WorldWideScience

Sample records for biblis-d reactor

  1. Application of metaheuristics to Loading Pattern Optimization problems based on the IAEA-3D and BIBLIS-2D data

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Araujo, Lenilson Moreira; Nast, Fernando Nogueira; Da Silva, Patrick Vasconcelos; Schirru, Roberto

    2018-01-01

    Highlights: •Metaheuristics were applied to Loading Pattern Optimization problems and compared. •The problems are based on data of the benchmarks IAEA and BIBLIS. •The metaheuristics compared were PSO, Cross-Entropy, PBIL and Artificial Bee Colony. •Angra 1 NPP data were also used for further comparison of the algorithms. -- Abstract: The Loading Pattern Optimization (LPO) of a Nuclear Power Plant (NPP), or in-core fuel management optimization, is a real-world and prominent problem in Nuclear Engineering with the goal of finding an optimal (or near-optimal) Loading Pattern (LP), in terms of energy production, within adequate safety margins. Most of the reactor models used in the LPO problem are particular cases, such as research or power reactors with technical data that cannot be made available for several reasons, which makes the reproducibility of tests unattainable. In the present article we report the results of LPO of problems based upon reactor physics benchmarks. Since such data are well-known and widely available in the literature, it is possible to reproduce tests for comparison of techniques. We performed the LPO with the data of the benchmarks IAEA-3D and BIBLIS-2D. The Reactor Physics code RECNOD, which was used in previous works for the optimization of Angra 1 NPP in Brazil, was also used for further comparison. Four Optimization Metaheuristics (OMHs) were applied to those problems: Particle Swarm Optimization (PSO), Cross-Entropy algorithm (CE), Artificial Bee Colony (ABC) and Population-Based Incremental Learning (PBIL). For IAEA-3D, the best algorithm was the ABC. For BIBLIS-2D, PBIL was the best OMH. For Angra 1 / RECNOD optimization problem, PBIL, ABC and CE were the best OMHs.

  2. Biblis: Cause with too much impact

    International Nuclear Information System (INIS)

    Resch, I.

    1976-01-01

    Taking the Biblis reactor as an example, the author weighs the advantages and the necessity of energy production against the risk. It would be desirable to convey an idea of the load capacity of such a plant and of its components' precision to the layman and to journalists critical of nuclear energy. (TK) [de

  3. Biblis unit A thirty years

    International Nuclear Information System (INIS)

    Lauer, H.

    2004-01-01

    The first nuclear power plant in the Federal Republic of Germany started operation in 1961. It was followed by a consistent period of development until a new energy source had become available by the late sixties which was both powerful and capable of expansion. With 1200 MW electric power, the pressurized water reactor of Biblis A in 1974 was equipped with the world's most powerful single-shaft turbine generator. In 187,656 hours of operation, Biblis A over the past thirty years generated slightly more than 211 billion kWh of gross electricity (by July 31, 2004). The operating experience accumulated also resulted in improvements and modifications of technical plant systems in the 1970s and 1980s which served to bring the unit up to the then current state of the art. Modifications of technical plant systems serving to increase the safety margins or improve operating systems, always in the light of the state of the art, have been carried out consistently and continuously over the years. In combination with a high level of qualification of the operating personnel, which is ensured by an efficient system of primary and refresher training courses of responsible shift personnel and other groups of power plant personnel, this creates a lasting foundation of safe plant operation. In connection with the preparations for, and the execution of, revision outages, Biblis provided the first experience with a PWR of this size category. Unit A of the Biblis nuclear power station is proof of the fact that technical and safety challenges can be solved, and have been solved, by engineering expertise. The high availability and low susceptibility to failure of the plant demonstrate the widely optimized maintenance strategy and the high qualification and motivation of the staff. (orig.)

  4. Assessment of safety measures and plant risks during shut-down periods at NPP Biblis

    International Nuclear Information System (INIS)

    Pamme, H.; Roess, P.H.

    1996-01-01

    Results of French probabilistic PWR-studies indicated a high contribution of shut down states to the overall plant risk. Mainly inspired by these results qualitative and also probabilistic analyses were started in Germany since 1991. As the Biblis-B-NPP was already reference plant of the German Risk Study first studies of shut-down-states were again focuses on Biblis-B. These studies were mainly performed by the German Association for Reactor Safety (GRS) in close cooperation with the utility RWE Energie AG. This paper briefly reviews the chosen approach to model and assess shut-down-states at Biblis-NPP. An in-depth-presentation is focuses on the quantification of risk in mid-loop-operation (MLO) which was performed by the authors with intensive support of plant personnel

  5. Model study on radioecology in Biblis. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The present volume 'Water Pathway II' of the model study radioecology Biblis contains the remaining six part studies on the subjects: 1. Concentration of radionuclides in river sediments. 2. Incorporation via terrestrial food (milk, fruit, vegetables). 3. Radioactive substances in the Rhine not arising from nuclear power stations. 4. Dynamic model for intermittent outlet during reactor operation. 5. Exposure to radiation of the Rhine-fishes. 6. Influence of contaminated waste water on industrial utilization of surface waters.

  6. Verification of SACI-2 computer code comparing with experimental results of BIBLIS-A and LOOP-7 computer code

    International Nuclear Information System (INIS)

    Soares, P.A.; Sirimarco, L.F.

    1984-01-01

    SACI-2 is a computer code created to study the dynamic behaviour of a PWR nuclear power plant. To evaluate the quality of its results, SACI-2 was used to recalculate commissioning tests done in BIBLIS-A nuclear power plant and to calculate postulated transients for Angra-2 reactor. The results of SACI-2 computer code from BIBLIS-A showed as much good agreement as those calculated with the KWU Loop 7 computer code for Angra-2. (E.G.) [pt

  7. BibliOpass – An Open Library Network in Switzerland

    Directory of Open Access Journals (Sweden)

    Alexis Rivier

    2006-04-01

    Full Text Available The idea underlying BibliOpass is very simple: extending borrowers' rights to all libraries participating in the network. As in other countries, users of Swiss libraries are more and more mobile, especially the categories of students, teachers or researchers. Universities and technology institute have become more specialized and less general, aiming to improve their reputation at an international level. Students often need to visit different universities during their studies. BibliOpass supports this trend regarding library use in relation to this new mobility. Strangely, similar projects in other countries are not so frequent: Sconul Research Extra in Great Britain which groups together more than 150 higher education institutions is the best example. Basically, BibliOpass makes it simpler for a borrower to use other libraries. More than 600 libraries throughout the country are at present involved in the BibliOpass network. A patron registered as a ‘normal user’ in his or her main library (called ‘Home library’ may borrow items in any other library (called ‘Guest library’ without needing to obtain a new user card or paying extra fees. The user must observe the rules of the guest library (for example number of items and duration of loan. Items must be returned to their originating library for management reasons. BibliOpass is a new, complementary service to Inter Library Loan (ILL, the traditional way to obtain books from other libraries.

  8. Preliminary study to questions relating to the safety of nuclear power plants A and B at Biblis

    International Nuclear Information System (INIS)

    Fischer, B.; Hahn, L.; Rausch, L.

    1985-01-01

    With a view to developing suitable tools for the safety evaluation of reactors A and B at Biblis, the publication compiles all aspects relevant to safety, creates an evaluation frame, and evaluates the aspects relevant to safety by means of this frame of evaluation. According to the composition of the work, the overall subject is split up into the complexes information, acquisition, evaluation of operational experience, probabilistic analyses, comparison with newer PWR type reactors, fulfilling of injunctions, modifications due to disposal problems, and the disposal situation. (DG) [de

  9. Biblis 1,300 MW unit B in operation for thirty years

    International Nuclear Information System (INIS)

    Lauer, H.

    2006-01-01

    Over the past thirty years, unit B of the Biblis nuclear power station has contributed towards safe, reliable and non-polluting electricity generation. Unit B was the first 1,300 MW unit in the world confirming the good experience accumulated in the construction and operation of plants this size. It laid the foundation for the advanced development of nuclear power plants up to the convoy line. The good availability this plant has achieved in its operating cycles proves the mature state of technology and the high level of qualification and motivation of the power plant staff and the personnel of external firms contracted to work for Biblis. Biblis B has served as a reference plant in German nuclear safety research, demonstrating that units this size can be operated safely. Unit B is also living proof of the possibility to raise nuclear power plants built in the seventies to the current state of the art by implementing the appropriate backfitting and modernization measures. Today, Biblis B is operated at a safety level clearly higher than that to be achieved for new plants internationally. This is also evident from comparison with the guiding values for the safety of new facilities as published by the International Atomic Energy Agency (IAEA). (orig.)

  10. Breakdown and bad luck in Biblis

    International Nuclear Information System (INIS)

    Randow, G. von.

    1994-01-01

    Five minor breakdowns within a month have heated up the dispute between the ministries of the environment of the Federation and the Land of Hesse. Biblis A is to be shut down at all costs. As yet, however, the Hessian Ministry of the Environment has not solved the question of how to compensate the power cut. (DG) [de

  11. Exchange of pressurizer safeguarding system at Biblis nuclear power station

    International Nuclear Information System (INIS)

    Weber, D.; Hofbeck, W.

    1991-01-01

    Valves and piping of the pressurizer safeguarding system are exchanged and reset in such a way that they are suitable not only for discharging steam, but also for discharging a water-steam mixture and hot pressurized water; for the emergency measure of primary depressurization by hand (bleed) in the event of failure of the entire feedwater supply and station black-out, and in the event of operational transients with supposed failure of the reactor scram (ATWS). To achieve this, in addition to the requirements of the pressurizer discharging station, changes have to be made to the valve drive to dominate the water loads. During the 1990 inspection this exchange of the pressurizer discharging station was performed at the Biblis A unit as the first German plant. (orig.) [de

  12. Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method

    International Nuclear Information System (INIS)

    Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.

    2014-01-01

    Highlights: • An hp finite element method is proposed for the Lambda modes problem of a nuclear reactor. • Different strategies can be implemented for increasing the accuracy of the solutions. • 2D and 3D benchmarks have been studied obtaining accurate results. - Abstract: Lambda modes of a nuclear power reactor have interest in reactor physics since they have been used to develop modal methods and to study BWR reactor instabilities. An h–p-Adaptation finite element method has been implemented to compute the dominant modes the fundamental mode and the next subcritical modes of a nuclear reactor. The performance of this method has been studied in three benchmark problems, a homogeneous 2D reactor, the 2D BIBLIS reactor and the 3D IAEA reactor

  13. Chemical aspects of the treatment of radioactive concentrates at the nps Biblis

    International Nuclear Information System (INIS)

    Paffrath, G.; Schroeder, H.J.

    1983-01-01

    The methods of waste treatment in the Federal Republic of Germany can be separated in two periods and pathways. (1) Treatment of liquid waste by cementation and packing due to the doserate on the surface in drums of 400 litres, in drums of 200 litres put in drums of 400 litres and grout the space between the drums with cement. For higher doserates on the surface 200 litre drums could also be shielded by additional concrete shieldings. The limiting factors for this method of waste treatment were defined in the ASSE regulations. The treatment took place in transportable units at the reactor site. (2) Drying the concentrate and packing the product in thick-walled drums of cast-iron. This treatment, known as 'volume reducing' methods, was first practised in 1981 at the nps Biblis and took into account that: (1) at the reactor site exists only a storage capacity for liquid concentrates for one year and (2) after the closing of the experimental storage ASSE there was no prospect of an early final storage assembly in Germany. The methods are discussed. (author)

  14. Temporary provision against Kernkraftwerk Biblis dismissed

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    With its decision of November 19, 1979 - VIII IG 13/79 -, the Administrative Court of Hesse has refused the complaint of a Darmstadt resident whose application for a temporary provision interdicting further operation of the power plant units Biblis A and B had been refused by the Darmstadt Administrative Court. The costs of the procedure, including the extra-judicial costs of the witnesses heard, are to be paid by the plaintiff. The value in litigation was raised to DM 10 000,-. (orig./HP) 891 HP/orig.- 892 CKA [de

  15. Development of fabrication process of upper nozzle BIBLIS type of PWR fuel element

    International Nuclear Information System (INIS)

    Miranda, O.; Lorenzo, D.F.R.

    1982-01-01

    Process and parameters of milling and welding of a upper nozzle BIBLIS type prototype are presented. Milling process, cutting tools studies, production devices and inspection were developed and researched. (author) [pt

  16. O bibliógrafo: a experiência na Unicamp

    Directory of Open Access Journals (Sweden)

    Liane Maria Bertucci Bertucci

    2001-01-01

    Full Text Available Relatando o processo de escolha de um profissional para atuar como bibliógrafo (bibliographer na Biblioteca do Instituto de Filosofia e Ciências Humanas da UNICAMP, o texto discute aspectos do trabalho deste profissional na avaliação e manutenção do acervo da biblioteca, realizando a seleção dos materiais doados, indicando títulos para novas aquisições, solicitando doações para a Biblioteca e elaborando projetos que podem resultar em compra de livros e outros materiais ou em verba para cuidados especiais com o patrimônio da BIBIFCH. relatando el proceso de elección de un profesional para actuar como bibliógrafo (bibliographer en la Biblioteca del Instituto de Filosofía y Ciencias Humanas de la Universidad Estadual de Campinas – UNICAMP, el texto discute aspectos del trabajo de este profesional en la evaluación y mantenimiento del acervo de la biblioteca, realizando la selección de los materiales donados, indicando títulos para nuevas adquisiciones, solicitando donaciones para la biblioteca y elaborando proyectos que pueden resultar en la compra de libros y otros materiales o en recursos financieros para cuidados especialies relativos al patrimonio de la BIBIFCH.

  17. El doctor Francisco Guerra, bibliófilo

    OpenAIRE

    Sánchez Mariana, Manuel

    2007-01-01

    Biografía del doctor Francisco Guerra, médico y uno de los bibliófilos más representativos de comienzos del s. XXI, poseedor de una importantísima biblioteca, donada por decisión propia, en el año 2006 a la Biblioteca Histórica de la Universidad Complutense. La biblioteca está compuesta por más de 4000 impresos y manuscritos de una variada seleccion de títulos humanísticos y científicos: clásicos griegos, romanos y españoles, clásicos de economía, descubrimiento de América, crónicas españolas...

  18. Dose received during work in the active zone of the BIBLIS power plant, instalment A, 1977

    International Nuclear Information System (INIS)

    Kallmeyer, D.; Ambros, R.; Schroeder, H.J.; Kausch, S.

    1978-01-01

    In the Biblis station, instalment A, of the Rheinisch-Wesfaelisches-Elektrizitaetswerk, a study was conducted in 1977 to determine the doses received as a function of work carried out. The aim was to establish in a general study the dose which appears in each case during work on systems (or components of systems) in the active zone. An attempt was made as far as possible to relate the doses to specific occupations. This correlation is governed in two ways by conditions inherent in the organisation of the Biblis station a) maintenance and repair work are carried out under work contracts; the dose can be related to this work by the order number of the contract in question. b) Some activities, apart from maintenance and repair may be carried out without a contract. The dose which then appears is related to the type of activity concerned

  19. D-D tokamak reactor assessment

    International Nuclear Information System (INIS)

    Baxter, D.C.; Dabiri, A.E.

    1983-01-01

    A quantitative comparison of the physics and technology requirements, and the cost and safety performance of a d-d tokamak relative to a d-t tokamak has been performed. The first wall/blanket and energy recovery cycle for the d-d tokamak is simpler, and has a higher efficiency than the d-t tokamak. In most other technology areas (such as magnets, RF, vacuum, etc.) d-d requirements are more severe and the systems are more complex, expensive and may involve higher technical risk than d-t tokamak systems. Tritium technology for processing the plasma exhaust, and tritium refueling technology are required for d-d reactors, but no tritium containment around the blanket or heat transport system is needed. Cost studies show that for high plasma beta and high magnetic field the cost of electricity from d-d and d-t tokamaks is comparable. Safety analysis shows less radioactivity in a d-d reactor but larger amounts of stored energy and thus higher potential for energy release. Consequences of all postulated d-d accidents are significantly smaller than those from d-t reactor tritium releases

  20. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  1. JANUS reactor d and d project

    International Nuclear Information System (INIS)

    Fellhauer, C. R.

    1998-01-01

    Argonne National Laboratory (ANL-E) has recently completed the decontamination and decommissioning (D and D) of the JANUS Reactor Facility located in Building 202. The 200 KW reactor operated from August 1963 to March 1992. The facility was used to study the effects of both high and low doses of fission neutrons in animals. There were two exposure rooms on opposite sides of the reactor and the reactor was therefore named after the two-faced Roman god. The High Dose Room was capable of specimen exposure at a dose rate of 3,600 rads per hour. During calendar year 1996 a detailed characterization of the facility was performed by ANL-E Health Physics personnel. ANL-E Analytical Services performed the required sample analysis. An Auditable Safety Analysis and an Environmental Assessment were completed. D and D plans, procedures and procurement documents were prepared and approved. A D and D subcontractor was selected and a firm, fixed price contract awarded for the field work and final survey effort. The D and D subcontractor was mobilized to ANL-E in January 1997. Electrical isolation of all reactor equipment and control panels was accomplished and the equipment removed. A total of 207,230 pounds (94,082 Kg) of lead shielding was removed, surveyed and sampled, and free-released for recycle. All primary and secondary piping was removed, size reduced and packaged for disposal or recycled as appropriate. The reactor vessel was removed, sized reduced and packaged as radioactive waste in April. The activated graphite block reflector was removed next, followed by the bioshield concrete and steel. All of this material was packaged as low level waste. Total low level radioactive waste generation was 4002.1 cubic feet (113.3 cubic meters). Mixed waste generation was 538 cubic feet (15.2 cubic meters). The Final Release Survey was completed in September. The project field work was completed in 38 weeks without any lost-time accidents, personnel contaminations or unplanned

  2. Portable digital reactivity meter for power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, G [Nuklear-Ingenieur Service G.m.b.H., Hanau (Germany, F.R.)

    1977-07-01

    A digital reactivity meter has been developed, which can be used for all kinds of kinetic reactivity measurements in PWR's and BWR's. The input signals may be supplied by standard neutron detectors of the reactor. The hardware configuration consists of a minicomputer with ADC and DAC, a 'Silent' terminal and a high speed paper tape reader/punch. It is easily transportable. The reactivity meter solves the inverse kinetics equations for 6 delayed neutron groups, simultaneously for up to 8 logarithmic or linear neutron flux signals. It has been successfully tested at Biblis A PWR and the KRB BWR.

  3. Fusion blankets for catalyzed D--D and D--He3 reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β noncircular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphynyl coolant

  4. Fusion blankets for catalyzed D--D and D--3He reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β non-circular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphenyl coolant

  5. Engineering aspects of a D-D commercial tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-01-01

    This paper presents some of the engineering aspects of WILDCAT, a conceptual design of a D-D tokamak, fusion reactor. This conceptual design has evolved from initial studies of D-D tokamak reactors, and is intended to be a study of a later-model, commerical fusion reactor in the same sense that STARFIRE was such a study for D-T fuel cycle. The major guidelines of the study have been to utilize as fully as possible the advantages of the D-D fuel cycle but to avoid unnecessary extrapolations of parameters from existing D-T designs, in particular STARFIRE. The paper consists of an overview of the reference design, a description of each of the major engineering systems (rf current drive, burn cycle, impurity control, first wall, blanket/shield, TF magnets, and tritium system, and a summary of conclusions)

  6. Reactor D and D at Argonne National Laboratory - lessons learned

    International Nuclear Information System (INIS)

    Fellhauer, C. R.

    1998-01-01

    This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals

  7. The mitochondrial genome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae).

    Science.gov (United States)

    Xin, Tianrong; Li, Lei; Yao, Chengyi; Wang, Yayu; Zou, Zhiwen; Wang, Jing; Xia, Bin

    2016-07-01

    We present the complete mitogenome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae) in this article. The mitogenome was a circle molecular consisting of 15,286 nucleotides, 37 genes, and an A + T-rich region. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. The overall base composition of the genome is A (37.41%), T (42.80%), C (11.87%), and G (7.91%) with an A + T-rich hallmark as that of other invertebrate mitochondrial genomes. The start codon was mainly ATA in most of the mitochondrial protein-coding genes such as ND2, COI, ATP8, ND3, ND5, ND4, ND6, and ND1, but COII, ATP6, COIII, ND4L, and Cob genes employing ATG. The stop codon was TAA in all the protein-coding genes. The A + T region is located between 12S rRNA and tRNA(M)(et). The phylogenetic relationships of Lepidoptera species were constructed based on the nucleotides sequences of 13 PCGs of mitogenomes using the neighbor-joining method. The molecular-based phylogeny supported the traditional morphological classification on relationships within Lepidoptera species.

  8. Studies on energy gain of muon catalyzed hybrid D-D Reactor and it comparison to D-T system

    International Nuclear Information System (INIS)

    Eskandari, M.R.; Hoseine-Motlagh, S.N.; Faghihi, F.

    1998-01-01

    Regarding the advantages of hybrid fusion reactors, in most recent studies, the energy gain of muon catalyzed D-T hybrid reactors are studied. Knowing advantages of D-D fuel such as availability, not being radio-active, no tritium inventory requirement and transport problems, the muon catalyzed hybrid D-D reactor (μCHDDR) gain is calculated here for a given net reaction by solving its dynamical equations for various deuterium densities. It is shown theμCHDDR has advantages even for previously suggested similar D-T reactor

  9. Design and cost evaluation of generic magnetic fusion reactor using the D-D fuel cycle

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1988-01-01

    A fusion reactor systems code has been developed to evaluate the economic potential of power generation from a toroidal magnetic fusion reactor using deuterium-deuterium (D-D) fuel. A method similar to that developed by J. Sheffield, of the Oak Ridge National Laboratory, for deuterium-tritium (D-T) fuel was used to model the generic aspects of magnetic fusion reactors. The results of the systems study and cost evaluation show that the cost of electricity produced by a D-D reactor is two times higher than that produced by an equivalent D-T reactor design. The significant finding of the study is that the cost ratio between the D-D and D-T systems can potentially be reduced to 1.5 by improved engineering design and even lower by better physics performance. The absolute costs for both systems at this level are close to the costs for nuclear fission and fossil fuel plants. A design for a magnet reinforced with advanced composite materials is presented as an example of an engineering improvement that could reduce the cost of electricity produced by both reactors. However, since the magnets in the D-D reactor are much larger than in the K-T reactor, the cost ratio of the two systems is significantly reduced

  10. Safety and deterministic failure analyses in high-beta D-D tokamak reactors

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1984-01-01

    Safety and deterministic failure analyses were performed to compare major component failure characteristics for different high-beta D-D tokamak reactors. The primary focus was on evaluating damage to the reactor facility. The analyses also considered potential hazards to the general public and operational personnel. Parametric designs of high-beta D-D tokamak reactors were developed, using WILDCAT as the reference. The size, and toroidal field strength were reduced, and the fusion power increased in an independent manner. These changes were expected to improve the economics of D-D tokamaks. Issues examined using these designs were radiation induced failurs, radiation safety, first wall failure from plasma disruptions, and toroidal field magnet coil failure

  11. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Takashima, H.

    2001-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  12. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Takashima, Hiroaki

    1999-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  13. Nuclear characteristics of D-D fusion reactor blankets, (1)

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  14. D-3He fuel cycles for neutron lean reactors

    International Nuclear Information System (INIS)

    Kernbichler, W.; Miley, G.H.; Heindler, M.

    1989-01-01

    The intrinsic potential of D-3He as a reactor fuel is investigated for a large range of 3He to D density ratios. A steady-state zero-dimensional reactor model is developed in which much care is attributed to a proper treatment of fast fusion products. Useful ranges of reactor parameters as well as temperature-density windows for driven and ignited operation are identified. Various figures of merit are calculated, such as power densities, net power production, neutron production, tritium load and radiative power. These results suggest several optimistic conclusions about the performance of D-3He as a reactor fuel

  15. Experiences in the D ampersand D of the EBWR reactor complex at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Boing, L.E.; Fellhauer, C.R.

    1995-02-01

    EBWR went critical in Dec 1957 at 20 MW(t), was upgraded to 100 MW(t) operation. EBWR was shut down July 1967 and placed in dry lay-up. In 1986, the D ampersand D work was planned in 4 phases: final planning and preparations for D ampersand D, removal of reactor systems, removal of reactor vessel complex, and final decontamination and project closeout. Despite precautions, there was an uptake of 241 Am by D ampersand D workers following underwater plasma arc cutting within the pool; the cause was traced to an experimental 241 Pu foil (200 μg) that was lost in the mid-1960s in the reactor vessel. Several major lessons were learned from this episode, among which is the fact that research facilities often involve unusual experiments which may not be recorded. Safety analysis and review procedure for D ampersand D operations need to be carefully considered since they represent considerably different situations than reactor operations. EBWR is one of the very few cases of a prototypic reactor facility designed, operated, tested and now D ampersand D'd by one organization

  16. Conceptual design of D-3He FRC reactor 'ARTEMIS'

    International Nuclear Information System (INIS)

    Momota, H.; Ishida, A.; Kohzaki, Y.

    1991-07-01

    A comprehensive design study of the D- 3 He fueled field-reversed configuration (FRC) reactor 'ARTEMIS' is carried out for the purpose of proving its attractive characteristics and clarifying the critical issues for a commercial fusion reactor. The FRC burning plasma is stabilized and sustained in a steady equilibrium by means of a preferential trapping of D- 3 He fusion-produced energetic protons. A novel direct energy converter for 15MeV protons is also presented. On the bases of a consistent scenario of the fusion plasma production and simple engineering, a compact and simple reactor concept is presented. The design of the D- 3 He FRC power plant definitely offers the most attractive prospect for energy development. It is environmentally acceptable in view of radio-activity and fuel resources; and the estimated cost of electricity is low compared to a light water reactor. Critical issues concerning physics or engineering for the development of the D- 3 He FRC reactor are clarified. (author)

  17. 3D CAD model of the subcritical nuclear reactor of IPN; Modelo CAD 3D del reactor nuclear subcritico del IPN

    Energy Technology Data Exchange (ETDEWEB)

    Pahuamba V, F. de J.; Delfin L, A.; Gomez T, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Ibarra R, G.; Del Valle G, E.; Sanchez R, A., E-mail: narehc@hotmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN, Edif. 9, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-09-15

    The three-dimensional (3D) CAD model of the subcritical reactor Chicago model 9000 of Instituto Politecnico Nacional (IPN) allows obtaining a 3D view with the dimensions of each of its components, such as: natural uranium cylindrical rods, fuel elements, hexagonal reactor core arrangement, cylindrical stainless steel tank containing the core, fuel element support grids and reactor water cleaning system. As a starting point for the development of the model, the Chicago model 9000 subcritical reactor manual provided by the manufacturer was used, the measurement and verification of the components to adapt the geometric, physical and mechanical characteristics was carried out and materials standards were used to obtain a design that allows to elaborate a new manual according to the specifications. In addition, the 3D models of the building of the Advanced Physics Laboratory, neutron generator, cobalt source and the corridors connecting to the subcritical reactor facility were developed, allowing an animated ride, developed by computer-aided design software. The manual provided by the company Nuclear Chicago, dates from the year 1959 and presents diverse deviations in the design and dimensions of the reactor components. The model developed; in addition to supporting the development of the new manual represents a learning tool to visualize the reactor components. (Author)

  18. Conceptual designs of tokamak reactor and R D

    International Nuclear Information System (INIS)

    Fukai, Yuzo; Yamato, Harumi; Sawada, Yoshio

    1983-01-01

    The conceptual design of both FER (Fusion Experimental Reactor) and R-project is now under way as the new step of JT-60. From the engineering viewpoint, these reactors, requiring D-T operation, have the challenge, such as the handling of tritium and components irradiated by neutron bombardment. Toshiba's design team is participating to these projects in order to realize the reactor and plant concept coping with the above objectives. This paper represents the conceptual design contributions of the FER and R-project as well as R D technology which are now under development, such as tritium handling app aratus, reactor materials, etc. (author)

  19. Tokamak Fusion Test Reactor D-T results

    International Nuclear Information System (INIS)

    Meade, D.M.

    1995-01-01

    Temperatures, densities and confinement of deuterium plasmas confined in tokamaks have been achieved within the last decade that are approaching those required for a D-T reactor. As a result, the unique phenomena present in a D-T reactor plasma (D-T plasma confinement, α confinement, α heating and possible α-driven instabilities) can now be studied in the laboratory. Recent experiments on the Tokamak Fusion Test Reactor (TFTR) have been the first magnetic fusion experiments to study plasmas with reactor fuel concentrations of tritium. The injection of about 20MW of tritium and 14MW of deuterium neutral beams into the TFTR produced a plasma with a T-to-D density ratio of about 1 and yielding a maximum fusion power of about 9.2MW. The fusion power density in the core of the plasma was about 1.8MWm -3 , approximating that expected in a D-T fusion reactor. A TFTR plasma with a T-to-D density ratio of about 1 was found to have about 20% higher energy confinement time than a comparable D plasma, indicating a confinement scaling with average ion mass A of τ E ∝A 0.6 . The core ion temperature increased from 30 to 37keV owing to a 35% improvement of ion thermal conductivity. Using the electron thermal conductivity from a comparable deuterium plasma, about 50% of the electron temperature increase from 9 to 10.6keV can be attributed to electron heating by the α particles. The approximately 5% loss of α particles, as observed on detectors near the bottom edge of the plasma, was consistent with classical first orbit loss without anomalous effects. Initial measurements have been made of the confined high energy α particles and the resultant α ash density. At fusion power levels of 7.5MW, fluctuations at the toroidal Alfven eigen-mode frequency were observed by the fluctuation diagnostics. However, no additional α loss due to the fluctuations was observed. (orig.)

  20. 3D simulation of CANDU reactor regulating system

    International Nuclear Information System (INIS)

    Venescu, B.; Zevedei, D.; Jurian, M.

    2013-01-01

    Present paper shows the evaluation of the performance of the 3-D modal synthesis based reactor kinetic model in a closed-loop environment in a MATLAB/SIMULINK based Reactor Regulating System (RRS) simulation platform. A notable advantage of the 3-D model is the level of details that it can reveal as compared to the coupled point kinetic model. Using the developed RRS simulation platform, the reactor internal behaviours can be revealed during load-following tests. The test results are also benchmarked against measurements from an existing (CANDU) power plant. It can be concluded that the 3-D reactor model produces more realistic view of the core neutron flux distribution, which is closer to the real plant measurements than that from a coupled point kinetic model. It is also shown that, through a vectorization process, the computational load of the 3-D model is comparable with that of the 14-zone coupled point kinetic model. Furthermore, the developed Graphical User Interface (GUI) software package for RRS implementation represents a user friendly and independent application environment for education training and industrial utilizations. (authors)

  1. Application of MCNPX 2.7.D for reactor core management at the research reactor BR2

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, Edgar

    2011-01-01

    The paper discusses application of the Monte Carlo burn up code MCNPX 2.7.D for whole core criticality and depletion analysis of the Material Testing Research Reactor BR2 at SCK-CEN in Mol, Belgium. Two different approaches in the use of MCNPX 2.7.D are presented. The first methodology couples the evolution of fuel depletion, evaluated by MCNPX 2.7.D in an infinite lattice with a steady-state 3-D power distribution in the full core model. The second method represents fully automatic whole core depletion and criticality calculations in the detailed 3-D heterogeneous geometry model of the BR2 reactor. The accuracy of the method and computational time as function of the number of used unique burn up materials in the model are being studied. The depletion capabilities of MCNPX 2.7.D are compared vs. the developed at the BR2 reactor department MCNPX & ORIGEN-S combined method. Testing of MCNPX 2.7.D on the criticality measurements at the BR2 reactor is presented. (author)

  2. Leituras e ações na Encontros Bibli

    Directory of Open Access Journals (Sweden)

    Ursula Blattmann

    2010-05-01

    Full Text Available Em cada edição publicada merece o destaque a participação de autores, avaliadores e demais colegas. É um momento que deve ser festejado, pois são etapas nas quais a perseverança, a vontade de fazer e a pontualidade estão presentes.Das leituras dos originais à tomada de decisão pelo aceite ou não, se efetua por tantas mãos e se torna uma rotina, por vezes grata, outras, ingrata. Os afazeres e ações na nossa rotina interna da Encontros Bibli provém desta força maior que nos anima a cada edição publicada. E compartilhamos a todos os leitores a satisfação de apresentar a edição do volume 15, número 29 com 10 (dez artigos e um dossiê referente ao Encontro sobre Repositórios de Objetos Virtuais, realizado em novembro de 2009 em Florianópolis.Os artigos são de 17 colegas que atuam em sete universidades, sendo cinco brasileiras; uma argentina; uma espanhola; do Instituto Federal de Educação, Ciência e Tecnologia de Paraíba e do Instituto Brasileiro de Informação, Ciência e Tecnologia. Expressamos nossa admiração aos pesquisadores que se dedicam ao ensino e a pesquisa de nossa área do conhecimento e conseguem criar espaços para escrever e publicar, contribuindo com suas reflexões e análises para o crescimento da Ciência da Informação.Os textos tramitaram nos fluxos do processo editorial desde o início de 2009 e agora tornam-se disponíveis aos leitores: O campo da ciência da informação e o patrimônio cultural: reflexões iniciais para novas discussões sobre os limites da área, de Willian Eduardo Righini de Souza e Giulia Crippa.A infra-estrutura em informação científica e em Ciência da Informação na antiga União Soviética (1917-1991, escrita por Roberto Lopes dos Santos Júnior e Lena Vânia Ribeiro Pinheiro.O profissional bibliotecário como gestor de pessoas, na visão de Adilson Luiz Pinto e de José Antonio Moreiro González.Fluxos informacionais para o monitoramento da Convenção dos

  3. The German reactor safety study

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1980-01-01

    The most important results of the German risk study of a nuclear power plant equipped with a pressurized water reactor were published in August 1979. The main volume of the study with the approach used and the results elaborated has been available for reference since late 1979. Eight technical volumes contain detailed descriptions and documentations of the investigations carried out. The reference facility used as a basis for the technical plant studies was unit B of the Biblis Nuclear Power Station, a KWU PWR of 3750 MW thermal power. This contribution provides more detailed explanations of the methods and the results of the risk study illustrated by examples. The description refers to accident categories and categories of radioactivity releases, probabilities of specific sequences of accident events, and the damage associated with core meltdown accidents as a function of various types of failure. For purposes of evaluation and application of the results the limits in the basic assumptions of the study are referred to. (orig./HP) [de

  4. New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny [Ecole Polytechnique Federale de Lausanne (Switzerland); Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany); Fridman, Emil; Bilodid, Yuri; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany)

    2017-07-15

    The reactor dynamics code DYN3D being developed at the Helmholtz-Zentrum Dresden-Rossendorf is currently under extension for Sodium cooled Fast Reactor analyses. This paper provides an overview on the new version of DYN3D to be used for SFR core calculations. The current article shortly describes the newly implemented thermal mechanical models, which can account for thermal expansion effects of the reactor core. Furthermore, the methodology used in Sodium cooled Fast Reactor analyses to generate homogenized few-group cross sections is summarized. The conducted and planned verification and validation studies are briefly presented. Related publications containing more detailed descriptions are outlined for the completeness of this overview.

  5. Determination of sodium and organic substances for quality control in the full-desalination plant of the Biblis nuclear power plant

    International Nuclear Information System (INIS)

    Brunner, R.E.; Doerr, A.

