see the article on Anatomic Pathology .) See More Common Questions See Less Common Questions ... tumor. Accessed December 2010. Vorvick, L. (Updated 2009 March 14). Serum serotonin level. MedlinePlus Medical Encyclopedia [On- ...

  4. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks

    DEFF Research Database (Denmark)

    Grady, Cheryl Lynn; Siebner, Hartwig R; Hornboll, Bettina

    2013-01-01

    Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender...... of neutral, fearful and angry faces. In three separate and counterbalanced sessions, participants received citalopram (CIT) to raise serotonin levels, underwent acute tryptophan depletion (ATD) to lower serotonin, or were studied without pharmacological challenge (Control). An analysis designed to identify...

  5. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    Directory of Open Access Journals (Sweden)

    Nijman Isaäc J

    2010-05-01

    Full Text Available Abstract Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4 has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+ rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs for parameters related to activity and exploratory pattern (Chr.1,9,11,14, and cocaine-induced anxiety and locomotor activity (Chr.5,8 were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5, dopamine D2 receptor (Chr. 8, cannabinoid receptor 2 (Chr. 5, and genes involved in fetal development and plasticity (across chromosomes. Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.

  6. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  7. Acute serotonin depletion releases motivated inhibition of response vigour.

    Science.gov (United States)

    den Ouden, Hanneke E M; Swart, Jennifer C; Schmidt, Kristin; Fekkes, Durk; Geurts, Dirk E M; Cools, Roshan

    2015-04-01

    The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.

  8. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  9. Variation in the serotonin transporter gene modulates selective attention to threat.

    Science.gov (United States)

    Osinsky, Roman; Reuter, Martin; Küpper, Yvonne; Schmitz, Anja; Kozyra, Eva; Alexander, Nina; Hennig, Jürgen

    2008-08-01

    The 5-HTTLPR is an insertion/deletion polymorphism in the promoter region of the serotonin transporter gene. Prior research has revealed associations between the short-allele variant of this polymorphism, enhanced self-reported negative emotionality, and hypersensitivity of fear relevant neural circuits. In a sample of 50 healthy women we examined the role of 5-HTTLPR for cognitive-affective processing of phylogenetical fear-relevant stimuli (spiders) in a dot probe task. In contrast to homozygote long-allele carriers (ll), participants carrying at least 1 short allele (ss and sl) selectively shifted attention toward pictures of spiders, when these were presented for a duration of 2,000 ms. These results argue for an involvement of 5-HTTLPR in cognitive processing of threatening stimuli and thus, underpin its general role for individual differences in negative affect.

  10. Serotonin selectively influences moral judgment and behavior through effects on harm aversion.

    Science.gov (United States)

    Crockett, Molly J; Clark, Luke; Hauser, Marc D; Robbins, Trevor W

    2010-10-05

    Aversive emotional reactions to real or imagined social harms infuse moral judgment and motivate prosocial behavior. Here, we show that the neurotransmitter serotonin directly alters both moral judgment and behavior through increasing subjects' aversion to personally harming others. We enhanced serotonin in healthy volunteers with citalopram (a selective serotonin reuptake inhibitor) and contrasted its effects with both a pharmacological control treatment and a placebo on tests of moral judgment and behavior. We measured the drugs' effects on moral judgment in a set of moral 'dilemmas' pitting utilitarian outcomes (e.g., saving five lives) against highly aversive harmful actions (e.g., killing an innocent person). Enhancing serotonin made subjects more likely to judge harmful actions as forbidden, but only in cases where harms were emotionally salient. This harm-avoidant bias after citalopram was also evident in behavior during the ultimatum game, in which subjects decide to accept or reject fair or unfair monetary offers from another player. Rejecting unfair offers enforces a fairness norm but also harms the other player financially. Enhancing serotonin made subjects less likely to reject unfair offers. Furthermore, the prosocial effects of citalopram varied as a function of trait empathy. Individuals high in trait empathy showed stronger effects of citalopram on moral judgment and behavior than individuals low in trait empathy. Together, these findings provide unique evidence that serotonin could promote prosocial behavior by enhancing harm aversion, a prosocial sentiment that directly affects both moral judgment and moral behavior.

  11. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation*

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-01-01

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124

  12. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. Copyright © 2016 the American Physiological Society.

  13. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa

    International Nuclear Information System (INIS)

    Simon, C.; Ternaux, J.P.

    1990-01-01

    The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest two different serotoninergic pools within the enterochromaffin cell population

  14. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.

    Science.gov (United States)

    Nakamura, Kazuhiko; Sekine, Yoshimoto; Ouchi, Yasuomi; Tsujii, Masatsugu; Yoshikawa, Etsuji; Futatsubashi, Masami; Tsuchiya, Kenji J; Sugihara, Genichi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Suda, Shiro; Sugiyama, Toshiro; Takei, Nori; Mori, Norio

    2010-01-01

    Autism is a neurodevelopmental disorder that is characterized by repetitive and/or obsessive interests and behavior and by deficits in sociability and communication. Although its neurobiological underpinnings are postulated to lie in abnormalities of the serotoninergic and dopaminergic systems, the details remain unknown. To determine the occurrence of changes in the binding of serotonin and dopamine transporters, which are highly selective markers for their respective neuronal systems. Using positron emission tomography, we measured the binding of brain serotonin and dopamine transporters in each individual with the radioligands carbon 11 ((11)C)-labeled trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652) and 2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane ([(11)C]WIN-35,428), respectively. Statistical parametric mapping was used for between-subject analysis and within-subject correlation analysis with respect to clinical variables. Participants recruited from the community. Twenty men (age range, 18-26 years; mean [SD] IQ, 99.3 [18.1]) with autism and 20 age- and IQ-matched control subjects. Serotonin transporter binding was significantly lower throughout the brain in autistic individuals compared with controls (P dopamine transporter binding was significantly higher in the orbitofrontal cortex of the autistic group (P dopamine transporter binding was significantly inversely correlated with serotonin transporter binding (r = -0.61; P = .004). The brains of autistic individuals have abnormalities in both serotonin transporter and dopamine transporter binding. The present findings indicate that the gross abnormalities in these neurotransmitter systems may underpin the neurophysiologic mechanism of autism. Our sample was not characteristic or representative of a typical sample of adults with autism in the community.

  15. Effect of serotonin on small intestinal contractility in healthy volunteers

    DEFF Research Database (Denmark)

    Hansen, M.B.; Arif, F.; Gregersen, H.

    2008-01-01

    The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro-duodeno-jejunal contrac......The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro......-duodeno-jejunal contractility in healthy human volunteers. Manometric recordings were obtained and the effects of either a standard meal, continuous intravenous infusion of serotonin (20 nmol/kg/min) or intraluminal bolus infusions of graded doses of serotonin (2.5, 25 or 250 nmol) were compared. In addition, platelet......-depleted plasma levels of serotonin, blood pressure, heart rate and electrocardiogram were evaluated. All subjects showed similar results. Intravenous serotonin increased migrating motor complex phase In frequency 3-fold and migrating velocity 2-fold. Intraluminal infusion of serotonin did not change contractile...

  16. Pulmonary extraction of serotonin and propranolol in patients with adult respiratory distress syndrome

    International Nuclear Information System (INIS)

    Morel, D.R.; Dargent, F.; Bachmann, M.; Suter, P.M.; Junod, A.F.

    1985-01-01

    Because injury to the pulmonary vascular endothelium is associated with the development of the adult respiratory distress syndrome (ARDS), the authors assessed the metabolic function of pulmonary endothelial cells by the measurements of the first-pass pulmonary extraction of [ 14 C]serotonin and [ 3 H]propranolol in 15 patients with ARDS and 15 patients at risk for developing ARDS. Serotonin extraction ratio was lower in patients with ARDS (0.85 +/- 0.10, mean +/- SD) than in patients at risk (0.91 +/- 0.04) (p less than 0.025), and both values were significantly reduced (p less than 0.005) when compared with a control group value (0.97 +/- 0.01). The decrease in serotonin extraction was correlated with the severity of ARDS (r = -0.67) (p less than 0.001) and with pulmonary function changes over time. Propranolol extraction ratio was decreased in patients at risk (0.66 +/- 0.11) (p less than 0.005) but not in patients with ARDS (0.75 +/- 0.11), when compared with those in the control group (0.81 +/- 0.03). Low values in patients at risk were restored to normal by continuous positive airway pressure breathing. The authors conclude that pulmonary extraction of serotonin, an index of pulmonary endothelial cell function, correlates with the severity of ARDS

  17. The serotonin transporter undergoes constitutive internalization and is primarily sorted to late endosomes and lysosomal degradation

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of surface resident...... SERT, two functional epitope tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N-terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope...

  18. INFLUENCE OF A SEROTONIN-RICH AND DOPAMINE-RICH DIET ON PLATELET SEROTONIN CONTENT AND URINARY-EXCRETION OF BIOGENIC-AMINES AND THEIR METABOLITES

    NARCIS (Netherlands)

    KEMA, IP; SCHELLINGS, AMJ; MEIBORG, G; HOPPENBROUWERS, CJM; MUSKIET, FAJ

    Using high-performance liquid chromatography and gas chromatography, we reevaluated the 24-h influence of a serotonin- and dopamine-rich diet on platelet serotonin and serotonin, 5-hydroxyindoleacetic acid (5-HIAA), and major catecholamine metabolites in the urine of 15 healthy adults. Although

  19. The role of serotonin in personality inference: tryptophan depletion impairs the identification of neuroticism in the face.

    Science.gov (United States)

    Ward, Robert; Sreenivas, Shubha; Read, Judi; Saunders, Kate E A; Rogers, Robert D

    2017-07-01

    Serotonergic mechanisms mediate the expression of personality traits (such as impulsivity, aggression and anxiety) that are linked to vulnerability to psychological illnesses, and modulate the identification of emotional expressions in the face as well as learning about broader classes of appetitive and aversive signals. Faces with neutral expressions signal a variety of socially relevant information, such that inferences about the big five personality traits, including Neuroticism, Extraversion and Agreeableness, can be accurately made on the basis of emotionally neutral facial photographs. Given the close link between Neuroticism and psychological distress, we investigated the effects of diminished central serotonin activity (achieved by tryptophan depletion) upon the accuracy of 52 healthy (non-clinical) adults' discriminations of personality from facial characteristics. All participants were able to discriminate reliably four of the big five traits. However, the tryptophan-depleted participants were specifically less accurate in discriminating Neuroticism than the matched non-depleted participants. These data suggest that central serotonin activity modulates the identification of not only negative facial emotional expression but also a broader class of signals about personality characteristics linked to psychological distress.

  20. Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning.

    Science.gov (United States)

    Carey, Robert J; Damianopoulos, Ernest N

    2015-04-01

    Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Microprocessor-controlled CAMAC data link module

    International Nuclear Information System (INIS)

    Potter, J.M.

    1978-05-01

    Communication between the central control computer and remote, satellite data-acquisition/control stations at the Clinton P. Anderson Meson Physics Facility (LAMPF) is presently accomplished through the use of CAMAC-based Data Link modules. With the advent of the microprocessor, a new philosophy for digital data communications has evolved. Data Link modules containing microprocessor controllers provide link management and communication network protocol through algorithms executed in the Data Link microprocessor. 13 figures

  2. Discrete Serotonin Systems Mediate Memory Enhancement and Escape Latencies after Unpredicted Aversive Experience in Drosophila Place Memory

    Directory of Open Access Journals (Sweden)

    Divya Sitaraman

    2017-12-01

    Full Text Available Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophilamelanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits.

  3. Serotonin, neural markers and memory

    Directory of Open Access Journals (Sweden)

    Alfredo eMeneses

    2015-07-01

    Full Text Available Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals’ species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 receptors as well as SERT (serotonin transporter seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence

  4. Automated mass spectrometric analysis of urinary and plasma serotonin

    NARCIS (Netherlands)

    de Jong, Wilhelmina H. A.; Wilkens, Marianne H. L. I.; de Vries, Elisabeth G. E.; Kema, Ido P.

    Serotonin emerges as crucial neurotransmitter and hormone in a growing number of different physiologic processes. Besides extensive serotonin production previously noted in patients with metastatic carcinoid tumors, serotonin now is implicated in liver cell regeneration and bone formation. The aim

  5. Inhibition of serotonin transport by (+)McN5652 is noncompetitive

    Energy Technology Data Exchange (ETDEWEB)

    Hummerich, Rene [Biochemical Laboratory, Central Institute of Mental Health, 68159 Mannheim (Germany); Schulze, Oliver [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Raedler, Thomas [Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Mikecz, Pal [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Reimold, Matthias [Department of Nuclear Medicine, University Hospital Tuebingen, D-72076 Tuebingen (Germany); Brenner, Winfried [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Clausen, Malte [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany); Schloss, Patrick [Biochemical Laboratory, Central Institute of Mental Health, 68159 Mannheim (Germany); Buchert, Ralph [Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg (Germany)]. E-mail: buchert@uke.uni-hamburg.de

    2006-04-15

    Introduction: Imaging of the serotonergic innervation of the brain using positron emission tomography (PET) with the serotonin transporter (SERT) ligand [{sup 11C}] (+)McN5652 might be affected by serotonin in the synaptic cleft if there is relevant interaction between [{sup 11}C] (+)McN5652 and serotonin at the SERT. The aim of the present study therefore was to pharmacologically characterize the interaction of [{sup 11}C] (+)McN5652 and serotonin at the SERT. Methods: In vitro saturation analyses of [{sup 3}H]serotonin uptake into HEK293 cells stably expressing the human SERT were performed in the absence and presence of unlabelled (+)McN5652. Data were evaluated assuming Michaelis-Menten kinetics. Results: Unlabelled (+)McN5652 significantly reduced the maximal rate of serotonin transport V {sub max} of SERT without affecting the Michaelis-Menten constant K {sub M}. Conclusions: This finding indicates that (+)McN5652 inhibits serotonin transport through the SERT in a noncompetitive manner. This might suggest that [{sup 11}C] (+)McN5652 PET is not significantly affected by endogenous serotonin.

  6. Inhibition of serotonin transport by (+)McN5652 is noncompetitive

    International Nuclear Information System (INIS)

    Hummerich, Rene; Schulze, Oliver; Raedler, Thomas; Mikecz, Pal; Reimold, Matthias; Brenner, Winfried; Clausen, Malte; Schloss, Patrick; Buchert, Ralph

    2006-01-01

    Introduction: Imaging of the serotonergic innervation of the brain using positron emission tomography (PET) with the serotonin transporter (SERT) ligand [ 11C ] (+)McN5652 might be affected by serotonin in the synaptic cleft if there is relevant interaction between [ 11 C] (+)McN5652 and serotonin at the SERT. The aim of the present study therefore was to pharmacologically characterize the interaction of [ 11 C] (+)McN5652 and serotonin at the SERT. Methods: In vitro saturation analyses of [ 3 H]serotonin uptake into HEK293 cells stably expressing the human SERT were performed in the absence and presence of unlabelled (+)McN5652. Data were evaluated assuming Michaelis-Menten kinetics. Results: Unlabelled (+)McN5652 significantly reduced the maximal rate of serotonin transport V max of SERT without affecting the Michaelis-Menten constant K M . Conclusions: This finding indicates that (+)McN5652 inhibits serotonin transport through the SERT in a noncompetitive manner. This might suggest that [ 11 C] (+)McN5652 PET is not significantly affected by endogenous serotonin

  7. Non-conventional features of peripheral serotonin signalling - the gut and beyond.

    Science.gov (United States)

    Spohn, Stephanie N; Mawe, Gary M

    2017-07-01

    Serotonin was first discovered in the gut, and its conventional actions as an intercellular signalling molecule in the intrinsic and extrinsic enteric reflexes are well recognized, as are a number of serotonin signalling pharmacotherapeutic targets for treatment of nausea, diarrhoea or constipation. The latest discoveries have greatly broadened our understanding of non-conventional actions of peripheral serotonin within the gastrointestinal tract and in a number of other tissues. For example, it is now clear that bacteria within the lumen of the bowel influence serotonin synthesis and release by enterochromaffin cells. Also, serotonin can act both as a pro-inflammatory and anti-inflammatory signalling molecule in the intestinal mucosa via activation of serotonin receptors (5-HT 7 or 5-HT 4 receptors, respectively). For decades, serotonin receptors have been known to exist in a variety of tissues other than the gut, but studies have now provided strong evidence for physiological roles of serotonin in several important processes, including haematopoiesis, metabolic homeostasis and bone metabolism. Furthermore, evidence for serotonin synthesis in peripheral tissues outside of the gut is emerging. In this Review, we expand the discussion beyond gastrointestinal functions to highlight the roles of peripheral serotonin in colitis, haematopoiesis, energy and bone metabolism, and how serotonin is influenced by the gut microbiota.

  8. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  9. Serotonin induces peripheral antinociception via the opioidergic system.

    Science.gov (United States)

    Diniz, Danielle Aguiar; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina Gomes Miranda E; Duarte, Igor Dimitri Gama; Romero, Thiago Roberto Lima

    2018-01-01

    Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE 2 (2 μg). Serotonin (250 ng), administered locally to the right paw of animals, produces antinociception in this model. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng). These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  11. Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Directory of Open Access Journals (Sweden)

    Best Janet

    2010-08-01

    Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to

  12. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin

    Directory of Open Access Journals (Sweden)

    Giniatullin Rashid

    2006-03-01

    Full Text Available Abstract Background Cultured sensory neurons are a common experimental model to elucidate the molecular mechanisms of pain transduction typically involving activation of ATP-sensitive P2X or capsaicin-sensitive TRPV1 receptors. This applies also to trigeminal ganglion neurons that convey pain inputs from head tissues. Little is, however, known about the plasticity of these receptors on trigeminal neurons in culture, grown without adding the neurotrophin NGF which per se is a powerful algogen. The characteristics of such receptors after short-term culture were compared with those of ganglia. Furthermore, their modulation by chronically-applied serotonin or NGF was investigated. Results Rat or mouse neurons in culture mainly belonged to small and medium diameter neurons as observed in sections of trigeminal ganglia. Real time RT-PCR, Western blot analysis and immunocytochemistry showed upregulation of P2X3 and TRPV1 receptors after 1–4 days in culture (together with their more frequent co-localization, while P2X2 ones were unchanged. TRPV1 immunoreactivity was, however, lower in mouse ganglia and cultures. Intracellular Ca2+ imaging and whole-cell patch clamping showed functional P2X and TRPV1 receptors. Neurons exhibited a range of responses to the P2X agonist α, β-methylene-adenosine-5'-triphosphate indicating the presence of homomeric P2X3 receptors (selectively antagonized by A-317491 and heteromeric P2X2/3 receptors. The latter were observed in 16 % mouse neurons only. Despite upregulation of receptors in culture, neurons retained the potential for further enhancement of P2X3 receptors by 24 h NGF treatment. At this time point TRPV1 receptors had lost the facilitation observed after acute NGF application. Conversely, chronically-applied serotonin selectively upregulated TRPV1 receptors rather than P2X3 receptors. Conclusion Comparing ganglia and cultures offered the advantage of understanding early adaptive changes of nociception

  13. Serotonin depletion increases seizure susceptibility and worsens neuropathological outcomes in kainate model of epilepsy.

    Science.gov (United States)

    Maia, Gisela H; Brazete, Cátia S; Soares, Joana I; Luz, Liliana L; Lukoyanov, Nikolai V

    2017-09-01

    Serotonin is implicated in the regulation of seizures, but whether or not it can potentiate the effects of epileptogenic factors is not fully established. Using the kainic acid model of epilepsy in rats, we tested the effects of serotonin depletion on (1) susceptibility to acute seizures, (2) development of spontaneous recurrent seizures and (3) behavioral and neuroanatomical sequelae of kainic acid treatment. Serotonin was depleted by pretreating rats with p-chlorophenylalanine. In different groups, kainic acid was injected at 3 different doses: 6.5mg/kg, 9.0mg/kg or 12.5mg/kg. A single dose of 6.5mg/kg of kainic acid reliably induced status epilepticus in p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats. The neuroexcitatory effects of kainic acid in the p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats, were associated with the presence of tonic-clonic convulsions and high lethality. Compared to controls, a greater portion of serotonin-depleted rats showed spontaneous recurrent seizures after kainic acid injections. Loss of hippocampal neurons and spatial memory deficits associated with kainic acid treatment were exacerbated by prior depletion of serotonin. The present findings are of particular importance because they suggest that low serotonin activity may represent one of the major risk factors for epilepsy and, thus, offer potentially relevant targets for prevention of epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    Science.gov (United States)

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  15. [EFFICIENCY OF SEROTONIN ADIPINATE IN INTESTINAL DYSFUNCTION IN PATIENTS AFTER COLORECTAL OPERATIONS].

    Science.gov (United States)

    Stakanov, A V; Musaeva, T S

    2015-01-01

    We performed a retrospective analysis of case histories of acute colonic obstruction due to colon cancer A total of 291 patients were divided on two groups: 1--a control group (patients presenting risk of developing intestinal dysfunction with 'basic' therapy, n = 123); 2--the comparison group (n = 57) represented patients who were taken to optimize the post-operative period with the inclusion in the scheme of the basic treatment of serotonin adipinate. The use of serotonin adipinatein treatment of intestinal dysfunction allows fully restore bowel motility to 3rd day.

  16. Serotonin 5HT1A receptor availability and pathological crying after stroke

    DEFF Research Database (Denmark)

    Møller, Mette; Andersen, G; Gjedde, A

    2007-01-01

    OBJECTIVES: Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible...... by selective serotonin re-uptake inhibitor (SSRI) treatment. MATERIALS AND METHODS: We PET scanned patients with acute stroke and PC and age-matched control subjects. Maps of receptor availability were generated from the images of eight cortical regions and raphe nuclei. RESULTS: The maps showed highest...

  17. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation.

    Directory of Open Access Journals (Sweden)

    Eva Latorre

    Full Text Available TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.

  18. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.Objective: ......Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin...

  19. The serotonin transporter in psychiatric disorders

    DEFF Research Database (Denmark)

    Spies, Marie; Knudsen, Karen Birgitte Moos; Lanzenberger, Rupert

    2015-01-01

    Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology...... of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application...... of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder...

  20. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation.

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-06-05

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of [3H]serotonin

    International Nuclear Information System (INIS)

    Tamir, H.; Theoharides, T.C.; Gershon, M.D.; Askenase, P.W.

    1982-01-01

    The binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells was studied. Two types of serotonin binding protein in RBL cells was found. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 x 10 -6 M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD 1 = 4.5 x 10 - 8 M; KD 2 = 3.9 x 10 -6 M) did not bind to Con A. Moreover, binding of [ 3 H]serotonin to protein of Peak I was sensitive to inhibition by reserpine, while binding of [ 3 H]serotonin to protein of Peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract Peak I than Peak II protein. Electron microscope radioautographic analysis of the intracellular distribution of [ 3 H] serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules.No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but Peak I protein may be associated with the granular membrane while Peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules

  2. Serotonin noradrenaline reuptake inhibitors: New hope for the treatment of chronic pain.

    Science.gov (United States)

    Delgado, Pedro L

    2006-01-01

    Depression and painful symptoms occur frequently together. Over 75% of depressed patients report painful symptoms such as headache, stomach pain, neck and back pain as well as non-specific generalized pain. In addition, World Health Organization data have shown that primary care patients with chronic pain have a four fold greater risk of becoming depressed than pain-free patients. Increasingly, pain is considered as an integral symptom of depression and there evidence to suggest that pain and depression may arise from a common neurobiological dysfunction. Serotonergic cell bodies, in the raphe nucleus, and noradrenergic cell bodies in the locus coeruleus send projections to various parts of the brain, where they are involved in the control of mood, movement, cognitive functioning and emotions. In addition both serotonergic and noradrenergic neurons project to the spinal cord. These descending pathways serve to inhibit input from the intestines, skeletal muscles and other sensory inputs. Usually, these inhibitory effects are modest, but in times of stress, in the interest of the survival of the individual, they can completely inhibit the input from painful stimuli. A dysfunction of the serotonergic and noradrenergic neurons can thus affect both the ascending and descending pathways resulting in the psychological symptoms of depression and somatic pain symptoms such as chronic pain, fibromyalgia, non-cardiac chest pain, or irritable bowel syndrome. In view of this, it is not surprising that tricyclic antidepressants have been a standard treatment of chronic pain for many years. In contrast and in spite of their improved tolerance, selective serotonin reuptake inhibitors do not appear to be particularly effective in the treatment of pain. Recently, a number of open and controlled trials with selective serotonin and noradrenaline reuptake inhibitors such as venlafaxine, milnacipran and duloxetine, suggest that these compounds may be more effective in relieving pain

  3. Infrared Thermography in Serotonin-Induced Itch Model in Rats

    DEFF Research Database (Denmark)

    Jasemian, Yousef; Gazerani, Parisa; Dagnæs-Hansen, Frederik

    2012-01-01

    The study validated the application of infrared thermography in a serotonin-induced itch model in rats since the only available method in animal models of itch is the count of scratching bouts. Twenty four adult Sprague-Dawley male rats were used in 3 experiments: 1) local vasomotor response...... with no scratching reflex was investigated. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A negative dose-temperature relationship of serotonin was found by thermography. Vasoregulation at the site of serotonin injection took place in the absence of scratching...

  4. Embedded software for the CEBAF RF Control Module

    International Nuclear Information System (INIS)

    Lahti, G.; Ashkenazi, I.; West, C.; Morgan, B.

    1991-01-01

    The CEBAF accelerator control system employs a distributed computer strategy. As part of this strategy, the RF control sub-system uses 342 RF Control Modules, one for each of four warm section beam forming cavities (i.e., choppers, buncher, capture) and 338 superconducting accelerating cavities. Each control module has its own microprocessor, which provides local intelligence to automatically control over 100 parameters, while keeping the user interface simple. The microprocessor controls analog and digital I/O, including the phase and gradient section, high power amplifier (HPA), and interlocks. Presently, the embedded code is used to commission the 14 RF control modules in the injector. This paper describes the operational experience of this complex real-time control system

  5. Acute and delayed effect of (-) deprenyl and (-) 1-phenyl-2-propylaminopentane (PPAP) on the serotonin content of peritoneal cells (white blood cells and mast cells).

    Science.gov (United States)

    Csaba, G; Kovács, P; Pállinger, Eva

    2006-01-01

    Acute and delayed (hormonal imprinting) effect of (-) deprenyl and its derivative without MAO-B inhibitory activity (-) PPAP, were studied on cells of the peritoneal fluid (lymphocytes, monocytes, granulocytes and mast cells) by flow cytometric and confocal microscopic analysis. Thirty minutes after treatment of 6-week-old female animals, deprenyl was ineffective while PPAP significantly increased the serotonin level of these cells. Three weeks after treatment at weaning, deprenyl drastically decreased the serotonin level of each cell type, while PPAP moderately but significantly increased the serotonin level of monocytes, granulocytes and mast cells. This means that the two related molecules have different effects on the immune cells, which seem to be independent of MAO-B inhibition. The experiments emphasize the necessity of studying the prolonged effects of biologically active molecules, even if they are without acute effects. As serotonin is a modulator of the immune system, the influence on immune cells of the molecules studied can contribute to their enhancing effect. Copyright 2004 John Wiley & Sons, Ltd.

  6. The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.

    Science.gov (United States)

    Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung

    2018-03-01

    The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018

  7. Serotonin syndrome:case report and current concepts.

    LENUS (Irish Health Repository)

    Fennell, J

    2005-05-01

    Selective serotonin reuptake inhibitors (SSRI\\'s) are increasingly being used as the first line therapeutic agent for the depression. It is therefore not unusual to see a case of overdose with these agents. More commonly an adverse drug reaction may be seen among the older patients who are particularly vulnerable to the serotonin syndrome due to multiple co-morbidity and polypharmacy. The clinical picture of serotonin syndrome (SS) is non-specific and there is no confirmatory test. SS may go unrecognized because it is often mistaken for a viral illness, anxiety, neurological disorder or worsening psychiatric condition.

  8. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  9. Boys' serotonin transporter genotype affects maternal behavior through self-control: a case of evocative gene-environment correlation.

    Science.gov (United States)

    Pener-Tessler, Roni; Avinun, Reut; Uzefovsky, Florina; Edelman, Shany; Ebstein, Richard P; Knafo, Ariel

    2013-02-01

    Self-control, involving processes such as delaying gratification, concentrating, planning, following instructions, and adapting emotions and behavior to situational requirements and social norms, may have a profound impact on children's adjustment. The importance of self-control suggests that parents are likely to modify their parenting based on children's ability for self-control. We study the effect of children's self-control, a trait partially molded by genetics, on their mothers' parenting, a process of evocative gene-environment correlation. Israeli 3.5-year-old twins (N = 320) participated in a lab session in which their mothers' parenting was observed. DNA was available from most children (N = 228). Mothers described children's self-control in a questionnaire. Boys were lower in self-control and received less positive parenting from their mothers, in comparison with girls. For boys, and not for girls, the serotonin transporter linked polymorphic region gene predicted mothers' levels of positive parenting, an effect mediated by boys' self-control. The implications of this evocative gene-environment correlation and the observed sex differences are discussed.

  10. Electrophysiological and biochemical studies of slow responses to serotonin and dopamine of snail identified neurons. Mediating role of the cyclic AMP

    International Nuclear Information System (INIS)

    Deterre, Philippe

    1983-01-01

    In this research thesis, the electrophysiological study of slow incoming currents induced in some identified neurons of the Helix aspersa snail by serotonin and dopamine shows that they are associated with a decrease of a potassium conductance involved in the modulation of the action potential duration. By means of enzymatic tests performed on a single cell, and of electrophysiological experiments, the author shows that the cyclic AMP is an intracellular mediator involved in the genesis of these slow responses. Moreover, the obtained results show that serotonin and dopamine act by binding to specific receptors, and that these receptors activate the adenylate-cyclase through a GTP binding protein [fr

  11. Conundrums in neurology: diagnosing serotonin syndrome - a meta-analysis of cases.

    Science.gov (United States)

    Werneke, Ursula; Jamshidi, Fariba; Taylor, David M; Ott, Michael

    2016-07-12

    Serotonin syndrome is a toxic state, caused by serotonin (5HT) excess in the central nervous system. Serotonin syndrome's main feature is neuro-muscular hyperexcitability, which in many cases is mild but in some cases can become life-threatening. The diagnosis of serotonin syndrome remains challenging since it can only be made on clinical grounds. Three diagnostic criteria systems, Sternbach, Radomski and Hunter classifications, are available. Here we test the validity of four assumptions that have become widely accepted: (1) The Hunter classification performs clinically better than the Sternbach and Radomski criteria; (2) in contrast to neuroleptic malignant syndrome, the onset of serotonin syndrome is usually rapid; (3) hyperthermia is a hallmark of severe serotonin syndrome; and (4) serotonin syndrome can readily be distinguished from neuroleptic malignant syndrome on clinical grounds and on the basis of medication history. Systematic review and meta-analysis of all cases of serotonin syndrome and toxicity published between 2004 and 2014, using PubMed and Web of Science. Two of the four assumptions (1 and 2) are based on only one published study each and have not been independently validated. There is little agreement between current criteria systems for the diagnosis of serotonin syndrome. Although frequently thought to be the gold standard for the diagnosis of the serotonin syndrome, the Hunter criteria did not perform better than the Sternbach and Radomski criteria. Not all cases seem to be of rapid onset and only relatively few cases may present with hyperthermia. The 0 differential diagnosis between serotonin syndrome and neuroleptic malignant syndrome is not always clear-cut. Our findings challenge four commonly made assumptions about serotonin syndrome. We propose our meta-analysis of cases (MAC) method as a new way to systematically pool and interpret anecdotal but important clinical information concerning uncommon or emergent phenomena that cannot be

  12. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin

    Science.gov (United States)

    Kode, Aruna; Mosialou, Ioanna; Silva, Barbara C.; Rached, Marie-Therese; Zhou, Bin; Wang, Ji; Townes, Tim M.; Hen, Rene; DePinho, Ronald A.; Guo, X. Edward; Kousteni, Stavroula

    2012-01-01

    Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcription factor FOXO1 is a crucial determinant of the effects of duodenum-derived serotonin on bone formation We identified two key FOXO1 complexes in osteoblasts, one with the transcription factor cAMP-responsive element–binding protein 1 (CREB) and another with activating transcription factor 4 (ATF4). Under normal levels of circulating serotonin, the proliferative activity of FOXO1 was promoted by a balance between its interaction with CREB and ATF4. However, high circulating serotonin levels prevented the association of FOXO1 with CREB, resulting in suppressed osteoblast proliferation. These observations identify FOXO1 as the molecular node of an intricate transcriptional machinery that confers the signal of duodenal-derived serotonin to inhibit bone formation. PMID:22945629

  13. Selective serotonin reuptake inhibitors and risk for gastrointestinal bleeding

    Directory of Open Access Journals (Sweden)

    Batić-Mujanović Olivera

    2014-01-01

    Full Text Available The most of the known effects of selective serotonin reuptake inhibitors, beneficial or harmful, are associated with the inhibitory action of the serotonin reuptake transporter. This mechanism is present not only in neurons, but also in other cells such as platelets. Serotoninergic mechanism seems to have an important role in hemostasis, which has long been underestimated. Abnormal activation may lead to a prothrombotic state in patients treated with selective serotonin reuptake inhibitors. On one hand there may be an increased risk of bleeding, and on the other hand reduction in thrombotic risk may be possible. Serotonin is critical to maintain a platelet haemostatic function, such as platelet aggregation. Evidences from the studies support the hypothesis that antidepressants with a relevant blockade of action of serotonin reuptake mechanism may increase the risk of bleeding, which can occur anywhere in the body. Epidemiological evidences are, however, the most robust for upper gastrointestinal bleeding. It is estimated that this bleeding can occur in 1 in 100 to 1 in 1.000 patient-years of exposure to the high-affinity selective serotonin reuptake inhibitors, with very old patients at the highest risk. The increased risk may be of particular relevance when selective serotonin reuptake inhibitors are taken simultaneously with nonsteroidal anti-inflammatory drugs, low dose of aspirin or warfarin.

