Self-avoiding walks on a bilayer Bethe lattice
We propose and study a model of polymer chains in a bilayer. Each chain is confined in one of the layers and polymer bonds on first neighbor edges in different layers interact. We also define and comment on results for a model with interactions between monomers on first neighbor sites of different layers. The thermodynamic properties of the model are studied in the grand-canonical formalism and both layers are considered to be Cayley trees. In the core region of the trees, which we call a bilayer Bethe lattice, we find a very rich phase diagram in the parameter space defined by the two activities of monomers and the Boltzmann factor associated with the interlayer interaction between bonds or monomers. In addition to critical and coexistence surfaces, there are tricritical, bicritical and critical endpoint lines, as well as higher order multicritical points. (paper)
Self-avoiding walks on a bilayer Bethe lattice
Serra, Pablo; Stilck, Jürgen F.
2014-04-01
We propose and study a model of polymer chains in a bilayer. Each chain is confined in one of the layers and polymer bonds on first neighbor edges in different layers interact. We also define and comment on results for a model with interactions between monomers on first neighbor sites of different layers. The thermodynamic properties of the model are studied in the grand-canonical formalism and both layers are considered to be Cayley trees. In the core region of the trees, which we call a bilayer Bethe lattice, we find a very rich phase diagram in the parameter space defined by the two activities of monomers and the Boltzmann factor associated with the interlayer interaction between bonds or monomers. In addition to critical and coexistence surfaces, there are tricritical, bicritical and critical endpoint lines, as well as higher order multicritical points.
Graph optimization problems on a Bethe lattice
de Oliveira, Mário J.
1989-01-01
The p-partitioning and p-coloring problems on a Bethe lattice of coordination number z are analyzed. It is shown that these two NP-complete optimization problems turn out to be equivalent to finding the ground-state energy of p-state Potts models with frustration. Numerical calculation of the cost function of both problems are carried out for several values of z and p. In the case of p=2 the results are identical to those obtained by Mézard and Parisi for the case of the bipartitioning problem. A numerical upper bound to the chromatic number is found for several values of z.
Ising spin glass on Bethe-like lattices
Ising spin glass on Bethe-like lattices is studied focusing on the replica symmetry breaking near the spin glass transition temperature. To see the frustration effects of small loops, spin glass order parameter functions and the de Almeida-Thouless (AT) lines in small magnetic fields are obtained for the Bethe-like cactus lattices. As approximations for realistic short range models, they are compared with the results for the Bethe lattice without small loops to see the effects of the loops. Triangular, tetrahedral and square cactus lattices are studied. The slope of the spin glass order parameter function for a cactus lattice is smaller than the corresponding one for the Bethe lattice. The replica symmetry breaking region in fields for the cactus lattice is larger than that for the corresponding Bethe lattice except for the smallest number of connectivity of the loops in the triangular and tetrahedral cactus lattices. To obtain the results, an equation among quantities that are related to the spin glass order parameter is used. This equation is shown to be related to an equation derived within a cluster approximation without using replicas. (author)
Pressure exerted by a grafted polymer: Bethe lattice solution
Mynssem Brum, Rafael; Stilck, Jürgen F.
2015-01-01
We solve the problem of a chain, modeled as a self-avoiding walk (SAW), grafted to the wall limiting a semi-infinite Bethe lattice of arbitrary coordination number q. In particular, we determine the pressure exerted by the polymer on the wall, as a function of the distance to the grafting point. The pressure, in general, decays exponentially with the distance, at variance with what is found for SAWs and directed walks on regular lattices and gaussian walks. The adsorption transition, which is discontinuous, and its influence on the pressure are also studied.
Quantum $k$-core conduction on the Bethe lattice
Cao, L.; Schwarz, J. M.
2010-01-01
Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject to the constraint that every occupied bond must have at least $k-1$ neighboring occupied bonds, i.e. $k$-core diluted. In the classical case, we find the onset of conduction for $k=2$ is continuous, while for $k=3$, the onset of conduction is discontinuous with the geometric random first-order phase transition driving the conduction transition. In the quantum case, treating each occupi...
Potts models with invisible states on general Bethe lattices
The number of so-called invisible states which need to be added to the q-state Potts model to transmute its phase transition from continuous to first order has attracted recent attention. In the q = 2 case, a Bragg–Williams (mean-field) approach necessitates four such invisible states while a 3-regular random graph formalism requires seventeen. In both of these cases, the changeover from second- to first-order behaviour induced by the invisible states is identified through the tricritical point of an equivalent Blume–Emery–Griffiths model. Here we investigate the generalized Potts model on a Bethe lattice with z neighbours. We show that, in the q = 2 case, invisible states are required to manifest the equivalent Blume–Emery–Griffiths tricriticality. When z = 3, the 3-regular random graph result is recovered, while z → ∞ delivers the Bragg–Williams (mean-field) result. (paper)
Analysis of quantum spin models on hyperbolic lattices and Bethe lattice
Daniška, Michal; Gendiar, Andrej
2016-04-01
The quantum XY, Heisenberg, and transverse field Ising models on hyperbolic lattices are studied by means of the tensor product variational formulation algorithm. The lattices are constructed by tessellation of congruent polygons with coordination number equal to four. The calculated ground-state energies of the XY and Heisenberg models and the phase transition magnetic field of the Ising model on the series of lattices are used to estimate the corresponding quantities of the respective models on the Bethe lattice. The hyperbolic lattice geometry induces mean-field-like behavior of the models. The ambition to obtain results on the non-Euclidean lattice geometries has been motivated by theoretical studies of the anti-de Sitter/conformal field theory correspondence.
Analysis of quantum spin models on hyperbolic lattices and Bethe lattice
The quantum XY, Heisenberg, and transverse field Ising models on hyperbolic lattices are studied by means of the tensor product variational formulation algorithm. The lattices are constructed by tessellation of congruent polygons with coordination number equal to four. The calculated ground-state energies of the XY and Heisenberg models and the phase transition magnetic field of the Ising model on the series of lattices are used to estimate the corresponding quantities of the respective models on the Bethe lattice. The hyperbolic lattice geometry induces mean-field-like behavior of the models. The ambition to obtain results on the non-Euclidean lattice geometries has been motivated by theoretical studies of the anti-de Sitter/conformal field theory correspondence. (paper)
Agglomerative percolation on the Bethe lattice and the triangular cactus
Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup
2013-08-01
Agglomerative percolation (AP) on the Bethe lattice and the triangular cactus is studied to establish the exact mean-field theory for AP. Using the self-consistent simulation method based on the exact self-consistent equations, the order parameter P∞ and the average cluster size S are measured. From the measured P∞ and S, the critical exponents βk and γk for k = 2 and 3 are evaluated. Here, βk and γk are the critical exponents for P∞ and S when the growth of clusters spontaneously breaks the Zk symmetry of the k-partite graph. The obtained values are β2 = 1.79(3), γ2 = 0.88(1), β3 = 1.35(5) and γ3 = 0.94(2). By comparing these exponents with those for ordinary percolation (β∞ = 1 and γ∞ = 1), we also find β∞ γ3 > γ2. These results quantitatively verify the conjecture that the AP model belongs to a new universality class if the Zk symmetry is broken spontaneously, and the new universality class depends on k.
Agglomerative percolation on the Bethe lattice and the triangular cactus
Agglomerative percolation (AP) on the Bethe lattice and the triangular cactus is studied to establish the exact mean-field theory for AP. Using the self-consistent simulation method based on the exact self-consistent equations, the order parameter P∞ and the average cluster size S are measured. From the measured P∞ and S, the critical exponents βk and γk for k = 2 and 3 are evaluated. Here, βk and γk are the critical exponents for P∞ and S when the growth of clusters spontaneously breaks the Zk symmetry of the k-partite graph. The obtained values are β2 = 1.79(3), γ2 = 0.88(1), β3 = 1.35(5) and γ3 = 0.94(2). By comparing these exponents with those for ordinary percolation (β∞ = 1 and γ∞ = 1), we also find β∞ 3 2 and γ∞ > γ3 > γ2. These results quantitatively verify the conjecture that the AP model belongs to a new universality class if the Zk symmetry is broken spontaneously, and the new universality class depends on k. (paper)
Hofstadter problem on the honeycomb and triangular lattices: Bethe ansatz solution
Kohmoto, M.; Sedrakyan, A.
2006-06-01
We consider Bloch electrons on the honeycomb lattice under a uniform magnetic field with 2πp/q flux per cell. It is shown that the problem factorizes to two triangular lattices. Treating magnetic translations as a Heisenberg-Weyl group and by the use of its irreducible representation on the space of theta functions, we find a nested set of Bethe equations, which determine the eigenstates and energy spectrum. The Bethe equations have simple form which allows us to consider them further in the limit p,q→∞ by the technique of thermodynamic Bethe ansatz and analyze the Hofstadter problem for the irrational flux.
Hofstadter Problem on the Honeycomb and Triangular Lattices: Bethe Ansatz Solution
Kohmoto, M.; Sedrakyan, A.
2006-01-01
We consider Bloch electrons on the honeycomb lattice under a uniform magnetic field with $2 \\pi p/q$ flux per cell. It is shown that the problem factorizes to two triangular lattices. Treating magnetic translations as Heisenberg-Weyl group and by the use of its irreducible representation on the space of theta functions, we find a nested set of Bethe equations, which determine the eigenstates and energy spectrum. The Bethe equations have simple form which allows to consider them further in the...
Electronic structure of disordered binary alloys with short range correlation in Bethe lattice
The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author)
The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice
The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author)
Exact results for the spherical model with competing interactions on the Bethe lattice
Pimpinelli, Alberto; Cassi, Davide
1991-02-01
We extend to next-nearest-neighbor (NNN) interactions a technique which allows the exact solution of the spherical model of Berlin and Kac on a general discrete geometrical structure (a graph). We give the solution when the graph is a Bethe lattice. The model shows collinear (ferromagnetic or antiferromagnetic) long-range order at low temperature when NNN interactions favor the same order as nearest-neighbor ones, while it is disordered at any finite temperature when competition exceeds a critical value. For vanishing nearest-neighbor interaction the lattice decouples in two independent Cayley cacti; if the exchange on each sublattice is ferromagnetic, the model becomes ordered at a nonzero temperature, while antiferromagnetic exchange gives again disorder at any temperature.
Polymer models with competing collapse interactions on Husimi and Bethe lattices
Pretti, M.
2016-03-01
In the framework of Husimi and Bethe lattices, we investigate a generalized polymer model that incorporates as special cases different models previously studied in the literature, namely, the standard interacting self-avoiding walk, the interacting self-avoiding trail, and the vertex-interacting self-avoiding walk. These models are characterized by different microscopic interactions, giving rise, in the two-dimensional case, to collapse transitions of an apparently different nature. We expect that our results, even though of a mean-field type, could provide some useful information to elucidate the role of such different θ points in the polymer phase diagram. These issues are at the core of a long-standing unresolved debate.
Network formed by movements of random walkers on a Bethe lattice
We investigate a stochastic model of network formation where short-cut edges are assumed to be created between vertices in traces of random walkers. The network initially starts from a tree-like structure (Bethe lattice) with a finite number of shells, and develops into a complex network with many circuits generated by the movement of random walkers. We show that the resulting network has a power-law in the degree distribution with an exponent smaller than 2, and demonstrate the robustness against attacks on hubs in the networks. While scale-free networks without a degree correlation are usually vulnerable to attacks on its hubs, the robustness of the network connectivity in this model comes from a self-similar structure of the network. It is interesting that a simple stochastic process like random walks can cause various structures widely seen in real networks on tree-like graphs which play an important role in the graph theory
How Inhomogeneous Site Percolation Works on Bethe Lattices: Theory and Application
Ren, Jingli; Zhang, Liying; Siegmund, Stefan
2016-03-01
Inhomogeneous percolation, for its closer relationship with real-life, can be more useful and reasonable than homogeneous percolation to illustrate the critical phenomena and dynamical behaviour of complex networks. However, due to its intricacy, the theoretical framework of inhomogeneous percolation is far from being complete and many challenging problems are still open. In this paper, we first investigate inhomogeneous site percolation on Bethe Lattices with two occupation probabilities, and then extend the result to percolation with m occupation probabilities. The critical behaviour of this inhomogeneous percolation is shown clearly by formulating the percolation probability with given occupation probability p, the critical occupation probability , and the average cluster size where p is subject to . Moreover, using the above theory, we discuss in detail the diffusion behaviour of an infectious disease (SARS) and present specific disease-control strategies in consideration of groups with different infection probabilities.
Entanglement spectrum of fermionic bilayer honeycomb lattice: Hofstadter butterfly
Moradi, Z; Abouie, J.
2016-01-01
We perform an analytical study of the energy and entanglement spectrum of non-interacting fermionic bilayer honeycomb lattices in the presence of trigonal warping in the energy spectrum, on-site energy difference and uniform magnetic field. Employing single particle correlation functions, we present an explicit form for layer-layer entanglement Hamiltonian whose spectrum is entanglement spectrum. We demonstrate that in the absence of trigonal warping, at zero on-site energy difference exact c...
We consider the problem of correlated percolation on a Husimi cactus, which allows finite loops of size l, to investigate the effects of loop formation on percolation properties. In particular, we calculate how the percolation threshold and the percolation probability depend on l and the loop activity n. We calculate the contribution and its dependence on l and n from finite and infinite clusters to all densities. We show that macroscopic loops are formed immediately after percolation, and we calculate their density dependence on l and n. We compare the results on Husimi cactus with those on a Bethe lattice. We finally establish that the Husimi cactus turns into a Bethe lattice as l→∞. (author)
Hadron-hadron interactions from imaginary-time Nambu-Bethe-Salpeter wave function on the lattice
Imaginary-time Nambu-Bethe-Salpeter (NBS) wave function is introduced to extend our previous approach for hadron-hadron interactions on the lattice. Scattering states of hadrons with different energies encoded in the NBS wave function are utilized to extract non-local hadron-hadron potential. “The ground state saturation”, which is commonly used in lattice QCD but is hard to be achieved for multi-baryons, is not required. We demonstrate that the present method works efficiently for the nucleon-nucleon interaction (the potential and the phase shift) in the 1S0 channel.
Hadron-hadron interactions from imaginary-time Nambu-Bethe-Salpeter wave function on the lattice
Ishii, Noriyoshi, E-mail: ishii@ribf.riken.jp [Kobe Branch, Center for Computational Sciences, University of Tsukuba, in RIKEN Advanced Institute for Computational Science (AICS), Portisland, Kobe 650-0047 (Japan); Aoki, Sinya [Graduate School of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Doi, Takumi [Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Hatsuda, Tetsuo [Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Ikeda, Yoichi [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, Takashi [Nihon University, College of Bioresource Sciences, Fujisawa 252-0880 (Japan); Murano, Keiko [Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Nemura, Hidekatsu; Sasaki, Kenji [Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)
2012-06-12
Imaginary-time Nambu-Bethe-Salpeter (NBS) wave function is introduced to extend our previous approach for hadron-hadron interactions on the lattice. Scattering states of hadrons with different energies encoded in the NBS wave function are utilized to extract non-local hadron-hadron potential. 'The ground state saturation', which is commonly used in lattice QCD but is hard to be achieved for multi-baryons, is not required. We demonstrate that the present method works efficiently for the nucleon-nucleon interaction (the potential and the phase shift) in the {sup 1}S{sub 0} channel.
Hadron-Hadron Interactions from Imaginary-time Nambu-Bethe-Salpeter Wave Function on the Lattice
Ishii, Noriyoshi; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2012-01-01
Imaginary-time Nambu-Bethe-Salpeter (NBS) wave function is introduced to extend our previous approach for hadron-hadron interactions on the lattice. Scattering states of hadrons with different energies encoded in the NBS wave-function are utilized to extract non-local hadron-hadron potential. "The ground state saturation", which is commonly used in lattice QCD but is hard to be achieved for multi-baryons, is not required. We demonstrate that the present method works efficiently for the nucleon-nucleon interaction (the potential and the phase shift) in the 1S_0 channel.
Solution of a model of self-avoiding walks with multiple monomers per site on the Bethe lattice.