    1977-01-01

    After four years of operation of the make up water treatment plant of nuclear POWER STATION BIBLIS an examination was made concerning the total through put, the eluation of ions and organic matters, and further concerning the efficiency of a special regeneration technique for the counter current regenerated ion exchange beds. In order to determine the efficiency of the applied regeneration methods analisis were carried out on a great number of water samples for sodium, chloride, COD and humic acids as well. A comparison was made between the anialytical determination of Sodium with an automatic analyser and the method used in the laboratory by means of flame photometry respectively ion potential measurement. (orig.) [de

  6. STRATEG - an incident training system for thermohydraulic effects and principles

    International Nuclear Information System (INIS)

    Rehn, H.; Majohr, N.

    1993-01-01

    STRATEG is a 1:10 scale glass model of a PWR (Biblis B reactor coolant circuit) built by RWE in 1986 on the site of the Biblis plant as a training model. The model can be used for training of normal operation and incident situations since all important operating and incident sequences of a PWR can be simulated. Thermodynamic phenomena can also be demonstrated occurring under various operating situations and in particular associated with malfunctions. (Z.S.) 1 tab., 3 figs., 1 ref

  7. Recursos tecnológicos e informacionais ativos na Encontros Bibli

    Directory of Open Access Journals (Sweden)

    Araci Isaltina de Andrade Hillesheim

    2010-10-01

    Full Text Available As tecnologias da informação e comunicação permeiam o nosso processo de editoração científica. Entre os dias 14 e 16 de julho de 2010, realizou-se, em Florianópolis, no Auditório da Reitoria da Universidade Federal de Santa Catarina, o I Encontro Nacional de Usuários do SEER (a programação, vídeos e relatos estão disponíveis no site http://euseer.ibict.br/index.php/euseer1/euseer1. Foi uma satisfação receber e encontrar colegas editores, avaliadores, autores, bolsistas, leitores e principalmente nossos mestres no uso da Plataforma Open Journal Systems (http://pkp.sfu.ca/?q=ojs – ou melhor, toda a equipe do IBICT responsável pelos estudos, customização, desenvolvimento e disseminação da edição em português, resultando na adoção desse Sistema Eletrônico de Editoração de Revistas – SEER, utilizado por mais de 800 revistas científicas somente no Brasil (conforme registrado no Portal SEER - http://seer.ibict.br/.Acompanhar a evolução das ferramentas tecnológicas, aplicar os recursos de novas versões e a troca de conhecimentos tornam-se uma experiência enriquecedora nos processos de aprender-saber-fazer. Em julho desse ano, a administração do Portal Periódicos UFSC (http://www.periodicos.ufsc.br/ migrou a plataforma para a nova versão e novas funcionalidades foram ativadas pelos editores gerentes das revistas.A Encontros Bibli ativou algumas ferramentas, entre as quais, disponibilizar os acessos estatísticos dos arquivos publicados dos autores. Isto é, o autor que tem um artigo publicado em nossa revista poderá consultar, no seu perfil, os dados referentes aos respectivos acessos de cada artigo. Paralelamente, com a nova versão, houve mudanças no autoarquivamento, isto é, quando o autor submete um arquivo na plataforma, pode preencher os metadados com maior facilidade, pois estão disponibilizadas as abas nos idiomas português e inglês. Gradativamente, os metadados ganham maior destaque no tratamento

  8. 3D computer visualization and animation of CANDU reactor core

    International Nuclear Information System (INIS)

    Qian, T.; Echlin, M.; Tonner, P.; Sur, B.

    1999-01-01

    Three-dimensional (3D) computer visualization and animation models of typical CANDU reactor cores (Darlington, Point Lepreau) have been developed using world-wide-web (WWW) browser based tools: JavaScript, hyper-text-markup language (HTML) and virtual reality modeling language (VRML). The 3D models provide three-dimensional views of internal control and monitoring structures in the reactor core, such as fuel channels, flux detectors, liquid zone controllers, zone boundaries, shutoff rods, poison injection tubes, ion chambers. Animations have been developed based on real in-core flux detector responses and rod position data from reactor shutdown. The animations show flux changing inside the reactor core with the drop of shutoff rods and/or the injection of liquid poison. The 3D models also provide hypertext links to documents giving specifications and historical data for particular components. Data in HTML format (or other format such as PDF, etc.) can be shown in text, tables, plots, drawings, etc., and further links to other sources of data can also be embedded. This paper summarizes the use of these WWW browser based tools, and describes the resulting 3D reactor core static and dynamic models. Potential applications of the models are discussed. (author)

  9. Rupture tests with reactor pressure vessel head models

    International Nuclear Information System (INIS)

    Talja, H.; Keinaenen, H.; Hosio, E.; Pankakoski, P.H.; Rahka, K.

    2003-01-01

    In the LISSAC project (LImit Strains in Severe ACcidents), partly funded by the EC Nuclear Fission and Safety Programme within the 5th Framework programme, an extensive experimental and computational research programme is conducted to study the stress state and size dependence of ultimate failure strains. The results are aimed especially to make the assessment of severe accident cases more realistic. For the experiments in the LISSAC project a block of material of the German Biblis C reactor pressure vessel was available. As part of the project, eight reactor pressure vessel head models from this material (22 NiMoCr 3 7) were tested up to rupture at VTT. The specimens were provided by Forschungszentrum Karlsruhe (FzK). These tests were performed under quasistatic pressure load at room temperature. Two specimens sizes were tested and in half of the tests the specimens contain holes describing the control rod penetrations of an actual reactor pressure vessel head. These specimens were equipped with an aluminium liner. All six tests with the smaller specimen size were conducted successfully. In the test with the large specimen with holes, the behaviour of the aluminium liner material proved to differ from those of the smaller ones. As a consequence the experiment ended at the failure of the liner. The specimen without holes yielded results that were in very good agreement with those from the small specimens. (author)

  10. Carta do Editor de Encontros Bibli 10.5007/1518-2924.2008v13nesp1pi

    Directory of Open Access Journals (Sweden)

    Francisco das Chagas de Souza

    2008-01-01

    dessas medições têm assegurado que sejam escolhidos os países ou localidades que, ao receberem investimentos financeiros, permitam aos proprietários desses extrair o máximo de riqueza, indiferentes das ruínas que possam produzir sobre as populações locais. Esta edição especial monográfica de Encontros Bibli, organizada a quatro mãos por Nair Kobashi, da USP e Raimundo Nonato Macedo dos Santos, da UFSC, consegue reunir o que de melhor se pode refletir, hoje, sobre o tema Métricas da Informação. Nos oito textos apresentados há uma visão larga dos vários ângulos com que o tema é tratado, tanto no Brasil quanto no exterior. A qualidade das contribuições, seguramente dá, aos leitores de Encontros Bibli, um fascículo a ser utilizado como um instrumento indispensável para a compreensão do tema. Mais uma vez, desejamos a toda a audiência de Encontros Bibli, uma excelente leitura e discussão de temática tão atual no cenário da Ciência da Informação e Biblioteconomia, agradecendo o empenho dos organizadores em mobilizar os autores, e sobretudo a estes, por sua dedicação e vontade de socializar o conhecimento que vêm produzindo em suas investigações. Prof. Francisco das Chagas de Souza – Editor chagas@cin.ufsc.br ou bibli@cin.ufsc.br Departamento de Ciência da Informação Programa de Pós-Graduação em Ciência da Informação Universidade Federal de Santa Catarina Brasil Florianópolis, Ilha de Santa Catarina, março de 2008.

  11. Tritium-management requirements for D-T fusion reactors (ETF, INTOR, FED)

    International Nuclear Information System (INIS)

    Finn, P.A.; Clemmer, R.G.; Misra, B.

    1981-10-01

    The successful operation of D-T fusion reactors will depend on the development of safe and reliable tritium-containment and fuel-recycle systems. The tritium handling requirements for D-T reactors were analyzed. The reactor facility was then designed from the viewpoint of tritium management. Recovery scenarios after a tritium release were generated to show the relative importance of various scenarios. A fusion-reactor tritium facility was designed which would be appropriate for all types of plants from the Engineering Test Facility (ETF), the International Tokamak Reactor (INTOR), and the Fusion Engineering Device (FED) to the full-scale power plant epitomized by the STARFIRE design

  12. Conclusions drawn of tritium balance in light water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1978-01-01

    In the tritium balance of pressurized water reactors, using boric acid and lithium in the cooling water, contribution of the tritium produced by fission, diffusing through the zircalloy of the fuel cladding estimated to 0.1%, was not in agreement with quantities measured in reactors. It is still difficult to estimate what percentage is represented by the tritium formed by fission in the fuel, owing to diffusion through cladding. The tritium balance in different working nuclear power stations is consequently of interest. The tritium balance method in the water of the cooling circuit of PWR is fast and experimentally simple. It is less sensitive to errors originating from fission yields than balance of tritium produced by fission in the fuel. A tritium balance in the water of the cooling circuit of Biblis-A, with a specific burn-up of 18000 MWd/t gives a better precision. Diffusion rate of tritium produced by fission was less than 0.2%. So low a contribution is a justification to the use of lithium with an isotopic purity of 99.9% of lithium 7 to limit at a low value the residual lithium 6 [fr

  13. The molten salt reactor: R and D status and perspectives in Europe

    International Nuclear Information System (INIS)

    Renault, Claude; Delpech, Sylvie; Merle-Lucotte, Elsa; Konings, Rudy; Hron, Miloslav; Ignatiev, Victor

    2010-01-01

    The paper concentrates on molten salt fast reactor (MSFR) concepts which are receiving most attention in the EU context. It shows the main R and D achievements and some remaining issues to be addressed in such essential areas as (a) reactor conceptual design, (b) molten salt properties, (c) fuel salt clean-up scheme and (d) high temperature materials. The status and perspectives of molten salt reactor R and D efforts in Europe are then discussed

  14. Lead-based Fast Reactor Development Plan and R&D Status in China

    International Nuclear Information System (INIS)

    Wu Yican

    2013-01-01

    • Lead-based fast reactors have good potential for waste transmutation, fuel breeding and energy production, which has been selected by CAS as the advanced reactor development emphasis with the support of ADS program and MFE program. Sharing of technologies R&D is possible among GIF/ADS/Fusion. • The concepts and test strategy of series China lead-based fast reactors (CLEAR) have been developed. The preliminary engineering design and safety analysis of CLEAR-I are underway. • Technology R&D on CLEAR with series lead alloy loops and accelerator-based neutron generator have been constructed or under construction. • CLEAR series reactor design and construction have big challenges, widely international cooperation on reactor design and technology R&D is welcome

  15. Safety in the ARIES-III D-3He tokamak reactor design

    International Nuclear Information System (INIS)

    Herring, J.S.; Dolan, T.J.

    1992-01-01

    This paper reports on the ARIES-III reactor study, an extensive examination of the viability of a D- 3 He-fueled commercial tokamak powder reactor. Because neutrons are produced only through side reactions (D+D- 3 HE+N; and D+D-T+p followed by D+T- 4 He+n), the reactor has the significant advantages of reduced activation of the first wall and shield, low afterheat and Class A or C low level waste disposal. Since no tritium is required for operation, no lithium-containing breeding blanket is necessary. A ferritic steel shield behind the first wall protects the magnets from gamma and neutron heating and from radiation damage. The authors explored the potential for isotopically tailoring the 4 mm tungsten layer on the divertor in order to reduce the offsite doses should a tungsten aerosol be released from the reactor after an accident. The authors also modeled a loss-of-cooling accident (LOCA) in which the organic coolant was burning in order to estimate the amount of radionuclides released from the first wall. Because the maximum temperature is low, degree C, release fractions are small. The authors analyzed the disposition of the 20 g/day of tritium that is produced by D-D reactions and removed by the vacuum pumps

  16. 3D CAD model of the subcritical nuclear reactor of IPN

    International Nuclear Information System (INIS)

    Pahuamba V, F. de J.; Delfin L, A.; Gomez T, A.; Ibarra R, G.; Del Valle G, E.; Sanchez R, A.

    2016-09-01

    The three-dimensional (3D) CAD model of the subcritical reactor Chicago model 9000 of Instituto Politecnico Nacional (IPN) allows obtaining a 3D view with the dimensions of each of its components, such as: natural uranium cylindrical rods, fuel elements, hexagonal reactor core arrangement, cylindrical stainless steel tank containing the core, fuel element support grids and reactor water cleaning system. As a starting point for the development of the model, the Chicago model 9000 subcritical reactor manual provided by the manufacturer was used, the measurement and verification of the components to adapt the geometric, physical and mechanical characteristics was carried out and materials standards were used to obtain a design that allows to elaborate a new manual according to the specifications. In addition, the 3D models of the building of the Advanced Physics Laboratory, neutron generator, cobalt source and the corridors connecting to the subcritical reactor facility were developed, allowing an animated ride, developed by computer-aided design software. The manual provided by the company Nuclear Chicago, dates from the year 1959 and presents diverse deviations in the design and dimensions of the reactor components. The model developed; in addition to supporting the development of the new manual represents a learning tool to visualize the reactor components. (Author)

  17. Comparison and analysis of 1D/2D/3D neutronics modeling for a fusion reactor

    International Nuclear Information System (INIS)

    Li, J.; Zeng, Q.; Chen, M.; Jiang, J.; Wu, Y.

    2007-01-01

    During the course of analyzing the characteristics for fusion reactors, the refined calculations are needed to confirm that the nuclear design requirements are met. Since the long computational time is consumed, the refined three-dimensional (3D) representation has been used primarily for establishing the baseline reference values, analyzing problems which cannot be reduced by symmetry considerations to lower dimensions, or where a high level of accuracy is desired locally. The two-dimensional (2D) or one-dimensional (1D) description leads itself readily to resolve many problems, such as the studies for the material fraction optimization, or for the blanket size optimization. The purpose of this paper is to find out the differences among different geometric descriptions, which can guide the way to approximate and simplify the computational model. The fusion power reactor named FDS-II was designed as an advanced fusion power reactor to demonstrate and validate the commercialization of fusion power by Institute of Plasma Physics, Chinese Academy of Science. In this contribution, the dual-cooled lithium lead (DLL) blanket of FDS-II was used as a reference for neutronics comparisons and analyses. The geometric descriptions include 1D concentric sphere model, 1D, 2D and 3D cylinder models. The home-developed multi-functional neutronics analysis code system VisualBUS, the Monte Carlo transport code MCNP and nuclear data library HENDL have been used for these analyses. The neutron wall loading distribution, tritium breeding ratio (TBR) and nuclear heat were calculated to evaluate the nuclear performance. The 3D calculation has been used as a comparison reference because it has the least errors in the treatment of geometry. It is suggested that the value of TBR calculated by the 1D approach should be greater than 1.3 to satisfy the practical need of tritium self-sufficiency. The distribution of nuclear heat based on the 2D and 3D models were similar since they all consider

  18. Development Plan and R and D Status of China Lead-based Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yican; Bai, Yunqing; Song, Yong; Li, Yazhou; Team, FDS [Institute of Nuclear Energy Safety Technology, Beijing (Switzerland)

    2013-07-01

    Chinese Academy of Sciences (CAS) launched an engineering project to develop ADS system and lead-based reactors named China LEAd-based Reactor (CLEAR) series. The Institute of Nuclear Energy Safety Technology (INEST) will be responsible for the CLEAR design and R and D. In this project, CAS plans to develop the lead-based reactors through 3 phases which are 10MWth lead based research reactor (CLEAR-I), 100MWth lead-based experimental reactor (CLEAR-II), 1000MWth lead-based demonstration reactor (CLEAR-III). As a pre-testing facility, a lead-based zero-power reactor (CLEAR-0) is required to be built before CLEAR-I construction and operation. The new conceptual design of lead-based reactors, including hydrogen production, tritium production for fusion energy and thorium utilization, is also on-going. Lead-lithium cooled fusion reactor blanket design and lead-lithium experimental loops have been developed more than 10 years. CLEAR series reactor conceptual design has been finished and detailed engineering design for CLEAR-I is underway. The R and D activities for CLEAR reactor including design and safety software, key components, structural materials, lead-based experimental loops and neutronics experimental platform are developing. Series of liquid lead-based experimental loops named DRAGON (Lead-Lithium) and KYLIN (Lead-Bismuth) have already been built or on constructing to performed experiments investigating the structure material corrosion issues and the thermal-hydraulic properties of lead-based coolant. The Highly Intensified D-T Neutron Generator HINEG for neutron experiment and software validation will be constructed. Series advanced reactor design software and nuclear library have been developed for lead-alloy cooled reactor, including CAD based Multi-Functional 4D Neutronics Simulation System (Visual Bus), Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM), Super Monte Carlo Simulation Program (SuperMC), Nuclear Radiation

  19. Development Plan and R and D Status of China Lead-based Reactor

    International Nuclear Information System (INIS)

    Wu, Yican; Bai, Yunqing; Song, Yong; Li, Yazhou; Team, FDS

    2013-01-01

    Chinese Academy of Sciences (CAS) launched an engineering project to develop ADS system and lead-based reactors named China LEAd-based Reactor (CLEAR) series. The Institute of Nuclear Energy Safety Technology (INEST) will be responsible for the CLEAR design and R and D. In this project, CAS plans to develop the lead-based reactors through 3 phases which are 10MWth lead based research reactor (CLEAR-I), 100MWth lead-based experimental reactor (CLEAR-II), 1000MWth lead-based demonstration reactor (CLEAR-III). As a pre-testing facility, a lead-based zero-power reactor (CLEAR-0) is required to be built before CLEAR-I construction and operation. The new conceptual design of lead-based reactors, including hydrogen production, tritium production for fusion energy and thorium utilization, is also on-going. Lead-lithium cooled fusion reactor blanket design and lead-lithium experimental loops have been developed more than 10 years. CLEAR series reactor conceptual design has been finished and detailed engineering design for CLEAR-I is underway. The R and D activities for CLEAR reactor including design and safety software, key components, structural materials, lead-based experimental loops and neutronics experimental platform are developing. Series of liquid lead-based experimental loops named DRAGON (Lead-Lithium) and KYLIN (Lead-Bismuth) have already been built or on constructing to performed experiments investigating the structure material corrosion issues and the thermal-hydraulic properties of lead-based coolant. The Highly Intensified D-T Neutron Generator HINEG for neutron experiment and software validation will be constructed. Series advanced reactor design software and nuclear library have been developed for lead-alloy cooled reactor, including CAD based Multi-Functional 4D Neutronics Simulation System (Visual Bus), Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM), Super Monte Carlo Simulation Program (SuperMC), Nuclear Radiation

  20. Modelling of MOCVD Reactor: New 3D Approach

    Science.gov (United States)

    Raj, E.; Lisik, Z.; Niedzielski, P.; Ruta, L.; Turczynski, M.; Wang, X.; Waag, A.

    2014-04-01

    The paper presents comparison of two different 3D models of vertical, rotating disc MOCVD reactor used for 3D GaN structure growth. The first one is based on the reactor symmetry, while the second, novel one incorporates only single line of showerhead nozzles. It is shown that both of them can be applied interchangeably regarding the phenomena taking place within the processing area. Moreover, the importance of boundary conditions regarding proper modelling of showerhead cooling and the significance of thermal radiation on temperature field within the modelled structure are presented and analysed. The last phenomenon is erroneously neglected in most of the hitherto studies.

  1. Modelling of MOCVD reactor: new 3D approach

    International Nuclear Information System (INIS)

    Raj, E; Lisik, Z; Niedzielski, P; Ruta, L; Turczynski, M; Wang, X; Waag, A

    2014-01-01

    The paper presents comparison of two different 3D models of vertical, rotating disc MOCVD reactor used for 3D GaN structure growth. The first one is based on the reactor symmetry, while the second, novel one incorporates only single line of showerhead nozzles. It is shown that both of them can be applied interchangeably regarding the phenomena taking place within the processing area. Moreover, the importance of boundary conditions regarding proper modelling of showerhead cooling and the significance of thermal radiation on temperature field within the modelled structure are presented and analysed. The last phenomenon is erroneously neglected in most of the hitherto studies.

  2. R and D directions for the development of CANDU reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1998-01-01

    Full text: AECL is carrying out a comprehensive R and D programme to advance all aspects of CANDU reactor technology. These programs are focusing on three main strategic directions: improved economics, enhanced safety, and fuel cycle flexibility. R and D areas include fuel cycle development, heavy water technology, fuel channel development, safety technology, control and instrumentation, reactor chemistry, systems and components, and health and environment. In each case, the R and D programs have short, medium, and long-term goals to achieve the overall strategic directions. Most of the programs seek to further develop and exploit some of the unique characteristics of pressurized heavy water reactors. Examples of this include high neutron economy and on-power fueling which allow several different fuel cycles, the presence of large water heat sinks for enhanced safety, and modular components that can be easily replaced for plant life extension. This presentation reviews AECL's product development directions and the R and D programs that have been begun for their development

  3. Characteristics of D(-3)He fueled FRC reactor: ARTEMIS-L

    Science.gov (United States)

    Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Onozuka, M.; Ohnishi, M.; Uenosono, C.

    1993-11-01

    The characteristics of D(-3)He fueled commercial fusion reactor ARTEMIS-L are discussed. By using favorable characteristics of a field-reversed configuration, the fusion plasma of ARTEMIS-L becomes compact and its veta-value is extremely high. Consequently, it is possible to construct an economical fusion power plant based on this concept. The life of the structural materials is found during the full reactor life (30 years) and the safety of the reactor is intrinsic to D(-3)He fuels. The amount of disposed materials is rather small and the level of the intruder dose is so low that the plant appears to be acceptable in regards to the environment.

  4. D-3He fueled FRC reactor 'ARTEMIS-L'

    International Nuclear Information System (INIS)

    Momota, Hiromu; Tomita, Yukihiro; Ishida, Akio; Kohzaki, Yasuji; Nakao, Yasuyuki; Nishikawa, Masabumi; Ohi, Shoichi; Ohnishi, Masami.

    1992-09-01

    A neutron-lean D- 3 He fueled field reversed configuration (FRC) fusion reactor is studied on the bases of former high-efficiency ARTEMIS design. Certain improvements such as effective axial contracting plasma heating and cusp-type direct energy converters as well as an empirical scale of the energy confinement are introduced. The resultant total neutron load onto the first wall of the plasma chamber is as low as 0.1 MW/m 2 , which enable the life of the first wall or the structural materials to be longer than the whole life of the reactor. The attractive characteristics of the neutron-lean reactor follow in the ARTEMIS design: it is socially acceptable in views of radioactivity and fuel resources, and the cost of electricity appears to be cheap compared with that from a light water reactor. Critical physics and engineering issues for performing the ARTEMIS-L reactor are clarified. (author)

  5. Robotic dismantlement systems at the CP-5 reactor D and D project

    International Nuclear Information System (INIS)

    Seifert, L. S.

    1998-01-01

    The Chicago Pile 5 (CP-5) Research Reactor Facility is currently undergoing decontamination and decommissioning (D and D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principle nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water cooled and moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D and D project includes the disassembly, segmentation and removal of all the radioactive components, equipment and structures associated with the CP-5 facility. The Department of Energy's Robotics Technology Development Program and the Federal Energy Technology Center, Morgantown Office provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor assembly for tasks requiring remote dismantlement as part of the EM-50 Large-Scale Demonstration Program (LSDP). The teleoperated systems provided were the Dual Arm Work Platform (DAWP), the Rosie Mobile Teleoperated Robot Work System (ROSIE), and a remotely-operated crane control system with installed swing-reduction control system. Another remotely operated apparatus, a Brokk BM250, was loaned to ANL by the Princeton Plasma Physics Laboratory (PPPL). This machine is not teleoperated and was not part of the LSDP, but deserves some mention in this discussion. The DAWP is a robotic dismantlement system that includes a pair of Schilling Robotic Systems Titan III hydraulic manipulator arms mounted to a specially designed support platform: a hydraulic power unit (HPU) and a remote operator console. The DAWP is designed to be crane-suspended for remote positioning. ROSIE, developed by RedZone Robotics, Inc. is a mobile, electro-hydraulic, omnidirectional platform with a heavy-duty telescoping boom mounted to the platform's deck. The work system includes the mobile platform (locomotor), a power distribution unit (PDU) and a remote operator console. ROSIE moves about the reactor building

  6. Development of 3D CFD simulation method in nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mariah Adam

    2012-01-01

    One of the most prevailing issues in the operation of nuclear reactor is the safety of the system. Worldwide publicity on a few nuclear accidents as well as the notorious Hiroshima and Nagasaki bombing have always brought about public fear on anything related to nuclear. Most findings on the nuclear reactor accidents are closely related to the reactor cooling system. Thus, the understanding of the behaviour of reactor cooling system is very important to ensure the development and improvement on safety can be continuously done. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last three decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. This paper discusses the development of 3D CFD usage in nuclear reactor safety analysis worldwide. A brief review on the usage of CFD at Malaysia's Reactor TRIGA PUSPATI is also presented. (author)

  7. Comparison of 2D and 3D Neutron Transport Analyses on Yonggwang Unit 3 Reactor

    International Nuclear Information System (INIS)

    Maeng, Aoung Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou; Yoo, Choon Sung

    2012-01-01

    10 CFR Part 50 Appendix H requires periodical surveillance program in the reactor vessel (RV) belt line region of light water nuclear power plant to check vessel integrity resulting from the exposure to neutron irradiation and thermal environment. Exact exposure analysis of the neutron fluence based on right modeling and simulations is the most important in the evaluation. Traditional 2 dimensional (D) and 1D synthesis methodologies have been widely applied to evaluate the fast neutron (E > 1.0 MeV) fluence exposure to RV. However, 2D and 1D methodologies have not provided accurate fast neutron fluence evaluation at elevations far above or below the active core region. RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries) program for 3D geometries calculation was therefore developed both by Westinghouse Electronic Company, USA and Korea Reactor Integrity Surveillance Technology (KRIST) for the analysis of In-Vessel Surveillance Test and Ex-Vessel Neutron Dosimetry (EVND). Especially EVND which is installed at active core height between biological shielding material and concrete also evaluates axial neutron fluence by placing three dosimetries each at Top, Middle and Bottom part of the angle representing maximum neutron fluence. The EVND programs have been applied to the Korea Nuclear Plants. The objective of this study is therefore to compare the 3D and the 2D Neutron Transport Calculations and Analyses on the Yonggwang unit 3 Reactor as an example

  8. Characteristics of D-3He fueled frc reactor: ARTEMIS-L

    International Nuclear Information System (INIS)

    Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Onozuka, M.; Ohnishi, M.; Uenosono, C.

    1993-11-01

    The paper introduces briefly the scenario and discuss the attractive characteristics of D-3He fueled commercial fusion reactor ARTEMIS-L. By using favorable characteristics of a field-reversed configuration, the fusion plasma of ARTEMIS-L is compact and its beta-value is extremely high. One find consequently a possibility of constructing an economical fusion power power plant on this prospect. The life of the structural materials is sound during the full reactor life (30 years) and the safety of the reactor is intrinsic to D-3He fuels. The amount of disposed materials is rather small and the level of these intruder dose is so low that the plant appears to be acceptable in view of the environment. (author)

  9. Investigation reactor D-2201 polypropylene production unit using nuclear technique

    International Nuclear Information System (INIS)

    Wibisono; Sugiharto; Jefri Simanjuntak

    2016-01-01

    D-2201 reactor is a unit in the polypropylene production process at Pertamina Refinery Unit III Plaju. Reactor with a capacity of 45 kilo liter is not operated in normal operation condition. The validity of liquid level indicator on the unit is doubtful when refers to the production quality. Gamma source of 150 mCi Cobalt-60 and a scintillation detector had been used to scan the outer wall of the reactor to detect the liquid level during operation with a capacity of 40 %. Measurements were made along the reactor walls with 25 mm scan resolution and 5 seconds time sampling. Experiment result shows that the liquid level at the position of 40 % and at normal level position are not observed. Investigation did not find the liquid level above normal. D-2201 is diagnose not normal operating condition diagnosed with liquid abundant passed the recommended limits. Investigation advised to repair or to calibrate the liquid level indicator which is currently installed. (author)

  10. In-reactor creep rupture behavior of the D9 alloys

    International Nuclear Information System (INIS)

    Puigh, R.J.; Hamilton, M.L.

    1986-06-01

    The uncertainties in the in-reactor stress rupture data have been significantly reduced with the acquisition of the Materials Open Test Assembly (MOTA) for testing of materials in the Fast Flux Test Facility (FFTF). The temperature uncertainty associated with irradiation in this vehicle is +- 5 0 C. Moreover, through the use of tag gases and an on-line cover gas monitoring system, on-line detection of specimen ruptures is possible during irradiation, thereby significantly reducing the uncertainty associated with the rupture times. Titanium additions, increases in nickel content and decreases in chromium content, which were made to improve the swelling response of 316 SS, resulted in an alloy class referred to as ''D9''. In-reactor stress rupture data from the MOTA experiment have been reported on two conditions of the D9-type alloys for exposure times corresponding to 2,400 hours at irradiation temperatures of 575, 605, 670, and 750 0 C. For these conditions the in-reactor rupture times were similar to those observed in thermal control tests. This report will describe both the in-reactor stress rupture behavior and the thermal control data for 20% cold work (CW) 316 SS and for 10 and 20% CW D9-type alloy over a similar temperature range for in-reactor exposure times corresponding to 13170 hr. and peak fast fluences corresponding to 17 x 10 22 n/cm 2 (E > 0.1 MeV)

  11. Sandia reactor kinetics codes: SAK and PK1D

    International Nuclear Information System (INIS)

    Pickard, P.S.; Odom, J.P.

    1978-01-01

    The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time

  12. Fast reactor cycle calculation routine using a 3D-simulator and investigation of new burnup stategies for pressurized water reactors

    International Nuclear Information System (INIS)

    Li Yulun.

    1987-03-01

    Three-dimensional calculations of the longtime behaviour of PWR can be done in short computing times with satisfactory accuracy for power and burn-up distributions. This has been proved by comparison with operational data of Biblis-B. Various possibilities are investigated to increase the discharge burn-up and to improve the utilization of uranium. In view of the increase of discharge burn-up due to enhanced cycle number (decreased batch size) and decreased neutron leakage these new strategies are intensively studied in the conventional fuel management scheme (Out-in) and in the low leakage fuel management scheme (In-Out). By a conventional fuel management scheme with four cycle operation and a low leakage fuel management scheme with three cycle operation an attractive increase of discharge burn-up to about 40% can be achieved by an increase in the reload enrichment to 4%. (orig.) [de

  13. Extension of the reactor dynamics code MGT-3D for pebblebed and blocktype high-temperature-reactors

    International Nuclear Information System (INIS)

    Shi, Dunfu

    2015-01-01

    The High Temperature Gas cooled Reactor (HTGR) is an improved, gas cooled nuclear reactor. It was chosen as one of the candidates of generation IV nuclear plants [1]. The reactor can be shut down automatically because of the negative reactivity feedback due to the temperature's increasing in designed accidents. It is graphite moderated and Helium cooled. The residual heat can be transferred out of the reactor core by inactive ways as conduction, convection, and thermal radiation during the accident. In such a way, a fuel temperature does not go beyond a limit at which major fission product release begins. In this thesis, the coupled neutronics and fluid mechanics code MGT-3D used for the steady state and time-dependent simulation of HTGRs, is enhanced and validated [2]. The fluid mechanics part is validated by SANA experiments in steady state cases as well as transient cases. The fuel temperature calculation is optimized by solving the heat conduction equation of the coated particles. It is applied in the steady state and transient simulation of PBMR, and the results are compared to the simulation with the old overheating model. New approaches to calculate the temperature profile of the fuel element of block-type HTGRs, and the calculation of the homogeneous conductivity of composite materials are introduced. With these new developments, MGT-3D is able to simulate block-type HTGRs as well. This extended MGT-3D is used to simulate a cuboid ceramic block heating experiment in the NACOK-II facility. The extended MGT-3D is also applied to LOFC and DLOFC simulation of GT-MHR. It is a fluid mechanics calculation with a given heat source. This calculation result of MGT-3D is verified with the calculation results of other codes. The design of the Japanese HTTR is introduced. The deterministic simulation of the LOFC experiment of HTTR is conducted with the Monte-Carlo code Serpent and MGT-3D, which is the LOFC Project organized by OECD/NEA [3]. With Serpent the burnup

  14. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    Blum, A.S.; Moir, R.W.

    1977-01-01

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D- 3 He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  15. Medicinas complementarias]/alternativas en adolescentes con trastorno déficit atencional/hiperactividad y trastornos del ánimo

    OpenAIRE

    Pérez Carmona, María Pilar

    2017-01-01

    Las Medicinas Complementarias/alternativas (MCA) cada día son más utilizadas por los pacientes, incluidos niños y adolescentes. En Chile el Ministerio de Salud (Minsal), ha ido reconociendo y regulando alguna de ellas, aunque todavía existe gran desconocimiento sobre su efectividad y seguridad. Objetivo: Revisar la evidencia disponible en relación a las MCA en adolescentes con Trastorno déficit atencional/hiperactividad (TDAH) y trastornos del ánimo. Metodología: Se realizó una búsqueda bibli...

  16. Fast reactors: R and D targets and outlook for their introduction

    International Nuclear Information System (INIS)

    Poplavsky, V.; Barre, B.; Aizawa, K.

    1997-01-01

    In this paper the current status of fast reactors development is briefly outlined, including experimental, demonstration, and commercial installations. Data on the experience gained in development and operation of NPPs with reactors of this type are presented. The issues are discussed in connection with possibilities of fast reactor development in the nuclear power structure for the near (up to 2010-2020) and distant future. In the final part of the paper, an analysis is given of possible ways for R and D development in the field of NPPs with fast neutron reactors. (author)

  17. Characteristics of D-{sup 3}He fueled frc reactor: ARTEMIS-L

    Energy Technology Data Exchange (ETDEWEB)

    Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Onozuka, M.; Ohnishi, M.; Uenosono, C.

    1993-11-01

    The paper introduces briefly the scenario and discuss the attractive characteristics of D-3He fueled commercial fusion reactor ARTEMIS-L. By using favorable characteristics of a field-reversed configuration, the fusion plasma of ARTEMIS-L is compact and its beta-value is extremely high. One find consequently a possibility of constructing an economical fusion power power plant on this prospect. The life of the structural materials is sound during the full reactor life (30 years) and the safety of the reactor is intrinsic to D-3He fuels. The amount of disposed materials is rather small and the level of these intruder dose is so low that the plant appears to be acceptable in view of the environment. (author).

  18. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  19. Management of European fast reactor R and D

    International Nuclear Information System (INIS)

    Judd, A.M.; Sheriff, N.