  14. Variation in serotonin neurotransmission genes affects neural activation during response inhibition in adolescents and young adults with ADHD and healthy controls

    NARCIS (Netherlands)

    Van Rooij, Daan; Hartman, Catharina A.; Van Donkelaar, Marjolein M. J.; Bralten, Janita; Von Rhein, Daniel; Hakobjan, Marina; Franke, Barbara; Heslenfeld, Dirk J.; Oosterlaan, Jaap; Rommelse, Nanda; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2015-01-01

    Objectives. Deficits in response inhibition have been associated with attention-deficit/hyperactivity disorder (ADHD). Given the role of serotonin in ADHD and impulsivity, we postulated that genetic variants within the serotonin pathway might influence response inhibition. Methods. We measured

  15. VMN hypothalamic dopamine and serotonin in anorectic septic rats.

    Science.gov (United States)

    Torelli, G F; Meguid, M M; Miyata, G; Fetissov, S O; Carter, J L; Kim, H J; Muscaritoli, M; Rossi Fanelli, F

    2000-03-01

    During sepsis, catabolism of proteins and associated changes in plasma amino acids occur. Tryptophan and tyrosine, and their derivatives serotonin (5-HT) and dopamine (DA), influence hypothalamic feeding-related areas and are associated with the onset of anorexia. We hypothesized that anorexia of sepsis is associated with changes in serotonin and dopamine in the ventromedial nucleus (VMN) of the hypothalamus. The aim of this study was to test our hypothesis by measuring intra-VMN changes of these two neurotransmitters at the onset of anorexia during sepsis. Fischer 344 male rats had an intracerebral guide cannula stereotaxically implanted into the VMN. Ten days later, in awake, overnight-food-deprived rats, a microdialysis probe was inserted through the in situ VMN cannula. Two hours thereafter, serial baseline serotonin and dopamine concentrations were measured. Then cecal ligation and puncture to induce sepsis or a control laparotomy was performed under isoflurane anesthesia. VMN microdialysis samples were serially collected every 30 min for 8 h after the surgical procedure to determine 5-HT and DA changes in response to sepsis. During the hypermetabolic response to sepsis, a strong association occurred between anorexia and a significant reduction of VMN dopamine concentration (P anorexia of sepsis. Six hours after operation, a single meal was offered for 20 min to assess the response of neurotransmitters to food ingestion. Food intake was minimal in anorectic septic rats (mean size of the after food-deprived meal in the Septic group was 0.03+/-0.01 g, that of the Control group was 1.27+/-0.14 g; P = 0.0001), while Control rats demonstrated anticipated changes in neurotransmitters in response to eating. We conclude that the onset of anorexia in septic rats is associated with a reduction in VMN dopamine.

  16. Regulation of Pituitary Beta Endorphin Release: Role of Serotonin Neurons

    Science.gov (United States)

    1983-12-15

    endogenous) may be related to pain and its transmission in the nervous system. Areas known to have a large number of opiate receptors both in primates and...serotonin meta- bolite 5-hydroxytrvptamine; serotonin 5-hydroxtryptophan; serotonin precursor intra- cerebro -ventricular administration intermediate lobe

  17. Voltammetric and Mathematical Evidence for Dual Transport Mediation of Serotonin Clearance In Vivo

    Science.gov (United States)

    Wood, Kevin M.; Zeqja, Anisa; Nijhout, H. Frederik; Reed, Michael C.; Best, Janet; Hashemi, Parastoo

    2014-01-01

    The neurotransmitter serotonin underlies many of the brain’s functions. Understanding serotonin neurochemistry is important for improving treatments for neuropsychiatric disorders such as depression. Antidepressants commonly target serotonin clearance via serotonin transporters (SERTs) and have variable clinical effects. Adjunctive therapies, targeting other systems including serotonin autoreceptors, also vary clinically and carry adverse consequences. Fast scan cyclic voltammetry (FSCV) is particularly well suited for studying antidepressant effects on serotonin clearance and autoreceptors by providing real-time chemical information on serotonin kinetics in vivo. However, the complex nature of in vivo serotonin responses makes it difficult to interpret experimental data with established kinetic models. Here, we electrically stimulated the mouse medial forebrain bundle (MFB) to provoke and detect terminal serotonin in the substantia nigra reticulata (SNr). In response to MFB stimulation we found three dynamically distinct serotonin signals. To interpret these signals we developed a computational model that supports two independent serotonin reuptake mechanisms (high affinity, low efficiency reuptake mechanism and low affinity, high efficiency reuptake system) and bolsters an important inhibitory role for the serotonin autoreceptors. Our data and analysis, afforded by the powerful combination of voltammetric and theoretical methods, gives new understanding of the chemical heterogeneity of serotonin dynamics in the brain. This diverse serotonergic matrix likely contributes to clinical variability of antidepressants. PMID:24702305

  18. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder

    NARCIS (Netherlands)

    Ruhé, Henricus G.; Ooteman, Wendy; Booij, Jan; Michel, Martin C.; Moeton, Martina; Baas, Frank; Schene, Aart H.

    2009-01-01

    BACKGROUND: In major depressive disorder, selective serotonin reuptake inhibitors target the serotonin transporter (SERT). Their response rates (30-50%) are modified by SERT promotor polymorphisms (5-HTTLPR). OBJECTIVES: To quantify the relationship between SERT occupancy and response, and whether

  19. Bag-like contaminant control work module

    International Nuclear Information System (INIS)

    Buchanan, H.; Jacobson, E.B.

    1982-01-01

    A bag-like contaminant control work module is formed from a flexible impervious membrane which is inflated inside of an enclosed workspace to protect workers in the module from contaminants. The workspace, such as in a nuclear power steam generator, has a portal or manway opening into the workspace into which the module is secured by a module passageway. The module includes one or more glove boxes, in which the workers perform their assigned tasks after passing through the passageway and portal. The module includes one or more absolute filters allowing passage of air flow through the module passageway and into the workspace only through the filters. The module may include an auxiliary passageway secured to the outside of the module passageway and also secured in the portal opening and through which items can be passed back and forth to the worker in the glove box from outside the portal. The module is invertible so that it can be pulled out of the workspace trapping all the contaminants therein and disposed of without handling the contaminants

  20. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Science.gov (United States)

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.

  1. Serotonin Toxicity Caused by Moclobemide Too Soon After Paroxetine-Selegiline

    Directory of Open Access Journals (Sweden)

    Ming-Ling Wu

    2009-08-01

    Full Text Available Serotonin toxicity is an iatrogenic complication of serotonergic drug therapy. It is due to an overstimulation of central and peripheral serotonin receptors that lead to neuromuscular, mental and autonomic changes. Moclobemide is a reversible inhibitor of monoamine oxidase (MAO-A, selegiline is an irreversible selective inhibitor of MAO-B, and paroxetine is a selective serotonin reuptake inhibitor. Combined use of these agents is known to cause serotonin toxicity. A 53-year-old woman had been treated with paroxetine and selegiline. After moclobemide was prescribed in place of paroxetine without a washout period, she quickly developed confusion, agitation, ataxia, diaphoresis, tremor, mydriasis, ocular clonus, hyper-reflexia, tachycardia, moderately elevated blood pressure and high fever, symptoms that were consistent with serotonin toxicity. Discontinuation of the drugs, hydration and supportive care were followed by remarkable improvement of baseline status within 3 days. This case demonstrates that serotonin toxicity may occur even with small doses of paroxetine, selegi-line and moclobemide in combination. Physicians managing patients with depression must be aware of the potential for serotonin toxicity and should be able to recognize and treat or, ideally, anticipate and avoid this pharmacodynamically-mediated interaction that may occur between prescribed drugs.

  2. The serotonin transporter knockout rat : A review

    NARCIS (Netherlands)

    Olivier, Jocelien; Cools, Alexander; Ellenbroek, Bart A.; Cuppen, E.; Homberg, Judith; Kalueff, Allan V.; LaPorte, Justin L.

    2010-01-01

    This chapter dicusses the most recent data on the serotonin transporter knock-out rat, a unique rat model that has been generated by target-selected N-ethyl-N-nitrosourea (ENU) driven mutagenesis. The knock-out rat is the result of a premature stopcodon in the serotonin transporter gene, and the

  3. cGMP-dependent protein kinase Iα associates with the antidepressant-sensitive serotonin transporter and dictates rapid modulation of serotonin uptake

    Directory of Open Access Journals (Sweden)

    Steiner Jennifer A

    2009-08-01

    Full Text Available Abstract Background The Na+/Cl--dependent serotonin (5-hydroxytryptamine, 5-HT transporter (SERT is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling pathways. We have shown that neuronal A3 adenosine receptor activation leads to enhanced presynaptic 5-HT transport in vitro and an increased rate of SERT-mediated 5-HT clearance in vivo. SERT stimulation by A3 adenosine receptors derives from an elevation of cGMP and subsequent activation of both cGMP-dependent protein kinase (PKG and p38 mitogen-activated protein kinase. PKG activators such as 8-Br-cGMP are known to lead to transporter phosphorylation, though how this modification supports SERT regulation is unclear. Results In this report, we explore the kinase isoform specificity underlying the rapid stimulation of SERT activity by PKG activators. Using immortalized, rat serotonergic raphe neurons (RN46A previously shown to support 8-Br-cGMP stimulation of SERT surface trafficking, we document expression of PKGI, and to a lower extent, PKGII. Quantitative analysis of staining profiles using permeabilized or nonpermeabilized conditions reveals that SERT colocalizes with PKGI in both intracellular and cell surface domains of RN46A cell bodies, and exhibits a more restricted, intracellular pattern of colocalization in neuritic processes. In the same cells, SERT demonstrates a lack of colocalization with PKGII in either intracellular or surface membranes. In keeping with the ability of the membrane permeant kinase inhibitor DT-2 to block 8-Br-cGMP stimulation of SERT, we found that DT-2 treatment eliminated cGMP-dependent kinase activity in PKGI-immunoreactive extracts resolved by liquid chromatography. Similarly, treatment of SERT-transfected HeLa cells with small interfering RNAs targeting

  4. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish.

    Science.gov (United States)

    McDonald, M Danielle

    2017-07-01

    Pharmaceuticals and personal care products (PPCPs) are found in measureable quantities within the aquatic environment. Selective serotonin reuptake inhibitor (SSRI) antidepressants are one class of pharmaceutical compound that has received a lot of attention. Consistent with most PPCPs, the pharmacokinetics and physiological impacts of SSRI treatment have been well-studied in small mammals and humans and this, combined with the evolutionary conservation of the serotonergic system across vertebrates, allows for the read-across of known SSRI effects in mammals to potential SSRI impacts on aquatic organisms. Using an Adverse Outcome Pathway (AOP) framework, this review examines the similarities and differences between the mammalian and teleost fish SSRI target, the serotonin transporter (SERT; SLC6A4), and the downstream impacts of elevated extracellular serotonin (5-HT; 5-hydroxytryptamine), the consequence of SERT inhibition, on organ systems and physiological processes within teleost fish. This review also intends to reveal potentially understudied endpoints for SSRI toxicity based on what is known to be controlled by 5-HT in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    Science.gov (United States)

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  6. Serotonin: Is it a marker for the diagnosis of hepatocellular ...

    African Journals Online (AJOL)

    Impaired metabolic function in liver cirrhosis and slow uptake and storage of serotonin by the platelets is a sequelae of kinetic change of serotonin transport mechanisms or abnormal serotonin release from dense granules of activated platelets is a condition defined as ''platelet exhaustion'', contributes to elevated plasma ...

  7. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    International Nuclear Information System (INIS)

    Drevets, Wayne C.; Thase, Michael E.; Moses-Kolko, Eydie L.; Price, Julie; Frank, Ellen; Kupfer, David J.; Mathis, Chester

    2007-01-01

    Introduction: Serotonin-1A receptor (5-HT 1A R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT 1A R agonists in vivo and to 5-HT 1A R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT 1A R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl- 11 C]WAY-100635, and we have demonstrated reduced 5-HT 1A R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl- 11 C]WAY-100635, 5-HT 1A R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT 1A R BP was reduced by 26% in the MTC (P 1A R binding were similar to those found postmortem in 5-HT 1A R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT 1A R-binding capacity in the raphe in depressed suicide victims [Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, Chen JJ, Mann JJ. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 2001;25(6):892-903]. There

  8. Dextromethorphan, chlorphenamine and serotonin toxicity: case report and systematic literature review

    Science.gov (United States)

    Monte, Andrew A; Chuang, Ryan; Bodmer, Michael

    2010-01-01

    The aim of this review was to describe a patient with serotonin toxicity after an overdose of dextromethorphan and chlorphenamine and to perform a systematic literature review exploring whether dextromethorphan and chlorphenamine may be equally contributory in the development of serotonin toxicity in overdose. A Medline literature review was undertaken to identify cases of serotonin toxicity due to dextromethorphan and/or chlorphenamine. Case reports were included if they included information on the ingested dose or plasma concentrations of dextromethorphan and/or chlorphenamine, information about co-ingestions and detailed clinical information to evaluate for serotonin toxicity. Cases were reviewed by two toxicologists and serotonin toxicity, defined by the Hunter criteria, was diagnosed when appropriate. The literature was then reviewed to evaluate whether chlorphenamine may be a serotonergic agent. One hundred and fifty-five articles of dextromethorphan or chlorphenamine poisoning were identified. There were 23 case reports of dextromethorphan, of which 18 were excluded for lack of serotonin toxicity. No cases were identified in which serotonin toxicity could be solely attributed to chlorphenamine. This left six cases of dextrometorphane and/or chlorphenamine overdose, including our own, in which serotonin toxicity could be diagnosed based on the presented clinical information. In three of the six eligible cases dextromethorphan and chlorphenamine were the only overdosed drugs. There is substantial evidence from the literature that chlorphenamine is a similarly potent serotonin re-uptake inhibitor when compared with dextrometorphan. Chlorphenamine is a serotonergic medication and combinations of chlorphenamine and dextromethorphan may be dangerous in overdose due to an increased risk of serotonin toxicity. PMID:21175434

  9. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    Science.gov (United States)

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases.

  10. The serotonin system in autism spectrum disorder: from biomarker to animal models

    Science.gov (United States)

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932

  11. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    DEFF Research Database (Denmark)

    Klysner, René; Bjerg Bendsen, Birgitte; Hansen, Maja Soon

    2014-01-01

    The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.......The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine....

  12. Understanding the role of serotonin in psychiatric diseases [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Donatella Marazziti

    2017-02-01

    Full Text Available Serotonin (5-HT continues to attract researchers’ interest after almost a century. However, despite these efforts, its role has not yet been fully elucidated. It is now evident that 5-HT does not modulate single functions but rather a multiplicity of activities and behaviors present in both normal and several pathological conditions in a less deterministic way than previously assumed. This article aims to briefly review some of the latest advancements in the general role of 5-HT in psychiatry, particularly in depression, and offer the author’s personal reflections.

  13. Decoupling Control Design for the Module Suspension Control System in Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available An engineering oriented decoupling control method for the module suspension system is proposed to solve the coupling issues of the two levitation units of the module in magnetic levitation (maglev train. According to the format of the system transfer matrix, a modified adjoint transfer matrix based decoupler is designed. Then, a compensated controller is obtained in the light of a desired close loop system performance. Optimization between the performance index and robustness index is also carried out to determine the controller parameters. However, due to the high orders and complexity of the obtained resultant controller, model reduction method is adopted to get a simplified controller with PID structure. Considering the modeling errors of the module suspension system as the uncertainties, experiments have been performed to obtain the weighting function of the system uncertainties. By using this, the robust stability of the decoupled module suspension control system is checked. Finally, the effectiveness of the proposed decoupling design method is validated by simulations and physical experiments. The results illustrate that the presented decoupling design can result in a satisfactory decoupling and better dynamic performance, especially promoting the reliability of the suspension control system in practical engineering application.

  14. Development of control system for the electron gun modulator

    International Nuclear Information System (INIS)

    Hasegawa, T.; Nagasawa, S.; Kobayashi, T.; Hanaki, H.

    2004-01-01

    We have been developing a compact and inexpensive electron gun modulator for the SPring-8 Linac. The modulator was redesigned and manufactured to achieve good maintainability and high controllability. A control system of the modulator and a high voltage station is composed mainly of PLCs as a controller and touch panels for human interface. This simplified construction will result in enhancement of its reliability. The rich graphical user interface on the touch panels greatly extends the function of the control system. (author)

  15. Expression changes of serotonin receptor gene subtype 5HT3a in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and Olanzapin.

    Science.gov (United States)

    Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza

    2009-09-01

    Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  16. Serotonin transporter binding with [123I]β-CIT SPECT in major depressive disorder versus controls: effect of season and gender

    International Nuclear Information System (INIS)

    Ruhe, Henricus G.; Booij, Jan; Reitsma, Johannes B.; Schene, Aart H.

    2009-01-01

    The serotonin system is undoubtedly involved in the pathogenesis of major depressive disorder (MDD). More specifically the serotonin transporter (SERT) serves as a major target for antidepressant drugs. There are conflicting results about SERT availability in depressed patients versus healthy controls. We aimed to measure SERT availability and study the effects of age, gender and season of scanning in MDD patients in comparison to healthy controls. We included 49 depressed outpatients (mean±SD 42.3 ± 8.3 years) with a Hamilton depression rating scale score above 18, who were drug-naive or drug-free for ≥4 weeks, and 49 healthy controls matched for age (±2 years) and sex. Subjects were scanned with single photon emission computed tomography (SPECT) using [ 123 I]β-CIT. SERT availability was expressed as specific to nonspecific binding ratios (BP ND ) in the midbrain and diencephalon with cerebellar binding as a reference. In crude comparisons between patients and controls, we found no significant differences in midbrain or diencephalon SERT availability. In subgroup analyses, depressed males had numerically lower midbrain SERT availability than controls, whereas among women SERT availability was not different (significant diagnosis x gender interaction; p = 0.048). In the diencephalon we found a comparable diagnosis x gender interaction (p = 0.002) and an additional smoking x gender (p = 0.036) interaction. In the midbrain the season of scanning showed a significant main effect (p = 0.018) with higher SERT availability in winter. Differences in SERT availability in the midbrain and diencephalon in MDD patients compared with healthy subjects are affected by gender. The season of scanning is a covariate in the midbrain. The diagnosis x gender and gender x smoking interactions in SERT availability should be considered in future studies of the pathogenesis of MDD. (orig.)

  17. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  18. Lung damage and pulmonary uptake of serotonin in intact dogs

    International Nuclear Information System (INIS)

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-01-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of [ 3 H]serotonin and the extravascular volume accessible to [ 14 C]antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage

  19. Serotonin synthesis rate and the tryptophan hydroxylase-2

    DEFF Research Database (Denmark)

    Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas

    2016-01-01

    It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohor...

  20. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    Science.gov (United States)

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect.

  1. The importance of serotonin in the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Jarosław Koza

    2017-12-01

    Description of the current knowledge and conclusions. Serotonin is responsible for some symptoms of carcinoid syndrome. It is the result of higher 5-hydroxytryptamine content in the body. Moreover disrupted serotonin system is found in different gastrointestinal disorders e.g. in gastroesophageal reflux disease, functional heartburn, hypersensitive esophagus, functional dyspepsia, irritable bowel syndrome (both diarrhoea predominant and constipation predominant as well as in inflammatory bowel diseases. Knowledge of changed mechanisms in particular diseases facilitates the optimal choice of treatment. Drugs affecting the serotonin system in gastroenterological clinical practice are useful especially in the case of abnormalities in the brain - gut axis.

  2. Trainer module for security control center operations

    International Nuclear Information System (INIS)

    Bernard, E.A.

    1982-01-01

    An operator trainer module has been developed to be used with the security control center equipment to be installed as part of a safeguards physical protection system. The module is designed to provide improved training and testing capabilities for control center operators through the use of simulations for perimeter equipment operations. Operators, through the trainer module, can be challenged with a variety of realistic situations which require responsive action identical to that needed in an actual system. This permits a consistent evaluation and confirmation of operator capabilities prior to assignment as an operator and allows for periodic retesting to verify that adequate performance levels are maintained

  3. Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males.

    Science.gov (United States)

    Liao, Ding-Lieh; Hong, Chen-Jee; Shih, Hao-Ling; Tsai, Shih-Jen

    2004-01-01

    The neurotransmitter, serotonin, has been implicated in aggressive behavior. The serotonin transporter (5-HTT), which reuptakes serotonin into the nerve terminal, plays a critical role in the regulation of serotonergic function. Previous western reports have demonstrated that the low-activity short (S) allele of the 5-HTT gene-linked polymorphic-region (5-HTTLPR) polymorphism is associated with aggressive behavior and associated personality traits. In the present study, we investigated this 5-HTTLPR genetic polymorphism in a group of Chinese males who had been convicted for extremely violent crime (n = 135) and a normal control group (n = 111). The proportion of S-allele carriers was significantly higher in the criminal group than in the controls (p = 0.006). A significant association was not demonstrated for the relationship between the 5-HTTLPR polymorphism and antisocial personality disorder, substance abuse or alcohol abuse in the criminal group. Our findings demonstrate that carriage of the low-activity S allele is associated with extremely violent criminal behavior in Chinese males, and suggests that the 5-HTT may be implicated in the mechanisms underlying violent behaviors.

  4. Plasma levels of beta-endorphin and serotonin in response to specific spinal based exercises

    Directory of Open Access Journals (Sweden)

    O. Sokunbi

    2008-01-01

    Full Text Available Exercises as the primary mode of treatment for low back disorders aim to achieve pain reduction, improvement in functional abilityand quality of life of for low back disorder sufferers. However the bio-chemical events associated with the use of these exercises in terms of theireffects on pain relieving neuropeptides have not been well established. Thisstudy was carried out to investigate the effects of spinal stabilisation, backextension and treadmill walking exercises on plasma levels of serotonin andbeta-endorphin.Twenty volunteers (10 males and 10 females without low back pain participated in the study. They were randomly allocated either to one of theexercise groups, where participants carried out one of the spinal stabilisation, back extension and treadmill walkingexercises or the control (no exercise group. The main outcome measures used in this study were plasma levels of serotonin and beta-endorphin measured with Enzyme linked immuno absorbent assay (ELISA technique.The results of this study showed that spinal stabilisation and treadmill walking exercises produced significantincrease in plasma serotonin levels (P 0.05.It could be that biochemical effects associated with stabilisation and treadmill walking exercises therefore mayinvolve production of serotonin and its release into the plasma.

  5. Programming Programmable Logic Controller. High-Technology Training Module.

    Science.gov (United States)

    Lipsky, Kevin

    This training module on programming programmable logic controllers (PLC) is part of the memory structure and programming unit used in a packaging systems equipment control course. In the course, students assemble, install, maintain, and repair industrial machinery used in industry. The module contains description, objectives, content outline,…

  6. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

    Science.gov (United States)

    Honnell, M. A.

    1975-01-01

    An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

  7. The serotonin transporter polymorphism (5-HTTLPR) and cortisol stress responsiveness: preliminary evidence for a modulating role for sleep quality.

    Science.gov (United States)

    van Dalfsen, Jens H; Markus, C Rob

    2018-05-23

    The short (S) allele of a functional polymorphism (5-HTTLPR) within the promoter region of the serotonin transporter gene (SLC6A4) is found to predispose the risk for stress-related affective disorders relative to the long (L) allele. Evidence suggests that elevated stress reactivity of the hypothalamic-pituitary-adrenal (HPA) axis might underlie this association although there is little understanding about the origin of inconsistent findings. Since inadequate sleep is commonly known to promote HPA stress reactivity, it might well play an important modulating role. The present study tested this hypothesis by investigating whether sleep quality moderates the relationship between 5-HTTLPR and cortisol stress responsiveness. From a large 5-HTTLPR database (n = 771), a sample of healthy male and female participants homozygous for either the 5-HTTLPR S-allele (n = 25) or L-allele (n = 25) were assessed for sleep quality and salivary cortisol secretion during acute laboratory stress. Diminished sleep quality was found to exclusively potentiate cortisol stress reactivity in the homozygous L-allele genotype. Accounting for this 5-HTTLPR-dependent influence enhanced the predictive value of 5-HTTLPR on cortisol stress responsiveness, revealing greater HPA reactivity in S-allele relative to L-allele carriers. Current findings suggest that variations in sleep quality may serve as a confounding factor in the search for genetic differences in stress sensitivity and related affective disorders.

  8. The activity of dehydrogenases in the uterus of C57B mice after X-irradiation and serotonin treatment

    International Nuclear Information System (INIS)

    Mazur, L.

    1978-01-01

    In C57B female mice, irradiated with 500 R and/or treated with serotonin (5-hydroxytryptamine), the activity of dehydrogenases in the uterus was studied on the fourth day of pregnancy. The reduction of 2,3,5-triphenyltetrazolium chloride to formazane by the uterine tissue was taken as the measure of such activity. The activity of dehydrogenases in the uterus of irradiated mice was distinctly lower than in non-irradiated controls. This activity was also depressed after serotonin treatment, the level of enzyme activity being dose-dependent. In females injected with serotonin and then irradiated, the activity of dehydrogenases was higher than in those irradiated only. The radioprotective effect was more pronounced in mice injected with serotonin alone on the third day of pregnancy i.e. shortly before irradiation, than in those injected on the second and the third day. (author)

  9. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  10. Characterization and regulation of [3H]-serotonin uptake and release in rodent spinal

    International Nuclear Information System (INIS)

    Stauderman, K.A.

    1986-01-01

    The uptake and release of [ 3 H]-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent [ 3 H]-serotonin accumulation processes were found. Sodium-dependent [ 3 H]-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC 50 75 nM), followed by desipramine (IC 50 430 nM) and nomifensine (IC 50 950 nM). The sodium-independent [ 3 H]-serotonin accumulation process was insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent [ 3 H]-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K + -induced release of previously accumulated [ 3 H]-serotonin was Ca 2+ -dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited [ 3 H]-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca 2+ -sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord

  11. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    Science.gov (United States)

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.

  12. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Drevets, Wayne C. [Mood and Anxiety Disorders Program, MINH Molecular Imaging Branch, Bethesda, MD 20892 (United States); Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)], E-mail: drevetsw@mail.nih.gov; Thase, Michael E. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Psychiatry, University of Pennsylvania, School of Medicine and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104 (United States); Moses-Kolko, Eydie L. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Price, Julie [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Frank, Ellen; Kupfer, David J. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Mathis, Chester [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)

    2007-10-15

    Introduction: Serotonin-1A receptor (5-HT{sub 1A}R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT{sub 1A}R agonists in vivo and to 5-HT{sub 1A}R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT{sub 1A}R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl-{sup 11}C]WAY-100635, and we have demonstrated reduced 5-HT{sub 1A}R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl-{sup 11}C]WAY-100635, 5-HT{sub 1A}R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT{sub 1A}R BP was reduced by 26% in the MTC (P < .005) and by 43% in the raphe (P < .001) in depressives versus controls. Conclusions: These data replicate our original findings, which showed that BP was reduced by 27% in the MTC (P < .025) and by 42% in the raphe (P < .02) in depression. The magnitudes of these reductions in 5-HT{sub 1A}R binding were similar to those found postmortem in 5-HT{sub 1A}R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT{sub 1A

  13. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    International Nuclear Information System (INIS)

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F.

    1991-01-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, 11 C-serotonin as the substrate, and 11 CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker 11 CO-erythrocytes and 10 min later 11 C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of 11 C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of 11 C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium

  14. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    International Nuclear Information System (INIS)

    Makhaeva, G.F.; Suvorov, N.N.; Ginodman, L.N.; Antonov, V.K.; AN SSSR, Moscow. Inst. Bioorganicheskoj Khimii)

    1977-01-01

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  15. Serum and ascitic fluid serotonin levels and 5-hydroxyindoleacetic acid urine excretion in the liver of cirrhotic patients with encephalopathy.

    Science.gov (United States)

    Chojnacki, C; Walecka-Kapica, E; Stepien, A; Pawlowicz, M; Wachowska-Kelly, P; Chojnacki, J

    2013-01-01

    The excess and deficit of serotonin can be the cause of somatic and mental disorders. The aim of this study was to evaluate serotonin levels in blood and ascitic fluid as well as excretion of 5-hydroxyindoleacetic acid (5-HIAA) in urine in patients with hepatic encephalopathy (HE). The study included 75 alcoholic cirrhotic patients divided into 3 groups (HE1, HE2, HE3), 25 patients each, with grade 1, 2 and 3 of hepatic encephalopathy according to West-Haven classification. The control group (C) included 25 clinically healthy volunteers. Venous blood and ascitic fluid were collected in fasting. On the same day a 24-hour urine collection was performed. Immunoenzymatic method was used to determine the serotonin level in serum and ascitic fluid, and 5-HIAA in urine (IBL-RE-59121, RE-59131). In the control group, mean serum serotonin level (ng/ml) was 155.5 ± 38.1 and in the 3 study groups: HE1 - 175.2 ± 32.4 (NS), HE2 - 137.2 ± 28.6 (NS), HE3 - 108.3 ± 46.3 (pencephalopathy. In patients with severe hepatic encephalopathy serotonin concentration in blood is decreased which can affect some clinical manifestation of this disease.

  16. Serotonin shapes risky decision making in monkeys

    OpenAIRE

    Long, Arwen B.; Kuhn, Cynthia M.; Platt, Michael L.

    2009-01-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in ...

  17. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    Science.gov (United States)

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.

