Dynamic feature analysis in bidirectional pedestrian flows
Xiao-Xia, Yang; Winnie, Daamen; Serge, Paul Hoogendoorn; Hai-Rong, Dong; Xiu-Ming, Yao
2016-02-01
Analysis of dynamic features of pedestrian flows is one of the most exciting topics in pedestrian dynamics. This paper focuses on the effect of homogeneity and heterogeneity in three parameters of the social force model, namely desired velocity, reaction time, and body size, on the moving dynamics of bidirectional pedestrian flows in the corridors. The speed and its deviation in free flows are investigated. Simulation results show that the homogeneous higher desired speed which is less than a critical threshold, shorter reaction time or smaller body size results in higher speed of flows. The free dynamics is more sensitive to the heterogeneity in desired speed than that in reaction time or in body size. In particular, an inner lane formation is observed in normal lanes. Furthermore, the breakdown probability and the start time of breakdown are focused on. This study reveals that the sizes of homogeneous desired speed, reaction time or body size play more important roles in affecting the breakdown than the heterogeneities in these three parameters do. Project supported jointly by the National Natural Science Foundation of China (Grant No. 61233001) and the Fundamental Research Funds for Central Universities of China (Grant No. 2013JBZ007).
Swimming dynamics of bidirectional artificial flagella
Namdeo, S.; Khaderi, S. N.; Onck, P. R.
2013-01-01
We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a computational framework in which the magnetostatic, fluid dynamic, and solid mechanics equations are solved simultaneously. A dimensionless analysis is carried out to obtain an optimal combination of syst...
Swimming dynamics of bidirectional artificial flagella.
Namdeo, S; Khaderi, S N; Onck, P R
2013-10-01
We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e.g., length, stiffness, fluid viscosity, and magnetic field) is explored using a computational framework in which the magnetostatic, fluid dynamic, and solid mechanics equations are solved simultaneously. A dimensionless analysis is carried out to obtain an optimal combination of system parameters for which the swimming velocity is maximal. The swimming direction reversal is addressed by incorporating photoresponsive materials, which in the photoactuated state can mimic natural mastigonemes. PMID:24229282
Bidirectional ROF Links with Dynamic Capacity Allocation
Rakesh Kumar Chandan , Dharmendra Singh
2013-10-01
Full Text Available : Radio over fiber (ROF technology is an integration of wireless and fiber optic network. It plays vital role for broad band wireless communication. The well known advantages of optical as a transmission medium such as low loss, light weight, large bandwidth characteristics, small size and low cable cost make it the ideal and most flexible solution for efficiently transporting radio signals to remotely located antenna site in a wireless network. The joint venture of radio signal and optical fiber technology provides dynamic capacity allocation in radio over fiber links.
Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization
Weishang Gao
2013-01-01
Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.
Schryer, David W; Peterson, Pearu; Paalme, Toomas; Vendelin, Marko
2009-04-01
Isotope labeling is one of the few methods of revealing the in vivo bidirectionality and compartmentalization of metabolic fluxes within metabolic networks. We argue that a shift from steady state to dynamic isotopomer analysis is required to deal with these cellular complexities and provide a review of dynamic studies of compartmentalized energy fluxes in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex metabolic behaviour on a molecular level is prerequisite for the intelligent design of genetically modified organisms able to realize their potential of revolutionizing food, energy, and pharmaceutical production. We describe techniques to explore the bidirectionality and compartmentalization of metabolic fluxes using information contained in the isotopic transient, and discuss the integration of kinetic models with MFA. The flux parameters of an example metabolic network were optimized to examine the compartmentalization of metabolites and and the bidirectionality of fluxes in the TCA cycle of Saccharomyces uvarum for steady-state respiratory growth. PMID:19468334
Marko Vendelin
2009-04-01
Full Text Available Isotope labeling is one of the few methods of revealing the in vivo bidirectionality and compartmentalization of metabolic fluxes within metabolic networks. We argue that a shift from steady state to dynamic isotopomer analysis is required to deal with these cellular complexities and provide a review of dynamic studies of compartmentalized energy fluxes in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex metabolic behaviour on a molecular level is prerequisite for the intelligent design of genetically modified organisms able to realize their potential of revolutionizing food, energy, and pharmaceutical production. We describe techniques to explore the bidirectionality and compartmentalization of metabolic fluxes using information contained in the isotopic transient, and discuss the integration of kinetic models with MFA. The flux parameters of an example metabolic network were optimized to examine the compartmentalization of metabolites and and the bidirectionality of fluxes in the TCA cycle of Saccharomyces uvarum for steady-state respiratory growth.
Marko Vendelin; Pearu Peterson; Toomas Paalme; Schryer, David W
2009-01-01
Isotope labeling is one of the few methods of revealing the in vivo bidirectionality and compartmentalization of metabolic fluxes within metabolic networks. We argue that a shift from steady state to dynamic isotopomer analysis is required to deal with these cellular complexities and provide a review of dynamic studies of compartmentalized energy fluxes in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex metabolic behaviour on a molecular level is prereq...
A possible mechanism for self coordination of bi-directional traffic across nuclear pores
Kapon, Ruti; Mukamel, David; Reich, and Ziv
2008-01-01
Nuclear pore complexes are constantly confronted by large fluxes of macromolecules and macromolecular complexes that need to get into and out of the nucleus. Such bi-directional traffic occurring in a narrow channel can easily lead to jamming. How then is passage between the nucleus and cytoplasm maintained under the varying conditions that arise during the lifetime of the cell? Here, we address this question using computer simulations in which the behaviour of the ensemble of transporting cargoes is analyzed under different conditions. We suggest that traffic can exist in two distinct modes, depending on concentration of cargoes and dissociation rates of the transport receptor-cargo complexes from the pores. In one mode, which prevails when dissociation is quick and cargo concentration is low, transport in either direction proceeds uninterrupted by the other direction. The result is that overall-traffic-direction fluctuates rapidly and unsystematically between import and export. Remarkably, when cargo concen...
Collective nuclear dynamics. Proceedings
The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities
Collective nuclear dynamics. Abstracts
The fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects: liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities
Dynamic nuclear spin polarization
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs
Dynamic nuclear spin polarization
Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
Horikawa, Yo
2013-12-01
Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.
Martínez Velasco, Juan Antonio; Alepuz Menéndez, Salvador; Gonzalez Molina, Francisco; Martín Arnedo, Jacinto
2014-01-01
Detailed switching models of power electronics devices often lead to long computing times, limiting the size of the system to be simulated. This drawback is especially important when the goal is to implement the model in a real-time simulation platform. An alternative is to use dynamic average models (DAM) for analyzing the dynamic behavior of power electronic devices. This paper presents the development of a DAM for a bidirectional solid-state transformer and its implementation in a real-tim...
Wu, Chwan-Hwa; Roland, David A.
1991-08-01
In this paper a high-order bidirectional associative memory (HOBAM) based image recognition system and a dynamically reconfigurable multiprocessor system that achieves real- time response are reported. The HOBAM has been utilized to recognize corrupted images of human faces (with hats, glasses, masks, and slight translation and scaling effects). In addition, the HOBAM, incorporated with edge detection techniques, has been used to recognize isolated objects within multiple-object images. Successful recognition rates have been achieved. A dynamically reconfigurable multiprocessor system and parallel software have been developed to achieve real-time response for image recognition. The system consists of Inmos transputers and crossbar switches (IMS C004). The communication links can be dynamically connected by circuit switching. This is the first time and the transputers and crossbar switches are reported to form a low-cost multiprocessor system connected by a switching network. Moreover, the switching network simplifies the design of the communication in parallel software without handling the message routing. Although the HOBAM is a fully connected network, the algorithm minimizes the amount of information that needs to be exchanged between processors using a data compression technique. The detailed design of both hardware and software are discussed in the paper. Significant speedup through parallel processing is accomplished. The architecture of the experimental system is a cost-effective design for an embedded system for neural network applications on computer vision.
YAN Xin; XU Xiaolong; ZHANG Baozhen; YAO Shuren; QIAN Baogong
1993-01-01
The compatibility and dynamics of latex bidirectional interpenetrating polymer networks (LBIPNs) and latex IPN(LIPN) of poly(vinyl acetate)(PVAc) and poly (butyl acrylate )(PBA) are investigated by means of dynamic mechanical spectroscopy (DMS) and nuclear magnetic resonance (NMR) techniques. The results of DMS show that the compatibility of the LBIPNs is much better than that of the corresponding LIPN and depends to a large extent on the distribution of PVAc both in the core and in the shell. The results of NMR measurements indicate that the rotational correlation times of the side- groups of PBA in the LBIPN are longer than those in the LIPN. The relation between the 13C linewidths of PBA and temperature is also discussed.
Bidirectional Dynamics of Materialism and Loneliness: Not Just a Vicious Cycle
Rik Pieters
2013-01-01
This research is the first to test the hypothesis that consumers face a "material trap" in which materialism fosters social isolation which in turn reinforces materialism. It provides evidence that materialism and loneliness are engaged in bidirectional relationships over time. Importantly, it finds that loneliness contributes more to materialism than the other way around. Moreover, it finds that materialism's contribution to loneliness is not uniformly vicious but critically differs between ...
Thermodynamics of dynamic nuclear polarization
Dynamic nuclear polarization is presented as a Carnot cycle where the high temperature bath consists of the crystal lattice and the low temperature bath consists of the nuclear spin system. It is explained how modulation of the magnetic field or microwave frequency can be interpreted as improvements leading to a more ideal Carnot cycle. ((orig.))
Independent particle aspects of nuclear dynamics
A generalization of the independent particle model from nuclear statics to nuclear dynamics is sought. Attention is centered on the average behavior of nuclear dynamics, as opposed to detailed behavior, such as that characteristic of shell effects in nuclear statics. In many situations, all that is needed is a model of dissipation in nuclear dynamics. 56 references
Rho, Mannque
2008-01-01
This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and
Ab, KL; Boxerman, JL; Lai, A.; Nghiemphu, PL; Pope, WB; Cloughesy, TF; Ellingson, BM
2016-01-01
To evaluate a leakage correction algorithm for T1 and T2* artifacts arising from contrast agent extravasation in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) that accounts for bidirectional contrast agent flux and compare relative cerebral blood volume (CBV) estimates and overall survival (OS) stratification from this model to those made with the unidirectional and uncorrected models in patients with recurrent glioblastoma (GBM).We determined median rCBV within contras...
Nuclear collective dynamics and chaos
The present status and future problems in both the classical-level theory and full quantum theory of nuclear collective dynamics are discussed by putting special emphasis on their relation to the classical and quantum order-to-chaos transition dynamics, respectively. The nonlinear dynamics between the collective and single-particle excitation modes of motion specific for the finite, self-sustained and self-organizing system as the nucleus is discussed within the time-dependent Hartree-Fock (TDHF) theory, the basic equation of which is shown to be formally equivalent to the Hamilton's canonical equations of motion in the classical nonlinear dynamical system. An importance to relate the structure of the TDHF symplectic manifold with an inexhaustible rich structure of the classical phase space in the nonlinear system is stressed. A full quantum theory of nuclear collective dynamics is proposed under a dictation of what has been developed in the classical-level TDHF theory. It is shown that the proposed quantum theory enables us to explore exceeding complexity of the Hilbert space. It is discussed that a resonant denominator known as a source of the extraordinary rich structure of the phase space trajectories, also plays a decisive role in generating a rich structure of the quantum Hilbert space. (author) 87 refs
Macroscopic treatment of nuclear dynamics
A qualitative classification of nucleus-nucleus reactions into four types is described, a consequence of the existence of up to three milestone configurations that a fusing system may be faced with. These considerations lead to phenomenological formulae for fusion and compound-nucleus cross-sections that may be compared with experiments by the use of rectilinear cross section plots. Examples of more specific model calculations of nuclear reactions employing the Chaotic Regime Dynamics are described. Some misunderstandings regarding the Wall and Wall-and-Window formulae, underlying this type of dynamics, are discussed in the appendix. 23 references
Dynamical features of nuclear fission
Santanu Pal
2015-08-01
It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.
Correlated electron-nuclear dynamics
With the goal of full ab initio treatment of the coupled electron-nuclear system, exposed to a time-dependent external potential, we present an exact factorization of the complete wavefunction, into a nuclear wavefunction and an electronic wavefunction. Exact equations for these wavefunctions are deduced that lead to rigorous definitions of a time-dependent potential energy surface (TDPES) and a time-dependent vector potential. This representation of the correlated electron-nuclear many-body problem is very appealing as the wavefunction satisfying the exact nuclear equation of motion leads to an N-body density and an N-body current density which reproduce the true nuclear N-body density and current density obtained from the full wavefunction of the coupled electron-nuclear system. The time evolution of the nuclear wavefunction, on the other hand, is completely determined by the TDPES and the time-dependent vector potential. Moreover, these potentials are unique up to within a gauge transformation. In other words, if one wants a time-dependent Schroedinger equation whose solution yields the true nuclear N-body density and current density, then the potentials appearing in this equation are (up to within a gauge transformation) uniquely given by the TDPES and time-dependent vector potential; there is no other choice. We investigate the relationship of this exact factorization to the traditional Born-Oppenheimer expansion. We furthermore study the exact TDPES in two topically demanding situations: molecules in strong fields and splitting of a nuclear wave-packet at avoided crossings of Born-Oppenheimer potential energy surfaces. We show how the TDPES for the H2+ molecular ion exposed to a laser field helps to identify different mechanisms of dissociation. In addition, we show that the TDPES exhibits a dynamical step that bridges piecewise adiabatic shapes when the nuclear wave-packet splits at the avoided crossing of two Born-Oppenheimer potential energy surfaces
A method of bidirectional dynamic modeling for humanoid robot%仿人机器人的一种双向动力学建模方法
李国进; 易丐; 林瑜
2011-01-01
To obtain more accurate dynamic model of humanoid robot, this paper proposes a method of bidirectional dynamic modeling for the joints of humanoid robot. By considering of the efficiency of power transmission in two different directions, the humanoid robot was simplified as five-link mechanic structure according to the definition of ground constraint forces and joint torques. By employing the Lagrange equation, a bidirectional dynamic model of the humanoid robot was built. Compareed with the traditional modle, the results of the experiment based on SHR-6S platform and computer simulation demonstrate that this bidirectional dynamic model have a smaller error range.%为了得到更精确的仿人机器人动力学模型,提出一种在仿人机器人关节处采用双向动力学建模的方法.考虑关节处两个不同传输方向的功率传输效率,根据地面约束力和关节力矩定义,将仿人机器人简化为五连杆结构,采用Lagrange方程建立仿人机器人的双向动力学模型.对双向动力学模型进行计算机仿真,并在小型仿人机器人SHR-6S平台上进行对比实验.实验结果验证该双向动力学模型较传统方法建立的模型误差更小,更接近实测结果.
Pairing effects in nuclear dynamic
Lacroix, Denis; Scamps, Guillaume; Tanimura, Yusuke
2016-05-01
In recent years, efforts have been made to account for super-fluidity in time-dependent mean-field description of nuclear dynamic [1-5]. Inclusion of pairing is important to achieve a realistic description of static properties of nuclei. Here,we show that pairing can also affect the nuclear motion. State of the art TDHF approach can describe from small to large amplitude collective motion as well as the collision between nuclei. Very recently, this microscopic approach has been improved to include pairing either in the BCS or HFB framework. Recent applications of the 3D TDHF + BCS (TDHF+BCS) model introduced in [4] will be presented. The role of super-fluidity on collective motion [6, 7], on one- and two-particle transfer [8] and on fission [9, 10] will be illustrated.
Semiclassical approaches to nuclear dynamics
Magner, A G; Bartel, J
2016-01-01
The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules and transition densities for the neutron-proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients such as nuclear inertia, friction, stiffness, and moments of inertia can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model.The averaged particle-number dependence of the low-lying collective vibrational states are described in good agreement with basic experimental data, mainly due to an enhancement of the collective inertia as compared to its irrotational flow val...
Some aspects of nuclear dynamics
First the BBGKY hierarchy of equations is presented; the method developed here lies on a reduction procedure of a many body density distribution function. From the equations, Hartree and Hartree-Fock approximations are deduced, and time dependent Hartree-Fock equation. Then two derivations of a nuclear reaction kinetic equation are presented: the Woldmann-Snider equation and the Botermans-Malfliet equation. The Wigner transformation is used and the Landau-Vlasov equation is studied. (Or Vlasov-Uehling-Uhlenbeck or Boltzmann-Uehling-Uhlenbeck equation). Keypoints of approximate solutions are mentioned. Simulation calculations of phenomenological collisions are shown. Then dynamics of heavy ion reactions is studied from results presented
Fermionic Molecular Dynamics for nuclear dynamics and thermodynamics
Hasnaoui, K H O; Gulminelli, F
2008-01-01
A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional is proposed in this paper. After introducing the basic formalism, some first applications to nuclear structure and nuclear thermodynamics are presented
Bidirectional Manchester repeater
Ferguson, J.
1980-01-01
Bidirectional Manchester repeater is inserted at periodic intervals along single bidirectional twisted pair transmission line to detect, amplify, and transmit bidirectional Manchester 11 code signals. Requiring only 18 TTL 7400 series IC's, some line receivers and drivers, and handful of passive components, circuit is simple and relatively inexpensive to build.
Pion scattering and nuclear dynamics
A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab
Cluster dynamics transcending chemical dynamics toward nuclear fusion
Heidenreich, Andreas; Jortner, Joshua; Last, Isidore
2006-01-01
Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 1015–1020 W·cm−2). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C4+(D+)4)n and (D+I22+)n at IM = 1018 W·cm−2, that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. Th...
Nuclear Spin Dynamics in Parabolic Quantum Wells
Tifrea, I.; Flatte, Michael E.
2003-01-01
We present a detailed analytical and numerical analysis of the nuclear spin dynamics in parabolic quantum wells. The shallow potential of parabolic quantum wells permits substantial modification of the electronic wave function in small electric fields. The nuclear spin relaxation via the hyperfine interaction depends on the electronic local density of states, therefore the local nuclear relaxation time depends sensitively on the electric field. For an inhomogeneous nuclear magnetization, such...
Dynamical origin of nuclear multifragmentation
The study of the peripheral and semi-peripheral collisions in the reaction Xe+Sn at 50 A.MeV has lead to the identification of the role of out-of-equilibrium aspects in the production of intermediate mass fragments (IMF). First, it is shown that the experimental observations are incompatible with a model in which a very hot layer of matter is primarily responsible for the production of IMF at intermediate velocity. Next, the same data are compared with a calculation using the quantum molecular dynamics approach (QMD). the quality of agreement with the predictions of this model allows to draw conclusions concerning the production mechanism of fragments. The IMF originate from region that is intermediate between the projectile and the target. It is furthermore shown that this region is not in thermal equilibrium, that the fragments are pre-formed and that their velocity and composition strongly depend on the initial conditions of the reaction. The quasi-projectile and the quasi-target, on the other hand, are only mildly influenced by the collision and their excitation energies are estimated to be below the limit at which multifragmentation will take place. In parallel, an analysis is carried out which correlates he multiplicity of the IMF with the violence of the collision. This shows that a proper analysis of a process as complex as nuclear multifragmentation must simultaneously involve kinetic variables (velocity, energy,...) as well as static ones (multiplicity. charge distribution,...). (author)
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI) The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from...