Serra, Pablo; Stilck, Jürgen F
2007-01-01
We solve a model of self-avoiding walks with up to two monomers per site on the Bethe lattice. This model, inspired in the Domb-Joyce model, was recently proposed to describe the collapse transition observed in interacting polymers [J. Krawczyk, Phys. Rev. Lett. 96, 240603 (2006)]. When immediate self-reversals are allowed (reversion-allowed model), the solution displays a phase diagram with a polymerized phase and a nonpolymerized phase, separated by a phase transition which is of first order for a nonvanishing statistical weight of doubly occupied sites. If the configurations are restricted forbidding immediate self-reversals (reversion-forbidden model), a richer phase diagram with two distinct polymerized phases is found, displaying a tricritical point and a critical end point. PMID:17358133
Phase transition in a random minima model: mean field theory and exact solution on the Bethe lattice
We consider the number and distribution of minima in random landscapes defined on non-Euclidean lattices. Using an ensemble where random landscapes are reweighted by a fugacity factor z for each minimum that they contain, we construct first a 'two-box' mean field theory. This exhibits an ordering phase transition at zc = 2 above which one box contains an extensive number of minima. The onset of order is governed by an unusual order parameter exponent β = 1, motivating us to study the same model on the Bethe lattice. Here we find from an exact solution that for any connectivity μ+1>2 there is an ordering transition with a conventional mean field order parameter exponent β = 1/2, but with the region where this behaviour is observable shrinking in size as 1/μ in the mean field limit of large μ. We show that the behaviour in the transition region can also be understood directly within a mean field approach, by making the assignment of minima 'soft'. Finally we demonstrate, in the simplest mean field case, how the analysis can be generalized to include both maxima and minima. In this case an additional first-order phase transition appears, to a landscape in which essentially all sites are either minima or maxima
Bethe-Salpeter wave functions of $\\eta_c(2S)$ and $\\psi(2S)$ states from full lattice QCD
Nochi, Kazuki; Sasaki, Shoichi
2016-01-01
We discuss the internal structure of radially excited charmonium mesons based on the equal-time and Coulomb gauge Bethe-Salpeter (BS) amplitudes, which are obtained in lattice QCD. Our simulations are performed with a relativistic heavy-quark action for the charm quark on the 2+1 flavor PACS-CS gauge configurations at the lightest pion mass, $M_{\\pi}=156(7)$ MeV. The variational method is applied to the study of optimal charmonium operator for ground and first excited states of $S$-wave charmonia. We successfully calculate the BS wave functions of $\\eta_c(2S)$ and $\\psi(2S)$ states, as well as $\\eta_c(1S)$ and $J/\\psi$ states, and then estimate the root-mean-square radii of both the $1S$ and $2S$ charmonium states. We also examine whether a series of the BS wave functions from the ground state to excited states can be described by a single set of the spin-independent and spin-dependent interquark potentials with a unique quark mass. It is found that the quark kinetic mass and, both the central and spin-spin c...
We consider quantum quenches in the so-called q-boson lattice model. We argue that the Generalized Eigenstate Thermalization Hypothesis holds in this model, therefore the Generalized Gibbs Ensemble (GGE) gives a valid description of the stationary states in the long time limit. For a special class of initial states (which are the pure Fock states in the local basis) we are able to provide the GGE predictions for the resulting root densities. We also give predictions for the long-time limit of certain local operators. In the q → ∞ limit the calculations simplify considerably, the wave functions are given by Schur polynomials and the overlaps with the initial states can be written as simple determinants. In two cases we prove rigorously that the GGE prediction for the root density is correct. Moreover, we calculate the exact time dependence of a physical observable (the one-site Emptiness Formation Probability) for the quench starting from the state with exactly one particle per site. In the long-time limit the GGE prediction is recovered. (paper)
Quantum phase diagram of a frustrated antiferromagnet on the bilayer honeycomb lattice
Zhang, Hao; Lamas, Carlos A.; Arlego, Marcelo; Brenig, Wolfram
2016-06-01
We study the spin-1/2 Heisenberg antiferromagnet on a bilayer honeycomb lattice including interlayer frustration. Using a set of complementary approaches, namely, Schwinger bosons, dimer series expansion, bond operators, and exact diagonalization, we map out the quantum phase diagram. Analyzing ground-state energies and elementary excitation spectra, we find four distinct phases, corresponding to three collinear magnetic long-range ordered states, and one quantum disordered interlayer dimer phase. We detail that the latter phase is adiabatically connected to an exact singlet product ground state of the bilayer, which exists along a line of maximum interlayer frustration. The order within the remaining three phases will be clarified.
Superconducting Pb(x)/Au(25 nm) bilayers (x = 50, 100 nm) patterned with antidot lattices exhibit various matching field anomalies depending on experimental conditions. Magnetization peaks at applied fields H = n[20 Oe] (n = integer) resemble superconducting wire network data; cusps are also observed, consistent with predictions of 'giant' vortices in low-kappa films. Sharp 'staircase' anomalies spaced by 1-3 Oe are observed in AC magnetization, possibly a result of depinning of intermediate state domains, or macroscopic quantum tunneling between reproducible states of different quantized flux.
Oliveira, Tiago J; Stilck, Jürgen F; Serra, Pablo
2009-10-01
We solve a model of polymers represented by self-avoiding walks on a lattice, which may visit the same site up to three times in the grand-canonical formalism on the Bethe lattice. This may be a model for the collapse transition of polymers where only interactions between monomers at the same site are considered. The phase diagram of the model is very rich, displaying coexistence and critical surfaces, critical, critical end point, and tricritical lines, as well as a multicritical point. From the grand-canonical results, we present an argument to obtain the properties of the model in the canonical ensemble, and compare our results with simulations in the literature. We do actually find extended and collapsed phases, but the transition between them, composed by a line of critical end points and a line of tricritical points, separated by the multicritical point, is always continuous. This result is at variance with the simulations for the model, which suggest that part of the line should be a discontinuous transition. Finally, we discuss the connection of the present model with the standard model for the collapse of polymers (self-avoiding, self-attracting walks), where the transition between the extended and collapsed phases is a tricritical point. PMID:19905330
Gaudin, Michel
2014-01-01
Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers in physics. It presents a mixture of mathematics interspersed with powerful physical intuition, retaining the author's unmistakably honest tone. The book begins with the Heisenberg spin chain, starting from the coordinate Bethe Ansatz and culminating in a discussion of its thermodynamic properties. Delta-interacting bosons (the Lieb-Liniger model) are then explored, and extended to exactly solvable models associated to a reflection group. After discussing the continuum limit of spin chains, the book covers six- and eight-vertex models in extensive detail, from their lattice definition to their thermodynamics. Later chapters examine advanced topics such as multi-component delta-interacting systems, Gaudin magnets and...
Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar
2015-01-01
Magnetic behaviors of the Ising system with bilayer honeycomb lattice (BHL) structure are studied by using the effective-field theory (EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point (TCP).
Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin, Kantar
2015-10-01
Magnetic behaviors of the Ising system with bilayer honeycomb lattice (BHL) structure are studied by using the effective-field theory (EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point (TCP).
Gómez Albarracín, F. A.; Rosales, H. D.
2016-04-01
In this paper we present a detailed study of the antiferromagnetic classical Heisenberg model on a bilayer honeycomb lattice in a highly frustrated regime in the presence of a magnetic field. This study shows strong evidence of entropic order-by-disorder selection in different sectors of the magnetization curve. For antiferromagnetic couplings J1=Jx=Jp/3 , we find that at low temperatures there are two different regions in the magnetization curve selected by this mechanism with different number of soft and zero modes. These regions present broken Z2 symmetry and are separated by a not fully collinear classical plateau at M =1 /2 . At higher temperatures, there is a crossover from the conventional paramagnet to a cooperative magnet. Finally, we also discuss the low-temperature behavior of the system for a less frustrated region, J1=Jx
Off-lattice model for the phase behavior of lipid-cholesterol bilayers
Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth;
1999-01-01
Lipid bilayers exhibit a phase behavior that involves two distinct, but coupled, order-disorder processes, one in terms of lipid-chain crystalline packing (translational degrees of freedom) and the other in terms of lipid-chain conformational ordering (internal degrees of freedom). Experiments and...... previous approximate theories have suggested that cholesterol incorporated into lipid bilayers has different microscopic effects on lipid-chain packing and conformations and that cholesterol thereby leads to decoupling of the two ordering processes, manifested by a special equilibrium phase, "liquid......-ordered phase," where bilayers are liquid (with translational disorder) but lipid chains are conformationally ordered. We present in this paper a microscopic model that describes this decoupling phenomena and which yields a phase diagram consistent with experimental observations. The model is an off...
Helical edge states and topological phase transitions in phononic systems using bi-layered lattices
Pal, Raj Kumar; Schaeffer, Marshall; Ruzzene, Massimo
2016-02-01
We propose a framework to realize helical edge states in phononic systems using two identical lattices with interlayer couplings between them. A methodology is presented to systematically transform a quantum mechanical lattice which exhibits edge states to a phononic lattice, thereby developing a family of lattices with edge states. Parameter spaces with topological phase boundaries in the vicinity of the transformed system are illustrated to demonstrate the robustness to mechanical imperfections. A potential realization in terms of fundamental mechanical building blocks is presented for the hexagonal and Lieb lattices. The lattices are composed of passive components and the building blocks are a set of disks and linear springs. Furthermore, by varying the spring stiffness, topological phase transitions are observed, illustrating the potential for tunability of our lattices.
Levkovich-Maslyuk, Fedor
2016-08-01
We give a pedagogical introduction to the Bethe ansatz techniques in integrable QFTs and spin chains. We first discuss and motivate the general framework of asymptotic Bethe ansatz for the spectrum of integrable QFTs in large volume, based on the exact S-matrix. Then we illustrate this method in several concrete theories. The first case we study is the SU(2) chiral Gross–Neveu model. We derive the Bethe equations via algebraic Bethe ansatz, solving in the process the Heisenberg XXX spin chain. We discuss this famous spin chain model in some detail, covering in particular the coordinate Bethe ansatz, some properties of Bethe states, and the classical scaling limit leading to finite-gap equations. Then we proceed to the more involved SU(3) chiral Gross–Neveu model and derive the Bethe equations using nested algebraic Bethe ansatz to solve the arising SU(3) spin chain. Finally we show how a method similar to the Bethe ansatz works in a completely different setting, namely for the 1D oscillator in quantum mechanics.
Landau levels from the Bethe Ansatz equations
Hoshi, K.; Hatsugai, Y.
2000-01-01
The Bethe ansatz (BA) equations for the two-dimensional Bloch electrons in a uniform magnetic field are treated in the weak-field limit. We have calculated energies near the lower boundary of the energy spectrum up to the first nontrivial order. It corresponds to calculating a finite size correction for the excitation energies of the BA solvable lattice models and gives the Landau levels in the present problem.
Landau Levels from the Bethe Ansatz Equations
Hoshi, K.; Hatsugai, Y.
1999-01-01
The Bethe ansatz (BA) equations for the two-dimensional Bloch electrons in a uniform magnetic field are treated in the weak field limit. We have calculated energies near the lower boundary of the energy spectrum up to the first nontrivial order. It corresponds to calculating a finite size correction for the excitation energies of the BA solvable lattice models and gives the Landau levels in the present problem.
The dynamic critical properties of the spin-2 Ising model on a bilayer square lattice
Temizer, Ümüt; Yarar, Semih; Tülek, Mesimi
2016-05-01
The spin-2 Ising model is investigated for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the two-layer square lattice by using the Glauber-type stochastic dynamics. The system is in contact with a heat bath at temperature T, and the exchange of energy with the heat bath occurs via one-spin flip. By employing the Master equation and Glauber transition rates, the dynamic equations of the system are obtained. These equations are solved by using the numerical methods. First, we investigate the average order parameters as a function of the time to find the phases in the system. Then, the temperature-dependence of the dynamic order parameters is examined to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are presented on the different planes. According to the values of the system parameters, a variety of dynamic critical points such as tricritical point, triple point, quadruple point, critical end point, double critical end point, zero-temperature critical point, multicritical point and tetracritical point are obtained. The reentrant behavior is seen in the system for the AFM/AFM interaction. Finally, we also investigate the influence of the oscillating field frequency on the dynamic phase diagrams in detail.
Gottfried, Kurt
2005-01-01
"There are a handful of people who soar, whose accompalishments are so off-scale as to nearly defy belief. Hans Bethe (2 July 1906 - 6 March 2005) was of that caliber. As just one measure of his stature, imagine the task of copying his published opus by hand, for that is how he wrote most of it" (2 pages)
Introduction to the thermodynamic Bethe ansatz
van Tongeren, Stijn J
2016-01-01
We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method that allows us to describe the thermodynamics of integrable models whose spectrum is found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac distribution and associated free energy of free electrons, and then in a similar though technically more complicated fashion treat the thermodynamics of integrable models, focusing on the one dimensional Bose gas with delta function interaction as a clean pedagogical example, secondly the XXX spin chain as an elementary (lattice) model with prototypical complicating features in the form of bound states, and finally the SU(2) chiral Gross-Neveu model as a field theory example. Throughout this discussion we emphasize the central role of particle and hole densities, whose relations determine the model under consideration. We then discuss tricks that allow us to use the same methods to describe the exact spectra of integrable field theories on a circle, in particular ...
Bernstein, Jeremy
2012-10-01
In 1937, two years after he moved to the US to escape Nazi persecution, the physicist Hans Bethe sent a letter to his mother in Germany. In it, he wrote, "I think I am about the leading theoretician in America. [Eugene] Wigner is certainly better and [Robert] Oppenheimer and [Edward] Teller probably just as good. But I do more and talk more and that counts too."
Levkovich-Maslyuk, Fedor
2016-01-01
We give a pedagogical introduction to the Bethe ansatz techniques in integrable QFTs and spin chains. We first discuss and motivate the general framework of asymptotic Bethe ansatz for the spectrum of integrable QFTs in large volume, based on the exact S-matrix. Then we illustrate this method in several concrete theories. The first case we study is the SU(2) chiral Gross-Neveu model. We derive the Bethe equations via algebraic Bethe ansatz, solving in the process the Heisenberg XXX spin chain. We discuss this famous spin chain model in some detail, covering in particular the coordinate Bethe ansatz, some properties of Bethe states, and the classical scaling limit leading to finite-gap equations. Then we proceed to the more involved SU(3) chiral Gross-Neveu model and derive the Bethe equations using nested algebraic Bethe ansatz to solve the arising SU(3) spin chain. Finally we show how a method similar to the Bethe ansatz works in a completley different setting, namely for the 1d oscillator in quantum mechani...
The Potts glass on the Bethe lattice
It is considered the nearest-neighbor p-state random Potts model on a Cayley tree of infinite coordination. The problem is formulated as a discrete mapping whose fixed points correspond to solutions deep inside the tree. The introduction of an ansatz which allows for the breaking of the Potts symmetry leads to an instability of the spin glass fixed point for p > 4. (author)
Introduction to the thermodynamic Bethe ansatz
van Tongeren, Stijn J.
2016-08-01
We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method that allows us to describe the thermodynamics of integrable models whose spectrum is found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi–Dirac distribution and associated free energy of free electrons, and then in a similar though technically more complicated fashion treat the thermodynamics of integrable models, focusing first on the one-dimensional Bose gas with delta function interaction as a clean pedagogical example, secondly the XXX spin chain as an elementary (lattice) model with prototypical complicating features in the form of bound states, and finally the {SU}(2) chiral Gross–Neveu model as a field theory example. Throughout this discussion we emphasize the central role of particle and hole densities, whose relations determine the model under consideration. We then discuss tricks that allow us to use the same methods to describe the exact spectra of integrable field theories on a circle, in particular the chiral Gross–Neveu model. We moreover discuss the simplification of TBA equations to Y systems, including the transition back to integral equations given sufficient analyticity data, in simple examples.
Spin-1/2 XYZ model revisit: General solutions via off-diagonal Bethe ansatz
Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Cui, Shuai [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li, E-mail: wlyang@nwu.edu.cn [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2014-09-15
The spin-1/2 XYZ model with both periodic and anti-periodic boundary conditions is studied via the off-diagonal Bethe ansatz method. The exact spectra of the Hamiltonians and the Bethe ansatz equations are derived by constructing the inhomogeneous T–Q relations, which allow us to treat both the even N (the number of lattice sites) and odd N cases simultaneously in a unified approach.
Instantaneous Bethe-Salpeter equation
We present a systematic algebraic and numerical investigation of the instantaneous Beth-Salpeter equation. Emphasis is placed on confining interaction kernels of the Lorentz scalar, time component vector, and full vector-types. We explore the stability of the solutions and Regge behavior for each of these interactions, and conclude that only time component vector confinement leads to normal Regge structure and stable solutions for all quark masses
Hans Bethe and the Global Energy Problems
Ioffe, B. L.
2005-01-01
Bethe's view-point on the global energy problems is presented. Bethe claimed that the nuclear power is a necessity in future. Nuclear energetic must be based on breeder reactors. Bethe considered the non-proliferation of nuclear weapons as the main problem of long-range future of nuclear energetics. The solution of this problem he saw in heavy water moderated thermal breeders, using uranium-233, uranium-238 and thorium as a fuel.
Convexifying the Bethe Free Energy
Meshi, Ofer; Globerson, Amir; Friedman, Nir
2012-01-01
The introduction of loopy belief propagation (LBP) revitalized the application of graphical models in many domains. Many recent works present improvements on the basic LBP algorithm in an attempt to overcome convergence and local optima problems. Notable among these are convexified free energy approximations that lead to inference procedures with provable convergence and quality properties. However, empirically LBP still outperforms most of its convex variants in a variety of settings, as we also demonstrate here. Motivated by this fact we seek convexified free energies that directly approximate the Bethe free energy. We show that the proposed approximations compare favorably with state-of-the art convex free energy approximations.