  18. Comparison of the neurobiological effects of attribution retraining group therapy with those of selective serotonin reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    C. Wang

    2013-03-01

    Full Text Available The aim of this study was to compare the effectiveness of attribution retraining group therapy (ARGT with selective serotonin reuptake inhibitors (SSRIs in the treatment of major depressive disorder (MDD, generalized anxiety disorder (GAD, and obsessive-compulsive disorder (OCD. Subjects were sequentially recruited and randomized into two groups, one receiving ARGT (n = 63 and the other SSRIs (n = 66 for 8 weeks. Fifty-four ARGT outpatients with MDD (n = 19, GAD (n = 19, and OCD (n = 16 and 55 SSRI outpatients with MDD (n = 19, GAD (n = 19, and OCD (n = 17 completed the study. All subjects were assessed using the Hamilton Depression Scale and Hamilton Anxiety Scale before and after treatment. The 10-item Yale-Brown Obsessive Compulsive Scale was employed only for OCD subjects. Plasma levels of serotonin, norepinephrine, cortisol, and adrenocorticotropic hormone were also measured at baseline and 8 weeks after completion of treatment. Symptom scores were significantly reduced (P < 0.001 in both the ARGT and SSRI groups at the end of treatment. However, MDD, GAD and OCD patients in the ARGT group had significantly lower plasma cortisol concentrations compared to baseline (P < 0.05, whereas MDD and OCD patients receiving SSRIs showed significantly increased plasma levels of serotonin (P < 0.05. These findings suggest that ARGT may modulate plasma cortisol levels and affect the hypothalamus-pituitary-adrenal axis as opposed to SSRIs, which may up-regulate plasma serotonin levels via a different pathway to produce an overall improvement in the clinical condition of the patients.

  19. Comparison of the neurobiological effects of attribution retraining group therapy with those of selective serotonin reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    C. Wang

    Full Text Available The aim of this study was to compare the effectiveness of attribution retraining group therapy (ARGT with selective serotonin reuptake inhibitors (SSRIs in the treatment of major depressive disorder (MDD, generalized anxiety disorder (GAD, and obsessive-compulsive disorder (OCD. Subjects were sequentially recruited and randomized into two groups, one receiving ARGT (n = 63 and the other SSRIs (n = 66 for 8 weeks. Fifty-four ARGT outpatients with MDD (n = 19, GAD (n = 19, and OCD (n = 16 and 55 SSRI outpatients with MDD (n = 19, GAD (n = 19, and OCD (n = 17 completed the study. All subjects were assessed using the Hamilton Depression Scale and Hamilton Anxiety Scale before and after treatment. The 10-item Yale-Brown Obsessive Compulsive Scale was employed only for OCD subjects. Plasma levels of serotonin, norepinephrine, cortisol, and adrenocorticotropic hormone were also measured at baseline and 8 weeks after completion of treatment. Symptom scores were significantly reduced (P < 0.001 in both the ARGT and SSRI groups at the end of treatment. However, MDD, GAD and OCD patients in the ARGT group had significantly lower plasma cortisol concentrations compared to baseline (P < 0.05, whereas MDD and OCD patients receiving SSRIs showed significantly increased plasma levels of serotonin (P < 0.05. These findings suggest that ARGT may modulate plasma cortisol levels and affect the hypothalamus-pituitary-adrenal axis as opposed to SSRIs, which may up-regulate plasma serotonin levels via a different pathway to produce an overall improvement in the clinical condition of the patients.

  20. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  1. Characterization of prejunctional serotonin receptors modulating [3H]acetylcholine release in the human detrusor.

    Science.gov (United States)

    D'Agostino, Gianluigi; Condino, Anna M; Gallinari, Paola; Franceschetti, Gian P; Tonini, Marcello

    2006-01-01

    Bladder overactivity (OAB) is a chronic and debilitating lower urinary tract (LUT) disorder that affects millions of individuals worldwide. LUT symptoms associated with OAB, such as urgency and urinary incontinence, cause a hygienic and social concern to patients, but their current pharmacological treatment is largely inadequate due to the lack of uroselectivity. Although OAB etiology remains multifactorial and poorly understood, increasing evidence indicates that serotonin [5-hydroxytryptamine (5-HT)] is an endogenous substance involved in the control of micturition at central and peripheral sites. In this study, we demonstrated the presence of three distinct 5-HT receptors localized at parasympathetic nerve terminals of the human bladder by measuring electrically evoked tritiated acetylcholine release in isolated detrusor strips. These prejunctional receptors, involved in both positive and negative feedback mechanisms regulating cholinergic transmission, have been characterized by means of three highly selective 5-HT antagonists for 5-HT(4), 5-HT(7), and 5-HT(1A) receptors, namely GR113808A ([1-[2-[(-methylsulphonyl) amino] ethyl]4-piperinidyl]methyl1-methyl-1H-indole-3-carboxylate succinate), SB269970 [(R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol hydrochloride], and WAY100635 [N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl)-cyclohexane-carboxamide trichloride]. Under these conditions, we confirmed the facilitatory role of 5-HT(4) heteroreceptors on acetylcholine release and revealed for the first time the occurrence of 5-HT(7) and 5-HT(1A) heteroreceptors with a facilitatory and an inhibitory action, respectively. Our findings strengthen the novel concept for the use of recently patented selective 5-HT agonists and antagonists for the control of OAB dysfunctions associated with inflammatory conditions, although their therapeutic efficacy needs to be explored in the clinical setting.

  2. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Palacios, M.

    1985-01-01

    The distribution of serotonin-1 (5-HT 1 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with [ 3 H]serotonin (5-[ 3 H]HT), 8-hydroxy-2-[N-dipropylamino- 3 H]tetralin (8-OH-[ 3 H]DPAT), [ 3 H]LSD and [ 3 H]mesulergine, and the densities quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Competition experiments for 5-[ 3 H]HT binding by several serotonin-1 agonists led to the identification of brain areas enriched in each one of the three subtypes of 5-HT 1 recognition sites already described. The existence of these 'selective' areas allowed a detailed pharmacological characterization of these sites to be made in a more precise manner than has been attained in membrane-binding studies. Very high concentrations of 5-HT 1 receptors were localized in the choroid plexus, lateroseptal nucleus, globus pallidus and ventral pallidum, dentate gyrus, dorsal subiculum, olivary pretectal nucleus, substantia nigra, reticular and external layer of the entorhinal cortex. The distribution of 5-HT 1 receptors reported here is discussed in correlation with the distribution of serotoninergic neurons and fibers, the related anatomical pathways and the effects which appear to be mediated by these sites. (Auth.)

  3. Moderation of antidepressant response by the serotonin transporter gene

    DEFF Research Database (Denmark)

    Huezo-Diaz, Patricia; Uher, Rudolf; Smith, Rebecca

    2009-01-01

    Background: There have been conflicting reports on whether the length polymorphism in the promoter of the serotonin transporter gene (5-HTTLPR) moderates the antidepressant effects of selective serotonin reuptake inhibitors (SSRIs). We hypothesised that the pharmacogenetic effect of 5-HTTLPR...... the serotonin transporter gene were genotyped in 795 adults with moderate-to-severe depression treated with escitalopram or nortriptyline in the Genome Based Therapeutic Drugs for Depression (GENDEP) project. Results: The 5-HTTLPR moderated the response to escitalopram, with long-allele carriers improving more...

  4. Ethanol intake and 3H-serotonin uptake I: A study in Fawn-Hooded rats

    International Nuclear Information System (INIS)

    Daoust, M.; Compagnon, P.; Legrand, E.; Boucly, P.

    1991-01-01

    Ethanol intake and synaptosomal 3 H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased in alcoholized Fawn-Hooded rats. These results indicate that synaptosomal 3 H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces 3 H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system

  5. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  6. Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels.

    Science.gov (United States)

    Robert, Alexandrine; Monsinjon, Tiphaine; Delbecque, Jean-Paul; Olivier, Stéphanie; Poret, Agnès; Foll, Frank Le; Durand, Fabrice; Knigge, Thomas

    2016-06-01

    Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the

  7. Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders

    Science.gov (United States)

    Dayer, Alexandre

    2014-01-01

    Risk for adult psychiatric disorders is partially determined by early-life alterations occurring during neural circuit formation and maturation. In this perspective, recent data show that the serotonin system regulates key cellular processes involved in the construction of cortical circuits. Translational data for rodents indicate that early-life serotonin dysregulation leads to a wide range of behavioral alterations, ranging from stress-related phenotypes to social deficits. Studies in humans have revealed that serotonin-related genetic variants interact with early-life stress to regulate stress-induced cortisol responsiveness and activate the neural circuits involved in mood and anxiety disorders. Emerging data demonstrate that early-life adversity induces epigenetic modifications in serotonin-related genes. Finally, recent findings reveal that selective serotonin reuptake inhibitors can reinstate juvenile-like forms of neural plasticity, thus allowing the erasure of long-lasting fear memories. These approaches are providing new insights on the biological mechanisms and clinical application of antidepressants. PMID:24733969

  8. Serum Metabolomics Reveals Serotonin as a Predictor of Severe Dengue in the Early Phase of Dengue Fever

    Science.gov (United States)

    Thein, Tun Linn; Fang, Jinling; Pang, Junxiong; Ooi, Eng Eong; Leo, Yee Sin; Ong, Choon Nam; Tannenbaum, Steven R.

    2016-01-01

    Effective triage of dengue patients early in the disease course for in- or out-patient management would be useful for optimal healthcare resource utilization while minimizing poor clinical outcome due to delayed intervention. Yet, early prognosis of severe dengue is hampered by the heterogeneity in clinical presentation and routine hematological and biochemical measurements in dengue patients that collectively correlates poorly with eventual clinical outcome. Herein, untargeted liquid-chromatography mass spectrometry metabolomics of serum from patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) in the febrile phase (1.5) in the serum, among which are two products of tryptophan metabolism–serotonin and kynurenine. Serotonin, involved in platelet aggregation and activation decreased significantly, whereas kynurenine, an immunomodulator, increased significantly in patients with DHF, consistent with thrombocytopenia and immunopathology in severe dengue. To sensitively and accurately evaluate serotonin levels as prognostic biomarkers, we implemented stable-isotope dilution mass spectrometry and used convalescence samples as their own controls. DHF serotonin was significantly 1.98 fold lower in febrile compared to convalescence phase, and significantly 1.76 fold lower compared to DF in the febrile phase of illness. Thus, serotonin alone provided good prognostic utility (Area Under Curve, AUC of serotonin = 0.8). Additionally, immune mediators associated with DHF may further increase the predictive ability than just serotonin alone. Nine cytokines, including IFN-γ, IL-1β, IL-4, IL-8, G-CSF, MIP-1β, FGF basic, TNFα and RANTES were significantly different between DF and DHF, among which IFN-γ ranked top by multivariate statistics. Combining serotonin and IFN-γ improved the prognosis performance (AUC = 0.92, sensitivity = 77.8%, specificity = 95.8%), suggesting this duplex panel as accurate metrics for the early prognosis of DHF. PMID:27055163

  9. Effects of delayed laboratory processing on platelet serotonin levels.

    Science.gov (United States)

    Sanner, Jennifer E; Frazier, Lorraine; Udtha, Malini

    2013-01-01

    Despite the availability of established guidelines for measuring platelet serotonin, these guidelines may be difficult to follow in a hospital setting where time to processing may vary from sample to sample. The purpose of this study was to evaluate the effect of the time to processing of human blood samples on the stability of the enzyme-linked immunosorbent assay (ELISA) for the determination of platelet serotonin levels in human plasma. Human blood samples collected from a convenience sample of eight healthy volunteers were analyzed to determine platelet serotonin levels from plasma collected in ethylene diamine tetra acetic acid (EDTA) tubes and stored at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr. Refrigeration storage at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr altered the platelet serotonin measurement when compared to immediate processing. The bias for the samples stored at 4°C for 3 hr was 102.3 (±217.39 ng/10(9) platelets), for 5 hr was 200.1 (±132.76 ng/10(9) platelets), for 8 hr was 146.9 (±221.41 ng/10(9) platelets), and for 12 hr was -67.6 (±349.60 ng/10(9) platelets). Results from this study show that accurate measurement of platelet serotonin levels is dependent on time to processing. Researchers should therefore follow a standardized laboratory guideline for obtaining immediate platelet serotonin levels after blood sample collection.

  10. Serotonin transporter binding with [{sup 123}I]{beta}-CIT SPECT in major depressive disorder versus controls: effect of season and gender

    Energy Technology Data Exchange (ETDEWEB)

    Ruhe, Henricus G. [University of Amsterdam, Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, Amsterdam (Netherlands); Academic Medical Center, Department of Psychiatry, P.O. Box 22660, Amsterdam (Netherlands); Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Reitsma, Johannes B. [University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam (Netherlands); Schene, Aart H. [University of Amsterdam, Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, Amsterdam (Netherlands)

    2009-05-15

    The serotonin system is undoubtedly involved in the pathogenesis of major depressive disorder (MDD). More specifically the serotonin transporter (SERT) serves as a major target for antidepressant drugs. There are conflicting results about SERT availability in depressed patients versus healthy controls. We aimed to measure SERT availability and study the effects of age, gender and season of scanning in MDD patients in comparison to healthy controls. We included 49 depressed outpatients (mean{+-}SD 42.3 {+-} 8.3 years) with a Hamilton depression rating scale score above 18, who were drug-naive or drug-free for {>=}4 weeks, and 49 healthy controls matched for age ({+-}2 years) and sex. Subjects were scanned with single photon emission computed tomography (SPECT) using [{sup 123}I]{beta}-CIT. SERT availability was expressed as specific to nonspecific binding ratios (BP{sub ND}) in the midbrain and diencephalon with cerebellar binding as a reference. In crude comparisons between patients and controls, we found no significant differences in midbrain or diencephalon SERT availability. In subgroup analyses, depressed males had numerically lower midbrain SERT availability than controls, whereas among women SERT availability was not different (significant diagnosis x gender interaction; p = 0.048). In the diencephalon we found a comparable diagnosis x gender interaction (p = 0.002) and an additional smoking x gender (p = 0.036) interaction. In the midbrain the season of scanning showed a significant main effect (p = 0.018) with higher SERT availability in winter. Differences in SERT availability in the midbrain and diencephalon in MDD patients compared with healthy subjects are affected by gender. The season of scanning is a covariate in the midbrain. The diagnosis x gender and gender x smoking interactions in SERT availability should be considered in future studies of the pathogenesis of MDD. (orig.)

  11. Enhanced haemolymph circulation by insect ventral nerve cord: hormonal control by Pseudaletia unipuncta allatotropin and serotonin.

    Science.gov (United States)

    Koladich, P M; Tobe, S S; McNeil, J N

    2002-10-01

    The ventral diaphragm (VD) in many insects is a muscular membrane that essentially partitions a perineural sinus from the rest of the abdomen. In the true armyworm moth Pseudaletia unipuncta (Lepidoptera: Noctuidae) we describe how the VD is characterized by a series of aliform muscles inserted into a tissue matrix that is fused to the dorsal surface of the ventral nerve cord (VNC) itself. Because of this arrangement, the abdominal VNC can attain high rates of lateral oscillation, and is capable of directing haemolymph flow. We have previously demonstrated Manduca sexta allatotropin (Manse-AT)-like immunoreactivity throughout the central nervous system (CNS) in P. unipuncta, and that both Manse-AT and serotonin (5-HT) are dose-dependent stimulators of the dorsal vessel. Here we describe both Manse-AT- and 5-HT-like immunoreactivity associated with the VD. Furthermore, both Manse-AT and 5-HT are dose-dependent stimulators of the rates of VNC oscillation, and together are capable of maintaining highly elevated rates of VNC oscillation for extended periods of time. These data indicate that both the dorsal vessel and the VD/VNC are similarly modulated by both Manse-AT and 5-HT, and that VNC oscillations play a more active role in overall haemolymph circulation than previously recognized.

  12. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    Science.gov (United States)

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  13. Interaction of antidepressants with the serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Sørensen, Lena; Andersen, Jacob; Thomsen, Mette

    2012-01-01

    The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used...

  14. Temperament, character and serotonin activity in the human brain

    DEFF Research Database (Denmark)

    Tuominen, L; Salo, J; Hirvonen, J

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT...

  15. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Wolfgang Blenau

    2017-05-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects and deuterostomes (e.g., mammals. In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo.

  16. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster.

    Science.gov (United States)

    Blenau, Wolfgang; Daniel, Stöppler; Balfanz, Sabine; Thamm, Markus; Baumann, Arnd

    2017-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster , a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT 1A , Dm5-HT 1B , and Dm5-HT 7 couple to cAMP signaling cascades, the Dm5-HT 2A receptor leads to Ca 2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT 2B receptor. Knowledge about this receptor's pharmacological properties is very limited. This is quite surprising because Dm5-HT 2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT 2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT 2B 's pharmacology, we evaluated the receptor's response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT 2B signaling in vitro and in vivo .

  17. Serotonin and calcium homeostasis during the transition period.

    Science.gov (United States)

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  18. Recognition of familiar food activates feeding via an endocrine serotonin signal in Caenorhabditis elegans

    Science.gov (United States)

    Song, Bo-mi; Faumont, Serge; Lockery, Shawn; Avery, Leon

    2013-01-01

    Familiarity discrimination has a significant impact on the pattern of food intake across species. However, the mechanism by which the recognition memory controls feeding is unclear. Here, we show that the nematode Caenorhabditis elegans forms a memory of particular foods after experience and displays behavioral plasticity, increasing the feeding response when they subsequently recognize the familiar food. We found that recognition of familiar food activates the pair of ADF chemosensory neurons, which subsequently increase serotonin release. The released serotonin activates the feeding response mainly by acting humorally and directly activates SER-7, a type 7 serotonin receptor, in MC motor neurons in the feeding organ. Our data suggest that worms sense the taste and/or smell of novel bacteria, which overrides the stimulatory effect of familiar bacteria on feeding by suppressing the activity of ADF or its upstream neurons. Our study provides insight into the mechanism by which familiarity discrimination alters behavior. DOI: http://dx.doi.org/10.7554/eLife.00329.001 PMID:23390589

  19. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter--a review of current understanding of its mechanism of action.

    Science.gov (United States)

    Zhong, Huailing; Haddjeri, Nasser; Sánchez, Connie

    2012-01-01

    Escitalopram is a widely used antidepressant for the treatment of patients with major depression. It is the pure S-enantiomer of racemic citalopram. Several clinical trials and meta-analyses indicate that escitalopram is quantitatively more efficacious than many other antidepressants with a faster onset of action. This paper reviews current knowledge about the mechanism of action of escitalopram. The primary target for escitalopram is the serotonin transporter (SERT), which is responsible for serotonin (or 5-hydroxytryptamine [5-HT]) reuptake at the terminals and cell bodies of serotonergic neurons. Escitalopram and selective serotonin reuptake inhibitors bind with high affinity to the 5-HT binding site (orthosteric site) on the transporter. This leads to antidepressant effects by increasing extracellular 5-HT levels which enhance 5-HT neurotransmission. SERT also has one or more allosteric sites, binding to which modulates activity at the orthosteric binding site but does not directly affect 5-HT reuptake by the transporter. In vitro studies have shown that through allosteric binding, escitalopram decreases its own dissociation rate from the orthosteric site on the SERT. R-citalopram, the nontherapeutic enantiomer in citalopram, is also an allosteric modulator of SERT but can inhibit the actions of escitalopram by interfering negatively with its binding. Both nonclinical studies and some clinical investigations have demonstrated the cellular, neurochemical, neuroadaptive, and neuroplastic changes induced by escitalopram with acute and chronic administration. The findings from binding, neurochemical, and neurophysiological studies may provide a mechanistic rationale for the clinical difference observed with escitalopram compared to other antidepressant therapies.

  20. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    Directory of Open Access Journals (Sweden)

    Moina Hasni Ebou

    Full Text Available Diabetes is a major complication of chronic Glucocorticoids (GCs treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1 and 2 (Tph2, leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  1. The postradiation efficacy of serotonin and its dependence on the stage of embryonal growith of mice

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Podmareva, O.N.; Dontsova, G.V.; Turpaev, T.M.

    1994-01-01

    In earlier experiments, the authors discovered that if serotonin was given to the mouse after its exposure to radiation on the 8th or 9th day of pregnancy, i.e., in the period of intensive neurogenesis, during which this particular biogenic amine was accumulated in the neural tube, the radiation damage was lessened and the growth of the fetus was normalized. These findings suggested involvement of exogenous serotonin in the elimination of radiation damage to the central nervous system of the germ. A question rises: Can serotonin lessen radiation damage to the embryo if it is exposed to ionizing radiation at later periods of gestation, during the period when the bones and the muscles are formed? This is the object of the present study. If mice were irradiated on the 11th day of gestation at a dose of 2.63 Gy, the number of female mice with viable fetuses decreased to 76.9% (compared with 100% of intact controls). The number of fetuses per female decreases to 3.2 (vs. 5.14); all developed fetuses had abnormalities, while there were no malformations in the fetuses of the intact (not irradiated) animals. Comparison results, showing the absence of the therapeutic effect of serotonin at the stage of skeleton formation, with results of previous studies, which demonstrated serotonin efficacy at the stage of formation of the central nervous system, suggests that the therapeutic effect of serotonin depends on the stage of embryo growth during which the mother is exposed to radiation

  2. Combined Metabolomic Analysis of Plasma and Urine Reveals AHBA, Tryptophan and Serotonin Metabolism as Potential Risk Factors in Gestational Diabetes Mellitus (GDM

    Directory of Open Access Journals (Sweden)

    Miriam Leitner

    2017-12-01

    Full Text Available Gestational diabetes mellitus during pregnancy has severe implications for the health of the mother and the fetus. Therefore, early prediction and an understanding of the physiology are an important part of prenatal care. Metabolite profiling is a long established method for the analysis and prediction of metabolic diseases. Here, we applied untargeted and targeted metabolomic protocols to analyze plasma and urine samples of pregnant women with and without GDM. Univariate and multivariate statistical analyses of metabolomic profiles revealed markers such as 2-hydroxybutanoic acid (AHBA, 3-hydroxybutanoic acid (BHBA, amino acids valine and alanine, the glucose-alanine-cycle, but also plant-derived compounds like sitosterin as different between control and GDM patients. PLS-DA and VIP analysis revealed tryptophan as a strong variable separating control and GDM. As tryptophan is biotransformed to serotonin we hypothesized whether serotonin metabolism might also be altered in GDM. To test this hypothesis we applied a method for the analysis of serotonin, metabolic intermediates and dopamine in urine by stable isotope dilution direct infusion electrospray ionization mass spectrometry (SID-MS. Indeed, serotonin and related metabolites differ significantly between control and GDM patients confirming the involvement of serotonin metabolism in GDM. Clustered correlation coefficient visualization of metabolite correlation networks revealed the different metabolic signatures between control and GDM patients. Eventually, the combination of selected blood plasma and urine sample metabolites improved the AUC prediction accuracy to 0.99. The detected GDM candidate biomarkers and the related systemic metabolic signatures are discussed in their pathophysiological context. Further studies with larger cohorts are necessary to underpin these observations.

  3. Serotonin and dopamine play complementary roles in gambling to recover losses

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Cooke, Jennifer; Wakeley, Judi

    2011-01-01

     beta-adrenoceptor activity on the loss-chasing of age and IQ-matched healthy adults randomised to treatment or an appropriate control/placebo. In Experiment 1, participants consumed amino acid drinks that did or did not contain the serotonin precursor, tryptophan. In Experiment 2, participants received a single 176µg dose...

  4. Light therapy modulates serotonin levels and blood flow in women with headache. A preliminary study.

    Science.gov (United States)

    Tomaz de Magalhães, Miriam; Núñez, Silvia Cristina; Kato, Ilka Tiemy; Ribeiro, Martha Simões

    2016-01-01

    In this study, we looked at the possible effects of low-level laser therapy (LLLT) on blood flow velocity, and serotonin (5-HT) and cholinesterase levels in patients with chronic headache associated with temporomandibular disorders (TMD). LLLT has been clinically applied over the past years with positive results in analgesia and without the report of any side effects. The understanding of biological mechanisms of action may improve clinical results and facilitate its indication. Ten patients presenting headache associated with TMD completed the study. An 830-nm infrared diode laser with power of 100 mW, exposure time of 34 s, and energy of 3.4 J was applied on the tender points of masseter and temporal muscle. Blood flow velocity was determined via ultrasound Doppler velocimetry before and after laser irradiation. The whole blood 5-HT and cholinesterase levels were evaluated three days before, immediately, and three days after laser irradiation. Pain score after treatment decreased to a score of 5.8 corresponding to 64% of pain reduction (P  0.05). Our findings indicated that LLLT regulates blood flow in the temporal artery after irradiation and might control 5-HT levels in patients suffering with tension-type headache associated to TMD contributing to pain relief. © 2016 by the Society for Experimental Biology and Medicine.

  5. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    Science.gov (United States)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  6. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun-Young; Lee, Youngshim; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2017-11-01

    Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.

  7. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    Science.gov (United States)

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT 1A , 5-HT 1B , 5-HT 2A , and 5-HT 4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain. We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein

  8. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B

    2004-01-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depressi...

  9. SEP-225289 serotonin and dopamine transporter occupancy: a PET study.

    Science.gov (United States)

    DeLorenzo, Christine; Lichenstein, Sarah; Schaefer, Karen; Dunn, Judith; Marshall, Randall; Organisak, Lisa; Kharidia, Jahnavi; Robertson, Brigitte; Mann, J John; Parsey, Ramin V

    2011-07-01

    SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about

  10. Potential of [11C]DASB for measuring endogenous serotonin with PET: binding studies

    International Nuclear Information System (INIS)

    Lundquist, Pinelopi; Wilking, Helena; Hoeglund, A. Urban; Sandell, Johan; Bergstroem, Mats; Hartvig, Per; Langstroem, Bengt

    2005-01-01

    The serotonin transporter radioligand [ 11 C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile, or [ 11 C]DASB, was examined in order to assess its potential for measuring fluctuations in endogenous serotonin concentrations with positron emission tomography. Binding characteristics of [ 11 C]DASB and the propensity for serotonin to displace the tracer were explored in rat brain homogenates. Experiments showed that serotonin displaced [ 11 C]DASB in vitro. Ex vivo experiments performed after tranylcypromine injection (3 or 15 mg/kg) showed a dose-dependent trend in radioactivity uptake and suggested that serotonin may compete with [ 11 C]DASB for transporter binding

  11. An Open-Label Pilot Study of Combined Augmentation With Creatine Monohydrate and 5-Hydroxytryptophan for Selective Serotonin Reuptake Inhibitor- or Serotonin-Norepinephrine Reuptake Inhibitor-Resistant Depression in Adult Women.

    Science.gov (United States)

    Kious, Brent M; Sabic, Hana; Sung, Young-Hoon; Kondo, Douglas G; Renshaw, Perry

    2017-10-01

    Many women with major depressive disorder (MDD) respond inadequately to standard treatments. Augmentation of conventional antidepressants with creatine monohydrate and 5-hydroxytryptophan (5-HTP) could correct deficits in serotonin production and brain bioenergetics associated with depression in women, yielding synergistic benefit. We describe an open-label study of 5-HTP and creatine augmentation in women with MDD who had failed selective serotonin reuptake inhibitor (SSRI) or serotonin-norepinephrine reuptake inhibitor (SNRI) monotherapy. Fifteen women who were adequately adherent to an SSRI or SNRI and currently experiencing MDD, with a 17-item Hamilton Depression Rating Scale (HAM-D) score of 16 or higher, were treated with 5 g of creatine monohydrate daily and 100 mg of 5-HTP twice daily for 8 weeks, with 4 weeks of posttreatment follow-up. The primary outcome was change in mean HAM-D scores. Mean HAM-D scores declined from 18.9 (SD, 2.5) at pretreatment visits to 7.5 (SD, 4.4) (P creatine and 5-HTP may represent an effective augmentation strategy for women with SSRI- or SNRI-resistant depression. Given the limitations of this small, open-label trial, future study in randomized, placebo-controlled trials is warranted.

  12. Activation of the Serotonin Pathway is Associated with Poor Outcome in COPD Exacerbation: Results of a Long-Term Cohort Study.

    Science.gov (United States)

    Meier, Marc A; Ottiger, Manuel; Vögeli, Alaadin; Steuer, Christian; Bernasconi, Luca; Thomann, Robert; Christ-Crain, Mirjam; Henzen, Christoph; Hoess, Claus; Zimmerli, Werner; Huber, Andreas; Mueller, Beat; Schuetz, Philipp

    2017-06-01

    predictive of 18-month mortality. Whether therapeutic modulation of the serotonin pathway has positive effects on outcome needs further investigation.

  13. Pressure tracking control of vehicle ABS using piezo valve modulator

    Science.gov (United States)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  14. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice

    Science.gov (United States)

    Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph

    2013-01-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  15. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows

    Directory of Open Access Journals (Sweden)

    Quilter Claire R

    2012-04-01

    Full Text Available Abstract Background The serotonin pathways have been implicated in behavioural phenotypes in a number of species, including human, rat, mouse, dog and chicken. Components of the pathways, including the receptors, are major targets for drugs used to treat a variety of physiological and psychiatric conditions in humans. In our previous studies we have identified genetic loci potentially contributing to maternal infanticide in pigs, which includes a locus on the porcine X chromosome long arm. The serotonin receptor HTR2C maps to this region, and is therefore an attractive candidate for further study based on its function and its position in the genome. Results In this paper we describe the structure of the major transcripts produced from the porcine HTR2C locus using cDNA prepared from porcine hypothalamic and pooled total brain samples. We have confirmed conservation of sites altered by RNA editing in other mammalian species, and identified polymorphisms in the gene sequence. Finally, we have analysed expression and editing of HTR2C in hypothalamus samples from infanticidal and control animals. Conclusions The results confirm that although the expression of the long transcriptional variant of HTR2C is raised in infanticidal animals, the overall patterns of editing in the hypothalamus are similar between the two states. Sequences associated with the cDNA and genomic structures of HTR2C reported in this paper are deposited in GenBank under accession numbers FR720593, FR720594 and FR744452.

  16. Serotonergic and dopaminergic modulation of attentional processes.

    Science.gov (United States)

    Boulougouris, Vasileios; Tsaltas, Eleftheria

    2008-01-01

    Disturbances in attentional processes are a common feature of several psychiatric disorders such as schizophrenia, attention deficit/hyperactivity disorder and Huntington's disease. The use of animal models has been useful in defining various candidate neural systems thus enabling us to translate basic laboratory science to the clinic and vice-versa. In this chapter, a comparative and integrated account is provided on the neuroanatomical and neurochemical modulation of basic behavioural operations such as selective attention, vigilance, set-shifting and executive control focusing on the comparative functions of the serotonin and dopamine systems in the cognitive control exerted by the prefrontal cortex. Specifically, we have reviewed evidence emerging from several behavioural paradigms in experimental animals and humans each of which centres on a different aspect of the attentional function. These paradigms offering both human and animal variants include the five-choice serial reaction time task (5CSRTT), attentional set-shifting and stop-signal reaction time task. In each case, the types of operation that are measured by the given paradigm and their neural correlates are defined. Then, the role of the ascending dopaminergic and serotonergic systems in the neurochemical modulation of its behavioural output are examined, and reference is made to clinical implications for neurological and neuropsychiatric disorders which exhibit deficits in these cognitive tests.

  17. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    International Nuclear Information System (INIS)

    Zainal, Nurul Afiqah; Tat, Chan Sooi; Ajisman

    2016-01-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's output is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor. (paper)

  18. Contribution of Impulsivity and Serotonin Receptor Neuroadaptations to the Development of an MDMA ('Ecstasy') Substance Use Disorder.

    Science.gov (United States)

    Schenk, Susan; Aronsen, Dane

    As is the case with other drugs of abuse, a proportion of ecstasy users develop symptoms consistent with a substance use disorder (SUD). In this paper, we propose that the pharmacology of MDMA, the primary psychoactive component of ecstasy tablets, changes markedly with repeated exposure and that neuroadaptations in dopamine and serotonin brain systems underlie the shift from MDMA use to MDMA misuse in susceptible subjects. Data from both the human and laboratory animal literature are synthesized to support the idea that (1) MDMA becomes a less efficacious serotonin releaser and a more efficacious dopamine releaser with the development of behaviour consistent with an SUD and (2) that upregulated serotonin receptor mechanisms contribute to the development of the MDMA SUD via dysregulated inhibitory control associated with the trait of impulsivity.