    1993-01-01

    Since 1984 government-funded fast reactor R and D in France, Germany and the UK has been run as a collaborative activity, and since 1988 as a unified programme in support of the design and construction of the advanced European Fast Reactor. This paper describes the international management structure which has been set up, and the means used to control the work. It is written from the point of view of those engaged in the project, and makes no attempt at a formal analysis of the structure. The main difficulty is that control of funding remains with the three governments. The R and D programme has to be managed so that it meets the needs of each government separately as well as the designers' requirements. To start with the management structure was excessively bureaucratic, but it has become more flexible and efficient. This has happened as the initial nationalistic suspicions have broken down, and the staff engaged in the work have learnt more about each others' ways of working so that an atmosphere of trust and inter-dependence has grown up. (This paper was written before the changes in UK policy on fast reactor development were announced in November 1992). (Author)

  20. Effects of neutron source ratio on nuclear characteristics of D-D fusion reactor blankets and shields

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Nakao, Yasuyuki; Ohta, Masao

    1978-01-01

    An examination is made of the dependence shown by the nuclear characteristics of the blanket and shield of D-D fusion reactors on S sub( d d)/S sub( d t), the ratio between the 2.45 MeV neutrons resulting from the D-D reaction and those of 14.06 MeV from the D-T reaction. Also, an estimate is presented of this neutron source ratio S sub( d d)/S sub( d t) for the case of D-D reactors, taken as an example. It is shown that an increase of S sub( d d)/S sub( d t) reduces the amount of nuclear heating per unit source neutron, while at the same time improving the shielding characteristics. This is accountable to lowering of the energy and penetrability of incident neutrons into the blanket brought about by the increase of S sub( d d)/S sub( d t). The value of S sub( d d)/S sub( d t) in a steady state D-D fusioning plasma core is estimated to be 1.46 -- 1.72 for an ion temperature ranging from 60 -- 180 keV. The reductions obtained on H sub( t)sup( b) (total heating in the blanket), H sub( t)sup( m g)/H sub( t)sup( b) (shielding indicator = ratio between total heating in superconducting magnet and that in the blanket) and phi sup( m g)/phi sup( w) (ratio of fast neutron fluxes between that at the magnet inner surface and that at the first wall inner surface) brought about by increasing S sub( d d)/S sub( d t) from unity to the value cited above do not differ to any appreciable extent, whichever is adopted among the design models considered here, the differences being at most about 10, 15 and 25%, respectively, for these three parameters. These results would broaden the validity of the conclusion derived in the previous paper for the case of S sub( d d)/S sub( d t) = 1.0, that the blanket-shield concept would appear to be the most suitable for D-D fusion reactors. (author)

  1. Design and properties of marine reactors and associated R and D

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinski, A; Ignatiev, V [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Devell, L [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1996-05-01

    The report is a review of open information available in the USA, UK, France, Russia and other countries on the design and properties of marine reactors and associated R and D. First, a short discussion is given of the milestones and main trends for the development of nuclear-powered ships. Then a brief review is presented of features for ship reactor design. Light water and liquid metal cooled reactor technologies are described and reactor operating experiences for Russian ice-breakers assessed. Traditional and alternative civil uses of submarine and surface shipboard reactor technology in Russia and Japan are also treated. Finally, some problems connected with radioactive waste by the nuclear-powered fleet are briefly considered. 41 refs, 27 figs, 19 tabs.

  2. Design and properties of marine reactors and associated R and D

    International Nuclear Information System (INIS)

    Gagarinski, A.; Ignatiev, V.; Devell, L.

    1996-05-01

    The report is a review of open information available in the USA, UK, France, Russia and other countries on the design and properties of marine reactors and associated R and D. First, a short discussion is given of the milestones and main trends for the development of nuclear-powered ships. Then a brief review is presented of features for ship reactor design. Light water and liquid metal cooled reactor technologies are described and reactor operating experiences for Russian ice-breakers assessed. Traditional and alternative civil uses of submarine and surface shipboard reactor technology in Russia and Japan are also treated. Finally, some problems connected with radioactive waste by the nuclear-powered fleet are briefly considered. 41 refs, 27 figs, 19 tabs

  3. RELAP5-3D code validation of RBMK-1500 reactor reactivity measurement transients

    International Nuclear Information System (INIS)

    Kaliatka, Algirdas; Bubelis, Evaldas; Uspuras, Eugenijus

    2003-01-01

    This paper deals with the modeling of transients taking place during the measurements of the void and fast power reactivity coefficients performed at Ignalina NPP. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and, based on the total reactor power, reactivity, control and protection system control rods positions and the main circulation circuit parameter changes during the experiments, the actual values of these reactivity coefficients are determined. Following the simulation of the two above mentioned transients with RELAP5-3D code, a conclusion was made that the obtained calculation results demonstrate reasonable agreement with Ignalina NPP measured data. Behaviors of the separate MCC thermal-hydraulic parameters as well as physical processes are predicted reasonably well to the real processes, occurring in the primary circuit of RBMK-1500 reactor. The calculated reactivity and the total reactor core power behavior in time are also in reasonable agreement with the measured plant data. Despite of the small differences, RELAP5-3D code predicts reactivity and the total reactor core power behavior during the transients in a reasonable manner. Reasonable agreement of the measured and the calculated total reactor power change in time demonstrates the correct modeling of the neutronic processes taking place in RBMK-1500 reactor core

  4. Carta do editor de edições especiais da Encontros Bibli 10.5007/1518-2924.2011v16nesp1piv

    Directory of Open Access Journals (Sweden)

    Francisco das Chagas de Souza

    2011-06-01

    ção e, também, a Ciência da Informação, tem muita importância a exploração acadêmica e científica dos fenômenos que se manifestam na produção, conservação e uso da informação, só possível de ser encontrada nos acervos arquivísticos.Essa mútua e permanente influência sustentou a expansão do número de cursos de bacharelado em Arquivologia no Brasil; igualmente serviram e servirão para dar base ao crescimento do número de egressos desses cursos presentes e participando em programas de pós-graduação stricto sensu, tendo em vista o número de teses e dissertações produzidas e o incremento de eventos profissionais em que os conteúdos expostos nos discursos ultrapassam a descrição de processos de trabalho e a práticas profissionais, ao trazerem, como exposição, trabalhos que advém da arguição da realidade. A exploração de uma fenomenologia em que a documentação primária representa a realidade em si fará dos arquivos e de seus profissionais bases fundamentais para o progresso material diuturnamente reivindicado por todas as classes que compõem a sociedade brasileira.Ao mesmo tempo, a preparação desses ambientes de trabalho e de seus profissionais passou e passará a depender da Instituição de Ensino e Pesquisa acadêmica para o aprofundamento de sua qualificação. E esta Instituição de Ensino não poderá cumprir suas tarefas com adequação sem que uma bibliografia apropriada esteja disponível nos acervos impressos ou eletrônicos de suas bibliotecas. É nesse ponto em que os periódicos científicos, e aqui está Encontros Bibli, devem “entrar em campo” para estimular autores, qualificar seus textos pela avaliação de pares e disponibiliar o conhecimento novo, ou o conhecimento que pode fomentar novas ideias e concepções da Ciência Arquivológica e que possa levar aos leitores o que há de novos experimentos.Nesse sentido, estamos lidando com “horizontes”. O dicionarista dá várias acepções para o termo

  5. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980's. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history

  6. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  7. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    International Nuclear Information System (INIS)

    Peng Hong Liem; Surian Pinem; Tagor Malem Sembiring; Tran Hoai Nam

    2015-01-01

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  8. The ARIES-III D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A.; Santarius, J.F.

    1992-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-III design uses a D- 3 He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. In this paper, results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-I is included

  9. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  10. El presupuesto del municipio del cantón Biblián. Diseño de un sistema para la formulación, ejecución, control y evaluación de presupuestos participativos.

    OpenAIRE

    Rojas Idrovo, Gladys Eulalia

    2011-01-01

    Diagnosticar los aspectos administrativos que provocan inconvenientes en la formulación, ejecución, control y evaluación del presupuesto. Este trabajo de investigación tuvo como informantes a autoridades, funcionarios, empleados y trabajadores de la Municipalidad de Biblián y a los Presidentes de las Juntas Parroquiales, y se realizó debido a la necesidad de promover prácticas de participación ciudadana a nivel local que contribuyan a mejorar la calidad de la inversión pública y fortalezca...

  11. Study of isotopic exchange reactors (1961); Etude des reacteurs d'echange isotopique (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Grandcollot, P; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    A study is made of the general case of the theory of first-order isotopic chemical exchange between a gaseous and a liquid phase in a reactor, starting from fundamental reaction kinetics data, and without making any limiting hypothesis concerning the value of the separation factor. The cases of counter-current reactors and of co-current reactors are considered successively. The general deuterium conservation equation requires the definition of the quotient of the reactor; the performances of this reactor are characterised by its overall efficiency. The idea of the ratio is introduced because it represents a convenient intermediary in the calculations. The search for an additive value for reactors in series leads logically to the defining of an exchange capacity, and a total efficiency, or number of theoretical reactors. This method of expressing the performances of a reactor is more general than the efficiency due to Murphee which only has a physical significance in the particular case of homogeneous liquid reactors. The relationships between these various quantities are established, and the representation due to Mc Cabe and Thiele is generalized. The reactor performances are linked to the first - order reaction kinetics by the transfer number. The relationships are given for a certain number of concrete cases. Finally the application of these calculations is given, together with the approximations necessary in the case where, because of the presence of several components in each phase, the exchange reaction no longer obeys a single kinetic law. (authors) [French] On examine dans le cas general la theorie d'un reacteur quelconque pour l'echange chimique isotopique du premier ordre entre une phase gazeuse et une phase liquide, a partir des donnees fondamentales sur la cinetique de la reaction, sans faire aucune hypothese limitative sur le cas des reacteurs a contre ourant, puis celui des reacteurs a co-courant. L'equation generale de conservation du deuterium

  12. The Canadian R and D program targeted at CANDU reactors

    International Nuclear Information System (INIS)

    Moeck, E.O.

    1988-01-01

    CANDU reactors produce electricity cheaply and reliably, with miniscule risk to the population and minimal impact on the environment. About half of Ontario's electricity and a third of New Brunswick's are generated by CANDU power plants. Hydro Quebec and utilities in Argentina, India, Pakistan, and the Republic of Korea also successfully operate CANDU reactors. Romania will soon join their ranks. The proven record of excellent performance of CANDUs is due in part to the first objective of the vigorous R and D program: namely, to sustain and improve existing CANDU power-plant technology. The second objective is to develop improved nuclear power plants that will remain competitive compared with alternative energy supplies. The third objective is to continue to improve our understanding of the processes underlying reactor safety and develop improved technology to mitigate the consequences of upset conditions. These three objectives are addressed by individual R and D programs in the areas of CANDU fuel channels, reduced operating costs, reduced capital costs, reactor safety research, and IAEA safeguards. The work is carried out mainly at three centres of Atomic Energy of Canada Limited--the Chalk River Nuclear Laboratories, the Whiteshell Nuclear Research Establishment, and the Sheridan Park Engineering Laboratories--and at Ontario Hydro's Research Laboratories. Canadian universities, consultants, manufacturers, and suppliers also provide expertise in their areas of specialization

  13. Thermal-hydraulic R and D infrastructure for water cooled reactors of the Indian nuclear power program

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Jain, V.; Saha, D.; Sinha, R.K.

    2009-01-01

    R and D has been the critical ingredient of Indian Nuclear Power Program from the very inception. Approach to R and D infrastructure has been closely associated with the three-stage nuclear power program that was crafted on the basis of available resources and technology in the short-term and energy security in the long-term. Early R and D efforts were directed at technologies relevant to Pressurized Heavy Water Reactors (PHWRs) which are currently the mainstay of Indian nuclear power program. Lately, the R and D program has been steered towards the design and development of advanced and innovative reactors with the twin objective of utilization of abundant thorium and to meet the future challenges to nuclear power such as enhanced safety and reliability, better economy, proliferation resistance etc. Advanced Heavy Water Reactor (AHWR) is an Indian innovative reactor currently being developed to realize the above objectives. Extensive R and D infrastructure has been created to validate the system design and various passive concepts being incorporated in the AHWR. This paper provides a brief review of R and D infrastructure that has been developed at Bhabha Atomic Research Centre for thermal-hydraulic investigations for water-cooled reactors of Indian nuclear power program. (author)

  14. Reactor safety issues resolved by the 2D/3D Program

    International Nuclear Information System (INIS)

    Damerell, P.S.; Simons, J.W.

    1993-07-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated

  15. Ignition access in a D-3He helical reactor

    International Nuclear Information System (INIS)

    Mitarai, Osamu

    2003-01-01

    Ignition access in a D- 3 He helical reactor is studied based on 0-dimensional particle and power balance equations for deuterium, tritium, helium-3, alpha ash, proton ash, electron density and temperature. The calculations are based on the following experimental facts observed in LHD. (author)

  16. Trends on R and D of the innovative nuclear reactors in Japan

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    2002-01-01

    In Japan, since LWRs introduced from U.S.A. began their business operations one by one from 1970 and 1971, their scale-up were carried out, to reach, at present, a condition on developments of ABWR-2 of 1700 MW class in output and APWR+. They are on a line of large scale LWR development aiming at further upgrading of their economical efficiency, safety, operability and maintenance by improving and developing conventional reactors. On the other hand, an innovative small scale reactor capable of siting at proximity of its markets and flexibly responsible to needs, a low decelerated spectrum reactor intending to effectively use the resources, an super-critical pressure reactor aiming at upgrading of thermal efficiency, a high temperature gas reactor aiming at hydrogen production using nuclear heat , and so on, and so forth, are investigated at a number of institutes. And, on the fast breeder reactor, some innovative investigations such as small-scale reactor, reactor using coolant except metal sodium, and so on, in addition to development of sodium cooling large-scale reactor, under the 'Actual use strategy survey research' progressed at a center of the Japan Nuclear Cycle Development Institute, are promoted. Here were outlined on trends of R and D on various innovative reactors under classification of water cooling reactor, gas cooling reactor, and liquid metal cooling reactor. (G.K.)

  17. Investigation of the burn-up behavior of boron poison rods, placed in a fuel assembly of a pressurized water reactor

    International Nuclear Information System (INIS)

    Arnold, C.; Lutz, D.C.

    1979-09-01

    The excess reactivity of a pressurized water reactor is compensated by boron, disolved in the moderator. In addition during the first cycle boron poison rods are placed in fuel assemblies without control rods. The burn-up behavior of a poison rod in a Biblis B fuel assembly is analysed in the present paper. Multigroup spectrum calculations were performed. The influence of critical boron concentration depending from burn-up, the changes of fuel concentration and the concentration of burnable poison were taken into consideration. Furthermore the built-up of rapidly saturating fisson products 135 Xe and 149 Sm was considered. The interaction of these effects are discussed. Spatial influences are emphasized most. Finally two group cross sections were calculated. The results are compared with calculations for a fuel assembly of the same type without burnable poison rods. (orig.) [de

  18. ORNL R and D on advanced small and medium power reactors: selected topics

    International Nuclear Information System (INIS)

    White, J.D.; Trauger, D.B.

    1989-01-01

    From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, an assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable R and D would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current R and D efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described

  19. ORNL R and D on advanced small and medium power reactors: Selected topics

    International Nuclear Information System (INIS)

    White, J.D.; Trauger, D.B.

    1988-01-01

    From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, and assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable RandD would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current RandD efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described. 13 refs., 1 fig

  20. Tritium production, management and its impact on safety for a D-3He fusion reactor

    International Nuclear Information System (INIS)

    Sze, D.K.; Herring, S.; Sawan, M.

    1991-11-01

    About three percent of the fusion energy produced by a D- 3 He reactor is in the form of neutrons. Those neutrons are generated by D-D and D-T reactions, with the tritium produced by the D-D fusion. The neutrons will react with structural steel, deuterium, 3 He and shielding material to produce tritium. About half of the tritium generated by the D-D reaction will not burn in the plasma and will exit as a part of the plasma exhaust. Thus, there is enough tritium produced in a D- 3 He reactor and careful management will be required. The tritium produced in the shield and plasma can be managed with an acceptable effect on cost and safety. 3 refs., 2 figs., 3 tabs

  1. Research on intelligent monitor for 3D power distribution of reactor core

    International Nuclear Information System (INIS)

    Xia, Hong; Li, Bin; Liu, Jianxin

    2014-01-01

    Highlights: • Core power distribution of ex-core measurement system has been reconstructed. • Building up an artificial intelligence model for 3-D core power distribution. • Error of the experiments has been reduced to 0.76%. • Methods for improving the accuracy of the model have been obtained. - Abstract: A real-time monitor for 3D reactor power distribution is critical for nuclear safety and high efficiency of NPP’s operation as well as for optimizing the control system, especially when the nuclear power plant (NPP) works at a certain power level or it works in load following operation. This paper was based on analyzing the monitor for 3D reactor power distribution technologies used in modern NPPs. Furthermore, considering the latest research outcomes, the paper proposed a method based on using an ex-core neutron detector system and a neural network to set up a real time monitor system for reactor’s 3D power distribution supervision. The results of the experiments performed on a reactor simulation machine illustrated that the new monitor system worked very well for a certain burn-up range during the fuel cycle. In addition, this new model could reduce the errors associated with the fitting of the distribution effectively, and several optimization methods were also obtained to improve the accuracy of the simulation model

  2. Technical report on implementation of reactor internal 3D modeling and visual database system

    International Nuclear Information System (INIS)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation's integrated computer aided engineering system, such as Mitsubishi's NUWINGS (Japan), AECL's CANDID (Canada) and Duke Power's PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new

  3. Technical report on implementation of reactor internal 3D modeling and visual database system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation`s integrated computer aided engineering system, such as Mitsubishi`s NUWINGS (Japan), AECL`s CANDID (Canada) and Duke Power`s PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new.

  4. Development of a 3-D flow analysis computer program for integral reactor

    International Nuclear Information System (INIS)

    Youn, H. Y.; Lee, K. H.; Kim, H. K.; Whang, Y. D.; Kim, H. C.

    2003-01-01

    A 3-D computational fluid dynamics program TASS-3D is being developed for the flow analysis of primary coolant system consists of complex geometries such as SMART. A pre/post processor also is being developed to reduce the pre/post processing works such as a computational grid generation, set-up the analysis conditions and analysis of the calculated results. TASS-3D solver employs a non-orthogonal coordinate system and FVM based on the non-staggered grid system. The program includes the various models to simulate the physical phenomena expected to be occurred in the integral reactor and will be coupled with core dynamics code, core T/H code and the secondary system code modules. Currently, the application of TASS-3D is limited to the single phase of liquid, but the code will be further developed including 2-phase phenomena expected for the normal operation and the various transients of the integrator reactor in the next stage

  5. Safety approach and R and D program for future french sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Beils, Stephane; Carluec, Bernard; Devictor, Nicolas; Fiorini, Gian Luigi; Sauvage, Jean Francois

    2011-01-01

    This paper presents briefly the safety approach as well as the R and D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R and D. B) Strategy and roadmap in support of the R and D for future SFRs. This section describes the R and D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype. (author)

  6. Development of a version of the reactor dynamics code DYN3D applicable for High Temperature Reactors; Entwicklung einer Version des Reaktordynamikcodes DYN3D fuer Hochtemperaturreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Ulrich; Apanasevich, Pavel; Baier, Silvio; Duerigen, Susan; Fridman, Emil; Grahn, Alexander; Kliem, Soeren; Merk, Bruno

    2012-07-15

    Based on the reactor dynamics code DYN3D for the simulation of transient processes in Light Water Reactors, a code version DYN3D-HTR for application to graphitemoderated, gas-cooled block-type high temperature reactors has been developed. This development comprises: - the methodical improvement of the 3D steady-state neutron flux calculation for the hexagonal geometry of the HTR fuel element blocks - the development of methods for the generation of homogenised cross section data taking into account the double heterogeneity of the fuel element block structure - the implementation of a 3D model for heat conduction and heat transport in the graphite matrix. The nodal method for neutron flux calculation based on SP3 transport approximation was extended to hexagonal fuel element geometry, where the hexagons are subdivided into triangles, thus the method had finally to be derived for triangular geometry. In triangular geometry, a subsequent subdivision of the hexagonal elements can be considered, and therefore, the effect of systematic mesh refinement can be studied. The algorithm was verified by comparison with Monte Carlo reference solutions, on the node-wise level, as well as also on the pin-wise level. New procedures were developed for the homogenization of the double-heterogeneous fuel element structures. One the one hand, the so-called Reactivity equivalent Physical Transformation (RPT), the two-step homogenization method based on 2D deterministic lattice calculations, was extended to cells with different temperatures of the materials. On the other hand, the progress in development of Monte Carlo methods for spectral calculations, in particular the development of the code SERPENT, opened a new, fully consistent 3D approach, where all details of the structures on fuel particle, fuel compact and fuel block level can be taken into account within one step. Moreover, a 3D heat conduction and heat transport model was integrated into DYN3D to be able to simulate radial

  7. DRAGON 3.05D, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The computer code DRAGON contains a collection of models that can simulate the neutron behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: the interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations that can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. 2 - Methods: The code DRAGON contains a multigroup flux solver conceived that can use a various algorithms to solve the neutron transport equation for the spatial and angular distribution of the flux. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are considered as sources. The current release of DRAGON contains five such algorithms. The JPM option that solves the integral transport equation using the J+- method, (interface current method applied to homogeneous blocks); the SYBIL option that solves the integral transport equation using the collision probability method for simple one dimensional (1-D) or two dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; the EXCELL/NXT option to solve the integral transport equation using the collision probability method for more general 2-D geometries and for three dimensional (3-D) assemblies; the MOCC option to solve the transport equation using the method of cyclic characteristics in 2-D Cartesian, and finally the MCU option to solve the transport equation using the method of characteristics (non cyclic) for 3-D Cartesian geometries. The execution of DRAGON is

  8. 3D CFD for chemical transport profiles in a rotating disk CVD reactor

    Science.gov (United States)

    Han, Jong-Hyun; Yoon, Do-Young

    2010-06-01

    The RDCVD (Rotating Disk Chemical Vapor Deposition) technique is an appropriate method for uniform deposition of grains, such as compound semiconductior materials. The substrate temperature and rotation speed are the major factors, which determine the thickness uniformity of the deposited films. This paper investigates 3D CFD (3 Dimensional Computational Fluid Dynamics) simulation results of flow and heat transfer in a reactor of RDCVD using Fluent. In order to establish the reducibility of buoyancy effect on deposition quality, the chemical transport profile upon the disk heated is examined successfully in 3D domain for different rotating speeds. The resulting vortex flows due the simultaneous buoyance and centrifuge are discussed qualitatively in the 3D virtual system of a RDCVD reactor. 3D CFD is even more effective to describe the internal vortex flows due to the competitive inlet, buoyancy and centrifuge flows, which cannot be realized in the general 2D (2 Dimensional) CFD.[Figure not available: see fulltext.

  9. Reactor safety issues resolved by the 2D/3D program

    International Nuclear Information System (INIS)

    1995-09-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated. This report was prepared in a coordination among US, Germany and Japan. US and Germany have published the report as NUREG/IA-0127 and GRS-101 respectively. (author)

  10. Reactor safety issues resolved by the 2D/3D program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated. This report was prepared in a coordination among US, Germany and Japan. US and Germany have published the report as NUREG/IA-0127 and GRS-101 respectively. (author).

  11. Establishing a PWR burn-up library

    International Nuclear Information System (INIS)

    Lutz, D.C.

    1981-01-01

    Starting out from data file ENDF/B IV /1/, a cross-section library has been established for the calculation of operating conditions in pressurized water reactors of the type used in BIBLIS B. The library includes macroscopic, homogenized 2-group cross-sections for all types of fuel elements used in this reactor, including those equipped with boron glass rods. For their calculation the previous irradiation of the fuel has been taken into consideration by approximation. Information on fuel consumption from cell burn-up calculations has been stored in a separate data file. It was designed as a base for the determination of cross sections to be used in the calculation of the incident ''main-steam pipe fracture''. For this library the description of cross sections as a function of the moderator status chose the water densities at 300 0 C/155 bar, 190 0 C/140 bar and 100 0 C/100 bar as fixed values. The burn-up library has been tested by a three-dimensional calculation for the 1sup(st) cycle of the BIBLIS B-reactor using program QUABOX /2/. This showed variances with the anticipated course concerning critically, which can be explained almost quantitatively by known deficiencies of the ENDF/b-IV library. (orig.) [de

  12. The simplified P3 approach on a trigonal geometry in the nodal reactor code DYN3D

    International Nuclear Information System (INIS)

    Duerigen, S.; Fridman, E.

    2011-01-01

    DYN3D is a three-dimensional nodal diffusion code for steady-state and transient analyses of Light-Water Reactors with square and hexagonal fuel assembly geometries. Currently, several versions of the DYN3D code are available including a multi-group diffusion and a simplified P 3 (SP 3 ) neutron transport option. In this work, the multi-group SP 3 method based on trigonal-z geometry was developed. The method is applicable to the analysis of reactor cores with hexagonal fuel assemblies and allows flexible mesh refinement, which is of particular importance for WWER-type Pressurized Water Reactors as well as for innovative reactor concepts including block type High-Temperature Reactors and Sodium Fast Reactors. In this paper, the theoretical background for the trigonal SP 3 methodology is outlined and the results of a preliminary verification analysis are presented by means of a simplified WWER-440 core test example. The accordant cross sections and reference solutions were produced by the Monte Carlo code SERPENT. The DYN3D results are in good agreement with the reference solutions. The average deviation in the nodal power distribution is about 1%. (Authors)

  13. Application of RELAP5-3D code for thermal analysis of the ADS reactor core

    International Nuclear Information System (INIS)

    Fernandes, Gustavo Henrique Nazareno

    2018-01-01

    Nuclear power is essential to supply global energy demand. Therefore, in order to use nuclear fuel more efficiently, more efficient nuclear reactors technologies researches have been intensified, such as hybrid systems, composed of particle accelerators coupled into nuclear reactors. In order to add knowledge to such studies, an innovative reactor design was considered where the RELAP5-3D thermal-hydraulic analysis code was used to perform a thermal analysis of the core, either in stationary operation or in situations transitory. The addition of new kind of coolants, such as, liquid salts, among them Flibe, lead, lead-bismuth, sodium, lithium-bismuth and lithium-lead was an important advance in this version of the code, making possible to do the thermal simulation of reactors that use these types of coolants. The reactor, object of study in this work, is an innovative reactor, due to its ability to operate in association with an Accelerator Driven System (ADS), considered a predecessor system of the next generation of nuclear reactors (GEN IV). The reactor selected was the MYRRHA (Multi-purpose Hybrid Research Reactor for High tech Applications) due to the availability of data to perform the simulation. In the modeling of the reactor with the code RELAP5-3D, the core was simulated using nodules with 1, 7, 15 and 51 thermohydraulic channels and eutectic lead-bismuth (LBE) as coolant. The parameters, such as, pressure, mass flow and coolant and heat structure temperature were analyzed. In addition, the thermal behavior of the core was evaluated by varying the type of coolant (sodium) in substitution for the LBE of the original design using the model with 7 thermohydraulic channels. The results of the steady-state calculations were compared with data from the literature and the proposed models were verified certifying the ability of the RELAP5-3D code to simulate this innovative reactor. After this step, it was analysed cases of transients with loss of coolant flow

  14. Neutronics Design of Helical Type DEMO Reactor FFHR-d1

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Sagara, A.; Goto, T.; Yanagi, N.; Masuzaki, S.; Tamura, H.; Miyazawa, J.; Muroga, T., E-mail: teru@nifs.ac.jp [National Institute for Fusion Science, Toki (Japan)

    2012-09-15

    Full text: Neutronics design study has been performed in a newly started conceptual design activity for a helical type DEMO reactor FFHR-d1. Features of the FFHR-d1 design are enlargement of the basic configurations of reactor components and extrapolation of plasma parameters from those of the helical type plasma experimental machine Large Helical Device (LHD) to achieve the highest feasibility. From the neutronics point of view, a blanket space of FFHR-d1 is severely limited at the inboard of the torus. This is due to the core plasma position shifting to the inboard side under the confinement condition extrapolated from LHD. The first step of the neutronics investigation using the MCNP code has been performed with a simple torus model simulating thin inboard blanket space. A Flibe+Be/Ferritic steel breeding blanket showed preferable performances for both tritium breeding and shielding, and has been adapted as a reference blanket system for FFHR-d1. The investigations indicate that a combination of a 15 cm thick breeding blanket, 55 cm thick WC+B4C shield, i.e., the blanket space of 70 cm, could suppress the fast neutron flux and nuclear heating in the helical coils to the design targets for the neutron wall loading of 1.5 MW/m{sup 2}. Since the outboard side can provide a large space for a 60 cm thick breeding blanket, a fully-covered tritium breeding ratio (TBR) of 1.31 has been obtained in the simple torus model. The neutronics design study has proceeded to the second step using a 3-D helical reactor model. The most important issue in the 3-D neutronics design is a compatibility with the helical divertor design. To achieve a higher TBR and shielding performance, the core plasma has to be covered by the breeding blanket layers as possible. However, the dimensions of the blanket layers are limited by magnetic field lines connecting an edge of the core plasma and divertor pumping ports. After repeating modification of the blanket configuration, the global TBR of 1

  15. Effect of 3-D moderator flow configurations on the reactivity of CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Zadeh, Foad Mehdi; Etienne, Stephane; Chambon, Richard; Marleau, Guy; Teyssedou, Alberto

    2017-01-01

    Highlights: • 3-D CFD simulations of CANDU-6 moderator flows are presented. • A thermal-hydraulic code using thermal physical fluid properties is used. • The numerical approach and convergence is validated against available data. • Flow configurations are correlated using Richardson’s number. • The interaction between moderator temperatures with reactivity is determined. - Abstract: The reactivity of nuclear reactors can be affected by thermal conditions prevailing within the moderator. In CANDU reactors, the moderator and the coolant are mechanically separated but not necessarily thermally isolated. Hence, any variation of moderator flow properties may change the reactivity. Until now, nuclear reactor calculations have been performed by assuming uniform moderator flow temperature distribution. However, CFD simulations have predicted large time dependent flow fluctuations taking place inside the calandria, which can bring about local temperature variations that can exceed 50 °C. This paper presents robust CANDU 3-D CFD moderator simulations coupled to neutronic calculations. The proposed methodology makes it possible to study not only different moderator flow configurations but also their effects on the reactor reactivity coefficient.

  16. Prospects for the Use of Plutonium in Reactors; Prospective d'Utilisation du Plutonium dans les Reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Fossoul, E.; Haubert, P. [BELGONUCLEAIRE (Belgium); Hirschberg, D.; Morlet, E. [International Business Machines of Belgium, Bruxelles (Belgium)

    1967-09-15

    The introduction, at an increasing rate, of power reactors using slightly enriched uranium will inevitably lead to the production of considerable quantities of plutonium over the next decade. Fast reactors will not be capable of absorbing this material before 1980. The question thus arises of whether one should store the plutonium far future use in fast reactors, recycle it in existing thermal reactors, or try to sell it. The problem has been studied for an electric power generating system that does not foresee selling the plutonium produced by its reactors and does not buy plutonium outside, which enables a good approximation to be made and eliminates the major unknown quantity represented by the future market price of plutonium. Assuming within this system a programme that provides for the construction of power reactors of a given type and capacity at specific dates, the utilization of the plutonium produced can be optimized by linear programming techniques so as to minimize the discounted total cost of the power generated over a given period. A later stage consists in optimizing, by various techniques, not only the utilization but also the production of plutonium by appropriate selection of the power reactor types to be constructed. (author) [French] L'implantation, a un rythme croissant, de centrales nucleaires a uranium legerement enrichi entrainera la production ineluctable d'une quantite importante de plutonium au cours de la prochaine decennie. Les reacteurs a neutrons rapides ne seront capables d'absorber cette production qu'apres 1980. La question se pose donc de savoir s'il est preferable de stocker le plutonium en vue de son utilisation ulterieure dans les reacteurs a neutrons rapides plutot que de le recycler dans les reacteurs actuels a neutrons thermiques ou d'essayer de le vendre. Ce probleme a ete etudie dans le cadre d'un systeme de production d'energie electrique qui ne prevoirait pas la vente du plutonium produit par ses reacteurs nucleaires ni

  17. Neutron flux calculations for the Rossendorf research reactor in (hex)- and (hex,z)-geometry using SNAP-3D

    International Nuclear Information System (INIS)

    Koch, R.; Findeisen, A.

    1986-04-01

    The multigroup neutron diffusion theory code SNAP-3D has been used to perform time independent neutron flux and power calculations of the 10 MW Rossendorf research reactor of the type WWR-SM. The report describes these calculations, as well as the actual reactor configuration, some details of the code SNAP-3D, and two- and three-dimensional reactor models. For evaluating the calculations some flux values and control rod worths have been compared with those of measurements. (author)

  18. On the major DYN3D developments for fast reactor design and transient analysis

    International Nuclear Information System (INIS)

    Merk, B.; Kliem, S.

    2013-01-01

    Due to the French project ASTRID, the European CP-ESFR project, and the MYRRHA/FASTEF project, the research work on fast reactors has got a new push in Europe. Additionally to this European projects a strong project is growing in Russia based on the lead cooled fast reactor design BREST. Following this trend, the Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf has decided to start several projects dedicated to fast reactor technology, among them the extension of the well validated LWR core simulator DYN3D. The new developments, first validation results, and the next strategic steps for the adaption of the code for the improved simulation of fast reactor cores are presented. (orig.)

  19. On the major DYN3D developments for fast reactor design and transient analysis

    Energy Technology Data Exchange (ETDEWEB)

    Merk, B.; Kliem, S. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety Div.

    2013-07-01

    Due to the French project ASTRID, the European CP-ESFR project, and the MYRRHA/FASTEF project, the research work on fast reactors has got a new push in Europe. Additionally to this European projects a strong project is growing in Russia based on the lead cooled fast reactor design BREST. Following this trend, the Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf has decided to start several projects dedicated to fast reactor technology, among them the extension of the well validated LWR core simulator DYN3D. The new developments, first validation results, and the next strategic steps for the adaption of the code for the improved simulation of fast reactor cores are presented. (orig.)

  20. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Jin, Yoon-Su; Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2014-09-15

    Highlights: • The authors designed and fabricated a D-shape coil based toroid-type HTS DC reactor using 2G GdBCO HTS wires. • The toroid-type magnet consisted of 30 D-shape double pancake coil (DDC)s. The total length of the wire was 2.32 km. • The conduction cooling method was adopted for reactor magnet cooling. • The maximum cooling temperature of reactor magnet is 5.5 K. • The inductance was 408 mH in the steady-state condition (300 A operating). - Abstract: This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  1. Status of the R and D activities on fast reactors and ADS in Brazil

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens

    2001-01-01

    Research and Development in Nuclear Science and Technology is conducted by Research Institutes of the Brazilian Nuclear Energy Commission. In Fast Reactor, R and D activities started in the sixties, and in 1972 a small Na loop (100 kW) was constructed. At the same time, during the seventies at IPEN, research in cooperation with GA for Gas Cooled Fast Breeder Reactor was conducted. The motivation of such research was Thorium Fuel Cycle. As a result of this research a Helium Loop was constructed and a Split Table Critical Assembly (ZPR) was designed. During the eighties, an agreement with ANSALDO-NIRA resulted in an acquisition of a Sodium Loop for Thermohydraulics studies, however it never had been assembled. At the same time, a concept of a Binary Breeder Reactor using two cycles, Th and U, was developed. During the nineties, a National Program to conduct R and D (pyroprocess; U-Zr Metallic Fuel; HT-9; Electromagnetic Pump; and a conceptual design of a Experimental Reactor (60/20 MWth/MWe)) was proposed, however it was closed at the end of the decade. Now, only academic research is being conducted, and it is summarized in this report. Basically, they are: an integral lead fast reactor concept for developing countries, and an alternative concept for a fast energy amplifier accelerator driven system. The first is an combination of best characteristics of the American Integral Fast Reactor and the Russian Lead Cooled Reactor. The second is a conceptual design of ADS helium cooled imbedded in a solid lead subcritical array of fuel, using more than one point of spallation trying to reduce the requirement for energy and current of the accelerator

  2. The importance of using the mixed neutron flux in activation analysis of D-3He fueled reactors

    International Nuclear Information System (INIS)

    Khater, H.Y.; Sawan, M.E.