Bethe ansatz solvable multi-chain quantum systems
In this article we review recent developments in the one-dimensional Bethe ansatz solvable multi-chain quantum models. The algebraic version of the Bethe ansatz (the quantum inverse scattering method) permits us to construct new families of integrable Hamiltonians using simple generalizations of the well known constructions of the single-chain model. First we consider the easiest example ('basic' model) of this class of models: the antiferromagnetic two-chain spin-1/2 model with the nearest-neighbour and next-nearest-neighbour spin-frustrating interactions (zigzag chain). We show how the algebra of the quantum inverse scattering method works for this model, and what are the important features of the Hamiltonian (which reveal the topological properties of two dimensions together with the one-dimensional properties). We consider the solution of the Bethe ansatz for the ground state (in particular, commensurate-incommensurate quantum phase transitions present due to competing spin-frustrating interactions are discussed) and construct the thermal Bethe ansatz (in the form of the 'quantum transfer matrix') for this model. Then possible generalizations of the basic model are considered: an inclusion of a magnetic anisotropy, higher-spin representations (including the important case of a quantum ferrimagnet), the multi-chain case, internal degrees of freedom of particles at each site, etc. We observe the similarities and differences between this class of models and related exactly solvable models: other groups of multi-chain lattice models, quantum field theory models and magnetic impurity (Kondo-like) models. Finally, the behaviour of non-integrable (less constrained) multi-chain quantum models is discussed. (author)
Bethe vectors for XXX-spin chain
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included
Bethe vectors for XXX-spin chain
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
The first part of this book is a literary portrait of the great natural scientist. The book was the result of a number of personal meetings, telephone interviews and letters exchanged, which began in 1977 and lasted two years. Bethes work comprises so many aspects of modern physics and astrophysics that only a fat encyclopedia could do him justice. The author hopes to convey at least an idea of the tremendous scope of this work. But the main theme in the article in 'The New Yorker' and in the resulting book is a discussion about energy. The importance of the energy problem is such that it completely penetrates science and politics. Thus, the third chapter is concerned with energy-political options, the catastrophe of and radioactivity after Chernobyl, and the development of concepts of reactor safety. (orig./HSCH)
Colored Quantum Algebra and Its Bethe State
We investigate the colored Yang—Baxter equation. Based on a trigonometric solution of colored Yang—Baxter equation, we construct a colored quantum algebra. Moreover we discuss its algebraic Bethe ansatz state and highest wight representation. (general)
Bethe's quantum numbers and rigged configurations
Anatol N. Kirillov
2016-04-01
Full Text Available We propose a method to determine the quantum numbers, which we call the rigged configurations, for the solutions to the Bethe ansatz equations for the spin-1/2 isotropic Heisenberg model under the periodic boundary condition. Our method is based on the observation that the sums of Bethe's quantum numbers within each string behave particularly nicely. We confirm our procedure for all solutions for length 12 chain (totally 923 solutions.
Bethe's quantum numbers and rigged configurations
Kirillov, Anatol N.; Sakamoto, Reiho
2016-01-01
We propose a method to determine the quantum numbers, which we call the rigged configurations, for the solutions to the Bethe ansatz equations for the spin-1/2 isotropic Heisenberg model under the periodic boundary condition. Our method is based on the observation that the sums of Bethe's quantum numbers within each string behave particularly nicely. We confirm our procedure for all solutions for length 12 chain (totally 923 solutions).
Bethe ansatz solvability and supersymmetry of the M2 model of single fermions and pairs
A detailed study of a model for strongly-interacting fermions with exclusion rules and lattice N=2 supersymmetry is presented. A submanifold in the space of parameters of the model where it is Bethe-ansatz solvable is identified. The relation between this manifold and the existence of additional, so-called dynamic, supersymmetries is discussed. The ground states are analysed with the help of cohomology techniques, and their exact finite-size Bethe roots are found. Moreover, through analytical and numerical studies it is argued that the model provides a lattice version of the N=1 super-sine-Gordon model at a particular coupling where an additional N=(2,2) supersymmetry is present. The dynamic supersymmetry is shown to allow an exact determination of the gap scaling function of the model. (paper)
First-order rigidity transition on Bethe Lattices
Cristian F. Moukarzel; Duxbury, Phillip M.; Leath, Paul L.
1997-01-01
Tree models for rigidity percolation are introduced and solved. A probability vector describes the propagation of rigidity outward from a rigid border. All components of this ``vector order parameter'' are singular at the same rigidity threshold, $p_c$. The infinite-cluster probability $P_{\\infty}$ is usually first-order at $p_c$, but often behaves as $P_{\\infty} \\sim \\Delta P_{\\infty} + (p-p_c)^{1/2}$, indicating critical fluctuations superimposed on a first order jump. Our tree models for r...
Bethe vectors in GL(3)-based quantum integrable models
Pakuliak, S; Slavnov, N A
2015-01-01
We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik--Zamolodchokov equation.
Bethe vectors of GL(3)-invariant integrable models
We study GL(3)-invariant integrable models solvable by the nested algebraic Bethe ansatz. Different formulas are given for the Bethe vectors and the actions of the generators of the Yangian Y(gl3) on the Bethe vectors are considered. These actions are relevant for the calculation of correlation functions and form factors of local operators of the underlying quantum models. (paper)
The Yangians, Bethe ansatz and combinatorics
An axiomatic definition of a quantum monodromy matrix and the representations of its corresponding Hopf algebra are discussed. The connection between the quantum inverse transform method and the representation theory of a symmetric group is considered. A new approach to the completeness problem of Bethe vectors is also given. (orig.)
Obituary: Hans Albrecht Bethe, 1906-2005
R. Wijers
2007-01-01
One of the unquestioned giants of physics and astrophysics, Hans Bethe, died on 6 March 2005, at the venerable age of 98, in his home town of Ithaca, New York. Seven decades of contributing to research and a Nobel Prize for his work on stellar hydrogen burning make a listing of his honors superfluou
Twisting singular solutions of Bethe's equations
Nepomechie, Rafael I
2014-01-01
The Bethe equations for the periodic XXX and XXZ spin chains admit singular solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to be physical, in which case they correspond to genuine eigenvalues and eigenvectors of the Hamiltonian.
Obituary: Hans Albrecht Bethe, 1906-2005
Wijers, Ralph
2007-12-01
One of the unquestioned giants of physics and astrophysics, Hans Bethe, died on 6 March 2005, at the venerable age of 98, in his home town of Ithaca, New York. Seven decades of contributing to research and a Nobel Prize for his work on stellar hydrogen burning make a listing of his honors superfluous (besides being impossible in this space). Bethe was born in Strassburg, in then German Alsass Lothringen, on 2 July 1906. His father, Albrecht Julius Bethe (1872-1954), taught physiology at the University, and his mother, Anna Kuhn (1876-1966), was a musician and writer. Both his grandfathers were physicians. He spent his youth in Strassburg, Kiel, and Frankfurt, and some time in sanatoria due to tuberculosis. Hans's first scientific paper, at age 18, was with his father and a colleague, on dialysis. His education and early career in Germany brought him into contact with many top stars in the quantum revolution. Starting in Frankfurt in chemistry, Bethe soon switched to physics, taught there by Walter Gerlach and Karl Meissner, among others. In 1926, he successfully applied to join Arnold Sommerfeld's group in Munich, where he met one of his later long-term collaborators, Rudolf Peierls. Bethe considered his entry into physics to have come at an ideal time, with the new ideas of wave mechanics being developed and discussed right there; it was certainly also at an ideal place. His doctoral thesis was on the theory of electron diffraction by crystals, following the experimental work by Clinton Davisson and Lester Germer and the work on X-ray diffraction by Max von Laue and Paul Ewald. The newly minted doctor went from there briefly to Frankfurt and then to Ewald in Stuttgart, where he felt at home academically and personally. In 1939, Bethe would marry Ewald's daughter Rose. Not much later, though, Sommerfeld recalled him to Munich, where Sommerfeld created a Privatdozent position for him. There he worked out the solution for a linear chain of coupled spins by what we
Participatory management at Boston's Beth Israel Hospital.
Rabkin, M T; Avakian, L
1992-05-01
In the mid-1980s, the senior management of Boston's Beth Israel Hospital became concerned that continuous cost-cutting efforts could lower the quality of the hospital's services and the morale of its staff. This led them to investigate organizational approaches to "participatory management" to determine whether any of these might be of value to the hospital. They decided that an approach developed in the 1930s called the "Scanlon Plan" would be compatible with the workplace culture of Beth Israel, could help the hospital meet the ongoing problems of change, and could help the staff at all levels develop a sense that they owned the problems of quality, productivity, and efficiency, which would motivate them to address these problems constructively in the face of necessary budget constraints. This plan has two mechanisms to foster employees' positive participation: (1) a process to ensure that all members of the organization have the opportunity to improve productivity, primarily through an open suggestion system and a responsive committee structure, and (2) a means of providing equitable rewards for all members of the organization as productivity and quality improve. This essay describes in some detail the plan and why it was selected, explains how it was adapted, prepared for, and finally implemented in 1989, and reports its success, lessons learned, and future plans as of early 1992. The authors believe Beth Israel's experience with the Scanlon Plan is noteworthy as an example of a leading teaching hospital's taking a quality improvement program seriously and making it work. PMID:1575858
Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models
We present the construction of the full set of eigenvectors of the open asymmetric simple exclusion process (ASEP) and XXZ models with special constraints on the boundaries. The method combines both recent constructions of coordinate Bethe Ansatz and the old method of matrix Ansatz specific to the ASEP. This 'matrix coordinate Bethe Ansatz' can be viewed as a non-commutative coordinate Bethe Ansatz, the non-commutative part being related to the algebra appearing in the matrix Ansatz. (paper)
Spectral Theory for Interacting Particle Systems Solvable by Coordinate Bethe Ansatz
Borodin, Alexei; Corwin, Ivan; Petrov, Leonid; Sasamoto, Tomohiro
2015-11-01
We develop spectral theory for the q-Hahn stochastic particle system introduced recently by Povolotsky. That is, we establish a Plancherel type isomorphism result that implies completeness and biorthogonality statements for the Bethe ansatz eigenfunctions of the system. Owing to a Markov duality with the q-Hahn TASEP (a discrete-time generalization of TASEP with particles' jump distribution being the orthogonality weight for the classical q-Hahn orthogonal polynomials), we write down moment formulas that characterize the fixed time distribution of the q-Hahn TASEP with general initial data. The Bethe ansatz eigenfunctions of the q-Hahn system degenerate into eigenfunctions of other (not necessarily stochastic) interacting particle systems solvable by the coordinate Bethe ansatz. This includes the ASEP, the (asymmetric) six-vertex model, and the Heisenberg XXZ spin chain (all models are on the infinite lattice). In this way, each of the latter systems possesses a spectral theory, too. In particular, biorthogonality of the ASEP eigenfunctions, which follows from the corresponding q-Hahn statement, implies symmetrization identities of Tracy and Widom (for ASEP with either step or step Bernoulli initial configuration) as corollaries. Another degeneration takes the q-Hahn system to the q-Boson particle system (dual to q-TASEP) studied in detail in our previous paper (2013). Thus, at the spectral theory level we unify two discrete-space regularizations of the Kardar-Parisi-Zhang equation/stochastic heat equation, namely, q-TASEP and ASEP.
Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach
Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer
2010-12-01
We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.
A systematic approach to sketch Bethe-Salpeter equation
Qin, Si-xue
2016-01-01
To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS) equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark--anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD's gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs) and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM) vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symm...
Continuous representations of scalar products of Bethe vectors
Galleas, W
2016-01-01
We present families of single determinantal representations of on-shell scalar products of Bethe vectors. Our families of representations are parameterized by a continuous complex variable which can be fixed at convenience. Here we consider Bethe vectors in two versions of the six-vertex model: the case with boundary twists and the case with open boundaries.
Overlaps of Partial Neel States and Bethe States
Foda, O
2015-01-01
Partial Neel states are generalizations of the ordinary Neel (classical anti-ferromagnet) state that can have arbitrary integer spin. We study overlaps of these states with Bethe states. We first identify this overlap with a partial version of reflecting-boundary domain-wall partition function, and then derive various determinant representations for off-shell and on-shell Bethe states.
Obituary: Beth Brown (1969-2008)
Bregman, Joel
2011-12-01
The astronomical community lost one of its most buoyant and caring individuals when Beth Brown died, unexpectedly, at the age of 39 from a pulmonary embolism. Beth Brown was born in Roanoke, Virginia where she developed a deep interest in astronomy, science, and science fiction (Star Trek). After graduating as the valedictorian of William Fleming High School's Class of 1987, she attended Howard University, where she graduated summa cum laude in 1991 with a bachelor's degree in astrophysics. Following a year in the graduate physics program at Howard, she entered the graduate program in the Department of Astronomy at the University of Michigan, the first African-American woman in the program. She received her PhD in 1998, working with X-ray observations of elliptical galaxies from the Röntgen Satellite (ROSAT; Joel Bregman was her advisor). She compiled and analyzed the first large complete sample of such galaxies with ROSAT and her papers in this area made an impact in the field. Following her PhD, Beth Brown held a National Academy of Science & National Research Council Postdoctoral Research Fellowship at NASA's Goddard Space Flight Center. Subsequently, she became a civil servant at the National Space Science Data Center at GSFC, where she was involved in data archival activities as well as education and outreach, a continuing passion in her life. In 2006, Brown became an Astrophysics Fellow at GSFC, during which time she worked as a visiting Assistant Professor at Howard University, where she taught and worked with students and faculty to improve the teaching observatory. At the time of her death, she was eagerly looking forward to a new position at GSFC as the Assistant Director for Science Communications and Higher Education. Beth Brown was a joyous individual who loved to work with people, especially in educating them about our remarkable field. Her warmth and openness was a great aid in making accessible explanations of otherwise daunting astrophysical
Cyclotomic Gaudin Models: Construction and Bethe Ansatz
Vicedo, Benoît; Young, Charles
2016-05-01
To any finite-dimensional simple Lie algebra g and automorphism {σ: gto g we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of {U(g)^{⊗ N}} generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case {σ =id}. We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules. To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin involving vertex algebras and the Wakimoto construction. As part of this construction, we make use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper. As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for the weight function.
Graphene on graphene antidot lattices
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen;
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models
Crampe, N [Laboratoire Charles Coulomb, UMR 5221, Universite Montpellier 2, F-34095 Montpellier (France); Ragoucy, E [Laboratoire de Physique Theorique LAPTH, CNRS and Universite de Savoie, 9 chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex (France); Simon, D, E-mail: nicolas.crampe@univ-montp2.fr, E-mail: ragoucy@lapp.in2p3.fr, E-mail: damien.simon@upmc.fr [LPMA, Universite Pierre et Marie Curie, Case Courrier 188, 4 place Jussieu, 75252 Paris Cedex 05 (France)
2011-10-07
We present the construction of the full set of eigenvectors of the open asymmetric simple exclusion process (ASEP) and XXZ models with special constraints on the boundaries. The method combines both recent constructions of coordinate Bethe Ansatz and the old method of matrix Ansatz specific to the ASEP. This 'matrix coordinate Bethe Ansatz' can be viewed as a non-commutative coordinate Bethe Ansatz, the non-commutative part being related to the algebra appearing in the matrix Ansatz. (paper)
Two-body bound states & the Bethe-Salpeter equation
Pichowsky, M. [Argonne National Lab., IL (United States); Kennedy, M. [Univ. of New Hampshire, Durham, NH (United States). Physics Dept.; Strickland, M. [Duke Univ., Durham, NC (United States)
1995-01-18
The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.
Norm of Bethe Wave Function as a Determinant
Korepin, Vladimir E
2009-01-01
This is a historical note. Bethe Ansatz solvable models are considered, for example XXZ Heisenberg anti-ferromagnet and Bose gas with delta interaction. Periodic boundary conditions lead to Bethe equation. The square of the norm of Bethe wave function is equal to a determinant of linearized system of Bethe equations (determinant of matrix of second derivatives of Yang action). The proof was first published in Communications in Mathematical Physics, vol 86, page 391 in l982. Also domain wall boundary conditions for 6 vertex model were discovered in the same paper [see Appendix D]. These play an important role for algebraic combinatorics: alternating sign matrices, domino tiling and plane partition. Many publications are devoted to six vertex model with domain wall boundary conditions.
Twisted Bethe equations from a twisted S-matrix
Ahn, Changrim; Bombardelli, Diego; Nepomechie, Rafael I
2010-01-01
All-loop asymptotic Bethe equations for a 3-parameter deformation of AdS5/CFT4 have been proposed by Beisert and Roiban. We propose a Drinfeld twist of the AdS5/CFT4 S-matrix, together with c-number diagonal twists of the boundary conditions, from which we derive these Bethe equations. Although the undeformed S-matrix factorizes into a product of two su(2|2) factors, the deformed S-matrix cannot be so factored. Diagonalization of the corresponding transfer matrix requires a generalization of the conventional algebraic Bethe ansatz approach, which we first illustrate for the simpler case of the twisted su(2) principal chiral model. We also demonstrate that the same twisted Bethe equations can alternatively be derived using instead untwisted S-matrices and boundary conditions with operatorial twists.