  19. Auxiliary controller for time-to-digital converter module readout

    International Nuclear Information System (INIS)

    Ermolin, Yu.V.

    1992-01-01

    The KD-225 auxiliary controller for time-to-digital converter module readout in the SUMMA crate is described. After readout and preliminary processing the data are written in the P-140 buffer memory module. The controller is used in the FODS-2 experimental setup data acquisition system. 12 refs.; 1 fig

  20. Development of resistance to serotonin-induced itch in bile duct ligated mice.

    Science.gov (United States)

    Ostadhadi, Sattar; Haddadi, Nazgol-Sadat; Foroutan, Arash; Azimi, Ehsan; Elmariah, Sarina; Dehpour, Ahmad-Reza

    2017-06-01

    Cholestatic itch can be severe and significantly impair the quality of life of patients. The serotonin system is implicated in cholestatic itch; however, the pruritogenic properties of serotonin have not been evaluated in cholestatic mice. Here, we investigated the serotonin-induced itch in cholestatic mice which was induced by bile duct ligation (BDL). Serotonin, sertraline or saline were administered intradermally to the rostral back area in BDL and sham operated (SHAM) mice, and the scratching behaviour was videotaped for 1 hour. Bile duct ligated mice had significantly increased scratching responses to saline injection on the seventh day after surgery. Additionally, serotonin or sertraline significantly induced scratching behaviour in BDL mice compared to saline at day 7 after surgery, while it did not induce itch at day 5. The scratching behaviour induced by serotonin or sertraline was significantly less in BDL mice compared to SHAM mice. Likewise, the locomotor activity of BDL or SHAM mice was not significantly different from unoperated (UNOP) mice on the fifth and seventh day, suggesting that the scratching behaviour was not affected by motor dysfunctions. Our data suggest that despite the potentiation of evoked itch, a resistance to serotonin-induced itch is developed in cholestatic mice. © 2017 John Wiley & Sons Australia, Ltd.

  1. Study on Design of Control Module and Fuzzy Control System

    International Nuclear Information System (INIS)

    Lee, Chang Kyu; Sohn, Chang Ho; Kim, Jung Seon; Kim, Min Kyu

    2005-01-01

    Performance of control unit is improved by introduction of fuzzy control theory and compensation for input of control unit as FLC(Fuzzy Logic Controller). Here, FLC drives thermal control system by linguistic rule-base. Hence, In case of using compensative PID control unit, it doesn't need to revise or compensate for PID control unit. Consequently, this study shows proof that control system which implements H/W module and then uses fuzzy algorism in this system is stable and has reliable performance

  2. Serotonin Syndrome in the Setting of Lamotrigine, Aripiprazole, and Cocaine Use

    Directory of Open Access Journals (Sweden)

    Anupam Kotwal

    2015-01-01

    Full Text Available Serotonin syndrome is a potentially life-threatening condition associated with increased serotonergic activity in the central nervous system. It is classically associated with the simultaneous administration of two serotonergic agents, but it can occur after initiation of a single serotonergic drug or increasing the dose of a serotonergic drug in individuals who are particularly sensitive to serotonin. We describe a case of serotonin syndrome that occurred after ingestion of higher than prescribed doses of lamotrigine and aripiprazole, in addition to cocaine abuse. The diagnosis was established based on Hunter toxicity criteria and severity was classified as mild. The features of this syndrome resolved shortly after discontinuation of the offending agents. Serotonin syndrome is characterized by mental status changes, autonomic hyperactivity, and neuromuscular abnormalities along a spectrum ranging from mild to severe. Serotonin syndrome in our patient was most likely caused by the pharmacokinetic and pharmacodynamic interactions between lamotrigine, aripiprazole, and cocaine leading to increased CNS serotonergic activity.

  3. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R

    2017-07-01

    Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to

  4. Effect of whole body vibration therapy on circulating serotonin levels in an ovariectomized rat model of osteoporosis.

    Science.gov (United States)

    Wei, Qiu-Shi; Huang, Li; Chen, Xian-Hong; Wang, Hai-Bin; Sun, Wei-Shan; Huo, Shao-Chuan; Li, Zi-Qi; Deng, Wei-Min

    2014-01-01

    Studies have reported that whole body vibration (WBV) played a vital role in bone remodeling. Circulating serotonin is also involved in negative regulating bone mass in rodents and humans. However, both WBV and inhibition of serotonin biosynthesis may suppress receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis in vitro. The purpose of the current study was to investigate the effect of WBV therapy on the levels of serum serotonin in ovariectomized rats. Thirty-six-month-old female Sprague Dawley rats weighing 276.15±37.75 g were ovariectomized to induce osteoporosis, and another ten rats underwent sham operation to establish sham control (SHAM) group. After 3 months, ovariectomized rats were divided into three subgroups and then separately treated with WBV, Alendronate (ALN) and normal saline (OVX), SHAM group was given normal saline. After 6 weeks of treatment, rats were sacrificed. Serum serotonin, RANKL, bone turnover markers, and bone mineral density (BMD), bone strength were evaluated. The serum serotonin level was significantly lower in WBV group than OVX and ALN groups (P<0.05 and P<0.001). RANKL levels significantly decreased in WBV and ALN groups compared to OVX group (P<0.001 for both). BMD and biomechanical parameters of femur significantly increased (P<0.05 for both) and bone turnover levels decreased (P<0.001 for both) in WBV group compared to OVX group. These data indicated that WBV enhanced the bone strength and BMD in ovariectomized rats most likely by reducing the levels of circulating serotonin.

  5. Some auxiliary technology equipment for ATLAS hadron calorimeter module and submodule manipulations and the quality control of the assembled module

    International Nuclear Information System (INIS)

    Budagov, Yu.; Lebedev, A.; Lomakin, Yu.; Romanov, V.; Rusakovich, N.; Shchelchkov, A.; Sisakyan, A.; Sorokina, Yu.; Topilin, N.; Kul'chitskij, Yu.

    1997-01-01

    Describing of the auxiliary technology equipment for the submodule and module manipulations is presented. The results of the 0-module beam incoming control are given. The variations of the assembled module control measurements are described. The description of the construction for the 0-module transportation is presented

  6. No link of serotonin 2C receptor editing to serotonin transporter genotype

    NARCIS (Netherlands)

    Lyddon, R.; Cuppen, E.; Haroutunian, V.; Siever, L.J.; Dracheva, S.

    2010-01-01

    RNA editing is a post-transcriptional process, which has the potential to alter the function of encoded proteins. In particular, serotonin 2C receptor (5-HT2cR) mRNA editing can produce 24 protein isoforms of varying functionality. Rodent studies have shown that 5-HT2cR editing is dynamically

  7. Serotonina e controle hipotalâmico da fome: uma revisão Serotonin and hypothalamic control of hunger: a review

    Directory of Open Access Journals (Sweden)

    Fernanda de Matos Feijó

    2011-02-01

    Full Text Available Este trabalho revisa a participação do sistema serotonérgico no controle da ingestão de alimentos e saciedade. É de grande interesse compreender a relevância desse sistema para o controle fisiológico do balanço energético e da obesidade. Mais de 35 anos de pesquisas sugerem que a serotonina (5-HT desempenha um importante papel na saciedade. Assim, o sistema serotonérgico tem sido um alvo viável para o controle de peso. A 5-HT apresenta controle sobre a fome e a saciedade através de diversos receptores, com diferentes funções. O receptor 5-HT2C parece ser o mais importante na relação entre ingestão alimentar e balanço energético. Nesta revisão serão discutidos os mecanismos do sistema serotonérgico envolvidos no controle da ingestão de alimentos e saciedade.This paper reviews involvement of the serotonergic system in the control of food intake and satiety. It is of great interest to understand the relevance of this system for physiological control of energy balance and obesity. Over 35 years of research suggest that serotonin (5-HT plays an important role in satiety. Thus, the serotonergic system has been a viable target for weight control. The 5-HT has control over hunger and satiety through different receptors with distinct functions. The 5-HT2C receptor may be more important in the relationship between food intake and energy balance. This review will discuss the mechanisms of the serotonergic system involved in the control of food intake and satiety.

  8. Evaluation of interleukin-6 and serotonin as biomarkers to predict response to fluoxetine.

    Science.gov (United States)

    Manoharan, Aarthi; Rajkumar, Ravi Philip; Shewade, Deepak Gopal; Sundaram, Rajan; Muthuramalingam, Avin; Paul, Abialbon

    2016-05-01

    Only 30% of major depressive disorder (MDD) patients achieve complete remission with a serotonergic antidepressant (selective serotonin reuptake inhibitor). We investigated the potential of serotonin (5-HT) and interleukin-6 (IL-6) to serve as functional biomarkers of fluoxetine response. Serum IL-6 and 5-HT were measured in 73 MDD patients (39 responders and 34 non-responders) pre- and 6 weeks post-treatment and in 44 normal controls with ELISA. Fluoxetine and norfluoxetine were measured using LC MS/MS. IL-6 levels were significantly higher in MDD patients when compared with controls (p Fluoxetine and norfluoxetine concentrations were not significantly different in responders and non-responders, and there was no correlation between fluoxetine concentrations and percentage reduction in 5-HT from week 0 to 6. 5-HT and IL-6 may not serve as useful markers of response to fluoxetine because of inconsistent results across different studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Serotonergic-postsynaptic receptors modulate gripping-induced immobility episodes in male taiep rats.

    Science.gov (United States)

    Eguibar, José R; Cortés, M C; Ita, M L

    2009-09-01

    The Taiep rat is a myelin mutant with a motor syndrome characterized by tremor, ataxia, immobility, epilepsy, and paralysis. The rat shows a hypomyelination followed by a progressive demyelination. During immobilities taiep rats show a REM-like sleep pattern and a disorganized sleep-wake pattern suggesting taiep rats as a model of narcolepsy-cataplexy. Our study analyzed the role of postsynaptic serotonin receptors in the expression of gripping-induced immobility episodes (IEs) in 8-month-old male taiep rats. The specific postsynaptic serotonin agonist +/-1-(2,5-dimethoxy-4-iodoamphetamine hydrochloride (+/-DOI) decreased the frequency of gripping-induced IEs, but that was not the case with alpha-methyl-serotonin maleate (alpha-methyl-5HT), a nonspecific postsynaptic agonist. Although the serotonin antagonists, ketanserine and metergoline, produced a biphasic effect, first a decrease followed by an increase with higher doses, similar effects were obtained with a mean duration of gripping-induced IEs. These findings correlate with the pharmacological observations in narcoleptic dogs and humans in which serotonin-reuptake inhibitors improve cataplexy, particularly in long-term treatment that could change the serotonin receptor levels. Polysomnographic recordings showed an increase in the awakening time and a decrease in the slow wave and rapid eye movement sleep concomitant with a decrease in immobilities after use of +/-DOI, this being stronger with the highest dose. Taken together, our results show that postsynaptic serotonin receptors are involved in the modulation in gripping-induced IEs caused by the changes in the organization of the sleep-wake cycle in taiep rats. It is possible that specific agonists, without side effects, could be a useful treatment in human narcoleptic patients. 2009 Wiley-Liss, Inc.

  10. Energy spectrum control for modulated proton beams

    International Nuclear Information System (INIS)

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-01-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to ±21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than ±3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  11. Revisiting the tryptophan-serotonin deficiency and the inflammatory hypotheses of major depression in a biopsychosocial approach

    Directory of Open Access Journals (Sweden)

    Andreas Baranyi

    2017-11-01

    Full Text Available Background The aim of this cross-sectional study was to identify important biopsychosocial correlates of major depression. Biological mechanisms, including the inflammatory and the tryptophan-serotonin deficiency hypotheses of major depression, were investigated alongside health-related quality of life, life satisfaction, and social support. Methods The concentrations of plasma tryptophan, plasma kynurenine, plasma kynurenic acid, serum quinolinic acid, and the tryptophan breakdown to kynurenine were determined alongside health-related quality of life (Medical Outcome Study Form, SF-36, life satisfaction (Life Satisfaction Questionnaire, FLZ, and social support (Social Support Survey, SSS in 71 depressive patients at the time of their in-patient admittance and 48 healthy controls. Results Corresponding with the inflammatory hypothesis of major depression, our study results suggest a tryptophan breakdown to kynurenine in patients with major depression, and depressive patients had a lower concentration of neuroprotective kynurenic acid in comparison to the healthy controls (Mann–Whitney-U: 1315.0; p = 0.046. Contradicting the inflammatory theory, the concentrations of kynurenine (t: −0.945; df = 116; p = 0.347 and quinolinic acid (Mann-Whitney-U: 1376.5; p = 0.076 in depressive patients were not significantly different between depressed and healthy controls. Our findings tend to support the tryptophan-serotonin deficiency hypothesis of major depression, as the deficiency of the serotonin precursor tryptophan in depressive patients (t: −3.931; df = 116; p < 0.001 suggests dysfunction of serotonin neurotransmission. A two-step hierarchical linear regression model showed that low tryptophan concentrations, low social support (SSS, occupational requirements (FLZ, personality traits (FLZ, impaired physical role (SF-36, and impaired vitality (SF-36 predict higher Beck Depression Inventory (BDI-II scores. Discussion Our study results

  12. Exercise and sleep in aging: emphasis on serotonin.

    Science.gov (United States)

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Development of Active External Network Topology Module for Floodlight SDN Controller

    Directory of Open Access Journals (Sweden)

    A. A. Noskov

    2015-01-01

    Full Text Available Traditional network architecture is inflexible and complicated. This observation has led to a paradigm shift towards software-defined networking (SDN, where network management level is separated from data forwarding level. This change was made possible by control plane transfer from the switching equipment to software modules that run on a dedicated server, called the controller (or network operating system, or network applications, that work with this controller. Methods of representation, storage and communication interfaces with network topology elements are the most important aspects of network operating systems available to SDN user because performance of some key controller modules is heavily dependent on internal representation of the network topology. Notably, firewall and routing modules are examples of such modules. This article describes the methods used for presentation and storage of network topologies, as well as interface to the corresponding Floodlight modules. An alternative algorithm has been suggested and developed for message exchange conveying network topology alterations between the controller and network applications. Proposed algorithm makes implementation of module alerting based on subscription to the relevant events. API for interaction between controller and network applications has been developed. This algorithm and API formed the base for Topology Tracker module capable to inform network applications about the changes that had occurred in the network topology and also stores compact representation of the network to speed up the interaction process.

  14. 5-Hydroxytryptamine (serotonin 2A receptor gene polymorphism is associated with schizophrenia

    Directory of Open Access Journals (Sweden)

    Subash Padmajeya Sujitha

    2014-01-01

    Full Text Available Background & objectives: Schizophrenia, the debilitating neuropsychiatric disorder, is known to be heritable, involving complex genetic mechanisms. Several chromosomal regions associated with schizophrenia have been identified during the past; putative gene (s in question, to be called the global signature for the pathophysiology of the disease, however, seems to evade us. The results obtained from the several population-wise association-non association studies have been diverse. w0 e therefore, undertook the present study on Tamil speaking population in south India to examine the association between the single nucleotide polymorphisms (SNPs at the serotonin receptor gene (5HT2A and the occurrence of the disease. Methods: Blood samples collected from 266 cases and 272 controls were subjected to genotyping (PCR amplification of candidate SNPs, RFLP and sequencing. The data on the SNPs were subjected to statistical analysis for assessing the gene frequencies in both the cases and the controls. Results: The study revealed significant association between the genotypic frequencies of the serotonin receptor polymorphism and schizophrenia. SNP analysis revealed that the frequencies of GG (30%, rs6311 and CC genotypes (32%, rs6313, were higher in patients (P<0.05 than in controls. The study also showed presence of G and C alleles in patients. s0 ignificant levels of linkage disequilibrium (LD were found to exist between the genotype frequencies of rs6311 and rs6313. Interpretation & conclusions: This study indicated an association between the SNPs (rs6311 and rs6313 of the serotonin receptor 5HT2A and schizophrenia. HapMap analysis revealed that in its genotype distribution, the Tamil speaking population was different from several other populations across the world, signifying the importance of such ethnicity-based studies to improve our understanding of this complex disease.

  15. Effect of hormonal contraceptives on serum serotonin in females of reproductive age group

    International Nuclear Information System (INIS)

    Faryal, U.; Hajra, B.; Saqib, J.; Rashid, S.; Hassan, M.; Ali, M.A.

    2016-01-01

    Background: Many types of hormonal contraceptives are in use nowadays for example oral pills, emergency contraceptive pills, vaginal rings, implantable rods and injectable contraceptives (combined and progestogens only). The purpose of this study was to determine and compare serum serotonin levels in married fertile females of reproductive age group using hormonal contraceptives with non-contraceptive users. Methods: A total of 300 women were selected in the study. This cross sectional study included three groups; Group-1 (control), group-2 (combined oral contraceptive users) and group-3 (injectable contraceptive users). History and examination of subjects were recorded on proforma. Levels of serum serotonin were measured using standard ELISA kits. Results were analysed by one way anova and a p-value 0.05 percentage was taken as significant, using SPSS 16.0. Results: The mean age of the patients in group-1 was 30.4±6.1 years, group-2 was 28.9±4.9 and in group-3 was 2.5±6.8 years. For subjects in group-1, group-2 and group 3 the mean±SD concentration of serum serotonin was 160.68±53.27 ng/dl, 227.3±63.98 ng/dl and 118.19±31.32 ng/dl. A significant (p=0.00) difference was seen among three groups, i.e., group-1, group-2 and group-3. After applying Post HOC Tukey HSD, there was statistically no significant difference between group-1 and group-2 (p=0.956). Difference was seen between group-2 and group-3 (p=0.00), it was also significant between group-3 and group-1 (p=0.00). Conclusion: It was concluded that hormonal contraceptives affect the levels of serum serotonin.Background: Many types of hormonal contraceptives are in use nowadays for example oral pills, emergency contraceptive pills, vaginal rings, implantable rods and injectable contraceptives (combined and progestogens only). The purpose of this study was to determine and compare serum serotonin levels in married fertile females of reproductive age group using hormonal contraceptives with non

  16. How the cerebral serotonin homeostasis predicts environmental changes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Kalbitzer, Urs; Knudsen, Gitte Moos

    2013-01-01

    Molecular imaging studies with positron emission tomography have revealed that the availability of serotonin transporter (5-HTT) in the human brain fluctuates over the course of the year. This effect is most pronounced in carriers of the short allele of the 5-HTT promoter region (5-HTTLPR), which...... has in several previous studies been linked to an increased risk to develop mood disorders. We argue that long-lasting fluctuations in the cerebral serotonin transmission, which is regulated via the 5-HTT, are responsible for mediating responses to environmental changes based on an assessment...... of cerebral serotonin transmission to seasonal and other forms of environmental change imparts greater behavioral flexibility, at the expense of increased vulnerability to stress. This model may explain the somewhat higher prevalence of the s-allele in some human populations dwelling at geographic latitudes...

  17. Therapeutic Application of Diacylglycerol Oil for Obesity: Serotonin Hypothesis

    Directory of Open Access Journals (Sweden)

    Yuji Hirowatari

    2012-01-01

    Full Text Available ABSTRACT: Characteristics for the serum lipid abnormalities in the obesity/metabolic syndrome are elevated fasting, postprandial triglyceride (TG, and decreased high-density lipoprotein-cholesterol (HDL-C. Diacylglycerol (DAG oil ingestion has been reported to ameliorate postprandial hyperlipidemia and prevent obesity by increasing energy expenditure, due to the intestinal physiochemical dynamics that differ from triacylglycerol (TAG. Our study demonstrated that DAG suppresses postprandial increase in TG-rich lipoprotein, very low-density lipoprotein (VLDL, and insulin, as compared with TAG in young, healthy individuals. Interestingly, our study also presented that DAG significantly increases plasma serotonin, which is mostly present in the intestine, and mediates thermogenesis, proposing a possible mechanism for a postprandial increase in energy expenditure by DAG. Our other study demonstrated that DAG suppresses postprandial increase in TG, VLDL-C, and remnant-like particle-cholesterol, in comparison with TAG in an apolipoprotein C-II deficient subject, suggesting that DAG suppresses postprandial TG-rich lipoprotein independently of lipoprotein lipase. Further, to understand the molecular mechanisms for DAG-mediated increase in serotonin and energy expenditure, we studied the effects of 1-monoacylglycerol and 2(1:1-10 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells, the human intestinal cell line. We also studied effects of 1- and 2-monoacylglycerol, and serotonin on the expression of mRNA associated with â-oxidation, fatty acids metabolism, and thermogenesis, in the Caco-2 cells. 1-monoacylglycerol significantly increased serotonin release from the Caco-2 cells, compared with 2-monoacylglycerol by approximately 40%. The expression of mRNA of acyl-CoA oxidase (ACO, fatty acid translocase (FAT, and uncoupling protein-2 (UCP-2, was significantly higher in 1-MOG

  18. Central l-proline attenuates stress-induced dopamine and serotonin metabolism in the chick forebrain.

    Science.gov (United States)

    Hamasu, Kousuke; Shigemi, Kazutaka; Kabuki, Yusuke; Tomonaga, Shozo; Denbow, D Michael; Furuse, Mitsuhiro

    2009-08-21

    Using microdialysis, we investigated the effect of l-proline on monoamine release in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of freely moving and restricted chicks. A 30 min handling-stress resulted in a significant increase in extracellular homovallinic acid (HVA), a dopamine metabolite, and 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, in the MNH. l-Proline, perfused through the microdialysis probe into the MNH during the stressed condition, significantly attenuated the average dialysate concentration of HVA produced by handling-stress. Handling-stress resulted in a significant increase in 5-HIAA levels in the control group, which were attenuated by profusion with l-proline. l-Proline did not significantly modify basal concentrations of HVA or 5-HIAA in the MNH during control conditions. These results show that perfusion of l-proline modified the turnover/metabolism of dopamine and serotonin in the MNH caused by handling-stress.

  19. Looking on the bright side of serotonin transporter gene variation.

    NARCIS (Netherlands)

    Homberg, J.R.; Lesch, K.P.

    2011-01-01

    Converging evidence indicates an association of the short (s), low-expressing variant of the repeat length polymorphism, serotonin transporter-linked polymorphic region (5-HTTLPR), in the human serotonin transporter gene (5-HTT, SERT, SLC6A4) with anxiety-related traits and increased risk for

  20. Low levels of serum serotonin and amino acids identified in migraine patients.

    Science.gov (United States)

    Ren, Caixia; Liu, Jia; Zhou, Juntuo; Liang, Hui; Wang, Yayun; Sun, Yinping; Ma, Bin; Yin, Yuxin

    2018-02-05

    Migraine is a highly disabling primary headache associated with a high socioeconomic burden and a generally high prevalence. The clinical management of migraine remains a challenge. This study was undertaken to identify potential serum biomarkers of migraine. Using Liquid Chromatography coupled to Mass Spectrometry (LC-MS), the metabolomic profile of migraine was compared with healthy individuals. Principal component analysis (PCA) and Orthogonal partial least squares-discriminant analysis (orthoPLS-DA) showed the metabolomic profile of migraine is distinguishable from controls. Volcano plot analysis identified 10 serum metabolites significantly decreased during migraine. One of these was serotonin, and the other 9 were amino acids. Pathway analysis and enrichment analysis showed tryptophan metabolism (serotonin metabolism), arginine and proline metabolism, and aminoacyl-tRNA biosynthesis are the three most prominently altered pathways in migraine. ROC curve analysis indicated Glycyl-l-proline, N-Methyl-dl-Alanine and l-Methionine are potential sensitive and specific biomarkers for migraine. Our results show Glycyl-l-proline, N-Methyl-dl-Alanine and l-Methionine may be as specific or more specific for migraine than serotonin which is the traditional biomarker of migraine. We propose that therapeutic manipulation of these metabolites or metabolic pathways may be helpful in the prevention and treatment of migraine. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder

    DEFF Research Database (Denmark)

    Ahdidan, Jamila; Foldager, Leslie; Rosenberg, Raben

    2013-01-01

    Objective: The main aim of the present study was to replicate a previous finding in major depressive disorder (MDD) of association between reduced hippocampal volume and the long variant of the di- and triallelic serotonin transporter polymorphism in SLC6A4 on chromosome 17q11.2. Secondarily, we...... that we aimed to replicate, and no significant associations with the serotonin transporter polymorphism were found. Conclusions: The present quantitative and morphometric MRI study was not able to replicate the previous finding of association between reduced hippocampal volume in depressed patients...... and the serotonin transporter polymorphism....

  2. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  3. Serotonin dependent masking of hippocampal sharp wave ripples.

    Science.gov (United States)

    ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe

    2016-02-01

    Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of ageing on serotonin transporters in healthy females

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Tammela, L.; Karhunen, L.; Uusitupa, M.; Bergstroem, K.A.; Tiihonen, J.

    2001-01-01

    The effect of ageing on brain serotonin transporters was evaluated in 19 healthy female volunteers (age range 22-74 years) using single-photon emission tomography and [ 123 I] nor-β-CIT. The study subjects were scanned 0.3, 3, 6 and 23 h after injection of 185 MBq of [ 123 I] nor-β-CIT. The ratio of the distribution volume for tracer in the midbrain to that in the cerebellum minus 1 was used as an index for serotonin transporter binding. An age-related decline of 2% per decade (r=-0.47; P 123 I] nor-β-CIT binding in the serotonin transporter-rich area is much less than that in dopamine transporters in the striatum (6% per decade). (orig.)

  5. [The effect of mineral water on serotonin and insulin production (an experimental study)].

    Science.gov (United States)

    Polushina, N D

    1998-01-01

    Radioimmunoassay (DRG kits) and orthotoluidine test were conducted to measure blood serotonin, insulin and glucose in 70 intact Wistar rat males before and after a course of drinking mineral water Essentuki 17 (MW). After the MW drinking course, a single dose of mineral water increases basal levels of serotonin and insulin, sensitivity of endocrine cells to MW. Serotonin and insulin rose maximally on minute 5 after the drink while in contrast to minute 15 and 30 before initiation of the MW drinking course. A direct correlation was found between blood concentrations of serotonin and insulin.

  6. Radioprotection of whole-body gamma irradiation induced alterations in lipid metabolism of liver and plasma by AET (S-2, aminoethyl isothiuronium Br. H. Br.) and serotonin in rats

    International Nuclear Information System (INIS)

    Ramanathan, R.; Misra, U.K.

    1975-01-01

    Radioprotective effect of AET, serotonin and their mixture has been studied on liver and plasma lipid metabolism 24 hrs and 48 hrs after irradiation in fasted male rats. AET and serotonin both gave significant radioprotection to certain liver and plasma lipid components, but the mixture of the two afforded a better protection. The non-radioprotection of plasma NEFA, phospholipids and phosphatidyl choline levels by serotonin observed in irradiated rats was because serotonin itself raised the levels of these lipids in control rats. Serotonin alone or in mixture effectively protected the radiation-induced increased incorporation of NaH 2 32 PO 4 into liver phospholipids. Mixture of AET and serotonin failed to protect the increased incorporation of aceae-1-14-C into liver total fatty acids and cholesterol, but it prevented this increased incorporation into liver triglycerides and phospholipids. (orig.) [de

  7. Demonstration of clomipramine and venlafaxine occupation at serotonin reuptake sites in man in vivo.

    Science.gov (United States)

    Malizia, A L; Melichar, J M; Brown, D J; Gunn, R N; Reynolds, A; Jones, T; Nutt, D J

    1997-01-01

    We describe the use of 11CRTI-55 and the Multiple Objects Coincidences Counter (MOCC) to detect in-vivo binding to peripheral serotonin reuptake sites (left chest comprising platelet and lung serotonin reuptake sites) in man. Displacement and preloading experiments with clomipramine and venlafaxine in two healthy volunteers demonstrated that 11CRTI-55 binding is decreased in a dose-dependent fashion by both these drugs which bind to the serotonin transporter. In addition parallel data from the total head curve (representing 11CRTI-55 binding to central serotonin and dopamine (DA) reuptake sites) suggest that prior blockade of the serotonin transporter may be a useful strategy to maximize radioactive counts in the head when measuring the DA transporter. The MOCC is likely to be useful to determine sequential indices of relative serotonin reuptake blockade in patients on treatment.

  8. Serotonin and decision making processes.

    NARCIS (Netherlands)

    Homberg, J.R.

    2012-01-01

    Serotonin (5-HT) is an important player in decision making. Serotonergic antidepressant, anxiolytic and antipsychotic drugs are extensively used in the treatment of neuropsychiatric disorders characterized by impaired decision making, and exert both beneficial and harmful effects in patients.

  9. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  10. β-cell serotonin production is associated with female sex, old age, and diabetes-free condition.

    Science.gov (United States)

    Kim, Yeong Gi; Moon, Joon Ho; Kim, Kyuho; Kim, Hyeongseok; Kim, Juok; Jeong, Ji-Seon; Lee, Junguee; Kang, Shinae; Park, Joon Seong; Kim, Hail

    2017-11-25

    Serotonin is known to be present in pancreatic β-cells and to play several physiological roles, including insulin secretion, β-cell proliferation, and paracrine inhibition of α-cells. However, the serotonin production of different cell lines and islets has not been compared based on age, sex, and diabetes related conditions. Here, we directly compared the serotonin concentrations in βTC and MIN6 cell lines, as well as in islets from mice using ultra-performance liquid chromatography tandem mass spectrometry. The average serotonin concentration was 5-10 ng/mg protein in the islets of male and non-pregnant female mice. The serotonin level was higher in females than males at 8 weeks, although there was no difference at 1 year. Furthermore, we observed serotonin by immunofluorescence staining in the pancreatic tissues of mice and human. Serotonin was detected by immunofluorescence staining in a portion of β-cells from islets of old female mice, but not of male or young female mice. A similar pattern was observed in human pancreas as well. In humans, serotonin production in β-cells was associated with a diabetes-free condition. Thus, serotonin production in β-cells was associated with old age, female sex, and diabetes-free condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Brain Aromatase Modulates Serotonergic Neuron by Regulating Serotonin Levels in Zebrafish Embryos and Larvae

    Directory of Open Access Journals (Sweden)

    Zulvikar Syambani Ulhaq

    2018-05-01

    Full Text Available Teleost fish are known to express two isoforms of P450 aromatase, a key enzyme for estrogen synthesis. One of the isoforms, brain aromatase (AroB, cyp19a1b, is highly expressed during early development of zebrafish, thereby suggesting its role in brain development. On the other hand, early development of serotonergic neuron, one of the major monoamine neurons, is considered to play an important role in neurogenesis. Therefore, in this study, we investigated the role of AroB in development of serotonergic neuron by testing the effects of (1 estradiol (E2 exposure and (2 morpholino (MO-mediated AroB knockdown. When embryos were exposed to E2, the effects were biphasic. The low dose of E2 (0.005 µM significantly increased serotonin (5-HT positive area at 48 hour post-fertilization (hpf detected by immunohistochemistry and relative mRNA levels of tryptophan hydroxylase isoforms (tph1a, tph1b, and tph2 at 96 hpf measured by semi-quantitative PCR. To test the effects on serotonin transmission, heart rate and thigmotaxis, an indicator of anxiety, were analyzed. The low dose also significantly increased heart rate at 48 hpf and decreased thigmotaxis. The high dose of E2 (1 µM exhibited opposite effects in all parameters. The effects of both low and high doses were reversed by addition of estrogen receptor (ER blocker, ICI 182,780, thereby suggesting that the effects were mediated through ER. When AroB MO was injected to fertilized eggs, 5-HT-positive area was significantly decreased, while the significant decrease in relative tph mRNA levels was found only with tph2 but not with two other isoforms. AroB MO also decreased heart rate and increased thigmotaxis. All the effects were rescued by co-injection with AroB mRNA and by exposure to E2. Taken together, this study demonstrates the role of brain aromatase in development of serotonergic neuron in zebrafish embryos and larvae, implying that brain-formed estrogen is an important factor to

  12. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    Directory of Open Access Journals (Sweden)

    René Klysner

    2014-01-01

    Full Text Available The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.

  13. Effects of Junk Foods on Brain Neurotransmitters (Dopamine and Serotonin) and some Biochemical Parameters in Albino Rats

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.; Ali, E.A.