    1992-01-01

    This paper reports on the D-D and D-T secondary reactions in D- 3 He reactors which provide the neutron source term for most of the radioactivity produced in the structure of the reactor. radionuclides are produced as a result of neutron interactions with their parent nuclides. The amount of activity produced by any radionuclide depends on the number of its parent atoms present at any given time. One approach to account for the activity induced by both neutron sources in any activation analysis is to add their individual contributions. Performing two separate calculations for the D-D and D-T neutron flux components and adding their contributions yields conservative results due to underestimating the destruction of the parent atoms. The overestimation is more pronounced for short and intermediate lived nuclides, long operation time, large neutron flux and large destruction cross section for the parent atoms. In the steel first wall of a typical d- 3 He reactor, adding the individual contributions of the tow neutron sources results in overestimating the activities produced by most of the radioactive isotopes of Ag, Lu, Ta, W and Re. After 30 years of reactor operation, the activity of 187 W, which is a major source of safety concern in case of an accident, is more than an order of magnitude higher than its value if the mixed neutron flux is used. The activity of 188 Re, which is an important source of offsite does in case of accidental release, is overestimated by more than a factor of two

  3. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown

  4. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  5. Development of a 3D-Multigroup program to simulate anomalous diffusion phenomena in the nuclear reactors

    International Nuclear Information System (INIS)

    Maleki Moghaddam, Nader; Afarideh, Hossein; Espinosa-Paredes, Gilberto

    2015-01-01

    Highlights: • The new version of neutron diffusion equation for simulating anomalous diffusion is presented. • Application of fractional calculus in the nuclear reactor is revealed. • A 3D-Multigroup program is developed based on the fractional operators. • The super-diffusion and sub-diffusion phenomena are modeled in the nuclear reactors core. - Abstract: The diffusion process is categorized in three parts, normal diffusion, super-diffusion and sub-diffusion. The classical neutron diffusion equation is used to model normal diffusion. A new scheme of derivatives is required to model anomalous diffusion phenomena. The fractional space derivatives are employed to model anomalous diffusion processes where a plume of particles spreads at an inconsistent rate with the classical Brownian motion model. In the fractional diffusion equation, the fractional Laplacians are used; therefore the statistical jump length of neutrons is unrestricted. It is clear that the fractional Laplacians are capable to model the anomalous phenomena in nuclear reactors. We have developed a NFDE-3D (neutron fractional diffusion equation) as a core calculation code to model normal and anomalous diffusion phenomena. The NFDE-3D is validated against the LMW-LWR reactor. The results demonstrate that reactors exhibit complex behavior versus order of the fractional derivatives which depends on the competition between neutron absorption and super-diffusion phenomenon

  6. Development of a 3D consistent 1D neutronics model for reactor core simulation

    International Nuclear Information System (INIS)

    Lee, Ki Bog; Joo, Han Gyu; Cho, Byung Oh; Zee, Sung Quun

    2001-02-01

    In this report a 3D consistent 1D model based on nonlinear analytic nodal method is developed to reproduce the 3D results. During the derivation, the current conservation factor (CCF) is introduced which guarantees the same axial neutron currents obtained from the 1D equation as the 3D reference values. Furthermore in order to properly use 1D group constants, a new 1D group constants representation scheme employing tables for the fuel temperature, moderator density and boron concentration is developed and functionalized for the control rod tip position. To test the 1D kinetics model with CCF, several steady state and transient calculations were performed and compared with 3D reference values. The errors of K-eff values were reduced about one tenth when using CCF without significant computational overhead. And the errors of power distribution were decreased to the range of one fifth or tenth at steady state calculation. The 1D kinetics model with CCF and the 1D group constant functionalization employing tables as a function of control rod tip position can provide preciser results at the steady state and transient calculation. Thus it is expected that the 1D kinetics model derived in this report can be used in the safety analysis, reactor real time simulation coupled with system analysis code, operator support system etc.

  7. Design of a high-temperature first wall/blanket for a d-d compact Reversed-Field-Pinch reactor (CRFPR)

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Glancy, J.E.

    1983-05-01

    A high-temperature first wall/blanket which would take full advantage of the absence of tritium breeding in a d-d reactor was designed. This design which produces steam at p = 7 MPa and T = 538 0 C at the blanket exit eliminates the requirement for a separate steam generator. A steam cycle with steam-to-steam reheat yielding about 37.5 percent efficiency is compatible with this design

  8. 2D and 3D CFD modelling of a reactive turbulent flow in a double shell supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Moussiere, S.; Roubaud, A.; Fournel, B.; Joussot-Dubien, C.; Boutin, O.; Guichardon, P.

    2012-01-01

    In order to design and define appropriate dimensions for a supercritical oxidation reactor, a comparative 2D and 3D simulation of the fluid dynamics and heat transfer during an oxidation process has been performed. The solver used is a commercial code, Fluent 6.2 (R). The turbulent flow field in the reactor, created by the stirrer, is taken into account with a k-omega model and a swirl imposed to the fluid. In the 3D case the rotation of the stirrer can be modelled using the sliding mesh model and the moving reference frame model. This work allows comparing 2D and 3D velocity and heat transfer calculations. The predicted values (mainly species concentrations and temperature profiles) are of the same order in both cases. The reactivity of the system is taken into account with a classical Eddy Dissipation Concept combustion model. Comparisons with experimental temperature measurements validate the ability of the CFD modelling to simulate the supercritical water oxidation reactive medium. Results indicate that the flow can be considered as plug flow-like and that heat transfer is strongly enhanced by the stirring. (authors)

  9. R and D programme on generation IV nuclear energy systems: the high temperatures gas-cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Billot, P.; Anzieu, P.; Brossard, P.

    2005-01-01

    The Generation IV Technology Roadmap selected, among others, a sequenced development of advanced high temperature gas cooled reactors as one of the main focus for R and D on future nuclear energy systems. The selection of this research objective originates both from the significance of high temperature and fast neutrons for nuclear energy to meet the needs for a sustainable development for the medium-long term (2020/2030 and beyond), and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR to meet specific international market needs around 2020. The second step is a Very High Temperature Reactor - VHTR (>950 C) - to efficiently produce hydrogen through thermo-chemical or electro-chemical water splitting or to generate electricity with an efficiency above 50%, among other applications of high temperature nuclear heat. The third step of the Path is a Gas Fast Reactor - GFR - that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct or indirect thermodynamic cycle for electricity production and full recycle of actinides. Hydrogen production is also considered for the GFR. The paper succinctly presents the R and D program currently under definition and partially launched within the Generation IV International Forum on this consistent set of advanced gas cooled nuclear systems. (orig.)

  10. A 3D transport-based core analysis code for research reactors with unstructured geometry

    International Nuclear Information System (INIS)

    Zhang, Tengfei; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi; Li, Yunzhao

    2013-01-01

    Highlights: • A core analysis code package based on 3D neutron transport calculation in complex geometry is developed. • The fine considerations on flux mapping, control rod effects and isotope depletion are modeled. • The code is proved to be with high accuracy and capable of handling flexible operational cases for research reactors. - Abstract: As an effort to enhance the accuracy in simulating the operations of research reactors, a 3D transport core analysis code system named REFT was developed. HELIOS is employed due to the flexibility of describing complex geometry. A 3D triangular nodal S N method transport solver, DNTR, endows the package the capability of modeling cores with unstructured geometry assemblies. A series of dedicated methods were introduced to meet the requirements of research reactor simulations. Afterwards, to make it more user friendly, a graphical user interface was also developed for REFT. In order to validate the developed code system, the calculated results were compared with the experimental results. Both the numerical and experimental results are in close agreement with each other, with the relative errors of k eff being less than 0.5%. Results for depletion calculations were also verified by comparing them with the experimental data and acceptable consistency was observed in results

  11. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  12. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    International Nuclear Information System (INIS)

    Podwin, Agnieszka; Dziuban, Jan A

    2017-01-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO 2 —a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells. (paper)

  13. R and D status of an integral type small reactor MRX in JAERI

    International Nuclear Information System (INIS)

    Hoshi, Tsutao; Ochiai, Masaaki; Iida, Hiromasa; Yamaji, Akio; Shimazaki, Junya

    1995-01-01

    JAERI is conducting a design study on an integral type small reactor MRX for the use of nuclear ships. The basic concept of the reactor system is the integral type reactor with in-vessel steam generators and control rod drive systems, however, such new technologies as the water-filled containment, the passive decay heat removal system, the advanced automatic system, etc., are adopted to satisfy the essential requirements for the next generation ship reactors, i.e. compact, light, highly safe and easy operation. Research and development (R and D) works have being progressed on the peculiar components, the advanced automatic operation systems and the safety study of the thermal hydraulic phenomena as well as the feasibility study of the applicability to merchant ships. The experiments and analysis of the safety carried out so far are proving that the passive safety features applied into the MRX are sufficient functions in the safety point of view. The MRX is a typical small type reactor realizing the easy operation by simplifying the reactor systems adopting the passive safety systems, therefore, it has wide variety of use as energy supply systems. This paper summarizes the present status on the design study of the MRX and the research and development activities as well as the results of feasibility study. (author)

  14. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  15. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo

    2011-01-01

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  16. Physics analysis of the Apollo D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Emmert, G.A.

    1990-01-01

    Recent developments in the analysis and conceptual design of Apollo, a D- 3 He Tokamak Reactor are presented. Encouraging experimental results on TEXT motivated a key change in the Apollo concept utilization of an ergodic magnetic limiter for impurity control instead of a divertor. Parameters for the updated Apollo design and an analysis of the ergoidc magnetic limiter are given. The Apollo reference case uses direct conversion of synchrotron radiation to electricity by rectifying antennas (rectennas) for its power conversion system. Previous analyses of this concept are expanded, including further details of the rectennas and of the loss of synchrotron power to the waveguides and walls. Although Apollo will burn D- 3 He fuel, a significant amount of unburned tritium will be generated by D4D reactions. The possibility of operating a short, dedicated, T+ 3 He burn phase to eliminate this tritium will be examined

  17. Strengthening the R and D on fast reactor technology, and promoting its industrialization

    International Nuclear Information System (INIS)

    Wan Gang

    2008-01-01

    Based on the strategic thoughts of energy development in China expounded by Jiang Zemin in the article entitled 'Reflections on Energy Issues in China', the author points out in this paper that R and Ds on fast reactor technology shall be carried out timely in China by taking full advantage of international scientific resources, and overall planning in this regard shall be made as well. The point of view of strengthening fast reactor technology R and D and promoting its industrialization is also put forward in the paper. (authors)

  18. Present status and future perspective of R and D on lead heavy metal-cooled fast reactors

    International Nuclear Information System (INIS)

    Takahashi, Minoru

    2007-01-01

    Since a lead heavy metal (lead-bismuth eutectic) is chemically inert and has higher boiling point compared to a sodium, a lead heavy metal-cooled fast reactor can be inherently safe and has good nuclear characteristics and is so suitable to a medium-small size of the reactor. R and D on corrosion of a lead heavy metal has been carried out in the world and this issue might be solved to choose specific corrosion resistant alloys for structural materials and fuel cans of a lead heavy metal-cooled reactor. This article reviews present status and future perspective on lead heavy metal-cooled fast reactors. (T. Tanaka)

  19. Qualification of the nuclear reactor core model DYN3D coupled to the thermohydraulic system code ATHLET, applied as an advanced tool for accident analysis of VVER-type reactors. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.

    1998-03-01

    The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [de

  20. Comparison of preliminary D-T and ''catalyzed'' D-D system studies

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Lazareth, O.W.

    1976-01-01

    The purpose of the research currently underway is to provide technological and eventual economic comparison of a reference D-T reactor to a ''catalyzed'' D-D reactor. Two separate reactor designs are delineated and examined for this purpose. These systems include plasma parameters, blanket and shield configurations, magnetic coil configurations, and power conversion systems, including a divertor-direct convertor system for the D-D design. The initial conclusions reached are as follows: (a) no extraordinary requirements in the D-D reactor in the areas of blanket or magnet technology, (b) advantageous use of minimum activity blankets and shields, (c) increased overall efficiency via introduction of divertor-direct convertor subsystem in D-D design and (d) 65 percent increase in the toroidal radius of the D-D design compared to the D-T reference value

  1. Prioritization of R and D programs on probabilistic reactor safety

    International Nuclear Information System (INIS)

    Husseiny, A.A.

    1982-01-01

    An interactive computer code based on the multiattribute utility theory has been developed with graphic capabilities to use in selection of probabilistic reactor safety RandD programs. Utility values and proper graphic representation are made through lottery games on the computer terminal. The code is applied to prioritize a set of RandD programs on LWR safety based on attributes including regulatory issues, institutional issues and operation problems. The methodology is described here in detail with its applications. Some of the input includes statistical distributions and subjective judgments on institutional issues. The flexibility of the approach provides a tool for decision makers whether on individual or group level to assess LWR safety priorities and continuously update their strategies

  2. Operational experience of the Marcoule reactors; Experience d'exploitation des reacteurs de Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Conte, F [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1963-07-01

    The results obtaining from three years operation of the reactors G-2, G-3 have made it possible to accumulate a considerable amount of operational experience of these reactors. The main original points: - the pre-stressed concrete casing - the possibility of loading while under power - automatic temperature control have been perfectly justified by the results of operation. The author confirms the importance of these original solutions and draws conclusions concerning the study of future nuclear power stations. (author) [French] Les resultats atteints apres trois ans de fonctionnement des reacteurs G-2/G-3 permettent une accumulation considerable de l'experience d'exploitation de ces reacteurs. Les principales originalites: - caisson en beton precontraint - chargement en marche - surveillance automatique des temperatures sont largement justifiees par l'exploitation actuelle. L'auteur confirme l'interet de ces solutions d'avant-garde et en tire des conclusions pour les etudes de futures centrales nucleaires. (auteur)

  3. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  4. Thermal fluid dynamics study of nuclear advanced reactors of high temperature using RELAP5-3D

    International Nuclear Information System (INIS)

    Scari, Maria Elizabeth

    2017-01-01

    Fourth Generation nuclear reactors (GEN-IV) are being designed with special features such as intrinsic safety, reduction of isotopic inventory and use of fuel in proliferation-resistant cycles. Therefore, the investigation and evaluation of operational and safety aspects of the GEN-IV reactors have been the subject of numerous studies by the international community and also in Brazil. In 2008, in Brazil, was created the National Institute of Science and Technology of Innovative Nuclear Reactors, focusing on studies of projects and systems of new generation reactors, which included GEN-IV reactors as well as advanced PWR (Pressurized Water Reactor) concepts. The Department of Nuclear Engineering of the Federal University of Minas Gerais (DEN-UFMG) is a partner of this Institute, having started studies on the GEN-IV reactors in the year 2007. Therefore, in order to add knowledge to these studies, in this work, three projects of advanced reactors were considered to verify the simulation capability of the thermo-hydraulic RELAP5-3D code for these systems, either in stationary operation or in transient situations. The addition of new working fluids such as ammonia, carbon dioxide, helium, hydrogen, various types of liquid salts, among them Flibe, lead, lithium-bismuth, lithium-lead, was a major breakthrough in this version of the code, allowing also the simulation of GEN-IV reactors. The modeling of the respective core of an HTTR (High Temperature Engineering Test Reactor), HTR-10 (High Temperature Test Module Reactor) and LS-VHTR (Liquid-Salt-Cooled Very-High-Temperature Reactor) were developed and verified in steady state comparing the values found through the calculations with reference data from other simulations, when it is possible. The first two reactors use helium gas as coolant and the LS-VHTR uses a mixture of 66% LiF and 34% of BeF 2 , the LiF-BeF 2 , also know as Flibe. All the studied reactors use enriched uranium as fuel, in form of TRISO (Tristructural

  5. Validation and application of 3D-methods for the design and safety analysis of high temperature reactors

    International Nuclear Information System (INIS)

    Bader, J.; Lapins, J.; Buck, M; Bernnat, W.; Laurien, E.

    2011-01-01

    Some of the concepts for future nuclear reactors are high-temperature gas-cooled reactors. Previous simulation codes for their cores were often based on one- or two-dimensional models, but today's increasing computer capabilities make an advance to 3D-codes possible now. Our thermal-hydraulic code ATTICA3D (Advanced Thermal-hydraulic Tool for In-vessel and Core Analysis in 3 Dimensions) is based on the porous media approach, including 3-D models of heat conduction and gas flow, using a coarse-grid integration method for the time-dependent conservation equations of mass, momentum and energy. Results of numerical calculations for various validation cases are presented: First, the test facility SANA is chosen, which has been used to study heat transfer phenomena inside a coolant-gas filled pebble-bed core, which was heated by embedded electrical heating elements. Calculations were carried out for different tests taken from the experimental database. Measured and calculated temperatures at different positions are compared and found in good agreement. Second, our code was used to simulate a depressurized loss of forced cooling experiment with simulated decay heat in the AVR Experimental Reactor. Due to its design with the shut-down rods located inside columnar noses, which extend into the pebble bed of the core, geometry and power distribution are genuinely three-dimensional. The power distribution was calculated by the 3D-Neutronic Diffusion Code CITATION in conjunction with the spectral code MICROX-2. The neutronics and thermal-hydraulics calculations were carried out for a 3D, 45°-degree section of the reactor. It is demonstrated, that the experimental results could be qualitatively reproduced. (author)

  6. Simulation software of 3-D two-neutron energy groups for ship reactor with hexagonal fuel subassembly

    International Nuclear Information System (INIS)

    Zhang Fan; Cai Zhangsheng; Yu Lei; Gui Xuewen

    2005-01-01

    Core simulation software for 3-D two-neutron energy groups is developed. This software is used to simulate the ship reactor with hexagonal fuel subassembly after 10, 150 and 200 burnup days, considering the hydraulic and thermal feedback. It accurately simulates the characteristics of the fast and thermal neutrons and the detailed power distribution in a reactor under normal and abnormal operation condition. (authors)

  7. US graphite reactor D ampersand D experience

    International Nuclear Information System (INIS)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE)

  8. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  9. Comparison of 'system thermal-hydraulics-3 dimensional reactor kinetics' coupled calculations using the MARS 1D and 3D modules and the MASTER code

    International Nuclear Information System (INIS)

    Jung, J. J.; Joo, H. K.; Lee, W. J.; Ji, S. K.; Jung, B. D.

    2002-01-01

    KAERI has developed the coupled 'system thermal-hydraulics - 3 dimensional reactor kinetics' code, MARS/MASTER since 1998. However, there is a limitation in the existing MARS/MASTER code; that is, to perform the coupled calculations using MARS/MASTER, we have to utilize the hydrodynamic model and the heat structure model of the MARS '3D module'. In some transients, reactor kinetics behavior is strongly multi-dimensional, but core thermal-hydraulic behavior remains in one-dimensional manner. For efficient analysis of such transients, we coupled the MARS 1D module with MASTER. The new feature has been assessed by the 'OECD NEA Main Steam Line Break (MSLB) benchmark exercise III' simulations

  10. SIMULA - C a simplified PC simulation training fool developed for the initial training of NPP operations personnel

    International Nuclear Information System (INIS)

    Reuhl, R.

    1997-01-01

    During initial training of some 50 young reactor operators and shift supervisors in the last 5 years in Biblis it was found that it takes some time before trainees gain a food overview of the most important plant systems and develop a ''feeling'' of the dynamic plant behaviour which is an important prerequisite for the first full-scope simulator training courses. To enhance this, a PC software training tool was developed SIMULA - C. (author)

  11. Indium-Gallium Radiation Contour of the IRT Nuclear Reactor; Circuit d'activation d'indium-gallium dans le reacteur nucleaire IRT; Indij-gallievyj radiatsionnyj kontur yadernogo reaktora IRT; Circuito de radiaciones de indio-galio del reactor IRT

    Energy Technology Data Exchange (ETDEWEB)

    Breger, A K; Ryabukin, Y S; Tulkes, S G; Volkov, E N

    1960-07-15

    Following on theoretical work already published, an indium-gallium radiation contour of the IRT nuclear reactor has been prepared, and represents a powerful new source of gamma-radiation. The first contour of this type ''RK-1'' was prepared on the IRT reactor at the Physics Institute of the Academy of Sciences of the Georgian SSR. The paper gives the activation calculations for indium-gallium alloy; the structural components of RK-1 and their arrangement in the reactor tank and the hot cell; the devise for feeding liquid and gaseous substances into the irradiation zone; and the conveyor for solid substances to be irradiated. When the IRT reactor is at a power of 2000 kW, the radiation strength of the contour is equivalent to that of a gamma-emitter having an activity of 20,000 g. Ra equivalent. The prospects for the use of the indium-gallium radiation contour for research and semi-industrial purposes are discussed. (author) [French] A la suite de la publication d'un ouvrage theorique, on a etabli autour du reacteur nucleaire IRT un circuit d'activation d'indium-gallium qui represente une nouvelle source de rayonnements gamma de grande intensite. Le premier circuit de ce type ''RK-1'' a ete etabli sur le reacteur IRT a l'Institut de physique de l'Academie des sciences de la RSS de Georgie. Les auteurs donnent les calculs de l'activation pour l'alliage indium-gallium; ils indiquent les elements structurels du RK-1 et leur disposition dans le reservoir et dans la cellule de haute activite du reacteur; ils decrivent le dispositif permettant d'introduire des substances liquides et gazeuses dans la zone d'irradiation et le systeme qui transporte les substances solides a irradier. Lorsque le reacteur IRT fonctionne a 2 000 kW, la puissance de rayonnement du circuit equivaut a celle d'un emetteur gamma ayant une activite equivalente a 20 000 grammes de radium. Les auteurs examinent les perspectives d'emploi de ce processus pour la recherche et a des fins semi

  12. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  13. Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils.

    Science.gov (United States)

    Hossain, Mohammad M; Scott, Ian M; Berruti, Franco; Briens, Cedric

    2016-12-01

    Valuable chemicals can be separated from agricultural residues by chemical or thermochemical processes. The application of pyrolysis has already been demonstrated as an efficient means to produce a liquid with a high concentration of desired product. The objective of this study was to apply an insect and microorganism bioassay-guided approach to separate and isolate pesticidal compounds from bio-oil produced through biomass pyrolysis. Tobacco leaf (Nicotianata bacum), tomato plant (Solanum lycopersicum), and spent coffee (Coffea arabica) grounds were pyrolyzed at 10°C/min from ambient to 565°C using the mechanically fluidized reactor (MFR). With one-dimensional (1D) MFR pyrolysis, the composition of the product vapors varied as the reactor temperature was raised allowing for the selection of the temperature range that corresponds to vapors with a high concentration of pesticidal properties. Further product separation was performed in a fractional condensation train, or 2D MFR pyrolysis, thus allowing for the separation of vapor components according to their condensation temperature. The 300-400°C tobacco and tomato bio-oil cuts from the 1D MFR showed the highest insecticidal and anti-microbial activity compared to the other bio-oil cuts. The 300-350 and 350-400°C bio-oil cuts produced by 2D MFR had the highest insecticidal activity when the bio-oil was collected from the 210°C condenser. The tobacco and tomato bio-oil had similar insecticidal activity (LC 50 of 2.1 and 2.2 mg/mL) when the bio-oil was collected in the 210°C condenser from the 300-350°C reactor temperature gases. The 2D MFR does concentrate the pesticidal products compared to the 1D MFR and thus can reduce the need for further separation steps such as solvent extraction.

  14. Plutonium Recycle Test Reactor (PRTR). Operating Experience and Supporting R and D, Its Application to Heavy-Water Power Reactor Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H. [Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA (United States)

    1968-04-15

    Convincing answers to questions about heavy-water, pressure-tube, power reactors, e.g. pressure-tube serviceability, heavy-water management problems, long-term behaviour of special pressure-tube reactor components, and unique operating maintenance problems (compared to light-water reactors) must be based on actual operating experience with that type of reactor. PRTR operating experience and supporting R and D studies, although not always simple extrapolations to power reactors, can be summarized in a context applicable to future heavy-water power reactors, as follows: 1. Pressure-tube life, in a practical case, need not be limited by creep, gross hydriding, corrosion, or mechanical damage. The possibility that growth of a defect (perhaps service-induced) to a size that is critical under certain operating conditions, remains a primary unknown in pressure- tube life extrapolations. A pressure-tube failure in PRTR (combined with gross release of fuel material) proved only slightly more inconvenient, time consuming, and damaging to the reactor proper, than occurred with a gross failure of a fuel element in PRTR. 2. Routine operating losses of heavy water appear tractable in heavy-water-cooled power reactors; losses from low-pressure systems can be insignificant over the life of a plant. Non-routine losses may prove to be the largest component of loss over the life of a plant. 3. The performance of special components in PRTR, e.g. the calandria and shields, has not deteriorated despite being subjected to non-standard operating conditions. The calandria now contains a light-water reflector with single barrier separation from the heavy-water moderator. The carbon steel shields (containing carbon steel shot) show no deterioration based on pressure drop measurements and piping activation immediately outside the shields. The helium pressurization system (for primary coolant pressurization) remains a high maintenance system, and cannot be recommended for power reactors, based

  15. Applicability of base-isolation R and D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1989-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. This paper reviews the research and development (R and D) programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R and D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R and D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant

  16. User Manual for XnWlup2.0, A Software to Visualize Nuclear Data for Thermal Reactors in WIMS-D Libraries

    International Nuclear Information System (INIS)

    Thiyagarajan, T.K.; Ganesan, S.; Jagannathan, V.; Karthikeyan, R.

    2002-10-01

    A project to prepare an exhaustive handbook of WIMS-D cross sections for thermal reactor applications comparing different WIMS-D compatible nuclear data libraries originating from various countries has been successfully implemented. A computer software, called XnWlup2.0, with graphical user interface for MS Windows has been developed at BARC. This report summarizes the salient features of this new software for the users of WIMS-D libraries. Several sample outputs produced by the software are presented to illustrate the powerful use of this software for routine use in reactor physics analyses. (author)

  17. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    Colas, J.; Saudray, D.; Coste, J.A.; Roux, J.P.; Jouan, A.

    1987-01-01

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  18. 3 D flow computations under a reactor vessel closure head

    International Nuclear Information System (INIS)

    Daubert, O.; Bonnin, O.; Hofmann, F.; Hecker, M.

    1995-12-01

    The flow under a vessel cover of a pressurised water reactor is investigated by using several computations and a physical model. The case presented here is turbulent, isothermal and incompressible. Computations are made with N3S code using a k-epsilon model. Comparisons between numerical and experimental results are on the whole satisfying. Some local improvements are expected either with more sophisticated turbulence models or with mesh refinements automatically computed by using the adaptive meshing technique which has been just implemented in N3S for 3D cases. (authors). 6 refs., 7 figs

  19. Modelling and thermal hydraulic analysis of the Angra-2 nuclear reactor using RELAP5-3D code

    International Nuclear Information System (INIS)

    González Mantecón, Javier

    2015-01-01

    The evaluation of Nuclear Power Plants (NPPs) performance during steady-state and accident conditions has been one of the main research subjects in the nuclear field. In order to simulate the behavior of water-cooled reactors, several complex thermal-hydraulic codes systems have been developed. Particularly, the RELAP5 code, developed by the Idaho National Laboratory, is a best-estimate thermal-hydraulic analysis tool and one of the most used in nuclear industry. The RELAP5-3D 3.0.0 code was used to develop a detailed model of Angra 2 nuclear reactor using reference data from the Final Safety Analysis Report. Angra 2 is the second Brazilian NPP, which began commercial operation in 2001. The plant is equipped with a Pressurized Water Reactor (PWR) type with 3771.0 MWt. Simulations of the reactor behavior during normal operation conditions and postulated accident conditions were performed. Results achieved in the reactor steady-state simulation were compared with nominal parameters of the NPP. These results proved to be in good agreement, with relative errors less than 1%. In the transient simulation, the obtained results were coherent and satisfactory. This study demonstrates that the RELAP5-3D model is capable to reproduce the thermal-hydraulic behavior of the Angra-2 PWR during diverse operation conditions and it can contribute for the process of the plant safety analysis. (author)

  20. International R and D project on development of coated particle fuel for innovative reactors

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    The paper presents an outline for an international collaborative project of coated particle fuel development for innovative reactors. Specific issues include identification of R and D needs and the Member State facilities for meeting the needs followed by development and demonstration of technology. (author)

  1. 1-D Two-phase Flow Investigation for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Kim, Jae Cheol

    2007-02-01

    During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000. Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design. T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow. From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased. On the other hand, the simple analysis using the drift

  2. Survey of group data libraries for use of the DYN3D program for WWER type reactors

    International Nuclear Information System (INIS)

    Mittag, S.

    1994-06-01

    So-called few-group neutron data have to be used as input data in core models (such as DYN3D) calculating the reactor behaviour. A survey is given of qualified data libraries for the reactor cores of Russian VVER. The information about primary data used in group data generation and the accuracy reached by the cell codes is compiled in tables. To assess the quality of the data, comparisons have been made between measured and calculated reactor parameters. The information available does not show significant differences concerning the quality of the data libraries. (orig.) [de

  3. Results of the reliability investigations for the design basis accident 'Rupture of a cold primary coolant system'

    International Nuclear Information System (INIS)

    Hoertner, H.; Nieckau, E.; Spindler, H.

    1976-12-01

    This report gives a comprehensive presentation of the detailed reliability investigation carried out for the engineered safety features installed to cope with the design basis accident 'Large LOCA' of a German nuclear power plant with pressurized water reactor. The investigation is based on the engineered safety features of the Biblis Nuclear Power Plant, Unit A. The reliability investigation is carried out by means of a fault tree analysis. The influence of common-mode failures is assessed. (orig.) [de

  4. Study of heat transfer in 3D fuel rods of the EPRI-9R reactor modified

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Lava, Deise Diana; Borges, Diogo da Silva; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes

    2014-01-01

    This paper aims to conduct a case study of the fuel rods that have the highest and the lowest average power of the EPRI-9R 3D reactor modified , for various positions of the control rods banks. For this, will be addressed the verification of computer code, comparing the results obtained with analytical solutions. This check is important so that, subsequently, it is possible use the program to understand the behavior of the fuel rods and the coolant channel of the EPRI-9R 3D reactor modified. Thus, in view of the scope of this paper, first a brief introducing on the heat transfer is done, including the rod equations and the equation of energy in the channel to allow the analysis of the results

  5. Running-in strategies for the low-enriched 600 MW(e) D-HHT reactor. Part 1. Comparison of different on-load refuelling schemes

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1973-03-14

    This paper presents detailed burn-up calculations and fuel management strategies for the Dragon-HHT, D-HHT, reference core. The reference layout was chosen from the outcome of a design survey with the 1-D equilibrium fuel cycle code FLATTER. The decision was based on aspects of engineering and economics. The purpose of the investigation is to devise a suitable first core, follow the irradiation history of the fuel and the general behaviour of the reactor during the first core replacements until equilibrium operating conditions are reached. A detailed description of time dependant burn-up and spatial power production for specified reactivity limits is required. For this purpose the reactor code system VSOP was employed. Different combinations of the parameters are investigated and the influence on reactor operation and economics discussed. From the strategy analysis a reference fuel management scheme is chosen for the low enriched 600 MW(e) D-HHT reactor.