Order, chaos and nuclear dynamics: An introduction
This is an introductory lecture illustrating by simple examples the anticipated effect on collective nuclear dynamics of a transition from order to chaos in the motions of nucleons inside an idealized nucleus. The destruction of order is paralleled by a transition from a rubber-like to a honey-like behaviour of the independent-particle nuclear model. 10 refs., 6 figs
Nuclear Dynamics with Effective Field Theories
Epelbaum, Evgeny; Krebs, Hermann
2013-01-01
These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.
Rowell, Janelle; Koitabashi, Norimichi; Kass, David A; Barth, Andreas S
2014-10-15
Altered cardiac gene expression in heart failure (HF) has mostly been identified by single-point analysis of end-stage disease. This may miss earlier changes in gene expression that are transient and/or directionally opposite to those observed later. Myocardial datasets from the largest microarray data repository (Gene Expression Omnibus) yielded six HF studies with time-course data. Differentially expressed transcripts between nonfailing controls, early HF (2 wk) were determined, and analysis of KEGG pathways and predicted regulatory control elements performed. We found that gene expression followed varying patterns: Downregulation of metabolic pathways occurred early and was sustained into late-stage HF. In contrast, most signaling pathways undergo a complex biphasic pattern: Calcium signaling, p53, apoptosis, and MAPK pathways displayed a bidirectional response, declining early but rising late. These profiles were compatible with specific microRNA (miRNA) and transcription regulators: Estrogen-related receptor-α and myocyte-enhancer factor-2 binding sites were overrepresented in the promoter regions of downregulated transcripts. Concurrently, there were overrepresented binding sites for E2f and ETS family members (E-Twenty Six, including Gabp, Elf1, and Ets2), serum response and interferon regulated factor in biphasic-bidirectional and late-upregulated transcripts. Binding sites for miRNAs downregulated by HF were more common in upregulated transcripts (e.g., miRNA-22,-133a/b, and -150 in early HF and miRNA-1,-9,-499 in late HF). During the development of HF, gene expression is characterized by dynamic overlapping sets of transcripts controlled by specific interrelated regulatory mechanisms. While metabolic gene classes show early and sustained downregulation in HF, signaling pathways undergo a complex biphasic pattern with early down- and more pronounced late upregulation. PMID:25159852
Nuclear chiral dynamics and thermodynamics
Holt, J. W.; Kaiser, N.; Weise, W.
2013-01-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exch...
Nuclear dynamics induced by antiprotons
Feng, Zhao-Qing
2015-01-01
Reaction dynamics in collisions of antiprotons on nuclei is investigated within the Lanzhou quantum molecular dynamics model. The reaction channels of elastic scattering, annihilation, charge exchange and inelastic collisions of antiprotons on nucleons have been included in the model. Dynamics on particle production, in particular pions, kaons, antikaons and hyperons, is investigated in collisions of $\\overline{p}$ on $^{12}$C, $^{20}$Ne, $^{40}$Ca and $^{181}$Ta from a low to high incident momenta. It is found that the annihilations of $\\overline{p}$ on nucleons are of importance on the dynamics of particle production in phase space. Hyperons are mainly produced via meson induced reactions on nucleons and strangeness exchange collisions, which lead to the delayed emission in antiproton-nucleus collisions.
Dynamical symmetries in nuclear structure
In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs
Wavelet representation of the nuclear dynamics
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.). 52 refs.
Wavelet representation of the nuclear dynamics
The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.)
Dynamical studies of nuclear multifragmentation
We review some dynamical approaches developed by our group to study multifragmentation of nuclei. We first investigate the problem of disassembly of hot and compressed nuclei. We show that multifragmentation occurs at low density as a consequence of the fluctuations of the mean field. The magnitude of the fluctuations is evaluated using percolation methods (lattice percolation or restructured aggregation). The dynamical expansion of the nucleus is studied either using a self consistent Thomas Fermi approach or a simple extended liquid drop. Finally, introducing a preequilibrium model to describe the first phase of the collision between two heavy ions, we use the preceeding investigations to calculate multifragmentation excitation functions. (orig.)
Dynamical studies of nuclear multifragmentation
We review some dynamical approaches developed by our group to study multifragmentation of nuclei. We first investigate the problem of disassembly of hot and compressed nuclei. We show that multifragmentation occurs at low density as a consequence of the fluctuations of the mean field. The magnitude of the fluctuations is evaluated using percolation methods (lattice percolation or restructured aggregation). The dynamical expansion of the nucleus is studied either using a self consistent Thomas Fermi approach or a simple extended liquid drop. Finally, introducing a preequilibrium model to describe the first phase of the collision between two heavy ions, we use the preceding investigations to calculate multifragmentation excitation functions
Dynamical studies of nuclear multifragmentation
Ngo, C.; Boisgard, R.; Cerruti, C.; Leray, S.; Spina, M.E.; Desbois, J.; Ngo, H.; Nemeth, J.; Barranco, M.
1989-05-01
We review some dynamical approaches developed by our group to study multifragmentation of nuclei. We first investigate the problem of disassembly of hot and compressed nuclei. We show that multifragmentation occurs at low density as a consequence of the fluctuations of the mean field. The magnitude of the fluctuations is evaluated using percolation methods (lattice percolation or restructured aggregation). The dynamical expansion of the nucleus is studied either using a self consistent Thomas Fermi approach or a simple extended liquid drop. Finally, introducing a preequilibrium model to describe the first phase of the collision between two heavy ions, we use the preceeding investigations to calculate multifragmentation excitation functions.
Band structure and nuclear dynamics
The relation between the Variable Moment of Inertia model and the Interacting Boson Model are discussed from a phenomenological viewpoint. New results on ground state mean-square radii in nuclei far from stability are reported, and a discussion of band structure extending to high angular momentum states and methods of extracting information on the underlying dynamics is given
Microscopic theory of nuclear collective dynamics
A recent development of the INS-TSUKUBA joint research project on large-amplitude collective motion is summarized by putting special emphasis on an inter-relationship between quantum chaos and nuclear spectroscopy. Aiming at introducing various concepts used in this lecture, we start with recapitulating the semi-classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock (TDHF) theory. The central part of the semi-classical theory is provided by the self-consistent collective coordinate (SCC) method which has been developed to properly take account of the non-linear dynamics specific for the finite many-body quantum system. A decisive role of the level crossing dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the semi-classical theory, we discuss a full quantum theory of nuclear collective dynamics which allows us to properly define a concept of the quantum integrability as well as the quantum chaoticity for each eigenfunction. The lecture is arranged so as to clearly show the similar structure between the semi-classical and quantum theories of nuclear collective dynamics. Using numerical calculations, we illustrate what the quantum chaos for each eigenfunction means and relate it to the usual definition of quantum chaos for nearest neighbor level spacing statistics based on the random matrix theory. (author)
Research on Remote Network Bidirectional Detect and Control Model
Hongyao Ju
2013-09-01
Full Text Available Remote network bidirectional detect and control technologies are the key factors to solve local network allopatry expansibility and management. With studying gateway integration technology, bidirectional VPN technology, identity authentication technology and dynamic host management technology can be integrated into gateway. Thus, bidirectional connect and control among allopatry local networks based on Internet can be solved. Whole area expansibility of local network is realized. With experiment, the model is proved to finish remote bidirectional interconnection of local network automatically and to obtain allopatry local users authority. The equipment detecting and controlling in remote local networks are realized.
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
Collective dynamics in relativistic nuclear collisions
I will review the current status of describing spacetime evolution of the relativistic nuclear collisions with fluid dynamics, and of determining the transport coefficients of strongly interacting matter. The fluid dynamical models suggest that shear viscosity to entropy density ratio of the matter is small. However, there are still considerable challenges in determining the transport coefficients, and especially their temperature dependence is still poorly constrained
Nuclear Research Center IRT reactor dynamics calculation
The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs
Nuclear dynamics at moderate excitations
In recent years our ability to study large-scale collective motion in nuclei has increased tremendously. This is a result of the construction of powerful heavy-ion accelerators in conjunction with improvements in the detection technique. The question: 'How does nuclear material behave when perturbed far away from its ordinary equilibrium'. The entire discussion is kept on an elementary level, partly in order to demonstrate how far one can go by modest means, and partly in the hope that non-experts may benefit, too. (orig./AH)
Dynamic strength of saturated sand under bi-directional cyclic loading%双向耦合剪切条件下饱和砂土动强度特性试验研究
许成顺; 高英; 杜修力; 耿琳
2014-01-01
Using the vertical-torsional coupling shear apparatus, a set of bi-directional cyclic loading tests on saturated sand under isotropic consolidated condition are conducted. Based on the existing definitions of dynamic strength, the effects of phase difference of bi-directional dynamic load (β ) and ratio of bi-directional dynamic load amplitude (λ ) on dynamic strength and pore pressure of sand are studied. The test results show that the dynamic strength of liquefaction of saturated sand considerably relates with both β and λ . The existing definitions of dynamic strength have obvious limitation. The phase difference of bi-directional dynamic load (β ) and the ratio of bi-directional dynamic load amplitude (λ ) have significant influences on the growth rate of pore water pressure, while they have no significant influence on the development model for the normalized pore water pressure.%针对饱和粉细砂，利用双向耦合多功能剪切仪进行了均等固结条件下的循环耦合剪切试验。应用已有的动强度定义，着重研究了双向动荷载的相位差β，双向动荷载的幅值比值λ对砂土动强度及孔压特性的影响。实验结果表明，砂土液化动强度与相位差β及幅值之比λ密切相关，现有的动强度定义在复杂加载情况下具有一定局限性；双向动荷载相位差β以及幅值比值λ对孔隙水压力增长速度影响显著，但对归一化孔隙水压力发展模式没有显著的影响。
Bidirectional coherent classical communication
Harrow, Aram W.; Leung, Debbie W.
2005-01-01
A unitary interaction coupling two parties enables quantum or classical communication in both the forward and backward directions. Each communication capacity can be thought of as a tradeoff between the achievable rates of specific types of forward and backward communication. Our first result shows that for any bipartite unitary gate, bidirectional coherent classical communication is no more difficult than bidirectional classical communication — they have the same achievable rate regions. ...
Cluster dynamics transcending chemical dynamics toward nuclear fusion.
Heidenreich, Andreas; Jortner, Joshua; Last, Isidore
2006-07-11
Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored. PMID:16740666
Multiphase flow dynamics 5 nuclear thermal hydraulics
Kolev, Nikolay Ivanov
2015-01-01
This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...
Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics
Kolev, Nikolay Ivanov
2012-01-01
The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...
Isospin effects on nuclear dynamics and thermodynamics
In this talk we have shown on few examples the possible roles of the isospin in nuclear dynamics and thermodynamics. The isospin can be a useful tool to investigate the dynamics or to control the thermodynamics. The N/Z equilibration or the isospin distillation are possible observables which can bring light on fundamental problems in nuclear physics. But the role of isospin is much more than a new observable. It is a basic degree of freedom and symmetry of the subatomic world. The forces are isospin depend and the nuclear fields carry isospin quantum numbers. Therefore all the nuclear properties are expected to be isospin dependent. This reinforced by the Coulomb electromagnetic interaction which break the isospin symmetry and brings even stronger effects. The nuclear binding, the saturation point, the level density and the whole phase diagram are isospin dependent. The availability of new isospin factories as well as the amazing progress of the nuclear models make us very optimistic about the fast development of the field of research discussed in this paper. (author)
Isospin effects on nuclear dynamics and thermodynamics
Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)
2000-07-01
In this talk we have shown on few examples the possible roles of the isospin in nuclear dynamics and thermodynamics. The isospin can be a useful tool to investigate the dynamics or to control the thermodynamics. The N/Z equilibration or the isospin distillation are possible observables which can bring light on fundamental problems in nuclear physics. But the role of isospin is much more than a new observable. It is a basic degree of freedom and symmetry of the subatomic world. The forces are isospin depend and the nuclear fields carry isospin quantum numbers. Therefore all the nuclear properties are expected to be isospin dependent. This reinforced by the Coulomb electromagnetic interaction which break the isospin symmetry and brings even stronger effects. The nuclear binding, the saturation point, the level density and the whole phase diagram are isospin dependent. The availability of new isospin factories as well as the amazing progress of the nuclear models make us very optimistic about the fast development of the field of research discussed in this paper. (author)
Nuclear pygmy modes and the dynamics of the nuclear skin
Tsoneva, Nadia
2012-01-01
The information on pygmy resonances reveals new aspects on the isospin dynamics of the nucleus with important astrophysical consequences. In this connection, the precise knowledge of nuclear response functions plays a key role in the determination of photonuclear reactions cross sections which are of importance for the synthesis of heavy neutron-rich elements. For that purpose, a theoretical method based on density functional theory and multi-phonon approach is applied for investigations of nuclear excitations with different multipolarities and energies in stable and exotic nuclei. The possible relation of low-energy modes to the properties of neutron or proton skins is systematically investigated for isotonic and isotopic chains. Our studies of dipole and quadrupole response functions and the corresponding transition densities indicate new pygmy dipole and pygmy quadrupole resonances, describing oscillations of the nuclear skin. Also, the presence of skins is found to affect the magnetic response of nuclei.
Nuclear pygmy modes and the dynamics of the nuclear skin
Tsoneva Nadia
2012-12-01
Full Text Available The information on pygmy resonances reveals new aspects on the isospin dynamics of the nucleus with important astrophysical consequences. In this connection, the precise knowledge of nuclear response functions plays a key role in the determination of photonuclear reactions cross sections which are of importance for the synthesis of heavy neutron-rich elements. For that purpose, a theoretical method based on density functional theory and multi-phonon approach is applied for investigations of nuclear excitations with different multipolarities and energies in stable and exotic nuclei. The possible relation of low-energy modes to the properties of neutron or proton skins is systematically investigated for isotonic and isotopic chains. Our studies of dipole and quadrupole response functions and the corresponding transition densities indicate new pygmy dipole and pygmy quadrupole resonances, describing oscillations of the nuclear skin. Also, the presence of skins is found to affect the magnetic response of nuclei.
Macroscopic dynamics of thermal nuclear excitations
The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs
Nuclear dynamical diffraction using synchrotron radiation
The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1 1/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei
Dynamical multifragmentation of highly excited nuclear systems
In the framwork of a dynamical multifragmentation model we investigated the fragmentation of expanding nuclear systems. We found that the stable fragment mass multiplicity distribution differs (in some cases essentially) from the cluster distribution in thermal equilibrium investigated sofar. We especially investigated the pure power-law ansatz of the equilibrium distribution and we found that in certain cases the fragment distribution continues to have this form with an effective power. (orig.)
Ultrafast electronic dynamics driven by nuclear motion
Vendrell, Oriol
2016-05-01
The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.
Bidirectional grating compressors
Wang, Cheng; Li, Zhaoyang; Li, Shuai; Liu, Yanqi; Leng, Yuxin; Li, Ruxin
2016-07-01
A bidirectional grating compressor for chirped pulse amplifiers is presented. It compresses a laser beam simultaneously in two opposite directions. The pulse compressor is shown to promote chirped pulse amplifiers' output energy without grating damages. To verify the practicability, an experiment is carried out. In addition, a crosscorrelation instrument is designed and set up to test the time synchronization between these two femtosecond pulses.
Nuclear dynamics with a wavelet representation
Full text: The description of nuclear dynamics is addressed within the DYWAN model founded on the projection methods of statistical physics and on the mathematical theory of wavelets. This theoretical framework provides a well defined hierarchy of approximations and an optimal numerical representation of wave functions. The model gives a mean-field description of the nuclear dynamics, supplemented by residual interactions, and includes quantal effects. The associated least biased many-body information is expressed in terms of Slater determinants of wavelets providing a convenient tool to investigate the characteristics of light particle emission. Fluctuation-dissipation aspects are investigated in heavy-ion reactions at intermediate energies. They are compared with the results of the semiclassical Landau-Vlasov model and with experimental data. Light particle cross-sections in nucleon-nucleus reactions are also calculated and compared with the available data. These preliminary results are very encouraging and open new perspectives concerning the modeling of nuclear reactions, in particular, for the description of fragment formation. (Author)
Intergenerational Transmission in a Bidirectional Context
Jan De Mol
2013-07-01
Full Text Available Traditional approaches to the study of parent-child relationships view intergenerational transmission as a top-down phenomenon in which parents transfer their values, beliefs, and practices to their children. Furthermore, the focus of these unidirectional approaches regarding children's internalisation processes is on continuity or the transmission of similar values, beliefs, and practices from parents to children. Analogous unidirectional perspectives have also influenced the domain of family therapy. In this paper a cognitive-bidirectional and dialectical model of dynamics in parent-child relationships is discussed in which the focus is on continual creation of novel meanings and not just reproduction of old ones in the bidirectional transmission processes between parents and children. Parents and children are addressed as full and equally agents in their interdependent relationship, while these relational dynamics are embedded within culture. This cultural context complicates bidirectional transmission influences in the parent-child relationship as both parents and children are influenced by many other contexts. Further, current research in the domain of parent-child relationships and current concepts of intergenerational transmission in family therapy are reviewed from a bidirectional cognitive-dialectical perspective.
Dynamic analysis of Leningrad nuclear power plant
Within the scope of this study a preliminary dynamic analysis for the detonation explosion and earthquake load cases was carried out for the Leningrad Nuclear Power Plant. A soil model was added to the three-dimensional shell model which was taken over from IVO (Finland). During this Research Program the model was translated into the STARDYNE program and was investigated by means of time history modal analysis. Since the status quo of the documentation available at that time had to be completed through useful technical assumptions this report only considers exemplary selected results
A fermionic molecular dynamics technique to model nuclear matter
Full text: At sub-nuclear densities of about 1014 g/cm3, nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)
Dynamic detection of nuclear reactor core incident
Surveillance, safety and security of evolving systems area challenge to prevent accident. The dynamic detection of a hypothetical and theoretical blockage incident in the Phenix nuclear reactor is investigated. Such an incident is characterized by abnormal temperature rises in the neighbourhood of the concerned reactor core assembly. The data set is the output temperature map of the reactor, it is provided by the Atomic Energy and Alternative Energies Commission (CEA). A real time approach is proposed, based on a sliding temporal window, it is divided into two steps. The first one behaves like a sieve, its function is to detect simultaneous temperature evolutions in a close neighbourhood which may induce a potential incident. When such evolutions are detected, the second step computes the temperature contrast between each assembly having these evolutions and its neighbourhood. This method permits to monitor the system evolution in real time while only few observations are required. Results are validated on various noisy realistic simulated perturbations. (authors)
Dynamic Nuclear Polarization as Kinetically Constrained Diffusion
Karabanov, A.; Wiśniewski, D.; Lesanovsky, I.; Köckenberger, W.