    2011-01-01

    Nutritional Habits have changed significantly and junk foods have become widely popular, in recent years. The present study aimed to shed the light on the effect of potato chips and / or ketchup consumption on some biochemical parameters. Sixty four male and female albino rats were used in the study. Animals were maintained on 0.25 g potato chips/ rat and / or 0.125 g ketchup / rat, 5 days a week for 4 weeks. Potato chips showed the lowest body wt gain in the male rats after 4 weeks but, ketchup modulated this negative effect of the potato chips in the group of male animals fed on potato chips plus ketchup. Potato chips significantly decreased brain serotonin, liver glutathione (GSH) and catalase (CAT) in both sexes; brain dopamine, serum total proteins, albumin, total globulins, α 2 - and β 1 -globulins in the females and serum thyroxine (T 4 ) in the male rats. Ketchup apparently affected serum T 4 and A / G ratio in both sexes, brain dopamine and liver GSH in the males in addition to brain serotonin, serum total globulins and ?1-globulin in the female rats. Potato chips plus ketchup significantly changed T 4 , dopamine, GSH, CAT, α 1 and α 2 -globulins in both sexes; serotonin and β 1 -globulin in the male rats, total proteins and albumin in the females. It could be concluded that potato chips consumption might induce numerous adverse effects in various body organs

  14. Tributyltin impaired reproductive success in female zebrafish through disrupting oogenesis, reproductive behaviors and serotonin synthesis.

    Science.gov (United States)

    Xiao, Wei-Yang; Li, Ying-Wen; Chen, Qi-Liang; Liu, Zhi-Hao

    2018-07-01

    Tributyltin (TBT), an organotin acting as aromatase (Cyp19a1) inhibitor, has been found to disrupt gametogenesis and reproductive behaviors in several fish species. However, few studies addressing the mechanisms underlying the impaired gametogenesis and reproduction have been reported. In this study, female adults of zebrafish (Danio rerio) were continuously exposed to two nominal concentrations of TBT (100 and 500 ng/L, actual concentrations: 90.8 ± 1.3 ng/L and 470.3 ± 2.7 ng/L, respectively) for 28 days. After exposures, TBT decreased the total egg number, reduced the hatchability and elevated the mortality of the larvae. Decreased gonadosomatic index (GSI) and altered percentages of follicles in different developmental stages (increased early-stage follicles and reduced mid/late-stage follicles) were also observed in the ovary of TBT-treated fish. TBT also lowered the plasma level of 17β-estradiol and suppressed the expressions of cyp19a1a in the ovary. In treated fish, up-regulated expressions of aldhla2, sycp3 and dmc1 were present in the ovary, indicating an enhanced level of meiosis. The mRNA level of vtg1 was dramatically suppressed in the liver of TBT-treated fish, suggesting an insufficient synthesis of Vtg protein, consistent with the decreased percentage of mid/late-stage follicles in the ovaries. Moreover, TBT significantly suppressed the reproductive behaviors of the female fish (duration of both sexes simultaneously in spawning area, the frequency of meeting and the visit in spawning area) and down-regulated the mRNA levels of genes involved in the regulation of reproductive behaviors (cyp19a1b, gnrh-3 and kiss 2) in the brain. In addition, TBT significantly suppressed the expressions of serotonin-related genes, such as tph2 (encoding serotonin synthase), pet1 (marker of serotonin neuron) and kiss 1 (the modulator of serotonin synthesis), suggesting that TBT might disrupt the non-reproductive behaviors of zebrafish. The present

  15. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor

    DEFF Research Database (Denmark)

    Hernandez Castellano, Lorenzo E; Hernandez, Laura L.; Sauerwein, Helga

    2017-01-01

    Serotonin (5-HT) has been shown to be involved in calcium homeostasis, modulating calcium concentration in blood. In addition, 5-HT participates in a variety of metabolic pathways, mainly through the modulation of glucose and lipid metabolism. The hypothesis of the present study...... was that the prepartum administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, would affect endocrine systems related to calcium homeostasis, and interact with other endocrine and metabolic pathways during the transition period. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental...... homeostasis independent of PTH. The lack of treatment effects on IgG and on other hormones and metabolites indicates that 5-HTP did not affect these other metabolic pathways and the IgG concentration during the transition period....

  16. Effect of serotonin on the yield of UV-induced thymine dimers in DNA

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Strakhovskaya, M.G.; Ivanova, Eh.V.

    1985-01-01

    Using fluorescence method serotonin interaction with DNA is studied and bond constant Ksub(c)=4.2x10 4 M -1 is defined. It is shown that bound serotonin reduces yield of UV-induced thymine dimers. Value of efficient distance of protective serotonin effect constituting part of DNA chain of 4 base pairs, is determined

  17. Vascular smooth muscle modulates endothelial control of vasoreactivity via reactive oxygen species production through myoendothelial communications.

    Directory of Open Access Journals (Sweden)

    Marie Billaud

    Full Text Available BACKGROUND: Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC/smooth muscle cells (SMC crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone. METHODOLOGY/PRINCIPAL FINDINGS: In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 ((37,43Gap27 (1 reduced contractile and calcium responses to serotonin (5-HT simultaneously recorded in pulmonary arteries and (2 abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H(2O(2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production.

  18. Allosteric Binding in the Serotonin Transporter - Pharmacology, Structure, Function and Potential Use as a Novel Drug Target

    DEFF Research Database (Denmark)

    Loland, Claus J.; Sanchez, Connie; Plenge, Per

    2017-01-01

    The serotonin transporter (SERT) is an important drug target and the majority of currently used antidepressants are potent inhibitors of SERT, binding primarily to the substrate binding site. However, even though the existence of an allosteric modulator site was realized more than 30 years ago......, the research into this mechanism is still in its early days. The current knowledge about the allosteric site with respect to pharmacology, structure and function, and pharmacological tool compounds, is reviewed and a perspective is given on its potential as a drug target....

  19. Serotonin, calcitonin and calcitonin gene-related peptide in acute pancreatitis

    DEFF Research Database (Denmark)

    Wahlstrøm, Kirsten Lykke; Novovic, Srdan; Ersbøll, Annette Kjær

    2017-01-01

    OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients with alco......OBJECTIVE: The aim of this study was to investigate plasma levels of serotonin, calcitonin and calcitonin gene-related peptide (CGRP) in the course of acute pancreatitis (AP) taking organ failure, etiology and severity into consideration. MATERIAL AND METHODS: Sixty consecutive patients...... dysfunction. We hypothesize that serotonin plays a pathogenic role in the compromised pancreatic microcirculation, and calcitonin a role as a biomarker of severity in AP....

  20. The rat frontal cortex serotonin receptors. Influence of supraletal irradiation

    International Nuclear Information System (INIS)

    Chanez, P.O.; Timmermans, R.; Gerber, G.B.

    1984-01-01

    The density of the frontal cortex serotonin-2 receptors was determined after a supralethal irradiation (20 Gy) in Wistar rat. Using spiperone as ligand, we observed an important decrease in the density of serotonin-2 receptor and an increase in the dissociation constant receptor-ligand, 3 days after exposure [fr

  1. Acute inescapable stress alleviates fear extinction recall deficits caused by serotonin transporter abolishment.

    Science.gov (United States)

    Schipper, Pieter; Henckens, Marloes J A G; Lopresto, Dora; Kozicz, Tamas; Homberg, Judith R

    2018-07-02

    Life stress increases risk for developing post-traumatic stress disorder (PTSD), and more prominently so in short-allele carriers of the serotonin transporter linked polymorphic region (5-HTTLPR). Serotonin transporter knockout (5-HTT -/- ) rats show compromised extinction (recall) of conditioned fear, which might mediate the increased risk for PTSD and reduce the therapeutic efficacy of exposure therapy. Here, we assessed whether acute inescapable stress (IS) differentially affects fear extinction and extinction recall in 5-HTT -/- rats and wildtype controls. Surprisingly, IS experience improved fear extinction recall in 5-HTT -/- rats to the level of wildtype animals, while wildtypes were unaffected by this IS. Thus, whereas 5-HTT -/- rats evidently were more responsive to the stressor, the behavioral consequences presented themselves as adaptive. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Reduction of intraspecific aggression in adult rats by neonatal treatment with a selective serotonin reuptake inhibitor

    Directory of Open Access Journals (Sweden)

    Manhães de Castro R.

    2001-01-01

    Full Text Available Most studies suggest that serotonin exerts an inhibitory control on the aggression process. According to experimental evidence, this amine also influences growth and development of the nervous tissue including serotoninergic neurons. Thus, the possibility exists that increased serotonin availability in young animals facilitates a long-lasting effect on aggressive responses. The present study aimed to investigate the aggressive behavior of adult rats (90-120 days treated from the 1st to the 19th postnatal day with citalopram (CIT, a selective serotonin reuptake inhibitor (20 mg/kg, sc, every 3 days. Aggressive behavior was induced by placing a pair of rats (matched by weight in a box (20 x 20 x 20 cm, and submitting them to a 20-min session of electric footshocks (five 1.6-mA - 2-s current pulses, separated by a 4-min intershock interval. When compared to the control group (rats treated for the same period with equivalent volumes of saline solution, the CIT group presented a 41.4% reduction in the duration of aggressive response. The results indicate that the repeated administration of CIT early in life reduces the aggressive behavior in adulthood and suggest that the increased brain serotoninergic activity could play a role in this effect.

  3. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat

    Directory of Open Access Journals (Sweden)

    Ali Tahir

    2015-01-01

    Full Text Available Patients with diabetes mellitus (DM develop tendencies toward heart disease. Hyperglycemia induces the release of serotonin from enterochromaffin cells (EC. Serotonin was observed to elevate reactive oxygen species (ROS and downregulate antioxidant enzymes. As a result, elevated levels of serotonin could contribute to diabetic complications, including cardiac hypertrophy. In the present study, diabetes mellitus was induced in rats by alloxan administration; this was followed by the administration of serotonin to experimental animals. ROS, catalase (CAT, superoxide dismutase (SOD, B-type natriuretic peptide (BNP expression, and histopathological assessments were performed. Elevated ROS concentrations and decreased antioxidant enzyme activities were detected. Further, we observed an increase in cell surface area and elevated BNP expression which suggests that events associated with cardiac hypertrophy were increased in serotonin-administered diabetic rats. We conclude that serotonin secretion in diabetes could contribute to diabetic complications, including cardiac hypertrophy, through enhanced ROS production.

  4. Transient Serotonin Syndrome by Concurrent Use of Electroconvulsive Therapy and Selective Serotonin Reuptake Inhibitor: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nagahisa Okamoto

    2012-01-01

    Full Text Available The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  5. Transient serotonin syndrome by concurrent use of electroconvulsive therapy and selective serotonin reuptake inhibitor: a case report and review of the literature.

    Science.gov (United States)

    Okamoto, Nagahisa; Sakamoto, Kota; Yamada, Maki

    2012-01-01

    The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT) in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD) who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB) permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  6. Dopamine and serotonin: influences on male sexual behavior.

    Science.gov (United States)

    Hull, Elaine M; Muschamp, John W; Sato, Satoru

    2004-11-15

    Steroid hormones regulate sexual behavior primarily by slow, genomically mediated effects. These effects are realized, in part, by enhancing the processing of relevant sensory stimuli, altering the synthesis, release, and/or receptors for neurotransmitters in integrative areas, and increasing the responsiveness of appropriate motor outputs. Dopamine has facilitative effects on sexual motivation, copulatory proficiency, and genital reflexes. Dopamine in the nigrostriatal tract influences motor activity; in the mesolimbic tract it activates numerous motivated behaviors, including copulation; in the medial preoptic area (MPOA) it controls genital reflexes, copulatory patterns, and specifically sexual motivation. Testosterone increases nitric oxide synthase in the MPOA; nitric oxide increases basal and female-stimulated dopamine release, which in turn facilitates copulation and genital reflexes. Serotonin (5-HT) is primarily inhibitory, although stimulation of 5-HT(2C) receptors increases erections and inhibits ejaculation, whereas stimulation of 5-HT(1A) receptors has the opposite effects: facilitation of ejaculation and, in some circumstances, inhibition of erection. 5-HT is released in the anterior lateral hypothalamus at the time of ejaculation. Microinjections of selective serotonin reuptake inhibitors there delay the onset of copulation and delay ejaculation after copulation begins. One means for this inhibition is a decrease in dopamine release in the mesolimbic tract.

  7. Serotonin transporter gene polymorphism and myocardial infarction: Etude Cas-Témoins de l'Infarctus du Myocarde (ECTIM).

    Science.gov (United States)

    Fumeron, Frédéric; Betoulle, Dina; Nicaud, Viviane; Evans, Alun; Kee, Frank; Ruidavets, Jean-Bernard; Arveiler, Dominique; Luc, Gérald; Cambien, François

    2002-06-25

    Depression is a risk factor for myocardial infarction (MI). Selective serotonin reuptake inhibitors reduce this risk. The site of action is the serotonin transporter (SLC6A4), which is expressed in brain and blood cells. A functional polymorphism in the promoter region of the SLC6A4 gene has been described. This polymorphism may be associated with the risk of MI. The SLC6A4 polymorphism has been investigated by polymerase chain reaction in 671 male patients with MI and in 688 controls from the Etude Cas-Témoins de l'Infarctus du Myocarde (ECTIM) multicentric study. Percentages for LL, LS, and SS genotypes were 35.5%, 45.4%, and 19.1%, respectively, for cases versus 28.1%, 49.1%, and 22.8%, respectively, for controls. S allele frequency was 41.8% and 47.4% for cases and controls, respectively. After adjustment for age and center by using multivariable logistic regression, the odds ratio for MI associated with the LL genotype was 1.40 (95% CI 1.11 to 1.76, P=0.0047). The LL genotype of the SLC6A4 polymorphism is associated with a higher risk of MI. This could be attributable to the effect of the polymorphism on serotonin-mediated platelet activation or smooth muscle cell proliferation or on other risk factors, such as depression or response to stress.

  8. The serotonin system in autism spectrum disorder: from biomarker to animal models

    OpenAIRE

    Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy

    2015-01-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophy...

  9. Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus

    Directory of Open Access Journals (Sweden)

    Misako Okumura

    2017-11-01

    Full Text Available Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.

  10. Brain serotonin and dopamine modulators, perceptual responses and endurance performance during exercise in the heat following creatine supplementation

    Directory of Open Access Journals (Sweden)

    Kilduff Liam P

    2008-09-01

    Full Text Available Abstract Background The present experiment examined the responses of peripheral modulators and indices of brain serotonin (5-HT and dopamine (DA function and their association with perception of effort during prolonged exercise in the heat after creatine (Cr supplementation. Methods Twenty one endurance-trained males performed, in a double-blind fashion, two constant-load exercise tests to exhaustion at 63 ± 5% V˙ MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGafeOvayLbaiaaaaa@2D11@O2 max in the heat (ambient temperature: 30.3 ± 0.5 °C, relative humidity: 70 ± 2% before and after 7 days of Cr (20 g·d-1 Cr + 140 g·d-1 glucose polymer or placebo (Plc (160 g·d-1 glucose polymer supplementation. Results 3-way interaction has shown that Cr supplementation reduced rectal temperature, heart rate, ratings of perceived leg fatigue (P P P P > 0.05; Cr group, n = 11: 47.0 ± 4.7 min vs. 49.7 ± 7.5 min, P > 0.05. However, after dividing the participants into "responders" and "non-responders" to Cr, based on their intramuscular Cr uptake, performance was higher in the "responders" relative to "non-responders" group (51.7 ± 7.4 min vs.47.3 ± 4.9 min, p Conclusion although Cr influenced key modulators of brain 5-HT and DA function and reduced various thermophysiological parameters which all may have contributed to the reduced effort perception during exercise in the heat, performance was improved only in the "responders" to Cr supplementation. The present results may also suggest the demanding of the pre-experimental identification of the participants into "responders" and "non-responders" to Cr supplementation before performing the main experimentation. Otherwise, the possibility of the type II error may be enhanced.

  11. Capture and retention of tritiated serotonin by the chick notochord

    International Nuclear Information System (INIS)

    Gerard, Anne; Gerard, Hubert; Dollander, Alexis

    1978-01-01

    The 3 day old chick notochord capacity to fix tritiated serotonin is maximal in its axis and in cephalic region. Observations permitting to find, the intracellular serotonin binding sites, contribute to an explanation of the capture mechanism and suggest a special direct role of the notochord on the monoaminergic neuron cytodifferentiation [fr

  12. Radioimmunoassays for serotonin and 5-hydroxyindole acetic acid

    International Nuclear Information System (INIS)

    Delaage, M.A.; Puizillout, J.J.

    1981-01-01

    Radioimmunoassays for serotonin and 5-hydroxyindole acetic acid were developed. High titer antibodies, having a well-defined high specificity, have been raised by coupling the side-chain of both molecules to human serum albumin. Serotonin is first converted into N-hemisuccinate, and then treated like 5-HIAA, namely, conjugated with HSA for the immunogen. Synthesis of 125 I iodinated analogues was performed by coupling 5-HIAA or N-succinyl serotonin to glycyltyrosine, without any contact between both molecules and the oxidizing reagents. Chemical conversions of biological samples (by succinylation for 5-HT and amidation for 5-HIAA) were carried out. This critical step makes the antigen molecules resemble the immunogen more closely, thus allowing an appreciable gain in specificity and sensitivity. These assays allow the rapid determination of 5-HT and 5-HIAA in small amounts of tissue, blood, cerebral spinal fluid or perfusate without any purification, with a sensitivity threshold of 50 pg

  13. Genetic contributions of the serotonin transporter to social learning of fear and economic decision making.

    Science.gov (United States)

    Crişan, Liviu G; Pana, Simona; Vulturar, Romana; Heilman, Renata M; Szekely, Raluca; Druğa, Bogdan; Dragoş, Nicolae; Miu, Andrei C

    2009-12-01

    Serotonin (5-HT) modulates emotional and cognitive functions such as fear conditioning (FC) and decision making. This study investigated the effects of a functional polymorphism in the regulatory region (5-HTTLPR) of the human 5-HT transporter (5-HTT) gene on observational FC, risk taking and susceptibility to framing in decision making under uncertainty, as well as multidimensional anxiety and autonomic control of the heart in healthy volunteers. The present results indicate that in comparison to the homozygotes for the long (l) version of 5-HTTLPR, the carriers of the short (s) version display enhanced observational FC, reduced financial risk taking and increased susceptibility to framing in economic decision making. We also found that s-carriers have increased trait anxiety due to threat in social evaluation, and ambiguous threat perception. In addition, s-carriers also show reduced autonomic control over the heart, and a pattern of reduced vagal tone and increased sympathetic activity in comparison to l-homozygotes. This is the first genetic study that identifies the association of a functional polymorphism in a key neurotransmitter-related gene with complex social-emotional and cognitive processes. The present set of results suggests an endophenotype of anxiety disorders, characterized by enhanced social learning of fear, impaired decision making and dysfunctional autonomic activity.

  14. Leptin, adiponectin and serotonin levels in lean and obese dogs.

    Science.gov (United States)

    Park, Hyung-Jin; Lee, Sang-Eun; Oh, Jung-Hyun; Seo, Kyoung-Won; Song, Kun-Ho

    2014-05-13

    Serotonin (5-hydroytryptamine or 5HT) is associated with numerous behavioral and psychological factors and is a biochemical marker of mood. 5HT is involved in the hypothalamic regulation of energy consumption. 5HT controls appetite in the central nerve system (CNS) and stimulates intestinal mobility. There are few studies looking at the role of 5HT and the relationship between peripheral circulating serotonin and obesity. The aim of this study was to find any differences in leptin, adiponectin, and 5HT between lean and obese dogs and to identify correlations among these factors. Leptin, triglyceride (TG) and cholesterol levels were higher in the obese group (all p obese group (p obesity in dogs. To the best of our knowledge, this is the first study to evaluate peripheral 5HT levels in obese dogs. From this research, we can assume that 5HT may be correlated with canine obesity. Further studies will be needed to further elucidate the role of low serum 5HT levels in canine obesity.

  15. [3H]Serotonin release: an improved method to measure mast cell degranulation

    International Nuclear Information System (INIS)

    Mazingue, C.; Dessaint, J.-P.; Capron, A.

    1978-01-01

    A method based on the release of tritium-labelled serotonin by activated mast cells in rodents is described. Mast cells incorporate labelled serotonin selectively and released the label after activation by non-specific stimulators (compound 48/80, polymyxin B sulphate, ATP, bovine chymotrypsin and L-α-lysophosphatidylcholine) or anaphylactic antibody and the corresponding antigen. These two types of activation were investigated in comparison with the toluidine blue microscopic rat mast cell degranulation test, and a methodological study of the release of [ 3 H] serotonin is described. The measurement of labelled serotonin release provides a simple and quick assay of mast cell degranulation compared to the time required for the classical rat mast cell degranulation technique and achieves a greater sensitivity. (Auth.)

  16. Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females

    DEFF Research Database (Denmark)

    Tuominen, Lauri; Miettunen, Jouko; Cannon, Dara M

    2017-01-01

    scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males......). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex....... and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P=.008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P=.014...

  17. Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves.

    Directory of Open Access Journals (Sweden)

    Philip R Buskohl

    Full Text Available Embryonic heart valve primordia (cushions maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ and serotonin (5-HT signaling modulate tissue biomechanics of postnatal valves, but less is known of their role in the biomechanical remodeling of embryonic valves. In this study, we demonstrate that exogenous TGFβ3 increases AV cushion biomechanical stiffness and residual stress, but paradoxically reduces matrix compaction. We then show that TGFβ3 induces contractile gene expression (RhoA, aSMA and extracellular matrix expression (col1α2 in cushion mesenchyme, while simultaneously stimulating a two-fold increase in proliferation. Local compaction increased due to an elevated contractile phenotype, but global compaction appeared reduced due to proliferation and ECM synthesis. Blockade of TGFβ type I receptors via SB431542 inhibited the TGFβ3 effects. We next showed that exogenous 5-HT does not influence cushion stiffness by itself, but synergistically increases cushion stiffness with TGFβ3 co-treatment. 5-HT increased TGFβ3 gene expression and also potentiated TGFβ3 induced gene expression in a dose-dependent manner. Blockade of the 5HT2b receptor, but not 5-HT2a receptor or serotonin transporter (SERT, resulted in complete cessation of TGFβ3 induced mechanical strengthening. Finally, systemic 5-HT administration in ovo induced cushion remodeling related defects, including thinned/atretic AV valves, ventricular septal defects, and outflow rotation defects. Elevated 5-HT in ovo resulted in elevated remodeling gene expression and increased TGFβ signaling activity, supporting our ex-vivo findings. Collectively, these results highlight TGFβ/5-HT signaling as a potent mechanism for control of biomechanical

  18. Myenteric denervation differentially reduces enteroendocrine serotonin cell population in rats during postnatal development.

    Science.gov (United States)

    Hernandes, Luzmarina; Fernandes, Marilda da Cruz; Pereira, Lucieni Cristina Marques da Silva; Freitas, Priscila de; Gama, Patrícia; Alvares, Eliana Parisi

    2006-05-01

    The enteric nervous and enteroendocrine systems regulate different processes in the small intestine. Ablation of myenteric plexus with benzalkonium chloride (BAC) stimulates epithelial cell proliferation, whereas endocrine serotonin cells may inhibit the process. To evaluate the connection between the systems and the influence of myenteric plexus on serotoninergic cells in rats during postnatal development, the ileal plexus was partially removed with BAC. Rats were treated at 13 or 21 days and sacrificed after 15 days. The cell bodies of myenteric neurons were stained by beta NADH-diaphorase to detect the extension of denervation. The number of enteroendocrine cells in the ileum was estimated in crypts and villi in paraffin sections immunostained for serotonin. The number of neurons was reduced by 27.6 and 45% in rats treated on the 13th and 21st days, respectively. We tried to establish a correlation of denervation and the serotonin population according to the age of treatment. We observed a reduction of immunolabelled cells in the crypts of rats treated at 13 days, whereas this effect was seen in the villi of rats denervated at 21 days. These results suggest that the enteric nervous system might control the enteroendocrine cell population and this complex mechanism could be correlated to changes in cell proliferation.

  19. Amplitude modulation control of escape from a potential well

    International Nuclear Information System (INIS)

    Chacón, R.; Martínez García-Hoz, A.; Miralles, J.J.; Martínez, P.J.

    2014-01-01

    We demonstrate the effectiveness of periodic amplitude modulations in controlling (suppressing and enhancing) escape from a potential well through the universal model of a damped Helmholtz oscillator subjected to an external periodic excitation (the escape-inducing excitation) whose amplitude is periodically modulated (the escape-controlling excitation). Analytical and numerical results show that this multiplicative control works reliably for different subharmonic resonances between the two periodic excitations involved, and that its effectiveness is comparable to those of different methods of additive control. Additionally, we demonstrate the robustness of the multiplicative control against the presence of low-intensity Gaussian noise. -- Highlights: •Multiplicative control of escape from a potential well has been demonstrated. •Theoretical predictions are obtained from a Melnikov analysis. •It has been shown the robustness of the multiplicative control against noise.

  20. Helicobacter pylori and risk of upper gastrointestinal bleeding among users of selective serotonin reuptake inhibitors

    DEFF Research Database (Denmark)

    Dall, Michael; Schaffalitzky de Muckadell, Ove B; Møller Hansen, Jane

    2011-01-01

    A number of studies have reported a possible association between use of selective serotonin reuptake inhibitors (SSRIs) and serious upper gastrointestinal bleeding (UGB). We conducted this case-control study to assess if Helicobacter pylori (H. pylori) potentiates the risk of serious UGB in SSRI ...

  1. Melatonin and N-acetyl-serotonin cross the red blood cell membrane and evoke calcium mobilization in malarial parasites

    Directory of Open Access Journals (Sweden)

    Hotta C.T.

    2003-01-01

    Full Text Available The duration of the intraerythrocytic cycle of Plasmodium is a key factor in the pathogenicity of this parasite. The simultaneous attack of the host red blood cells by the parasites depends on the synchronicity of their development. Unraveling the signals at the basis of this synchronicity represents a challenging biological question and may be very important to develop alternative strategies for therapeutic approaches. Recently, we reported that the synchrony of Plasmodium is modulated by melatonin, a host hormone that is synthesized only during the dark phases. Here we report that N-acetyl-serotonin, a melatonin precursor, also releases Ca2+ from isolated P. chabaudi parasites at micro- and nanomolar concentrations and that the release is blocked by 250 mM luzindole, an antagonist of melatonin receptors, and 20 mM U73122, a phospholipase C inhibitor. On the basis of confocal microscopy, we also report the ability of 0.1 µM melatonin and 0.1 µM N-acetyl-serotonin to cross the red blood cell membrane and to mobilize intracellular calcium in parasites previously loaded with the fluorescent calcium indicator Fluo-3 AM. The present data represent a step forward into the understanding of the signal transduction process in the host-parasite relationship by supporting the idea that the host hormone melatonin and N-acetyl-serotonin generate IP3 and therefore mobilize intracellular Ca2+ in Plasmodium inside red blood cells.

  2. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.

    Science.gov (United States)

    Rogers, Robert D

    2011-01-01

    Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive

  3. Interference Control Modulations Over Conscious Perception

    Directory of Open Access Journals (Sweden)

    Itsaso Colás

    2017-05-01

    Full Text Available The relation between attention and consciousness has been a controversial topic over the last decade. Although there seems to be an agreement on their distinction at the functional level, no consensus has been reached about attentional processes being or not necessary for conscious perception. Previous studies have explored the relation of alerting and orienting systems of attention and conscious perception, but the impact of the anterior executive attention system on conscious access remains unexplored. In the present study, we investigated the behavioral interaction between executive attention and conscious perception, testing control mechanisms both at stimulus-level representation and after error commission. We presented a classical Stroop task, manipulating the proportion of congruent and incongruent trials, and analyzed the effect of reactive and proactive control on the conscious perception of near-threshold stimuli. Reactive control elicited under high proportion congruent conditions influenced participants’ decision criterion, whereas proactive control elicited under low proportion congruent conditions was ineffective in modulating conscious perception. In addition, error commission affected both perceptual sensitivity to detect near-threshold information and response criterion. These results suggest that reactivation of task goals through reactive control strategies in conflict situations impacts decision stages of conscious processing, whereas interference control elicited by error commission impacts both perceptual sensitivity and decision stages of conscious processing. We discuss the implications of our results for the gateway hypothesis about attention and consciousness, as they showed that interference control (both at stimulus-level representation and after error commission can modulate the conscious access of near-threshold stimuli.

  4. Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis.

    Science.gov (United States)

    Carlson, Kaitlin S; Whitney, Meredith S; Gadziola, Marie A; Deneris, Evan S; Wesson, Daniel W

    2016-01-01

    The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 ( Tph2 ), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT-depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2 -targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT-depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility.

  5. Platelet 3H-serotonin releasing immune complexes induced by pseudomonas aeruginosa in cystic fibrosis

    International Nuclear Information System (INIS)

    Permin, H.; Stahl Skov, P.; Norn, S.; Hoeiby, N.; Schioetz, P.O.

    1982-01-01

    In vitro formation of immune complexes was studied by 3 H-serotonin release from human platelets by P. aeruginosa antigens in the presence of serum from 22 cyctic fibrosis patients, chronically infected with mucoid P. aeruginosa (CF+P) and with a pronounced antibody response against these bacteria, and in 24 patients without P. aeruginosa (CF-P). All CF+P patients responded with 3 H-serotonin release (16-34%), whereas CF-P patients released less than 15%. In the group of CF+P patients the number of P. aeruginosa precipitins was correlated to the serotonin titer. Time courses indicated that 3 H-serotonin release was maximal between 2 and 5 min, and that no further release was observed up to 20 min. There was a gradual increase in 3 H-serotonin release with higher platelet concentrations. The response was not changed by complement inactivation, and fractionation of serum demonstrated that the serotonin release was dependent on the presence of the immunoglobulin fraction. These experiments support the suggestion of a type III reaction being involved in the lung damage in CF+P patients and also suggest a possible involvement of serotonin in the inflammatory reaction during chronic P. aeruginosa lung infection. (author)

  6. Anterior cingulate serotonin 1B receptor binding is associated with emotional response inhibition

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Hjordt, Liv Vadskjær; Dam, Vibeke Høyrup

    2017-01-01

    -offender controls, completed an emotional Go/NoGo task requiring inhibition of prepotent motor responses to emotional facial expressions. We also measured cerebral serotonin 1B receptor (5-HT1BR) binding with [11C]AZ10419369 positron emission tomography within regions of the frontal cortex. We hypothesized that 5......-HT1BR would be positively associated with false alarms (failures to inhibit nogo responses) in the context of aversive (angry and fearful) facial expressions. Across groups, we found that frontal cortex 5-HT1BR binding was positively correlated with false alarms when angry faces were go stimuli......Serotonin has a well-established role in emotional processing and is a key neurotransmitter in impulsive aggression, presumably by facilitating response inhibition and regulating subcortical reactivity to aversive stimuli. In this study 44 men, of whom 19 were violent offenders and 25 were non...

  7. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a prevalent neurotransmitter throughout the animal kingdom. It exerts its effect through the specific binding to the serotonin receptor, but recent research has suggested that neural transmission may also be affected by its nonspecific interactions...... with the lipid matrix of the synaptic membrane. However, membrane–5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular...... dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...

  8. Control of a Dual-Stator Flux-Modulated Motor for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xinhua Guo

    2016-07-01

    Full Text Available This paper presents the control strategies for a novel dual-stator flux-modulated (DSFM motor for application in electric vehicles (EVs. The DSFM motor can be applied to EVs because of its simple winding structure, high reliability, and its use of two stators and rotating modulation steels in the air gap. Moreover, it outperforms conventional brushless doubly-fed machines in terms of control performance. Two stator-current-oriented vector controls with different excitation in the primary winding, direct and alternating current excitation, are designed, simulated, and evaluated on a custom-made DSFM prototype allowing the decoupled control of torque. The stable speed response and available current characteristics strongly validate the feasibility of the two control methods. Furthermore, the proposed control methods can be employed in other applications of flux-modulated motors.