  6. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  7. A 3D heat conduction model for block-type high temperature reactors and its implementation into the code DYN3D

    International Nuclear Information System (INIS)

    Baier, Silvio; Kliem, Soeren; Rohde, Ulrich

    2011-01-01

    The gas-cooled high temperature reactor is a concept to produce energy at high temperatures with a high level of inherent safety. It gets special attraction due to e.g. high thermal efficiency and the possibility of hydrogen production. In addition to the PBMR (Pebble Bed Modular Reactor) the (V)HTR (Very high temperature reactor) concept has been established. The basic design of a prismatic HTR consists of the following elements. The fuel is coated with four layers of isotropic materials. These so-called TRISO particles are dispersed into compacts which are placed in a graphite block matrix. The graphite matrix additionally contains holes for the coolant gas. A one-dimensional model is sufficient to describe (the radial) heat transfer in LWRs. But temperature gradients in a prismatic HTR can occur in axial as well as in radial direction, since regions with different heat source release and with different coolant temperature heat up are coupled through the graphite matrix elements. Furthermore heat transfer into reflector elements is possible. DYN3D is a code system for coupled neutron and thermal hydraulics core calculations developed at the Helmholtzzentrum Dresden-Rossendorf. Concerning neutronics DYN3D consists of a two-group and multi-group diffusion approach based on nodal expansion methods. Furthermore a 1D thermal-hydraulics model for parallel coolant flow channels is included. The DYN3D code was extensively verified and validated via numerous numerical and experimental benchmark problems. That includes the NEA CRP benchmarks for PWR and BWR, the Three-Miles-Island-1 main steam line break and the Peach Bottom Turbine Trip benchmarks, as well as measurements carried out in an original-size VVER-1000 mock-up. An overview of the verification and validation activities can be found. Presently a DYN3D-HTR version is under development. It involves a 3D heat conduction model to deal with higher-(than one)-dimensional effects of heat transfer and heat conduction in

  8. Verification of spectral burn-up codes on 2D fuel assemblies of the GFR demonstrator ALLEGRO reactor

    International Nuclear Information System (INIS)

    Čerba, Štefan; Vrban, Branislav; Lüley, Jakub; Dařílek, Petr; Zajac, Radoslav; Nečas, Vladimír; Haščik, Ján

    2014-01-01

    Highlights: • Verification of the MCNPX, HELIOS and SCALE codes. • MOX and ceramic fuel assembly. • Gas-cooled fast reactor. • Burnup calculation. - Abstract: The gas-cooled fast reactor, which is one of the six GEN IV reactor concepts, is characterized by high operational temperatures and a hard neutron spectrum. The utilization of commonly used spectral codes, developed mainly for LWR reactors operated in the thermal/epithermal neutron spectrum, may be connected with systematic deviations since the main development effort of these codes has been focused on the thermal part of the neutron spectrum. To be able to carry out proper calculations for fast systems the used codes have to account for neutron resonances including the self-shielding effect. The presented study aims at verifying the spectral HELIOS, MCNPX and SCALE codes on the basis of depletion calculations of 2D MOX and ceramic fuel assemblies of the ALLEGRO gas-cooled fast reactor demonstrator in infinite lattice

  9. Cathepsin D immobilized capillary reactors for on-flow screening assays.

    Science.gov (United States)

    Cornelio, Vivian Estevam; de Moraes, Marcela Cristina; Domingues, Vanessa de Cassia; Fernandes, João Batista; da Silva, Maria Fátima das Gracas Fernandes; Cass, Quezia Bezerra; Vieira, Paulo Cezar

    2018-03-20

    The treatment of diseases using enzymes as targets has called for the development of new and reliable methods for screening. The protease cathepsin D is one such target involved in several diseases such as tumors, degenerative processes, and vital processes of parasites causing schistosomiasis. Herein, we describe the preparation of a fused silica capillary, cathepsin D (CatD)-immobilized enzyme reactor (IMER) using in a multidimensional High Performance Liquid Chromatography-based method (2D-HPLC) and zonal affinity chromatography as an alternative in the search for new ligands. The activity and kinetic parameters of CatD-IMER were evaluated by monitoring the product MOCAc-Gly-Lys-Pro-Ile-Leu-Phe (P-MOCAc) (K M  = 81.9 ± 7.49 μmol/L) generated by cleavage of the fluorogenic substrate MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-d-Arg-NH2 (S-MOCAc). Stability studies have indicated that CatD-IMER retained 20% of activity after 5 months, a relevant result, because proteases are susceptible to autoproteolysis in solution assays with free enzyme. In the search for inhibitors, 12 crude natural product extracts were analyzed using CatD-IMER as the target, resulting in the isolation of different classes of natural products. In addition, 26 compounds obtained from different species of plants were also screened, demonstrating the efficiency and reproducibility of the herein reported assay even in the case of complex matrices such as plant crude extracts. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Synergism of the method of characteristic, R-functions and diffusion solution for accurate representation of 3D neutron interactions in research reactors using the AGENT code system

    International Nuclear Information System (INIS)

    Hursin, Mathieu; Xiao Shanjie; Jevremovic, Tatjana

    2006-01-01

    This paper summarizes the theoretical and numerical aspects of the AGENT code methodology accurately applied for detailed three-dimensional (3D) multigroup steady-state modeling of neutron interactions in complex heterogeneous reactor domains. For the first time we show the fine-mesh neutron scalar flux distribution in Purdue research reactor (that was built over forty years ago). The AGENT methodology is based on the unique combination of the three theories: the method of characteristics (MOC) used to simulate the neutron transport in two-dimensional (2D) whole core heterogeneous calculation, the theory of R-functions used as a mathematical tool to describe the true geometry and fuse with the MOC equations, and one-dimensional (1D) higher-order diffusion correction of 2D transport model to account for full 3D heterogeneous whole core representation. The synergism between the radial 2D transport and the 1D axial transport (to take into account the axial neutron interactions and leakage), called the 2D/1D method (used in DeCART and CHAPLET codes), provides a 3D computational solution. The unique synergism between the AGENT geometrical algorithm capable of modeling any current or future reactor core geometry and 3D neutron transport methodology is described in details. The 3D AGENT accuracy and its efficiency are demonstrated showing the eigenvalues, point-wise flux and reaction rate distributions in representative reactor geometries. The AGENT code, comprising this synergism, represents a building block of the computational system, called the virtual reactor. Its main purpose is to perform 'virtual' experiments and demonstrations of various mainly university research reactor experiments

  11. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  12. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  13. Severe Accident R and D for Enhanced CANDU-6 Reactors

    International Nuclear Information System (INIS)

    Nitheanandan, Thambiayah

    2012-01-01

    CANDU reactors possess a number of inherent of inherent and designed safety features that make them resistant to core damage accidents. The unique feature is the low temperature moderator surrounding the fuel channels, which can serve as an alternate heat sink. The fuel is surrounded by three water systems: heavy water primary coolant, heavy water moderator, and light water calandria vault and shield water. In addition, the liquid inventory in the steam generators is a fourth indirect heat sink, able to cool the primary coolant. The water inventories in the emergency core cooling system and the reserve water tank at the dome of the containment can also provide fuel cooling and water makeup to prevent severe core damage or mitigate the consequences of a severe core damage accident. An assessment of the adequacy of the existing severe accident knowledge base, to confidently perform consequence analyses for the Enhanced CANDU-6 reactor in compliance with regulatory requirements, was recently completed. The assessment relied on systematic Phenomena Identification and Ranking Tables (PIRT) studies completed domestically and internationally. The assessment recommends cost-effective R and D to mitigate the consequences of severe accidents and associated risk vulnerabilities

  14. Sequential Injection Determination of D-Glucose by Chemiluminescence Using an Open Tubular Immobilised Enzyme Reactor

    DEFF Research Database (Denmark)

    Liu, Xuezhu; Hansen, Elo Harald

    1996-01-01

    A sequential injection analysis system is described that incorporates a nylon tubular reactor containing immobilised glucose oxidase, allowing determination of D-glucose by means of subsequent luminol chemiluminescence detection of the hydrogen peroxide generated in the enzymatic reaction....... The operating parameters were optimised by fractional factorial screening and response surface modelling. The linear range of D-glucose determination was 30-600 mu M, With a detection limit of 15 mu M using a photodiode detector. The sampling frequency was 54 h(-1). Lower LOD (0.5 mu M D-glucose) could...

  15. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor.

    Directory of Open Access Journals (Sweden)

    Longbao Zhu

    Full Text Available An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA. The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99% in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.

  16. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor.

    Science.gov (United States)

    Zhu, Longbao; Zhou, Li; Huang, Nan; Cui, Wenjing; Liu, Zhongmei; Xiao, Ke; Zhou, Zhemin

    2014-01-01

    An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99%) in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.

  17. Impact of 2D/3D-project on LOCA-licensing analysis and reactor safety of PWRs

    International Nuclear Information System (INIS)

    Winkler, F.; Krebs, W.D.

    1989-01-01

    In the past LOCA-licensing analysis has included large conservatisms to compensate for the lack of detailed two phase flow and full scale experimental data. The 2D/3D-project was established to improve the data base in order to minimize the conservatisms required. The significant results and findings of the full scale Upper Plenum Test Facility (UPTF) and from the electrically heated Slab Core Test Facility (SCTF) were particularly useful for understanding the multidimensional phenomena in the primary system and in the core of a PWR. UPTF results were used to verify the TRAC-PF1 analysis of a PWR with combined ECC-Injection during the reflood phase of a large break-LOCA. Comparison of these results with results from classic licensing calculations quantifies the large safety margin in earlier licensing procedures and in reactor systems. (orig.)

  18. HORUS3D/TH: thermal-hydraulic modelling of the Jules Horowitz reactor core with FLICA4

    International Nuclear Information System (INIS)

    Royer, E.; Gregoire, O.; Magnaud, J.P.; Roux, L.; Masson, X.

    2007-01-01

    Cea is planning to build a new pool type reactor as irradiation facility in Cadarache, France: the Jules Horowitz Reactor (JHR). For this purpose, a simulation program is carried out at Cea: HORUS3D, aimed at modeling neutronics, radio-protection and thermal-hydraulics. Advanced features of the thermal-hydraulics component of this simulation program (HORUS3D/TH) are presented in the paper. HORUS3D/TH is based on the FLICA4 thermalhydraulic code. Numerically the main features of HORUS3D/TH are unstructured mesh grids and non-conform mappings. From a phenomenological point of view, flows under study range from high velocity forced convection to natural convection regimes. Steady and transient regimes have been simulated. The validation of physical models used is an important part of HORUS3D project. For thermohydraulics, this validation relies on the SULTAN-RJH experimental facility and fine scale CFD simulations. We have shown in this paper that it is possible to calibrate the macroscopic heat exchange correlation in the forced convection regime and under very high heat fluxes thanks to low Reynolds fine scale calculations. We particularly underline how to cope with the difficulties due to the complex geometry (cylindrical fuel assemblies, made of curved plates) and very high pressure drops and heat fluxes

  19. Advanced reactor development

    International Nuclear Information System (INIS)

    Till, C.E.

    1989-01-01

    Consideration is given to what the aims of advanced reactor development have to be, if a new generation of nuclear power is really to play an important role in man's energy generation activities in a fragile environment. The background given briefly covers present atmospheric evidence, the current situation in nuclear power, how reactors work and what can go wrong with them, and the present magnitudes of world energy generation. The central part of the paper describes what is currently being done in advanced reactor development and what can be expected from various systems and various elements of it. A vigorous case is made that three elements must be present in any advanced reactor development: (1) breeding; (2) passive safety; and (3) shorter-live nuclear waste. All three are possible. In the right advanced reactor systems the ways of achieving them are known. But R and D is necessary. That is the central argument made in the paper. Not advanced reactor prototype construction at this point, but R and D itself. (author)

  20. CFX-10 and RELAP5-3D simulations of coolant mixing phenomena in RPV of VVER-1000 reactors

    International Nuclear Information System (INIS)

    Terzuoli, F.; Moretti, F.; Melideo, D.; D'Auria, F.; Shkarupa, O.

    2006-01-01

    The present paper deals with numerical analyses of coolant mixing in the reactor pressure vessel of a VVER-1000 reactor, performed with the ANSYS CFX-10 CFD code and with the RELAP5-3D system code. In particular, the attention focused on the 'swirl' effect that has been observed to take place in the downcomer of such kind of reactor, with the aim of assessing the capability of the codes to predict that effect, and to understand the reasons for its occurrence. The results have been compared against experimental data from V1000CT-2 Benchmark. (author)

  1. The ARIES-III D-3He tokamak reactor: Design-point determination and parametric studies

    International Nuclear Information System (INIS)

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A.; Santarius, J.F.

    1991-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-3 design uses a D- 3 He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. Results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-1 is included. 11 refs., 5 figs

  2. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors.

    Science.gov (United States)

    Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob

    2018-01-02

    Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.

  3. Integral activation experiment of fusion reactor materials with d-Li neutrons up to 55 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Moellendorff, Ulrich von [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Wada, Masayuki [Business Automation Co., Ltd., Tokyo (Japan)

    2000-03-01

    An integral activation experiment of fusion reactor materials with a deuteron-lithium neutron source was performed. Since the maximum energy of neutrons produced was 55 MeV, the experiment with associated analysis was one of the first attempts for extending the energy range beyond 20 MeV. The following keywords represent the present study: d-Li neutrons, 55 MeV, dosimetry, SAND-II, spectrum adjustment, LA-150, MCNP, McDeLi, IFMIF, fusion reactor materials, integral activation experiment, low-activation, F82H, vanadium-alloy, IEAF, ALARA, and sequential charged particle reaction. (author)

  4. Development of a general coupling interface for the fuel performance code transuranus tested with the reactor dynamic code DYN3D

    International Nuclear Information System (INIS)

    Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.

    2013-01-01

    Several institutions plan to couple the fuel performance code TRANSURANUS developed by the European Institute for Transuranium Elements with their own codes. One of these codes is the reactor dynamic code DYN3D maintained by the Helmholtz-Zentrum Dresden - Rossendorf. DYN3D was developed originally for VVER type reactors and was extended later to western type reactors. Usually, the fuel rod behavior is modeled in thermal hydraulics and neutronic codes in a simplified manner. The main idea of this coupling is to describe the fuel rod behavior in the frame of core safety analysis in a more detailed way, e.g. including the influence of the high burn-up structure, geometry changes and fission gas release. It allows to take benefit from the improved computational power and software achieved over the last two decades. The coupling interface was developed in a general way from the beginning. Thence it can be easily used also by other codes for a coupling with TRANSURANUS. The user can choose between a one-way as well as a two-way online coupling option. For a one-way online coupling, DYN3D provides only the time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, but the fuel performance code doesn’t transfer any variable back to DYN3D. In a two-way online coupling, TRANSURANUS in addition transfers parameters like fuel temperature and cladding temperature back to DYN3D. This list of variables can be extended easily by geometric and further variables of interest. First results of the code system DYN3D-TRANSURANUS will be presented for a control rod ejection transient in a modern western type reactor. Pre-analyses show already that a detailed fuel rod behavior modeling will influence the thermal hydraulics and thence also the neutronics due to the Doppler reactivity effect of the fuel temperature. The coupled code system has therefore a potential to improve the assessment of safety criteria. The developed code system DYN3D-TRANSURANUS can be used also

  5. NCSU Reactor Sharing Program

    International Nuclear Information System (INIS)

    Perez, P.B.

    1993-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities

  6. Safety-related Innovative Nuclear Reactor Technology Elements R and D (SINTER) Network and Global HTGR R and D Network (GHTRN). Strategic benefits of international networking

    International Nuclear Information System (INIS)

    Von Lensa, W.

    1998-01-01

    The nuclear industries and the nuclear research and development (R and D) programmes world-wide have undergone considerable changes over recent years which have resulted in the formation of international industrial consortiums on the one hand and the need for synergistic collaboration in the R and D area due to the reductions of national R and D activities in the nuclear field on the other hand. International networking starting from precompetitive medium- or long-term oriented R and D could be an efficient mean to overcome the problems nuclear energy is facing today with respect to the lack of public acceptance and economic attractivity in a joint effort. Additional motivation is provided by the fact that there is not only a globalisation of markets but also a 'globalisation of problems' to be addressed internationally like reductions of environmental impacts and long-term availability of economic energy supply. The tools for telecommunication and telecollaboration are evolving in parallel and offer better conditions for closer collaboration of different R and D teams at distant locations than ever before. It is obvious that these trends and boundary conditions will drastically influence the structures of collaboration not only in the industries, but for R and D on an international level, too. The chances emerging from the creation of a European Union and from the globalisation trends have to be converted into strategic benefits by active response on these 'historic changes'. New initiatives have been undertaken in Europe to push for innovations of nuclear reactor technologies via international R and D Networks under the European R and D Framework Programmes (FWP). Innovative approaches are already addressed with limited funding under the actual 4th FWP and should be extended for complementing the commercial efforts on evolutionary LWR concepts by medium- and long-term oriented innovations and R and D. The MICHELANGELO initiative as well as the EU-funded Concerted

  7. Well Completion Report for the Fiscal Year 1999 Drilling Within the Chromium Plume West of the 100-D/DR Reactors

    International Nuclear Information System (INIS)

    Ford, B. H.

    1999-01-01

    This report describes the fiscal year (FY) 1999 field activities associated with installing 12 groundwater monitoring wells in the vicinity of the 100-D Area chromium plume west of the 100-D/DR Reactors (100-HR-3 Operable Unit [OU]). The wells were installed to further investigate the extent of the hexavalent chromium hot spot west of the 100-D/DR Reactors and to support future remedial action decisions associated with the 100-HR-3 OU. These wells were designed for multi-purpose use (i.e., monitoring, extraction, and injection). In addition, one of the wells was installed to support the initial deployment of the In Situ Redox Manipulation (ISRM) technology to remediate the chromium plume

  8. Conceptual design of a fast-ignition laser fusion reactor FALCON-D

    International Nuclear Information System (INIS)

    Goto, T.; Ogawa, Y.; Okano, K.; Hiwatari, R.; Asaoka, Y.; Someya, Y.; Sunahara, A.; Johzaki, T.

    2008-10-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (∼100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5 - 6 m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (∼400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R and D issues required for this design are also discussed. (author)

  9. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  10. TRIO a general computer code for reactor 3-D flows analysis. Application to a LMFBR hot plenum

    International Nuclear Information System (INIS)

    Magnaud, J.P.; Rouzaud, P.

    1985-09-01

    TRIO is a code developed at CEA to investigate general incompressible 2D and 3D viscous flows. Two calculations are presented: the lid driven cubic cavity at Re=400; steady state (velocity and temperature field) of a LMFBR hot plenum, carried out in order to prepare the calculation of a cold shock consecutive to a reactor scram. 8 refs., 26 figs.

  11. Nuclear reactor

    International Nuclear Information System (INIS)

    Garabedian, G.

    1988-01-01

    A liquid reactor is described comprising: (a) a reactor vessel having a core; (b) one or more satellite tanks; (c) pump means in the satellite tank; (d) heat exchanger means in the satellite tank; (e) an upper liquid metal conduit extending between the reactor vessel and the satellite tank; (f) a lower liquid metal duct extending between the reactor vessel and satellite tanks the upper liquid metal conduit and the lower liquid metal duct being arranged to permit free circulation of liquid metal between the reactor vessel core and the satellite tank by convective flow of liquid metal; (g) a separate sealed common containment vessel around the reactor vessel, conduits and satellite tanks; (h) the satellite tank having space for a volume of liquid metal that is sufficient to dampen temperature transients resulting from abnormal operating conditions

  12. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  13. Objectives and present status of the German risk evaluation study

    International Nuclear Information System (INIS)

    Birkhofer, A.; Koeberlein, K.; Heuser, F.W.

    1977-01-01

    For the German risk evaluation study, analogous to the Rasmussen report (WASH--1400), embarked upon in June 1976, the Kernkraftwerk Biblis B serves as the plant of reference. The first interim results are available for various sub-headings of the study. The main finding seems to be the decisive importance of the containment in limiting the accident consequences even in those cases where, on account of postulated failure of safety systems, the melt down of the reactor core is to be expected. (orig./HP) [de

  14. TREATMENT OF METHANOLIC WASTEWATER BY ANAEROBIC DOWN-FLOW HANGING SPONGE (ANDHS) REACTOR AND UASB REACTOR

    Science.gov (United States)

    Sumino, Haruhiko; Wada, Keiji; Syutsubo, Kazuaki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi

    Anaerobic down-flow hanging sponge (AnDHS) reactor and UASB reactor were operated at 30℃ for over 400 days in order to investigate the process performance and the sludge characteristics of treating methanolic wastewater (2 gCOD/L). The settings OLR of AnDHS reactor and of UASB reactor were 5.0 -10.0 kgCOD/m3/d and 5.0 kgCOD/m3/d. The average of the COD removal demonstrated by both reactors were over 90% throughout the experiment. From the results of methane producing activities and the PCR-DGGE method, most methanol was directly converted to methane in both reactors. The conversion was carried out by different methanogens: one closely related to Methanomethylovorans hollandica in the AnDHS retainted sludge and the other closely related to Methanosarcinaceae and Metanosarciales in the UASB retainted sludge.

  15. Conceptual design of high resolution and reliable density measurement system on helical reactor FFHR-d1 and demonstration on LHD

    International Nuclear Information System (INIS)

    Akiyama, T.; Yasuhara, R.; Isobe, M.; Sakamoto, R.; Goto, T.; Kawahata, K.; Sagara, A.; Nakayama, K.; Okajima, S.

    2014-10-01

    This paper describes a conceptual design of the density measurement system on the helical reactor FFHR-d1 based on its quantitative operation scenario. The density measurement is required to meet the reactor design, and to have a high density resolution of the order of 10 17 m -3 with a time resolution of 10 ms and high reliability (no fringe jump). “A dispersion interferometer” is designed and a prototype is tested and installed on LHD, which can realize a demo relevant density plasma. The prototype demonstrates the feasibility on a demo reactor. (author)

  16. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  17. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  18. Study of heat transfer in 3D fuel rods of the EPRI-9R reactor modified; Estudo da transferencia de calor em varetas combustiveis 3D do reator EPRI-9R 3D modificado

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Lava, Deise Diana; Borges, Diogo da Silva; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: deisedy@gmail.com, E-mail: diogosb@outlook.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper aims to conduct a case study of the fuel rods that have the highest and the lowest average power of the EPRI-9R 3D reactor modified , for various positions of the control rods banks. For this, will be addressed the verification of computer code, comparing the results obtained with analytical solutions. This check is important so that, subsequently, it is possible use the program to understand the behavior of the fuel rods and the coolant channel of the EPRI-9R 3D reactor modified. Thus, in view of the scope of this paper, first a brief introducing on the heat transfer is done, including the rod equations and the equation of energy in the channel to allow the analysis of the results.

  19. Point design for deuterium-deuterium compact reversed-field pinch reactors

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Dobrott, D.R.; Gurol, H.; Schnack, D.D.

    1984-01-01

    A deuterium-deuterium (D-D) reversed-field pinch (RFP) reactor may be made comparable in size and cost to a deuterium-tritium (D-T) reactor at the expense of high-thermal heat load to the first wall. This heat load is the result of the larger percentage of fusion power in charged particles in the D-D reaction as compared to the D-T reaction. The heat load may be reduced by increasing the reactor size and hence the cost. In addition to this ''degraded'' design, the size may be kept small by means of a higher heat load wall, or by means of a toroidal divertor, in which case most of the heat load seen by the wall is in the form of radiation. Point designs are developed for these approaches and cost studies are performed and compared with a D-T reactor. The results indicate that the cost of electricity of a D-D RFP reactor is about20% higher than a D-T RFP reactor. This increased cost could be offset by the inherent safety features of the D-D fuel cycle

  20. Analysis of thorium and uranium fuel cycles in an iso-breeder lead fast reactor using extended-EQL3D procedure

    International Nuclear Information System (INIS)

    Fiorina, Carlo; Krepel, Jiri; Cammi, Antonio; Franceschini, Fausto; Mikityuk, Konstantin; Ricotti, Marco Enrico

    2013-01-01

    Highlights: ► Extension of EQL3D procedure to calculate radio-toxicity and decay heat. ► Characterization of uranium- and thorium-fueled LFR from BOL to equilibrium. ► Safety improvements for a LFR in a closed thorium cycle. ► Advantages of thorium-fueled LFR in terms of decay heat and radio-toxicity generation. ► Safety, decay heat and radio-toxicity concerns for a Th–Pu beginning-of-life core. - Abstract: Use of thorium in fast reactors has typically been considered as a secondary option, mainly thanks to a possible self-sustaining thorium cycle already in thermal reactors and due to the limited breeding capabilities compared to U–Pu in the fast neutron energy range. In recent years nuclear waste management has become more important, and the thorium option has been reconsidered for the claimed potential to burn transuranic waste and the lower build-up of hazardous isotopes in a closed cycle. To ascertain these claims and their limitations, the fuel cycle isotopic inventory, and associated waste radio-toxicity and decay heat, should be quantified and compared to the case of the uranium cycle using realistic core configurations, with complete recycle of all the actinides. Since the transition from uranium to thorium fuel cycles will likely involve a transuranic burning phase, this transition and the challenges that the evolving fuel actinide composition presents, for instance on reactor feedback parameters, should also be analyzed. In the present paper, these issues are investigated based on core physics analysis of the Lead-cooled Fast Reactor ELSY, performed with the fast reactor ERANOS code and the EQL3D procedure allowing full-core characterization of the equilibrium cycle and the transition cycles. In order to compute radio-toxicity and decay heat, EQL3D has been extended by developing a new module, which has been assessed against ORIGEN-S and is presented here. The capability of the EQL3D procedure to treat full-core 3D geometries allowed to

  1. 3-D thermal hydraulic analysis of transient heat removal from fast reactor core using immersion coolers

    International Nuclear Information System (INIS)

    Chvetsov, I.; Volkov, A.

    2000-01-01

    For advanced fast reactors (EFR, BN-600M, BN-1600, CEFR) the special complementary loop is envisaged in order to ensure the decay heat removal from the core in the case of LOF accidents. This complementary loop includes immersion coolers that are located in the hot reactor plenum. To analyze the transient process in the reactor when immersion coolers come into operation one needs to involve 3-D thermal hydraulics code. Furthermore sometimes the problem becomes more complicated due to necessity of simulation of the thermal hydraulics processes into the core interwrapper space. For example on BN-600M and CEFR reactors it is supposed to ensure the effective removal of decay heat from core subassemblies by specially arranged internal circulation circuit: 'inter-wrapper space'. For thermal hydraulics analysis of the transients in the core and in the whole reactor including hot plenum with immersion coolers and considering heat and mass exchange between the main sodium flow and sodium that moves in the inter-wrapper space the code GRIFIC (the version of GRIF code family) was developed in IPPE. GRIFIC code was tested on experimental data obtained on RAMONA rig under conditions simulating decay heat removal of a reactor with the use of immersion coolers. Comparison has been made of calculated and experimental result, such as integral characteristics (flow rate through the core and water temperature at the core inlet and outlet) and the local temperatures (at thermocouple location) as well. In order to show the capabilities of the code some results of the transient analysis of heat removal from the core of BN-600M - type reactor under loss-of-flow accident are presented. (author)

  2. Tests of Neutron Spectrum Calculations with the Help of Foil Measurements in a D{sub 2}O and in an H{sub 2}O-Moderated Reactor and in Reactor Shields of Concrete an Iron

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, R; Aalto, E

    1964-09-15

    Foil measurements covering the fast, epithermal and thermal neutron energy regions have been made in the centre of the Swedish D{sub 2}O-moderated reactor R1, in the pool reactor R2-0, and in different positions in reactor shields of iron, magnetite concrete and ordinary concrete. Neutron spectra have also been calculated for most of these positions, often with the help of a numerical integration of the Boltzmann equation. The measurements and the calculated spectra are presented.

  3. Omega West Reactor program management and communication key to successful Decontamination and Decommissioning (D and D)

    Energy Technology Data Exchange (ETDEWEB)

    Mee, Stephen F.; Rendell, Keith R.; Peifer, Martin J. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Gallegos, John A. [National Nuclear Security Administration, P.O. Box 5400, Albuquerque, NM 87185 (United States); Straehr, James P.; Stringer, Joe B. [Framatome ANP, Tour AREVA, 92084 - Paris la Defense (France)

    2003-07-01

    This paper describes what differentiates the Omega West Reactor (OWR) Decommissioning and Decontamination (D and D) Project from other projects with similar scope and how the project was successfully completed ahead of schedule. With less than 26 months to scope, schedule, advertise, select a contractor and complete the actual D and D, Los Alamos National Laboratory (LANL) needed a new approach to form the foundation for the project's success and ensure that the project was completed on time and within the original contract value. This paper describes the three key elements of this new approach - including team building, strong project management and technical innovation. LANL and WD3, a joint venture between Framatome ANP, Inc. and Washington Group Inc., teamed through a fixed price best value contract to perform the D and D of the OWR. The project was initiated in an effort to reduce the risk to LANL facilities identified in the aftermath of the Cerro Grande fires. Between May 4 and June 10, 2000, a devastating wildfire swept across the Bandelier National Monument in the Jemez Mountains of northern New Mexico and onto the Department of Energy's (DOE's) LANL. The Cerro Grande fire burned about 43,000 acres, including 7,500 acres of LANL property. Large areas of vegetation in the Jemez Mountains surrounding LANL were destroyed. The DOE, LANL, other federal agencies, and the State of New Mexico initiated prompt actions to identify and mitigate the risks from the fire aftermath. Assessments conducted after the fire determined that serious environmental and safety problems associated with flash floods, erosion, and contaminant run-off would persist at LANL for a number of years. Since the OWR was located in a potential flash flood area it was decided to accelerate the D and D of the facility. (authors)

  4. Omega West Reactor program management and communication key to successful Decontamination and Decommissioning (D and D)

    International Nuclear Information System (INIS)

    Mee, Stephen F.; Rendell, Keith R.; Peifer, Martin J.; Gallegos, John A.; Straehr, James P.; Stringer, Joe B.

    2003-01-01

    This paper describes what differentiates the Omega West Reactor (OWR) Decommissioning and Decontamination (D and D) Project from other projects with similar scope and how the project was successfully completed ahead of schedule. With less than 26 months to scope, schedule, advertise, select a contractor and complete the actual D and D, Los Alamos National Laboratory (LANL) needed a new approach to form the foundation for the project's success and ensure that the project was completed on time and within the original contract value. This paper describes the three key elements of this new approach - including team building, strong project management and technical innovation. LANL and WD3, a joint venture between Framatome ANP, Inc. and Washington Group Inc., teamed through a fixed price best value contract to perform the D and D of the OWR. The project was initiated in an effort to reduce the risk to LANL facilities identified in the aftermath of the Cerro Grande fires. Between May 4 and June 10, 2000, a devastating wildfire swept across the Bandelier National Monument in the Jemez Mountains of northern New Mexico and onto the Department of Energy's (DOE's) LANL. The Cerro Grande fire burned about 43,000 acres, including 7,500 acres of LANL property. Large areas of vegetation in the Jemez Mountains surrounding LANL were destroyed. The DOE, LANL, other federal agencies, and the State of New Mexico initiated prompt actions to identify and mitigate the risks from the fire aftermath. Assessments conducted after the fire determined that serious environmental and safety problems associated with flash floods, erosion, and contaminant run-off would persist at LANL for a number of years. Since the OWR was located in a potential flash flood area it was decided to accelerate the D and D of the facility. (authors)

  5. Assessment of benefits of research reactors in less developed countries. A case study of the Dalat reactor in Vietnam

    International Nuclear Information System (INIS)

    Hien, P.D.

    1999-01-01

    The analysis of data on nuclear research reactor (NRR) and socio-economic conditions across countries reveals highly significant relationships of reactor power with GDP and R and D expenditure. The trends revealed can be used as preliminary guides for feasibility assessment of investment in a NRR. Concerning reactor performance, i.e. the number of reactor operation days per year, the covariation with R and D expenditure is most significant, but moderate, implying that there are other controlling factors, e.g. the engagement of country in nuclear power development. Thus, the size of the R and D fund is a most significant indicator to look at in reactor planning. Unfortunately, the lack of adequate R and D funding is a common and chronic problem in less developed countries. As NRR is among the biggest R and D investment in less developed countries, adequate cost benefit assessment is rightfully required. In the case of Vietnam, during 15 years of operation of a 500 kW NRR 2300 Ci of radioisotopes were delivered and 45,000 samples were analysed for multielemental compositions. From a pure financial viewpoint these figures would still be insignificant to justify the investment. However, the impact of the reactor on the technological development seems not to be a matter of pro and cons. The status of reactor utilization and lessons learned are presented and discussed. (author)

  6. Assessment of benefits of research reactors in less developed countries. A case study of the Dalat reactor in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.D. [Vietnam Atomic Energy Agency, Hanoi (Viet Nam)

    1999-08-01

    The analysis of data on nuclear research reactor (NRR) and socio-economic conditions across countries reveals highly significant relationships of reactor power with GDP and R and D expenditure. The trends revealed can be used as preliminary guides for feasibility assessment of investment in a NRR. Concerning reactor performance, i.e. the number of reactor operation days per year, the covariation with R and D expenditure is most significant, but moderate, implying that there are other controlling factors, e.g. the engagement of country in nuclear power development. Thus, the size of the R and D fund is a most significant indicator to look at in reactor planning. Unfortunately, the lack of adequate R and D funding is a common and chronic problem in less developed countries. As NRR is among the biggest R and D investment in less developed countries, adequate cost benefit assessment is rightfully required. In the case of Vietnam, during 15 years of operation of a 500 kW NRR 2300 Ci of radioisotopes were delivered and 45,000 samples were analysed for multielemental compositions. From a pure financial viewpoint these figures would still be insignificant to justify the investment. However, the impact of the reactor on the technological development seems not to be a matter of pro and cons. The status of reactor utilization and lessons learned are presented and discussed. (author)

  7. Factors affecting nuclear research reactor utilization across countries

    International Nuclear Information System (INIS)

    Hien, P.D.

    2000-01-01

    In view of the worldwide declining trend of research reactor utilization and the fact that many reactors in developing countries are under-utilised, a question naturally arises as to whether the investment in a research reactor is justifiable. Statistical analyses were applied to reveal relationships between the status of reactor utilization and socio-economic conditions among countries, that may provide a guidance for reactor planning and cost benefit assessment. The reactor power has significant regression relationships with size indicators such as GNP, electricity consumption and R and D expenditure. Concerning the effectiveness of investment in research reactors, the number of reactor operation days per year only weakly correlates with electricity consumption and R and D expenditure, implying that there are controlling factors specific of each group of countries. In the case of less developed countries, the low customer demands on reactor operation may be associated with the failure in achieving quality assurance for the reactor products and services, inadequate investment in the infrastructure for reactor exploitation, the shortage of R and D funding and well trained manpower and the lack of measures to get the scientific community involved in the application of nuclear techniques. (author)

  8. Description of work for the drilling within the chromium plume west of 100-D/DR Reactors

    International Nuclear Information System (INIS)

    Peterson, R.E.; Walker, L.D.

    1997-07-01

    This document describes the work scope associated with installing four new monitoring wells in the 100-D/DR Area (100-HR-3 Operable Unit). The strategy relies on estimates for flow paths that might have existed during operation of the 100-D Reactor and on experience gained during the recent installation of well 199-D4-1. A Data Quality Objectives (DQO) workshop was held to evaluate data collection needs during well installation. The workshop included input from key project team members and the lead regulatory agency. Decisions concerning data resulting from the DQO process have been incorporated into this document

  9. Mirror fusion reactor design

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.; Carlson, G.A.

    1979-01-01

    Recent conceptual reactor designs based on mirror confinement are described. Four components of mirror reactors for which materials considerations and structural mechanics analysis must play an important role in successful design are discussed. The reactor components are: (a) first-wall and thermal conversion blanket, (b) superconducting magnets and their force restraining structure, (c) neutral beam injectors, and (d) plasma direct energy converters

  10. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  11. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  12. Wildcat: A commercial deuterium-deuterium tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K.; Baker, C.C.; Barry, K.M.

    1983-01-01

    WILDCAT is a conceptual design of a catalyzed deuterium-deuterium tokamak commercial fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing deuterium-tritium (D-T) designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete conceptual design

  13. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  14. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  15. The R and D issues necessary to achieve the safety design of commercialized liquid-metal cooled fast reactors

    International Nuclear Information System (INIS)

    Shoji, Kotake; Koji, Dozaki; Shigenobu, Kubo; Yoshio, Shimakawa; Hajime, Niwa; Masakazu, Ichimiya

    2002-01-01

    Within the framework of the feasibility study on commercialized fast reactor cycle systems (hereafter described as F/S), the safety design principle is investigated and several kinds of design studies are now in progress. Among the designs for liquid-metal cooled fast reactor (LMR), the advanced loop type sodium cooled fast reactor (FR) is one of the promising candidate as future commercialized LMR. In this paper, the safety related research and development (R and D) issues necessary to achieve the safety design are described along the defence-in-depth principle, taking account of not only the system characteristics of the advanced loop concepts but also design studies and R and D experiences so far. Safety issues related to the hypothetical core disruptive accidents (CDA) are emphasized both from the prevention and mitigation. A re-criticality free core concept with a special fuel assembly is pursued by performing both analytical and experimental efforts, in order to realize the rational design and to establish easy-to-understand safety logic. Sodium related issues are also given to ensure plant availability and to enhance the acceptability to the public. (authors)

  16. Incorporating higher order WINKLER springs with 3-D finite element model of a reactor building for seismic SSI analysis

    International Nuclear Information System (INIS)

    Ermutlu, H.E.

    1993-01-01

    In order to fulfill the seismic safety requirements, in the frame of seismic requalification activities for NPP Muehleberg, Switzerland, detailed seismic analysis performed on the Reactor Building and the results are presented previously. The primary objective of the present investigation is to assess the seismic safety of the reinforced concrete structures of reactor building. To achieve this objective requires a rather detailed 3-D finite element modeling for the outer shell structures, the drywell, the reactor pools, the floor decks and finally, the basemat. This already is a complicated task, which enforces need for simplifications in modelling the reactor internals and the foundation soil. Accordingly, all internal parts are modelled by vertical sticks and the Soil Structure Interaction (SSI) effects are represented by sets of transitional and higher order rotational WINKLER springs, i.e. avoiding complicated finite element SSI analysis. As a matter of fact, the availability of the results of recent investigations carried out on the reactor building using diversive finite element SSI analysis methods allow to calibrate the WINKLER springs, ensuring that the overall SSI behaviour of the reactor building is maintained

  17. Advances in reactor physics education: Visualization of reactor parameters

    International Nuclear Information System (INIS)

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  18. High efficiency algorithm for 3D transient thermo-elasto-plastic contact problem in reactor pressure vessel sealing system

    International Nuclear Information System (INIS)

    Xu Mingyu; Lin Tengjiao; Li Runfang; Du Xuesong; Li Shuian; Yang Yu

    2005-01-01

    There are some complex operating cases such as high temperature and high pressure during the operating process of nuclear reactor pressure vessel. It is necessary to carry out mechanical analysis and experimental investigation for its sealing ability. On the basis of the self-developed program for 3-D transient sealing analysis for nuclear reactor pressure vessel, some specific measures are presented to enhance the calculation efficiency in several aspects such as the non-linear solution of elasto-plastic problem, the mixed solution algorithm for contact problem as well as contract heat transfer problem and linear equation set solver. The 3-D transient sealing analysis program is amended and complemented, with which the sealing analysis result of the pressure vessel model can be obtained. The calculation results have good regularity and the calculation efficiency is twice more than before. (authors)

  19. Electromagnetic analysis for fusion reactors: status and needs

    International Nuclear Information System (INIS)

    Turner, L.R.