2015-07-01
Dynamic nuclear polarization (DNP) is a promising strategy for generating a significantly increased nonthermal spin polarization in nuclear magnetic resonance (NMR) and its applications that range from medicine diagnostics to material science. Being a genuine nonequilibrium effect, DNP circumvents the need for strong magnetic fields. However, despite intense research, a detailed theoretical understanding of the precise mechanism behind DNP is currently lacking. We address this issue by focusing on a simple instance of DNP—so-called solid effect DNP—which is formulated in terms of a quantum central spin model where a single electron is coupled to an ensemble of interacting nuclei. We show analytically that the nonequilibrium buildup of polarization heavily relies on a mechanism which can be interpreted as kinetically constrained diffusion. Beyond revealing this insight, our approach furthermore permits numerical studies of ensembles containing thousands of spins that are typically intractable when formulated in terms of a quantum master equation. We believe that this represents an important step forward in the quest of harnessing nonequilibrium many-body quantum physics for technological applications.
ac bidirectional motor controller
Schreiner, K.
1988-01-01
Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.
THE DYNAMICS OF NUCLEAR COALESCENCE OR RESEPARATION
Swiatecki, W.J.
1980-06-01
A qualitative theory of the macroscopic dynamics of nucleus~nucleus collisions is presented. Attention is focused on three degrees of freedom: asymmetry, fragment separation, and neck size. The physical ingredients are a macroscopic (liquid~drop) potential energy, a macroscopic dissipation (in the form of the Wall- and Wall-plus-Window formulae) and a simplified treatment of the inertial force. These ingredients are distilled into algebraic equations of motion that can often be solved in closed form. The applications include the calculation of the normal modes of motion around the saddle-point shapes, and the division of nuclear reactions into: a) dinucleus (deep-inelastic) reactions, b) mononucleus or composite nucleus (quasi-fission) reactions, and c) compound-nucleus reactions. Static and dynamic scaling rules are deduced for comparing different dinuclear reactions in a systematic way. Estimates are given for the critical curve in the space of target and projectile mass above which deep-inelastic reactions ought to make their appearance. The extra push over the interaction barrier needed to make two nuclei form a composite nucleus or else to fuse into a compound nucleus is also estimated.
Varshavsky, Leonid
2013-01-01
Analysis of external and internal factors influencing significant improvement of economic indicators of US nuclear power stations in the 1990s is carried out. Approaches to modeling dynamics of capacity factors of nuclear power stations are proposed. Comparative analysis of dynamics of capacity factors and occupational radiation exposure for various generations of US nuclear power plants is carried out. Dynamical characteristics of «learning by doing» effects for analyzed indicators are measu...
Dynamic nuclear polarization of spherical nanoparticles.
Akbey, Ümit; Altin, Burcu; Linden, Arne; Özçelik, Serdar; Gradzielski, Michael; Oschkinat, Hartmut
2013-12-21
Spherical silica nanoparticles of various particle sizes (~10 to 100 nm), produced by a modified Stoeber method employing amino acids as catalysts, are investigated using Dynamic Nuclear Polarization (DNP) enhanced Nuclear Magnetic Resonance (NMR) spectroscopy. This study includes ultra-sensitive detection of surface-bound amino acids and their supramolecular organization in trace amounts, exploiting the increase in NMR sensitivity of up to three orders of magnitude via DNP. Moreover, the nature of the silicon nuclei on the surface and the bulk silicon nuclei in the core (sub-surface) is characterized at atomic resolution. Thereby, we obtain unique insights into the surface chemistry of these nanoparticles, which might result in improving their rational design as required for promising applications, e.g. as catalysts or imaging contrast agents. The non-covalent binding of amino acids to surfaces was determined which shows that the amino acids not just function as catalysts but become incorporated into the nanoparticles during the formation process. As a result only three distinct Q-types of silica signals were observed from surface and core regions. We observed dramatic changes of DNP enhancements as a function of particle size, and very small particles (which suit in vivo applications better) were hyperpolarized with the best efficiency. Nearly one order of magnitude larger DNP enhancement was observed for nanoparticles with 13 nm size compared to particles with 100 nm size. We determined an approximate DNP penetration-depth (~4.2 or ~5.7 nm) for the polarization transfer from electrons to the nuclei of the spherical nanoparticles. Faster DNP polarization buildup was observed for larger nanoparticles. Efficient hyperpolarization of such nanoparticles, as achieved in this work, can be utilized in applications such as magnetic resonance imaging (MRI). PMID:24192797
Wavelet representation of the nuclear dynamics
The study of the transport phenomena in nuclear matter is addressed in a new approach based on wavelet theory and the projection methods of statistical physics. The advantage of this framework is to optimize the representation spaces and the numerical treatment which gives the opportunity to enlarge the spectra of physical processes taken into account to preserve some important quantum information. At the same time this approach is more efficient than the usual solving schemes and mathematical formulations of the equations based on usual concepts. The application of this methodology to the the study of the physical phenomena related to the heavy ion collisions at intermediate energies has resulted in a model named DYWAN (DYnamical WAvelets in Nuclei). The results obtained with DYWAN for the central collisions in the system Ca + Ca at three different beam energies are reported. These are in agreement with the experimental results since a fusion process at 30 MeV is observed as well as a binary reaction at 50 MeV and kind of an explosion of the system at 90 MeV
Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces
Hall, B.; Deumens, E.; Ohrn, Y.;
2014-01-01
A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet dy...... dynamics on that surface and calculate differential cross sections for two-center, one (active) electron systems.......A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...
Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots
Rudner, Mark Spencer; Levitov, Leonid
2013-01-01
Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce a...... nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods....... minimal albeit realistic model of coupled electron and nuclear spin dynamics which supports self-sustained oscillations. Our mechanism relies on a nuclear spin analog of the tunneling magnetoresistance phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field) and...
Protein dynamics from nuclear magnetic relaxation.
Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien
2016-05-01
Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations. PMID:26932314
Improved Bidirectional Exact Pattern Matching
Hussain, Iftikhar; Hassan Kazmi, Syed Zaki; Ali Khan, Israr; Mehmood, Rashid
2013-01-01
In this research, we present an improved version of Bidirectional (BD) exact pattern matching (EPM) algorithm to solve the problem of exact pattern matching. Improved-Bidirectional (IBD) exact pattern matching algorithm introduced a new idea of scanning partial text window (PTW) as well with the pattern to take decision of moving pattern to the right of partial text window. IBD algorithm compares the characters of pattern to selected text window (STW) from both sides simultaneously as BD....
Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization
Hurd, Ralph E.; Yen, Yi‐Fen; Chen, Albert;
2012-01-01
This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this techn......This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation...
Dynamics and Thermodynamics with Nuclear Degrees of Freedom
Chomaz, Philippe; Trautmann, Wolfgang; Yennello, Sherry J
2006-01-01
The study of nuclear reaction dynamics and thermodynamics with nuclear degrees of freedom has progressed dramatically in the past 20 years, from inclusive charge distributions to exclusive isotopically resolved fragment observables and from schematic phenomenological break-up models to sophisticated quantum many-body transport theories. A coherent and quantitative understanding of reaction mechanisms and of the underlying nuclear matter equation of state is emerging from the analysis of experimental data and from the theoretical modeling of heavy ion reactions. In addition, the accumulated evidence for phenomena related to the liquid-gas phase transition of nuclear matter has triggered interdisciplinary activities and the transfer of useful methods. In the near future, the availability of radioactive beam facilities is expected to provide unique opportunities for extending our knowledge of the dynamic properties and the nuclear phase diagram towards exotic nuclear systems with important astrophysical implicat...
Theory of coherent dynamic nuclear polarization in quantum dots
Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand
2014-01-01
We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...
Quantum nuclear many-body dynamics and related aspects
Lacroix, D.
2011-01-01
This review article is devoted to a compilation of recent advances in the nuclear many-body dynamical problem. The building block of any microscopic model is the nuclear mean-field theory, designed to provide proper description of one-body observables. Important aspects related to mean-field and its relation to observables evolutions are presented. Currently applied nuclear mean-field theories are formulated within a Density Functional Theory (DFT) framework, the so-called Energy Density Func...
LANGEVIN APPROACH TO NUCLEAR DISSIPATIVE DYNAMICS
Abe, Y.; Grégoire, C.; Delagrange, H.
1986-01-01
Langevin approach is proposed as an intuitive phenomenological framework to describe nuclear dissipative phenomena such as heavy ion reactions and fission decay. We present a method to integrate Langevin equation directly with the computer-simulated langevin force. Examples are given for a free motion of Brownian particle and for nuclear fission as a diffusion over a barrier.
Bidirectional Quantum States Sharing
Peng, Jia-Yin; Bai, Ming-qiang; Mo, Zhi-Wen
2016-05-01
With the help of the shared entanglement and LOCC, multidirectional quantum states sharing is considered. We first put forward a protocol for implementing four-party bidirectional states sharing (BQSS) by using eight-qubit cluster state as quantum channel. In order to extend BQSS, we generalize this protocol from four sharers to multi-sharers utilizing two multi-qubit GHZ-type states as channel, and propose two multi-party BQSS schemes. On the other hand, we generalize the three schemes from two senders to multi-senders with multi GHZ-type states of multi-qubit as quantum channel, and give a multidirectional quantum states sharing protocol. In our schemes, all receivers can reconstruct the original unknown single-qubit state if and only if all sharers can cooperate. Only Pauli operations, Bell-state measurement and single-qubit measurement are used in our schemes, so these schemes are easily realized in physical experiment and their successful probabilities are all one.
Microscopic study of nuclear 'pasta' by quantum molecular dynamics
Structure of cold dense matter at subnuclear densities is investigated by quantum molecular dynamics (QMD) simulations. We succeeded in showing that the phases with slab-like and rod-like nuclei etc. and be formed dynamically from hot uniform nuclear matter without any assumptions on nuclear shape. We also observe intermediate phases, which has complicated nuclear shapes. Geometrical structures of matter are analyzed with Minkowski functionals, and it is found out that intermediate phases can be characterized as ones with negative Euler characteristic. Our result suggests the existence of these kinds of phases in addition to the simple 'pasta' phases in neutron star crusts. (author)
Measurements of nuclear spin dynamics by spin-noise spectroscopy
We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration
Measurements of nuclear spin dynamics by spin-noise spectroscopy
Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); Kavokin, K. V.; Glazov, M. M. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); Ioffe Institute, Russian Academy of Sciences, 26 Polytechnicheskaya, St.-Petersburg 194021 (Russian Federation); Vladimirova, M.; Scalbert, D.; Cronenberger, S. [Laboratoire Charles Coulomb UMR 5221 CNRS/Université de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 05 (France); Kavokin, A. V. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); School of Physics and Astronomy, University of Southampton, SO17 1NJ Southampton (United Kingdom); Lemaître, A.; Bloch, J. [Laboratoire de Photonique et de Nanostructures, UPR CNRS, Route de Nozay, 91460 Marcoussis (France)
2015-06-15
We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.
Isospin effects on collective nuclear dynamics
We suggest several ways to study properties of the symmetry term in the nuclear equation of state, EOS, from collective modes in beta-unstable nuclei. After a general discussion on compressibility and saturation density in asymmetric nuclear matter we show some predictions on the collective response based on the solution of generalized Landau dispersion relations. Isoscalar-isovector coupling, disappearance of collectivity and possibility of new instabilities in low and high density regions are discussed with accent on their relation to the symmetry term of effective forces. The onset of chemical plus mechanical instabilities in a dilute asymmetric nuclear matter is discussed with reference to new features in fragmentation reactions
Microscopic Description of Nuclear Fission Dynamics
Umar, A. S.; Oberacker, V. E.; Maruhn, J. A.; Reinhard, P.-G.
2010-01-01
We discuss possible avenues to study fission dynamics starting from a time-dependent mean-field approach. Previous attempts to study fission dynamics using the time-dependent Hartree-Fock (TDHF) theory are analyzed. We argue that different initial conditions may be needed to describe fission dynamics depending on the specifics of the fission phenomenon and propose various approaches towards this goal. In particular, we provide preliminary calculations for studying fission following a heavy-io...
Density functional approaches to nuclear dynamics
Nakatsukasa, T.; Ebata, S; Avogadro, P.; Guo, L; Inakura, T.; Yoshida, K
2012-01-01
We present background concepts of the nuclear density functional theory (DFT) and applications of the time-dependent DFT with the Skyrme energy functional for nuclear response functions. Practical methods for numerical applications of the time-dependent Hartree-Fock-Bogoliubov theory (TDHFB) are proposed; finite amplitude method and canonical-basis TDHFB. These approaches are briefly reviewed and some numerical applications are shown to demonstrate their feasibility.
Nuclear Dynamics at the Particle Threshold
Tsoneva, Nadia; Lenske, Horst
2014-01-01
Recently, new low-energy modes of excitation called pygmy resonances have been observed. Their distinct feature is the close connection to nuclear skin oscillations. A successful description of the pygmy resonances could be achieved in a microscopic theoretical approach which incorporates the density functional theory and QRPA formalism extended with multi-phonon degrees of freedom. The latter is found of crucial importance for the understanding of the fine structure of nuclear electric and m...
Collective Motion and Nuclear Dynamics. Predeal International Summer School
This monograph contains 35 lectures given at the International Summer School on Collective motion and Nuclear Dynamics held in Predeal, Romania, in the period August 28 - September 9, 1995. A large variety of subjects were approached, ranging from classical to pure quantum mechanical formalisms, from standard nuclear structure to nuclear dynamics for finite temperature and relativistic effects of nuclear systems, from deuteron and alpha to heavy clusters, from exotic nuclei lying far away from the stability line to superdeformed nuclei. The sections (number of lectures) were as follows: 1.Nuclear structure (15); 2.Clustering phenomena and large amplitude motion (5); 3.Nuclear reactions: exotic nuclei, fusion, fission (5); 4.Nuclear dynamics: nonlinear effects and finite temperature (4); 5.Relativistic collisions (1); 6.Single and double beta decay; 7.Investigation of nuclear systems by electron scattering (1); 8.Metallic clusters; 9.Quantum groups (2). Non-included within these proceedings, there were presented also a number of 14 short communications, copies which may be obtained either directly from the authors or through care of the editor
Non equilibrium effects in nuclear dynamics
A Constraint Molecular Dynamics (CoMD) approach is used to study dynamical effects related to both the average dynamics and the fluctuations around it. Data obtained in the REVERSE and in TRASMARAD experiments were compared with the theoretical simulations. The concept of temperature, as derived from a fully dynamical description of the GDR (giant dipole resonance) mode, is also discussed. In this contribution we have discussed the comparison between the CoMD model and two classes of phenomena, induced by heavy ion collisions. The first one is related to the IMF (intermediate mass fragment) production in semi-peripheral collisions for the 124Sn + 64Ni system at 35 MeV/nucleon. The comparison put in evidence clear preequilibrium effects in the fragment production mechanism which are essentially related to the behavior of the average dynamics. The second one concerns the high γ-ray productions, due to dipolar resonant mechanisms, in the 40Ca + 48Ca system at 25 MeV/nucleon. In this case the comparisons with the model allows to put in evidence preequilibrium effects related both to the average dynamics and to the fluctuating one
Dynamic energy analysis and nuclear power
An initial inquiry (intended for the layman) into how the net energy balance of exponential programmes of energy conversion facilities varies in time; what are the energy inputs and outputs of commercial nuclear reactors, both singly and in such programmes; what are the possible errors and omissions in this analysis; and what are the policy and research implications of the results. (author)
Quantum measurement corrections to chemically induced dynamic nuclear polarization
Kominis, I K
2013-01-01
Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.
Solid effect dynamic nuclear polarization and polarization pathways
Smith, Albert A.; Corzilius, Björn; Barnes, Alexander B.; Maly, Thorsten; Griffin, Robert G.
2012-01-01
Using dynamic nuclear polarization (DNP)/nuclear magnetic resonance instrumentation that utilizes a microwave cavity and a balanced rf circuit, we observe a solid effect DNP enhancement of 94 at 5 T and 80 K using trityl radical as the polarizing agent. Because the buildup rate of the solid effect increases with microwave field strength, we obtain a sensitivity gain of 128. The data suggest that higher microwave field strengths would lead to further improvements in sensitivity. In addition, t...
Biaxial dynamic testing of nuclear containment steel
A test program has been initiated at the laboratories of the European Union Joint Research Centre of Ispra to investigate combined effects of high strain rates and biaxial stresses. The purpose is to assess the material behavior up to rupture in the special conditions which are produced during an explosion inside a nuclear metal containment. In the paper the main features of the campaign are discussed. (author). 19 refs., 4 figs
Pump dynamics of nuclear spins in GaAs nanostructures
Photons carry angular momentum, which must be transferred to the material when they are absorbed. This conservation law can be used to polarize the spins of charge carriers in semiconductors by irradiating the material with circularly polarized light. Part of the electrons' spin polarization is transferred via Fermi contact hyperfine interaction to the nuclear spins of the material. This can be used to increase the sensitivity of nuclear magnetic resonance by many orders of magnitude or to reduce decoherence in spin-based quantum computers working on the basis of semiconductor nanostructures. We explore the dynamics of the optical pumping process when a cw laser beam is applied to a GaAs/AlGaAs heterostructure in the presence of a magnetic field. We resonantly create electron-hole pairs in single quantum wells and measure the build-up of the nuclear spin polarization as a function of time through the effect of the average hyperfine interaction on the electron spins (the 'nuclear field'). This feedback of the nuclear spin polarization on the electron spins results in a nonlinear dynamics of the coupled electron-nuclear spin system. We model these dynamics and compare the result with experimental data.
Stochastic resonance in a periodically modulated dissipative nuclear dynamics
A fission decay of highly excited periodically driven compound nuclei is considered in the framework of Langevin approach. The authors have used residual-time distribution (RTD) as the tool for studying of dynamic features in a presence of periodic perturbation. The structure of RTD essentially depends on the relation between Kramers decay rate and the frequency ω of the periodic perturbation. In particular, intensity of the first peak in RTD has a sharp maximum at certain nuclear temperature depending on ω. This maximum should be considered as first-hand manifestation of stochastic resonance in nuclear dynamics
Sakiyama, Yusuke; Mazur, Adam; Kapinos, Larisa E.; Lim, Roderick Y. H.
2016-08-01
Nuclear pore complexes (NPCs) are biological nanomachines that mediate the bidirectional traffic of macromolecules between the cytoplasm and nucleus in eukaryotic cells. This process involves numerous intrinsically disordered, barrier-forming proteins known as phenylalanine-glycine nucleoporins (FG Nups) that are tethered inside each pore. The selective barrier mechanism has so far remained unresolved because the FG Nups have eluded direct structural analysis within NPCs. Here, high-speed atomic force microscopy is used to visualize the nanoscopic spatiotemporal dynamics of FG Nups inside Xenopus laevis oocyte NPCs at timescales of ∼100 ms. Our results show that the cytoplasmic orifice is circumscribed by highly flexible, dynamically fluctuating FG Nups that rapidly elongate and retract, consistent with the diffusive motion of tethered polypeptide chains. On this basis, intermingling FG Nups exhibit transient entanglements in the central channel, but do not cohere into a tightly crosslinked meshwork. Therefore, the basic functional form of the NPC barrier is comprised of highly dynamic FG Nups that manifest as a central plug or transporter when averaged in space and time.
Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.
2014-01-01
We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically-defined double quantum dot (DQD) in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective ...
Nuclear dynamics of mass asymmetric systems at balance energy
In the search of nuclear equation of state as well as of nuclear interactions and forces, collective transverse flow has been found to be of immense importance. At low incident energies, the collective transverse flow is dominated by attractive interactions and the flow is expected to be negative, while at high incident energies, the flow is dominated by nucleon-nucleon repulsive interactions and is expected to be positive. While going from low to high incident energies, collective transverse flow vanishes at a particular value of energy, which is termed as Balance Energy (Ebal). The Ebal has been reported to be of significance toward the understanding of nuclear interactions and related dynamics
Dynamic Systems Analysis Report for Nuclear Fuel Recycle
Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey
2008-12-01
This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.
Dynamical cooling of nuclear spins in double quantum dots
Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.
Euclidean dynamical symmetry in nuclear shape phase transitions
The Euclidean dynamical symmetry hidden in the critical region of nuclear shape phase transitions is revealed by a novel algebraic F(5) description. With a nonlinear projection, it is shown that the dynamics in the critical region of the spherical–axial deformed and the spherical–γ-soft shape phase transitions can indeed be manifested by this description, which thus provides a unified symmetry-based interpretation of the critical phenomena in the region.
Dynamics of nuclear fuel assemblies in vertical flow channels
DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD
Nonlocalized cluster dynamics and nuclear molecular structure
Zhou, Bo; Funaki, Yasuro; Horiuchi, Hisashi; Ren, Zhongzhou; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi
2013-01-01
A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter $``B"$ in the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function. The nonlocalized cluster aspects of the inversion-doublet bands in $^{20}$Ne which have been considered as a typical manifestation of localized clustering are discussed. So far unexplained puzzling features of the THS...
Attosecond dynamics of nuclear wavepackets induced by neutron Compton scattering
For the first time, time-dependent nuclear wavepacket theory is applied to the experimental context of neutron Compton scattering (NCS). The derivation is analogous to the well-known expression of infrared laser absorption spectra (IR-LAS) in terms of autocorrelation functions of nuclear wavepackets moving on molecular potential energy surfaces in the electronic ground state. This analogy allows us to transfer the methods for nuclear wavepacket dynamics from IR-LAS to NCS. Systematic investigations for two model systems, HOD and C6D5H, demonstrate the effects of nuclear dynamics induced by NCS in the as (10-18 s) time domain on the NCS spectra. This is a consequence of the large momentum transfer from the neutron to the scattering atom and consequentially the ultrashort time for the nuclear wavepacket to travel the distance of its narrow width, followed by dissociation. This initial time evolution may be described approximately in terms of normal mode vibrations, together with additional excitations of translations and rotations which support depletion of any recurrences of the vibrational autocorrelation functions, also due to dissociation. In spite of the analogous derivation we predict some surprising, opposite trends in NCS i.e. in contrast to LAS. Thus, increasing the number of excited modes for polyatomic molecules, the resulting dynamics slow down for NCS and therefore, the spectral width narrows
Nuclear Mass Dependence of Chaotic Dynamics in Ginocchio Model
Yoshinaga, Naotaka; Yoshida, Nobuaki; Shigehara, Takaomi; Cheon, Taksu
1995-01-01
The chaotic dynamics in nuclear collective motion is studied in the framework of a schematic shell model which has only monopole and quadrupole degrees of freedom. The model is shown to reproduce the experimentally observed global trend toward less chaotic motion in heavier nuclei. The relation between current approach and the earlier studies with bosonic models is discussed.
Electron spin decoherence in nuclear spin baths and dynamical decoupling
We introduce the quantum theory of the electron spin decoherence in a nuclear spin bath and the dynamical decoupling approach for protecting the electron spin coherence. These theories are applied to various solid-state systems, such as radical spins in molecular crystals and NV centers in diamond.
Recent developments in the theory of nuclear dynamics
A brief account is given of the dynamical properties of nuclei, with particular emphasis on the mechanism of nuclear dissipation in the extreme one-body limit. The approach is based on the application of linear response techniques to the independent particle model of the nucleus
Dynamic functional studies in nuclear medicine in developing countries
The Proceedings document some of the trials and tribulations involved in setting up nuclear medicine facilities in general and specifically as regards nuclear medicine applications for the diagnosis of the diseases prevalent in the less developed countries. Most of the 51 papers deal with various clinical applications of dynamic functional studies. However, there was also a session on quality control of the equipment used, and a panel discussion critically looked at the problems and potential of dynamic studies in developing countries. This book will be of interest and use not only to those practising nuclear medicine in the developing countries, but it may also bring home to users in developed countries how ''more can be done with less''. Refs, figs and tabs
Factor analysis of dynamic structures in nuclear medicine
In the field of data processing in nuclear medicine, we applied the principal component analysis to the data acquired by the method of dynamic data acquisition. The radioisotope, taken in the body, shows inherent dynamic structures at the region of internal organ. We make some inherent patterns (Physiological Components) from T. A. C. (Time Activity Curve), and we represent dynamic structures of inherent patterns as functional image by the operation between inherent pattern and acquired data. This approach is called a Factor Analysis. In this paper, we introduce 1) The principle of factor analysis and its application to nuclear medicine, 2) the clinical application of factor analysis on SCINTIPAC-2400, and 3) the examinations and the comparison with other clinical application. (author)
30th Winter Workshop on Nuclear Dynamics
2014-01-01
The 30th edition of the Winter Workshop will be held April 6-12th, 2014 in Hotel Galvez & Spa, Galveston, Texas, USA. As with previous years, the workshop will bring together scientists from all fields of nuclear physics for engaging and friendly exchanges of ideas.Much emphasis will be on the recent LHC and RHIC heavy ion results, but advances in the ongoing and future programs at FAIR, FRIB, NICA and JLab will also be featured. The meeting will start with a welcome reception on the evening of Sunday, April 6th. The workshop program will commence on Monday morning and run until Saturday evening. We recommend to arrive on Sunday and leave on Sunday. Talks will be as usual 25+5 minutes, there will be no parallel sessions. If you are interested in presenting your work, please fill out the registration form prior to the registration deadline. After the program committee has met we will confirm your talk via individual invitations. We will also work with the talks committees of all relevant experimenta...
32th Winter Workshop on Nuclear Dynamics
2016-01-01
The 32nd edition of the Winter Workshop will be held 28 February - 5 March 2016, Hotel Resort Fort Royal Guadeloupe in Guadeloupe a French overseas territory, is an island group in the southern Caribbean Sea. As with previous years, the workshop will bring together scientists from all fields of nuclear physics for engaging and friendly exchanges of ideas. Much emphasis will be on the recent LHC, RHIC and SPS heavy ion results, but advances in the ongoing and future programs at FAIR, FRIB, EIC, JLab and NICA and will also be featured. The meeting will start with a welcome reception on the evening of Sunday, February 28. The workshop program will commence on Monday morning and run until Saturday. We recommend to arrive on Sunday and leave on Sunday. Talks will be as usual 25+5 minutes, there will be no parallel sessions. If you are interested in presenting your work, please fill out the registration form prior to the registration deadline. After the program committee has met we will confirm your talk via indivi...
NATO Advanced Study Institute on New Aspects of Nuclear Dynamics
Huberts, P
1989-01-01
The 1988 Summer School on New Aspects of Nuclear Dynamics took place in the style that by now has become a tradition: a series of lectures by well known scientists on modem topics of nuclear physics, where special emphasis is placed on the didactic aspects of the lectures. In the past few years, we have witnessed a rapid evolution of the field of nuclear physics towards novel directions of research. This development is accompanied by the construction of some of the largest experimental facilities ever built for nuclear research. The subjects covered by the Summer School focussed on two main issues currently under active investigation and which will be pursued with the new facilities: the transition from nucleonic to quark degrees of freedom in the decription of nuclear reactions, and the behavior of nuclear matter as one approaches extreme densities and temperatures. These topics in many respects go beyond traditional nuclear physics and the speakers therefore also included high energy physicists. From the re...
Dynamical response of the nuclear 'pasta' in neutron star crusts
The nuclear pasta - a novel state of matter having nucleons arranged in a variety of complex shapes - is expected to be found in the crust of neutron stars and in core-collapse supernovae at subnuclear densities of about 1014 g/cm3. Owing to frustration, a phenomenon that emerges from the competition between short-range nuclear attraction and long-range Coulomb repulsion, the nuclear pasta displays a preponderance of unique low-energy excitations. These excitations could have a strong impact on many transport properties, such as neutrino propagation through stellar environments. The excitation spectrum of the nuclear pasta is computed via a molecular-dynamics simulation involving up to 100,000 nucleons. The dynamic response of the pasta displays a classical plasma oscillation in the 1- to 2-MeV region. In addition, substantial strength is found at low energies. Yet this low-energy strength is missing from a simple ion model containing a single-representative heavy nucleus. The low-energy strength observed in the dynamic response of the pasta is likely to be a density wave involving the internal degrees of freedom of the clusters
Generating highly polarized nuclear spins in solution using dynamic nuclear polarization
Wolber, J.; Ellner, F.; Fridlund, B.;
2004-01-01
A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C and...... other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use of the...
High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame
Farrar, C. T.; Hall, D. A.; Gerfen, G. J.;
2000-01-01
A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...
Autonomous dynamic decision making in a nuclear fuel cycle simulator
Highlights: • Objective criteria based decision making in a nuclear fuel cycle simulator. • Simulation driven by an evolving performance metric. • Implementation of the model in a nuclear fuel cycle simulator. • Verification of dynamic decision making based on uranium price evolution. -- Abstract: Growing energy demand and the push to move toward carbon-free ways of electricity generation have renewed the world's interest in nuclear energy. Due to the high technical and economic uncertainties related to nuclear energy, simulation tools have become a necessity in order to plan and evaluate possible nuclear fuel cycles (NFCs). Most of the NFC simulators today work by running the simulation with a user-defined set of facility build orders and preferences. While this allows for a simple way to change the simulation conditions, it may not always lead to optimal results and strongly relies on the user defining the correct parameters. This study looks into the possibility of using the expected cost of electricity (CoE) as the driving build decision variable instead of relying on user-defined build orders. This is a first step toward a more general decision making strategy in dynamic fuel cycle simulation. For this purpose, additional modules were implemented in an NFC simulator, VEGAS, with the consumption dependent price of uranium as a time-varying NFC cost component that drives the cost competitiveness of available NFC options. The model was demonstrated to verify the correct operation of a CoE-driven NFC simulator
Probing quantum many-body dynamics in nuclear systems
Simenel, C; Hinde, D J; Kheifets, A; Wakhle, A
2013-01-01
Quantum many-body nuclear dynamics is treated at the mean-field level with the time-dependent Hartree-Fock (TDHF) theory. Low-lying and high-lying nuclear vibrations are studied using the linear response theory. The fusion mechanism is also described for light and heavy systems. The latter exhibit fusion hindrance due to quasi-fission. Typical characteristics of quasi-fission, such as contact time and partial symmetrisation of the fragments mass in the exit channel, are reproduced by TDHF calculations. The (multi-)nucleon transfer at sub-barrier energies is also discussed.
Probing quantum many-body dynamics in nuclear systems
Quantum many-body nuclear dynamics is treated at the mean-field level with the time-dependent Hartree-Fock (TDHF) theory. Low-lying and high-lying nuclear vibrations are studied using the linear response theory. The fusion mechanism is also described for light and heavy systems. The latter exhibit fusion hindrance due to quasi-fission. Typical characteristics of quasi-fission, such as contact time and partial symmetrisation of the fragments mass in the exit channel, are reproduced by TDHF calculations. The (multi-)nucleon transfer at sub-barrier energies is also discussed. (authors)
Dynamic stability of a fluidized-bed nuclear reactor
Recent advances in the study of a fluidized-bed nuclear reactor's stability, due to short and long time transients, are discussed. The point-kinetic model, which considers flux variation in the axial direction, is applied to study short time transients, and the theory of bifurcation is used for long time transients. Numerical results are presented for both transients. The preliminary results indicate that this concept of a nuclear reactor has a behavior similar to that of a conventional reactor regarding its dynamic stability
The role of meson dynamics in nuclear matter saturation
The problem of the saturation of nuclea matter in the non-relativistic limit of the model proposed by J.D. Walecka is studied. In the original context nuclear matter saturation is obtained as a direct consequence of relativistic effects and both scalar and vector mesons are treated statically. In the present work we investigate the effect of the meson dynamics for the saturation using a Born-Oppenheimer approximation for the ground state. An upper limit for the saturation curve of nuclear matter and are able to decide now essential is the relativistic treatment of the nucleons for this problem, is obtained. (author)
Probing quantum many-body dynamics in nuclear systems
Simenel C.
2013-12-01
Full Text Available Quantum many-body nuclear dynamics is treated at the mean-field level with the time-dependent Hartree-Fock (TDHF theory. Low-lying and high-lying nuclear vibrations are studied using the linear response theory. The fusion mechanism is also described for light and heavy systems. The latter exhibit fusion hindrance due to quasi-fission. Typical characteristics of quasi-fission, such as contact time and partial symmetrisation of the fragments mass in the exit channel, are reproduced by TDHF calculations. The (multi-nucleon transfer at sub-barrier energies is also discussed.
Dynamic analysis and qualification test of nuclear components
This report contains the study on the dynamic characteristics of Wolsung fuel rod and on the dynamic balancing of rotating machinery to evaluate the performance of nuclear reactor components. The study on the dynamic characteristics of Wolsung fuel rod was carried out by both experimental and theoretical methods. Forced vibration testing of actual Wolsung fuel rod using sine sweep and sine dwell excitation was conducted to find the dynamic and nonlinear characteristics of the fuel rod. The data obtained by the test were used to analyze the nonlinear impact characteristics of the fuel rod which has a motion-constraint stop in the center of the rod. The parameters used in the test were the input force level of the exciter, the clearance gap between the fuel rod and the motion constraints, and the frequencies. Test results were in good agreement with the analytical results
Pasta Nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium
Caplan, M E; Horowitz, C J; Berry, D K
2014-01-01
Background: Exotic non-spherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short range nuclear attraction and long range Coulomb repulsion. Purpose: We explore the impact of nuclear pasta on nucleosynthesis, during neutron star mergers, as cold dense nuclear matter is ejected and decompressed. Methods: We perform classical molecular dynamics simulations with 51200 and 409600 nucleons, that are run on GPUs. We expand our simulation region to decompress systems from an initial density of 0.080 fm^{-3} down to 0.00125 fm^{-3}. We study proton fractions of Y_P=0.05, 0.10, 0.20, 0.30, and 0.40 at T =0.5, 0.75, and 1.0 MeV. We calculate the composition of the resulting systems using a cluster algorithm. Results: We find final compositions that are in good agreement with nuclear statistical equilibrium models for temperatures of 0.75 and 1 MeV. However, for proton fractions greater than Y_P=0.2 at a temperature of T = 0.5 MeV, the MD simulatio...
Identification of a nuclear plant dynamics via ARMAX model
Yamamoto, Shigeki; Otsuji, Tomoo [Kobe Univ. of Mercantile Marine (Japan); Muramatsu, Eiichi [Osaka Prefecture Univ., Sakai (Japan)
2000-03-01
Dynamics of the reactor of nuclear ship 'Mutsu' is described by a linear time-invariant discrete-time model which is referred to as ARMAX (Auto-Regressive Moving Average eXogenious inputs) model. Applying system identification methods, parameters of the ARMAX model are determined from input-output data of the reactor. Accuracy of the model is examined in time and frequency domain. We show that the model can be a good approximation of the plant dynamics. (author)
Fluid-dynamics of the nuclear surface Fermi-layer
In the framework of the long-mean-free-path approach the fluid-dynamical model of the nuclear surface as a spherical Fermi-layer is formulated. It is shown that the model reproduces known results of Fermi-drop dynamics and permits the description of more low energy collective states in spherical nuclei. The quantum-capillary branch of low-lying surface excitations is predicted. The model gives an adequate description of both lowest and highest experimental collective energies. (author) 18 refs.; 8 figs
Statistical and dynamic aspects of nuclear multi-fragmentation
In this HDR (Accreditation to supervise research) report, the author reports an investigation of the statistical and dynamic aspects of nuclear multi-fragmentation. He presents the experimental methods (detector, event selection, characteristics of multi-fragmentation events), discusses the statistical approach (characteristics of sorted events, hypothesis of thermodynamic equilibrium, characteristics of primary fragments, discussion of results) and the dynamic approach (initial conditions, comparison between the AMD model and experimental results, fragment production mechanism, other constraints for the AMD model), and finally addresses the multi-fragmentation since its appearance threshold (event selection, characteristics of central collisions and of reaction products, extension to all energies)
The chaos and order in nuclear molecular dynamics
The subject of the presented report is role of chaos in scattering processes in the frame of molecular dynamics. In this model, it is assumed that scattering particles (nuclei) consist of not-interacted components as alpha particles or 12C, 16O and 20Ne clusters. The results show such effects as dynamical in stabilities and fractal structure as well as compound nuclei decay and heavy-ion fusion. The goal of the report is to make the reader more familiar with the chaos model and its application to nuclear phenomena. 157 refs, 40 figs
Tensor-optimized antisymmetrized molecular dynamics in nuclear physics
Myo, Takayuki; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro
2015-01-01
We develop a new formalism to treat nuclear many-body systems using bare nucleon-nucleon interaction. It has become evident that the tensor interaction plays important role in nuclear many-body systems due to the role of the pion in strongly interacting system. We take the antisymmetrized molecular dynamics (AMD) as a basic framework and add a tensor correlation operator acting on the AMD wave function using the concept of the tensor-optimized shell model (TOSM). We demonstrate a systematical and straightforward formulation utilizing the Gaussian integration and differentiation method and the antisymmetrization technique to calculate all the matrix elements of the many-body Hamiltonian. We can include the three-body interaction naturally and calculate the matrix elements systematically in the progressive order of the tensor correlation operator. We call the new formalism "tensor-optimized antisymmetrized molecular dynamics".
Tensor-optimized antisymmetrized molecular dynamics in nuclear physics
Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro
2015-07-01
We develop a new formalism to treat nuclear many-body systems using the bare nucleon-nucleon interaction. It has become evident that the tensor interaction plays an important role in nuclear many-body systems due to the role of the pion in strongly interacting systems. We take the antisymmetrized molecular dynamics (AMD) as a basic framework and add a tensor correlation operator acting on the AMD wave function using the concept of the tensor-optimized shell model. We demonstrate a systematical and straightforward formulation utilizing the Gaussian integration and differentiation method and the antisymmetrization technique to calculate all the matrix elements of the many-body Hamiltonian. We can include the three-body interaction naturally and calculate the matrix elements systematically in the progressive order of the tensor correlation operator. We call the new formalism "tensor-optimized antisymmetrized molecular dynamics".
Fractional calculus with applications for nuclear reactor dynamics
Ray, Santanu Saha
2015-01-01
Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavi
Time-dependent density-functional description of nuclear dynamics
Nakatsukasa, Takashi; Matsuo, Masayuki; Yabana, Kazuhiro
2016-01-01
We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, we treat the quantum fluctuations associated with slow collective motions assuming that time evolution of...