Off-diagonal Bethe ansatz for exactly solvable models
This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.
Bethe Ansatz for the Ruijsenaars Model of BC_1-Type
Oleg Chalykh
2007-02-01
Full Text Available We consider one-dimensional elliptic Ruijsenaars model of type $BC_1$. It is given by a three-term difference Schrödinger operator $L$ containing 8 coupling constants. We show that when all coupling constants are integers, $L$ has meromorphic eigenfunctions expressed by a variant of Bethe ansatz. This result generalizes the Bethe ansatz formulas known in the $A_1$-case.
Modified Bethe-Weizsaecker mass formula for hypernuclei
The Bethe-Weizsaecker mass formula originally designed to reproduce the gross features of nuclear binding energies for medium and heavy mass nuclei, fails for light nuclei especially away from the line of stability. To alleviate this problem a modified Bethe-Weizsaecker mass formula was suggested which explained the gross features of the binding energy versus neutron number curves of all the elements from Li to Bi
Nuclear forces the making of the physicist Hans Bethe
Schweber, Silvan S
2012-01-01
On the fiftieth anniversary of Hiroshima, Nobel-winning physicist Hans Bethe called on his fellow scientists to stop working on weapons of mass destruction. What drove Bethe, the head of Theoretical Physics at Los Alamos during the Manhattan Project, to renounce the weaponry he had once worked so tirelessly to create? That is one of the questions answered by "Nuclear Forces", a riveting biography of Bethe's early life and development as both a scientist and a man of principle. As Silvan Schweber follows Bethe from his childhood in Germany, to laboratories in Italy and England, and on to Cornell University, he shows how these differing environments were reflected in the kind of physics Bethe produced. Many of the young quantum physicists in the 1930s, including Bethe, had Jewish roots, and Schweber considers how Liberal Judaism in Germany helps explain their remarkable contributions. A portrait emerges of a man whose strategy for staying on top of a deeply hierarchical field was to tackle only those problems h...
Tricritical phenomena in a Z(3) lattice gauge theory
Ananikian, N S; Ananikian, N S; Shcherbakov, R R
1994-01-01
The Z(3) gauge model with double plaquette representation of the action on a generalized Bethe lattice of plaquettes is constructed. It is reduced to the spin-1 Blume-Emery-Griffiths (BEG) model. An Ising-type critical line of a second-order phase transition ending in the tricritical point is found.
Extraction of Hadron Interactions above Inelastic Threshold in Lattice QCD
Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2011-01-01
We propose a new method to extract hadron interactions above inelastic threshold from the Nambu-Bethe-Salpter amplitude in lattice QCD. We consider the scattering such as $A+B\\rightarrow C+D$, where $A,B,C,D$ are names of different 1-particle states. An extension to cases where particle productions occur during scatterings is also discussed.
Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers.
Peng, Z. Y.; Simplaceanu, V; Dowd, S R; Ho, C.
1989-01-01
Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer...
Directed Random Walk on the Lattices of Genus Two
Nazarenko, A. V.
2011-01-01
The object of the present investigation is an ensemble of self-avoiding and directed graphs belonging to eight-branching Cayley tree (Bethe lattice) generated by the Fucsian group of a Riemann surface of genus two and embedded in the Pincar\\'e unit disk. We consider two-parametric lattices and calculate the multifractal scaling exponents for the moments of the graph lengths distribution as functions of these parameters. We show the results of numerical and statistical computations, where the ...
Selected Works Of Hans A Bethe (With Commentary)
Hans A Bethe received the Nobel Prize for Physics in 1967 for his work on the production of energy in stars. A living legend among the physics community, he helped to shape classical physics into quantum physics and increased the understanding of the atomic processes responsible for the properties of matter and of the forces governing the structures of atomic nuclei. This collection of papers by Prof Bethe dates from 1928, when he received his PhD, to now. It covers several areas and reflects the many contributions in research and discovery made by one of the most important and eminent physicists of all time. Special commentaries have been written by Prof Bethe to complement the selected papers
Integrable achiral D5-brane reflections and asymptotic Bethe equations
Correa, Diego H; Young, Charles A S
2011-01-01
We study the reflection of magnons from a D5-brane in the framework of the AdS/CFT correspondence. We consider two possible orientations of the D5-brane with respect to the reference vacuum state, namely vacuum states aligned along "vertical" and "horizontal" directions. We show that the reflections are of the achiral type. We also show that the reflection matrices satisfy the boundary Yang-Baxter equations for both orientations. In the horizontal case the reflection matrix can be interpreted in terms of a bulk S-matrix, S(p, -p), and factorizability of boundary scattering therefore follows from that of bulk scattering. Finally, we solve the nested coordinate Bethe ansatz for the system in the vertical case to find the Bethe equations. In the horizontal case, the Bethe equations are of the same form as those for the closed string.
Constrained variational results for the new Bethe homework problem
Bethe has proposed two model N-N interactions, one containing a central plus sigma1.sigma2 spin dependence and the other containing in addition a tensor force, to study the convergence of various many-body techniques for calculating the bulk properties of many fermion fluids. Following the success of using constrained variational calculations in describing the behaviour of the original Bethe homework problem involving a purely central interaction, results in neutron matter and nuclear matter for the new spin-dependent potentials, are here presented. (author)
Improved Numerical Generalization of Bethe- Weizsacker Mass Formula
Mavrodiev, Strachimir
2016-01-01
In this paper is presented explicit improved numerical generalization of Bethe-Weizsacker mass formulae which describes the values of measured 2654 nuclear mass in AME2012 nuclear database with accuracy less than 2.2 MeV, starting from the number of protons Z=1 and number of neutrons N=1. In the obtained generazation of the Bethe-Weizsacker formula the influence of magic numbers and boundaries of their influence between them is defined for nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers.
Nested Bethe ansatz for "all" closed spin chains
Belliard, S.; Ragoucy, E.
2008-01-01
We present in an unified and detailed way the Nested Bethe Ansatz for closed spin chains based on Y(gl(n)), Y(gl(m|n)), U_q(gl(n)) or U_q(gl(m|n)) (super)algebras, with arbitrary representations (i.e. `spins') on each site of the chain. In particular, the case of indecomposable representations of superalgebras is studied. The construction extends and unifies the results already obtained for spin chains based on Y(gl(n)) or U_q(gl(n)) and for some particular super-spin chains. We give the Beth...
Bracken, Anthony J.; Ge Xiangyu; Gould, Mark D.; Links, Jon; Zhou Huanqiang [Centre for Mathematical Physics, University of Queensland, Brisbane, QLD (Australia)
2001-06-01
Integrable extended Hubbard models arising from symmetric group solutions are examined in the framework of the graded quantum inverse scattering method. The Bethe ansatz equations for all these models are derived by using the algebraic Bethe ansatz method. (author)
On integrable directed polymer models on the square lattice
In a recent work Povolotsky (2013 J. Phys. A: Math. Theor. 46 465205) provided a three-parameter family of stochastic particle systems with zero-range interactions in one-dimension which are integrable by coordinate Bethe ansatz. Using these results we obtain the corresponding condition for integrability of a class of directed polymer models with random weights on the square lattice. Analyzing the solutions we find, besides known cases, a new two-parameter family of integrable DP model, which we call the Inverse-Beta polymer, and provide its Bethe ansatz solution. (paper)
Algebraic Bethe ansatz for 19-vertex models with upper triangular K-matrices
By means of an algebraic Bethe ansatz approach, we study the Zamolodchikov–Fateev and Izergin–Korepin vertex models with non-diagonal boundaries, characterized by reflection matrices with an upper triangular form. Generalized Bethe vectors are used to diagonalize the associated transfer matrix. The eigenvalues as well as the Bethe equations are presented. (paper)
Bethe states of the integrable spin-s chain with generic open boundaries
Based on the inhomogeneous T –Q relation and the associated Bethe ansatz equations obtained via the off-diagonal Bethe ansatz, we construct the Bethe-type eigenstates of the SU(2)-invariant spin-s chain with generic non-diagonal boundaries by employing certain orthogonal basis of the Hilbert space. (paper)
Algebraic Bethe Ansatz for Open XXX Model with Triangular Boundary Matrices
Belliard, Samuel; Crampé, Nicolas; Ragoucy, Eric
2013-05-01
We consider an open XXX spin chain with two general boundary matrices whose entries obey a relation, which is equivalent to the possibility to put simultaneously the two matrices in a upper-triangular form. We construct Bethe vectors by means of a generalized algebraic Bethe ansatz. As usual, the method uses Bethe equations and provides transfer matrix eigenvalues.
Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries
Gombor, Tamas
2015-01-01
The finite volume problem of O(2N) sigma models with integrable diagonal boundaries on a finite interval is investigated. The double row transfer matrix is diagonalized by Algebraic Bethe Ansatz. The boundary Bethe Yang equations for the particle rapidities and the accompanying Bethe Ansatz equations are derived.
On the algebraic Bethe ansatz: Periodic boundary conditions
Lima-Santos, A.
2006-01-01
In this paper, the algebraic Bethe ansatz with periodic boundary conditions is used to investigate trigonometric vertex models associated with the fundamental representations of the non-exceptional Lie algebras. This formulation allow us to present explicit expressions for the eigenvectors and eigenvalues of the respective transfer matrices.
Coordinate Bethe Ansatz for Spin s XXX Model
Nicolas Crampé; Eric Ragoucy; Ludovic Alonzi
2010-01-01
We compute the eigenfunctions and eigenvalues of the periodic integrable spin s XXX model using the coordinate Bethe ansatz. To do so, we compute explicitly the Hamiltonian of the model. These results generalize what has been obtained for spin 1/2 and spin 1 chains.
Pionierin der Religionspsychologie: Marianne Beth (1890-1984)
J.A. Belzen
2010-01-01
This article deals with the contributions to the psychology of religion made by Dr. Marianne Beth (1890-1984), an almost totally forgotten pioneer of the psychology of religion. The article especially contextualizes her initiative to turn "unbelief" into a topic for research in psychology of religio
Regge behaviour within the Bethe-Salpeter approach
Kubrak, Stanislav; Williams, Richard
2014-01-01
We present a calculation of the spectrum of light and heavy quark bound states in the rainbow-ladder truncation of Dyson-Schwinger/Bethe-Salpeter equations. By extending the formalism include the case of total angular momentum J=3, we are able to explore Regge trajectories and make prediction of tensor bound states for light and heavy quarkonia.
Characters in Conformal Field Theories from Thermodynamic Bethe Ansatz
Kuniba, A.; Nakanishi, T; Suzuki, J.
1993-01-01
We propose a new $q$-series formula for a character of parafermion conformal field theories associated to arbitrary non-twisted affine Lie algebra $\\widehat{g}$. We show its natural origin from a thermodynamic Bethe ansatz analysis including chemical potentials.
Interaction driven quantum Hall effect in artificially stacked graphene bilayers
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa
2016-04-01
The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers.
Interaction driven quantum Hall effect in artificially stacked graphene bilayers
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa
2016-01-01
The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387
Pinning and switching of magnetic moments in bilayer graphene
Castro, Eduardo V; Lopez-Sancho, M P; Vozmediano, M A H [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)], E-mail: evcastro@icmm.csic.es, E-mail: pilar@icmm.csic.es, E-mail: vozmediano@icmm.csic.es
2009-09-15
We examine the magnetic properties of the localized states induced by lattice vacancies in bilayer graphene with an unrestricted Hartree-Fock calculation. We show that, with realistic values of the parameters and for experimentally accessible gate voltages, we can have magnetic switching between an unpolarized and a fully polarized system.
Pinning and switching of magnetic moments in bilayer graphene
We examine the magnetic properties of the localized states induced by lattice vacancies in bilayer graphene with an unrestricted Hartree-Fock calculation. We show that, with realistic values of the parameters and for experimentally accessible gate voltages, we can have magnetic switching between an unpolarized and a fully polarized system.
Phase behavior of pure lipid bilayers with mismatch interactions
Zhang, Zhengping; Laradji, Mohamed; Guo, Hong;
1992-01-01
Recently Corvera, Laradji, and Zuckermann (unpublished) showed that the multistate lattice model due to Pink, Green, and Chapman [Biochemistry 20, 6692 (1981)] with parameters obtained from fitting to thermodynamic data for saturated phospholipid bilayers does not exhibit a phase transition but c...
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
Cirilo António, N., E-mail: nantonio@math.ist.utl.pt [Centro de Análise Funcional e Aplicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Manojlović, N., E-mail: nmanoj@ualg.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa (Portugal); Departamento de Matemática, F.C.T., Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro (Portugal); Salom, I., E-mail: isalom@ipb.ac.rs [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)
2014-12-15
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model
Bethe states of the XXZ spin-12 chain with arbitrary boundary fields
Xin Zhang
2015-04-01
Full Text Available Based on the inhomogeneous T−Q relation constructed via the off-diagonal Bethe Ansatz, the Bethe-type eigenstates of the XXZ spin-12 chain with arbitrary boundary fields are constructed. It is found that by employing two sets of gauge transformations, proper generators and reference state for constructing Bethe vectors can be obtained respectively. Given an inhomogeneous T−Q relation for an eigenvalue, it is proven that the resulting Bethe state is an eigenstate of the transfer matrix, provided that the parameters of the generators satisfy the associated Bethe Ansatz equations.
Compressibility of bilayer graphene
Borghi, Giovanni; Polini, Marco; Asgari, Reza; MacDonald, A. H.
2010-01-01
Bilayer graphene is a recently isolated and intriguing class of many-body systems with massive chiral quasiparticles. We present theoretical results for the electronic compressibility of bilayer graphene that are based on a four-band continuum band structure model combined with a random phase approximation treatment of electronic correlations. We find that the compressibility is strongly suppressed by electron-electron interactions at low carrier densities. Correlations do not lead to any qua...
Log-gamma directed polymer with fixed endpoints via the replica Bethe Ansatz
We study the model of a discrete directed polymer (DP) on a square lattice with homogeneous inverse gamma distribution of site random Boltzmann weights, introduced by Seppalainen (2012 Ann. Probab. 40 19–73). The integer moments of the partition sum, Zn-bar , are studied using a transfer matrix formulation, which appears as a generalization of the Lieb–Liniger quantum mechanics of bosons to discrete time and space. In the present case of the inverse gamma distribution the model is integrable in terms of a coordinate Bethe Ansatz, as discovered by Brunet. Using the Brunet-Bethe eigenstates we obtain an exact expression for the integer moments of Zn-bar for polymers of arbitrary lengths and fixed endpoint positions. Although these moments do not exist for all integer n, we are nevertheless able to construct a generating function which reproduces all existing integer moments and which takes the form of a Fredholm determinant (FD). This suggests an analytic continuation via a Mellin–Barnes transform and we thereby propose a FD ansatz representation for the probability distribution function (PDF) of Z and its Laplace transform. In the limit of a very long DP, this ansatz yields that the distribution of the free energy converges to the Gaussian unitary ensemble (GUE) Tracy-Widom distribution up to a non-trivial average and variance that we calculate. Our asymptotic predictions coincide with a result by Borodin et al (2013 Commun. Math. Phys. 324 215–32) based on a formula obtained by Corwin et al (2011 arXiv:1110.3489) using the geometric Robinson–Schensted–Knuth (gRSK) correspondence. In addition we obtain the dependence on the endpoint position and the exact elastic coefficient at a large time. We argue the equivalence between our formula and that of Borodin et al. As we will discuss, this provides a connection between quantum integrability and tropical combinatorics. (paper)
Log-gamma directed polymer with fixed endpoints via the replica Bethe Ansatz
Thiery, Thimothée; Le Doussal, Pierre
2014-10-01
We study the model of a discrete directed polymer (DP) on a square lattice with homogeneous inverse gamma distribution of site random Boltzmann weights, introduced by Seppalainen (2012 Ann. Probab. 40 19-73). The integer moments of the partition sum, \\overline{Z^n} , are studied using a transfer matrix formulation, which appears as a generalization of the Lieb-Liniger quantum mechanics of bosons to discrete time and space. In the present case of the inverse gamma distribution the model is integrable in terms of a coordinate Bethe Ansatz, as discovered by Brunet. Using the Brunet-Bethe eigenstates we obtain an exact expression for the integer moments of \\overline{Z^n} for polymers of arbitrary lengths and fixed endpoint positions. Although these moments do not exist for all integer n, we are nevertheless able to construct a generating function which reproduces all existing integer moments and which takes the form of a Fredholm determinant (FD). This suggests an analytic continuation via a Mellin-Barnes transform and we thereby propose a FD ansatz representation for the probability distribution function (PDF) of Z and its Laplace transform. In the limit of a very long DP, this ansatz yields that the distribution of the free energy converges to the Gaussian unitary ensemble (GUE) Tracy-Widom distribution up to a non-trivial average and variance that we calculate. Our asymptotic predictions coincide with a result by Borodin et al (2013 Commun. Math. Phys. 324 215-32) based on a formula obtained by Corwin et al (2011 arXiv:1110.3489) using the geometric Robinson-Schensted-Knuth (gRSK) correspondence. In addition we obtain the dependence on the endpoint position and the exact elastic coefficient at a large time. We argue the equivalence between our formula and that of Borodin et al. As we will discuss, this provides a connection between quantum integrability and tropical combinatorics.