  9. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  10. Serotonin transporter density in binge eating disorder and pathological gambling: A PET study with [11C]MADAM.

    Science.gov (United States)

    Majuri, Joonas; Joutsa, Juho; Johansson, Jarkko; Voon, Valerie; Parkkola, Riitta; Alho, Hannu; Arponen, Eveliina; Kaasinen, Valtteri

    2017-12-01

    Behavioral addictions, such as pathological gambling (PG) and binge eating disorder (BED), appear to be associated with specific changes in brain dopamine and opioid function, but the role of other neurotransmitter systems is less clear. Given the crucial role of serotonin in a number of psychiatric disorders, we aimed to compare brain serotonergic function among individuals with BED, PG and healthy controls. Seven BED patients, 13 PG patients and 16 healthy controls were scanned with high-resolution positron emission tomography (PET) using the serotonin transporter (SERT) tracer [ 11 C]MADAM. Both region-of-interest and voxel-wise whole brain analyses were performed. Patients with BED showed increased SERT binding in the parieto-occipital cortical regions compared to both PG and healthy controls, with parallel decreases in binding in the nucleus accumbens, inferior temporal gyrus and lateral orbitofrontal cortex. No differences between PG patients and controls were observed. None of the subjects were on SSRI medications at the time of imaging, and there were no differences in the level of depression between PG and BED patients. The results highlight differences in brain SERT binding between individuals with BED and PG and provide further evidence of different neurobiological underpinnings in behavioral addictions that are unrelated to the co-existing mood disorder. The results aid in the conceptualization of behavioral addictions by characterizing the underlying serotonin changes and provide a framework for additional studies to examine syndrome-specific pharmaceutical treatments. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  11. 3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus

    International Nuclear Information System (INIS)

    Creese, I.; Snyder, S.H.

    1978-01-01

    It is found that in the cerebral cortex, butaclamol displaceable 3 H-spiroperidol binding labels both dopamine and serotonin receptors. In the hippocampus it is probable that 3 H-spiroperidol binding involves serotonin receptors exclusively. (Auth.)

  12. Controlling traffic jams by time modulating the safety distance

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Gorria, C.; Berkemer, R.

    2013-01-01

    The possibility of controlling traffic dynamics by applying high-frequency time modulation of traffic flow parameters is studied. It is shown that the region of the car density where the uniform (free) flow is unstable changes in the presence of time modulation compared with the unmodulated case....

  13. Remotely powered and controlled EAPap actuator by amplitude modulated microwaves

    International Nuclear Information System (INIS)

    Yang, Sang Yeol; Mahadeva, Suresha K; Kim, Jaehwan

    2013-01-01

    This paper reports on a remotely powered and controlled Electro-Active Paper (EAPap) actuator without onboard controller using amplitude modulated microwaves. A rectenna is a key element for microwave power transmission that converts microwaves into dc power through coupling and rectification. In this study, the concept of a remotely controlled and powered EAPap actuator is proposed by means of modulating microwaves with a control signal and demodulating it through the rectenna rectification. This concept is applied to a robust EAPap actuator, namely cellulose–polypyrrole–ionic liquid (CPIL) EAPap. Details of fabrication and characterization of the rectenna and the CPIL-EAPap actuator are explained. Also, the charge accumulation problem of the actuator is explained and resolved by connecting an additional resistor. Since this idea can eliminate the onboard controller by supplying the operating signal through modulation, a compact and lightweight actuator can be achieved, which is useful for biomimetic robots and remotely driven actuators. (technical note)

  14. Localization of 3H-serotonin in the adrenal medullary cells of newborn rats

    International Nuclear Information System (INIS)

    Sudar, F.; Csaba, G.

    1979-01-01

    Newborn rats received 25 μCi 3 H-5-hydroxytryptophan (5-HTP); 30, 60 min or 5 hours later the adrenal glands were removed. Electronmicroscopic autoradiography was carried out after fixation and embedding. As in the cells 5-HTP is formed into serotonin, the distribution of radioactivity actually represents the distribution of serotonin. Activity was found on the cellular, nuclear and catecholamine granule-membranes, and in the nucleus. The activity increased as a function of time at all the above mentioned sites, and in line with this more and more empty catecholamine-granules appeared. Data indicate the existence of intracellular serotonin-receptors and the role of serotonin in the release of catecholamines. (L.E.)

  15. Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae.

    Science.gov (United States)

    Sillar, K T; Reith, C A; McDearmid, J R

    1998-11-16

    In this article we review our research on the development and intrinsic neuromodulation of a spinal network controlling locomotion in a simple vertebrate. Swimming in hatchling Xenopus embryos is generated by a restricted network of well-characterized spinal neurons. This network produces a stereotyped motor pattern which, like real swimming, involves rhythmic activity that alternates across the body and progresses rostrocaudally with a brief delay between muscle segments. The stereotypy results from motoneurons discharging a single impulse in each cycle; because all motoneurons appear to behave similarly there is little scope for altering the output to the myotomes from one cycle to the next. Just one day later, however, Xenopus larvae generate a more complex and flexible motor pattern in which motoneurons can discharge a variable number of impulses which contribute to ventral root bursts in each cycle. This maturation of swimming is due, in part, to the influence of serotonin released from brain-stem raphespinal interneurons whose axonal projections innervate the cord early in larval life. Larval swimming is differentially modulated by both serotonin and by noradrenaline: serotonin leads to relatively fast, intense swimming whereas noradrenaline favors slower, weaker activity. Thus, these two biogenic amines select opposite extremes from the spectrum of possible output patterns that the swimming network can produce. Our studies on the cellular and synaptic effects of the amines indicate that they can control the strength of reciprocal glycinergic inhibition in the spinal cord. Serotonin and noradrenaline act presynaptically on the terminals of glycinergic commissural interneurons to weaken and strengthen, respectively, crossed glycinergic inhibition during swimming. As a result, serotonin reduces and noradrenaline increases interburst intervals. The membrane properties of spinal neurons are also affected by the amines. In particular, serotonin can induce

  16. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.

    Science.gov (United States)

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L

    2010-11-01

    To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.

  17. Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1986-01-01

    Serotonin has previously been shown to stimulate cell proliferation in the jejunal crypt epithelium and in colonic tumours. The original classification of serotonin receptors into D and M groups was not conductive to the understanding of these observations. The more recent classification of serotonin receptors into 5HT1 and 5HT2 groups is considered in this report. On the balance of evidence it appears that similar receptors mediate the response to serotonin in the two tissues under consideration and that these receptors resemble those of the 5HT1 group. Such receptors are usually positively linked to adenylate cyclase.

  18. Modulation of Human Serotonin Transporter Expression by 5-HTTLPR in Colon Cells

    Directory of Open Access Journals (Sweden)

    Tewin Tencomnao

    2011-10-01

    Full Text Available Serotonin (5-HT is a monoamine neurotransmitter and plays important roles in several of the human body’s systems. Known as a primary target for psychoactive drug development, the 5-HT transporter (5-HTT, SERT plays a critical role in the regulation of serotonergic function by reuptaking 5-HT. The allelic variation of 5-HTT expression is caused by functional gene promoter polymorphism with two principal variant alleles, 5-HTT gene-linked polymorphic region (5-HTTLPR. It has been demonstrated that 5-HTTLPR is associated with numerous neuropsychiatric disorders. The functional roles of 5-HTTLPR have been reported in human choriocarcinoma (JAR, lymphoblast and raphe cells. To date, the significance of 5-HTTLPR in gastrointestinal tract-derived cells has never been elucidated. Thus, the impact of 5-HTTLPR on 5-HTT transcription was studied in SW480 human colon carcinoma cells, which were shown to express 5-HTT. We found 42-bp fragment in long (L allele as compared to short (S allele, and this allelic difference resulted in 2-fold higher transcriptional efficiency of L allele (P < 0.05 as demonstrated using a functional reporter gene assay. Nevertheless, the transcriptional effect of estrogen and glucocorticoid on 5-HTT expression via 5-HTTLPR was not found in this cell line. Our study was the first to demonstrate the molecular role of this allelic variation in gastrointestinal tract cells.

  19. High-mesembrine Sceletium extract (Trimesemine™) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor.

    Science.gov (United States)

    Coetzee, Dirk D; López, Víctor; Smith, Carine

    2016-01-11

    Extracts from and alkaloids contained in plants in the genus Sceletium have been reported to inhibit ligand binding to serotonin transporter. From this, the conclusion was made that Sceletium products act as selective serotonin-reuptake inhibitors. However, other mechanisms which may similarly result in the anxiolytic or anti-depressant effect ascribed to Sceletium, such as monoamine release, have not been investigated. The current study investigated simultaneously and at two consecutive time points, the effect of high-mesembrine Sceletium extract on both monoamine release and serotonin reuptake into both human astrocytes and mouse hippocampal neurons, as well as potential inhibitory effects on relevant enzyme activities. Human astrocytes and mouse hippocampal cells were treated with citalopram or Sceletium extract for 15 and 30min, after which protein expression levels of serotonin transporter (SERT) and vesicular monoamine transporter-2 (VAMT-2) was assessed using fluorescent immunocytochemistry and digital image analysis. Efficacy of inhibition of acetylcholinesterase (AChE) and monoamine oxidate-A (MAO-A) activity were assessed using the Ellman and Olsen methods (and appropriate controls) respectively. We report the first investigation of mechanism of action of Sceletium extract in the context of serotonin transport, release and reuptake in a cellular model. Cell viability was not affected by Sceletium treatment. High-mesembrine Sceletium extract down-regulated SERT expression similarly to citalopram. In addition, VMAT-2 was upregulated significantly in response to Sceletium treatment. The extract showed only relatively mild inhibition of AChE and MAO-A. We conclude that the serotonin reuptake inhibition activity ascribed to the Sceletium plant, is a secondary function to the monoamine-releasing activity of high-mesembrine Sceletium extract (Trimesemine(TM)). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Cheng, A V; Ferrier, I N; Morris, C M; Jabeen, S; Sahgal, A; McKeith, I G; Edwardson, J A; Perry, R H; Perry, E K

    1991-11-01

    The binding of the selective 5-HT2 antagonist [3H]ketanserin has been investigated in the temporal cortex of patients with Alzheimer's disease (SDAT), Parkinson's disease (PD), senile dementia of Lewy body type (SDLT) and neuropathologically normal subjects (control). 5-HT2 binding was reduced in SDAT, PD with dementia and SDLT. SDAT showed a 5-HT2 receptor deficit across most of the cortical layers. A significant decrease in 5-HT2 binding in the deep cortical layers was found in those SDLT cases without hallucinations. SDLT cases with hallucinations only showed a deficit in one upper layer. There was a significant difference in cortical layers III and V between SDLT without hallucinations and SDLT with hallucinations. The results confirm an abnormality of serotonin binding in various forms of dementia and suggest that preservation of 5-HT2 receptor in the temporal cortex may differentiate hallucinating from non-hallucinating cases of SDLT.

  1. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder

    OpenAIRE

    Marler, Sarah; Ferguson, Bradley J.; Lee, Evon Batey; Peters, Brittany; Williams, Kent C.; McDonnell, Erin; Macklin, Eric A.; Levitt, Pat; Gillespie, Catherine Hagan; Anderson, George M.; Margolis, Kara Gross; Beversdorf, David Q.; Veenstra-VanderWeele, Jeremy

    2016-01-01

    Elevated whole blood serotonin levels are observed in more than 25 % of children with autism spectrum disorder (ASD). Co-occurring gastrointestinal (GI) symptoms are also common in ASD but have not previously been examined in relationship with hyperserotonemia, despite the synthesis of serotonin in the gut. In 82 children and adolescents with ASD, we observed a correlation between a quantitative measure of lower GI symptoms and whole blood serotonin levels. No significant association was seen...

  2. Biodistribution and dosimetry of 123I-mZIENT: a novel ligand for imaging serotonin transporters

    International Nuclear Information System (INIS)

    Nicol, Alice; Krishnadas, Rajeev; Champion, Sue; Tamagnan, Gilles; Stehouwer, Jeffrey S.; Goodman, Mark M.; Hadley, Donald M.; Pimlott, Sally L.

    2012-01-01

    123 I-labelled mZIENT (2β-carbomethoxy-3β-(3'-((Z)-2-iodoethenyl)phenyl)nortropane) has been developed as a radioligand for the serotonin transporter. The aim of this preliminary study was to assess its whole-body biodistribution in humans and estimate dosimetry. Three healthy controls and three patients receiving selective serotonin reuptake inhibitor (SSRI) therapy for depression were included (two men, four women, age range 41-56 years). Whole-body imaging, brain SPECT imaging and blood and urine sampling were performed. Whole-body images were analysed using regions of interest (ROIs), time-activity curves were derived using compartmental analysis and dosimetry estimated using OLINDA software. Brain ROI analysis was performed to obtain specific-to-nonspecific binding ratios in the midbrain, thalamus and striatum. Initial high uptake in the lungs decreased in later images. Lower uptake was seen in the brain, liver and intestines. Excretion was primarily through the urinary system. The effective dose was estimated to be of the order of 0.03 mSv/MBq. The organ receiving the highest absorbed dose was the lower large intestine wall. Uptake in the brain was consistent with the known SERT distribution with higher specific-to-nonspecific binding in the midbrain, thalamus and striatum in healthy controls compared with patients receiving SSRI therapy. 123 I-mZIENT may be a promising radioligand for imaging the serotonin transporters in humans with acceptable dosimetry. (orig.)

  3. BDNF val66met association with serotonin transporter binding in healthy humans

    DEFF Research Database (Denmark)

    Fisher, P. M.; Ozenne, B.; Svarer, C.

    2017-01-01

    The serotonin transporter (5-HTT) is a key feature of the serotonin system, which is involved in behavior, cognition and personality and implicated in neuropsychiatric illnesses including depression. The brain-derived neurotrophic factor (BDNF) val66met and 5-HTTLPR polymorphisms have predicted......-carriers have increased subcortical 5-HTT binding. The small difference suggests limited statistical power may explain previously reported null effects. Our finding adds to emerging evidence that BDNF val66met contributes to differences in the human brain serotonin system, informing how variability in the 5-HTT...

  4. Serotonin-induced nitric oxide production in the ventral nerve cord of the earthworm, Eisenia fetida.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Ogawa, H; Oka, K

    2001-10-01

    Effect of serotonin on nitric oxide (NO) production in the ventral nerve cord (VNC) of the earthworm Eisenia fetida was investigated by a bio-imaging and an electrochemical technique. In the bio-imaging, the spatial pattern of NO production in VNC was visualized using an NO-specific fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). Application of serotonin (100 microM) increased NO production in VNC by about 65% (PVNC. In the electrochemical technique, real-time basal and serotonin-induced NO production was estimated with an NO-specific electrode. On the ventral surface of VNC, the estimated basal NO production was stable at 200+/-52 nM, and was transiently augmented to 840+/-193 nM by the addition of 10 microM serotonin. In conclusion, the estimated basal NO production in the earthworm VNC is relatively high compared with other nervous systems earlier reported, and transiently augmented by serotonin. Our results suggest that NO signaling in VNC is involved in neuromodulation by serotonin.

  5. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    Science.gov (United States)

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  6. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  7. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity.

    Science.gov (United States)

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X

    2016-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  8. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

    Directory of Open Access Journals (Sweden)

    Rainer Kraehenmann

    2016-01-01

    Full Text Available Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  9. Elevated midbrain serotonin transporter availability in mixed mania: a case report

    Directory of Open Access Journals (Sweden)

    Kuikka Jyrki

    2004-09-01

    Full Text Available Abstract Background Results obtained from brain imaging studies indicate that serotonin transporter (SERT and dopamine transporter (DAT densities are altered in major depression. However, no such studies have been published on current mania or hypomania. Case presentation In this single photon emission computed tomography (SPECT study with [123I]nor-β-CIT we present a case with simultaneous symptoms of major depression and hypomania. She had an elevated serotonin transporter availability (SERT in the midbrain and elevated dopamine transporter availability (DAT in the striatum, which normalised in a one-year follow-up period during which she received eight months of psychodynamic psychotherapy. Conclusions To our knowledge, this is the first report on SERT and DAT associated with mania. In our case the availability of both SERT in the midbrain and DAT in the striatum were elevated at baseline and declined during psychotherapy, while the SERT and DAT of the depressed controls increased during psychotherapy. Symptoms of hypomania in the case were alleviated during psychotherapy. Clinical recovery was also reflected in the Hamilton Depression Rating Scale (HDRS scores.

  10. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  11. Cortisol responses to chronic stress in adult macaques: moderation by a polymorphism in the serotonin transporter gene.

    Science.gov (United States)

    Qin, Dongdong; Rizak, Joshua; Feng, Xiaoli; Yang, Shangchuan; Yang, Lichuan; Fan, Xiaona; Lü, Longbao; Chen, Lin; Hu, Xintian

    2015-02-01

    Accumulating evidence has shown that a polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) moderates the association between stress and depressive symptoms. However, the exact etiologies underlying this moderation are not well understood. Here it is reported that among adult female rhesus macaques, an orthologous polymorphism (rh5-HTTLPR) exerted an influence on cortisol responses to chronic stress. It was found that females with two copies of the short allele were associated with increased cortisol responses to chronic stress in comparison to their counterparts who have one or two copies of the long allele. In the absence of stress, no differences related to genotype were observed in these females. This genetic moderation was found without a genetic influence on exposure to stressful situations. Rather it was found to be a genetic modulation of cortisol responses to chronic stress. These findings indicate that the rh5-HTTLPR polymorphism is closely related to hypothalamus-pituitary-adrenal (HPA) axis reactivity, which may increase susceptibility to depression in females with low serotonin transporter efficiency and a history of stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Reliability Analysis on NPP's Safety-Related Control Module with Field Data

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Seong Hun

    2006-01-01

    The automatic control systems used in nuclear power plant (NPP) consists of numerous control modules that can be considered to be a network of components various complex ways. The control modules require relatively high reliability than industrial electronic products. Reliability prediction provides the rational basis of system designs and also provides the safety significance of system operations. The aim of this paper is to minimize the deficiencies of the traditional reliability prediction method calculation using the available field return data. This way is possible to do more realistic reliability assessment. SAMCHANG Enterprise Company (SEC) has established database containing high quality data at the module and component level from module maintenance in NPP. On the basis of these, this paper compares results that add failure record (field data) to Telcordia-SR-332 reliability prediction model with MIL-HDBK-217F prediction results

  13. EFFECT OF HORMONAL CONTRACEPTIVES ON SERUM SEROTONIN IN FEMALES OF REPRODUCTIVE AGE GROUP.

    Science.gov (United States)

    Faryal, Uzma; Rashid, Shazia; Hajra, Bibi; Hassan, Mukhtiar; Saqib, Javeria; Ali, Muhammad Afaq

    2016-01-01

    Many types of hormonal contraceptives are in use nowadays for example oral pills, emergency contraceptive pills, vaginal rings, implantable rods and injectable contraceptives (combined and progestogens only). The purpose of this study was to determine and compare serum serotonin levels in married fertile females of reproductive age group using hormonal contraceptives with non-contraceptive users. A total of 300 women were selected in the study. This cross sectional study included three groups; Group-1 (control), group-2 (combined oral contraceptive users) and group-3 (injectable contraceptive users). History and examination of subjects were recorded on pro forma. Levels of serum serotonin were measured using standard ELISA kits. Results were analysed by one way ANOVA and a p-value 0.05% was taken as significant, using SPSS 16.0. The mean age of the patients in group-1 was 30.4 ± 6.1 years, group-2 was 28.9 ± 4.9 and in group-3 was 2.5 ± 6.8 years. For subjects in group-1, group-2 and group 3 the mean ± SD concentration of serum serotonin was 160.68 ± 53.27 ng/dl, 227.3 ± 63.98 ng/dl and 118.19 ± 31.32 ng/dl. A significant (p = 0.00) difference was seen among three groups, i.e., group-1, group-2 and group-3. After applying Post HOC Tukey's HSD, there was statistically no significant difference between group-1 and group-2 (p = 0.956). Difference was seen between group-2 and group-3 (p = 0.00), it was also significant between group-3 and group-1 (p = 0.00). It was concluded that hormonal contraceptives affect the levels of serum serotonin.

  14. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    International Nuclear Information System (INIS)

    Passchier, J.; Waarde, A. van

    2001-01-01

    The 5-HT 1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT 1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl- 11 C] WAY-100635 (WAY), [carbonyl- 11 C]desmethyl-WAY-100635 (DWAY), p-[ 18 F]MPPF and [ 11 C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT 1A receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  15. Impaired fear extinction in serotonin transporter knockout rats is associated with increased 5-hydroxymethylcytosine in the amygdala

    NARCIS (Netherlands)

    Shan, L.; Guo, Hang-Yuan; van den Heuvel, Corina N A M; van Heerikhuize, J.J.; Homberg, Judith R

    2018-01-01

    AIMS: One potential risk factor for posttraumatic stress disorder (PTSD) involves the low activity (short; s) allelic variant of the serotonin transporter-linked polymorphic region (5-HTTLPR), possibly due to reduced prefrontal control over the amygdala. Evidence shows that DNA

  16. A novel neurodevelopmental syndrome responsive to 5-hydroxytryptophan and carbidopa

    NARCIS (Netherlands)

    Ramaekers, V. T.; Senderek, J.; Häusler, M.; Häring, M.; Abeling, N.; Zerres, K.; Bergmann, C.; Heimann, G.; Blau, N.

    2001-01-01

    Tryptophan hydroxylase (TPH; EC 1.14.16.4) catalyzes the first rate-limiting step of serotonin biosynthesis by converting l-tryptophan to 5-hydroxytryptophan. Serotonin controls multiple vegetative functions and modulates sensory and alpha-motor neurons at the spinal level. We report on five boys

  17. Boosting serotonin in the brain: is it time to revamp the treatment of depression?

    Science.gov (United States)

    Torrente, Mariana P; Gelenberg, Alan J; Vrana, Kent E

    2012-05-01

    Abnormalities in serotonin systems are presumably linked to various psychiatric disorders including schizophrenia and depression. Medications intended for these disorders aim to either block the reuptake or the degradation of this neurotransmitter. In an alternative approach, efforts have been made to enhance serotonin levels through dietary manipulation of precursor levels with modest clinical success. In the last 30 years, there has been little improvement in the pharmaceutical management of depression, and now is the time to revisit therapeutic strategies for the treatment of this disease. Tryptophan hydroxylase (TPH) catalyzes the first and rate-limiting step in the biosynthesis of serotonin. A recently discovered isoform, TPH2, is responsible for serotonin biosynthesis in the brain. Learning how to activate this enzyme (and its polymorphic versions) may lead to a new, more selective generation of antidepressants, able to regulate the levels of serotonin in the brain with fewer side effects.

  18. Brain serotonin 4 receptor binding is associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Jakobsen, Gustav R; Fisher, Patrick M; Dyssegaard, Agnete

    2016-01-01

    Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index of hypotha...

  19. Synthesis of Dopamine and Serotonin Derivatives for Immobilization on a Solid Support

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Jensen, Anne Bjørnskov; Tørring, Thomas

    2012-01-01

    rearrangement from the allylated phenol moiety of serotonin. The tethers are azide-functionalized, which enables coupling to alkyne-modified magnetic beads. The coupling to the magnetic beads is quantified by UV spectroscopy using Fmoc-monitoring of the immobilized dopamine and serotonin derivatives....

  20. Coaction of Stress and Serotonin Transporter Genotype in Predicting Aggression at the Transition to Adulthood

    Science.gov (United States)

    Conway, Christopher C.; Keenan-Miller, Danielle; Hammen, Constance; Lind, Penelope A.; Najman, Jake M.; Brennan, Patricia A.

    2012-01-01

    Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G x E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the…

  1. Design of embedded control system for high-power tetrode modulator

    International Nuclear Information System (INIS)

    Tu Rui; Yao Lieying; Xuan Weimin

    2010-01-01

    The design of embedded control system for the high-power tetrode modulator and its test results are given. This control system is a closed-loop feedback system based on the DSP and embedded into the high-voltage modulator. A new modified method of VF fiber transmission is used in the embedded control system. The new method improves the speed of the transmission of feedback system. The results of the experiment demonstrate that the embedded feedback control system greatly increases the response speed of the whole system and improves the performance of the high-power tetrode on the HL-2A tokamak. This embedded feedback control system greatly simplifies the complexity of the original centralized control system. The operation of the control system is reliable. (authors)

  2. Epinephrine Injection effect on serotonin metabolism in small intestines of gamma irradiated rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Mahdy, A.M.

    1997-01-01

    The response of serotonin metabolism to epinephrine injection was examined in the small intestine of normal and whole body gamma irradiated rats. The data revealed that a single dose of 6 Gy induced decrease in serotonin content associated with increase of monoaminoxidase activity (MAO), and 5-hydroxyindol acetic acid (5-HIAA); at one and four hours, and one, three and seven days after exposure. Intraperitoneal administration of epinephrine to normal unirradiated rats at a dose of 0.2 mug/g increased serotonin content, decreased (MAO) activity, and (5-HIAA) level, one and four hours after treatment. No significant changes were recorded later. Injection of epinephrine to rats, 15 minutes before irradiation, resulted in no significant changes of serotonin content, MAO activity and 5-HIAA level at one, four hours and one day after irradiation. At three and seven days, the changes were less significant. The results obtained suggest that the effect of epinephrine on serotonin and 5-HIAA levels in the small intestine of rats is mediated by the opposing effect of epinephrine on the radiation induced increase of intestinal MAO activity

  3. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    International Nuclear Information System (INIS)

    Hussain, M.N.; Benedict, C.R.

    1987-01-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day

  4. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A.J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L. (UNCSM); (UNC); (Stanford); (Stanford-MED); (UCSF)

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  5. Crystal Structure of an LSD-Bound Human Serotonin Receptor.

    Science.gov (United States)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L

    2017-01-26

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT 2B . The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT 2B R and 5-HT 2A R-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Distribution of catecholamines and serotonin in the rat cerebral cortex:

    International Nuclear Information System (INIS)

    Reader, T.A.

    1981-01-01

    The rat cerebral cortex was dissected in five regions and analyzed for the catecholamines noradrenaline, adrenaline and dopamine, and for the indoleamine seroton in using sensitive radioenzymatic assay methods with thin-layer-chromatography. The noradrenaline concentration was highest in the ventral cortex, lateral to the hypothalamus, had intermediate values for the prefrontal, frontal and parietal cortical areas and was lowest in the occipital cortex. Dopamine levels were also highest in the cortex lateral to the hypothalamus, and moderate in the prefrontal and frontal cortical areas, with the lowest values measured for the occipital cortex. The ratios dopamine/noradrenaline further support the hypothesis that they are independent transmitters. Traces of adrenaline were measured in all regions examined. The serotonin distribution was found to be non-homogeneous, with the highest values for the prefrontal cortex and ventral cortex lateral to the hypothalamus. The functional significance of these amines and their ratios are discussed in relation to their role as putative modulators of cortical neuronal excitability. (author)

  7. Development of an Ethernet enabled microcontroller based module for Superconducting Cyclotron ECR beam line control

    International Nuclear Information System (INIS)

    Chatterjee, M.; Koley, D.; Nabhiraj, P.Y.

    2012-01-01

    An Ethernet enabled control and data acquisition module is developed for remote control and monitoring of the ECR beam line equipment of the Superconducting Cyclotron. The PIC microcontroller based module supports multiple general purpose analog and digital inputs and outputs for interfacing with various equipments and an embedded web server. The remote monitoring and control of the equipment are achieved through the web based user interface. The user authenticated access to control parameters and module configuration parameters ensures the operational safety of the equipment under control. This module is installed in Superconducting Cyclotron ECR beam line for the control and monitoring of vacuum pumping modules, comprising of pumps, gate valves and dual vacuum gauges. The installation of these modules results in a distributed control with localised field cabling and hence better fault diagnosis. (author)

  8. Modulation of the consolidation and reconsolidation of fear memory by three different serotonin receptors in hippocampus.

    Science.gov (United States)

    Schmidt, S D; Furini, C R G; Zinn, C G; Cavalcante, L E; Ferreira, F F; Behling, J A K; Myskiw, J C; Izquierdo, I

    2017-07-01

    The process of memory formation is complex and highly dynamic. During learning, the newly acquired information is found in a fragile and labile state. Through a process known as consolidation, which requires specific mechanisms such as protein synthesis, the memory trace is stored and stabilized. It is known that when a consolidated memory is recalled, it again becomes labile and sensitive to disruption. To be maintained, this memory must undergo an additional process of restabilization called reconsolidation, which requires another phase of protein synthesis. Memory consolidation has been studied for more than a century, while the molecular mechanisms underlying the memory reconsolidation are starting to be elucidated. For this, is essential compare the participation of important neurotransmitters and its receptors in both processes in brain regions that play a central role in the fear response learning. With focus on serotonin (5-HT), a well characterized neurotransmitter that has been strongly implicated in learning and memory, we investigated, in the CA1 region of the dorsal hippocampus, whether the latest discovered serotonergic receptors, 5-HT 5A , 5-HT 6 and 5-HT 7 , are involved in the consolidation and reconsolidation of contextual fear conditioning (CFC) memory. For this, male rats with cannulae implanted in the CA1 region received immediately after the training or reactivation session, or 3h post-reactivation of the CFC, infusions of agonists or antagonists of the 5-HT 5A , 5-HT 6 and 5-HT 7 receptors. After 24h, animals were subjected to a 3-min retention test. The results indicated that in the CA1 region of the hippocampus the 5-HT 5A , 5-HT 6 and 5-HT 7 serotonin receptors participate in the reconsolidation of the CFC memory 3h post-reactivation. Additionally, the results suggest that the 5-HT 6 and 5-HT 7 receptors also participate in the consolidation of the CFC memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Grid-connected of photovoltaic module using nonlinear control

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2012-01-01

    The problem of controlling single-phase grid connected photovoltaic (PV) system is considered. The control objective is fourfold: (i) asymptotic stability of the closed loop system, (ii) maximum power point tracking (MPPT) of PV module (iii) tight regulation of the DC bus voltage, and (iv) unity...

  10. A current view of serotonin transporters [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Louis J. De Felice

    2016-07-01

    Full Text Available Serotonin transporters (SERTs are largely recognized for one aspect of their function—to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state.

  11. Plasma serotonin in horses undergoing surgery for small intestinal colic

    OpenAIRE

    Torfs, Sara C; Maes, An A; Delesalle, Catherine J; Pardon, Bart; Croubels, Siska M; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those fo...

  12. Frequency response control of semiconductor laser by using hybrid modulation scheme.

    Science.gov (United States)

    Mieda, Shigeru; Yokota, Nobuhide; Isshiki, Ryuto; Kobayashi, Wataru; Yasaka, Hiroshi

    2016-10-31

    A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.

  13. Autoradiographic localization of 3H-paroxetine-labeled serotonin uptake sites in rat brain

    International Nuclear Information System (INIS)

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of the thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin

  14. Implementation of CTRLPOS, a VENTURE module for control rod position criticality searches, control rod worth curve calculations, and general criticality searches

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.A.; Renier, J.P.

    1994-06-01

    A module in the VENTURE reactor analysis code system, CTRLPOS, is developed to position control rods and perform control rod position criticality searches. The module is variably dimensioned so that calculations can be performed with any number of control rod banks each having any number of control rods. CTRLPOS can also calculate control rod worth curves for a single control rod or a bank of control rods. Control rod depletion can be calculated to provide radiation source terms. These radiation source terms can be used to predict radiation doses to personnel and estimate the shielding and long-term storage requirements for spent control rods. All of these operations are completely automated. The numerous features of the module are discussed in detail. The necessary input data for the CTRLPOS module is explained. Several sample problems are presented to show the flexibility of the module. The results presented with the sample problems show that the CTRLPOS module is a powerful tool which allows a wide variety of calculations to be easily performed.