Molecular Dynamics of Nuclear Pasta in Neutron Stars
Briggs, Christian; da Silva Schneider, Andre
2014-09-01
During a core collapse supernova, a massive star undergoes rapid contraction followed by a massive explosion on the order of a hundred trillion trillion nuclear bombs in less than a second. While most matter is expelled at high speeds, what remains can form a neutron star. The bulk of a neutron star does not contain separate nuclei but is itself a single nucleus of radius ~10 km. In the crust of a neutron star, density is low enough that some matter exists as distinct nuclei arranged into crystalline lattice dominated by electromagnetic forces. Between the crust and core lies an interesting interface where matter is neither a single nucleus nor separate nuclei. It exists in a frustrated phase; competition between electromagnetic and strong nuclear forces causes exotic shapes to emerge, referred to as nuclear pasta. We use Molecular Dynamics (MD) to simulate nuclear pasta, with densities between nuclear saturation density and approximately one-tenth saturation density. Using MD particle trajectories, we compute the static structure factor S(q) and dynamical response function to describe both electron-pasta and neutrino-pasta scattering. We relate the structure and properties of nuclear pasta phases to features in S(q). Finally, one can integrate over S(q) to determine transport properties such as the electrical and thermal conductivity. This may help provide a better understanding of X-ray observations of neutron stars. During a core collapse supernova, a massive star undergoes rapid contraction followed by a massive explosion on the order of a hundred trillion trillion nuclear bombs in less than a second. While most matter is expelled at high speeds, what remains can form a neutron star. The bulk of a neutron star does not contain separate nuclei but is itself a single nucleus of radius ~10 km. In the crust of a neutron star, density is low enough that some matter exists as distinct nuclei arranged into crystalline lattice dominated by electromagnetic forces
Dynamic testing of nuclear power plant structures: an evaluation
Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants
Nuclear proton dynamics and interactions with calcium signaling.
Hulikova, Alzbeta; Swietach, Pawel
2016-07-01
Biochemical signals acting on the nucleus can regulate gene expression. Despite the inherent affinity of nucleic acids and nuclear proteins (e.g. transcription factors) for protons, little is known about the mechanisms that regulate nuclear pH (pHnuc), and how these could be exploited to control gene expression. Here, we show that pHnuc dynamics can be imaged using the DNA-binding dye Hoechst 33342. Nuclear pores allow the passage of medium-sized molecules (calcein), but protons must first bind to mobile buffers in order to gain access to the nucleoplasm. Fixed buffering residing in the nucleus of permeabilized cells was estimated to be very weak on the basis of the large amplitude of pHnuc transients evoked by photolytic H(+)-uncaging or exposure to weak acids/bases. Consequently, the majority of nuclear pH buffering is sourced from the cytoplasm in the form of mobile buffers. Effective proton diffusion was faster in nucleoplasm than in cytoplasm, in agreement with the higher mobile-to-fixed buffering ratio in the nucleus. Cardiac myocyte pHnuc changed in response to maneuvers that alter nuclear Ca(2+) signals. Blocking Ca(2+) release from inositol-1,4,5-trisphosphate receptors stably alkalinized the nucleus. This Ca(2+)-pH interaction may arise from competitive binding to common chemical moieties. Competitive binding to mobile buffers may couple the efflux of Ca(2+)via nuclear pores with a counterflux of protons. This would generate a stable pH gradient between cytoplasm and nucleus that is sensitive to the state of nuclear Ca(2+) signaling. The unusual behavior of protons in the nucleus provides new mechanisms for regulating cardiac nuclear biology. PMID:26183898
Dynamical response of the nuclear pasta in neutron star crusts
Horowitz, C J; Piekarewicz, J; Pérez-García, M A
2005-01-01
The nuclear pasta -- a novel state of matter having nucleons arranged in a variety of complex shapes -- is expected to be found in the crust of neutron stars and in core-collapse supernovae at subnuclear densities of about $10^{14}$ g/cm$^3$. Due to frustration, a phenomenon that emerges from the competition between short-range nuclear attraction and long-range Coulomb repulsion, the nuclear pasta displays a preponderance of unique low-energy excitations. These excitations could have a strong impact on many transport properties, such as neutrino propagation through stellar environments. The excitation spectrum of the nuclear pasta is computed via a molecular-dynamics simulation involving up to 100,000 nucleons. The dynamic response of the pasta displays a classical plasma oscillation in the 1-2 MeV region. In addition, substantial strength is found at low energies. Yet this low-energy strength is missing from a simple ion model containing a single-representative heavy nucleus. The low-energy strength observed...
Dynamic performance of concrete undercut anchors for Nuclear Power Plants
Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors
A spiking Bidirectional Associative Memory for modeling intermodal priming
Meunier, David; Paugam-Moisy, Hélène
2005-01-01
Starting from a modular artificial neural system modelling the integration of several perceptive stimuli, this article proposes a new implementation of the central module performing a multimodal associative memory. A Bidirectional Associative Memory (BAM) has been emulated in temporal coding with spiking neurons. Since input patterns are dynamically encoded, the effects of the latency of evocation can be simulated with the ``spiking BAM\\'\\', thus adding temporal properties to the model. For h...
Fractional neutron point kinetics equations for nuclear reactor dynamics
Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.mx [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico); Polo-Labarrios, Marco-A. [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico); Espinosa-Martinez, Erick-G. [Retorno Quebec 6, Col. Burgos de Cuernavaca 62580, Temixco, Mor. (Mexico); Valle-Gallegos, Edmundo del [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, Mexico, D.F. 07738 (Mexico)
2011-02-15
The fractional point-neutron kinetics model for the dynamic behavior in a nuclear reactor is derived and analyzed in this paper. The fractional model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional order, acting as exponent of the relaxation time, to obtain the best representation of a nuclear reactor dynamics. The physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. The numerical approximation to the solution of the fractional neutron point kinetics model, which can be represented as a multi-term high-order linear fractional differential equation, is calculated by reducing the problem to a system of ordinary and fractional differential equations. The numerical stability of the fractional scheme is investigated in this work. Results for neutron dynamic behavior for both positive and negative reactivity and for different values of fractional order are shown and compared with the classic neutron point kinetic equations. Additionally, a related review with the neutron point kinetics equations is presented, which encompasses papers written in English about this research topic (as well as some books and technical reports) published since 1940 up to 2010.
Hard gammas as a probe of nuclear dynamics
Full text: Heavy ion collisions around the Fermi energy allow to investigate properties of nuclear matter far from stability at high density and temperature. To improve the comprehension of heavy ion reactions in these extreme conditions and to gather information on the EOS of nuclear matter, knowledge on the dynamics of the reactions is needed. It is well known that, in heavy ion reactions, hard gammas (E > 20 MeV) are mainly produced as Bremsstrahlung radiation in the n-p collisions occurring in the interaction zone. With the aim to study the reaction dynamics, that is strongly influenced by two body collisions, the energetic gamma emission has been measured for several reactions induced by 58Ni beams at 30 and 45 MeV/u performed with MEDEA and MULTICS apparatus (1) at the Laboratori Nazionali del Sud (Catania-Italy). An analysis in terms of energetic gammas, heavy residues and intermediate mass fragments and comparison with dynamical calculations, that explore the entire reaction dynamics, will be presented. (Author)
Simulating the Dynamics of Spouted-Bed Nuclear Fuel Coaters
Pannala, Sreekanth [ORNL; Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Boyalakuntla, Dhanunjay S [ORNL; Syamlal, M [National Energy Technology Laboratory (NETL); O' Brien, T. J. [National Energy Technology Laboratory (NETL)
2007-01-01
We describe simulation studies of the dynamics of spouted beds used for CVD coating of nuclear fuel particles. Our principal modeling tool is the Multiphase Flow with Interphase eXchanges (MFIX) code that was originally developed by the National Energy Technology Laboratory (NETL) for fossil energy process applications. In addition to standard MFIX features that allow coupling of transient hydrodynamics, heat and mass transfer, and chemical kinetics, we employ special post-processing tools to track particle mixing and circulation as functions of operating conditions and bed design. We describe in detail one major feature of the dynamics, which is the occurrence of very regular spontaneous pulsations of gas and particle flow in the spout. These pulsations appear to be critically linked to the entrainment and circulation of solids, and they produce readily accessible dynamic pressure variations that can be used for direct comparisons of model predictions with experiments. Spouted-bed dynamics are important from a CVD perspective because they directly determine the magnitude and variability of the concentration and species gradients in the zone where reactant gases first come into contact with hot particles. As this unsteady spouted-bed environment differs from other types of CVD reactors, the design and scale-up of such reactors is likely to involve unique modeling issues. Our primary goal here is to lay the groundwork for how computational simulation can be used to address these modeling issues in the specific context of nuclear fuel particle coating.
Simulating the dynamics of spouted-bed nuclear fuel coaters
Pannala, S.; Daw, C.S.; Finney, C.E.A.; Boyalakuntla, D. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Syamlal, M.; O' Brien, T.J. [National Energy Technology Laboratory, Morgantown, WV, 26505 (United States)
2007-09-15
We describe simulation studies of the dynamics of spouted beds used for CVD coating of nuclear fuel particles. Our principal modeling tool is the Multiphase Flow with Interphase eXchanges (MFIX) code that was originally developed by the National Energy Technology Laboratory (NETL) for fossil energy process applications. In addition to standard MFIX features that allow coupling of transient hydrodynamics, heat and mass transfer, and chemical kinetics, we employ special post-processing tools to track particle mixing and circulation as functions of operating conditions and bed design. We describe in detail one major feature of the dynamics, which is the occurrence of very regular spontaneous pulsations of gas and particle flow in the spout. These pulsations appear to be critically linked to the entrainment and circulation of solids, and they produce readily accessible dynamic pressure variations that can be used for direct comparisons of model predictions with experiments. Spouted-bed dynamics are important from a CVD perspective because they directly determine the magnitude and variability of the concentration and species gradients in the zone where reactant gases first come into contact with hot particles. As this unsteady spouted-bed environment differs from other types of CVD reactors, the design and scale-up of such reactors is likely to involve unique modeling issues. Our primary goal here is to lay the groundwork for how computational simulation can be used to address these modeling issues in the specific context of nuclear fuel particle coating. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Nuclear dynamical deformation induced hetero- and euchromatin positioning
Awazu, Akinori
2015-01-01
The contributions of active deformation dynamics in cell nuclei to the intra-nuclear positioning of hetero- and euchromatin are investigated. We analyzed the behaviors of model chains containing two types of regions, one with high and the other with low mobility, confined in a pulsating container. Here, the regions with high and low mobility represent eu- and heterochromatic regions, respectively, and the pulsating container simulates a nucleus exhibiting dynamic deformations. The Brownian dynamics simulations of this model show that the positioning of low mobility regions transition from sites near the periphery to the central region of the container if the affinity between low mobility regions and the container periphery disappears. Here, the former and latter positioning are similar to the "conventional" and "inverted" chromatin positioning observed in nuclei of normal differentiated cells and cells lacking Lamin-related proteins like mouse rod photoreceptor cell.
Master equations in the microscopic theory of nuclear collective dynamics
In the first half of this paper, the authors describe briefly a recent theoretical approach where the mechanism of the large-amplitude dissipative collective motions can be investigated on the basis of the microscopic theory of nuclear collective dynamics. Namely, we derive the general coupled master equations which can disclose, in the framework of the TDHF theory, not only non-linear dynamics among the collective and the single-particle modes of motion but also microscopic dynamics responsible for the dissipative processes. In the latter half, the authors investigate, without relying on any statistical hypothesis, one possible microscopic origin which leads us to the transport equation of the Fokker-Planck type so that usefullness of the general framework is demonstrated. (author)
System Dynamics Modeling for the Resilience in Nuclear Power Plants
This paper aims to model and evaluate emergency operation system (EOS) resilience using the System Dynamics. System Dynamics is the study of causal interactions between elements of a complex system. This paper identifies the EOS resilience attributes and their interactions by constructing a causal loop diagram. Then, the interactions are quantified based on literature review and simulated to analyze resilience dynamics. This paper describes the use of system dynamics to improve understanding of the resilience dynamics of complex systems such as emergency operation systems. This paper takes into account two aspects; the strength of resilience attributes interactions and the quantification of dynamic behaviour of resilience over time. This model can be applied to review NPP safety in terms of the resilience level and organization. Simulation results can give managers insights to support their decisions in safety management. A nuclear power plant (NPP) is classified as a safety critical organization whose safety objective is to control hazards that can cause significant harm to the environment, public, or personnel. There has been a significant improvement of safety designs as well as risk analysis tools and methods applied in nuclear power plants over the last decade. Conventional safety analysis methods such as PSA have several limitations they primarily focus on technical dimension, the analysis are linear and sequential, they are dominated by static models, they do not take a systemic view into account, and they focus primarily on why accidents happen and not how success is achieved. Hence new approaches to risk analysis for NPPs are needed to complement the conventional approaches. Resilience is the intrinsic ability of a system to adjust to its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions. An EOS in a NPP refers to a system consisting of personnel
Bidirectional power converter control electronics
Mildice, J. W.
1987-01-01
The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.
Quantal and dissipative aspects in nuclear structure and dynamics
This work is devoted to the description of both quantal and statistical aspects in a coherent theoretical framework that goes beyond a mean-field approximation. It is shown that among the possible methods, the Extended mean-field theory (ETDHF) is able to describe relaxation by including correlation effects. This theory is first applied to cold and hot giant resonances. After having developed a extended version of the linear response theory the effect of collisions on the response of 40Ca is studied. It is shown that collisions contribute to the spreading width of giant resonances and become a dominant decay channel at high temperature. The generalization of these methods through the modelization of the Hamiltonian as a series of couplings in cascade has enabled to go beyond ETDHF. Thus, phenomena as multi-scale Ericson fluctuations and interferences in the nuclear response are predicted. The study of larger amplitudes requires the introduction of transport theories for the nuclear dynamics. Thus the deexcitation of hot and compressed nuclei has been studied with mean-field theories. This analysis has clarified the link between the equation of state and the dynamical expansion in finite Systems. A comparison with semi-classical has further shown the importance of quantum effects and has demonstrated the necessity to take into account nucleon collisions in a quantum framework. The possibility to apply ETDHF to nuclear dynamics in the general case is then discussed. A rapid and reliable method, tested on a schematic model is proposed to solve the extended mean-field. The application of ETDHF to the monopolar expansion of 16O has finally demonstrated the interesting perspectives of this theory for describing dissipative aspects in quantum dynamics. Finally, the introduction of quantum stochastic approaches is discussed. (author)
Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization
Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis
Studies of the dynamics of nuclear clustering in human syncytiotrophoblast.
Calvert, S J; Longtine, M S; Cotter, S; Jones, C J P; Sibley, C P; Aplin, J D; Nelson, D M; Heazell, A E P
2016-06-01
Syncytial nuclear aggregates (SNAs), clusters of nuclei in the syncytiotrophoblast of the human placenta, are increased as gestation advances and in pregnancy pathologies. The origins of increased SNAs are unclear; however, a better appreciation of the mechanism may give insight into placental ageing and factors underpinning dysfunction. We developed three models to investigate whether SNA formation results from a dynamic process of nuclear movement and to generate alternative hypotheses. SNA count and size were measured in placental explants cultured over 16 days and particles released into culture medium were quantified. Primary trophoblasts were cultured for 6 days. Explants and trophoblasts were cultured with and without cytoskeletal inhibitors. An in silico model was developed to examine the effects of modulating nuclear behaviour on clustering. In explants, neither median SNA number (108 SNA/mm(2) villous area) nor size (283 μm(2)) changed over time. Subcellular particles from conditioned culture medium showed a wide range of sizes that overlapped with those of SNAs. Nuclei in primary trophoblasts did not change position relative to other nuclei; apparent movement was associated with positional changes of the syncytial cell membrane. In both models, SNAs and nuclear clusters were stable despite pharmacological disruption of cytoskeletal activity. In silico, increased nuclear movement, adhesiveness and sites of cytotrophoblast fusion were related to nuclear clustering. The prominence of SNAs in pregnancy disorders may not result from an active process involving cytoskeleton-mediated rearrangement of syncytial nuclei. Further insights into the mechanism(s) of SNA formation will aid understanding of their increased presence in pregnancy pathologies. PMID:27002000
Application of system dynamics on nuclear policy model
A system dynamics model for a nuclear energy policy in Korea (SIMNEP) was developed to analyze the Korea nuclear system and to predict the influence of the nuclear energy policy in the future. Two cases were analyzed using SIMNEP. The first case is to see the effect of the occurrence of severe nuclear accident in foreign country on the Korean government support. In the beginning, the Korean government support drops but jump up to the higher value than normal support due to the intelligentsia support influenced by the delay time of perception. Then, the national government support converges to the normal support. This turns out that the intelligentsia support plays a major role in increasing the government support. The second case is to see the effect of prior efforts on the foreign factors and/or on domestic factors on the U.S. government support. In the short term, effort on the U.S. government is more effective to increase U.S. government support but in the long term (about after 5 years), efforts on the domestic factors influence on the U.S. government support more than efforts on the foreign factors. The Korean government counter reaction among the influencing factors on the U.S. government support plays a major role to explain this result
Induced nuclear fission: Dynamical chaos and compound-nucleus lifetime
Krivoshei, I.V.
1987-10-01
A semiphenomenological theory of induced fission of heavy nuclei at low and intermediate excitation energies is presented. The theory is based on the use of the concepts of dynamical chaos, which arises as a result of the exponential dispersal of the trajectories in the region of negative curvature of the n-dimensional potential energy surface (PES). The nuclear fission is treated as diffusion of the representative point across a neighborhood of the saddle point of the PES. The diffusion coefficient is computed in various metrics of the PES as an explicit function of the two-dimensional curvatures at the saddle point of the PES. The fission time is estimated within the framework of this theory and found to be tau/sub f/ approx.10/sup -14/ sec. The coefficients of nuclear friction and viscosity are also computed in their general forms, and their numerical estimates, which agree with experiment, are presented
Induced nuclear fission: Dynamical chaos and compound-nucleus lifetime
A semiphenomenological theory of induced fission of heavy nuclei at low and intermediate excitation energies is presented. The theory is based on the use of the concepts of dynamical chaos, which arises as a result of the exponential dispersal of the trajectories in the region of negative curvature of the n-dimensional potential energy surface (PES). The nuclear fission is treated as diffusion of the representative point across a neighborhood of the saddle point of the PES. The diffusion coefficient is computed in various metrics of the PES as an explicit function of the two-dimensional curvatures at the saddle point of the PES. The fission time is estimated within the framework of this theory and found to be tau/sub f/ ∼10-14 sec. The coefficients of nuclear friction and viscosity are also computed in their general forms, and their numerical estimates, which agree with experiment, are presented
Dynamical evolution and particle production in relativistic nuclear collisions
We present an overview of the different stages in the dynamical evolution of relativistic nuclear collisions, from the entropy generating initial pre-equilibrium stage through the hydrodynamic expansion phase to particle freeze-out. We discuss the various theoretical models which have been applied to these different stages, and compare their predictions with the recent results from heavy-ion experiments at CERN and Brookhaven. Particular attention is given to the possible formation and subsequent hadronization of a quark-gluon plasma in these collisions. The observed strange particle abundancies are interpreted as an indication for chemical equilibration in nuclear collisions, and the particle momentum spectra are analyzed for signs of collective expansion flow. (orig.)