Hutsalyuk, A; Pakuliak, S Z; Ragoucy, E; Slavnov, N A
2016-01-01
We study integrable models with $\\mathfrak{gl}(2|1)$ symmetry and solvable by nested algebraic Bethe ansatz. We obtain a determinant representation for scalar products of Bethe vectors, when the Bethe parameters obey some relations weaker than the Bethe equations. This representation allows us to find the norms of on-shell Bethe vectors and obtain determinant formulas for form factors of the diagonal entries of the monodromy matrix.
Coordinate Bethe ANSÄTZE for Non-Diagonal Boundaries
Ragoucy, Eric
2013-11-01
Bethe ansatz goes back to 1931, when H. Bethe invented it to solve some one-dimensional models, such as XXX spin chain, proposed by W. Heisenberg in 1928. Although it is a very powerful method to compute eigenvalues and eigenvectors of the corresponding Hamiltonian, it can be applied only for very specific boundary conditions: periodic boundary ones, and so-called open-diagonal boundary ones. After reviewing this method, we will present a generalization of it that applies also to open-triangular boundary conditions. This short note presents only the basic ideas of the technique, and does not attend to give a general overview of the subject. Interested readers should refer to the original papers and references therein.
Bethe-Salpeter bound-state structure in Minkowski space
Gutierrez, C.; Gigante, V.; Frederico, T.; Salmè, G.; Viviani, M.; Tomio, Lauro
2016-08-01
The quantitative investigation of the scalar Bethe-Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe-Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.
Bethe-Salpeter bound-state structure in Minkowski space
Gutierrez, C; Frederico, T; Salmè, G; Viviani, M; Tomio, Lauro
2016-01-01
The quantitative investigation of the scalar Bethe-Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe-Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.
Glueball properties from the Bethe-Salpeter equation
For over thirty years bound states of gluons are an outstanding problem of both theoretical and experimental physics. Being predicted by Quantum-Chromodynamics their experimental confirmation is one of the foremost goals of large experimental facilities currently under construction like FAIR in Darmstadt. This thesis presents a novel approach to the theoretical determination of physical properties of bound states of two gluons, called glueballs. It uses the consistent combination of Schwinger-Dyson equations for gluons and ghosts and appropriate Bethe-Salpeter equations describing their corresponding bound-states. A rigorous derivation of both sets of equations, starting from an 2PI effective action is given as well as a general determination of appropriate decompositions of Bethe-Salpeter amplitudes to a given set of quantum numbers of a glueball. As an application example bound state masses of glueballs in a simple truncation scheme are calculated. (orig.)
Covariant Bethe-Salpeter wave functions for heavy hadrons
In recent years the dynamics of heavy mesons and baryons has considerably simplified by the development of the so-called heavy quark effective theory (HQET). A covariant formulation of heavy meson and heavy baryon decays in the leading order of the HQET is presented. The method is based on a Bethe-Salpeter formulation in the limit of the heavy quark mass going to infinity. 15 refs, 4 figs
On the Bethe approximation to the reactance matrix
The Bethe approximation to the reactance matrix is considered for electron-neutral-atom collisions. Analytic expressions are given for the matrix elements. For the special case of electron-neutral-atom scattering the sum rules of Burgess are simplified. Particular consideration is given to the problem of calculating cross sections for dipole transitions. Partial cross sections are presented for all non-exact resonance dipole transitions between hydrogen atom states, with n, n' = 11, 31, 51, 71, 91. (author)
How algebraic Bethe ansatz works for integrable model
Fadeev, L
1996-01-01
I study the technique of Algebraic Bethe Ansatz for solving integrable models and show how it works in detail on the simplest example of spin 1/2 XXX magnetic chain. Several other models are treated more superficially, only the specific details are given. Several parameters, appearing in these generalizations: spin s, anisotropy parameter \\ga, shift \\om in the alternating chain, allow to include in our treatment most known examples of soliton theory, including relativistic model of Quantum Field Theory.
Bethe ansatz for higher spin eight vertex models
Takebe, T
1995-01-01
A generalization of the eight vertex model by means of higher spin representations of the Sklyanin algebra is investigated by the quantum inverse scattering method and the algebraic Bethe Ansatz. Under the well-known string hypothesis low-lying excited states are considered and scattering phase shifts of two physical particles are calculated. The S matrix of two particle states is shown to be proportional to the Baxter's elliptic R matrix with a different elliptic modulus from the original one.
Excited charmonium states from Bethe-Salpeter Equation
Šauli, Vladimír; Bicudo, P.
2012-01-01
Roč. 7, 043 (2012), s. 1-10. ISSN 1824-8039. [International Workshop on QCD Green’s Functions. Tranto, 05.09.2011-09.09.2011] R&D Projects: GA MŠk(CZ) LG11005 Institutional research plan: CEZ:AV0Z10480505 Keywords : charmonium * Bethe-Salpeter Equation Subject RIV: BE - Theoretical Physics http://pos.sissa.it/archive/conferences/136/043/QCD- TNT -II_043.pdf
RPA equations and the instantaneous Bethe-Salpeter equation
Resag, J
1993-01-01
We give a derivation of the particle-hole RPA equations for an interacting multi-fermion system by applying the instantaneous approximation to the amputated two-fermion propagator of the system. In relativistic field theory the same approximation leads from the fermion-antifermion Bethe-Salpeter equation to the Salpeter equation. We show that RPA equations and Salpeter equation are indeed equivalent.
Multiplication factor in multiwire proportional chambers: a Bethe formulation
This work presents a model describing the electronic gain for multiwire proportional chambers. An expression for the electronic multiplication is achieved through the ionization cross section of the filling gas by electron impact. The individual ionization process is considered as a transition into continuum and estimated by the Bethe formula. This model is compared to both experimental and semi-empirical previously reported data. ((orig.))
Bethe-Peierls approximation and the inverse Ising model
Nguyen, H. Chau; Berg, Johannes
2011-01-01
We apply the Bethe-Peierls approximation to the problem of the inverse Ising model and show how the linear response relation leads to a simple method to reconstruct couplings and fields of the Ising model. This reconstruction is exact on tree graphs, yet its computational expense is comparable to other mean-field methods. We compare the performance of this method to the independent-pair, naive mean- field, Thouless-Anderson-Palmer approximations, the Sessak-Monasson expansion, and susceptibil...
Loopy Belief Propagation, Bethe Free Energy and Graph Zeta Function
Watanabe, Yusuke
2011-01-01
We propose a new approach to the theoretical analysis of Loopy Belief Propagation (LBP) and the Bethe free energy (BFE) by establishing a formula to connect LBP and BFE with a graph zeta function. The proposed approach is applicable to a wide class of models including multinomial and Gaussian types. The connection derives a number of new theoretical results on LBP and BFE. This paper focuses two of such topics. One is the analysis of the region where the Hessian of the Bethe free energy is positive definite, which derives the non-convexity of BFE for graphs with multiple cycles, and a condition of convexity on a restricted set. This analysis also gives a new condition for the uniqueness of the LBP fixed point. The other result is to clarify the relation between the local stability of a fixed point of LBP and local minima of the BFE, which implies, for example, that a locally stable fixed point of the Gaussian LBP is a local minimum of the Gaussian Bethe free energy.
GW and Bethe-Salpeter study of small water clusters
Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul [CNRS, Institut NEEL, F-38042 Grenoble (France); Bruneval, Fabien [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Fernandez-Serra, Marivi [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Duchemin, Ivan [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France)
2016-01-21
We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.
Role of substrate induced electron–phonon interactions in biased graphitic bilayers
Davenport, A. R.; Hague, J. P.
2016-08-01
Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, turning them into useful semiconductors. On the other hand, opening of a small semiconducting gap occurs in graphene bilayers under applied field. The aim here is to investigate to what extent substrate induced electron–phonon interactions (EPIs) modify this gap change. We examine EPIs in several lattice configurations of graphitic bilayers, using a perturbative approach. The typical effect of EPIs on the ionic bilayers is an undesirable gap widening. The size of this gap change varies considerably with lattice structure and the magnitude of the bias. When bias is larger than the non-interacting gap size, EPIs have the smallest effect on the bandgap, especially in configurations with A{{A}\\prime} and AB structures. Thus careful selection of substrate, lattice configuration and bias strength to minimise the effects of EPIs could be important for optimising the properties of electronic devices. We use parameters related to BN in this article. In practice, the results presented here are broadly applicable to other graphitic bilayers, and are likely to be qualitatively similar in metal dichalcogenide bilayers such as MoS2, which are already of high interest for their use in FETs.
Role of substrate induced electron-phonon interactions in biased graphitic bilayers.
Davenport, A R; Hague, J P
2016-08-17
Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, turning them into useful semiconductors. On the other hand, opening of a small semiconducting gap occurs in graphene bilayers under applied field. The aim here is to investigate to what extent substrate induced electron-phonon interactions (EPIs) modify this gap change. We examine EPIs in several lattice configurations of graphitic bilayers, using a perturbative approach. The typical effect of EPIs on the ionic bilayers is an undesirable gap widening. The size of this gap change varies considerably with lattice structure and the magnitude of the bias. When bias is larger than the non-interacting gap size, EPIs have the smallest effect on the bandgap, especially in configurations with [Formula: see text] and AB structures. Thus careful selection of substrate, lattice configuration and bias strength to minimise the effects of EPIs could be important for optimising the properties of electronic devices. We use parameters related to BN in this article. In practice, the results presented here are broadly applicable to other graphitic bilayers, and are likely to be qualitatively similar in metal dichalcogenide bilayers such as MoS2, which are already of high interest for their use in FETs. PMID:27346288
Enhanced Configurational Entropy in High-Density Nanoconfined Bilayer Ice
Corsetti, Fabiano; Zubeltzu, Jon; Artacho, Emilio
2016-02-01
A novel kind of crystal order in high-density nanoconfined bilayer ice is proposed from molecular dynamics and density-functional theory simulations. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with A A stacking. Uniquely among the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a configurational entropy twice that of bulk ice.
Algebraic Bethe ansatz for Q-operators: the Heisenberg spin chain
Frassek, Rouven
2015-07-01
We diagonalize Q-operators for rational homogeneous {sl}(2)-invariant Heisenberg spin chains using the algebraic Bethe ansatz. After deriving the fundamental commutation relations relevant for this case from the Yang-Baxter equation we demonstrate that the Q-operators act diagonally on the Bethe vectors if the Bethe equations are satisfied. In this way we provide a direct proof that the eigenvalues of the Q-operators studied here are given by Baxter's Q-functions.
Bethe Vectors of Quantum Integrable Models with GL(3 Trigonometric R-Matrix
Samuel Belliard
2013-10-01
Full Text Available We study quantum integrable models with GL(3 trigonometric $R$-matrix and solvable by the nested algebraic Bethe ansatz.Using the presentation of the universal Bethe vectors in terms of projections of products of the currents of the quantum affine algebra $U_q(widehat{mathfrak{gl}}_3$ onto intersections of different types of Borel subalgebras, we prove that the set of the nested Bethe vectors is closed under the action of the elements of the monodromymatrix.
Modified algebraic Bethe ansatz for XXZ chain on the segment - II - general cases
Belliard, Samuel
2015-01-01
The spectral problem of the Heisenberg XXZ spin-$\\frac{1}{2}$ chain on the segment is investigated within a modified algebraic Bethe ansatz framework. We consider in this work the most general boundaries allowed by integrability. The eigenvalues and the eigenvectors are obtained. They are characterised by a set of Bethe roots with cardinality equal to $N$, the length of the chain, and which satisfies a set of Bethe equations with an additional term.
Bethe states for the two-site Bose-Hubbard model: a binomial approach
Santos, Gilberto; Foerster, Angela; Roditi, Itzhak
2015-01-01
We calculate explicitly the Bethe vectors states by the algebraic Bethe ansatz method with the $gl(2)$-invariant $R$-matrix for the two-site Bose-Hubbard model. Using a binomial expansion of the n-th power of a sum of two operators we get and solve a recursion equation. We calculate the scalar product and the norm of the Bethe vectors states. The form factors of the imbalance current operator are also computed.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
António, N Cirilo; Salom, I
2014-01-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the corresponding Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the Bethe vectors through the so-called quasi-classical limit.
π- and K-meson Bethe-Salpeter amplitudes
Independent of assumptions about the form of the quark-quark scattering kernel K, we derive the explicit relation between the flavor-nonsinglet pseudoscalar-meson Bethe-Salpeter amplitude ΓH and the dressed-quark propagator in the chiral limit. In addition to a term proportional to γ5, ΓH necessarily contains qualitatively and quantitatively important terms proportional to γ5γ·P and γ5γ·kk·P, where P is the total momentum of the bound state. The axial-vector vertex contains a bound state pole described by ΓH, whose residue is the leptonic decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-Takahashi identity relates these pole residues, with the Gell-Mann endash Oakes endash Renner relation a corollary of this identity. The dominant ultraviolet asymptotic behavior of the scalar functions in the meson Bethe-Salpeter amplitude is fully determined by the behavior of the chiral limit quark mass function, and is characteristic of the QCD renormalization group. The rainbow-ladder Ansatz for K, with a simple model for the dressed-quark-quark interaction, is used to illustrate and elucidate these general results. The model preserves the one-loop renormalization group structure of QCD. The numerical studies also provide a means of exploring procedures for solving the Bethe-Salpeter equation without a three-dimensional reduction. copyright 1997 The American Physical Society
Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
Khachatryan, Sh.; Ferraz, A.; Klümper, A.; Sedrakyan, A.
2015-10-01
We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2 + 1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang-Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson) scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.
Tetraquark bound states in a Bethe-Salpeter approach
Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.
2012-01-01
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the o...
Spectra of heavy mesons in the Bethe-Salpeter approach
Fischer, Christian S.; Kubrak, Stanislav; Williams, Richard [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany)
2015-01-01
We present a calculation of the spectrum of charmonia, bottomonia and B{sub c}-meson states with ''ordinary'' and exotic quantum numbers. We discuss the merits and limitations of a rainbow-ladder truncation of Dyson-Schwinger and Bethe-Salpeter equations and explore the effects of different shapes of the effective running coupling on ground and excited states in channels with quantum numbers J ≤ 3. We furthermore discuss the status of the X(3872) as a potential (excited) quark-antiquark state and give predictions for the masses of charmonia and bottomonia in the tensor channels with J= 2, 3. (orig.)
Physics over easy Breakfasts with Beth and physics
Azaroff, L V
2010-01-01
During a sequence of meals, the author relates the principal features of physics in easy-to-understand conversations with his wife Beth. Beginning with the studies of motion by Galileo and Newton through to the revolutionary theories of relativity and quantum mechanics in the 20th century, all important aspects of electricity, energy, magnetism, gravity and the structure of matter and atoms are explained and illustrated. The second edition similarly recounts the more recent application of these theories to nanoparticles, Bose-Einstein condensates, quantum entanglement and quantum computers. By
Bethe Ansatz Solutions of the Bose-Hubbard Dimer
Jon Links
2006-12-01
Full Text Available The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2 Lie algebra.
Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
Sh. Khachatryan
2015-10-01
Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.
Direct Bethe-Salpeter solutions in Minkowski space
Carbonell, J
2016-01-01
We review a method to directly solve the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the many singularities which appear in the kernel and propagators. The off-mass shell scattering amplitude for spinless particles interacting by a one boson exchange was computed for the first time. Using our Minkowski space solutions for the initial (bound) and final (scattering) states, we calculate elastic and transition (bound to scattering state) electromagnetic form factors. The conservation of the transition electromagnetic current J.q=0, verified numerically, confirms the validity of our solutions.
Bethe-Salpeter equation for elastic nucleon-nucleon scattering
The Bethe-Salpeter equation for NN scattering with one-boson exchange is investigated for the case in which the pion-nucleon coupling is described by axial-vector theory. In contrast to the results with pseudoscalar coupling, good agreement with the experimental data can be obtained for all partial waves. Also, the deviations from the Blankenbecler-Sugar equation are not as large as they are for pseudoscalar coupling. In addition, cancellations between the direct and the crossed box graph with pseudoscalar πN coupling are investigated for the 3S1 phase shift in the framework of the variational operator Pade approximation
Kundu, Anjan
2016-01-01
Integrable quantum field models are known to exist mostly in one space-dimension. Exploiting the concept of multi-time in integrable systems and a Lax matrix of higher scaling order, we construct a novel quantum field model in quasi-two dimensions involving interacting fields. The Yang-Baxter integrability is proved for the model by finding a new kind of commutation rule for its basic fields, representing nonstandard scalar fields along the transverse direction. In spite of a close link with the quantum Landau-Lifshitz equation, the present model differs widely from it, in its content and the result obtained. Using further the algebraic Bethe ansatz we solve exactly the eigenvalue problem of this quantum field model for all its higher conserved operators. The idea presented here should instigate the construction of a novel class of integrable field and lattice models and exploration of a new type of underlying algebras.