  15. 76 FR 78 - Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter Device

    Science.gov (United States)

    2011-01-03

    ... [Docket No. NHTSA-2007-26851] Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter... occupants. IIHS stated that on-board electronic engine control modules (ECM) will maintain the desired speed... be equipped with an electronic control module (ECM) that is capable of limiting the maximum speed of...

  16. Tramadol: seizures, serotonin syndrome, and coadministered antidepressants.

    Science.gov (United States)

    Sansone, Randy A; Sansone, Lori A

    2009-04-01

    This ongoing column is dedicated to the challenging clinical interface between psychiatry and primary care-two fields that are inexorably linked.Tramadol (Ultram(®)) is a commonly prescribed analgesic because of its relatively lower risk of addiction and better safety profile in comparison with other opiates. However, two significant adverse reactions are known to potentially occur with tramadol-seizures and serotonin syndrome. These two adverse reactions may develop during tramadol monotherapy, but appear much more likely to emerge during misuse/overdose as well as with the coadministration of other drugs, particularly antidepressants. In this article, we review the data relating to tramadol, seizures, and serotonin syndrome. This pharmacologic intersection is of clear relevance to both psychiatrists and primary care clinicians.

  17. The value of blood serotonin for effective weight loss in obese women

    Directory of Open Access Journals (Sweden)

    Natal'ya Vadimovna Anikina

    2015-07-01

    Full Text Available Introduction. Obesity is a disorder of energy balance, which leads to excessive accumulation of fat. In recent years, many important discoveries were made in this field, including the discovery of hormones produced by adipose tissue and the identification of many of the central and peripheral pathways of energy balance. Objective. To study the levels of hormones that affect appetite and metabolism in women with obesity baseline and after weight loss while taking sibutramine. Materials and methods. The study included 56 women aged 42,9±9,5 years, with a BMI of 34,6±6,1 kg/m2. All patients underwent clinical, laboratory and instrumental examination. Hormonal study included determination of serotonin, leptin, ghrelin, endothelin-1, adiponectin. Results: In women with obesity we identified hyperleptinemia and increased serotonin levels. The decrease in body weight in patients receiving sibutramine was accompanied by lower levels of serotonin, leptin, ghrelin, endothelin-1, and increase of adiponectin. Conclusions: Obese patients have significantly elevated levels of leptin, serotonin, ghrelin compared to women of normal weight. Sibutramine treatment leads to a decrease in serotonin, leptin, ghrelin and is more effective in women with a BMI less than 36,5 kg/m2.

  18. The study of genetic polymorphisms related to serotonin in Alzheimer's disease: a new perspective in a heterogenic disorder

    Directory of Open Access Journals (Sweden)

    Oliveira J.R.M.

    1999-01-01

    Full Text Available Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD, the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the e4 allele of the apolipoprotein E (APOE gene (on chromosome 19 is the major susceptibility locus for the most common late onset AD (LOAD. Serotonin (5-hydroxytryptamine or 5-HT is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s of this 5-HTT gene-linked polymorphic region (5-HTTLPR is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

  19. Serotonin exerting protection of serum lipid pattern in male albino rat subjected to shot or intermittent whole body gamma irradiation

    International Nuclear Information System (INIS)

    El-Dighidy, E.A.M.; El-Kady, M.H.R.

    1995-01-01

    Certain cancer patients are subjected to varying levels of intermittent radiation delivered in certain cases as whole body exposure. Effective control of many haematological complications built up during radiation treatment would necessarily contribute to up-grading of cancer radiotherapy. In the present study, the effect of either shot or intermittent whole body gamma irradiation at cumulative dose levels up to 6 and 10 Gy, have been evaluated on the levels of total lipids and lipid fractions in blood serum of male albino rats. The pharmacological role of serotonin and its potential radioprotective capacity have been assessed on the serum lipid pattern. The results indicated generally significant increases in the levels of blood lipid fractions especially HDL-cholesterol. On the other hand, the level of LDL-cholesterol recorded a significant decrease on the third day post either shot or cumulative dose levels at 6 or 10 Gy and also post 4 successive doses of serotonin administration. The only exceptions were recorded in the case of LDL-cholesterol post administration of single dose of serotonin and serotonin prior to shot dose levels of 6 or 10 Gy. 2 tabs

  20. Influence of previous administration of trans-phenylcyclopropylamine on radioprotective and hypothermic effects of serotonin

    International Nuclear Information System (INIS)

    Misustova, J.; Hosek, B.; Novak, L.; Kautska, J.

    1978-01-01

    The influence of a previous administration of trans-phenylcyclopropylamine (t-PCPA) on radioprotective and hypothermic effects of serotonin was studied in male mice of the H strain, which were given t-PCPA in the dose of 4 mg/kg intraperitoneally 2 or 7 hours before application of serotonin (40 mg/kg, i.p.). The time course of protection was studied for exposures to 800 and 900 R. The results have shown that a previous administration of t-PCPA does not alter the short-time protective effect of serotonin, but that it significantly prolongs the time course of protection. The administration of t-PCPA also affects the starting speed and the duration of the serotonin-induced hypothermic reaction. The established correlation between prolongation of the radioprotective and hypothermic effects of serotonin induced by previous application of t-PCPA supplements the results with the existence of mutual relationship between changes of the energetic exchange and radioresistance of the organism. (author)

  1. Suppression of serotonin hyperinnervation does not alter the dysregulatory influences of dopamine depletion on striatal neuropeptide gene expression in rodent neonates.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-10-15

    Sixty days following neonatal dopamine depletion (>98%) with 6-hydroxydopamine, preprotachykinin and preprodynorphin mRNA levels were significantly reduced (67 and 78% of vehicle controls, respectively) in the anterior striatum as determined by in situ hybridization while preproenkephalin mRNA expression was elevated (133% of vehicle controls). Suppression of the serotonin hyperinnervation phenomenon in the dopamine-depleted rat with 5,7-dihydroxytryptamine yielded no significant alterations in reduced striatal preprotachykinin (66%) or preprodynorphin (64%) mRNA levels, while preproenkephalin mRNA expression remained significantly elevated (140%). These data suggest that striatal serotonin hyperinnervation does not contribute to the development of dysregulated striatal neuropeptide transmission in either direct or indirect striatal output pathways following neonatal dopamine depletion.

  2. Serotonin transporter activity of imidazolidine-2,4-dione and imidazo[2,1-f]purine-2,4-dione derivatives in aspect of their acid-base properties.

    Science.gov (United States)

    Zagórska, Agnieszka; Czopek, Anna; Pawłowski, Maciej; Dybała, Małgorzata; Siwek, Agata; Nowak, Gabriel

    2012-11-01

    Affinities of arylpiperazinylalkyl derivatives of imidazo[2,1-f]purine-2,4-dione and imidazolidine-2,4-dione for serotonin transporter and their acid-base properties were evaluated. The dissociation constant (pK(a)) of compounds 1-22 were determinated by potentiometric titration and calculated using pKalc 3.1 module of the Pallas system. The data from experimental methods and computational calculations were compared and suitable conclusions were reached.

  3. An Exploration of the Serotonin System in Antisocial Boys with High Levels of Callous-Unemotional Traits

    Science.gov (United States)

    Moul, Caroline; Dobson-Stone, Carol; Brennan, John; Hawes, David; Dadds, Mark

    2013-01-01

    Background The serotonin system is thought to play a role in the aetiology of antisocial and aggressive behaviour in both adults and children however previous findings have been inconsistent. Recently, research has suggested that the function of the serotonin system may be specifically altered in a sub-set of antisocial populations – those with psychopathic (callous-unemotional) personality traits. We explored the relationships between callous-unemotional traits and functional polymorphisms of selected serotonin-system genes, and tested the association between callous-unemotional traits and serum serotonin levels independently of antisocial and aggressive behaviour. Method Participants were boys with antisocial behaviour problems aged 3–16 years referred to University of New South Wales Child Behaviour Research Clinics. Participants volunteered either a blood or saliva sample from which levels of serum serotonin (N = 66) and/or serotonin-system single nucleotide polymorphisms (N = 157) were assayed. Results Functional single nucleotide polymorphisms from the serotonin 1b receptor gene (HTR1B) and 2a receptor gene (HTR2A) were found to be associated with callous-unemotional traits. Serum serotonin level was a significant predictor of callous-unemotional traits; levels were significantly lower in boys with high callous-unemotional traits than in boys with low callous-unemotional traits. Conclusion Results provide support to the emerging literature that argues for a genetically-driven system-wide alteration in serotonin function in the aetiology of callous-unemotional traits. The findings should be interpreted as preliminary and future research that aims to replicate and further investigate these results is required. PMID:23457595

  4. Role of endogenous serotonin in the mechanism of action of radioprotective substances

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Nekrasova, I.V.; Gusareva, Eh.V.; Dontsova, G.V.

    1978-01-01

    A study is made of a correlation between radiomodifying activity of noradrenaline (NA), N-ethylmaleimide (NEM) and a combination of these agents and their effect on the content of endogenous serotonin in cells of Ehrlich's ascites tumor and E. coli B. There is no uniformity in the response of different cells and uniform direction of the changes in their radioresistance and endogenous serotonin content both under the effect of the substances (NA and NEM) given separately and under a combined effect of the protector and the agent, which removes the protective effect or prevents realization of the latter (NEM). This enables us to arrive at a conclusion that endogenous serotonin is not the only factor responsible for the radioprotective effect of the protective substances. At the same time, it is not excluded that endogenous serotonin is involved in the chain of reactions which are necessary for the radioprotective effect to come into play

  5. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry

    Science.gov (United States)

    Zengin-Toktas, Yildiz

    2017-01-01

    Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females (‘female-directed’ or FD song) compared to when singing in isolation (‘undirected’ or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering. PMID:28235074

  6. Serotonin transporter evolution and impact of polymorphic transcriptional regulation

    DEFF Research Database (Denmark)

    Søeby, Karen; Larsen, Svend Ask; Olsen, Line

    2005-01-01

    The serotonin transporter (SERT) is the primary drug target in the current antidepressant therapy. A functional polymorphism in the 2nd intron of the 5HTT gene encoding the SERT has been identified and associated with susceptibility to affective disorders and treatment response to antidepressants...... in the VNTRs of all mammalian SERT genes. The number of these putative binding sites varies proportionally to the length of the VNTR. We propose that the intronic VNTR have been selectively targeted through mammalian evolution to finetune transcriptional regulation of the serotonin expression....

  7. Biodistribution and dosimetry of {sup 123}I-mZIENT: a novel ligand for imaging serotonin transporters

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, Alice [NHS Greater Glasgow and Clyde, Department of Nuclear Medicine, Southern General Hospital, Glasgow (United Kingdom); Krishnadas, Rajeev [University of Glasgow, Sackler Institute of Psychobiological Research, Glasgow (United Kingdom); Champion, Sue [University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow (United Kingdom); Tamagnan, Gilles [Institute for Neurodegenerative Disorders, New Haven, CT (United States); Stehouwer, Jeffrey S.; Goodman, Mark M. [Emory University, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Hadley, Donald M. [NHS Greater Glasgow and Clyde, Department of Neuro-Radiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Pimlott, Sally L. [NHS Greater Glasgow and Clyde, West of Scotland Radionuclide Dispensary, Glasgow (United Kingdom)

    2012-05-15

    {sup 123}I-labelled mZIENT (2{beta}-carbomethoxy-3{beta}-(3'-((Z)-2-iodoethenyl)phenyl)nortropane) has been developed as a radioligand for the serotonin transporter. The aim of this preliminary study was to assess its whole-body biodistribution in humans and estimate dosimetry. Three healthy controls and three patients receiving selective serotonin reuptake inhibitor (SSRI) therapy for depression were included (two men, four women, age range 41-56 years). Whole-body imaging, brain SPECT imaging and blood and urine sampling were performed. Whole-body images were analysed using regions of interest (ROIs), time-activity curves were derived using compartmental analysis and dosimetry estimated using OLINDA software. Brain ROI analysis was performed to obtain specific-to-nonspecific binding ratios in the midbrain, thalamus and striatum. Initial high uptake in the lungs decreased in later images. Lower uptake was seen in the brain, liver and intestines. Excretion was primarily through the urinary system. The effective dose was estimated to be of the order of 0.03 mSv/MBq. The organ receiving the highest absorbed dose was the lower large intestine wall. Uptake in the brain was consistent with the known SERT distribution with higher specific-to-nonspecific binding in the midbrain, thalamus and striatum in healthy controls compared with patients receiving SSRI therapy. {sup 123}I-mZIENT may be a promising radioligand for imaging the serotonin transporters in humans with acceptable dosimetry. (orig.)

  8. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease.

    Science.gov (United States)

    Pawlak, Dariusz; Domaniewski, Tomasz; Znorko, Beata; Oksztulska-Kolanek, Ewa; Lipowicz, Paweł; Doroszko, Michał; Karbowska, Malgorzata; Pawlak, Krystyna

    2017-12-01

    Chronic kidney disease (CKD) results in decreased bone strength. Serotonin (5-HT) is one of the critical regulators of bone health, fulfilling distinct functions depending on its synthesis site: brain-derived serotonin (BDS) favors osteoblast proliferation, whereas gut-derived serotonin (GDS) inhibits it. We assessed the role of BDS and peripheral leptin in the regulation of bone metabolism and strength in young rats with 5/6 nephrectomy. BDS synthesis was accelerated during CKD progression. Decreased peripheral leptin in CKD rats was inversely related to BDS content in the hypothalamus, brainstem and frontal cortex. Serotonin in these brain regions affected bone strength and metabolism in the studied animals. The direct effect of circulating leptin on bone was not shown in uremia. At the molecular level, there was an inverse association between elevated GDS and the expression of cAMP responsive element-binding protein (Creb) gene in bone of CKD animals. In contrast, increased expression of activating transcription factor 4 (Atf4) was shown, which was associated with GDS-dependent transcription factor 1 (Foxo1), clock gene - Cry-1, cell cycle genes: c-Myc, cyclins, and osteoblast differentiation genes. These results identified a previously unknown molecular pathway, by which elevated GDS can shift in Foxo1 target genes from Creb to Atf4-dependent response, disrupting the leptin-BDS - dependent gene pathway in the bone of uremic rats. Thus, in the condition of CKD the effect of BDS and GDS on bone metabolism and strength can't be distinguished. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. High precision laser control of the ATLAS tile-calorimeter module mass production at JINR

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, Yu.; Flyagin, V.; Khubua, D.; Lomakin, Yu.; Lyablin, M.; Rusakovich, N.; Shabalin, D.; Topilin, N.; Nessi, M.

    2001-01-01

    We present a short description of our last few years experience in the quality control of the ATLAS hadron barrel tile-calorimeter module mass production at JINR. A Laser Measurement System (LMS) proposed and realized in Dubna guarantees a high-precision module assembly. The non-planarity of module size surfaces (1.9x5.6 m) controlled area is well within the required ±0.6 mm tolerance for each of JINR assembled modules. The module assembly technique achieved with the LMS system allows us to deliver to CERN one module every 2 weeks. This laser-based measurement system could be used in future for the control measurement of other large-scale units during the ATLAS assembly

  10. Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster.

    Science.gov (United States)

    Johnson, O; Becnel, J; Nichols, C D

    2011-09-29

    Learning and memory in the fruit fly, Drosophila melanogaster, is a complex behavior with many parallels to mammalian learning and memory. Although many neurotransmitters including acetylcholine, dopamine, glutamate, and GABA have previously been demonstrated to be involved in aversive olfactory learning and memory, the role of serotonin has not been well defined. Here, we present the first evidence of the involvement of individual serotonin receptors in olfactory learning and memory in the fly. We initially followed a pharmacological approach, utilizing serotonin receptor agonists and antagonists to demonstrate that all serotonin receptor families present in the fly are necessary for short-term learning and memory. Isobolographic analysis utilizing combinations of drugs revealed functional interactions are occurring between 5-HT(1A)-like and 5-HT(2), and 5-HT(2) and 5-HT(7) receptor circuits in mediating short-term learning and memory. Examination of long-term memory suggests that 5-HT(1A)-like receptors are necessary for consolidation and important for recall, 5-HT(2) receptors are important for consolidation and recall, and 5-HT(7) receptors are involved in all three phases. Importantly, we have validated our pharmacological results with genetic experiments and showed that hypomorph strains for 5-HT(2)Dro and 5-HT(1B)Dro receptors, as well as knockdown of 5-HT(7)Dro mRNA, significantly impair performance in short-term memory. Our data highlight the importance of the serotonin system and individual serotonin receptors to influence olfactory learning and memory in the fly, and position the fly as a model system to study the role of serotonin in cognitive processes relevant to mammalian CNS function. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Designing an Electro-Hydraulic Control Module for an Open-Circuit Variable Displacement Pump

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2005-01-01

    , in the form of an electric control signal, under varying working conditions, when having access to engine speed and actual pump pressure. The paper presents a model of both the pump and the control module, along with design considerations on which linear controllers are developed for a worst point......This paper deals with the problem of designing an electric control module for a Sauer-Danfoss Series 45 H-frame open circuit axial piston pump. The purpose of the electric control module is to replace the existing hydro-mechanical (LS) regulator, and enable the pump to follow a reference pressure...

  12. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular CarcinomaSummary

    Directory of Open Access Journals (Sweden)

    Qiqi Yang

    2017-05-01

    Full Text Available Background & Aims: Hepatocellular carcinoma (HCC occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. Methods: By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. Results: Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgfb1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. Conclusions: In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males. Keywords: Liver Cancer, TGFB1, Kras, Zebrafish

  13. Acute tryptophan depletion dose dependently impairs object memory in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Olivier, J D A; Jans, L A W; Korte-Bouws, G A H; Korte, S M; Deen, P M T; Cools, A R; Ellenbroek, B A; Blokland, A

    2008-01-01

    RATIONALE: Acute tryptophan depletion (ATD) transiently lowers central serotonin levels and can induce depressive mood states and cognitive defects. Previous studies have shown that ATD impairs object recognition in rats. OBJECTIVES: As individual differences exist in central serotonin

  14. Role of Serotonin Neurons in L-DOPA- and Graft-Induced Dyskinesia in a Rat Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Eunju Shin

    2012-01-01

    Full Text Available L-DOPA, the most effective drug to treat motor symptoms of Parkinson's disease, causes abnormal involuntary movements, limiting its use in advanced stages of the disease. An increasing body of evidence points to the serotonin system as a key player in the appearance of L-DOPA-induced dyskinesia (LID. In fact, exogenously administered L-DOPA can be taken up by serotonin neurons, converted to dopamine and released as a false transmitter, contributing to pulsatile stimulation of striatal dopamine receptors. Accordingly, destruction of serotonin fibers or silencing serotonin neurons by serotonin agonists could counteract LID in animal models. Recent clinical work has also shown that serotonin neurons are present in the caudate/putamen of patients grafted with embryonic ventral mesencephalic cells, producing intense serotonin hyperinnervation. These patients experience graft-induced dyskinesia (GID, a type of dyskinesia phenotypically similar to the one induced by L-DOPA but independent from its administration. Interestingly, the 5-HT1A receptor agonist buspirone has been shown to suppress GID in these patients, suggesting that serotonin neurons might be involved in the etiology of GID as for LID. In this paper we will discuss the experimental and clinical evidence supporting the involvement of the serotonin system in both LID and GID.

  15. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.

    Science.gov (United States)

    Badawy, Abdulla A-B

    2013-10-01

    It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.

  16. EPICS IOC module development and implementation for the ISTTOK machine subsystem operation and control

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo, E-mail: pricardofc@ipfn.ist.utl.pt [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Duarte, Andre; Pereira, Tiago; Carvalho, Bernardo; Sousa, Jorge; Fernandes, Horacio [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Correia, Carlos [Grupo de Electronica e Instrumentacao-Centro de Instrumentacao, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Goncalves, Bruno; Varandas, Carlos [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal)

    2011-10-15

    This paper presents a developed, tested and integrated EPICS IOC (I/O controller) module solution for the ISTTOK tokamak machine operation and control for the vacuum and gas injection systems. The work is organized in two software layers which communicate through a serial RS-232 communication protocol. The first software layer is an EPICS IOC module running as a computer server application capable of receiving requests from remote or local clients providing driver interface to the system by forwarding requested commands and receiving system and control operation status. The second software layer is the firmware running in Microchip dsPIC microcontroller modules which performs the interface from RS-232 optical fiber serial protocol to EPICS IOC module. The dsPIC module communicates to the ISTTOK tokamak sensors and actuators via RS-485 and is programmed with a new protocol developed for this purpose that allows EPICS IOC module command sending/receiving, machine operation control and monitoring and system status information. Communication between EPICS IOC module and clients is achieved via a TCP/IP and UDP protocol referred as Channel Access. In addition, the EPICS IOC module provides user client applications access allowing operators to perform remote or local monitoring, operation and control.

  17. Effects of exercise on depressive behavior and striatal levels of norepinephrine, serotonin and their metabolites in sleep-deprived mice.

    Science.gov (United States)

    Daniele, Thiago Medeiros da Costa; de Bruin, Pedro Felipe Carvalhedo; Rios, Emiliano Ricardo Vasconcelos; de Bruin, Veralice Meireles Sales

    2017-08-14

    Exercise is a promising adjunctive therapy for depressive behavior, sleep/wake abnormalities, cognition and motor dysfunction. Conversely, sleep deprivation impairs mood, cognition and functional performance. The objective of this study is to evaluate the effects of exercise on anxiety and depressive behavior and striatal levels of norepinephrine (NE), serotonin and its metabolites in mice submitted to 6h of total sleep deprivation (6h-TSD) and 72h of Rapid Eye Movement (REM) sleep deprivation (72h-REMSD). Experimental groups were: (1) mice submitted to 6h-TSD by gentle handling; (2) mice submitted to 72h-REMSD by the flower pot method; (3) exercise (treadmill for 8 weeks); (4) exercise followed by 6h-TSD; (5) exercise followed by 72h-REMSD; (6) control (home cage). Behavioral tests included the Elevated Plus Maze and tail-suspension. NE, serotonin and its metabolites were determined in the striatum using high-performance liquid chromatography (HPLC). Sleep deprivation increased depressive behavior (time of immobilization in the tail-suspension test) and previous exercise hindered it. Sleep deprivation increased striatal NE and previous exercise reduced it. Exercise only was associated with higher levels of serotonin. Furthermore, exercise reduced serotonin turnover associated with sleep deprivation. In brief, previous exercise prevented depressive behavior and reduced striatal high NE levels and serotonin turnover. The present findings confirm the effects of exercise on behavior and neurochemical alterations associated with sleep deprivation. These findings provide new avenues for understanding the mechanisms of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Efficacy of serotonin in lessening radiation damage to mouse embryo depending on time of its administration following radiation exposure

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Dontsova, G.V.; Panaeva, S.V.; Turpaev, T.M.

    1994-01-01

    Our earlier studies demonstrated that serotonin lessons radiation damage to an 8-day mouse embryo. Moreover, this biogenic amine was equally effective when administered before and after intrauterine exposure of the embryo to ionizing radiation. The radiotherapeutic effect of serotonin was manifested by disorders in the embryo growth of various intensity, within the range of the studied radiation doses (1.31, 1.74, and 2.18 Gy). The therapeutic effect of serotonin in the embryos exposed to various doses of radiation depended on the amount of serotonin administered. The effective doses of this substance were determined by the severity of the damage inflicted. In this series of experiments, serotonin was administered immediately after exposure to ionizing radiation. The object of the present study was to determine whether or not the radiotherapeutic effect of serotonin depends on the time that elapses between the end of radiation exposure and the administration of serotonin to pregnant mice. It was established that serotonin produces a radiotherapeutic effect during 24 h following the intrauterine exposure of the fetus to ionizing radiation on the 8th day of gestation. The best therapeutic effect is attained with the administration of serotonin immediately after radiation exposure. The effect is slightly lower is serotonin is administered within 5 or 24 h following radiation exposure

  19. Visualisation of serotonin-1A (5-HT{sub 1A}) receptors in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Passchier, J.; Waarde, A. van [PET Center, University Hospital Groningen (Netherlands)

    2001-01-01

    The 5-HT{sub 1A} subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT{sub 1A} receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-{sup 11}C] WAY-100635 (WAY), [carbonyl-{sup 11}C]desmethyl-WAY-100635 (DWAY), p-[{sup 18}F]MPPF and [{sup 11}C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT{sub 1A} receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  20. Perinatal serotonergic activity: A decisive factor in the control of food intake

    Directory of Open Access Journals (Sweden)

    Isabeli Lins PINHEIRO

    Full Text Available ABSTRACT The serotoninergic system controls key events related to proper nervous system development. The neurotransmitter serotonin and the serotonin transporter are critical for this control. Availability of these components is minutely regulated during the development period, and the environment may affect their action on the nervous system. Environmental factors such as undernutrition and selective serotonin reuptake inhibitors may increase the availability of serotonin in the synaptic cleft and change its anorectic action. The physiological responses promoted by serotonin on intake control decrease when requested by acute stimuli or stress, demonstrating that animals or individuals develop adaptations in response to the environmental insults they experience during the development period. Diseases, such as anxiety and obesity, appear to be associated with the body’s response to stress or stimulus, and require greater serotonergic system action. These findings demonstrate the importance of the level of serotonin in the perinatal period to the development of molecular and morphological aspects of food intake control, and its decisive role in understanding the possible environmental factors that cause diseases in adulthood.

  1. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  2. The distribution and function of serotonin in the large milkweed bug, Oncopeltus fasciatus. a comparative study with the blood-feeding bug, Rhodnius prolixus.

    Science.gov (United States)

    Miggiani, L; Orchard, I; TeBrugge, V

    1999-11-01

    The blood-feeding hemipteran, Rhodnius prolixus, ingests a large blood meal at the end of each larval stage. To accommodate and process this meal, its cuticle undergoes plasticisation, and its gut and Malpighian tubules respectively absorb and secrete a large volume of water and salts for rapid diuresis. Serotonin has been found to be integral to the feeding process in this animal, along with a diuretic peptide(s). The large milkweed bug, Oncopeltus fasciatus, tends to feed in a more continuous and abstemious manner, and therefore may have different physiological requirements than the blood feeder. Unlike R. prolixus, O. fasciatus is lacking serotonin-like immunoreactive dorsal unpaired median neurons in the mesothoracic ganglionic mass, and lacks serotonin-like immunoreactive neurohaemal areas and processes on the abdominal nerves, integument, salivary glands, and anterior junction of the foregut and crop. The salivary glands and crop do, however, respond to serotonin with increased levels of cAMP, while the integument and Malpighian tubules do not. In addition, O. fasciatus Malpighian tubules respond to both O. fasciatus and R. prolixus partially purified CNS extracts, which are likely to contain any native diuretic peptides. Thus, while serotonin and diuretic peptides may be involved in tubule control in R. prolixus, the latter may be of greater importance in O. fasciatus.

  3. Hypoxia-induced increases in serotonin-immunoreactive nerve fibers in the medulla oblongata of the rat.

    Science.gov (United States)

    Morinaga, Ryosuke; Nakamuta, Nobuaki; Yamamoto, Yoshio

    2016-10-01

    Hypoxia induces respiratory responses in mammals and serotonergic neurons in the medulla oblongata participate in respiratory control. However, the morphological changes in serotonergic neurons induced by hypoxia have not yet been examined and respiratory controls of serotonergic neurons have not been clarified. We herein investigated the distribution of immunoreactivity for serotonin (5-hydroxytryptamine; 5-HT) in the medulla oblongata of control rats and rats exposed to 1-6h of hypoxia (10% O 2 ). We also examined the medulla oblongata by multiple immunofluorescence labeling for 5-HT, neurokinin 1 receptors (NK1R), a marker for some respiratory neurons in the pre-Bötzinger complex (PBC), and dopamine β-hydroxylase (DBH), a marker for catecholaminergic neurons. The number of 5-HT-immunoreactive nerve cell bodies in the raphe nuclei was higher in rats exposed to hypoxia than in control rats. The number of 5-HT-immunoreactive nerve fibers significantly increased in the rostral ventrolateral medulla of rats exposed to 1-6h of hypoxia, caudal ventrolateral medulla of rats exposed to 2-6h of hypoxia, and lateral part of the nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of rats exposed to 1-2h of hypoxia. Multiple immunofluorescence labeling showed that 5-HT-immunoreactive nerve fibers were close to NK1R-immunoreactive neurons in ventrolateral medulla and to DBH-immunoreactive neurons in the medulla. These results suggest that serotonergic neurons partly regulate respiratory control under hypoxic conditions by modulating the activity of NK1R-expressing and catecholaminergic neurons. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Application of EASY5 and MMS modules to BWR controller design

    International Nuclear Information System (INIS)

    Carmichael, L.A.; Rayes, L.; Yasutake, T.

    1987-01-01

    The application of EPRI's MMS Library and BCS' EASY5 simulation language to the design of a digital feedwater control system for the Monticello Boiling Water Nuclear Power Plant is discussed. In order to first design and then verify the digital feedwater controller algorithms, a digital simulation model of the Monticello plant was constructed using a combination of custom designed modules, existing MMS two-phase library modules, and standard modules available in the EASY5 library. Details of the process models, namely the BWR nuclear steam supply system, the steamline piping, and the feedwater piping are described in a companion paper. Details of the models for the existing BWR turbine pressure inlet pressure control and recirculation flow control system are described. These models are required to be operational during the transient analysis portion of the feedwater controller design verification, since they interact strongly with the reactor steam flow and water level. The design of the digital feedwater flow control loop is described. Its design is of particular interest because it requires consideration of control loop interaction and is, therefore, a simple example of multivariable non-interacting control design

  5. Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans

    DEFF Research Database (Denmark)

    Christensen, Anne Munch; Faaborg-Andersen, S.; Ingerslev, Flemming

    2007-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications. primarily in the treatment of clinical depression. They are among the pharmaceuticals most often Prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds with an identi......Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications. primarily in the treatment of clinical depression. They are among the pharmaceuticals most often Prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds...... with an identical mechanism of action in mammals (inhibit reuptake of serotonin), and they have been found in different aqeous as well as biological samples collected in the environment. In the present study, we tested the toxicities of five SSRIs (citalopram, fluoxetine, fluoxamine, paroxetine, and sertraline.......027 to 1.6 mg/L, and in daphnids, test EC50s ranged from 0.92 to 20 mg/L, with sertraline being one of the most toxic compounds. The test design and statistical analysis of results from mixture tests were based on isobole analysis. It was demonstrated that the mixture toxicity of the SSRIs in the two...

  6. Upper gastrointestinal bleeding in a patient with depression receiving selective serotonin reuptake inhibitor therapy.

    Science.gov (United States)

    Kumar, Deepak; Saaraswat, Tanuj; Sengupta, S N; Mehrotra, Saurabh

    2009-02-01

    Serotonin plays an important role in the normal clotting phenomenon and is released by platelets. Platelets are dependent on a serotonin transporter for the uptake of serotonin, as they cannot synthesize it themselves. Selective serotonin reuptake inhibitors (SSRIs) block the uptake of serotonin into platelets and can cause problems with clotting leading to bleeding. This case report highlights the occurrence of upper gastrointestinal bleeding in the index case on initiating SSRI therapy for depression and the prompt resolution of the same on its discontinuation on two separate occasions. SSRIs may cause upper gastrointestinal (GI) bleeding. Physicians should be aware of the same and should try to rule out previous episodes of upper GI bleed or the presence of other risk factors which might predispose to it before prescribing SSRIs; they should also warn the patients about this potential side effect. Also, the presence of thalassemia trait in the index patient deserves special attention and needs to be explored to see if it might in any way contribute in potentiating this side effect of SSRIs.

  7. Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs.