    1983-01-01

    Electromagnetic effects have far-reaching implications for the design, operation, and maintenance of future fusion reactors. Two-dimensional (2-D) eddy current computer codes are available, but are of limited value in analyzing reactors. Three-dimensional (3-D) codes are needed, but are only beginning to be developed. Both 2-D and 3-D codes need verification against experimental data, such as that provided by the upcoming FELIX experiments. Coupling between eddy currents and deflections has application in fusion reactor design and is being studied both by analysis and experiment

  20. Preliminary Evaluation of the Adequacy of Lithium Resources of the World and China for D-T Fusion Reactors

    Science.gov (United States)

    Wang, Yongliang; Ni, Muyi; Jiang, Jieqiong; Wu, Yican; FDS-Team

    2012-07-01

    This paper studied the adequacy of the World and China lithium resources, considering the most promising uses in the future, involving nuclear fusion and electric-vehicles. The lithium recycle model for D-T fusion power plant and electric-vehicles, and the logistic growth prediction model of the primary energy for the World and China were constructed. Based on these models, preliminary evaluation of lithium resources adequacy of the World and China for D-T fusion reactors was presented under certain assumptions. Results show that: a. The world terrestrial reserves of lithium seems too limited to support a significant D-T power program, but the lithium reserves of China are relatively abundant, compared with the world case. b. The lithium resources contained in the oceans can be called the “permanent" energy. c. The change in 6Li enrichment has no obvious effect on the availability period of the lithium resources using FDS-II (Liquid Pb-17Li breeder blanket) type of reactors, but it has a stronger effect when PPCS-B (Solid Li4 SiO4 ceramics breeder blanket) is used.

  1. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given

  2. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given. (author)

  3. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  4. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  5. CAT-D-T tokamaks

    International Nuclear Information System (INIS)

    Greenspan, E.; Blue, T.; Miley, G.H.

    1981-01-01

    The domains of plasma fuel cycles bounded by the D-T and Cat-D, and by the D-T and SCD modes of operation are examined. These domains, referred to as, respectively, the Cat-D-T and SCD-T modes of operation, are characterized by the number (γ) of tritons per fusion neutron available from external (to the plasma) sources. Two external tritium sources are considered - the blankets of the Cat-D-T (SCD-T) reactors and fission reactors supported by the Cat-D-T (SCD-T) driven hybrid reactors. It is found that by using 6 Li for the active material of the control elements of the fission reactors, it is possible to achieve γ values close to unity. Cat-D-T tokamaks could be designed to have smaller size, higher power density, lower magnetic field and even lower plasma temperature than Cat-D tokamaks; the difference becomes significant for γ greater than or equal to .75. The SCD-T mode of operation appears to be even more attractive. Promising applications identified for these Cat-D-T and SCD-T modes of operation include hybrid reactors, fusion synfuel factories and fusion reactors which have difficulty in providing all their tritium needs

  6. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    Science.gov (United States)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  7. Sensitivity analysis of the Galerkin finite element method neutron diffusion solver to the shape of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-02-15

    The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

  8. Fusion reactor start-up without an external tritium source

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S., E-mail: Shanliang.Zheng@ccfe.ac.uk; King, D.B.; Garzotti, L.; Surrey, E.; Todd, T.N.

    2016-02-15

    Highlights: • Investigated the feasibility (including plasma physics, neutronics and economics) of starting a fusion reactor from running pure D–D fusion reactor to gradually move towards the D–T operation. • Proposed building up tritium from making use of neutrons generated by D–D fusion reactions. • Studied plasma physics feasibility for pure D–D operation and provided consistent fusion power and neutron yield in the plasma with different mixture of deuterium and tritium. • Discussed the economics aspect for operating a pure D–D fusion reactor towards a full-power D–T fusion reactor. - Abstract: It has long been recognised that the shortage of external tritium sources for fusion reactors using D–T, the most promising fusion fuel, requires all such fusion power plants (FPP) to breed their own tritium. It is also recognised that the initial start-up of a fusion reactor will require several kilograms of tritium within a scenario in which radioactive decay, ITER and subsequent demonstrator reactors are expected to have consumed most of the known tritium stockpile. To circumvent this tritium fuel shortage and ultimately achieve steady-state operation for a FPP, it is essential to first accumulate sufficient tritium to compensate for loss due to decay and significant retention in the materials in order to start a new FPP. In this work, we propose to accumulate tritium starting from D–D fusion reactions, since D exists naturally in water, and to gradually build up the D–T plasma targeted in fusion reactor designs. There are two likely D–D fusion reaction channels, (1) D + D → T + p, and (2) D + D → He3 + n. The tritium can be generated via the reaction channel ‘(1)’ and the 2.45 MeV neutrons from ‘(2)’ react with lithium-6 in the breeding blanket to produce more tritium to be fed back into plasma fuel. Quantitative evaluations are conducted for two blanket concepts to assess the feasibility and suitability of this approach to FPP

  9. The French R and D programme for fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Auchapt, P.; Bourgeois, M.; Calame-Longjean, A.; Miquel, P.; Sauteron, J.

    1979-01-01

    The process employed is the Purex process adapted to the specific case of fast breeder reactor fuels. The results achieved have demonstrated that the aqueous method can be applied to these fuels: nearly ten years of operation in the ATl workshop which reprocesses RAPSODIE fuels, and the good results obtained at the Marcoule pilot facility on large batches of fuel attest to this achievement. The CEA effort continues principally on extrapolation to industrial scale, thanks mainly to experiments conducted on industrial prototypes and to the launching of the TOR project, which will, as of 1984, allow reprocessing of FBR fuels on a significant scale, and which will provide extensive additional resources for R and D activities

  10. Experience in quality assurance of alloy D9 clad tubes for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Kapoor, K.; Prahlad, B.

    2012-01-01

    Stainless Steel Alloy D9 is the material for cladding in various sub-assemblies of Prototype Fast Breeder Reactor (PFBR). The fabrication, inspection, testing and supply of the clad tubes for the first core of PFBR is nearly completed. The paper also compares the specification requirements and the achieved results for some of the critical aspects which is arrived after completing supply against the first core requirement

  11. Development of a general coupling interface for the fuel performance code TRANSURANUS – Tested with the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.; Macián-Juan, R.

    2015-01-01

    Highlights: • A general coupling interface was developed for couplings of the TRANSURANUS code. • With this new tool simplified fuel behavior models in codes can be replaced. • Applicable e.g. for several reactor types and from normal operation up to DBA. • The general coupling interface was applied to the reactor dynamics code DYN3D. • The new coupled code system DYN3D–TRANSURANUS was successfully tested for RIA. - Abstract: A general interface is presented for coupling the TRANSURANUS fuel performance code with thermal hydraulics system, sub-channel thermal hydraulics, computational fluid dynamics (CFD) or reactor dynamics codes. As first application the reactor dynamics code DYN3D was coupled at assembly level in order to describe the fuel behavior in more detail. In the coupling, DYN3D provides process time, time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, which in case of the two-way coupling approach transfers parameters like fuel temperature and cladding temperature back to DYN3D. Results of the coupled code system are presented for the reactivity transient scenario, initiated by control rod ejection. More precisely, the two-way coupling approach systematically calculates higher maximum values for the node fuel enthalpy. These differences can be explained thanks to the greater detail in fuel behavior modeling. The numerical performance for DYN3D–TRANSURANUS was proved to be fast and stable. The coupled code system can therefore improve the assessment of safety criteria, at a reasonable computational cost

  12. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  13. Research on 3D power distribution of PWR reactor core based on RBF neural network

    International Nuclear Information System (INIS)

    Xia Hong; Li Bin; Liu Jianxin

    2014-01-01

    Real-time monitor for 3D power distribution is critical to nuclear safety and high efficiency of NPP's operation as well as the control system optimization. A method was proposed to set up a real-time monitor system for 3D power distribution by using of ex-core neutron detecting system and RBF neural network for improving the instantaneity of the monitoring results and reducing the fitting error of the 3D power distribution. A series of experiments were operated on a 300 MW PWR simulation system. The results demonstrate that the new monitor system works very well under condition of certain burnup range during the fuel cycle and reconstructs the real-time 3D distribution of reactor core power. The accuracy of the model is improved effectively with the help of several methods. (authors)

  14. Development of the Sodium-cooled Fast Reactor R and D and Technology Monitoring System

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-01-01

    This study presents a R and D performance monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. The prime goal of this system is to furnish project manager with reliable and accurate information of status of progress, performance and resource allocation, and attain traceability and visibility of project implementation for effective project management. In this study, the work breakdown structure, the related schedule and the expected outputs were established to derive the interfaces between projects and the above parameters was loaded PCs. The R and D performance monitoring system is composed of about 750 R and D activities within 'Development of Basic Key Technologies for Gen IV SFR' project in 2007. The Microsoft Project Professional software was used to monitor the progress, evaluate the results and analyze the resource distribution to activities

  15. Development of the Sodium-cooled Fast Reactor R and D and Technology Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-01-15

    This study presents a R and D performance monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. The prime goal of this system is to furnish project manager with reliable and accurate information of status of progress, performance and resource allocation, and attain traceability and visibility of project implementation for effective project management. In this study, the work breakdown structure, the related schedule and the expected outputs were established to derive the interfaces between projects and the above parameters was loaded PCs. The R and D performance monitoring system is composed of about 750 R and D activities within 'Development of Basic Key Technologies for Gen IV SFR' project in 2007. The Microsoft Project Professional software was used to monitor the progress, evaluate the results and analyze the resource distribution to activities.

  16. Getting the most D and D ''know how'' before starting to plan your decommissioning project

    International Nuclear Information System (INIS)

    Boing, L. E.

    1999-01-01

    Over the last 20 years, the Decommissioning Program of the ANL-East Site has successfully decommissioned numerous facilities including: three research reactors (a 100 MW BWR, a smaller 250 kW biological irradiation reactor and a 10 kW research reactor), a critical assembly, a suite of 61 plutonium gloveboxes in 9 laboratories, a fuels fabrication facility and several non-reactor (waste management and operations) facilities. In addition, extensive decontamination work was performed on 5 hot cells formerly used in a joint ANL/US Navy R and D program. Currently the D and D of the CP-5 research reactor is underway as is planning for several other future D and D projects. The CP-5 facility was also used as a test bed for the evaluation of select evolving D and D technologies to ascertain their value for use in future D and D projects

  17. Nuclear R and D program in Indonesia and selection of future research reactor to support it

    International Nuclear Information System (INIS)

    Baiquni, A.; Subki, I.

    1981-01-01

    The nuclear R and D program selection decision is described as a phased program, each phase having its specific objective. The elements of each phase are identified and related with the objective, from which the activities of each element are also broadly outlined. To support the nuclear R and D program and to realize the objectives in each phase, the research facilities are also developed. A new nuclear development center housing a multipurpose reactor (MPR) and various laboratories are also described. The choice of the MPR and its criteria are also described briefly

  18. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    Dobrott, D.

    1985-01-01

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  19. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  20. Investigation of slightly forced buoyant flow in a training reactor

    International Nuclear Information System (INIS)

    Legradi, G.; Aszodi, A.; Por, G.

    2001-01-01

    A measurement based on the temperature noise analysis method was carried out in the Training Reactor of the Budapest University of Technology and Economics. The main goals were the estimation of the flow velocity immediately above the reactor core and investigation of the thermal-hydraulical conditions of the reactor, mainly in the core. Subsequently 2D and 3D computations were carried out with the aid of the code CFX- 4.3. The main objective of the 2D calculation was to clarify the thermal-hydraulical conditions of the whole reactor tank with a reasonable computing demand. It was also necessary to accomplish 3D numerical investigations of the reactor core and the space above since three dimensional effects of the flow could only be studied in this way. In addition, obtaining certain boundary conditions of the 3D computations was another significant aim of the 2D investigations. It is important that the results of the noise analysis and the operational measuring system of the reactor gave us a basis for verifying our computations.(author)

  1. Introduction to reactor internal materials for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,.

  2. Introduction to reactor internal materials for pressurized water reactor

    International Nuclear Information System (INIS)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,

  3. Reactor safety: the Nova computer system

    International Nuclear Information System (INIS)

    Eisgruber, H.; Stadelmann, W.

    1991-01-01

    After instances of maloperation, the causes of defects, the effectiveness of the measures taken to control the situation, and possibilities to avoid future recurrences need to be investigated above all before the plant is restarted. The most important aspect in all these efforts is to check the sequence in time, and the completeness, of the control measures initiated automatically. For this verification, a computer system is used instead of time-consuming manual analytical techniques, which produces the necessary information almost in real time. The results are available within minutes after completion of the measures initiated automatically. As all short-term safety functions are initiated by automatic systems, their consistent and comprehensive verification results in a clearly higher level of safety. The report covers the development of the computer system, and its implementation, in the Gundremmingen nuclear power station. Similar plans are being pursued in Biblis and Muelheim-Kaerlich. (orig.) [de

  4. Applicability of base-isolation R ampersand D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.; Chang, Y.W.

    1990-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. The question, therefore, is to what extent can research and development (R ampersand D) for non-nuclear use be used to provide technological data needed for seismic isolation of a nuclear power plant. This question, of course is not unique to seismic isolation. Virtually every structural component, system, or piece of equipment used in nuclear power plants is also used in non- nuclear facilities. Experience shows that considerable effort is needed to adapt conventional technology into a nuclear power plant. Usually, more thorough analysis is required, material and fabrication quality-control requirements are more stringent as are controls on field installation. In addition, increased emphasis on maintainability and inservice inspection throughout the life of the plant is generally required to gain acceptance in nuclear power plant application. This paper reviews the R ampersand D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R ampersand D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R ampersand D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. 2 refs

  5. Overview of the US stellarator reactor study

    International Nuclear Information System (INIS)

    Lyon, J.F.; Gulec, K.; Miller, R.L.; El-Guebaly, L.

    1993-01-01

    This study, which uses a cost-minimization code that incorporates the ARIES costing and reactor component models with a I-D energy transport calculation, shows that a torsatron reactor could be competitive with a tokamak reactor

  6. Assessing reactor physics codes capabilities to simulate fast reactors on the example of the BN-600 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir [Scientific and Engineering Centre for Nuclear and Radiation Safety (SES NRS), Moscow (Russian Federation); Bousquet, Jeremy [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work aims to assess the capabilities of reactor physics codes (initially validated for thermal reactors) to simulate fast sodium cooled reactors. The BFS-62-3A critical experiment from the BN-600 Hybrid Core Benchmark Analyses was chosen for the investigation. Monte-Carlo codes (KENO from SCALE and SERPENT 2.1.23) and the deterministic diffusion code DYN3D-MG are applied to calculate the neutronic parameters. It was found that the multiplication factor and reactivity effects calculated by KENO and SERPENT using the ENDF/B-VII.0 continuous energy library are in a good agreement with each other and with the measured benchmark values. Few-groups macroscopic cross sections, required for DYN3D-MG, were prepared in applying different methods implemented in SCALE and SERPENT. The DYN3D-MG results of a simplified benchmark show reasonable agreement with results from Monte-Carlo calculations and measured values. The former results are used to justify DYN3D-MG implementation for sodium cooled fast reactors coupled deterministic analysis.

  7. Advanced fuels for nuclear fusion reactors

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1974-01-01

    Should magnetic confinement of hot plasma prove satisfactory at high β (16 πnkT//sub B 2 / greater than 0.1), thermonuclear fusion fuels other than D.T may be contemplated for future fusion reactors. The prospect of the advanced fusion fuels D.D and 6 Li.D for fusion reactors is quite promising provided the system is large, well reflected and possesses a high β. The first generation reactions produce the very active, energy-rich fuels t and 3 He which exhibit a high burnup probability in very hot plasmas. Steady state burning of D.D can ensue in a 60 kG field, 5 m reactor for β approximately 0.2 and reflectivity R/sub mu/ = 0.9 provided the confinement time is about 38 sec. The feasibility of steady state burning of 6 Li.D has not yet been demonstrated but many important features of such systems still need to be incorporated in the reactivity code. In particular, there is a need for new and improved nuclear cross section data for over 80 reaction possibilities

  8. R&D on high-power dc reactor prototype for ITER poloidal field converter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Song, Zhiquan; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Zhang, Ming, E-mail: zhangming@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Kexun [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Qin, Xiuqi [School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 (China)

    2015-10-15

    Highlights: • A new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented. • Theoretical analysis, finite-element simulation and prototype test verification are applied on the design. • The results of temperature rise and transient fault current test of prototypes are introduced and analyzed. • The success of tests demonstrates that the proposed structure is of high reliability and availability. - Abstract: This paper mainly introduces the research and development (R&D) of the high-power dc reactor prototype, whose functions are to limit the circulating current and ripple current in the ITER poloidal field (PF) converter. It needs to operate at rated large direct current 27.5 kA and withstand peak fault current up to 175 kA. Therefore, in order to meet the special requirements of the dynamic and thermal stability, a new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented, which is based on the theoretical analysis, finite-element simulation calculation and small prototype test verification. Now the full prototype has been fabricated by China industry, and the dynamic and thermal stability tests of the prototype have also been accomplished successfully. The test results are in compliance with the design and it shows the availability and feasibility of the proposed design, which may be a reference for relevant applications.

  9. Status report on the Experimental Boiling Water Reactor (EBWR) Decontamination and Decommissioning (D ampersand D) Project

    International Nuclear Information System (INIS)

    Sears, L.; Garlock, G.; Mencarelli, R.; Fellhauer, C.

    1994-01-01

    ALARON Corporation is under contract, to Argonne National Laboratory - East (ANL-E), to complete the decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR). The project, begun, in 1986 by ANL-E personnel, is projected to be completed by the end of 1994. The final phase of work was awarded to ALARON in December 1993 with the scope of work including the disassembly and removal of all remaining reactor internals, the reactor vessel, the lead bio-shield, the core liner, and the activated portion of the concrete bio-shield. This paper discusses the work undertaken beginning in January 1994 and continuing through July 1994. During this period the required pre-mobilization documentation was prepared and approved, mobilization was completed, and the reactor internals, reactor vessel, lead bio-shield and core liner were removed. The paper will compare the planned schedule to the actual schedule, discuss problems encountered, review volume reduction techniques and health and safety issues including radiological aspects of the project

  10. Fissile fuel production and usage of thermal reactor waste fueled with UO2 by means of hybrid reactor system

    International Nuclear Information System (INIS)

    Ipek, O.

    1997-01-01

    The use of Fast Breeder Reactors to produce fissile fuel from nuclear waste and the operation of these reactors with a new neutron source are becoming today' topic. In the thermonuclear reactors, it is possible to use 2.45-14.1 MeV - neutrons which can be obtained by D-T, D-D Semicatalyzed (D-D) and other fusion reactions. To be able to do these, Hybrid Reactor System, which still has experimental and theoretical studies, have to be taken into consideration.In this study, neutronic analysis of hybrid blanket with grafit reflector, is performed. D-T driven fusion reaction is surrounded by UO 2 fuel layer and the production of ''2''3''9Pu fissile fuel from waste ''2''3''8U is analyzed. It is also compared to the other possible fusion reactions. The results show that 815.8 kg/year ''2''3''8Pu with D-T reaction and 1431.6 kg/year ''2''3''8Pu with semicatalyzed (D-D) reaction can be produced for 1000 MW fusion power. This means production of 2.8/ year and 4.94/ year LWR respectively. In addition, 1000 MW fusion flower is is multiplicated to 3415 MW and 4274 MW for D-T and semicatalyzed (D-D) reactions respectively. The system works subcritical and these values are 0.4115 and 0.312 in order. The calculations, ANISN-ORNL code, S 16 -P 3 approach and DLC36 data library are used

  11. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  12. Spectral history modeling in the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Yurii

    2014-01-01

    A new method of treating spectral history effects in reactor core calculations was developed and verified in this dissertation. The nature of history effects is a dependence of fuel properties not only on the burnup, but also on the local spectral conditions during burnup. The basic idea of the proposed method is the use of the plutonium-239 concentration as the spectral history indicator. The method was implemented in the reactor dynamics code DYN3D and provides a correction for nodal cross sections according to the local spectral history. A verification of the new method was performed by single-assembly calculations in comparison with results of the lattice code HELIOS. The application of plutonium-based history correction significantly improves the cross section estimation accuracy both for UOX and MOX fuel, with quadratic and hexagonal geometry. The new method was applied to evaluate the influence of history effects on full-core calculation results. Analysis of a PWR equilibrium fuel cycle has shown a significant effect on the axial power distribution during a whole cycle, which causes axial temperature and burnup redistributions. The observed neutron flux redistribution improves neutron economy, so the fuel cycle is longer than in calculations without history corrections. Analyses of hypothetical control rod ejection accidents have shown a minor influence of history effects on the transient course and safety relevant parameters.

  13. US DOE Idaho national laboratory reactor decommissioning

    International Nuclear Information System (INIS)

    Szilagyi, Andrew

    2012-01-01

    The United States Department of Energy (DOE) primary contractor, CH2M-WG Idaho was awarded the cleanup and deactivation and decommissioning contract in May 2005 for the Idaho National Lab (INL). The scope of this work included dispositioning over 200 Facilities and 3 Reactors Complexes (Engineering Test Reactor (ETR), Materials Test Reactor (MTR) and Power Burst Facility (PBF) Reactor). Two additional reactors were added to the scope of the contract during the period of performance. The Zero Power Physics Reactor (ZPPR) disposition was added under a separate subcontractor with the INL lab contractor and the Experimental Breeder Reactor II (EBR-II) disposition was added through American Recovery and Reinvestment Act (ARRA) Funding. All of the reactors have been removed and disposed of with the exception of EBR-II which is scheduled for disposition approximately March of 2012. A brief synopsis of the 5 reactors is provided. For the purpose of this paper the ZPPR reactor due to its unique design as compared to the other four reactors, and the fact that is was relatively lightly contaminated and irradiated will not be discussed with the other four reactors. The ZPPR reactor was readily accessible and was a relatively non-complex removal as compared to the other reactors. Additionally the EBR-II reactor is currently undergoing D and D and will have limited mention in this paper. Prior to decommissioning the reactors, a risk based closure model was applied. This model exercised through the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Non-Time Critical Removal Action (NTCRA) Process which evaluated several options. The options included; No further action - maintain as is, long term stewardship and monitoring (mothball), entombment in place and reactor removal. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, beryllium, sodium (passivated and elemental), PCB oils and electrical components, lead

  14. Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J.; Satake, S.; Goto, T.; Seki, R.; Nunami, M.; Funaba, H.; Yamada, I.; Suzuki, C.; Sakamoto, R.; Motojima, G.; Yamada, H.; Sagara, A., E-mail: miyazawa@lhd.nifs.ac.jp [National Institute for Fusion Science, Toki (Japan); Yokoyama, M.; Suzuki, Y.; Masaoka, Y.; Murakami, S. [Departement Nuclear Engineering, Kyoto University, Kyoto (Japan)

    2012-09-15

    Full text: Theoretical analyses on the MHD equilibrium, the neoclassical transport, and the alpha particle transport, etc., are being carried out for a helical fusion DEMO reactor named FFHR- d1, using radial profiles extrapolated from LHD. FFHR-d1 is a heliotron type DEMO reactor of which the conceptual design activity has been launched since 2010. It is possible to sustain the burning plasma without auxiliary heating (i.e., self-ignition) in FFHR-d1, since there is no need of plasma current drive in heliotron plasmas. The device size is 4 times enlarged from LHD, i.e., the major radius of helical coil center is 15.6 m, the magnetic field strength at the helical coil center is 4.7 T, and the fusion output is {approx} 3 GW. One of the distinguished subjects in FFHR-d1 compared with the former FFHR design series is the robust similarity with LHD. The arrangement of superconducting magnet coils in FFHR-d1 is similar to that of LHD, except a pair of planar poloidal coils omitted to maximize the maintenance ports. This makes reasonable to assume a similar MHD equilibrium as observed in LHD for FFHR-d1, as long as the beta profiles in these two are similar. In FFHR-d1, radial profiles of density and temperature are determined by multiplying proper enhancement factors on those obtained in LHD, according to the DPE (Direct Profile Extrapolation) method. The enhancement factors are calculated consistently with the gyro-Bohm model. Therefore, the global confinement properties as expressed in ISS95 or ISS04 are kept in FFHR-d1. A large Shafranov shift is foreseen in FFHR-d1 due to its high-beta property. This leads to deterioration in the neoclassical transport and alpha particle confinement. Effectiveness of plasma position control and/or magnetic configuration optimization has been examined to solve this problem and to check the validity of extrapolated profiles. According to these analyses, it is concluded that the self-ignition condition can be achieved in FFHR-d1 by

  15. Status of fusion reactor concept development in Japan

    International Nuclear Information System (INIS)

    Tsuji-Iio, Shunji

    1996-01-01

    Fusion power reactor studies in Japan based on magnetic confinement schemes are reviewed. As D-T fusion reactors, a steady-state tokamak reactor (SSTR) was proposed and extensively studied at the Japan Atomic Energy Research Institute (JAERI) and an inductively operated day-long tokamak reactor (IDLT) was proposed by a group at the University of Tokyo. The concept of a drastically easy maintenance (DREAM) tokamak reactor is being developed at JAERI. A high-field tokamak reactor with force-balanced coils as a volumetric neutron source is being studied by our group at Tokyo Institute of Technology. The conceptual design of a force-free helical reactor (FFHR) is under way at the National Institute for Fusion Science. A design study of a D- 3 He field-reversed configuration (FRC) fusion reactor called ARTEMIS was conducted by the FRC fusion working group of research committee of lunar base an lunar resources. (author)

  16. CER. Research reactors in France

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2012-01-01

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  17. Modeling the PUSPATI TRIGA Reactor using MCNP code

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mark Dennis Usang; Naim Syauqi Hamzah; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh

    2012-01-01

    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)

  18. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  19. IAEA/CRP for decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H.

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities

  20. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  1. Accident analysis for new reactor concepts and VVER type reactor design with advanced fuel. STC with Russia. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Mittag, S.; Rohde, U.; Seidel, A.

    2000-10-01

    In the frame of a project on scientific-technical cooperation funded by BMBF/BMWi, the 3D reactor dynamics code DYN3D developed at Forschungszentrum Rossendorf (FZR), has been transferred to the Institute of Physics and Power Engineering (IPPE) Obninsk in Russia and integrated into the software package of IPPE. DYN3D has been coupled to a thermohydraulic system code used in IPPE making available 3D neutron kinetics within this software package. A new macroscopic cross section library has been created using a modified version of the WIMS/D4 code. This library includes data for modernized fuel design containing burnable absorbers in different concentrations, which is tested in VVER-1000 type reactors. The cross section library has been connected to DYN3D. Calculations were performed to check the library in comparison with other data libraries and codes. The code DYN3D and the coupled 3D neutron kinetics/thermal hydraulics code system were used to perform analyses of Anticipated Transients Without Scram (ATWS) for the reactor design ABV-67, an integral reactor concept with small power developed under participation of IPPE. The fluid dynamics code DINCOR developed at IPPE was transferred to FZR. It was used in validation calculations on test problems for the short-term core melt behaviour (CORVIS experiments). (orig.) [de

  2. Nuclear power plant remote monitoring system of Hessen (KFUe Hessen) now fully available

    International Nuclear Information System (INIS)

    Lettmann, W.; Merkel, M.

    1991-01-01

    The remote monitoring system for the Biblis nuclear power station has commenced operation in 1990. It is intended to provide the radiological data and other information required by the supervisory Land authority for performing its supervisory functions in accordance with the Atomic Energy Act. The monitoring station records and reports emissions of the reactor station during specified normal operation and as a result of incidents or accidents, measures local dose rates at four measuring stations at the power plant fence, and records the meteorological conditions. The system is explained in detail, including illustration and graphs. (BBR) [de

  3. 3-D seismic response of a base-isolated fast reactor

    International Nuclear Information System (INIS)

    Kitamura, S.; Morishita, M.; Iwata, K.

    1992-01-01

    This paper describes a 3-D response analysis methodology development and its application to a base-isolated fast breeder reactor (FBR) plant. At first, studies on application of a base-isolation system to an FBR plant were performed to identify a range of appropriate characteristics of the system. A response analysis method was developed based on mathematical models for the restoring force characteristics of several types of the systems. A series of shaking table tests using a small scale model was carried out to verify the analysis method. A good agreement was seen between the test and analysis results in terms of the horizontal and vertical responses. Parametric studies were then made to assess the effects of various factors which might be influential to the seismic response of the system. Moreover, the method was applied to evaluate three-dimensional response of the base-isolated FBR. (author)

  4. Emergency reactor core cooling facility

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka.

    1996-01-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  5. Emergency reactor core cooling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka

    1996-11-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  6. The ARCHER project (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Knol, S., E-mail: knol@nrg.eu [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Fütterer, M.A. [Joint Research Centre, Institute for Energy, Petten (Netherlands); Roelofs, F. [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Kohtz, N. [TÜV Rheinland, Köln (Germany); Laurie, M. [Joint Research Centre, Institute for Transuranium elements, Karlsruhe (Germany); Buckthorpe, D. [UMAN, University of Manchester, Manchester (United Kingdom); Scheuermann, W. [IKE, Stuttgart University, Stuttgart (Germany)

    2016-09-15

    The European HTR R&D project ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) builds on a solid HTR technology foundation in Europe, established through former national UK and German HTR programs and in European framework programs. ARCHER runs from 2011 to 2015 and targets selected HTR R&D subjects that would specifically support demonstration, with a focus on experimental effort. In line with the R&D and deployment strategy of the European Sustainable Nuclear Energy Technology Platform (SNETP) ARCHER contributes to maintaining, strengthening and expanding the HTR knowledge base in Europe to lay the foundations for demonstration of nuclear cogeneration with HTR systems. The project consortium encompasses conventional and nuclear industry, utilities, Technical Support Organizations, R&D organizations and academia. ARCHER shares results with international partners in the Generation IV International Forum and collaborates directly with related projects in the US, China, Japan, the Republic of Korea and South Africa. The ARCHER project has finished, and the paper comprises an overview of the achievements of the project.

  7. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  8. Generic magnetic fusion reactor cost assessment

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    The Fusion Energy Division of the Oak Ridge National Laboratory discusses ''generic'' magnetic fusion reactors. The author comments on DT burning magnetic fusion reactor models being possibly operational in the 21st century. Representative parameters from D-T reactor studies are given, as well as a shematic diagram of a generic fusion reactor. Values are given for winding pack current density for existing and future superconducting coils. Topics included are the variation of the cost of electricity (COE), the dependence of the COE on the net electric power of the reactor, and COE formula definitions

  9. Lessons from early experience in reactor development

    International Nuclear Information System (INIS)

    Allen, W.

    1976-09-01

    This paper deals with several issues in U.S. reactor development and demonstration experience. The focus is on the period between 1946 and 1963 during which the Atomic Energy Commission (AEC) guided early reactor research and development (R and D) and conducted the Power Reactor Demonstration Program

  10. Simulation in 3 dimensions of a cycle 18 months for an BWR type reactor using the Nod3D program; Simulacion en 3 dimensiones de un ciclo de 18 meses para un reactor BWR usando el programa Nod3D

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, N.; Alonso, G. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: nhm@nuclear.inin.mx; Valle, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The development of own codes that you/they allow the simulation in 3 dimensions of the nucleus of a reactor and be of easy maintenance, without the consequent payment of expensive use licenses, it can be a factor that propitiates the technological independence. In the Department of Nuclear Engineering (DIN) of the Superior School of Physics and Mathematics (ESFM) of the National Polytechnic Institute (IPN) a denominated program Nod3D has been developed with the one that one can simulate the operation of a reactor BWR in 3 dimensions calculating the effective multiplication factor (kJJ3, as well as the distribution of the flow neutronic and of the axial and radial profiles of the power, inside a means of well-known characteristics solving the equations of diffusion of neutrons numerically in stationary state and geometry XYZ using the mathematical nodal method RTN0 (Raviart-Thomas-Nedelec of index zero). One of the limitations of the program Nod3D is that it doesn't allow to consider the burnt of the fuel in an independent way considering feedback, this makes it in an implicit way considering the effective sections in each step of burnt and these sections are obtained of the code Core Master LEND. However even given this limitation, the results obtained in the simulation of a cycle of typical operation of a reactor of the type BWR are similar to those reported by the code Core Master LENDS. The results of the keJ - that were obtained with the program Nod3D they were compared with the results of the code Core Master LEND, presenting a difference smaller than 0.2% (200 pcm), and in the case of the axial profile of power, the maxim differs it was of 2.5%. (Author)

  11. RB reactor as the U-D2O benchmark criticality system

    International Nuclear Information System (INIS)

    Pesic, M.

    1998-01-01

    From a rich and valuable database fro 580 different reactor cores formed up to now in the RB nuclear reactor, a selected and well recorded set is carefully chosen and preliminarily proposed as a new uranium-heavy water benchmark criticality system for validation od reactor design computer codes and data libraries. The first results of validation of the MCNP code and adjoining neutron cross section libraries are resented in this paper. (author)

  12. Application of Reactor Antineutrinos: Neutrinos for Peace

    Science.gov (United States)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  13. Hydrogen production system coupled with high-temperature gas-cooled reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2003-01-01

    On the HTTR program, R and D on nuclear reactor technology and R and D on thermal application technology such as hydrogen production and so on, are advanced. When carrying out power generation and thermal application such as hydrogen production and so on, it is, at first, necessary to supply nuclear heat safely, stably and in low cost, JAERI carries out some R and Ds on nuclear reactor technology using HTTR. In parallel to this, JAERI also carries out R and D for jointing nuclear reactor system with thermal application systems because of no experience in the world on high temperature heat of about 1,000 centigrade supplied by nuclear reactor except power generation, and R and D on thermochemical decomposition method IS process for producing hydrogen from water without exhaust of carbon dioxide. Here were described summaries on R and D on nuclear reactor technology, R and D on jointing technology using HTTR hydrogen production system, R and D on IS process hydrogen production, and comparison hydrogen production with other processes. (G.K.)

  14. Control rod interaction models for use in 2D and 3D reactor geometries

    International Nuclear Information System (INIS)

    Bannerman, R.C.