Strongly compressed Bi (111) bilayer films on Bi2Se3 studied by scanning tunneling microscopy
Ultra-thin Bi films show exotic electronic structure and novel quantum effects, especially the widely studied Bi (111) film. Using reflection high-energy electron diffraction and scanning tunneling microscopy, we studied the structure and morphology evolution of Bi (111) thin films grown on Bi2Se3. A strongly compressed, but quickly released in-plane lattice of Bi (111) is found in the first three bilayers. The first bilayer of Bi shows a fractal growth mode with flat surface, while the second and third bilayer show a periodic buckling due to the strong compression of the in-plane lattice. The lattice slowly changes to its bulk value with further deposition of Bi
$\\Omega\\Omega$ interaction from 2+1 flavor lattice QCD
Yamada, Masanori; Sasaki, Kenji; Aoki, Sinya; Doi, Takumi(Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198, Japan); Hatsuda, Tetsuo(Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198, Japan); Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu
2015-01-01
We investigate the interaction between $\\Omega$ baryons in the $^1S_0$ channel from 2+1 flavor lattice QCD simulations. On the basis of the HAL QCD method, the $\\Omega\\Omega$ potential is extracted from the Nambu-Bethe-Salpeter wave function calculated on the lattice by using the PACS-CS gauge configurations with the lattice spacing $a\\simeq 0.09$ fm, the lattice volume $L\\simeq 2.9$ fm and the quark masses corresponding to $m_\\pi \\simeq 700$ MeV and $m_\\Omega \\simeq 1970$ MeV. The $\\Omega\\Om...
Phospholipid bilayers are viscoelastic
Harland, Christopher W.; Bradley, Miranda J.; Parthasarathy, Raghuveer
2010-01-01
Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applyi...
Abergel, D. S. L.; Chakraborty, Tapash
2010-01-01
We describe the gated bilayer graphene system when it is subjected to intense terahertz frequency electromagnetic radiation. We examine the electron band structure and density of states via exact diagonalization methods within Floquet theory. We find that dynamical states are induced which lead to modification of the band structure. We first examine the situation where there is no external magnetic field. In the unbiased case, dynamical gaps appear in the spectrum which manifest as dips in th...
Twisted Bilayer Graphene Superlattices
Wang, Yanan; Su, Zhihua; Wu, Wei; Nie, Shu; Xie, Nan; Gong, Huiqi; Guo, Yang; Lee, Joon Hwan; Xing, Sirui; Lu, Xiaoxiang; Wang, Haiyan; Lu, Xinghua; McCarty, Kevin; Pei, Shin- shem; Robles-Hernandez, Francisco
2013-01-01
Twisted bilayer graphene (tBLG) provides us with a large rotational freedom to explore new physics and novel device applications, but many of its basic properties remain unresolved. Here we report the synthesis and systematic Raman study of tBLG. Chemical vapor deposition was used to synthesize hexagon- shaped tBLG with a rotation angle that can be conveniently determined by relative edge misalignment. Superlattice structures are revealed by the observation of two distinctive Raman features: ...
The Stability and Charge Carriers in Bilayer Silicene
Rui, Wang; Shaofeng, Wang; Xiaozhi, Wu
2013-01-01
The structure optimization, phonon, and ab initio ?nite temperature molecular dynamics calculations have been performed to predict that bilayer silicene has stable structure with AB stacking geometry and is more favorable energetically to synthesize than monolayer silicene, a two-dimensional honeycomb lattice with buckled geometry. Marvellously, its electronic bands show that the charge carriers behave like relativistic Dirac fermions with linear energy dispersions near the K points. An insig...
Quantum Hall effect in bilayer system with array of antidots
Pagnossin, I. R.; Gusev, G. M.; Sotomayor, N. M.; Seabra, A. C.; Quivy, A. A.; Lamas, T. E.; Portal, J. C.
2007-04-01
We have studied the Quantum Hall effect in a bilayer system modulated by gate-controlled antidot lattice potential. The Hall resistance shows plateaus which are quantized to anomalous multiplies of h/e2. We suggest that this complex behavior is due to the nature of the edge-states in double quantum well (DQW) structures coupled to an array of antidots: these plateaus may be originated from the coexistence of normal and counter-rotating edge-states in different layers.
Correlation functions of the spin chains. Algebraic Bethe Ansatz approach
Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)
Functional Bethe ansatz methods for the open XXX chain
We study the spectrum of the integrable open XXX Heisenberg spin chain subject to non-diagonal boundary magnetic fields. The spectral problem for this model can be formulated in terms of functional equations obtained by separation of variables or, equivalently, from the fusion of transfer matrices. For generic boundary conditions the eigenvalues cannot be obtained from the solution of finitely many algebraic Bethe equations. Based on careful finite size studies of the analytic properties of the underlying hierarchy of transfer matrices we devise two approaches to analyze the functional equations. First we introduce a truncation method leading to Bethe-type equations determining the energy spectrum of the spin chain. In a second approach, the hierarchy of functional equations is mapped to an infinite system of nonlinear integral equations of TBA type. The two schemes have complementary ranges of applicability and facilitate an efficient numerical analysis for a wide range of boundary parameters. Some data are presented on the finite-size corrections to the energy of the state which evolves into the antiferromagnetic ground state in the limit of parallel boundary fields.
$\\pi$ and K-meson Bethe-Salpeter Amplitudes
Maris, P
1997-01-01
Independent of assumptions about the form of the quark-quark scattering kernel, K, we derive the explicit relation between the flavour-nonsinglet pseudoscalar meson Bethe-Salpeter amplitude, Gamma_H, and the dressed-quark propagator in the chiral limit. In addition to a term proportional to gamma_5, Gamma_H necessarily contains qualitatively and quantitatively important terms proportional to gamma_5 gamma.P and gamma_5 gamma.k k.P, where P is the total momentum of the bound state. The axial-vector vertex contains a bound state pole described by Gamma_H, whose residue is the leptonic decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-Takahashi identity relates these pole residues; with the Gell-Mann--Oakes--Renner relation a corollary of this identity. The dominant ultraviolet asymptotic behaviour of the scalar functions in the meson Bethe-Salpeter a...
Bethe ansatz for the Temperley–Lieb spin chain with integrable open boundaries
In this paper we study the spectrum of the spin-1 Temperley–Lieb spin chain with integrable open boundary conditions. We obtain the eigenvalue expressions as well as its associated Bethe ansatz equations by means of the coordinate Bethe ansatz. These equations provide the complete description of the spectrum of the model. (paper)
Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory
M. Kormos; G. Mussardo; B. Pozsgay
2010-01-01
We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic
Bethe ansatz solution of the open XX spin chain with non-diagonal boundary terms
We consider the integrable open XX quantum spin chain with non-diagonal boundary terms. We derive an exact inversion identity, by which we obtain the eigenvalues of the transfer matrix and the Bethe ansatz equations. For generic values of the boundary parameters, the Bethe ansatz solution is formulated in terms of the Jacobian elliptic functions. (author)
Algebraic Bethe ansatz for the Temperley-Lieb spin-1 chain
Nepomechie, Rafael I
2016-01-01
We use the algebraic Bethe ansatz to obtain the eigenvalues and eigenvectors of the spin-1 Temperley-Lieb open quantum chain with "free" boundary conditions. We exploit the associated reflection algebra in order to prove the off-shell equation satisfied by the Bethe vectors.
Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions
Cao, Junpeng; Shi, Kangjie; Wang, Yupeng
2013-01-01
With the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the $XXX$ spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated $T-Q$ relation and the Bethe ansatz equations are derived.
On the algebraic Bethe ansatz for the XXX spin chain: creation operators 'beyond the equator'
Considering the XXX spin-1/2 chain in the framework of the algebraic Bethe ansatz, we make the following short comment: the product of the creation operators corresponding to the recently found solution of the Bethe equations 'on the wrong side of the equator' is just zero (not only its action on the pseudovacuum). (author). Letter-to-the-editor
Algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models
Belliard, S; Ragoucy, E; Slavnov, N A
2012-01-01
We study SU(3)-invariant integrable models solvable by nested algebraic Bethe ansatz. We obtain a determinant representation for particular case of scalar products of Bethe vectors. This representation can be used for the calculation of form factors and correlation functions of XXX SU(3)-invariant Heisenberg chain.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-10-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T-Q relation and the Bethe ansatz equations are derived.
The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths
Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.
1999-01-01
Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...
Algebraic Bethe ansatz for the gl(1|2) generalized model: II. the three gradings
The algebraic Bethe ansatz can be performed rather abstractly for whole classes of models sharing the same R-matrix, the only prerequisite being the existence of an appropriate pseudo vacuum state. Here we perform the algebraic Bethe ansatz for all models with 9 x 9, rational, gl(1|2) invariant R-matrix and all three possibilities of choosing the grading. Our Bethe ansatz solution applies, for instance, to the supersymmetric t-J model, the supersymmetric U model and a number of interesting impurity models. It may be extended to obtain the quantum transfer matrix spectrum for this class of models. The properties of a specific model enter the Bethe ansatz solution (i.e. the expression for the transfer matrix eigenvalue and the Bethe ansatz equations) through the three pseudo vacuum eigenvalues of the diagonal elements of the monodromy matrix which in this context are called the parameters of the model
Light Pseudoscalar Mesons in Bethe-Salpeter Equation with Instantaneous Interaction
Lucha, Wolfgang
2015-01-01
The light pseudoscalar mesons play a twofold role: they may or have to be regarded both as low-lying bound states of the fundamental degrees of freedom of quantum chromodynamics as well as the (pseudo-) Goldstone bosons of the spontaneously broken chiral symmetries of quantum chromodynamics. We interrelate these aspects in a single quantum-field-theoretic approach relying on the Bethe-Salpeter formalism in instantaneous approximation by very simple means: the shape of the pseudoscalar-meson Bethe-Salpeter wave function dictated by chiral symmetry is used in Bethe-Salpeter equations for bound states of vanishing mass, in order to deduce analytically the interactions which govern the bound states under study. In this way, we obtain exact Bethe-Salpeter solutions for pseudoscalar mesons, in the sense of establishing the rigorous relationship between, on the one hand, the relevant interactions and, on the other hand, the Bethe-Salpeter amplitudes that characterize the bound states.
Directed Random Walk on the Lattices of Genus Two
Nazarenko, A V
2011-01-01
The object of the present investigation is an ensemble of self-avoiding and directed graphs belonging to eight-branching Cayley tree (Bethe lattice) generated by the Fucsian group of a Riemann surface of genus two and embedded in the Pincar\\'e unit disk. We consider two-parametric lattices and calculate the multifractal scaling exponents for the moments of the graph lengths distribution as functions of these parameters. We show the results of numerical and statistical computations, where the latter are based on a random walk model.
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Tetra quark bound states in a Bethe-Salpeter approach
Heupel, Walter; Eichmann, Gernot [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen, D-35392 Giessen (Germany); Fischer, Christian S., E-mail: christian.fischer@theo.physik.uni-giessen.de [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen, D-35392 Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)
2012-12-05
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f{sub 0}(600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.
Tetraquark bound states in a Bethe-Salpeter approach
Heupel, Walter; Fischer, Christian S
2012-01-01
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f_0(600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.
Tetraquark bound states in a Bethe-Salpeter approach
Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.
2012-12-01
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f0 (600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.
A Weizsacker-Bethe type mass formula for hypernuclei
Theoretical estimates of hypernuclear binding energies are generally much larger than the empirical value and the disagreement is rather marked for the binding energy of sub(Λ)5He. Here we try to explain the so-called over-binding problem by way of introducing a Weizsacker-Bethe type mass formula used for ordinary nuclei. Using the most recent data on binding energies of hypernuclei, parameters of the hypernuclear mass formula are estimated by fitting a least-square curve as is the usual practice in nuclear physics. Theoretical predictions for hypernuclear binding energies are then made by using the formula as obtained above and results compared with experimental values. Agreement with experiment is found to be rather good and in particular the result obtained for sub(Λ)5He, although slightly larger than the observed value, has shown significant improvement over earlier estimates. (author)
Basso, Benjamin, E-mail: bbasso@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Rej, Adam, E-mail: arej@ias.edu [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)
2014-02-15
Studying the scattering of excitations around a dynamical background has a long history in the context of integrable models. The Gubser–Klebanov–Polyakov string solution provides such a background for the string/gauge correspondence. Taking the conjectured all-loop asymptotic equations for the AdS{sub 4}/CFT{sub 3} correspondence as the starting point, we derive the S-matrix and a set of spectral equations for the lowest-lying excitations. We find that these equations resemble closely the analogous equations for AdS{sub 5}/CFT{sub 4}, which are also discussed in this paper. At large values of the coupling constant we show that they reproduce the Bethe equations proposed to describe the spectrum of the low-energy limit of the AdS{sub 4}×CP{sup 3} sigma model.
Bethe-salpeter equation from many-body perturbation theory
Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)
2013-07-01
The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.
Bethe-salpeter equation from many-body perturbation theory
The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.
Large and small density approximations to the thermodynamic Bethe ansatz
We provide analytical solutions to the thermodynamic Bethe ansatz equations in the large and small density approximations. We extend results previously obtained for leading order behaviour of the scaling function of affine Toda field theories related to simply laced Lie algebras to the non-simply laced case. The comparison with semi-classical methods shows perfect agreement for the simply laced case. We derive the Y-systems for affine Toda field theories with real coupling constant and employ them to improve the large density approximations. We test the quality of our analysis explicitly for the sinh-Gordon model and the (G2(1),D4(3)) -affine Toda field theory
Tetra quark bound states in a Bethe-Salpeter approach
We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f0(600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.
Excited charmonium states from Bethe-Salpeter equation
Sauli, Vladimir
2011-01-01
We solve the Bethe-Salpeter equation for a system of a heavy quark-antiquark pair interacting with a screened linear confining potential. First we show the spinless QFT model is inadequate and fail to describe even gross feature of the quarkonia spectrum. In order to get reliable description the spine degrees of freedom has to be considered. Within the approximation employed we reasonably reproduce known radial excitation of vector charmonium. The BSE favors relatively large string breaking scale $\\mu\\simeq 350MeV$ . Using free charm quark propagators we observe that $J/\\Psi$ is the only charmonium left bellow naive quark-antiquark threshold $2m_c$, while the all excited states are situated above this threshold. Within the numerical method we overcome obstacles related with threshold singularity and discuss the consequences of the use of free propagators for calculation of excited states above the threshold.
Twist-three at five loops, Bethe ansatz and wrapping
Beccaria, Matteo; Forini, Valentina; Łukowski, Tomasz; Zieme, Stefan
2009-03-01
We present a formula for the five-loop anomalous dimension of Script N = 4 SYM twist-three operators in the fraktur sfraktur l(2) sector. We obtain its asymptotic part from the Bethe Ansatz and finite volume corrections from the generalized Lüscher formalism, considering scattering processes of spin chain magnons with virtual particles that travel along the cylinder. The complete result respects the expected large spin scaling properties and passes non-trivial tests including reciprocity constraints. We analyze the pole structure and find agreement with a conjectured resummation formula. In analogy with the twist-two anomalous dimension at four-loops wrapping effects are of order (log2M/M2) for large values of the spin.
Modified binary encounter Bethe model for electron-impact ionization
Guerra, M; Indelicato, P; Santos, J P
2013-01-01
Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed. The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells. The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.
Universal Bethe ansatz solution for the Temperley-Lieb spin chain
Nepomechie, Rafael I
2016-01-01
We consider the Temperley-Lieb (TL) open quantum spin chain with "free" boundary conditions associated with the spin-$s$ representation of quantum-deformed $sl(2)$. We construct the transfer matrix, and determine its eigenvalues and the corresponding Bethe equations using analytical Bethe ansatz. We show that the transfer matrix has quantum group symmetry, and we propose explicit formulas for the number of solutions of the Bethe equations and the degeneracies of the transfer-matrix eigenvalues. We propose an algebraic Bethe ansatz construction of the off-shell Bethe states, and we conjecture that the on-shell Bethe states are highest-weight states of the quantum group. We also propose a determinant formula for the scalar product between an off-shell Bethe state and its on-shell dual, as well as for the square of the norm. We find that all of these results, except for the degeneracies and a constant factor in the scalar product, are universal in the sense that they do not depend on the value of the spin. In an...
A definition of lattice BRS invariance is given. The requirement of lattice BRS invariance successfully replaces that of local gauge invariance as a principle for selecting allowed actions. This replacement also works to any finite order in perturbation theory, but, on the nonperturbative level one encounters an obstacle reflecting the existence of an even number of solutions to the gauge fixing problem. The problem of latticizing the classical action for open bosonic strings discovered by Witten is discussed and a possible direction for dealing with it is pointed out. 3 refs
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Samuel Belliard
2013-11-01
Full Text Available We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations formally similar to the ones obtained in the periodic case or with diagonal boundaries.