    Science.gov (United States)

    Stracke, Jenny; Otten, Winfried; Tuchscherer, Armin; Puppe, Birger; Düpjan, Sandra

    2017-05-15

    Cognitive and affective processes are highly interrelated. This has implications for neuropsychiatric disorders such as major depressive disorder in humans but also for the welfare of non-human animals. The brain serotonergic system might play a key role in mediating the relationship between cognitive functions and affective regulation. The aim of our study was to examine the influence of serotonin depletion on the affective state and cognitive processing in pigs, an important farm animal species but also a potential model species for biomedical research in humans. For this purpose, we modified a serotonin depletion model using para-chlorophenylalanine (pCPA) to decrease serotonin levels in brain areas involved in cognitive and affective processing (part 1). The consequences of serotonin depletion were then measured in two behavioral tests (part 2): the spatial judgement task (SJT), providing information about the effects of the affective state on cognitive processing, and the open field/novel object (OFNO) test, which measures behavioral reactions to novelty that are assumed to reflect affective state. In part 1, 40 pigs were treated with either pCPA or saline for six consecutive days. Serotonin levels were assessed in seven different brain regions 4, 5, 6, 11 and 13days after the first injection. Serotonin was significantly depleted in all analyzed brain regions up to 13days after the first application. In part 2, the pCPA model was applied to 48 animals in behavioral testing. Behavioral tests, the OFNO test and the SJT, were conducted both before and after pCPA/saline injections. While results from the OFNO tests were inconclusive, an effect of treatment as well as an effect of the phase (before and after treatment) was observed in the SJT. Animals treated with pCPA showed more pessimistic-like behavior, suggesting a more negative affective state due to serotonin depletion. Thus, our results confirm that the serotonergic system is a key player in cognitive

  8. Traumatic injury induces changes in the expression of the serotonin 1A receptor in the spinal cord of lampreys.

    Science.gov (United States)

    Cornide-Petronio, María Eugenia; Fernández-López, Blanca; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2014-02-01

    After spinal cord injury (SCI) in mammals, the loss of serotonin coming from the brainstem reduces the excitability of motor neurons and leads to a compensatory overexpression of serotonin receptors. Despite the key role of the serotonin receptor 1a in the control of locomotion, little attention has been put in the study of this receptor after SCI. In contrast to mammals, lampreys recover locomotion after a complete SCI, so, studies in this specie could help to understand events that lead to recovery of function. Here, we showed that in lampreys there is an acute increase in the expression of the serotonin 1A receptor transcript (5-ht1a) after SCI and a few weeks later expression levels go back to normal rostrally and caudally to the lesion. Overexpression of the 5-ht1a in rostral levels after SCI has not been reported in mammals, suggesting that this could be part of the plastic events that lead to the recovery of function in lampreys. The analysis of changes in 5-ht1a expression by zones (periventricular region and horizontally extended grey matter) showed that they followed the same pattern of changes detected in the spinal cord as a whole, with the exception of the caudal periventricular layer, where no significant differences were observed between control and experimental animals at any time post lesion. This suggests that different molecular signals act on the periventricular cells of the rostral and caudal regions to injury site and thus affecting their response to the injury in terms of expression of the 5-ht1a.

  9. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder.

    Science.gov (United States)

    Soloff, Paul H; Chiappetta, Laurel; Mason, Neale Scott; Becker, Carl; Price, Julie C

    2014-06-30

    Impulsivity and aggressiveness are personality traits associated with a vulnerability to suicidal behavior. Behavioral expression of these traits differs by gender and has been related to central serotonergic function. We assessed the relationships between serotonin-2A receptor function, gender, and personality traits in borderline personality disorder (BPD), a disorder characterized by impulsive-aggression and recurrent suicidal behavior. Participants, who included 33 BPD patients and 27 healthy controls (HC), were assessed for Axis I and II disorders with the Structured Clinical Interview for DSM-IV and the International Personality Disorders Examination, and with the Diagnostic Interview for Borderline Patients-Revised for BPD. Depressed mood, impulsivity, aggression, and temperament were assessed with standardized measures. Positron emission tomography with [(18)F]altanserin as ligand and arterial blood sampling was used to determine the binding potentials (BPND) of serotonin-2A receptors in 11 regions of interest. Data were analyzed using Logan graphical analysis, controlling for age and non-specific binding. Among BPD subjects, aggression, Cluster B co-morbidity, antisocial PD, and childhood abuse were each related to altanserin binding. BPND values predicted impulsivity and aggression in BPD females (but not BPD males), and in HC males (but not HC females.) Altanserin binding was greater in BPD females than males in every contrast, but it did not discriminate suicide attempters from non-attempters. Region-specific differences in serotonin-2A receptor binding related to diagnosis and gender predicted clinical expression of aggression and impulsivity. Vulnerability to suicidal behavior in BPD may be related to serotonin-2A binding through expression of personality risk factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available A set of 14 insulin-producing cells (IPCs in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5. Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  11. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Science.gov (United States)

    Luo, Jiangnan; Lushchak, Oleh V; Goergen, Philip; Williams, Michael J; Nässel, Dick R

    2014-01-01

    A set of 14 insulin-producing cells (IPCs) in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5). Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  12. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness.

    Science.gov (United States)

    Aznar, Susana; Klein, Anders B; Santini, Martin A; Knudsen, Gitte M; Henn, Fritz; Gass, Peter; Vollmayr, Barbara

    2010-07-01

    Epidemiological studies have revealed a strong genetic contribution to the risk for depression. Both reduced hippocampal serotonin neurotransmission and brain-derived neurotrophic factor (BDNF) levels have been associated with increased depression vulnerability and are also regulated during aging. Brains from young (5 months old) and old (13 months old) congenital Learned Helplessness rats (cLH), and congenital Non Learned Helplessness rats (cNLH) were immunohistochemically stained for the serotonin transporter and subsequently stereologically quantified for estimating hippocampal serotonin fiber density. Hippocampal BDNF protein levels were measured by ELISA. An exacerbated age-related loss of serotonin fiber density specific for the CA1 area was observed in the cLH animals, whereas reduced hippocampal BDNF levels were seen in young and old cLH when compared with age-matched cNLH controls. These observations indicate that aging should be taken into account when studying the neurobiological factors behind the vulnerability for depression and that understanding the effect of aging on genetically predisposed individuals may contribute to a better understanding of the pathophysiology behind depression, particularly in the elderly.

  13. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line.

    Science.gov (United States)

    Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E

    2013-12-12

    The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular

  14. Serotonin transporter gene (SLC6A4) polymorphism and susceptibility to a home-visiting maternal-infant attachment intervention delivered by community health workers in South Africa: Reanalysis of a randomized controlled trial.

    Science.gov (United States)

    Morgan, Barak; Kumsta, Robert; Fearon, Pasco; Moser, Dirk; Skeen, Sarah; Cooper, Peter; Murray, Lynne; Moran, Greg; Tomlinson, Mark

    2017-02-01

    Clear recognition of the damaging effects of poverty on early childhood development has fueled an interest in interventions aimed at mitigating these harmful consequences. Psychosocial interventions aimed at alleviating the negative impacts of poverty on children are frequently shown to be of benefit, but effect sizes are typically small to moderate. However, averaging outcomes over an entire sample, as is typically done, could underestimate efficacy because weaker effects on less susceptible individuals would dilute estimation of effects on those more disposed to respond. This study investigates whether a genetic polymorphism of the serotonin transporter gene moderates susceptibility to a psychosocial intervention. We reanalyzed data from a randomized controlled trial of a home-visiting program delivered by community health workers in a black, isiXhosa-speaking population in Khayelitsha, South Africa. The intervention, designed to enhance maternal-infant attachment, began in the third trimester and continued until 6 mo postpartum. Implemented between April 1999 and February 2003, the intervention comprised 16 home visits delivered to 220 mother-infant dyads by specially trained community health workers. A control group of 229 mother-infant dyads did not receive the intervention. Security of maternal-infant attachment was the main outcome measured at infant age 18 mo. Compared to controls, infants in the intervention group were significantly more likely to be securely attached to their primary caregiver (odds ratio [OR] = 1.7, p = 0.029, 95% CI [1.06, 2.76], d = 0.29). After the trial, 162 intervention and 172 control group children were reenrolled in a follow-up study at 13 y of age (December 2012-June 2014). At this time, DNA collected from 279 children (134 intervention and 145 control) was genotyped for a common serotonin transporter polymorphism. There were both genetic data and attachment security data for 220 children (110 intervention and 110 control), of

  15. Serotonin transporter gene (SLC6A4 polymorphism and susceptibility to a home-visiting maternal-infant attachment intervention delivered by community health workers in South Africa: Reanalysis of a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Barak Morgan

    2017-02-01

    Full Text Available Clear recognition of the damaging effects of poverty on early childhood development has fueled an interest in interventions aimed at mitigating these harmful consequences. Psychosocial interventions aimed at alleviating the negative impacts of poverty on children are frequently shown to be of benefit, but effect sizes are typically small to moderate. However, averaging outcomes over an entire sample, as is typically done, could underestimate efficacy because weaker effects on less susceptible individuals would dilute estimation of effects on those more disposed to respond. This study investigates whether a genetic polymorphism of the serotonin transporter gene moderates susceptibility to a psychosocial intervention.We reanalyzed data from a randomized controlled trial of a home-visiting program delivered by community health workers in a black, isiXhosa-speaking population in Khayelitsha, South Africa. The intervention, designed to enhance maternal-infant attachment, began in the third trimester and continued until 6 mo postpartum. Implemented between April 1999 and February 2003, the intervention comprised 16 home visits delivered to 220 mother-infant dyads by specially trained community health workers. A control group of 229 mother-infant dyads did not receive the intervention. Security of maternal-infant attachment was the main outcome measured at infant age 18 mo. Compared to controls, infants in the intervention group were significantly more likely to be securely attached to their primary caregiver (odds ratio [OR] = 1.7, p = 0.029, 95% CI [1.06, 2.76], d = 0.29. After the trial, 162 intervention and 172 control group children were reenrolled in a follow-up study at 13 y of age (December 2012-June 2014. At this time, DNA collected from 279 children (134 intervention and 145 control was genotyped for a common serotonin transporter polymorphism. There were both genetic data and attachment security data for 220 children (110 intervention and

  16. There is an association between selective serotonin reuptake inhibitor use and uncomplicated peptic ulcers: a population-based case-control study

    DEFF Research Database (Denmark)

    Dall, M; Schaffalitzky de Muckadell, O B; Lassen, Annmarie Touborg

    2010-01-01

    Persons who use serotonin reuptake inhibitors (SSRIs) seem to be at increased risk of having serious upper gastrointestinal bleeding. In vitro studies have shown that SSRIs inhibit platelet aggregation. It remains unknown if SSRIs have a direct ulcerogenic effect....

  17. A Module For Thermal Pest Control In Stored Raw Materials Used In ...

    African Journals Online (AJOL)

    Pests are heterogeneous both in space and time, creating gradients and patterns depending on the prevailing environmental variables. Pest control efforts have utilized manipulations of these variables. This project is ona module for thermal control of pests using the hitherto waste steam from the indusries. The module is an ...

  18. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: involvement of serotonin.

    Science.gov (United States)

    Benammi, Hind; El Hiba, Omar; Romane, Abderrahmane; Gamrani, Halima

    2014-06-01

    Anxiety is one of the most common mental disorders sharing extreme or pathological anxiety states as the primary disturbance in mood or emotional tone, with increased fear and exaggerated acute stress responses. Medicinal plants are very variable, but some of them are used as a spice such as curcumin (Curcuma longa). Curcumin shows a wide range of pharmacological potentialities, however, little is known about its anxiolytic properties. The aim of our study was to assess the anti-anxiety potential of curcumin extract against experimental lead induced-anxiety in rats. Experiments were carried out on male Wistar rats intoxicated acutely with an intraperitoneal injection of Pb (25mg/kg B.W.) and/or concomitantly with administration of curcumin (30 mg/kg B.W.) for 3 days. Using immunohistochemistry and anxiety assessment tests (dark light box and elevated plus maze), we evaluated, respectively, the expression of serotonin (5HT) in the dorsal raphe nucleus (DRN) and the anxiety state in our animals. Our results showed, for the first time, a noticeable anxiolytic effect of curcumin against lead induced anxiety in rats and this may possibly result from modulation of central neuronal monoaminergic neurotransmission, especially serotonin, which has shown a significant reduction of the immunoreactivity within the DRN. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Pulsewidth modulated DC-to-DC power conversion circuits, dynamics, and control designs

    CERN Document Server

    Choi, Byungcho

    2013-01-01

    This is the definitive reference for anyone involved in pulsewidth modulated DC-to-DC power conversion Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs provides engineers, researchers, and students in the power electronics field with comprehensive and complete guidance to understanding pulsewidth modulated (PWM) DC-to-DC power converters. Presented in three parts, the book addresses the circuitry and operation of PWM DC-to-DC converters and their dynamic characteristics, along with in-depth discussions of control design of PWM DC-to

  20. Bright versus dim ambient light affects subjective well-being but not serotonin-related biological factors.

    Science.gov (United States)

    Stemer, Bettina; Melmer, Andreas; Fuchs, Dietmar; Ebenbichler, Christoph; Kemmler, Georg; Deisenhammer, Eberhard A

    2015-10-30

    Light falling on the retina is converted into an electrical signal which stimulates serotonin synthesis. Previous studies described an increase of plasma and CNS serotonin levels after bright light exposure. Ghrelin and leptin are peptide hormones which are involved in the regulation of hunger/satiety and are related to serotonin. Neopterin and kynurenine are immunological markers which are also linked to serotonin biosynthesis. In this study, 29 healthy male volunteers were exposed to bright (5000lx) and dim (50lx) light conditions for 120min in a cross-over manner. Subjective well-being and hunger as well as various serotonin associated plasma factors were assessed before and after light exposure. Subjective well-being showed a small increase under bright light and a small decrease under dim light, resulting in a significant interaction between light condition and time. Ghrelin concentrations increased significantly under both light conditions, but there was no interaction between light and time. Correspondingly, leptin decreased significantly under both light conditions. Hunger increased significantly with no light-time interaction. We also found a significant decrease of neopterin, tryptophan and tyrosine levels, but no interaction between light and time. In conclusion, ambient light was affecting subjective well-being rather than serotonin associated biological factors. Copyright © 2015. Published by Elsevier Ireland Ltd.

  1. Mathematical analysis and coordinated current allocation control in battery power module systems

    Science.gov (United States)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  2. A serum and platelet-rich plasma serotonin assay using liquid chromatography tandem mass spectrometry for monitoring of neuroendocrine tumor patients.

    Science.gov (United States)

    Korse, Catharina M; Buning-Kager, Johanna C G M; Linders, Theodora C; Heijboer, Annemieke C; van den Broek, Daan; Tesselaar, Margot E T; van Tellingen, Olaf; van Rossum, Huub H

    2017-06-01

    Serotonin is used for the diagnosis and follow-up of neuroendocrine tumors (NET). We describe the analytical and clinical validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) based serotonin assay for serum and platelet-rich plasma (PRP). An LC-MS/MS based method for serum and PRP serotonin was validated by determination of assay imprecision, carry-over, linearity, interference, recovery, sample stability and a matrix/method comparison of serum and PRP serotonin was made with whole blood serotonin. Furthermore, upper limits of normal were determined and serotonin concentrations of healthy individuals, 14 NET patients without evidence of disease and 51 NET patients with evidence of disease were compared. For serum and PRP fractions, total assay imprecision was serotonin upper limit of normal were 5.5nmol/10 9 platelet and 5.1nmol/10 9 platelet, respectively. NET patients with confirmed evidence of disease had significantly higher serum and PRP serotonin levels when compared to NET patients without evidence of disease and healthy volunteers. LC-MS/MS based serum and PRP serotonin assays were developed with suitable analytical characteristics. Furthermore, serum and PRP serotonin was found to be useful for monitoring NET patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Logic and control module for the Fermilab booster beam damper

    International Nuclear Information System (INIS)

    Sandberg, B.R.

    1977-01-01

    A logic and control module is included in the electronic system of the booster superdamper. This module produces a 9-bit digital word that controls the delay of beam bunch position information in the Fermilab booster synchrotron so that it arrives at the damping electrodes at the same time as the bunch of beam to be corrected. This delay word generator also has an output feature that only allows delay time decreases as the booster synchrotron frequency program increases monotonically. Such a feature guards against low-index incidental FM from affecting the delay computations

  4. Ethanol intake and 3H-serotonin uptake II: A study in alcoholic patients using platelets 3H-paroxetine binding

    International Nuclear Information System (INIS)

    Daoust, M.; Boucly, P.; Ernouf, D.; Breton, P.; Lhuintre, J.P.

    1991-01-01

    The kinetic parameters of 3 H-paroxetine binding and 3 H-serotonin uptake were studied in platelets of alcoholic patients. There was no difference between alcoholic and non alcoholic subjects in 3 H-paroxetine binding. When binding and 3 H-serotonin uptake were studied, in the same plasma of the same subjects, the Vmax of serotonin uptake was increased in alcoholics. The data confirm the involvement of serotonin uptake system in alcohol dependance and suggest that serotonin uptake and paroxetine binding sites may be regulated independently in this pathology

  5. Prenatal serotonin reuptake inhibitor (SRI antidepressant exposure and serotonin transporter promoter genotype (SLC6A4 influence executive functions at 6 years of age

    Directory of Open Access Journals (Sweden)

    Whitney eWeikum

    2013-10-01

    Full Text Available Prenatal exposure to serotonin reuptake inhibitor (SRI antidepressants and maternal depression may affect prefrontal cognitive skills (executive functions; EFs including self-control, working memory and cognitive flexibility. We examined long-term effects of prenatal SRI exposure on EFs to determine whether effects are moderated by maternal mood and/or genetic variations in SLC6A4 (a gene that codes for the serotonin transporter [5-HTT] central to the regulation of synaptic serotonin levels and behavior. Children who were exposed to SRIs prenatally (SRI-exposed N=26 and non-exposed (N=38 were studied at age 6 years (M=6.3 SD=0.5 using the Hearts & Flowers task (H&F to assess EFs. Maternal mood was measured during pregnancy (3rd trimester and when the child was age 6 years (Hamilton Depression Scale. Parent reports of child behavior were also obtained (MacArthur Health & Behavior Questionnaire. Parents of prenatally SRI-exposed children reported fewer child externalizing and inattentive (ADHD behaviors. Generalized estimate equation modeling showed a significant 3-way interaction between prenatal SRI exposure, SLC6A4 variant, and maternal mood at the 6-year time-point on H&F accuracy. For prenatally SRI-exposed children, regardless of maternal mood, the H&F accuracy of children with reduced 5HTT expression (a short [S] allele remained stable. Even with increasing maternal depressive symptoms (though all below clinical threshold, EFs of children with at least one short allele were comparable to children with the same genotype whose mothers reported few if any depressive symptoms – in this sense they showed resilience. Children with two long (L alleles were more sensitive to context. When their mothers had few depressive symptoms, LL children showed extremely good EF performance – better than any other group. When their mothers reported more depressive symptoms, LL children’s EF performance was worse than that of any other group.

  6. 5-HT modulation of multiple inward rectifiers in motoneurons in intact preparations of the neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Kjaerulff, Ole; Kiehn, Ole

    2001-01-01

    This study introduces novel aspects of inward rectification in neonatal rat spinal motoneurons (MNs) and its modulation by serotonin (5-HT). Whole cell tight-seal recordings were made from MNs in an isolated lumbar spinal cord preparation from rats 1-2 days of age. In voltage clamp, hyperpolarizi...

  7. Serotonin Syndrome: A Case Report

    Directory of Open Access Journals (Sweden)

    Pedro Oliveira

    2018-01-01

    Full Text Available Serotonin Syndrome (SS is a potentially fatal iatrogenic condition that occurs as a result of an over-stimulation of the serotonergic receptors. Its typical presentation consists of the triad altered mental status, autonomic hyperactivity and neuromuscular alterations, although the clinical condition is highly variable. Despite being potentially treatable, many cases per year are underdiagnosed, a fact that has been mainly attributed to the lack of knowledge of this condition by the physicians. SS treatment relies on four pillars: removal of the precipitating agent and supportive therapy, antagonism of 5-HT2A receptors, and control of agitation, autonomic instability and hyperthermia. It is expected that its incidence will accompany the growth of the prescription of antidepressants, andincreasing physician’s awareness about its occurrence, could contribute to a timely diagnosis and to the success of the treatment. We present a clinical case of a patient diagnosed with Bipolar Affective Disorder, hospitalized for a depressive episode with a psychotic component, which developed a SS compatible condition. Based on this case report the authors undertake a theoretical review of this condition.

  8. High brain serotonin levels in migraine between attacks

    DEFF Research Database (Denmark)

    Deen, Marie; Hansen, Hanne D.; Hougaard, Anders

    2017-01-01

    Objectives To investigate brain 5-HT4-receptor binding with positron emission tomography (PET) as a proxy of serotonin (5-hydroxytryptamine, 5-HT) levels in migraine patients between attacks. Methods Brain 5-HT4-receptor binding, assessed with PET imaging of the specific 5-HT4-receptor radioligand......, [11C]SB207145, is inversely related to long-term changes in brain 5-HT-levels. Eighteen migraine patients without aura (≥48 hours migraine free) and 16 age- and sex-matched controls underwent PET-scanning after injection of [11C]SB207145. Patients who reported a migraine attack ≤48 hours after...... the scan were excluded. The mean neocortical [11C]SB207145 binding potential (BPND) was calculated in a blinded manner. Results Fifteen patients (age 29.6 ± 10.2 years, 2 men) and 16 controls (28.9 ± 10.2 years, 3 men) completed the study. Migraine patients had significantly lower neocortical 5-HT4...

  9. A controlled study of a serotonin reuptake blocker, zimelidine, in the treatment of chronic pain.

    Science.gov (United States)

    Gourlay, G K; Cherry, D A; Cousins, M J; Love, B L; Graham, J R; McLachlan, M O

    1986-04-01

    Zimelidine inhibits the central neuronal reuptake of serotonin and has undergone clinical evaluation as an antidepressant. Twenty patients with chronic pain of non-malignant origin (mean duration 15.8 years) were entered into a double blind cross-over study of the analgesic efficacy of zimelidine and placebo. The duration of each treatment phase was 6 weeks and there was a comprehensive assessment of each patient prior to the commencement and at the completion of the study, during a brief period of hospitalisation. Zimelidine was superior (P less than 0.05) to placebo with respect to pain relief based on a global assessment (by the clinical investigators) performed at the completion of each treatment phase. However, there was no significant difference in analgesic efficacy between the zimelidine and placebo treatment phases based on the following criteria: (a) changes in the minimum effective blood concentration of pethidine necessary to provide pain relief in each patient, measured during a pethidine infusion of 1.67 mg/min for 60 min; (b) changes in pain scores estimated by patients using the visual analogue pain scale (VAPS); (c) changes in patients' estimates of pain intensity associated with various daily activities. Significant pain relief was apparent within 2-3 days in those patients who had a beneficial effect, which contrasts with the documented 3-4 weeks for maximal antidepressant effects. The results of this study suggest that serotonin reuptake blockers do not provide consistent pain relief in patients with chronic pain, but may contribute an analgesic effect in the treatment of some patients.

  10. Reduced availability of serotonin transporters in obsessive-compulsive disorder correlates with symptom severity - a [11C]DASB PET study

    International Nuclear Information System (INIS)

    Reimold, M.; Smolka, M.N.; Zimmer, A.

    2007-01-01

    Reduced availability of brainstem serotonin transporters (5-HTT) has been observed in vivo in obsessive-compulsive disorder (OCD). However, results vary and may be influenced by competition with endogenous serotonin. Using positron emission tomography (PET) and [ 11 C]DASB, a specific 5-HTT ligand that showed no competition with serotonin for 5-HTT binding in vitro, we tested the hypothesis that 5-HTT availability is reduced in OCD patients and correlated with OCD severity. 5-HTT availability in the thalamus and the midbrain was measured in nine drug-free OCD patients and compared with 19 healthy controls, matched for the individual combination of 5-HTT genotype, gender and smoking status. OCD severity was assessed with the Yale-Brown obsessive compulsive scale (Y-BOCS). 5-HTT availability was significantly reduced in the thalamus and midbrain of OCD patients. Age and 5-HTT in the thalamus explained 83 % of OCD severity in patients that were drug-free for at least 1 year. This PET study confirms a central role of the serotonergic system, particularly the thalamus in the pathogenesis of obsessive compulsive disorder. (author)

  11. Crustacean hyperglycemic hormone (cHH as a modulator of aggression in crustacean decapods.

    Directory of Open Access Journals (Sweden)

    Laura Aquiloni

    Full Text Available Biogenic amines, particularly serotonin, are recognised to play an important role in controlling the aggression of invertebrates, whereas the effect of neurohormones is still underexplored. The crustacean Hyperglycemic Hormone (cHH is a multifunctional member of the eyestalk neuropeptide family. We expect that this neuropeptide influences aggression either directly, by controlling its expression, or indirectly, by mobilizing the energetic stores needed for the increased activity of an animal. Our study aims at testing such an influence and the possible reversion of hierarchies in the red swamp crayfish, Procambarus clarkii, as a model organism. Three types of pairs of similarly sized males were formed: (1 'control pairs' (CP, n = 8: both individuals were injected with a phosphate saline solution (PBS; (2 'reinforced pairs' (RP, n = 9: the alpha alone was injected with native cHH, and the beta with PBS; (3 'inverted pairs' (IP, n = 9: the opposite of (2. We found that, independently of the crayfish's prior social experience, cHH injections induced (i the expression of dominance behaviour, (ii higher glycemic levels, and (iii lower time spent motionless. In CP and RP, fight intensity decreased with the establishment of dominance. On the contrary, in IP, betas became increasingly likely to initiate and escalate fights and, consequently, increased their dominance till a temporary reversal of the hierarchy. Our results demonstrate, for the first time, that, similarly to serotonin, cHH enhances individual aggression, up to reverse, although transitorily, the hierarchical rank. New research perspectives are thus opened in our intriguing effort of understanding the role of cHH in the modulation of agonistic behaviour in crustaceans.

  12. Radioprotective effectiveness and toxicity of ATP, AET and serotonin applied individually or simultaneously to mice. Pt. 4

    International Nuclear Information System (INIS)

    Benova, D.K.; Putev, I.K.

    1979-01-01

    Interactions occuring between three drugs - AET, serotonin, and ATP - in simultaneous administration were studied quantitatively. Using isobologram techniques, paired drug combination were examined for synergism in protective action against radiation. For ATP+AET pairs, increase in ATP fraction enhanced protection. For ATP+serotonin pairs, peak effect was observed at 360 mg/kg b.w. of ATP and 12 mg/kg b.w. of serotonin. Higher ATP fractions lowered the effectiveness. The highest degree of synergism was found for AET+serotonin, with peak effect at 17 to 33 mg/kg of AET plus 11 to 7 mg/kg of serotonin. By applying a method specially elaborated to enable prediction of interactions between three drugs administered simultaneously and by making use of three-dimensional diagrams, the parts played by individual components of triple combinations in total effect were estimated and the component dose ratio providing maximum protection identified. The determining components in protection were found to be AET and serotonin, the latter being of greater importance. The rhole of ATP in total effect is small and enhancement may be noted only up to ATP doses of no more than 156 mg/kg. The maximum effectiveness dose ratio of serotonin:AET:ATP was identified as 1:2:7.5-9. (orig.) [de

  13. Binding-Induced Fluorescence of Serotonin Transporter Ligands

    DEFF Research Database (Denmark)

    Wilson, James; Ladefoged, Lucy Kate; Babinchak, Michael

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has...

  14. Controlling a Chaotic System through Control Parameter Self-Modulation

    International Nuclear Information System (INIS)

    Pastor, I.

    1994-01-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously existing unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and it is compared with them. One of its most attractive features is that it should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations modelling the coupling of two self-oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters

  15. Medium-Throughput Screen of Microbially Produced Serotonin via a G-Protein-Coupled Receptor-Based Sensor.

    Science.gov (United States)

    Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela

    2017-10-17

    Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.

  16. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.

    Directory of Open Access Journals (Sweden)

    Nils Paulmann

    2009-10-01

    Full Text Available While serotonin (5-HT co-localization with insulin in granules of pancreatic beta-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/- and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- beta-cells, which clearly showed that the secretory defect is downstream of Ca(2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in beta-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic beta-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.

  17. MCC: the Module Controller Chip for the ATLAS Pixel Detector

    International Nuclear Information System (INIS)

    Beccherle, R.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Musico, P.; Osculati, B.; Oppizzi, P.; Pratolongo, F.; Ruscino, E.; Schiavi, C.; Vernocchi, F.; Blanquart, L.; Einsweiler, K.; Meddeler, G.; Richardson, J.; Comes, G.; Fischer, P.; Calvet, D.; Boyd, R.; Sicho, P.

    2002-01-01

    In this article we describe the architecture of the Module Controller Chip for the ATLAS Pixel Detector. The project started in 1997 with the definition of the system specifications. A first fully-working rad-soft prototype was designed in 1998, while a radiation hard version was submitted in 2000. The 1998 version was used to build pixel detector modules. Results from those modules and from the simulated performance in ATLAS are reported. In the article we also describe the hardware/software tools developed to test the MCC performance at the LHC event rate

  18. Positron Emission Tomography Quantification of Serotonin1A Receptor Binding in Suicide Attempters With Major Depressive Disorder

    Science.gov (United States)

    Sullivan, Gregory M.; Oquendo, Maria A.; Milak, Matthew; Miller, Jeffrey M.; Burke, Ainsley; Ogden, R. Todd; Parsey, Ramin V.; Mann, J. John

    2015-01-01

    IMPORTANCE Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin1A autoreceptor in the brainstem raphe of individuals who die by suicide. OBJECTIVES To determine the relationships between brain serotonin1A binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin1A antagonist radiotracer carbon C 11 [11C]–labeled WAY-100635. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin1A binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. MAIN OUTCOMES AND MEASURES The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. RESULTS Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin1A BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin1A BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin1A BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in

  19. Serotonin transporter is not required for the development of severe pulmonary hypertension in the Sugen hypoxia rat model

    NARCIS (Netherlands)

    de Raaf, Michiel Alexander; Kroeze, Yvet; Middelman, Anthonieke; de Man, Frances S.; de Jong, Helma; Vonk-Noordegraaf, Anton; de Korte, Chris; Voelkel, Norbert F.; Homberg, Judith; Bogaard, Harm Jan

    2015-01-01

    Increased serotonin serum levels have been proposed to play a key role in pulmonary arterial hypertension (PAH) by regulating vessel tone and vascular smooth muscle cell proliferation. An intact serotonin system, which critically depends on a normal function of the serotonin transporter (SERT), is

  20. Comparative efficacy and safety of selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors in older adults: a network meta-analysis.

    Science.gov (United States)

    Thorlund, Kristian; Druyts, Eric; Wu, Ping; Balijepalli, Chakrapani; Keohane, Denis; Mills, Edward

    2015-05-01

    To establish the comparative efficacy and safety of selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors in older adults using the network meta-analysis approach. Systematic review and network meta-analysis. Individuals aged 60 and older. Data on partial response (defined as at least 50% reduction in depression score from baseline) and safety (dizziness, vertigo, syncope, falls, loss of consciousness) were extracted. A Bayesian network meta-analysis was performed on the efficacy and safety outcomes, and relative risks (RRs) with 95% credible intervals (CrIs) were produced. Fifteen randomized controlled trials were eligible for inclusion in the analysis. Citalopram, escitalopram, paroxetine, duloxetine, venlafaxine, fluoxetine, and sertraline were represented. Reporting on partial response and dizziness was sufficient to conduct a network meta-analysis. Reporting on other outcomes was sparse. For partial response, sertraline (RR=1.28), paroxetine (RR=1.48), and duloxetine (RR=1.62) were significantly better than placebo. The remaining interventions yielded RRs lower than 1.20. For dizziness, duloxetine (RR=3.18) and venlafaxine (RR=2.94) were statistically significantly worse than placebo. Compared with placebo, sertraline had the lowest RR for dizziness (1.14) and fluoxetine the second lowest (1.31). Citalopram, escitalopram, and paroxetine all had RRs between 1.4 and 1.7. There was clear evidence of the effectiveness of sertraline, paroxetine, and duloxetine. There also appears to be a hierarchy of safety associated with the different antidepressants, although there appears to be a dearth of reporting of safety outcomes. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.