Nuclear Fermi Dynamics: physical content versus theoretical approach
Those qualitative properties of nuclei, and of their energetic collisions, which seem of most importance for the flow of nuclear matter are listed and briefly discussed. It is suggested that nuclear matter flow is novel among fluid dynamical problems. The name, Nuclear Fermi Dynamics, is proposed as an appropriate unambiguous label. The Principle of Commensurability, which suggests the measurement of the theoretical content of an approach against its expected predictive range is set forth and discussed. Several of the current approaches to the nuclear matter flow problem are listed and subjected to such a test. It is found that the Time-Dependent Hartree-Fock (TDHF) description, alone of all the major theoretical approaches currently in vogue, incorporates each of the major qualitative features within its very concise single mathematical assumption. Some limitations of the conventional TDHF method are noted, and one particular defect is discussed in detail: the Spurious Cross Channel Correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated Time-Dependent-S-Matrix Hartree-Fock Theory is proposed, which obviates this difficulty. It is noted that the structure of TD-S-HF can be applied to a more general class of non-linear wave mechanical problems than simple TDHF. Physical requirements minimal to assure that TD-S-HF represents a sensible reaction theory are utilized to prescribe the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the TD-S-HF theory as the description of collisions of certain mathematically well-defined objects of mixed quantal and classical character, the ''TDHF droplets.''
PREFACE: 31st Winter Workshop on Nuclear Dynamics (WWND2015)
Bellwied, Rene; Geurts, Frank; Timmins, Anthony
2015-08-01
These are the proceedings of the 31st Winter Workshop on Nuclear Dynamics, which was held in Keystone, Colorado, in January 2015. As in previous years, the unique character of this conference series has allowed us to bring together nuclear scientists with very different interests to discuss recent progress and scientific achievements. Out of the 63 contributions at WWND 2015 we have selected these 18 representative manuscripts. The topics capture the range of theoretical and experimental advances in our field. On the experimental side we saw very exciting results from the RHIC beam energy scan program, trying to characterize the exact energy required for a hadronic system to transition to deconfined Quark Gluon Matter. At the achievable LHC energies the focus was on the comparison of the data from the p-p, p-Pb and Pb-Pb runs. On the theory side this system size dependence of the experimental measurements led to a detailed evaluation of the initial conditions as well as a profound discussion on how small a QGP system can be. These results were complemented by the most recent continuum extrapolated data from lattice in order to model the complete evolution of the relativistic heavy ion system. These proceedings of the 31st Winter Workshop on Nuclear Dynamics again provide a snapshot of the status of the field. The articles, many of which were written by some of the most promising young scientists in the field, are documenting the excitement and achievements that are characteristic for modern day nuclear science. Rene Bellwied (University of Houston) Frank Geurts (Rice University) Anthony Timmins (University of Houston)
Static and dynamic high power, space nuclear electric generating systems
Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references
The tank's dynamic response under nuclear explosion blast wave
To weapons and equipment, blast wave is the primary destructive factor. In this paper, taken the real model-59 tank as an example, we try to transform the damage estimation problem into computing a fluid structure interaction problem with finite element method. The response of tank under nuclear explosion blast wave is computed with the general-coupling algorithm. Also, the dynamical interaction of blast wave and tank is reflected in real time. The deformation of each part of the tank is worked out and the result corresponds to the real-measured data. (authors)
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Design (and) principles of nuclear dynamics in Stockholm.
Shav-Tal, Yaron; Lammerding, Jan
2015-11-01
The structural organization of the nucleus and its content has drawn increasing interest in recent years, as it is has become evident that the spatial and temporal arrangement of the genome and associated structures plays a crucial role in transcriptional regulation and numerous other functions. Shining light on the dynamic nature of this organization, along with the processes controlling it, were the topics of the Wenner-Gren Foundations international symposium "Nuclear Dynamics: Design (and) Principles." The meeting, organized by Piorgiogio Percipalle, Maria Vartiainen, Neus Visa, and Ann-Kristin Östlund-Farrants, brought over 60 participants, including 20 international speakers, to Stockholm, Sweden from August 19-22, 2015 to share the latest developments in the field. Given the unpublished nature of many of the talks, we have focused on covering the discussed topics and highlighting the latest trends in this exciting and rapidly evolving field. PMID:26730816
Contributions to thermal and fluid dynamic problems in nuclear technology
The majority of contributions compiled in this report deals with thermal and fluid dynamic problems in nuclear engineering. Especially problems of heat transfer and cooling are represented which may arise during and afer a loss-of-coolant accident both in light water reactors and in liquid metal cooled fast breeder reactors. Papers on the mass transfer in pressurized water, tribological problems in sodium cooled reactors, the fluid dynamics of pulsed column, and fundamental investigations of convective flows supplement these contributions on problems connected with accidents. Furthermore, a keynote paper presents the individual activities relating to the reliability of reactor components, a field recently included in our research program. Technical solutions to special problems are closely connected to the investigations based on experiments. Therefore, several contributions deal with new developments in technology and measuring techniques. (orig.)
Nuclear fission dynamics within a generalized Langevin approach
Within the generalized (non-Markovian) multidimensional Langevin approach, the time and energy characteristics of symmetric fission of highly excited heavy nuclei are studied. In two-dimensional space of the collective deformation parameters, it is considered a nuclear descent from the top of the fission barrier to the scission point. The distributions of descent times and total kinetic energy of fission fragments are calculated as functions of memory time, measuring the relative size of memory effects in the collective dynamics. We found that the peculiarities of the non-Markovian dynamics at fairly large values of the memory time are reflected in the saturation of the mean time of motion from the saddle to scission with the growth of the strength of memory effects in the system.
System of nuclear power reactor protection using dynamic logic
The aim of this work is the design of a Reactor Protection System (RPS) using dynamic logic as basic circuitry principle. This concept was developed to permit the electronic and eletromagnetic components employment in 'fail-safe' mode applied to automatic shutdown systems. 'Fail-safe' here means that a fail always yields a constant state that leads to a plant shutdown condition. So the normal condition of operation corresponds to an oscillating state response and the fail or abnormal condition to a static one. At present, almost all modern nuclear plant reactor protection systems use dynamic logic, just differing in the kind of technology employed in the construction of the system. In this work we define what technology best fits our necessities, setting out to design a RPS based on this philosophy. (author)
郭曦; 王盼
2014-01-01
Similar execution paths generation is one of the fundamental tasks in code analysis and detection .The current methods usually target to the program behavior or program structure ,and change the value of key predicates ,but these methods has a low effectiveness due to the lack of the necessary guidance information ,Meanwhile ,the predicates set has a large size and usually hard to solve ,thus it will reduce the analyze precision as well .A technique of similar execution paths generation based on dynamic synergy bidirectional mapping is proposed in this paper .According to extend the shape of Control Flow Graph and use the backward symbolic analysis ,the weakest precondition of the candidate path is generated ,which can be used as the guidance information to generate pointed similar execution paths set according to the edit distance via changing the distance factor .The experimental results show that this method has the advantage of precision and anti-inference .%相似执行路径的生成是代码分析和检测的基础性工作之一，现有的方法通常以程序的行为序列或结构为分析对象，通过改变关键谓词的取值等方法来进行分析，但由于缺乏必要的引导信息导致生成的相似路径的有效性较低，另外由于路径的谓词集合较长而难以求解也降低了分析的精度。提出基于动态协同双向映射的分析方法，通过对程序控制流图的表示形式进行扩展，结合后向符号分析的方法生成候选路径的最弱前置条件，并以此为引导信息使用编辑距离的方法通过改变距离因子的取值来生成有针对性的相似路径集合。实验结果表明，与现有的方法相比，该方法的准确性和效率有明显的优势。
Swimming dynamics of bidirectional artificial flagella
Namdeo, S.; Khaderi, S. N.; Onck, P. R.
2013-01-01
We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a computa
Bidirectional ROF Links with Dynamic Capacity Allocation
Rakesh Kumar Chandan , Dharmendra Singh
2013-01-01
: Radio over fiber (ROF) technology is an integration of wireless and fiber optic network. It plays vital role for broad band wireless communication. The well known advantages of optical as a transmission medium such as low loss, light weight, large bandwidth characteristics, small size and low cable cost make it the ideal and most flexible solution for efficiently transporting radio signals to remotely located antenna site in a wireless network. The joint venture of radio signal and optical ...
Bidirectional ROF Links with Dynamic Capacity Allocation
Rakesh Kumar Chandan; Dharmendra Singh
2013-01-01
Radio over fiber (ROF) technology is an integration of wireless and fiber optic network. It plays vital role for broad band wireless communication. The well known advantages of optical as a transmission medium such as low loss, light weight, large bandwidth characteristics, small size and low cable cost make it the ideal and most flexible solution for efficiently transporting radio signals to remotely located antenna site in a wireless network. The joint ventur...
Bidirectional lexical-gustatory synesthesia.
Richer, François; Beaufils, Guillaume-Alexandre; Poirier, Sophie
2011-12-01
In developmental lexical-gustatory synesthesia, specific words (inducers) can trigger taste perceptions (concurrents) and these synesthetic associations are generally stable. We describe a case of multilingual lexical-gustatory synesthesia for whom some synesthesias were bidirectional as some tastes also triggered auditory word associations. Evoked concurrents could be gustatory but also tactile sensations. In addition to words and pseudowords, many voices were effective inducers, suggesting increased connections between cortical taste areas and both voice-selective and language-selective areas. Lasting changes in some evoked tastes occurred during childhood suggesting that some plasticity can be present after the initial learning of associations. Inducers were often linked to taste concurrents phonologically or semantically, but also through identifiable childhood episodes (persons or events). Several inducers were phonologically linked to episodic inducers suggesting a process of secondary acquisition for many inducers. Implications of these observations are discussed. PMID:21296005
Dynamical calculations of nuclear fission and heavy-ion reactions
With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references
Isospin dynamics on neck fragmentation in isotopic nuclear reactions
Feng, Zhao-Qing
2016-01-01
The neck dynamics in Fermi-energy heavy-ion collisions, to probe the nuclear symmetry energy in the domain of sub-saturation densities, is investigated within an isospin dependent transport model. The single and double ratios of neutron/proton from free nucleons and light clusters (complex particles) in the isotopic reactions are analyzed systematically. Isospin effects of particles produced from the neck fragmentations are explored, which are constrained within the midrapidities ($|y/y_{proj}|<$0.3) and azimuthal angles (70$^{o}\\sim$110$^{o}$, 250$^{o}\\sim$290$^{o}$) in semiperipheral nuclear collisions. It is found that the ratios of the energetic isospin particles strongly depend on the stiffness of nuclear symmetry energy and the effects increase with softening the symmetry energy, which would be a nice probe for extracting the symmetry energy below the normal density in experimentally. A flat structure appears at the tail spectra from the double ratio distributions. The neutron to proton ratio of ligh...
Solid effect in magic angle spinning dynamic nuclear polarization
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-08-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.
Bidirectional waveguide coupling with plasmonic Fano nanoantennas
We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing
Bidirectional waveguide coupling with plasmonic Fano nanoantennas
Guo, Rui; Decker, Manuel, E-mail: manuel.decker@anu.edu.au; Staude, Isabelle; Neshev, Dragomir N.; Kivshar, Yuri S. [Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2014-08-04
We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing.
Membrane proteins structure and dynamics by nuclear magnetic resonance.
Maltsev, Sergey; Lorigan, Gary A
2011-10-01
Membrane proteins represent a challenging class of biological systems to study. They are extremely difficult to crystallize and in most cases they retain their structure and functions only in membrane environments. Therefore, commonly used diffraction methods fail to give detailed molecular structure and other approaches have to be utilized to obtain biologically relevant information. Nuclear magnetic resonance (NMR) spectroscopy, however, can provide powerful structural and dynamical constraints on these complicated systems. Solution- and solid-state NMR are powerful methods for investigating membrane proteins studies. In this work, we briefly review both solution and solid-state NMR techniques for membrane protein studies and illustrate the applications of these methods to elucidate proteins structure, conformation, topology, dynamics, and function. Recent advances in electronics, biological sample preparation, and spectral processing provided opportunities for complex biological systems, such as membrane proteins inside lipid vesicles, to be studied faster and with outstanding quality. New analysis methods therefore have emerged, that benefit from the combination of sample preparation and corresponding specific high-end NMR techniques, which give access to more structural and dynamic information. PMID:23733702
Bidirectional reflection effects in practical integrating spheres.
Mahan, J R; Walker, J A; Stancil, M M
2015-10-20
Integrating spheres play a central role in radiometric instrument calibration, surface optical property measurement, and radiant source characterization. Our work involves a simulation, based on the Monte Carlo ray-trace (MCRT) of bidirectional reflections within a practical integrating sphere pierced with two viewing ports. We used data from the literature to create an empirical model for the bidirectional reflection distribution function (BRF) of Spectralon suitable for use in the MCRT environment. The ratio of power escaping through the two openings is shown to vary linearly with wall absorptivity for both diffuse and bidirectional reflections. The sensitivity of this ratio to absorptivity is shown to be less when reflections are weakly bidirectional. PMID:26560384
Nuclear dynamics around the barrier: from fusion to evaporation
This work is devoted to aspects of nuclear dynamics around the barrier. It is shown that for fusion reactions, the Coulomb field couples relative motion of nuclei to rotation of a deformed projectile independently of the energy and the charge of the nuclei. An experimental study of the reaction 6He + 190Os via gamma spectroscopy of product nuclei has shown that the break up of the 6He is coupled to the relative motion too, a strong hindrance resulting in the fusion around and above the fusion barrier. The path to fusion after overcoming the barrier, especially the charge equilibration, have been studied in the framework of the TDHF theory via the preequilibrium GDR excited in N/Z asymmetric reactions. An application to formation of the super-heavy elements has been proposed. Finally, couplings between protons and neutrons have been shown up in mean field calculations. Their main expected effect is an emission of protons under the Coulomb barrier. (author)
A method for dynamic nuclear polarization enhancement of membrane proteins.
Smith, Adam N; Caporini, Marc A; Fanucci, Gail E; Long, Joanna R
2015-01-26
Dynamic nuclear polarization (DNP) magic-angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy has the potential to enhance NMR signals by orders of magnitude and to enable NMR characterization of proteins which are inherently dilute, such as membrane proteins. In this work spin-labeled lipid molecules (SL-lipids), when used as polarizing agents, lead to large and relatively homogeneous DNP enhancements throughout the lipid bilayer and to an embedded lung surfactant mimetic peptide, KL4 . Specifically, DNP MAS ssNMR experiments at 600 MHz/395 GHz on KL4 reconstituted in liposomes containing SL-lipids reveal DNP enhancement values over two times larger for KL4 compared to liposome suspensions containing the biradical TOTAPOL. These findings suggest an alternative sample preparation strategy for DNP MAS ssNMR studies of lipid membranes and integral membrane proteins. PMID:25504310
Image Captioning with Deep Bidirectional LSTMs
Wang, Cheng; Yang, Haojin; Bartz, Christian; Meinel, Christoph
2016-01-01
This work presents an end-to-end trainable deep bidirectional LSTM (Long-Short Term Memory) model for image captioning. Our model builds on a deep convolutional neural network (CNN) and two separate LSTM networks. It is capable of learning long term visual-language interactions by making use of history and future context information at high level semantic space. Two novel deep bidirectional variant models, in which we increase the depth of nonlinearity transition in different way, are propose...
A bidirectional shape memory alloy folding actuator
Paik, Jamie; Wood, Robert J.
2012-01-01
This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso-and microscale systems. Despite the advantages of shape memory alloys-high strain, silent operation, and mechanical simplicity-their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180 degrees motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the foldin...
Dynamic buckling in a next generation metal coolant nuclear reactor
G. Forasassi
2008-08-01
Full Text Available Purpose: The aim of the paper is to investigate the buckling effects due to the seismic sloshing phenomena interesting for a next generation heavy liquid metal cooled reactor as for example the eXperimental Accelerator Driven System (XADS.Design/methodology/approach: In this study the structural buckling behaviour of a reactor pressure vessel, retaining a rather large amount of liquid and many internal structures, is coupled to the fluid-structure interaction because during a postulated earthquake (e.g. Design Basis Earthquake the primary coolant surrounding the internals may be accelerated with a resulting significant fluid-structure hydrodynamic interaction (known as “sloshing”. Finite element numerical approach is applied because neither linear nor second-order potential theory is directly applicable when steep waves are present and local bulge appear with a marked decrease in strength of structure.Findings: The numerical results are presented and discussed highlighting the importance of the fluid-structure interaction effects in terms of stress intensity and impulsive pressure on the structural dynamic capability. These results allowed to determine the components mostly affected by the loading condition, in order to upgrade the geometrical design, if any, for the considered nuclear power plant (NPP.Research limitations/implications: The presented research results may be considered preliminary; thus it may be useful for a design upgrading of the reactor vessel and for achieving a first evaluation of the real components capacity to bear dynamic loads in particular in the event of a severe earthquake.Originality/value: From the point of view of the practical implication, it is worth to stress that the safety of liquid retaining nuclear structures subjected to a seismic loading is of great importance in regard to the hydrodynamic forces caused by sloshing and impulsive liquid motion determined by the liquid filling levels oscillatory
Towards an efficient multiphysics model for nuclear reactor dynamics
Obaidurrahman K.
2015-01-01
Full Text Available Availability of fast computer resources nowadays has facilitated more in-depth modeling of complex engineering systems which involve strong multiphysics interactions. This multiphysics modeling is an important necessity in nuclear reactor safety studies where efforts are being made worldwide to combine the knowledge from all associated disciplines at one place to accomplish the most realistic simulation of involved phenomenon. On these lines coupled modeling of nuclear reactor neutron kinetics, fuel heat transfer and coolant transport is a regular practice nowadays for transient analysis of reactor core. However optimization between modeling accuracy and computational economy has always been a challenging task to ensure the adequate degree of reliability in such extensive numerical exercises. Complex reactor core modeling involves estimation of evolving 3-D core thermal state, which in turn demands an expensive multichannel based detailed core thermal hydraulics model. A novel approach of power weighted coupling between core neutronics and thermal hydraulics presented in this work aims to reduce the bulk of core thermal calculations in core dynamics modeling to a significant extent without compromising accuracy of computation. Coupled core model has been validated against a series of international benchmarks. Accuracy and computational efficiency of the proposed multiphysics model has been demonstrated by analyzing a reactivity initiated transient.