Algebraic Bethe ansatz for the sl(2) Gaudin model with boundary
António, N Cirilo; Ragoucy, E; Salom, I
2015-01-01
Following Sklyanin's proposal in the periodic case, we derive the generating function of the Gaudin Hamiltonians with boundary terms. Our derivation is based on the quasi-classical expansion of the linear combination of the transfer matrix of the XXX Heisenberg spin chain and the central element, the so-called Sklyanin determinant. The corresponding Gaudin Hamiltonians with boundary terms are obtained as the residues of the generating function. By defining the appropriate Bethe vectors which yield strikingly simple off shell action of the generating function, we fully implement the algebraic Bethe ansatz, obtaining the spectrum of the generating function and the corresponding Bethe equations.
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Belliard, Samuel; Crampé, Nicolas
2013-11-01
We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries.
Heisenberg XXX model with general boundaries: Eigenvectors from Algebraic Bethe ansatz
Belliard, S
2013-01-01
We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries.
Neutron and proton drip lines using the modified Bethe-Weizsacker mass formula
Basu, D N
2003-01-01
Proton and neutron separation energies have been calculated using the extended Bethe-Weizsacker mass formula. This modified Bethe-Weizsacker mass formula describes minutely the positions of all the old and the new magic numbers. It accounts for the disappearance of some traditional magic numbers for neutrons and provides extra stability for some new neutron numbers. The neutron and proton drip lines have been predicted using this extended Bethe-Weizsacker mass formula. The implications of the proton drip line on the astrophysical rp-process and of the neutron drip line on the astrophysical r-process have been discussed.
Two-body bound states ampersand the Bethe-Salpeter equation
The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated
Steven P. Wrenn, Stephen M. Dicker, Eleanor F. Small, Nily R. Dan, Michał Mleczko, Georg Schmitz, Peter A. Lewin
2012-01-01
Full Text Available This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol (PEG - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented
Scattering solutions of Bethe-Salpeter equation in Minkowski and Euclidean spaces
Carbonell, J
2016-01-01
We shortly review different methods to obtain the scattering solutions of the Bethe-Salpeter equation in Minkowski space. We emphasize the possibility to obtain the zero energy observables in terms of the Euclidean scattering amplitude.
Bethe algebra of Gaudin model, Calogero-Moser space and Cherednik algebra
Mukhin, E.; Tarasov, V.; Varchenko, A.
2009-01-01
We identify the Bethe algebra of the Gaudin model associated to gl(N) acting on a suitable representation with the center of the rational Cherednik algebra and with the algebra of regular functions on the Calogero-Moser space.
Janus-Facedness of the Pion: Analytic Instantaneous Bethe-Salpeter Models
Lucha, Wolfgang
2016-01-01
Inversion enables the construction of interaction potentials underlying - under fortunate circumstances even analytic - instantaneous Bethe-Salpeter descriptions of all lightest pseudoscalar mesons as quark-antiquark bound states of Goldstone-boson nature.
Bethe vectors for models based on the super-Yangian $Y(\\mathfrak{gl}(m|n))$
Pakuliak, S Z; Slavnov, N A
2016-01-01
We study Bethe vectors of integrable models based on the super-Yangian $Y(\\mathfrak{gl}(m|n))$. Starting from the super-trace formula, we exhibit recursion relations for these vectors in the case of $Y(\\mathfrak{gl}(2|1))$ and $Y(\\mathfrak{gl}(1|2))$. These recursion relations allow to get explicit expressions for the Bethe vectors. Using an antimorphism of the super-Yangian $Y(\\mathfrak{gl}(m|n))$, we also construct a super-trace formula for dual Bethe vectors, and, for $Y(\\mathfrak{gl}(2|1))$ and $Y(\\mathfrak{gl}(1|2))$ super-Yangians, show recursion relations for them. Again, the latter allow us to get explicit expressions for dual Bethe vectors.
A Numerical Study of Entanglement Entropy of the Heisenberg Model on a Bethe Cluster
Friedman, Barry; Levine, Greg
2015-01-01
Numerical evidence is presented for a nearest neighbor Heisenberg spin model on a Bethe cluster, that by bisecting the cluster, the generalized Renyi entropy scales as the number of sites in the cluster. This disagrees with spin wave calculations and a naive application of the area law but agrees with previous results for non interacting fermions on the Bethe cluster. It seems this scaling is not an artifact of non interacting particles. As a consequence, the area law in greater then one dime...
Bethe ansatz solution of the $\\tau_2$-model with arbitrary boundary fields
Xu, Xiaotian; Yang, Tao; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie
2016-01-01
The quantum $\\tau_2$-model with generic site-dependent inhomogeneity and arbitrary boundary fields is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix are given in terms of an inhomogeneous T-Q relation, which is based on the operator product identities among the fused transfer matrices and the asymptotic behavior of the transfer matrices. Moreover, the associated Bethe Ansatz equations are also obtained.
Quantum integrability and Bethe ansatz solution for interacting matter-radiation systems
A unified integrable system, generating a new series of interacting matter-radiation models with interatomic coupling and different atomic frequencies, is constructed and exactly solved through an algebraic Bethe ansatz. Novel features in Rabi oscillation and vacuum Rabi splitting are shown on the example of an integrable two-atom Buck-Sukumar model with resolution of some important controversies in the Bethe ansatz solution including its possible degeneracy for such models. (letter to the editor)
Explicit Solutions of the Bethe Ansatz Equations for Bloch Electrons in a Magnetic Field
Hatsugai, Yasuhiro; Kohmoto, Mahito; Wu, Yong-Shi
1994-01-01
For Bloch electrons in a magnetic field, explicit solutions are obtained at the center of the spectrum for the Bethe ansatz equations of Wiegmann and Zabrodin. When the magnetic flux per plaquette is 1 / Q with Q an odd integer, distribution of the roots of the Bethe ansatz equation is uniform except at two points on the unit circle in the complex plane. For the semiclassical limit Q→∞, the wave function is
Bethe vectors of quantum integrable models based on Uq( gl-hat N)
We study quantum Uq( gl-hat N) integrable models solvable by the nested algebraic Bethe ansatz. Different formulas are given for the right and left universal off-shell nested Bethe vectors. It is shown that these formulas can be related by certain morphisms of the positive Borel subalgebra in Uq( gl-hat N) into analogous subalgebra in Uq−1( gl-hat N). (paper)
Cholesterol's location in lipid bilayers.
Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R; Harroun, Thad A; Katsaras, John
2016-09-01
It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies. PMID:27056099
Efficient implementation of core-excitation Bethe Salpeter equation calculations
Gilmore, K; Shirley, E L; Prendergast, D; Pemmaraju, C D; Kas, J J; Vila, F D; Rehr, J J
2016-01-01
We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including x-ray absorption (XAS), x-ray emission (XES), and both resonant and non-resonant inelastic x-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by abinit or Quantumespresso, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as ocean (Obtaining Core Excitations from Ab initio electronic structure and NBSE) [Phys. Rev. B 83, 115106 (2011)]. Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previous...
Non-perturbative phenomena are essential to understanding quantum chromodynamics (QCD), the theory of the strong interactions. The particles observed are mesons and baryons, but the fundamental fields are quarks and gluons. Most properties of the hadrons are inaccessible in perturbation theory. Aside from their mere existence, the most blatant example is the mass spectrum. The lack of an accurate, reasonably precise, calculation of the mass spectrum is a major piece of unfinished business for theoretical particle physics. In addition, a wide variety of other non-perturbative calculations in QCD are necessary to interpret ongoing experiments. For example, it is impossible to extract the Cabibbo-Kobayashi-Maskawa angles without knowing matrix elements of operators in the K, D and B mesons. Furthermore, non-perturbative analyses of quarkonia can determine the strong coupling constant with uncertainties already comparable to perturbative analyses of high-energy data. These lectures cover lattice field theory, the only general, systematic approach that can address quantitatively the non-perturbative questions raised above. Sects. 2--8 explain how to formulate quantum field theory on a lattice and why lattice field theory is theoretically well-founded. Sect. 9 sketches some analytic calculations in scalar lattice field theory. They serve as an example of how lattice field theory can contribute to particle physics without necessarily using computers. Sect. 10 turns to the most powerful tool in lattice field theory: large-scale Monte Carlo integration of the functional integral. Instead of discussing algorithms in gory detail, the general themes of computational field theory are discussed. The methods needed for spectroscopy, weak matrix elements, and the strong coupling constant are reviewed. 52 refs., 7 figs., 1 tab
The finite-element method enables us to convert the operator differential equations of a quantum field theory into operator difference equations. These difference equations are consistent with the requirements of quantum mechanics and they do not exhibit fermion doubling, a problem that frequently plagues lattice treatments of fermions. Guage invariance can also be incorporated into the difference equations. On a finite lattice the operator difference equations can be solved in closed form. For the case of the Schwinger model the anomaly is computed and results in excellent agreement are obtained with the known continuum value
Spin Effects in Quantum Chromodynamics and Recurrence Lattices with Multi-Site Exchanges
Ananikyan, Lev
2009-01-01
In this thesis, we consider some spin effects in QCD and recurrence lattices with multi-site exchanges. Main topic of our manuscript are critical phenomena in spin systems defined on the recurrence lattices. Main tool of our approach is the method of recursive (hierarchical) lattices. We apply the method of dynamical mapping (or recursive lattices) for investigation of magnetic properties of the fluid and solid $^3$He, phase transitions in crystals and macromolecules. First, we analyze the helix-coil phase transition for polypeptides and proteins, and describe an quasi unfolding transition (like the cold denaturation process) for the degree of helicity (the order parameter for macromolecules). Next we consider the recurrent models of $^3$He defined on the square, Husimi and hexagon lattices. Using the method of dynamical mapping, the magnetization curves with plateaus, bifurcation point and one period doubling are obtained. Then we investigate the model with cubic symmetry defined on the Bethe lattice and con...
In this article, we investigate the structures of the pseudoscalar mesons (π, K, D, Ds, B and Bs) in the framework of the coupled rainbow Schwinger-Dyson equation and ladder Bethe-Salpeter equation with the confining effective potential (infrared modified flat bottom potential). The Schwinger-Dyson functions for the u, d and s quarks are greatly renormalized at small momentum region and the curves are steep at about q2=1 GeV2 which indicates an explicitly dynamical symmetry breaking. The Euclidean time Fourier transformed quark propagators have no mass poles in the time-like region which naturally implements confinement. As for the c and b quarks, the current masses are very large, the renormalization are more tender, however, mass poles in the time-like region are also absent. The Bethe-Salpeter wavefunctions for those mesons have the same type (Gaussian type) momentum dependence and center around small momentum which indicate that the bound states exist in the infrared region. The decay constants for those pseudoscalar mesons are compatible with the values of experimental extractions and theoretical calculations, such as lattice simulations and QCD sum rules
Hutsalyuk, A; Pakuliak, S Z; Ragoucy, E; Slavnov, N A
2016-01-01
We study scalar products of Bethe vectors in integrable models solvable by nested algebraic Bethe ansatz and possessing $\\mathfrak{gl}(2|1)$ symmetry. Using explicit formulas of the monodromy matrix entries multiple actions onto Bethe vectors we obtain a representation for the scalar product in the most general case. This explicit representation appears to be a sum over partitions of the Bethe parameters. It can be used for the analysis of scalar products involving on-shell Bethe vectors. As a by-product, we obtain a determinant representation for the scalar products of generic Bethe vectors in integrable models with $\\mathfrak{gl}(1|1)$ symmetry.
The asymmetric simple exclusion process with open boundaries, which is a very simple model of out-of-equilibrium statistical physics, is known to be integrable. In particular, its spectrum can be described in terms of Bethe roots. The large deviation function of the current can be obtained as well by diagonalizing a modified transition matrix, which is still integrable: the spectrum of this new matrix can also be described in terms of Bethe roots for special values of the parameters. However, due to the algebraic framework used to write the Bethe equations in previous works, the nature of the excitations and the full structure of the eigenvectors remained unknown. This paper explains why the eigenvectors of the modified transition matrix are physically relevant, gives an explicit expression for the eigenvectors and applies it to the study of atypical currents. It also shows how the coordinate Bethe ansatz developed for the excitations leads to a simple derivation of the Bethe equations and of the validity conditions of this ansatz. All the results obtained by de Gier and Essler are recovered and the approach gives a physical interpretation of the exceptional points. The overlap of this approach with other tools such as the matrix ansatz is also discussed. The method that is presented here may be not specific to the asymmetric exclusion process and may be applied to other models with open boundaries to find similar exceptional points
Use of the Bethe equation for inner-shell ionization by electron impact
Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc
2016-05-01
We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L3-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections and available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232-276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.
Computer Simulations of Lipid Bilayers and Proteins
Sonne, Jacob
2006-01-01
The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short......, Pressure profile calculations in lipid bilayers: A lipid bilayer is merely $\\sim$5~nm thick, but the lateral pressure (parallel to the bilayer plane) varies several hundred bar on this short distance (normal to the bilayer). These variations in the lateral pressure are commonly referred to as the pressure...
The same-position scattering (SPS) of more than two electrons in a one-dimensional model of two-band electrons with spin-exchange interaction is discussed. The boundary conditions of three- and four-particle SPS are given. It is shown that the conditions can be fulfilled by the two-particle boundary conditions for the Bethe ansatz (BA) wavefunction. Consequently, the definition of the BA wavefunction can be extended to those cases of more than two particles occupying the same position. Therefore, unlike the case in lattice models in which configurations with more than two particles at one site are excluded in applying the approach, the BA is valid without the exclusion of multi-particle SPS in the spin-exchange model. A relation between the SU(2)xSU(2) symmetry and the BA equation is also indicated. (author)
Yang-Baxter algebras, integrable theories and Bethe Ansatz
This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approach permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized
Realization of free-standing silicene using bilayer graphene
The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e.g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 Å and without any lattice distortion. We found that these stacked layers are stable well above room temperature
Realization of free-standing silicene using bilayer graphene
Neek-Amal, M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16785-136 (Iran, Islamic Republic of); Sadeghi, A. [Department of Physics, Basel University, Klingelbergestrasse 82, CH-4056 Basel (Switzerland); Berdiyorov, G. R.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)
2013-12-23
The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e.g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 Å and without any lattice distortion. We found that these stacked layers are stable well above room temperature.
Topologically Twisted SUSY Gauge Theory, Gauge-Bethe Correspondence and Quantum Cohomology
Chung, Hee-Joong
2016-01-01
We calculate partition function and correlation functions in A-twisted 2d $\\mathcal{N}=(2,2)$ theories and topologically twisted 3d $\\mathcal{N}=2$ theories containing adjoint chiral multiplet with particular choices of $R$-charges and the magnetic fluxes for flavor symmetries. According to Gauge-Bethe correspondence, they correspond to Heisenberg XXX and XXZ spin chain models. We identify the partition function as the inverse of the norm of the Bethe eigenstates. Correlation functions are identified as the coefficients of the expectation value of Baxter $Q$-operators. In addition, we consider correlation functions of 2d $\\mathcal{N}=(2,2)^*$ theory and their relation to equivariant quantum cohomology and equivariant integration of cotangent bundle of Grassmann manifolds. Also, we study the ring relations of supersymmetric Wilson loops in 3d $\\mathcal{N}=2^*$ theory and Bethe subalgebra of XXZ spin chain model.
Algebraic and geometric properties of Bethe Ansatz eigenfunctions on a pentagonal magnetic ring
The exact solution of the eigenproblem of the Heisenberg Hamiltonian for the XXX model in the case of a magnetic ring with N=5 nodes is presented in a closed algebraic form. It is demonstrated that the eigenproblem itself is expressible within the extension of the prime field Q of rationals by the primitive fifth root of unity, whereas the associated Bethe parameters, i.e. pseudomomenta, phases of scattering, and spectral parameters, require some finite field extensions, such that the nonlinearity remains algebraic rather than transcendental. Classification of exact Bethe Ansatz eigenstates in terms of rigged string configurations is presented. -- Research Highlights: → The eigenproblem is expressed in a finite extension of the field Q. → The Galois symmetry gives rise to operators which reproduce the energy band structure. → Original Bethe parameters can be derived by the inverse BA problem. → String hypothesis, expected to work as N goes to infinity, is almost satisfied for N=5.
Modified Bethe formula for low-energy electron stopping power without fitting parameters
We propose a modified Bethe formula for low-energy electron stopping power without fitting parameters for a wide range of elements and compounds. This formula maintains the generality of the Bethe formula and gives reasonable agreement in comparing the predicted stopping powers for 15 elements and 6 compounds with the experimental data and those calculated within dielectric theory including the exchange effect. Use of the stopping power obtained from this formula for hydrogen silsesquioxane in Monte Carlo simulation gives the energy deposition distribution in consistent with the experimental data. - Highlights: • We propose a modified Bethe formula for low-energy electron stopping power without fitting parameters. • Our formula is found based on the stopping power calculated by the dielectric theory including the exchange effect. • We calculate the energy deposition distribution of 3 keV electrons in 15 nm HSQ resist layer on Si substrate
Modeling dynamical electron scattering with Bethe potentials and the scattering matrix.