    1985-11-01

    Control rod interaction models are developed for use in two-dimensional and three-dimensional reactor geometries. These models allow the total worth of any combination of control rods inserted to be determined from the individual worths in conjunction with an algorithm representing interaction effects between them. The validity of the assumptions is demonstrated for fast and thermal systems showing modelling errors of 1#percent# or less in inserted control rod worths. The models are ideally suited for most reactor systems. (UK)

  15. The United States Advanced Reactor Technologies Research and Development Program

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2014-01-01

    The following aspects are addressed: • Nuclear energy mission; • Reactor research development and deployment (RD&D) programs: - Light Water Reactor Sustainability Program; - Small Modular Reactor Licensing Technical Support; - Advanced Reactor Technologies (ART)

  16. Coal conversion rate in 1t/d PSU liquefaction reactor; 1t/d PSU ekika hannoto ni okeru sekitan tenka sokudo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the coal liquefaction characteristics, coal slurry samples were taken from the outlets of the reactors and slurry preheater of NEDOL process 1 t/d process supporting unit (PSU), and were analyzed. Tanito Harum coal was used for liquefaction, and the slurry was prepared with recycle solvent. Liquefaction was performed using synthetic iron sulfide catalyst at reaction temperatures, 450 and 465{degree}C. Solubility of various solid samples was examined against n-hexane, toluene, and tetrahydrofuran (THF). When considering the decrease of IMO (THF-insoluble and ash) as a characteristic of coal conversion reaction, around 20% at the outlet of the slurry preheater, around 70% within the first reactor, and several percents within the successive second and third reactors were converted against supplied coal. Increase of reaction temperature led to the increase of evaporation of oil fraction, which resulted in the decrease of actual slurry flow rate and in the increase of residence time. Thus, the conversion of coal was accelerated by the synergetic effect of temperature and time. Reaction rate constant of the coal liquefaction was around 2{times}10{sup -1} [min{sup -1}], which increased slightly with increasing the reaction temperature from 450 to 465{degree}C. 3 refs., 5 figs., 1 tab.

  17. Evaluation of LOCA in a swimming-pool type reactor using the 3D-AIRLOCA code

    International Nuclear Information System (INIS)

    Nagler, A.; Gilat, J.; Hirshfeld, H.

    1991-01-01

    The 3D-AIRLOCA code was used to calculate core temperature evolution curves in the wake of a full LOCA in a swimming pool type reactor, resulting in complete core exposure and dryout within about 1000 sec of the initiating event. The results show that fuel integrity loss thresholds (450 C for softening and 650 C for melting) are reached and exceeded over large fractions of the core at powr levels as low as 2 MW. At 4.5 MW, the softening threshold is reached even when the accident occurs up to 12 hours after reactor shutdown for continuous operation, and up to 2 hrs after shutdown for intermittent (6 hrs/day, 4 days a week) operation. The situation is even more severe in blockage cases, when the air flow through the core is blocked by residual water at the grid plate level. It is concluded that substantial fission product releases are quite likely in this class of accidents. (orig.)

  18. Reactor calculations for improving utilization of TRIGA reactor

    International Nuclear Information System (INIS)

    Ravnik, M.

    1986-01-01

    A brief review of our work on reactor calculations of 250 kW TRIGA with mixed core (standard + FLIP fuel) will be presented. The following aspects will be treated: - development of computer programs; - optimization of in-core fuel management with respect to fuel costs and irradiation channels utilization. TRIGAP programme package will be presented as an example of computer programs. It is based on 2-group 1-D diffusion approximation and besides calculations offers possibilities for operational data logging and fuel inventory book-keeping as well. It is developed primarily for the research reactor operators as a tool for analysing reactor operation and fuel management. For this reason it is arranged for a small (PC) computer. Second part will be devoted to reactor physics properties of the mixed cores. Results of depletion calculations will be presented together with measured data to confirm some general guidelines for optimal mixed core fuel management. As the results are obtained using TRIGAP program package results can be also considered as an illustration and qualification for its application. (author)

  19. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  20. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    High-flux neutron sources are continuing to be of interest both in Canada and internationally to support materials testing for advanced power reactors, new developments in extracted-neutron-beam applications, and commercial production of selected radioisotopes. The advanced MAPLE reactor concept has been developed to meet these needs. The advanced MAPLE reactor is a new tank-type D 2 O reactor that uses rodded low-enrichment uranium fuel in a compact annular core to generate peak thermal-neutron fluxes of 1 x 10 19 n·s -1 in a central irradiation rig with a thermal power output of 50 MW. Capital and incremental development costs are minimized by using MAPLE reactor technology to the greatest extent practicable

  1. FRACTURE MECHANICS UNCERTAINTY ANALYSIS IN THE RELIABILITY ASSESSMENT OF THE REACTOR PRESSURE VESSEL: (2D SUBJECTED TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Entin Hartini

    2016-06-01

    Full Text Available ABSTRACT FRACTURE MECHANICS UNCERTAINTY ANALYSIS IN THE RELIABILITY ASSESSMENT OF THE REACTOR PRESSURE VESSEL: (2D SUBJECTED TO INTERNAL PRESSURE. The reactor pressure vessel (RPV is a pressure boundary in the PWR type reactor which serves to confine radioactive material during chain reaction process. The integrity of the RPV must be guaranteed either  in a normal operation or accident conditions. In analyzing the integrity of RPV, especially related to the crack behavior which can introduce break to the reactor pressure vessel, a fracture mechanic approach should be taken for this assessment. The uncertainty of input used in the assessment, such as mechanical properties and physical environment, becomes a reason that the assessment is not sufficient if it is perfomed only by deterministic approach. Therefore, the uncertainty approach should be applied. The aim of this study is to analize the uncertainty of fracture mechanics calculations in evaluating the reliability of PWR`s reactor pressure vessel. Random character of input quantity was generated using probabilistic principles and theories. Fracture mechanics analysis is solved by Finite Element Method (FEM with  MSC MARC software, while uncertainty input analysis is done based on probability density function with Latin Hypercube Sampling (LHS using python script. The output of MSC MARC is a J-integral value, which is converted into stress intensity factor for evaluating the reliability of RPV’s 2D. From the result of the calculation, it can be concluded that the SIF from  probabilistic method, reached the limit value of  fracture toughness earlier than SIF from  deterministic method.  The SIF generated by the probabilistic method is 105.240 MPa m0.5. Meanwhile, the SIF generated by deterministic method is 100.876 MPa m0.5. Keywords: Uncertainty analysis, fracture mechanics, LHS, FEM, reactor pressure vessels   ABSTRAK ANALISIS KETIDAKPASTIAN FRACTURE MECHANIC PADA EVALUASI KEANDALAN

  2. Application of RELAP5-3D code for thermal analysis of the ADS reactor core; Aplicação do código RELAP5-3D para análise térmica do núcleo de um reator ADS

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Gustavo Henrique Nazareno

    2018-04-01

    Nuclear power is essential to supply global energy demand. Therefore, in order to use nuclear fuel more efficiently, more efficient nuclear reactors technologies researches have been intensified, such as hybrid systems, composed of particle accelerators coupled into nuclear reactors. In order to add knowledge to such studies, an innovative reactor design was considered where the RELAP5-3D thermal-hydraulic analysis code was used to perform a thermal analysis of the core, either in stationary operation or in situations transitory. The addition of new kind of coolants, such as, liquid salts, among them Flibe, lead, lead-bismuth, sodium, lithium-bismuth and lithium-lead was an important advance in this version of the code, making possible to do the thermal simulation of reactors that use these types of coolants. The reactor, object of study in this work, is an innovative reactor, due to its ability to operate in association with an Accelerator Driven System (ADS), considered a predecessor system of the next generation of nuclear reactors (GEN IV). The reactor selected was the MYRRHA (Multi-purpose Hybrid Research Reactor for High tech Applications) due to the availability of data to perform the simulation. In the modeling of the reactor with the code RELAP5-3D, the core was simulated using nodules with 1, 7, 15 and 51 thermohydraulic channels and eutectic lead-bismuth (LBE) as coolant. The parameters, such as, pressure, mass flow and coolant and heat structure temperature were analyzed. In addition, the thermal behavior of the core was evaluated by varying the type of coolant (sodium) in substitution for the LBE of the original design using the model with 7 thermohydraulic channels. The results of the steady-state calculations were compared with data from the literature and the proposed models were verified certifying the ability of the RELAP5-3D code to simulate this innovative reactor. After this step, it was analysed cases of transients with loss of coolant flow

  3. Polarized advanced fuel reactors

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    The d- 3 He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs

  4. DRAGON and SERPENT 2-D modelling of the SLOWPOKE-2 reactor at Ecole Polytechnique Montreal

    International Nuclear Information System (INIS)

    Raouafi, H.; Marleau, G.

    2012-01-01

    DRAGON is a deterministic code that can be used to perform lattice cell calculations based on numerical solutions of neutron transport equation. DRAGON can also be used for full core 2-D and 3-D simulations in transport. One alternative to the use of such a deterministic code consist in following the history of neutrons in the core based on statistical Monte Carlo simulation with codes like MCNP and SERPENT. This second calculation approach has been used successfully for SLOWPOKE-2 simulation in the past. Here we present a comparison between DRAGON and SERPENT calculations for the SLOWPOKE-2 reactor. We also compare the flux distribution obtained using both codes for a copper sample placed inside a small irradiation site. (author)

  5. Thermal fluid dynamics study of nuclear advanced reactors of high temperature using RELAP5-3D; Estudo termofluidodinâmico de reatores nucleares avançados de alta temperatura utilizando o RELAP5-3D

    Energy Technology Data Exchange (ETDEWEB)

    Scari, Maria Elizabeth

    2017-07-01

    Fourth Generation nuclear reactors (GEN-IV) are being designed with special features such as intrinsic safety, reduction of isotopic inventory and use of fuel in proliferation-resistant cycles. Therefore, the investigation and evaluation of operational and safety aspects of the GEN-IV reactors have been the subject of numerous studies by the international community and also in Brazil. In 2008, in Brazil, was created the National Institute of Science and Technology of Innovative Nuclear Reactors, focusing on studies of projects and systems of new generation reactors, which included GEN-IV reactors as well as advanced PWR (Pressurized Water Reactor) concepts. The Department of Nuclear Engineering of the Federal University of Minas Gerais (DEN-UFMG) is a partner of this Institute, having started studies on the GEN-IV reactors in the year 2007. Therefore, in order to add knowledge to these studies, in this work, three projects of advanced reactors were considered to verify the simulation capability of the thermo-hydraulic RELAP5-3D code for these systems, either in stationary operation or in transient situations. The addition of new working fluids such as ammonia, carbon dioxide, helium, hydrogen, various types of liquid salts, among them Flibe, lead, lithium-bismuth, lithium-lead, was a major breakthrough in this version of the code, allowing also the simulation of GEN-IV reactors. The modeling of the respective core of an HTTR (High Temperature Engineering Test Reactor), HTR-10 (High Temperature Test Module Reactor) and LS-VHTR (Liquid-Salt-Cooled Very-High-Temperature Reactor) were developed and verified in steady state comparing the values found through the calculations with reference data from other simulations, when it is possible. The first two reactors use helium gas as coolant and the LS-VHTR uses a mixture of 66% LiF and 34% of BeF{sub 2}, the LiF-BeF{sub 2}, also know as Flibe. All the studied reactors use enriched uranium as fuel, in form of TRISO

  6. Gestion de bibliothèque au niveau de la Faculté de technologie

    OpenAIRE

    Mekkioui, Nadjet; Belhadj, Fatima Zohra

    2014-01-01

    Notre projet consiste à développer un logiciel permettant la gestion automatique de la bibliothèque de la Faculté de technologie. Cette automatisation concerne la gestion de prêt d’ouvrages, et ce en utilisant la méthode d'informatisation Merise. Cette dernière permet de concevoir un système d'information pour implanter le logiciel de gestion qui est développé dans un environnement Delphi. Nous avons focalisé notre projet sur la gestion automatique de prêt au niveau de la bibli...

  7. The neutron small-angle camera D11 at the high-flux reactor, Grenoble

    International Nuclear Information System (INIS)

    Ibel, K.

    1976-01-01

    The neutron small-angle scattering system at the high-flux reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small-angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The full length of the collimator before the fixed sample position can be reduced by movable neutron guides; the second flight path of 40 m full length contains detector sites in various positions. Thus a large range of momentum transfers can be used with the same relative resolution. Scattering angles between 5 x 10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered at different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. (Auth.)

  8. Safety and risk assessments for the SNR 300

    International Nuclear Information System (INIS)

    Maschek, W.; Froehlich, R.; Jacobs, H.; Schikorr, M.; Heusener, G.; Caldarola, L.; Royl, P.; Struwe, D.

    1983-01-01

    Under the official inquiry ''Future Nuclear Energy Policies'', KfK have carried out a number of studies concerning the hazards arising from core-destructive accidents at the SNR-300 reactor. Among these, there was the so-called ''Upper Limit Study'' providing a critical evaluation of literature on all research done on core-destructive accidents (Bethe-Tait excursion) with a high mechanic energy release potential; the other one was the so-called ''SAI Study'' (a cooperation of KfK, Science Applications, Inc. (SAI) and Interatom (IA)) which investigated the hazards of an uncontrolled coolant flow rate disturbance occurring in the SNR-300 reactor. KfK also took part in the analysis of hazards comparing the SNR-300 reactor with an LWR-type reactor like the one at Biblis B, ordered by the Federal Ministry of Research and Technology (BMFT). These studies have already been dealt with KfK-Nachrichten, 14th annual set issue 4/1982. The article on hand summarizes and evaluates once more the most important results. (orig./RW) [de

  9. Mixing In Jet-Stirred Reactors With Different Geometries

    KAUST Repository

    Ayass, Wassim W.

    2013-12-01

    This work offers a well-developed understanding of the mixing process inside Jet- Stirred Reactors (JSR’s) with different geometries. Due to the difficulty of manufacturing these JSR’s made in quartz, existing JSR configurations were assessed with certain modifications and optimal operating conditions were suggested for each reactor. The effect of changing the reactor volume, the nozzle diameter and shape on mixing were both studied. Two nozzle geometries were examined in this study, a crossed shape nozzle and an inclined shape nozzle. Overall, six reactor configurations were assessed by conducting tracer experiments - using the state-of-art technologies of high-speed cameras and laser absorption spectroscopy- and Computational Fluid Dynamics (CFD) simulations. The high-speed camera tracer experiment gives unique qualitative information – not present in the literature – about the actual flow field. On the other hand, when using the laser technique, a more quantitative analysis emerges with determining the experimental residence time distribution (RTD) curves of each reactor. Comparing these RTD curves with the ideal curve helped in eliminating two cases. Finally, the CFD simulations predict the RTD curves as well as the mixing levels of the JSR’s operated at different residence times. All of these performed studies suggested the use of an inclined nozzle configuration with a reactor diameter D of 40mm and a nozzle diameter d of 1mm as the optimal choice for low residence time operation. However, for higher residence times, the crossed configuration reactor with D=56mm and d=0.3mm gave a nearly perfect behavior.

  10. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    Science.gov (United States)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  11. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Millot, J P [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m{sup 3}/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  12. Some equipment for graphite research in swimming pool reactors; Quelques dispositifs d'etude du graphite dans les piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M; Arragon, Ph; Dupont, G; Gentil, J; Tanis, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    The irradiation devices described are used for research concerning reactors of the natural uranium type, moderated by graphite and cooled by carbon dioxide. The devices are generally designed for use in swimming pool reactors. The following points have been particularly studied: - maximum use of the irradiation volume, - use of the simplest technological solutions, - standardization of certain constituent parts. This standardization calls for precision machining and careful assembling; these requirements are also true when a relatively low irradiation temperature is required and the nuclear heating is pronounced. Finally, the design of these devices is suitable for the irradiation of other fissile or non-fissile materials. (authors) [French] Les dispositifs d'irradiation decrits servent aux etudes relatives a la filiere des reacteurs a uranium naturel, moderes au graphite et refroidis par le gaz carbonique. Ils sont generalement concus pour etre utilises dans des piles piscines. L'accent a ete mis sur: - l'utilisation au maximum du volume d'irradiation, - le recours aux solutions technologiques les plus simples, - la standardisation de certaines parties constitutives. Cette standardisation impose un usinage precis et un montage soigne, lesquels sont egalement necessaires lorsqu'on doit obtenir une temperature d'irradiation relativement basse alors que l'echauffement nucleaire est important. Enfin, la conception de ces dispositifs est valable pour irradier d'autres materiaux non fissiles ou fissiles. (auteurs)

  13. An overview of thermalhydraulics R and D for SLOWPOKE heating reactors

    International Nuclear Information System (INIS)

    Dimmick, G.R.

    1988-09-01

    AECL is currently demonstrating the use of pool-type reactors of up to 10 MW output to produce hot water at about 90 degrees Celsius. The initial focus for the development is the provision of a source of hot water for institutional and municipal heating networks. Ongoing developments are designed to broaden the applications to electricity generation and industrial processes such as desalination and agricultural needs. The reactor concept is based on the Slowpoke-2 research reactor, eight of which are successfully operating in Canada and abroad. The primary-circuit flow is driven by natural convection, with the heated water, produced by the reactor core near the bottom of the pool, being ducted to low-pressure-drop heat exchangers in the upper part of the pool. As the pool volume is relatively large, the fluid transit time around the circuit is long, ensuring that the reactor response to all normal transients is extremely slow. To investigate thermalhydraulics aspects of the reactor design, including its behaviour underextreme conditions, an electrically heated, natural-convection loop was designed and constructed. The core of the loop consists of a rod bundle that is a precise reproduction of one quarter of the core of the 2-MW SLOWPOKE Demonstration Reactor presently being tested at the Whiteshell Nuclear Research Establishment. With this loop, measurements of the distribution of pressure, temperature, velocity and subcooled void have been made in the simulated core, via a variety of intrusive and non-intrusive techniques. In addition, both the single- and two-phase behaviour of the system have been studied. This paper gives examples of the various in-core measurements made and also makes comparisons between the measured system behaviour and that predicted by the various steady-state and transient computer codes

  14. Super critical water reactors

    International Nuclear Information System (INIS)

    Dumaz, P.; Antoni, O; Arnoux, P.; Bergeron, A; Renault, C.; Rimpault, G.

    2005-01-01

    Water is used as a calori-porter and moderator in the most major nuclear centers which are actually in function. In the pressurized water reactor (PWR) and boiling water reactor (BWR), water is maintained under critical point of water (21 bar, 374 Centigrade) which limits the efficiency of thermodynamic cycle of energy conversion (yield gain of about 33%) Crossing the critical point, one can then use s upercritical water , the obtained pressure and temperature allow a significant yield gains. In addition, the supercritical water offers important properties. Particularly there is no more possible coexistence between vapor and liquid. Therefore, we don't have more boiling problem, one of the phenomena which limits the specific power of PWR and BWR. Since 1950s, the reactor of supercritical water was the subject of studies more or less detailed but neglected. From the early 1990s, this type of conception benefits of some additional interests. Therefore, in the international term G eneration IV , the supercritical water reactors had been considered as one of the big options for study as Generation IV reactors. In the CEA, an active city has engaged from 1930 with the participation to a European program: The HPWR (High Performance Light Water Reactor). In this contest, the R and D studies are focused on the fields of neutrons, thermodynamic and materials. The CEA intends to pursue a limited effort of R and D in this field, in the framework of international cooperation, preferring the study of versions of rapid spectrum. (author)

  15. TORT-TD/ATTICA3D: a coupled neutron transport and thermal hydraulics code system for 3-D transient analysis of gas cooled high temperature reactors

    International Nuclear Information System (INIS)

    Lapins, J.; Seubert, A.; Buck, M.; Bader, J.; Laurien, E.

    2011-01-01

    Comprehensive safety studies of high temperature gas cooled reactors (HTR) require full three dimensional coupled treatments of both neutron kinetics and thermal-hydraulics. In a common effort, GRS and IKE developed the coupled code system TORT-TD/ATTICA3D for pebble bed type HTR that connects the 3-D transient discrete-ordinates transport code TORT-TD with the 3-D porous medium thermal-hydraulics code ATTICA3D. In this paper, the physical models and calculation capabilities of TORT-TD and ATTICA3D are presented, focusing on model improvements in ATTICA3D and extensions made in TORT-TD related to HTR application. For first applications, the OECD/NEA/NSC PBMR-400 benchmark has been chosen. Results obtained with TORT-TD/ATTICA3D will be shown for transient exercises, e.g. control rod withdrawal and a control rod ejection. Results are compared to other benchmark participants' solutions with special focus on fuel temperature modelling features of ATTICA3D. The provided “grey-curtain” nuclear cross section libraries have been used. First results on 3-D effects during a control rod withdrawal transient will be presented. (author)

  16. 'Experience with decommissioning of research and test reactors at Argonne National Laboratory'

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Yule, T.J.; Fellhauer, C.R.; Boing, L.E.

    2002-01-01

    A large number of research reactors around the world have reached the end of their useful operational life. Many of these are kept in a controlled storage mode awaiting decontamination and decommissioning (D and D). At Argonne National Laboratory located near Chicago in the United States of America, significant experience has been gained in the D and D of research and test reactors. These experiences span the entire range of activities in D and D - from planning and characterization of the facilities to the eventual disposition of all waste. A multifaceted D nd D program has been in progress at the Argonne National Laboratory - East site for nearly a decade. The program consists of three elements: - D and D of nuclear facilities on the site that have reached the end of their useful life; - Development and demonstrations of technologies that help in safe and cost effective D and D; - Presentation of training courses in D and D practices. Nuclear reactor facilities have been constructed and operated at the ANL-E site since the earliest days of nuclear power. As a result, a number of these early reactors reached end-of-life long before reactors on other sites and were ready for D and D earlier. They presented an excellent set of test beds on which D and D practices and technologies could be demonstrated in environments that were similar to commercial reactors, but considerably less hazardous. As shown, four reactor facilities, plutonium contaminated glove boxes and hot cells, a cyclotron facility and assorted other nuclear related facilities have been decommissioned in this program. The overall cost of the program has been modest relative to the cost of comparable projects undertaken both in the U.S. and abroad. The safety record throughout the program was excellent. Complementing the actual operations, a set of D and D technologies are being developed. These include robotic methods of tool handling and operation, chemical and laser decontamination techniques, sensors

  17. Overview of U.S. Fast Reactor Technology Program

    International Nuclear Information System (INIS)

    Hill, Robert

    2013-01-01

    • Concept development studies guide R&D tasks by evaluating system impact for broad variety of technology options: – Small-scale facilities for R&D on key technology; – No near-term plan for demonstration reactor. • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction): – Advanced Structural Materials; – Advanced Energy Conversion; – Advanced Modeling and Simulation. • Other R&D is conducted to address known technology challenges: – Safety and Licensing; – Fuels Development; – Undersodium Viewing

  18. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  19. Heavy water cycle in the CANDU reactor

    International Nuclear Information System (INIS)

    Nanis, R.

    2000-01-01

    Hydrogen atom has two isotopes: deuterium 1 H 2 and tritium 1 H 3 . The deuterium oxide D 2 O is called heavy water due to its density of 1105.2 Kg/m 3 . Another important physical property of the heavy water is the low neutron capture section, suitable to moderate the neutrons into natural uranium fission reactor as CANDU. Due to the fact that into this reactor the fuel is cooled into the pressure tubes surrounded by a moderator, the usage of D 2 O as primary heat transport (PHT) agent is mandatory. Therefore a large amount of heavy water (approx. 500 tons) is used in a CANDU reactor. Being a costly resource - it represents 20% of the initial plant capital cost, D 2 O management is required to preserve it. (author)

  20. Research reactor decommissioning planning - It is never too early to start

    International Nuclear Information System (INIS)

    Eby, R.S.; Buttram, C.; Ervin, P.; Lundberg, L.; Hertel, N.; Marske, S.G.

    2003-01-01

    Whether an organization is in the process of designing, constructing or operating nuclear research reactors, past experiences prove it is never too early to start planning for the eventual decontamination, dismantlement and decommissioning (DD and D) of the reactor. If one waits until writing the Decommissioning Plan to seriously think about the DD and D activities, they have lost a key opportunity to be able to efficiently and effectively carry out the DD and D activities and will end up spending large sums of unnecessary funds during the DD and D. This paper will review all phases of research reactor decommissioning from characterization through planning, to eventual DD and D and license termination and highlight areas where early planning can significantly reduce the financial, safety and schedule risks associated with the DD and D activities. CH2M HILL served as the Executive Engineer for the Georgia Institute of Technology and the State of Georgia to oversee the successful DD and D of their tank type research reactor. CH2M HILL is currently serving as the DD and D contractor for the University of Virginia pool type UVAR and the low power CAVALIER research reactors and as the characterization and Decommissioning Planning contractor for the University of Michigan Ford Nuclear Reactor. Through these activities, an array of lessons learned have been compiled that will prove invaluable to the research reactor owner when they eventually face the DD and D challenge. As an example, in almost every case CH2M HILL has been involved in reactor DD and D, less than adequate up-front characterization has significantly impacted the ultimate DD and D process cost and schedule. Due to regulatory reasons, intrusive characterization may not always be possible prior to DD and D. However, a thorough understanding of the materials of construction and the quantities of additives or impurities present in those materials; e.g., cobalt in stainless steel, rare earth elements or

  1. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  2. Selection of operations staff, qualifications and experience

    International Nuclear Information System (INIS)

    Gutmann, H.

    1977-01-01

    Requirements and suggestions have been made by authorities and various organisations in a number of countries which define necessary experience and training for the various groups of nuclear power plant personnel. For two countries, the USA and the FRG, a comparison has been made which shows that there is only a slight deviation, taking into account the different education systems. With the example of the Biblis nuclear power plant the training on the job is described. Especially the production or operation department is looked at in more detail. The training is split up into several parts: a general part, such as nuclear physics, reactor physics and engineering, reactor safety, radiation protection and so on and a plant related part, such as arrangement and mode of operation of the plant under normal and accident conditions, license conditions and so on. (orig.) [de

  3. D1+ Simulator: A cost and risk optimized approach to nuclear power plant simulator modernization

    International Nuclear Information System (INIS)

    Wischert, W.

    2006-01-01

    D1-Simulator is operated by Kraftwerks-Simulator-Gesellschaft (KSG) and Gesellschaft f?r Simulatorschulung (GfS) at the Simulator Centre in Essen since 1977. The full-scope control room training simulator, used for Kernkraftwerk Biblis (KWB) is based on a PDP-11 hardware platform and is mainly programmed in ASSEMBLER language. The Simulator has reached a continuous high availability of operation throughout the years due to specialized hardware and software support from KSG maintenance team. Nevertheless, D1-Simulator largely reveals limitations with respect to computer capacity and spares and suffers progressively from the non-availability of hardware replacement materials. In order to ensure long term maintainability within the framework of the consensus on nuclear energy, a 2-years refurbishing program has been launched by KWB focusing on quality and budgetary aspects. The so-called D1+ Simulator project is based on the re-use of validated data from existing simulators. Allowing for flexible project management methods, the project outlines a cost and risk optimized approach to Nuclear Power Plant (NPP) Simulator modernization. D1+ Simulator is being built by KSG/GfS in close collaboration with KWB and the simulator vendor THALES by re-using a modern hardware and software development environment from D56-Simulator, used by Kernkraftwerk Obrigheim (KWO) before its decommissioning in 2005. The Simulator project, launched in 2004, is expected to be completed by end of 2006. (author)

  4. Qualification of the nuclear reactor core model DYN3D coupled to the thermohydraulic system code ATHLET, applied as an advanced tool for accident analysis of VVER-type reactors. Final report; Qualifizierung des Kernmodells DYN3D im Komplex mit dem Stoerfallcode ATHLET als fortgeschrittenes Werkzeug fuer die Stoerfallanalyse von WWER-Reaktoren. T. 1. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.

    1998-03-01

    The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [Deutsch] Das Reaktorkernmodell DYN3D mit 3D Neutronenkinetik wurde an den Thermohydraulik-Systemcode ATHLET angekoppelt. Im vorliegenden Bericht werden Arbeiten zur Qualifizierung des gekoppelten Codekomplexes zu einem validierten Hilfsmittel fuer Stoerfallablaufanalysen zu Reaktoren des russischen Typs WWER dargestellt. Diese umfassten im einzelnen: - Beitraege zur Validierung der Einzelcodes ATHLET und DYN3D anhand der Nachrechnung von Experimenten zum

  5. Development Plan and R&D Status of China Lead-based Reactors (CLEAR) for ADS, LFR and Fusion

    International Nuclear Information System (INIS)

    Wu Yican

    2013-01-01

    China has launched the ADS engineering construction project in 2011. The engineering design and related R&D activities are going on in order to finish the construction of the first system around 2017. China has a strong program to support the development of fusion and hybrid concepts and R&D activities in order to initiate the construction of fusion test reactor in the near future. CLEAR may play an important bridge role in the transition period from fission energy to fusion energy, such as to support: • Nuclear waste transmutation, fuel breeding, energy production, for promoting fission industry. • Technology sharing, pre-test platform, tritium supply, for promoting fusion development

  6. PERICLES 2D experiment

    International Nuclear Information System (INIS)

    Morel, Christophe

    2001-01-01

    Scope of the lecture was the modelling of severe reactor accidents. The PERICLES 2D experiment was compared to CATHARE 3D simulation results considering progression of a quench front inside the reactor core, steam flow rates, heat conduction, cladding temperature. (uke)

  7. Unstructured 3D core calculations with the descartes system application to the JHR research reactor

    International Nuclear Information System (INIS)

    Baudron, A. M.; Doderlein, C.; Guerin, P.; Lautard, J. J.; Moreau, F.

    2007-01-01

    Recent developments in the DESCARTES system enable neutronics calculations dealing with very complex unstructured geometrical configurations. The discretization can be made either by using a very fine Cartesian mesh and the fast simplified transport (SPN) solver MINOS, or a discretization based on triangles and the SP1 solver MINARET. In order to perform parallel calculations dealing with a very fine mesh in 3D, a domain decomposition with non overlapping domains has been implemented. To illustrate these capabilities, we present an application on the future European research reactor JHR dedicated to technological irradiations. (authors)

  8. Tritium contamination experience in an operational D-T fusion reactor

    International Nuclear Information System (INIS)

    Gentile, C.A.; Ascione, G.

    1994-01-01

    During December 1993, the Tokamak Fusion Test Reactor (TFTR) injected a mixture of deuterium and tritium in the TFTR vacuum vessel for the purpose of creating D-T plasmas. The tritium used in these D-T plasmas was stored, delivered and processed in the TFTR tritium facility that includes the tritium vault, waste handling area, clean-up area, and gas holding tank room. During this time period, several components in the tritium process system were found to have tritium leaks which led to tritium deposition on process skids, components and floor area. Radiological surveys of surfaces contaminated with tritium oxide indicate a decrease in surface contamination in time (on the order of 12 to 36 hours) as the result of room ventilation. In instances where the facility HVAC system was maintained in the purge mode, a dramatic decrease in surface contamination was observed. Areas contaminated with tritium oxide (> 16.6 Bq/100 cm 2 ) were found to be clean ( 2 ) after several hours of continuous purging by the facility HVAC system. In instances where relative humidity was not decreased, the tritium surface contamination was found to be attenuated. During the months of December 1993, January and February 1994 tritium leaking components were either replaced, redesigned or repaired. During this time period, data were collected in the form of contamination surveys, real time tritium monitor output, and HVAC configuration indicating the correlation of purge ventilation leading to a decrease in tritium oxide surface contamination

  9. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-01

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis

  10. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Rule, K.; Viola, M.; Williams, M.; Strykowsky, R.

    1999-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling

  11. Netherlands Reactor Centre

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Briefly reviews the last year's work of the twenty year old Netherlands Reactor Centre (RCN) in the fields of reactor safety, fissile material, nuclear fission, non-nuclear energy systems and overseas co-operation. The annual report thus summarised is the last one to appear under the name of RCN. The terms of reference of the organisation having been broadened to include research into energy supply in general, it is to be known in future as the Netherlands Energy Research Centre (ECN). (D.J.B.)

  12. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J.; Millot, J.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m{sup 3}/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under

  13. Development of Advanced Monitoring System with Reactor Neutrino Detection Technique for Verification of Reactor Operations

    International Nuclear Information System (INIS)

    Furuta, H.; Tadokoro, H.; Imura, A.; Furuta, Y.; Suekane, F.

    2010-01-01

    Recently, technique of Gadolinium-loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and ''nuclear Gain (GA)'' for IAEA safeguards. When the thermal operation power is known, it is, in principle, possible to non-destructively measure the ratio of Pu/U in reactor fuel under operation from the reactor neutrino flux. An experimental program led by Lawrence Livermore National Laboratory and Sandia National Laboratories in USA has already demonstrated feasibility of the reactor monitoring by neutrinos at San Onofre Nuclear Power Station, and the Pu monitoring by neutrino detection is recognized as a candidate of novel technology to detect undeclared operation of reactor. However, further R and D studies of detector design and materials are still necessary to realize compact and mobile detector for practical use of neutrino detector. Considering the neutrino interaction cross-section and compact detector size, the detector must be set at a short distance (a few tens of meters) from reactor core to accumulate enough statistics for monitoring. In addition, although previous reactor neutrino experiments were performed at underground to reduce cosmic ray muon background, feasibility of the measurement at ground level is required for the monitor considering limited access to the reactor site. Therefore, the detector must be designed to be able to reduce external backgrounds extremely without huge shields at ground level, eg. cosmic ray muons and fast neutrons. We constructed a 0.76 ton Gd-LS detector, and carried out a reactor neutrino measurement at the experimental fast reactor JOYO in 2007. The neutrino detector was set up at 24.3m away from the reactor core at the ground level, and we understood the property of the main background; the cosmic-ray induced fast neutron, well. Based on the experience, we are constructing a new detector for the next experiment. The detector is a Gd

  14. EURATOM's Programme of Participation in Power Reactor Construction; Le programme de participation d'Euratom aux reacteurs de puissance; Programma uchastiya v razrabotke ehnergeticheskikh reaktorov Evratoma; El programa de participacion de la Euratom en la construccion y explotacion de reactores de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ramadier, R. C.; Parker, E. [Communaute Europoenne de l' Energie Atomique, Bruxelles (Belgium)

    1963-10-15

    One of the means used by the Commission of EURATOM to promote the development of a European nuclear industry is a programme of ''Community participation'', under which the Commission will participate in power reactor construction up to a total expenditure of 32 million European Monetary Agreement units of account. The return for this will be the acquisition of information on the design, construction, start-up and operation of such reactors. So far, proposals from three companies have resulted in the signing of contracts. These companies are: (a) The Societa Elettronucleare Nazionale (SENN), which is constructing a station of 150 MW(e) net in Italy, equipped with a double-cycle boiling-water reactor; (b) The Societa Italiana Meridionale Energia Atomica (SIMEA), which has undertaken to construct a station f 200 MW(e) net in Italy, equipped with a natural uranium-graphite-CO{sub 2} reactor; (c) The Societe d'Energie Nucleaire Franco-Belge des Ardennes (SENA), which has undertaken to construct, on the French-Belgian border, a station which will be equipped with a pressurized-water reactor and whose output will reach, and probably exceed, 242 MW(e) net. Further, the Commission has been requested by the Rheinisch-Westfalisches Elektrizitatswerk - Bayernwerke (RWE-BW) group and the N.V. Samenwerkende Electriciteits-Productiebedrijve to take part in the construction o f two other power reactors - the first a 237 MW(e) double-cycle boiling-water reactor, and the second a 50 MW(e) single-cycle, natural-circulation boiling-water reactor. Community participation can take various forms, one of them being the sharing of any deficit that might result from the production of electricity by the stations during their first years of operation. The effect of EURATOM's participation has been to encourage the construction of some of these nuclear power stations. Moreover, it has resulted in the gathering of extremely useful information and w ill continue to do so in the years to come

  15. Treatment of chemical-pharmaceutical wastewater in packed bed anaerobic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nacheva, P.M.; Pena-Loera, B.; Moralez-Guzman, F. [Mexican Institute for Water Technology, Jiutepec (Mexico)

    2006-07-01

    Biological degradation in packed bed anaerobic mesophilic reactors with five different support materials was studied for the treatment of chemical-pharmaceutical wastewater with high COD (23-31 g/L), which contains toxic organic compounds. Experimental up-flow bio-filters were operated at different organic loads for a two-year period. Removals of 80-98% were obtained in the reactors with sand, anthracite and black tezontle, but at relatively low organic loads, less than 3.6 kg m{sup -3} d{sup -1}. The reactor with granular activated carbon (GAC) had a better performance; efficiencies higher than 95% were obtained at loads up to 17kg m{sup -3} d{sup -1} and higher than 80% with loads up to 26 kg m{sup -3} d{sup -1}. Second in performance was the reactor with red tezontle which allows COD removals higher than 80% with loads up to 6 kg m{sup -3} d{sup -1}. The use of GAC as support material allows greater biodegradation rates than the rest of the materials and it makes the process more resistant to organic load increases, inhibition effects and toxicity. Methanogenic activity was inhibited at loads higher than 21.9 kg m{sup -3} d{sup -1} in the GAC-reactor and at loads higher than 3.6 kg m{sup -3} d{sup -1} in the rest of the reactors. At loads lower than the previously mentioned, high methane production yield was obtained, 0.32-0.35 m{sup 33}CH4/kg CODremoved.