Application Value of Nuclear Dynamic Imaging in Renal Malignant Tumor
To observe the evaluation of 99Tcm-DTPA renoscintigraphy in diagnosis of malignant renal tumor and making prognosis, 130 patients with pathology approved malignant renal tumor underwent nuclear dynamic renography before surgery. The results showed that 79 of 130 focus had early blood supply including 80.2% of renal clear-cell carcinoma, 27.8% of papillary renal cell carcinoma and 36.4% of transitional cell carcinoma. There was significant difference in diameter of foci with early blood supply and without (t=3.74, P2=6.84, P<0.01). Patients with GFR more than 25 mL/min of the uninjured kidney had better renal function after surgery, while some of the patients with GFR lower than 25 mL/min in the uninjured side occured renal inadequacy. So early blood supply appearing in nuclear renography may be help for making diagnosis of renal malignant tumor. GFR of uninjured kidney before surgery may anticipate the prognosis after operation. (authors)
A Multiscale Bidirectional Coupling Framework
Kabilan, Senthil; Kuprat, Andrew P.; Hlastala, Michael P.; Corley, Richard A.; Einstein, Daniel R.
2011-12-01
The lung is geometrically articulated across multiple scales from the trachea to the alveoli. A major computational challenge is to tightly link ODEs that describe lower scales to 3D finite element or finite volume models of airway mechanics using iterative communication between scales. In this study, we developed a novel multiscale computational framework for bidirectionally coupling 3D CFD models and systems of lower order ODEs. To validate the coupling framework, a four and eight generation Weibel lung model was constructed. For the coupled CFD-ODE simulations, the lung models were truncated at different generations and a RL circuit represented the truncated portion. The flow characteristics from the coupled models were compared to untruncated full 3D CFD models at peak inhalation and peak exhalation. Results showed that at no time or simulation was the difference in mass flux and/or pressure at a given location between uncoupled and coupled models was greater than 2.43%. The flow characteristics at prime locations for the coupled models showed good agreement to uncoupled models. Remarkably, due to reuse of the Krylov subspace, the cost of the ODE coupling is not much greater than uncoupled full 3D-CFD computations with simple prescribed pressure values at the outlets.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This
Wu, Na; Ding, Wenkui; Shi, Anqi; Zhang, Wenxian
2016-08-01
We investigate the dynamic nuclear polarization in a quantum dot. Due to the suppression of direct dipolar and indirect electron-mediated nuclear spin interactions by frequently injected electron spins, our analytical results under independent spin approximation agree well with quantum numerical simulations for a small number of nuclear spins. We find that the acquired nuclear polarization is highly inhomogeneous, proportional to the square of the local electron-nuclear hyperfine interaction constant. Starting from the inhomogeneously polarized nuclear spins, we further show that the electron polarization decay time can be extended 100 times even at a relatively low nuclear polarization.
Hirschegg '03: Nuclear structure and dynamics at the limits. Proceedings
The following topics were dealt with: Nuclear structure ans symmetries, nuclei near the drip line, halo nuclei and nuclear resonances, superheavy elements and fission, fragmentation and multifragmentation, nuclear astrophysics. (HSI)
Data assimilation for xenon dynamics in nuclear plant
Xenon-135 is a nuclear fission product which is known to be source of undesired roughly one day period density axial oscillations in pressurized water reactors. Xenon dynamics are non linearly coupled to another fission product the iodine-135. Such a coupling represents a challenge for the oscillation prediction. In order to improve xenon estimation, we investigate the feasibility of using variational data assimilation methods. The aim is to obtain a better estimation of initial 1D concentrations of xenon and iodine. Data assimilation techniques are widely used in meteorology and oceanography to improve initial states and forecasts. Such methods combine all kind of information about the system (model, a prior estimate of the true state and data). These information are weighted according to their accuracy expressed in error covariance matrices. The state resulting from the assimilation process is called analysis. 3DVAR and 4DVAR schemes for xenon dynamics are developed within the framework of twin experiments. This means that observations are obtained through numerical computation. Such a procedure allows an evaluation of produced analysis quality. The model developed for this purpose (CIREP1D) includes a mono-dimensional xenon dynamics linked to a mono-dimensional thermic and thermohydraulic model. Linear tangent and adjoint of this model are obtained through automatic differentiation. Observations are of three kinds: integrated powers over several nodes, power axial offset and boron concentration. This work figures out improvements on the estimation of iodine and xenon initial concentrations. Such encouraging results allow to set up tuning tool for an operator guiding system. (author)
Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network.
Ortega, Beatriz; Mora, José; Puerto, Gustavo; Capmany, José
2007-12-10
This paper presents a novel architecture for DWDM bidirectional access networks providing symmetric dynamic capacity allocation for both downlink and uplink signals. A foldback arrayed waveguide grating incorporating an optical switch enables the experimental demonstration of flexible assignment of multiservice capacity. Different analog and digital services, such as CATV, 10 GHz-tone, 155Mb/s PRBS and UMTS signals have been transmitted in order to successfully test the system performance under different scenarios of total capacity distribution from the Central Station to different Base Stations with two reconfigurable extra channels for each down and upstream direction. PMID:19550967
The methodology being used today for assuring nuclear safety is based on analytic approaches. In the 21st century, holistic approaches are increasingly used over traditional analytic method that is based on reductionism. Presently, it leads to interest in complexity theory or system dynamics. In this paper, we review global academic trends, social environments, concept of nuclear safety and regulatory frameworks for nuclear safety. We propose a new safety paradigm and also regulatory approach using holistic approach and system dynamics now in fashion
Description of the turnover of the dynamical moment of inertia of the superdeformed nuclear state
We propose in this paper an approach to describe the dynamical moment of inertia of superdeformed nuclear states in the spirit of variable moments of inertia. Both the general changing feature and the turnover of dynamical moments of inertia with rotational frequency are well described in our approach. It indicates that the competition between the angular momentum driving effect and the restraining effect plays a crucial role in determining the dynamical moments of inertia of superdeformed nuclear states. (author)
Long-term Dynamics of the Electron-nuclear Spin System of a Semiconductor Quantum Dot
Merkulov, I. A.; Alvarez, G; Yakovlev, D. R.; Schulthess, T. C.
2009-01-01
A quasi-classical theoretical description of polarization and relaxation of nuclear spins in a quantum dot with one resident electron is developed for arbitrary mechanisms of electron spin polarization. The dependence of the electron-nuclear spin dynamics on the correlation time $\\tau_c$ of electron spin precession, with frequency $\\Omega$, in the nuclear hyperfine field is analyzed. It is demonstrated that the highest nuclear polarization is achieved for a correlation time close to the perio...
Nuclear magnetic resonance studies of macroscopic morphology and dynamics
Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample's density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques
Nuclear magnetic resonance studies of macroscopic morphology and dynamics
Barrall, G A [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
1995-09-01
Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.
Nuclear coups: dynamics of black holes in galaxy mergers
Van Wassenhove, Sandor; Volonteri, Marta; Dotti, Massimo; Bellovary, Jillian M; Mayer, Lucio; Governato, Fabio
2013-01-01
We study the dynamical evolution of supermassive black holes (BHs) in merging galaxies on scales of hundreds of kpc to 10 pc, to highlight and identify the physical processes that aid or hinder the orbital decay of BHs down to pc scale. We present hydrodynamical simulations of unequal-mass galaxy mergers ($G_1$ and $G_2$ are the larger and smaller galaxies, respectively), with a variety of orbital configurations, that bridge the gap between large-scale, low-resolution merger simulations and the small-scale, high-resolution simulations of BH-binary evolution. Our simulations resolve $<20$-pc scales in order to accurately track the motion of the nuclei and provide a realistic environment for the evolution of the BHs. We find that, during the late stages of the merger, tidal shocks inject energy in the nuclei ($N_1$ and $N_2$), causing one or both nuclei to be disrupted and leaving their BH 'naked', without any bound gas or stars. In many cases, the nucleus that is ultimately disrupted is $N_1$ ('nuclear coup...
VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics
The U.S. DOE Advanced Fuel Cycle Initiative's (AFCI) fundamental objective is to provide technology options that--if implemented--would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential ''exit'' or ''off ramp'' approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool ''DYMOND-US'' functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies
Dynamic mitochondrial localization of nuclear transcription factor HMGA1
It has been well established that high mobility group A1 (HMGA1) proteins act within the nucleus of mammalian cells as architectural transcription factors that regulate the expression of numerous genes. Here, however, we report on the unexpected cytoplasmic/mitochondrial localization of the HMGA1 proteins within multiple cell types. Indirect immunofluorescence, electron microscopic immunolocalization, and Western blot studies revealed that, in addition to the nucleus, HMGA1 proteins could also be found in both the cytoplasm and mitochondria of randomly dividing populations of wild-type murine NIH3T3 cells and transgenic human MCF-7 breast cancer epithelial cells expressing a hemagglutinin tagged-HMGA1a fusion protein. While the molecular mechanisms underlying these novel subcellular localization patterns have not yet been determined, initial synchronization studies revealed a dynamic, cell cycle-dependent translocation of HMGA1 proteins from the nucleus into the cytoplasm and mitochondria of NIH3T3 cells. Furthermore, preliminary functionality studies utilizing a modified 'chromatin' immunoprecipitation protocol revealed that HMGA1 retains its DNA binding capabilities within the mitochondria and associates with the regulatory D-loop region in vivo. We discuss potential new biological roles for the classically nuclear HMGA1 proteins with regard to the observed nucleocytoplasmic translocation, mitochondrial internalization, and regulatory D-loop DNA binding
Dynamics of a semiclassical nuclear Hartree-Fock fluid
The Vlasov equation for the Wigner transform of the one-body density matrix is the semiclassical analogue of the time-dependent Hartree-Fock equation. The dynamics of large amplitude nuclear collective motions are studied using an adiabatic approximation to the Vlasov equation. The theory is a semiclassical limit of the adiabatic time-dependent Hartree-Fock approximation and there are many formal similarities between the two theories. In cases where the collective motion has a generalized scaling property it is possible to solve the first adiabatic equation and find explicit formulae for collective currents, kinetic energies and mass parameters. For effective interactions of the Skyrme type it is possible to go beyond cranking results and to show that inertial parameters do not depend on the effective mass resulting from the interaction. The theory is illustrated by the example of a rotating harmonic oscillator potential and the classical limit of the Inglis formula for the moment of inertia is obtained. When a self-consistency condition is imposed the formula gives a rigid moment of inertia, but not always a rigid flow pattern. (orig.)
VISION -- A Dynamic Model of the Nuclear Fuel Cycle
The Advanced Fuel Cycle Initiative's (AFCI) fundamental objective is to provide technology options that ''if implemented'' would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential ''exit'' or ''off ramp'' approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies
Is solid-state NMR enhanced by dynamic nuclear polarization?
Lee, Daniel; Hediger, Sabine; De Paëpe, Gaël
2015-01-01
The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP. PMID:25779337
Dynamic nuclear polarization of nucleic acid with endogenously bound manganese
We report the direct dynamic nuclear polarization (DNP) of 13C nuclei of a uniformly [13C,15N]-labeled, paramagnetic full-length hammerhead ribozyme (HHRz) complex with Mn2+ where the enhanced polarization is fully provided by the endogenously bound metal ion and no exogenous polarizing agent is added. A 13C enhancement factor of ε = 8 was observed by intra-complex DNP at 9.4 T. In contrast, “conventional” indirect and direct DNP experiments were performed using AMUPol as polarizing agent where we obtained a 1H enhancement factor of ε ≈ 250. Comparison with the diamagnetic (Mg2+) HHRz complex shows that the presence of Mn2+ only marginally influences the (DNP-enhanced) NMR properties of the RNA. Furthermore two-dimensional correlation spectra (15N–13C and 13C–13C) reveal structural inhomogeneity in the frozen, amorphous state indicating the coexistence of several conformational states. These demonstrations of intra-complex DNP using an endogenous metal ion as well as DNP-enhanced MAS NMR of RNA in general yield important information for the development of new methods in structural biology
Dynamical nuclear polarization using multi-colour control of color centers in diamond
Yang, Pengcheng [Huazhong University of Science and Technology, School of Physics, Wuhan (China); Huazhong University of Science and Technology, Center for Quantum Optical Science, Wuhan (China); Plenio, Martin B. [Universitaet Ulm, Institut fuer Theoretische Physik, Ulm (Germany); Universitaet Ulm, Center for Integrated Quantum Science and Technology, Ulm (Germany); Cai, Jianming [Huazhong University of Science and Technology, School of Physics, Wuhan (China); Huazhong University of Science and Technology, Center for Quantum Optical Science, Wuhan (China); Universitaet Ulm, Institut fuer Theoretische Physik, Ulm (Germany); Universitaet Ulm, Center for Integrated Quantum Science and Technology, Ulm (Germany)
2016-12-15
Dynamical nuclear polarization (DNP) transfers the polarization of electron spins at cryogenic temperatures to achieve strong nuclear polarization for applications in nuclear magnetic resonance. Recently introduced approaches employ optical pumping of nitrogen-vacancy (NV) centers in diamond to achieve DNP even at ambient temperatures. In such schemes microwave radiation is used to establish a Hartmann-Hahn condition between the NV electron spin and proximal nuclear spins to facilitate polarization transfer. For a single monochromatic microwave driving field, the Hartmann-Hahn condition cannot be satisfied for an ensemble of NV centers due to inhomogeneous broadening and reduces significantly the overall efficiency of dynamical nuclear polarization using an ensemble of NV centers. Here, we adopt generalized Hartmann-Hahn type dynamical nuclear polarization schemes by applying microwave driving fields with (multiple) time-modulated frequencies. We show that it is possible to enhance the effective coupling between an ensemble of NV center spins with inhomogeneous broadening and nuclear spins, thereby improving significantly the overall efficiency of dynamical nuclear polarization. This approach can also be used to achieve dynamical nuclear polarization of an ensemble of nuclei with a distribution of Larmor frequencies, which would be helpful in magnetic resonance spectroscopy using a single NV spin sensor. (orig.)
Microscopic approaches for nuclear Many-Body dynamics: applications to nuclear reactions
Simenel, Cédric; Lacroix, Denis
2008-01-01
These lecture notes are addressed to PhD student and/or researchers who want a general overview of microscopic approaches based on mean-field and applied to nuclear dynamics. Our goal is to provide a good description of low energy heavy-ion collisions. We present both formal aspects and practical applications of the time-dependent Hartree-Fock (TDHF) theory. The TDHF approach gives a mean field dynamics of the system under the assumption that particles evolve independently in their self-consistent average field. As an example, we study the fusion of both spherical and deformed nuclei with TDHF. We also focus on nucleon transfer which may occur between nuclei below the barrier. These studies allow us to specify the range of applications of TDHF in one hand, and, on the other hand, its intrinsic limitations: absence of tunneling below the Coulomb barrier, missing dissipative effects and/or quantum fluctuations. Time-dependent mean-field theories should be improved to properly account for these effects. Several ...
WANG Qi
2006-01-01
In this paper, a bidirectional partial generalized (lag, complete, and anticipated) synchronization of a class of continuous-time systems is defined. Then based on the active control idea, a new systematic and concrete scheme is developed to achieve bidirectional partial generalized (lag, complete, and anticipated) synchronization between two chaotic systems or between chaotic and hyperchaotic systems. With the help of symbolic-numerical computation,we choose the modified Chua system, Lorenz system, and the hyperchaotic Tamasevicius-Namajunas-Cenys system to illustrate the proposed scheme. Numerical simulations are used to verify the effectiveness of the proposed scheme. It is interesting that partialchaos synchronization not only can take place between two chaotic systems, but also can take place between chaotic and hyperchaotic systems. The proposed scheme can also be extended to research bidirectional partial generalized (lag, complete, and anticipated) synchronization between other dynamical systems.
Nuclear magnetometry studies of spin dynamics in quantum Hall systems
Fauzi, M. H.; Watanabe, S.; Hirayama, Y.
2014-12-01
We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of νtot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.
A bidirectional shape memory alloy folding actuator
This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)
Hirschegg '95: Dynamical properties of hadrons in nuclear matter. Proceedings
The following topics were dealt with: Chiral symmetry, chiral condensates, in-medium effective chiral Lagrangians, Δ's in nuclei, nonperturbative QCD, electron scattering from nuclear matter, nuclear shadowing, QCD sum rules, deconfinement, ultrarelativistic heavy ion collisions, nuclear dimuon and electron pair production, photoproduction from nuclei, subthreshold K+ production, kaon polarization in nuclear matter, charged pion production in relativistic heavy ion collisions, the Nambu-Jona-Lasinio model, the SU(3)LxSU(3)R sigma model, nonequilibrium dense nuclear matter, pion pair production at finite temperature. (HSI)
Control of the dynamic environment produced by underground nuclear explosives
One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)
Software for the nuclear reactor dynamics study using time series processing
The parametric monitoring in Nuclear Power Plant (NPP) permits the operational surveillance of nuclear reactor. The methods employed in order to process this information such as FFT, autoregressive models and other, have some limitations when those regimens in which appear strongly non-linear behaviors are analyzed. In last years the chaos theory has offered new ways in order to explain complex dynamic behaviors. This paper describes a software (ECASET) that allow, by time series processing from NPP's acquisition system, to characterize the nuclear reactor dynamic as a complex dynamical system. Here we show using ECASET's results the possibility of classifying the different regimens appearing in nuclear reactors. The results of several temporal series processing from real systems are introduced. This type of analysis complements the results obtained with traditional methods and can constitute a new tool for monitoring nuclear reactors. (author). 13 refs., 3 figs
Quantitative dynamic nuclear polarization‐NMR on blood plasma for assays of drug metabolism
Lerche, Mathilde Hauge; Meier, Sebastian; Jensen, Pernille Rose;
2011-01-01
Analytical platforms for the fast detection, identification and quantification of circulating drugs with a narrow therapeutic range are vital in clinical pharmacology. As a result of low drug concentrations, analytical tools need to provide high sensitivity and specificity. Dynamic nuclear...
Cleave to Leave : Structural Insights into the Dynamic Organization of the Nuclear Pore Complex
Dokudovskaya, Svetlana; Veenhoff, Liesbeth M.; Rout, Michael P.
2002-01-01
A detailed understanding of the fine structure of the nuclear pore complex has remained elusive. Now, studies on a small protein domain have shed light on the dynamic organization of this massive assembly.
Yao, Xiaojun; Müller, Berndt
2016-01-01
We study the dynamical screening effect in the QED plasma on the $\\alpha$-$\\alpha$ scattering at the $^8$Be resonance. Dynamical screening leads to an imaginary part of the potential which results in a thermal width for the resonance and dominates over the previously considered static screening effect. As a result, both the resonance energy and width increase with the plasma temperature. Furthermore, dynamical screening can have a huge impact on the $\\alpha$-$\\alpha$ thermal nuclear scattering rate. For example, when the temperature is around $10$ keV, the rate is suppressed by a factor of about $900$. We expect similar thermal suppressions of nuclear reaction rates to occur in nuclear reactions dominated by an above threshold resonance with a thermal energy. Dynamical screening effects on nuclear reactions can be relevant to cosmology and astrophysics.
Secure Bidirectional Communication Protocol without Quantum Channel
Zhang, Z. J.; Man, Z. X.