Wang, A; De Graef, M
2016-01-01
Bethe potentials were introduced by Bethe in 1928 as a first order perturbation approach to reducing the number of diffracted beams in dynamical electron scattering problems. The approach starts from the Bloch wave representation, and uses a threshold criterion to split the diffracted beams into two subsets, namely strong and weak beams. Since the use of Bloch wave based Bethe potentials for defect simulations is somewhat tedious, this paper applies the perturbation approach to the scattering matrix formalism, which is more readily adaptable for defect image simulations. The size of the dynamical matrix, and hence the computation time, can be reduced significantly. A threshold criterion for the separation of scattered beams into strong and weak sets is introduced. A general guideline in setting the threshold for strong or weak beam selection is discussed along with several parameters that may influence the threshold values, such as atomic number, accelerating voltage, structure complexity, incident beam tilt and temperature. PMID:26433091
The Barkas-Effect Correction to Bethe-Bloch Stopping Power
Porter, L. E.
A brief history of the discovery of the Barkas-effect correction to the Bethe-Bloch stopping power formula is presented, followed by a recounting of the initial theoretical calculations prepared as a quantitative explanation. A current version of the modified Bethe-Bloch formula is described in detail. An overview of the current capability to assess the validity of several existing formalisms for calculating the Barkas-effect correction term is provided, in the course of which discussion of numerous sources of uncertainty ensues. Finally, an opinion on the significance of this departure from Bethe-Bloch theory is offered, along with a presentation of a few recent developments and of some areas for focus in future exploration in the field of the stopping power of matter for charged particles.
Soliton-dependent plasmon reflection at bilayer graphene domain walls
Jiang, Lili; Shi, Zhiwen; Zeng, Bo; Wang, Sheng; Kang, Ji-Hun; Joshi, Trinity; Jin, Chenhao; Ju, Long; Kim, Jonghwan; Lyu, Tairu; Shen, Yuen-Ron; Crommie, Michael; Gao, Hong-Jun; Wang, Feng
2016-08-01
Layer-stacking domain walls in bilayer graphene are emerging as a fascinating one-dimensional system that features stacking solitons structurally and quantum valley Hall boundary states electronically. The interactions between electrons in the 2D graphene domains and the one-dimensional domain-wall solitons can lead to further new quantum phenomena. Domain-wall solitons of varied local structures exist along different crystallographic orientations, which can exhibit distinct electrical, mechanical and optical properties. Here we report soliton-dependent 2D graphene plasmon reflection at different 1D domain-wall solitons in bilayer graphene using near-field infrared nanoscopy. We observe various domain-wall structures in mechanically exfoliated graphene bilayers, including network-forming triangular lattices, individual straight or bent lines, and even closed circles. The near-field infrared contrast of domain-wall solitons arises from plasmon reflection at domain walls, and exhibits markedly different behaviours at the tensile- and shear-type domain-wall solitons. In addition, the plasmon reflection at domain walls exhibits a peculiar dependence on electrostatic gating. Our study demonstrates the unusual and tunable coupling between 2D graphene plasmons and domain-wall solitons.
Bethe Ansatz and exact form factors of the O(N) Gross Neveu-model
Babujian, Hrachya M; Karowski, Michael
2015-01-01
We apply the algebraic nested O(N) Bethe Ansatz to construct a general form factor formula for the O(N) Gross-Neveu model. We examine this formula for several operators, such as the energy momentum, the spin-field and the current. We also compare these results with the 1/N expansion of this model and obtain full agreement. We discuss bound state form factors, in particular for the three particle form factor of the field. In addition for the two particle case we prove a recursion relation for the K-functions of the higher level Bethe Ansatz.
Bethe Ansatz and exact form factors of the O ( N) Gross Neveu-model
Babujian, Hrachya M.; Foerster, Angela; Karowski, Michael
2016-02-01
We apply previous results on the O ( N) Bethe Ansatz [1-3] to construct a general form factor formula for the O ( N) Gross-Neveu model. We examine this formula for several operators, such as the energy momentum, the spin-field and the current. We also compare these results with the 1 /N expansion of this model and obtain full agreement. We discuss bound state form factors, in particular for the three particle form factor of the field. In addition for the two particle case we prove a recursion relation for the K-functions of the higher level Bethe Ansatz.
Bethe Ansatz Matrix Elements as Non-Relativistic Limits of Form Factors of Quantum Field Theory
Kormos, M.; Mussardo, G.; Pozsgay, B.
2010-01-01
We show that the matrix elements of integrable models computed by the Algebraic Bethe Ansatz can be put in direct correspondence with the Form Factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe Ansatz model can be regarded as a suitable non-relativistic limit of the S-matrix of a field theory, and when there is a well-defined mapping between the Hilbert spaces and operators of the two theories. This correspondence provides an efficient method to compu...
Milewski, J., E-mail: jsmilew@wp.pl [Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań (Poland); Lulek, B., E-mail: barlulek@amu.edu.pl [East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Lulek, T., E-mail: tadlulek@prz.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Łabuz, M., E-mail: labuz@univ.rzeszow.pl [University of Rzeszow, Institute of Physics, Rejtana 16a, 35-959 Rzeszów (Poland); Stagraczyński, R., E-mail: rstag@prz.edu.pl [Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Powstańców Warszawy 6, 35-959 Rzeszów (Poland)
2014-02-01
The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.
Bethe ansatz for the XXX-S chain with non-diagonal open boundaries
We consider the algebraic Bethe ansatz solution of the integrable and isotropic XXX-S Heisenberg chain with non-diagonal open boundaries. We show that the corresponding K-matrices are similar to diagonal matrices with the help of suitable transformations independent of the spectral parameter. When the boundary parameters satisfy certain constraints we are able to formulate the diagonalization of the associated double-row transfer matrix by means of the quantum inverse scattering method. This allows us to derive explicit expressions for the eigenvalues and the corresponding Bethe ansatz equations. We also present evidences that the eigenvectors can be build up in terms of multiparticle states for arbitrary S
Electromechanical Oscillations in Bilayer Graphene
Benameur, Muhammed M.; Gargiulo, Fernando; Manzeli, Sajedeh; Autès, Gabriel; Tosun, Mahmut; Yazyev, Oleg V.; Kis, Andras
2015-01-01
Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron–phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene ...
Detection of bilayer lipid with graphene nanoribbon
Akbari, Elnaz; Buntat, Zolkafle; Afroozeh, Abdolkarim; Zeinalinezhad, Alireza; Nilashi, Mehrbakhsh
2015-09-01
Single-layer graphene consists of sp 2-bonded carbon atoms arranged in a two-dimensional (2D) hexagonal lattice comprising a thin layer of single carbon atoms. Owing to its special characteristics including electrical, physical, and optical properties, graphene is considered more suitable for sensor applications than other materials. Moreover, it is possible to produce biosensors using electrolyte-gated field-effect transistors based on graphene (GFETs) to identify the alterations in charged lipid membrane properties. This paper illustrates how membrane thickness and electrical charge can result in a monolayer GFET, with emphasis on conductance variation. It is proposed that the thickness and electrical charge of the lipid bilayer are functions of carrier density, and equations relating these suitable control parameters were derived. Adaptive neuro fuzzy inference system (ANFIS) has been incorporated to obtain other model for conductance characteristic. The comparison between the analytical models and ANFIS with the experimental data extracted from previous work show an acceptable agreement. [Figure not available: see fulltext.
Hadronic Observables from Dyson-Schwinger and Bethe-Salpeter equations
Sanchis-Alepuz, Helios
2015-01-01
In these proceedings we present a mini-review on the topic of the Dyson-Schwinger/Bethe-Salpeter approach to the study of relativistic bound-states in physics. In particular, we present a self-contained discussion of their derivation, as well as their truncation such that important symmetries are maintained.
Normalization and perturbation theory for tightly bound states of the spinor Bethe-Salpeter equation
L.G. Suttorp
1976-01-01
The normalisation integrals for the tightly-bound-state solutions of the spinor Bethe-Salpeter equation that have been derived recently are evaluated. Ghost states are found to appear when the continuous parameters characterising the type of fermion-boson interaction reach a critical value. Perturba
Exact solutions of the spinor Bethe-Salpeter equation for tightly bound states
L.G. Suttorp
1975-01-01
Exact solutions are obtained for the spinor Bethe-Salpeter equation that describes tightly bound states of spin-/sup 1///sub 2/ fermions with massless-boson exchange. The corresponding coupling constants form a discrete spectrum that depends continuously on the parameters characterizing the type of
Non-regular eigenstate of the XXX model as some limit of the Bethe state
For the one-dimensional XXX model under the periodic boundary conditions, we discuss two types of eigenvectors, regular eigenvectors which have finite-valued rapidities satisfying the Bethe ansatz equations and non-regular eigenvectors which are descendants of some regular eigenvectors under the action of the SU(2) spin-lowering operator. It has been pointed out by many authors that the non-regular eigenvectors should correspond to the Bethe ansatz wavefunctions which have multiple infinite rapidities. However, it has not been explicitly shown whether such a delicate limiting procedure is possible. In this paper, we discuss it explicitly at the level of wavefunctions: we prove that any non-regular eigenvector of the XXX model is derived from the Bethe ansatz wavefunctions through some limit of infinite rapidities. We formulate the regularization also in terms of the algebraic Bethe ansatz method. As an application of infinite rapidity, we discuss the period of the spectral flow under the twisted periodic boundary conditions. (author)
Calculation of Spin Observables for Proton-Neutron Elastic Scattering in the Bethe-Salpeter Equation
Kinpara, Susumu
2016-01-01
Bethe-Salpeter equation is applied to $p$-$n$ elastic scattering. The spin observables are calculated by the M matrix similar to $p$-$p$ case. The parameters of the meson-exchange model are used with the cut-off for the pion exchange interaction. Change of the M matrix indicates breaking of the charge independence in the nucleon-nucleon system.
Wiegmann, P. B.; Zabrodin, A. V.
1993-01-01
We present a new approach to the problem of Bloch electrons in magnetic field,\\\\ by making explicit a natural relation between magnetic translations and the\\\\quantum group $U_{q}(sl_2)$. The approach allows to express the spectrum and\\\\\\ the Bloch function as solutions of the Bethe-Ansatz equations typical for com\\\\pletely integrable quantum systems
Dhar, Abhishek; Sriram Shastry, B.
2000-09-01
We present a calculation of the lowest excited states of the Heisenberg ferromagnet in 1D for any wave vector. These turn out to be string solutions of Bethe's equations with a macroscopic number of particles in them. They are identified as generalized quantum Bloch wall states, and a simple physical picture is provided for the same.
Dhar, Abhishek; Shastry, B. Sriram
2000-01-01
We present a calculation of the lowest excited states of the Heisenberg ferromagnet in 1-d for any wave vector. These turn out to be string solutions of Bethe's equations with a macroscopic number of particles in them. These are identified as generalized quantum Bloch wall states, and a simple physical picture provided for the same.
The Born-Hartree-Bethe approximation for the calculation of total (elastic + inelastic) integral cross section for high-energy electron-atom and electron-molecule scattering containing no free parameter is formulated. Corresponding results are obtained for He, Ne, Ar, Kr, Xe, H2 and N2 and compared with experimental data.
Stochastic integration of the Bethe-Salpeter equation for two bound fermions
A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)
Modeling Lipid-Lipid Correlations across a Bilayer Membrane Using the Quasi-chemical Approximation.
Bossa, Guilherme Volpe; Roth, Joseph; May, Sylvio
2015-09-15
Mixed fluid-like lipid membranes exhibit interactions not only among the lipids within a given leaflet but also across the bilayer. The ensuing collective interleaflet coupling of entire membrane domains has been modeled previously using various mean-field approaches. Yet, also on the level of individual lipids have correlations across the bilayer been observed experimentally for binary mixtures of charged/uncharged lipids with mismatching combinations of short and long acyl chain lengths. The present study proposes a lattice gas model to quantify these correlations. To this end, we represent a macroscopically homogeneous lipid bilayer by two coupled two-dimensional lattice gases that we study using the quasi-chemical approximation. We demonstrate that the rationalization of previous experimental results is only possible if besides two-body lipid-lipid interactions within and across the bilayer our model also accounts for an additional multibody interaction mechanism, namely the local hydrophobic height mismatch created by pairing short and long chain lipids together. The robustness of the quasi-chemical approximation is verified by comparison with Monte Carlo simulations. PMID:26302019
Bilayer Effects of Antimalarial Compounds.
Nicole B Ramsey
Full Text Available Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05; MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.
Excitonic condensation in bilayer systems
Su, Jung-Jung
Among the many examples of Bose condensation considered in physics, electron-hole-pair (exciton) condensation has maintained special interest because it has been difficult to realize experimentally, and because of controversy about condensate properties. In this thesis, we studied the various aspects of spontaneous symmetry broken state of exciton in bilayer using mean field theory. We calculated the photoluminescence of excitonic condensation created by laser. We developed a one-dimensional toy model of excitonic supercurrent using mean field theory plus non-equilibrium Green's function (NEGF) which give qualitatively consistent results with experiments. We proposed graphene bilayer as a novel system for excitonic condensation to occur and estimate it to exist even at temperature as high as room temperature.
LATTICE: an interactive lattice computer code
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Reversibly formed bilayer vesicles: Energetics and polydispersity
Bergstöm, M.
Model calculations based on the multiple equilibrium approach indicate that the spontaneous formation of geometrically closed bilayer vesicles is geared primarily by the bilayer tension which in turn is largely determined by the work of bending the bilayer into a spherical vesicle. and a statisti......Model calculations based on the multiple equilibrium approach indicate that the spontaneous formation of geometrically closed bilayer vesicles is geared primarily by the bilayer tension which in turn is largely determined by the work of bending the bilayer into a spherical vesicle. and a...... orders of magnitude larger than where the local free energy minima of the equilibrium vesicle actually occur. Moreover, according to our analysis, the relative width of a vesicle size distribution, sigma(R)/R-max, is generally at full equilibrium equal to 0.283, independently of the energetic vesicle...
Reversibly formed bilayer vesicles: Energetics and polydispersity
Bergstöm, M.
1997-01-01
statistical-mechanical factor that accounts for the fluctuations in composition, chain packing density and shape. We demonstrate that the free energy required to form a spherical vesicle is made up of two main contributions: the (size-independent) work of bending the constituent monolayers and the work of......Model calculations based on the multiple equilibrium approach indicate that the spontaneous formation of geometrically closed bilayer vesicles is geared primarily by the bilayer tension which in turn is largely determined by the work of bending the bilayer into a spherical vesicle. and a...... stretching the bilayer that is determined by the planar bilayer tension. A previously undiscovered contribution to the work of bending a vesicle bilayer, originating from geometrical packing constraints, is presented. On this basis we obtain vesicle size distributions with maxima located at radii several...
THE critical exponent of the tree lattice generating function in the eden model
Zobov, V. E.
2010-11-01
We consider the increase in the number of trees as their size increases in the Eden growth model on simple and face-centered hypercubic lattices in different space dimensions. We propose a first-order partial differential equation for the tree generating function, which allows relating the exponent at the critical point of this function to the perimeter of the most probable tree. We estimate tree perimeters for the lattices considered. The theoretical values of the exponents agree well with the values previously obtained by computer modeling. We thus explain the closeness of the dimension dependences of the exponents of the simple and face-centered lattices and their difference from the results in the Bethe lattice approximation.
$\\Omega\\Omega$ interaction from 2+1 flavor lattice QCD
Yamada, Masanori; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu
2015-01-01
We investigate the interaction between $\\Omega$ baryons in the $^1S_0$ channel from 2+1 flavor lattice QCD simulations. On the basis of the HAL QCD method, the $\\Omega\\Omega$ potential is extracted from the Nambu-Bethe-Salpeter wave function calculated on the lattice by using the PACS-CS gauge configurations with the lattice spacing $a\\simeq 0.09$ fm, the lattice volume $L\\simeq 2.9$ fm and the quark masses corresponding to $m_\\pi \\simeq 700$ MeV and $m_\\Omega \\simeq 1970$ MeV. The $\\Omega\\Omega$ potential has a repulsive core at short distance and an attractive well at intermediate distance. Accordingly, the phase shift obtained from the potential shows moderate attraction at low energies. Our data indicate that the $\\Omega\\Omega$ system with the present quark masses may appear close to the unitary limit where the scattering length diverges.
Fragmented state of lipid bilayers in water
Helfrich, W.; Thimmel, J.; Klösgen, Beate Maria
1999-01-01
The bilayers of some typical biological membrane lipids such as PC and DGDG disintegrate in a large excess of water to form an optically invisible dispersive bilayer phase. `Dark bodies' can be reversibly precipitated from it by raising the temperature. The dispersive phase probably consists of...... `knotted sticks', i.e. very thin nodular tubes of bilayer. After reviewing pertinent experimental and theoretical work we report on the discovery of a lower consolute point near room temperature in DGDG/water systems. Its existence shows that the dispersive phase and the dark bodies belong to the same...... fragmented (or nodular) bilayer state, representing its expanded and condensed phases, respectively, above the critical temperature....
Architecture and Function of Mechanosensitive Membrane Protein Lattices
Osman Kahraman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.
2016-01-01
Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein cluster...