2004-01-01
In this letter we propose a theoretical deterministic secure direct bidirectional quantum communication protocol by using swapping quantum entanglement and local unitary operations, in which the quantum channel for photon transmission can be discarded, hence any attack with or without eavesdropping or even the destructive attack without scruple is impossible.
Image fusion using bi-directional similarity
Bai, Chunshan; Luo, Xiaoyan
2015-05-01
Infrared images are widely used in the practical applications to capture abundant information. However, it is still challenging to enhance the infrared image by the visual image. In this paper, we propose an effective method using bidirectional similarity. In the proposed method, we aim to find an optimal solution from many feasible solutions without introducing intermediate image. We employ some priori constraints to meet the requirements of image fusion which can be detailed to preserve both good characteristics in the infrared image and spatial information in the visual image. In the iterative step, we use the matrix with the square of the difference between images to integrate the image holding most information. We call this matrix the bidirectional similarity distance. By the bidirectional similarity distance, we can get the transitive images. Then, we fuse the images according to the weight. Experimental results show that, compared to the traditional image fusion algorithm, fusion images from bidirectional similarity fusion algorithm have greatly improved in the subjective vision, entropy, structural similarity index measurement. We believe that the proposed scheme can have a wide applications.
Optical bidirectional beacon based visible light communications.
Tiwari, Samrat Vikramaditya; Sewaiwar, Atul; Chung, Yeon Ho
2015-10-01
In an indoor bidirectional visible light communications (VLC), a line-of-sight (LOS) transmission plays a major role in obtaining adequate performance of a VLC system. Signals are often obstructed in the LOS transmission path, causing an effect called optical shadowing. In the absence of LOS, the performance of the VLC system degrades significantly and, in particular, at uplink transmission this degradation becomes severe due to design constraints and limited power at uplink devices. In this paper, a novel concept and design of an optical bidirectional beacon (OBB) is presented as an efficient model to counter the performance degradation in a non-line-of-sight (NLOS) VLC system. OBB is an independent operating bidirectional transceiver unit installed on walls, composed of red, green, and blue (RGB) light emitting diodes (LEDs), photodetectors (PDs) and color filters. OBB improves the coverage area in the form of providing additional or alternate paths for transmission and enhances the performance of the VLC system in terms of bit error rate (BER). To verify the effectiveness of the proposed system, simulations were carried out under optical shadowing conditions at various locations in an indoor environment. The simulation results and analysis show that the implementation of OBB improves the performance of the VLC system significantly, especially when the LOS bidirectional transmission paths are completely or partially obstructed. PMID:26480168
Diffusion stabilizes cavity solitons in bidirectional lasers
Perez-Arjona, Isabel; Sanchez-Morcillo, Victor; Redondo, Javier; Staliunas, Kestutis; Roldan, Eugenio
2009-01-01
We study the influence of field diffusion on the spatial localized structures (cavity solitons) recently predicted in bidirectional lasers. We find twofold positive role of the diffusion: 1) it increases the stability range of the individual (isolated) solitons; 2) it reduces the long-range interaction between the cavity solitons. Latter allows the independent manipulation (writing and erasing) of individual cavity solitons.
Adjuvant Bidirectional Chemotherapy Using an Intraperitoneal Port
Paul H. Sugarbaker
2012-01-01
Full Text Available Cytoreductive surgery (CRS and hyperthermic intraperitoneal chemotherapy (HIPEC have been established as treatment options for patients with peritoneal metastases or peritoneal mesothelioma. However, this novel treatment strategy remains associated with a large percentage of local-regional treatment failures. These treatment failures are attributed to the inadequacy of HIPEC to maintain a surgical complete response. Management strategies to supplement CRS and HIPEC are indicated. A simplified approach to the intraoperative placement of an intraperitoneal port for adjuvant bidirectional chemotherapy (ABC was devised. Four different chemotherapy treatment plans were utilized depending upon the primary site of the malignancy. Thirty-one consecutive patients with an intraoperative placement of the intraperitoneal port were available for study. The incidence of adverse events that caused an early discontinuation of the bidirectional chemotherapy occurred in 75% of the 8 patients who had an incomplete cytoreduction and in 0% of patients who had a complete cytoreduction. All of the patients who had complete cytoreduction completed at least 5 of the scheduled 6 bidirectional chemotherapy treatments. Adjuvant bidirectional chemotherapy is possible following a major cytoreductive surgical procedure using a simplified method of intraoperative intraperitoneal port placement.
Predistortion of a Bidirectional Cuk Audio Amplifier
Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold;
2014-01-01
using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....
Nuclear energy density functional from chiral pion-nucleon dynamics
Kaiser, N.; Fritsch, S.; Weise, W.
2002-01-01
We calculate the nuclear energy density functional relevant for N=Z even-even nuclei in the systematic framework of chiral perturbation theory. The calculation includes the one-pion exchange Fock diagram and the iterated one-pion exchange Hartree and Fock diagrams. From these few leading order contributions in the small momentum expansion one obtains already a very good equation of state of isospin symmetric nuclear matter. We find that in the region below nuclear matter saturation density th...
Nuclear Quantum Many-Body Dynamics: From Collective Vibrations to Heavy-Ion Collisions
Simenel, Cédric
2012-01-01
A summary of recent researches on nuclear dynamics with realistic microscopic quantum approaches is presented. The Balian-V\\'en\\'eroni variational principle is used to derive the time-dependent Hartree-Fock (TDHF) equation describing the dynamics at the mean-field level, as well as an extension including small-amplitude quantum fluctuations which is equivalent to the time-dependent random-phase approximation (TDRPA). Such formalisms as well as their practical implementation in the nuclear phy...
Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures
Kuzma, N. N.; Pourfathi, M.; Kara, H.;
2012-01-01
During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, Xe-129 nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by H-1 neighbors. A second peak appears upon annealing for several hours at 125 K. Its...
Clarkson, R B; Odintsov, B M; Ceroke, P J;
1998-01-01
; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the nuclear spin population...
Two- and multi-particle correlations: access to dynamics and structure of nuclear systems
Results from particle correlation measured in heavy-ion collision experiments are shown. Information about dynamics of the reaction as well as and spectroscopy of unbound nuclear systems can be extracted, offering important opportunities for future experiments with exotic nuclear beams. (author)
Hu, Kan-Nian
2011-01-01
This article provides an overview of polarizing mechanisms involved in high-frequency dynamic nuclear polarization (DNP) of frozen biological samples at temperatures maintained using liquid nitrogen, compatible with contemporary magic-angle spinning (MAS) nuclear magnetic resonance (NMR). Typical DNP experiments require unpaired electrons that are usually exogenous in samples via paramagnetic doping with polarizing agents. Thus, the resulting nuclear polarization mechanism depends on the elec...
Dynamical nuclear spin polarization and the Zamboni effect in gated double quantum dots
Ramon, Guy; Hu, Xuedong
2006-01-01
A dynamical nuclear polarization scheme is studied in gated double dots. We demonstrate that a small polarization ($\\sim 0.5%$) is sufficient to enhance the singlet decay time by two orders of magnitude. This enhancement is attributed to an equilibration process between the nuclear reservoirs in the two dots accompanied by reduced fluctuations in the Overhauser fields, that are mediated by the electron-nuclear spin hyperfine interaction.
Dynamic behavior study of pilot flotation columns using nuclear techniques
The dynamic behavior of a pilot flotation column has been studied using the tracer technique. Radioactive tracers emitting gamma radiation have been used for this purpose. Since this is a three phase system (air, water, and solid particles), having one entrance port and two exit flows, the residence time distribution (RTD) has been determined for both the liquid and solid phases. Moreover, the solids RTD has also been separately measured for four distinct size fractions, i.e. four determinations in all. Instantaneous pulse injections were performed in the feed flow and detected b scintillation probes with sodium iodide crystals doped with thallium, NaI(Tl), adequately collimated and placed at the tails and concentrate exit sections. The detector signals were duly counted, processed and stored by a computer. This setup allowed the RTD identification at the concentration and washing sections of the column to be directly obtained from the detector responses, without any interference whatsoever with the column operation regime. All the plant operational parameters were duly logged. An injection device was designed to introduce the tracer as close as possible to the column entrance and as instantaneously as feasible, thus simulating a Dirac delta impulse. A probe placed immediately downstream the injection position has been used to check its performance. The Peclet number (Pe) and the average residence time (t-bar) were the system parameters determined by fitting the axial dispersion model to the experimental data. The model boundary conditions tested corresponded to the closed-closed and open-closed B.C.'s simulating the entrance-exit boundaries. It was demonstrated that recovery decreases with increasing the collect zone degree of mixing. By labeling both phases, the influence of the particle size distribution on the hydrodynamic behavior of the solids, as well as on the divergent behavior of the solid and liquid phases, has also checked. The closed-closed and open
Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures
Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.;
2013-01-01
-dependent posttranslational modifications (PT Ms). To complement our previous analysis of IR-induced temporal dynamics of nuclear phosphoproteome, we now identify a range of human nuclear proteins that are dynamically regulated by acetylation, and predominantly deacetylation, during IR-induced DDR by using mass spectrometry......-based proteomic approaches. Apart from cataloging acetylation sites through SILAC proteomic analyses before IR and at 5 and 60 min after IR exposure of U2OS cells, we report that: (1) key components of the transcriptional machinery, such as EP 300 and CREBBP, are dynamically acetylated; (2) that nuclear...... to assess lysine acetylation status and thereby validate the mass spectrometry data. We thus present evidence that nuclear proteins, including those known to regulate cellular functions via epigenetic modifications of histones, are regulated by (de)acetylation in a timely manner upon cell's exposure...
Development of dynamic vibration absorber for nuclear piping system
The dynamic vibration absorber was newly developed for the piping system. The higher damping ratio was accomplished and the seismic response of the piping system was consequently reduced. In this dynamic vibration absorber, a stainless mesh spring is used and can be modeled as a complex spring element. From the results of the component test using the straight piping and the three dimensional piping model test (8 inch in diameter and 18 m in length, this dynamic vibration absorber is confirmed to be effective to suppress the vibration for the piping system of wide frequency range. The application method of the dynamic vibration absorber to the three dimensional piping system is also described
Dynamic reliability method can make up the shortage of traditional Event Tree/Fault Tree method. It can be used to complete the current reliability and safety assessment methods of nuclear power plants. In recent 30 years. a relatively perfect theory foundation (probabilistic dynamics) has been developed. On this basis, Monte Carlo simulation and discrete dynamic event tree were formed. The research situation and technical characteristics of the dynamic reliability theory and method were introduced. And the future trend of dynamic reliability was also discussed. (authors)
Nuclear in-medium effects on $\\eta$ dynamics in proton-nucleus collisions
Chen, Jie; Wang, Jian-Song
2016-01-01
The dynamics of $\\eta$ meson produced in proton-induced nuclear reactions via the decay of N$^{\\ast}(1535)$ has been investigated within the Lanzhou quantum molecular dynamics transport model (LQMD). The in-medium modifications of the $\\eta$ production in dense nuclear matter are included in the model, in which an attractive $\\eta$-nucleon potential is implemented. The impact of the $\\eta$ optical potential on the $\\eta$ dynamics is investigated. It is found that the attractive potential leads to the reduction of high-momentum (kinetic energy) production from the spectra of momentum distributions and inclusive cross sections and increasing the reabsorption process by surrounding nucleons.
Bidirectional Conversion between CAD Model and TRIPOLI Model: An Extending Function of MCAM
Lu, L.; Zeng, Q.; Zhang, J.; Lia, Y.; Ding, A.; Wua, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Chang, H. [Institute of nuclear and new energy technology, Tsinghua University, Beijing (China)
2008-07-01
TRIPOLI is a Monte Carlo (MC) particle transport code which can be applied to nuclear analysis of complex nuclear devices; however, modeling of a complex geometry for TRIPOLI computation is a time-consuming and error-prone task. MCAM (Monte Carlo automatic modeling system) is an interface code that can facilitate MC modeling by employing Computer Aided Design (CAD) technology. An extended function of MCAM was developed to implement the bidirectional conversion between CAD model and TRIPOLI model. Different geometry representations of CAD model and TRIPOLI model, as well as the process of bidirectional conversion between the two representations were introduced. ITER benchmark model, a complex fusion system, was converted into TRIPOLI model for validation, On the basis of the converted model, actual calculation of neutron flux on inboard blanket was performed, and the results were compared with that of MCNP calculation, which showed a good agreement. (authors)
China-UK partnership may change dynamics of nuclear development in Europe
Shepherd, John [nuclear 24, Brihgton (United Kingdom)
2015-11-15
By the time this article is published, an historic development may well have taken place that has the potential to change the dynamics of the world's nuclear energy industry for generations to come: The first construction contract in the West of Chinese-designed nuclear power plants. If the agreement goes ahead, a site adjacent to the closed Bradwell nuclear plant on the east coast of England could eventually be home to Chinese reactor technology. If China does develop its first Western nuclear plant in the UK it will be a bold and exciting move for both countries.
Bidirectional Texture Function Simultaneous Autoregressive Model
Haindl, Michal; Havlíček, Michal
Berlin: Springer, 2012, s. 149-159. (Lecture Notes in Computer Science. 7252). ISBN 978-3-642-32435-2. ISSN 0302-9743. [MUSCLE. Pisa (IT), 13.12.2011-15.12.2011] R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593; GA ČR GAP103/11/0335 Grant ostatní: CESNET(CZ) 387/2010 Institutional support: RVO:67985556 Keywords : bidirectional texture function * texture analysis * texture synthesis * data compression * virtual reality Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2012/RO/haindl-bidirectional texture function simultaneous autoregressive model.pdf
Fluctuation effects in bidirectional cargo transport
Klein, Sarah; Santen, Ludger
2014-01-01
We discuss a theoretical model for bidirectional cargo transport in biological cells, which is driven by teams of molecular motors and subject to thermal fluctuations. The model describes explicitly the directed motion of the molecular motors on the filament. The motor-cargo coupling is implemented via linear springs. By means of extensive Monte Carlo simulations we show that the model describes the experimentally observed regimes of anomalous diffusion, i.e. subdiffusive behavior at short times followed by superdiffusion at intermediate times. The model results indicate that subdiffuse regime is induced by thermal fluctuations while the superdiffusive motion is generated by correlations of the motors' activity. We also tested the efficiency of bidirectional cargo transport in crowded areas by measuring its ability to pass barriers with increased viscosity. Our results show a remarkable gain of efficiency for high viscosities.
Robust bidirectional links for photonic quantum networks.
Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state-independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069
Design and Implementation of Bidirectional Dijkstra Algorithm
付梦印; 李杰; 周培德
2003-01-01
Bidirectional Dijkstra algorithm whose time complexity is (1)/(8)O(n2) is proposed. The theory foundation is that the classical Dijkstra algorithm has not any directional feature during searching the shortest path. The algorithm takes advantage of the adjacent link and the mechanism of bidirectional search, that is, the algorithm processes the positive search from start point to destination point and the negative search from destination point to start point at the same time. Finally, combining with the practical application of route-planning algorithm in embedded real-time vehicle navigation system (ERTVNS), one example of its practical applications is given, analysis in theory and the experimental results show that compared with the Dijkstra algorithm, the new algorithm can reduce time complexity, and guarantee the searching precision, it satisfies the needs of ERTVNS.
Extended Bidirectional Texture Function Moving Average Model
Havlíček, Michal
Praha: České vysoké učení technické v Praze, 2015 - (Ambrož, P.; Masáková, Z.), s. 1-7 [Doktorandské dny 2015. Praha (CZ), 20.11.2015,27.11.2015] Institutional support: RVO:67985556 Keywords : Bidirectional texture function * moving average random field model Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2016/RO/havlicek-0455325.pdf
Properties of Coupled Oscillator Model for Bidirectional Associative Memory
Kawaguchi, Satoshi
2016-08-01
In this study, we consider the stationary state and dynamical properties of a coupled oscillator model for bidirectional associative memory. For the stationary state, we apply the replica method to obtain self-consistent order parameter equations. The theoretical results for the storage capacity and overlap agree well with the numerical simulation. For the retrieval process, we apply statistical neurodynamics to include temporal noise correlations. For the successful retrieval process, the theoretical result obtained with the fourth-order approximation qualitatively agrees with the numerical simulation. However, for the unsuccessful retrieval process, higher-order noise correlations suppress severely; therefore, the maximum value of the overlap and the relaxation time are smaller than those of the numerical simulation. The reasons for the discrepancies between the theoretical result and numerical simulation, and the validity of our analysis are discussed.
Impedance Interaction Modeling and Analysis for Bidirectional Cascaded Converters
Tian, Yanjun; Deng, Fujin; Chen, Zhe;
2015-01-01
more uncertainty to the system stability. An investigation is performed here for showing that the forward and reverse interactions are prominently different in terms of dynamics and stability even though the cascaded converter control remains unchanged. An important guideline has been drawn for the......For the cascaded converter system, the output impedance of source converter interacts with the input impedance of load converter, and the interaction may cause the system instability. In bidirectional applications, when the power flow is reversed, the impedance interaction also varies, which brings...... control of the cascaded converter. That is when voltage mode converter working as the load converter; the constant power mode converter as the source converter, the system is more stable. The concluded findings have been verified by simulation and experimental results....
Bidirectional pumped high power Raman fiber laser.
Xiao, Q; Yan, P; Li, D; Sun, J; Wang, X; Huang, Y; Gong, M
2016-03-21
This paper presents a 3.89 kW 1123 nm Raman all-fiber laser with an overall optical-to-optical efficiency of 70.9%. The system consists of a single-wavelength (1070nm) seed and one-stage bidirectional 976 nm non-wavelength-stabilized laser diodes (LDs) pumped Yb-doped fiber amplifier. The unique part of this system is the application of non-wavelength-stabilized LDs in high power bidirectional pumping configuration fiber amplifier via refractive index valley fiber combiners. This approach not only increases the pump power, but also shortens the length of fiber by avoiding the usage of multi-stage amplifier. Through both theoretical research and experiment, the bidirectional pumping configuration presented in this paper proves to be able to convert 976 nm pump laser to 1070 nm laser via Yb3+ transfer, which is then converted into 1123 nm Raman laser via the first-order Raman effect without the appearance of any higher-order Raman laser. PMID:27136862
Fission dynamics: The quest of a temperature dependent nuclear viscosity
Vardaci E.
2013-12-01
Full Text Available This contribution presents a journey within the open questions about the current use of a temperature dependent nuclear viscosity in models of nuclear fission and proposes an alternative experimental approach by using systems of intermediate fissility. This study is particularly relevant because: i systems of intermediate fissility offer a suitable framework since the intervals between the compound nucleus and scission point temperatures with increasing excitation energy are much smaller than in the case of heavier systems, ii the measurement of observables in the ER channel translates into a larger set of effective constraints for the models.
Effect of nuclear spins on the electron spin dynamics in negatively charged InP quantum dots
Ignatiev, I. V.; Verbin, S. Yu.; Gerlovin, I. Ya.; Maruyama, W.; Pal, B.; Masumoto, Y.
2005-01-01
Kinetics of polarized photoluminescence of the negatively charged InP quantum dots in weak magnetic field is studied experimentally. Effect of both the nuclear spin fluctuations and the dynamical nuclear polarization on the electron spin orientation is observed.