  16. Neutron noise measurement technique in a coupled reactor

    International Nuclear Information System (INIS)

    Genoud, J.P.

    1976-01-01

    Describes work carried out on the swimming pool reactor at the Physikalisch-Technische Bundesanstalt at Braunschweig. The reactor has two multiplying zones, is light water moderated, with 90% enriched 235 U fuel. There is a D 2 0 reservoir between the two parts of the reactor. Signal/noise ratio obtained by means of ionisation chamber type neutron detectors of 10 -13 amp/u.f. sensitivity is of the order of 40 dB and band frequency 1.5 kHz. Spectral density of the interzone interaction energy was obtained by use of Fourier transforms, previously corrected by a Hanning window. (S.W.)

  17. Maintenance management of nuclear power reactors at the stage of research and development

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Chikazawa, Yoshitaka; Kubo, Shigenobu; Hayashida, Kiichi; Tagawa, Akihiro; Yamashita, Atsushi

    2016-07-01

    A maintenance management required to nuclear power reactors at the R and D stage was discussed in this report. It is the most important to ensure safety of nuclear power plants by taking account of characteristics of nuclear power reactors at the R and D stage. In addition, it is needed to establish a system of maintenance management technologies suitable for reactor types. In this report, objectives of maintenance management of nuclear power reactors at the R and D stage were clarified. Next, requirements and consideration for maintenance management of nuclear power reactors at the R and D stage were discussed according to the objectives. 'Code for Maintenance at Nuclear Power Plants' and 'Guide for Maintenance at Nuclear Power Plants' published by the Japan Electric Association were refereed in the discussion. Then, a draft of codes for maintenance management of nuclear power plants at the R and D stage was newly proposed. Finally, an example that the draft codes were applied to components containing sodium, typical components of sodium-cooled fast reactor, was presented. (author)

  18. U.S. Status of Fast Reactor Research and Technology

    International Nuclear Information System (INIS)

    Hill, Robert

    2012-01-01

    Summary: • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction) and safety: 1. System Integration and Concept Development; 2. Safety Technology; 3. Advanced Materials; 4. Ultrasonic Viewing; 5. Advanced Energy Conversion (Supercritical CO 2 Brayton cycle); 6. Reactor Simulation; 7. Nuclear Data; 8. Advanced Fuels. • Fast reactors have flexible capability for actinide management: – A wide variety of fuel cycle options are being considered; • International R&D collaboration pursued in Generation-IV and multilateral arrangements

  19. Application of the Synthesis method to the calculations of neutron flow in 3D in the enveloping of a BWR reactor with the DORT code

    International Nuclear Information System (INIS)

    Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C.

    2006-01-01

    The surveillance program of the vessel materials of a BWR reactor requires the determination of the neutron flux in 3D in the core enveloping. To carry out these calculations of the neutron flux, the Regulatory Guide 1.190 of the NRC recommends the use of the following codes: MCNP, TORT and DORT. In the case of using the DORT code, the one which solves the transport equation in discreet coordinates and in two dimensions (xy, rθ, and rz), the regulatory guide in reference, requires to make an approach of the flow in three dimensions by means of the call Synthesis Method. It is denominated like this due to that a flow representation in 3D is achieved 'combining' or 'synthesizing' the calculated flows by DORT in rθ, rz and r. In this work the application of the Synthesis Method it is presented, according to the Regulatory Guide 1.190, to determine the 3D flows in a BWR reactor. To achieve the above mentioned it was implemented the Synthesis Method in a computer program developed in the ININ to which is denominated SYNTHESIS. This program applies the synthesis method, and is 'coupled' with the DORT code to determine by this way the neutronic fluxes in 3D on the enveloping of a BWR reactor. (Author)

  20. Review of fast reactor operating experience gained in 1998 in Russia. General trends of future fast reactor development

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Y.M.; Zverev, K.V.; Sarayev, O.M.; Oshkanov, N.N.; Korol'kov, A.S.

    1999-01-01

    Review of the general state of nuclear power in Russia as for 1998 is given in brief in the paper. Results of operation of BR-10, BOR-60 and BN-600 fast reactors are presented as well as of scientific and technological escort of the BN-350 reactor. The paper outlines the current status and prospects of South-Urals and Beloyarskaya power unit projects with the BN-800 reactors. The main planned development trends on fast reactors are described concerning both new projects and R and D works. (author)

  1. Installation and testing of the ERANOS computer code for fast reactor calculations

    International Nuclear Information System (INIS)

    Gren, Milan

    2010-12-01

    The French ERANOS computer code was acquired and tested by solving benchmark problems. Five problems were calculated: 1D XZ Model, 1D RZ Model, 3D HEX SNR 300 reactor, 2S HEX and 3D HEX VVER 440 reactor. The multi-group diffuse approximation was used. The multiplication coefficients were compared within the first problem, neutron flux density in the calculation points was obtained within the second problem, and powers in the various reactor areas and in the assemblies were calculated within the remaining problems. (P.A.)

  2. Evaluation of Torsatrons as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Gulec, K.; Miller, R.L.; El-Guebaly, L.

    1994-03-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors. This scoping study, which uses an integrated cost-minimization code that incorporates costing and reactor component models self-consistently with a 1-D energy transport calculation, shows that a torsatron reactor could also be economically competitive with a tokamak reactor. The projected cost of electricity (COE) estimated using the Advanced Reactor Innovation and Evaluation Studies (ARIES) costing algorithms is 65.6 mill/kW(e)h in constant 1992 dollars for a reference 1-GW(e) Compact Torsatron reactor case. The COE is relatively insensitive (<10% variation) over a wide range of assumptions, including variations in the maximum field allowed on the coils, the coil elongation, the shape of the density profile, the beta limit, the confinement multiplier, and the presence of a large loss region for alpha particles. The largest variations in the COE occur for variations in the electrical power output demanded and the plasma-coil separation ratio

  3. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  4. Improvements in gas supply systems for heavy-water moderated reactors; Etudes de perfectionnements aux systemes d'alimentation en gaz d'un reacteur modere a l'eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, G; Hassig, J M; Laurent, N; Thomas, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In a heavy-water moderated reactor cooled by pressurized gas, an important problem from the point of view, of the reactor block and its economics is the choice of the gas supply system. In the pressure tube solution, the whole of the reactor block structure is at a relatively low temperature, whereas the gas supply equipment is at that of the gas, which is much higher. These parts, through which passes the heat carrying fluid have to present as low a resistance as possible to it so as to avoid costly extra blowing power. Finally, they may only be placed in the reactor block after it has been built; the time required for putting them in position should therefore not be too long. The work reported here concerns the various problems arising in the case of each channel being supplied individually by a tube at the entry and the exit which is connected to a main circuit made up of large size collectors. This individual tubing is sufficiently flexible to absorb the differential expansion and the movement of its ends without stresses or prohibitive reactions being produced; the tubing is also of relatively short length so as to reduce the pressure head of the pressurized gas outside the channels; the small amount of space taken up by the tubing makes it possible to assemble it in a manner which is satisfactory from the point of view both of the time required and of the technical quality. (authors) [French] Dans un reacteur modere a l'eau lourde et refroidi au gaz sous pression, un probleme important du point de vue du trace du bloc pile et de son economie est le choix du systeme d'alimentation en gaz. Pour une solution a tubes de force, l'ensemble des structures du bloc reacteur est a temperature relativement faible, alors que les organes d'alimentation en gaz sont a celle, notablement plus elevee, du gaz. Ces organes, traverses par le debit du caloporteur, doivent lui opposer le minimum de resistance afin de ne pas necessiter un supplement onereux de puissance de

  5. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  6. Comparative performance of UASB and anaerobic hybrid reactors for the treatment of complex phenolic wastewater.

    Science.gov (United States)

    Ramakrishnan, Anushuya; Surampalli, Rao Y

    2012-11-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor and an anaerobic hybrid reactor (AHR) was investigated for the treatment of simulated coal wastewater containing toxic phenolics at different hydraulic retention times (0.75-0.33d). Fast start-up and granulation of biomass could be achieved in an AHR (45d) than UASB (58d) reactor. Reduction of HRT from 1.5 to 0.33d resulted in a decline in phenolics removal efficiency from 99% to 77% in AHR and 95% to 68% in UASB reactor respectively. AHR could withstand 2.5 times the selected phenolics loading compared to UASB reactor that could not withstand even 1.2 times the selected phenolics loading. Residence time distribution (RTD) study revealed a plug flow regime in the AHR and completely mixed regime in UASB reactor respectively. Energy economics of the reactors revealed that 12,159MJd(-1) more energy can be generated using AHR than UASB reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Two Step Procedure Using a 1-D Slab Spectral Geometry in a Pebble Bed Reactor Core Analysis

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Kim, Kang Seog; Noh, Jae Man; Joo, Hyung Kook

    2005-01-01

    A strong spectral interaction between the core and the reflector has been one of the main concerns in the analysis of pebble bed reactor cores. To resolve this problem, VSOP adopted iteration between the spectrum calculation in a spectral zone and the global core calculation. In VSOP, the whole problem domain is divided into many spectral zones in which the fine group spectrum is calculated using bucklings for fast groups and albedos for thermal groups from the global core calculation. The resulting spectrum in each spectral zone is used to generate broad group cross sections of the spectral zone for the global core calculation. In this paper, we demonstrate a two step procedure in a pebble bed reactor core analysis. In the first step, we generate equivalent cross sections from a 1-D slab spectral geometry model with the help of the equivalence theory. The equivalent cross sections generated in this way include the effect of the spectral interaction between the core and the reflector. In the second step, we perform a diffusion calculation using the equivalent cross sections generated in the first step. A simple benchmark problem derived from the PMBR-400 Reactor was introduced to verify this approach. We compared the two step solutions with the Monte Carlo (MC) solutions for the problem

  8. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2001-01-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  9. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  10. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  11. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    International Nuclear Information System (INIS)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-01-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  12. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas

    Science.gov (United States)

    Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group

    2017-08-01

    The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.

  13. Advances in fast reactor technology. Proceedings of the 30. meeting of the International Working Group on Fast Reactors

    International Nuclear Information System (INIS)

    1998-04-01

    Individual States were largely responsible for early developments in experimental and prototype liquid metal fast reactors (LMFRs). However, for development of advanced LMFRs, international co-operation plays an important role. The IAEA seeks to promote such co-operation. For R and D incorporating innovative features, international co-operation allows pooling of resources and expertise in areas of common interest. Information on experience gained from R and D, and from the operation and construction of fast reactors, has been reviewed periodically by the International Working Group on Fast Reactors (IWGFR). These proceedings contain updated a new information on the status of LMFR development, as reported at the 30th meeting of the IWGFR, held in Beijing, China, from 13 to 16 May 1997

  14. Advances in fast reactor technology. Proceedings of the 30. meeting of the International Working Group on Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Individual States were largely responsible for early developments in experimental and prototype liquid metal fast reactors (LMFRs). However, for development of advanced LMFRs, international co-operation plays an important role. The IAEA seeks to promote such co-operation. For R and D incorporating innovative features, international co-operation allows pooling of resources and expertise in areas of common interest. Information on experience gained from R and D, and from the operation and construction of fast reactors, has been reviewed periodically by the International Working Group on Fast Reactors (IWGFR). These proceedings contain updated a new information on the status of LMFR development, as reported at the 30th meeting of the IWGFR, held in Beijing, China, from 13 to 16 May 1997. Refs,figs,tabs.

  15. Non-destructive assay employing 2D and 3D digital radiographic imaging acquired with thermal neutrons and reactor-produced radioisotopes

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo Lisboa de; Lopes, Ricardo T.

    2011-01-01

    The inner structure of some objects can only be visualized by using suitable techniques, when safety reasons or expensive costs preclude the application of invasive procedures. The kind of agent rendering an object partially transparent, unveiling thus its features, depends upon the object size and composition. As a rough rule of thumb, light materials are transparent to gamma and X-rays while the heavy ones are transparent to neutrons. When, after traversing an object, they hit a proper 2-D detector, a radiograph is produced representing a convoluted cross section, called projection, of that object. Taking a large number of such projections for different object attitudes, it is possible to obtain a 3-D tomography of the object as a map of attenuation coefficients. This procedure however, besides a time-consuming task, requires specially tailored equipment and software, not always available or affordable. Yet, in some circumstances it is feasible to replace the 3-D tomography by a stereoscopy, allowing one to visualize the spatial configuration of the object under analysis. In this work, 2-D and 3-D radiographic images have been acquired using thermal neutrons and reactor-produced radioisotopes and proper imaging plates as detectors. The stereographic vision has been achieved by taking two radiographs of the same object at different angles, from the detector point of view. After a treatment to render them red-white and green-white they were properly merged to yield a single image capable to be watched with red-green glasses. All the image treatment and rendering has been performed with the software ImageJ. (author)

  16. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1978-01-01

    This report summarizes the activities of the OECD Halden Reactor Project for the year 1976. The main items reported on are: a) the process supervision and control which have focused on core monitoring and control, and operator-process communication; b) the fuel performance and safety behavior which have provided data and analytical descriptions of the thermal, mechanical and chemical behavior of fuel under various operating conditions; c) the reactor operations and d) the administration and finance

  17. Nuclear reactor (1960); Reacteurs nucleaires (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, M L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Leo, M B [Electricite de France (EDF), 75 - Paris (France)

    1960-07-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [French] Les premiers reacteurs industriels plutonigenes francais G1 - G2 - G3 du Centre de Marcoule comportent une installation de recuperation d'energie. La production d'electricite de G1 ne compense pas l'energie depensee par ailleurs pour le fonctionnement de l'ensemble, par contre, G2 et G3 doivent fournir chacun une puissance de 25 a 30 MW au reseau national d'Electricite de France. Cette puissance est modeste, mais l'experience acquise grace a ces reacteurs est tres grande et c'est grace a elle qu'il nous sera possible de mettre en exploitation les reacteurs energetiques EDF1 - EDF2 - EDF3. Le memoire decrit comment, avant tout demarrage du reacteur, les essais effectues, en particulier ceux concernant l'installation de recuperation d'energie et le caisson, ont permis d'abreger la phase de montee en puissance. (auteur)

  18. The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    In addition to maintaining the viability of its present commercial nuclear technology, a principal challenge in the US in the 1990s and beyond will be to regain and maintain a position among the world leadership in advanced reactor research and development. In this paper we'll discuss factors which we believe should today provide the rationale and focus for advanced reactor R and D, and we will then review the status of the major US effort, the Integral Fast Reactor (IFR) program

  19. Activity report of Reactor Physics Division - 1993

    International Nuclear Information System (INIS)

    Indira, R.

    1994-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs

  20. Activity report of Reactor Physics Division-1995

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1996-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1995 are reported. The activity are arranged under the headings: Nuclear Data Processing and Validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. refs., figs., tabs

  1. Activity report of Reactor Physics Division - 1993

    Energy Technology Data Exchange (ETDEWEB)

    Indira, R [ed.; Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-12-31

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs.

  2. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  3. NCSU reactor sharing program. Final technical report

    International Nuclear Information System (INIS)

    Perez, P.B.

    1997-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996

  4. Expected characteristics of future reactors for human beings

    International Nuclear Information System (INIS)

    Taketani, Kiyoaki

    1992-01-01

    Based on four reactor safety components (namely: a) God-given safety, b) Equipment safety, c) Quick-response safety, d) Containing safety), categorical assessment is made of various nuclear reactor concepts ranging from present existing reactors to future reactors based on innovative reactor design. In pursuit of nuclear reactor safety, ultimate characteristics of the ideal nuclear reactor are expected to coincide with those of an inherently safe reactor. A definition of 'inherently safe' has already been proposed by a committee in Japan. As a realistic and existable reactor, which is as close to the ideal reactor, a future reactor which is almost the same as a global reactor, is proposed. This global reactor must be constructable anywhere on earth and must permit easy operation and maintenance by anyone. It is also discussed to identify what behavior is expected of the global reactor under various conditions. At the same time, this future reactor which includes the global reactor, should solve a) the nuclear fuel resource issue, b) efficient utilization of fission energy and c) environmental issues as the greenhouse effect. (author). 7 refs., 2 figs

  5. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  6. Heat pulse propagation studies on DIII-D and the Tokamak Fusion Test Reactor

    Science.gov (United States)

    Fredrickson, E. D.; Austin, M. E.; Groebner, R.; Manickam, J.; Rice, B.; Schmidt, G.; Snider, R.

    2000-12-01

    Sawtooth phenomena have been studied on DIII-D and the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24]. In the experiments the sawtooth characteristics were studied with fast electron temperature (ECE) and soft x-ray diagnostics. For the first time, measurements of a strong ballistic electron heat pulse were made in a shaped tokamak (DIII-D) [J. Luxon and DIII-D Group, in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] and the "ballistic effect" was stronger than was previously reported on TFTR. Evidence is presented in this paper that the ballistic effect is related to the fast growth phase of the sawtooth precursor. Fast, 2 ms interval, measurements on DIII-D were made of the ion temperature evolution following sawteeth and partial sawteeth to document the ion heat pulse characteristics. It is found that the ion heat pulse does not exhibit the very fast, "ballistic" behavior seen for the electrons. Further, for the first time it is shown that the electron heat pulses from partial sawtooth crashes (on DIII-D and TFTR) are seen to propagate at speeds close to those expected from the power balance calculations of the thermal diffusivities whereas heat pulses from fishbones propagate at rates more consistent with sawtooth induced heat pulses. These results suggest that the fast propagation of sawtooth-induced heat pulses is not a feature of nonlinear transport models, but that magnetohydrodynamic events can have a strong effect on electron thermal transport.

  7. Tritium contamination experience in an operational D-T fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, C.A.; Ascione, G. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Anderson, J.L. [Los Alamos National Lab., NM (United States)] [and others

    1994-09-01

    During December 1993, the Tokamak Fusion Test Reactor (TFTR) injected a mixture of deuterium and tritium in the TFTR vacuum vessel for the purpose of creating D-T plasmas. The tritium used in these D-T plasmas was stored, delivered and processed in the TFTR tritium facility that includes the tritium vault, waste handling area, clean-up area, and gas holding tank room. During this time period, several components in the tritium process system were found to have tritium leaks which led to tritium deposition on process skids, components and floor area. Radiological surveys of surfaces contaminated with tritium oxide indicate a decrease in surface contamination in time (on the order of 12 to 36 hours) as the result of room ventilation. In instances where the facility HVAC system was maintained in the purge mode, a dramatic decrease in surface contamination was observed. Areas contaminated with tritium oxide (> 16.6 Bq/100 cm{sup 2}) were found to be clean (< 16.6 Bq/100 cm{sub 2}) after several hours of continuous purging by the facility HVAC system. In instances where relative humidity was not decreased, the tritium surface contamination was found to be attenuated. During the months of December 1993, January and February 1994 tritium leaking components were either replaced, redesigned or repaired. During this time period, data were collected in the form of contamination surveys, real time tritium monitor output, and HVAC configuration indicating the correlation of purge ventilation leading to a decrease in tritium oxide surface contamination.

  8. HERESY, 2-D Few-Group Static Eigenvalues Calculation for Thermal Reactor

    International Nuclear Information System (INIS)

    Finch, D.R.

    1965-01-01

    1 - Description of problem or function: HERESY3 solves the two- dimensional, few-group, static reactor eigenvalue problem using the heterogeneous (source-sink or Feinburg-Galanin) formalism. The solution yields the reactor k-effective and absorption reaction rates for each rod normalized to the most absorptive rod in the thermal level. Epithermal fissions are allowed at each resonance level, and lattice-averaged values of thermal utilization, resonance escape probability, thermal and resonance eta values, and the fast fission factor are calculated. Kernels in the calculation are based on age-diffusion theory. Both finite reactor lattices and infinitely repeating reactor super-cells may be calculated. Rod parameters may be calculated by several internal options, and a direct interface is provided to a HAMMER system (NESC Abstract 277) lattice library tape to obtain cell parameters. Criticality searches are provided on thermal utilization, thermal eta, and axial leakage buckling. 2 - Method of solution: Direct power iteration on matrix form of the heterogeneous critical equation is used. 3 - Restrictions on the complexity of the problem: Maxima of - 50 flux/geometry symmetry positions; 20 physically different assemblies; 9 resonance levels; 5000 rod coordinate positions

  9. Plant maintenance and advanced reactors, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Advanced plants to meet rising expectations, by John Cleveland, International Atomic Energy Agency, Vienna; A flexible and economic small reactor, by Mario D. Carelli and Bojan Petrovic, Westinghouse Electric Company; A simple and passively safe reactor, by Yury N. Kuznetsov, Research and Development Institute of Power Engineering (NIKIET), Russia; Gas-cooled reactors, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; ISI project managment in the PRC, by Chen Chanbing, RINPO, China; and, Fort Calhoun refurbishment, by Sudesh Cambhir, Omaha Public Power District.

  10. Definition and Analysis of Heavy Water Reactor Benchmarks for Testing New Wims-D Libraries

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2000-01-01

    This work is part of the IAEA-WIMS Library Update Project (WLUP). A group of heavy water reactor benchmarks have been selected for testing new WIMS-D libraries, including calculations with WIMSD5B program and the analysis of results.These benchmarks cover a wide variety of reactors and conditions, from fresh fuels to high burnup, and from natural to enriched uranium.Besides, each benchmark includes variations in lattice pitch and in coolants (normally heavy water and void).Multiplication factors with critical experimental bucklings and other parameters are calculated and compared with experimental reference values.The WIMS libraries used for the calculations were generated with basic data from JEF-2.2 Rev.3 (JEF) and ENDF/B-VI iNReleaseln 5 (E6) Results obtained with WIMS-86 (W86) library, included with WIMSD5B package, from Windfrith, UK with adjusted data, are included also, for showing the improvements obtained with the new -not adjusted- libraries.The calculations with WIMSD5B were made with two methods (input program options): PIJ (two-dimension collision probability method) and DSN (one-dimension Sn method, with homogenization of materials by ring).The general conclusions are: the library based on JEF data and the DSN meted give the best results, that in average are acceptable

  11. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  12. Simulation in 3 dimensions of a cycle 18 months for an BWR type reactor using the Nod3D program

    International Nuclear Information System (INIS)

    Hernandez, N.; Alonso, G.; Valle, E. del

    2004-01-01

    The development of own codes that you/they allow the simulation in 3 dimensions of the nucleus of a reactor and be of easy maintenance, without the consequent payment of expensive use licenses, it can be a factor that propitiates the technological independence. In the Department of Nuclear Engineering (DIN) of the Superior School of Physics and Mathematics (ESFM) of the National Polytechnic Institute (IPN) a denominated program Nod3D has been developed with the one that one can simulate the operation of a reactor BWR in 3 dimensions calculating the effective multiplication factor (kJJ3, as well as the distribution of the flow neutronic and of the axial and radial profiles of the power, inside a means of well-known characteristics solving the equations of diffusion of neutrons numerically in stationary state and geometry XYZ using the mathematical nodal method RTN0 (Raviart-Thomas-Nedelec of index zero). One of the limitations of the program Nod3D is that it doesn't allow to consider the burnt of the fuel in an independent way considering feedback, this makes it in an implicit way considering the effective sections in each step of burnt and these sections are obtained of the code Core Master LEND. However even given this limitation, the results obtained in the simulation of a cycle of typical operation of a reactor of the type BWR are similar to those reported by the code Core Master LENDS. The results of the keJ - that were obtained with the program Nod3D they were compared with the results of the code Core Master LEND, presenting a difference smaller than 0.2% (200 pcm), and in the case of the axial profile of power, the maxim differs it was of 2.5%. (Author)

  13. Core design of long life-cycle fast reactors operating without reactivity margin

    International Nuclear Information System (INIS)

    Aristova, E. N.; Baydin, D. F.; Gol'din, V. Y.; Pestryakova, G. A.; Stoynov, M. I.

    2012-01-01

    In this paper we consider a possibility of designing a fast reactor core that operates without reactivity margin for a long time. This study is based on the physical principle of fast reactor operating in a self-adjustable neutron-nuclear regime (SANNR-1) introduced by L.P. Feoktistov (1988-1993) and improved by V. Ya. Gol'din SANNR-2 (1995). The mathematical modeling of active zones of fast reactors in SANNR modes is held by authors since 1992. The numerical simulation is based on solving the neutron transport equation coupled with quasi-diffusion equations. The calculations have been performed using standard 26 energy groups. We use a hierarchy of spatial models of 1D, 1.5D, 2D, and 3D geometries. The spatial models of higher dimensionality are used for verification of results. The calculations showed that operation of the reactor in this mode increases its efficiency, safety and simplifies management. It is possible to achieve continuous work of the reactor in SANNR-2 during 7-10 years without fuel overloads by means of further optimization of the mode. Small reactivity margin is used only for the reactor start up. After first 10-15 days the reactor in SANNR-2 operates without reactivity margin. (authors)

  14. Thermo-mechanical design and structural analysis of the first wall for ARIES-III, A 1000 MWeD-3He power reactor

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.; Blanchard, J.P.; Mogahed, E.A.

    1992-01-01

    This paper reports on ARIES III, a conceptual design study of a 1000 MWe D- 3 He tokamak fusion power reactor in which most of the energy comes from charged particle transport, bremsstrahlung and synchrotron radiation, and only a small fraction (∼ 4%) comes form neutrons. This form of energy is deposited as surface heating on the chamber first wall (FW) and divertor elements, while the neutron energy is deposited as bulk nuclear heating within the shield. Since this reactor does not use tritium, there is no breeding blanket. Instead a shield is provided to protect the magnets from neutrons. The Fw is very unique in a D- 3 He reactor, it must be capable of absorbing the high surface heat in a mode suitable for efficient power cycle conversion, it must be able to reflect synchrotron radiation, and it must be able to withstand high current plasma disruptions. The FW is made of a low activation ferritic steel (MHT-9) and is cooled with an organic coolant (HB-40) at a pressure of 2 MPa. The FW has a coating of 0.01 cm tungsten on the MHT-9, followed by 0.15 cm of Be on the plasma side. This is needed for synchrotron radiation reflection and as a melt layer to guard against the thermal effects of a plasma disruption

  15. The Role of Non-Destructive Testing in Test-Reactor Operation at the National Reactor Testing Station; Role des Essais Non Destructifs dans l'Exploitation des Reacteurs d'Essai au Centre National d'Essais de Reacteurs; Rol' nedestruktivnykh ispytanij pri ehkspluatatsii ispytatel'nykh reaktorov na natsional'noj stantsii po ispytaniyam reaktorov; Papel de los Metodos No Destructivos en la Explotacion de los Reactores de la National Reactor Testing Station

    Energy Technology Data Exchange (ETDEWEB)

    Francis, W. C.; Brown, E. S.; Burdick, E. E.; Gibson, G. W.; Tingey, F. H. [Phillips Petroleum Company, Atomic Energy Division, Idaho Falls, Idaho (United States)

    1965-10-15

    'un densimetre, permettent de determiner la distribution du combustible. On a habituellement recours a la radiographie des soudures pour les parties constitutives des reacteurs et des boucles d'essai. Le dispositif perfectionne de mesure de la reactivite (Advanced Reactivity Measurement Facility, ARMF) permet de determiner, pour chaque cycle de reacteur, l'irradiation du combustible et l'empoisonnement dans des specimens. Une application assez peu courante pour un assemblage critique est la mesure de la teneur en bore du combustible dans l'assemblage critique d'essai en genie des reacteurs (Engineering Test Reactor Critical Facility, ETRC). Le controle par courants de Foucault et par des procedes mecaniques de l'espacement des plaques de combustible et la mesure par courants de Foucault de l'epaisseur de l'oxydation (corrosion) sur les plaques irradiees ont donne d'excellents resultats. Des methodes complementaires qui ont fait leurs preuves sont l'inspection par liquide penetrant et les essais a l'azote liquide pour les craquelures superficielles, les essais par recuit thermique pour les souitlures et l'exploration par rayons gamma des plaques irradiees. On a recours a l'essai hydraulique d'un echantillon statistique d'elements combustibles pour verifier l'integrite structurale, notamment la resistance de la liaison entre les plaques de combustible et la gaine. Des efforts constants sont deployes pour ameliorer les methodes actuelles et mettre au point de nouveaux procedes de controle non destructif. (author) [Spanish] Los reactores de ensayo de la National Reactor Testing Station suponen una enorme inversion (superior a 100 millones de dolares) y la necesidad de explotarlos en condiciones de seguridad obliga a proceder a un control de calidad muy estricto de los componentes nucleares y de ensayo, especialmente en lo que respecta a los elementos combustibles y de control. Por tanto, los metodos no. destructivos son fundamentales para determinar la calidad de estos componentes

  16. Comparison of MCNPX-C90 and TRIPOLI-4-D for fuel depletion calculations of a Gas-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Reyes-Ramirez, Ricardo; Martin-del-Campo, Cecilia; Francois, Juan-Luis; Brun, Emeric; Dumonteil, Eric; Malvagi, Fausto

    2010-01-01

    The Gas-cooled Fast Reactor is one of the reactor concepts selected by the Generation IV International Forum for the next generation of innovative nuclear energy systems. Several fuel design concepts are being investigated. Burnup depletion of mixed fuel of uranium and plutonium, cooled with gas in a fast neutron energy spectrum must be simulated. Various codes are being developed and/or adapted to improve the quality of the results, and also to reduce the computing time required for the simulations. The main objective of this work is to compare the fuel depletion results obtained with MCNPX-CINDER90 code and the new TRIPOLI-4-Depletion code (developed by the Commissariat a l'Energie Atomique) of a fuel design concept for the Gas-cooled Fast Reactor. Calculations were made for an equivalent homogeneous model of fuel rods in a hexagonal mesh assembly. Total reflection conditions were applied on the six lateral faces and the two axial faces of the assembly. The materials used in the fuel assembly are: carbide of uranium and plutonium as fuel, silicon carbide as cladding, and helium gas as coolant. JEFF libraries of effective cross sections were used in both codes. Two methods of burnup step calculations were performed with TRIPOLI-4-D, the Euler and the CSADA, and their results were compared with the MCNPX-CINDER90 CSADA method. A period of 300 days of irradiation time was considered, which was divided into 12 steps. Results of the infinite multiplication factor as function of the irradiation time, and the evolution of the isotope concentrations for a selected group of nuclides were compared. The main conclusion is that very similar results were obtained for the three types of depletion calculations which were compared: (1) MCNPX-C90 CSADA; (2) TRIPOLI-4-D CSADA, and (3) TRIPOLI-4-D EULER. The best calculation time was obtained with the TRIPOLI-4-D EULER method, which needed approximately half the time than the other two. In summary, it is sufficiently good to use

  17. A Pebble-Bed Breed-and-Burn Reactor

    International Nuclear Information System (INIS)

    Greenspan, Ehud

    2016-01-01

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  18. A Pebble-Bed Breed-and-Burn Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2016-03-31

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  19. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  20. Feasibility of biohydrogen production from cheese whey using a UASB reactor: Links between microbial community and reactor performance

    Energy Technology Data Exchange (ETDEWEB)

    Castello, E.; Garcia y Santos, C.; Borzacconi, L. [Chemical Engineering Institute, School of Engineering, University of the Republic, Herrera y Reissig 565, Montevideo (Uruguay); Iglesias, T.; Paolino, G.; Wenzel, J.; Etchebehere, C. [Microbiology Department, School of Science and School of Chemistry, University of the Republic, General Flores 2124, Montevideo (Uruguay)

    2009-07-15

    The present study examines the feasibility of producing hydrogen by dark fermentation using unsterilised cheese whey in a UASB reactor. A lab-scale UASB reactor was operated for more than 250 days and unsterilised whey was used as the feed. The evolution of the microbial community was studied during reactor operation using molecular biology tools (T-RFLP, 16S rRNA cloning library and FISH) and conventional microbiological techniques. The results showed that hydrogen can be produced but in low amounts. For the highest loading rate tested (20 gCOD/L.d), hydrogen production was 122 mL H{sub 2}/L.d. Maintenance of low pH (mean = 5) was insufficient to control methanogenesis; methane was produced concomitantly with hydrogen, suggesting that the methanogenic biomass adapted to the low pH conditions. Increasing the loading rate to values of 2.5 gCOD/gVSS.d favoured hydrogen production in the reactor. Microbiological studies showed the prevalence of fermentative organisms from the genera Megasphaera, Anaerotruncus, Pectinatus and Lactobacillus, which may be responsible for hydrogen production. However, the persistence of methanogenesis and the presence of other fermenters, not clearly recognised as hydrogen producers indicates that competition for the substrate may explain the low hydrogen production. (author)

  1. Multiscale hydrodynamic investigation to intensify the biogas production in upflow anaerobic reactors.

    Science.gov (United States)

    Jiang, Jiankai; Wu, Jing; Zhang, Jinbai; Poncin, Souhila; Li, Huai Z

    2014-03-01

    Hydrodynamics plays a main role for the performance of an anaerobic reactor involving three phases: wastewater, sludge granules and biogas bubbles. The present work was focused on an original approach to investigate the hydrodynamics at different scales and then to intensify the performance of such complex reactors. The experiments were carried out respectively in a 3D reactor at macroscale, a 2D reactor at mesoscale and a 1D anaerobic reactor at microscale. A Particle Image Velocimetry (PIV), a micro-PIV and a high-speed camera were employed to quantify the liquid flow fields and the relative motion between sludge granules and bubbles. Shear rates exerted on sludge granules were quantified from liquid flow fields. The optimal biogas production is obtained at mean shear rate varying from 28 to 48s(-1), which is controlled by two antagonistic mechanisms. The multiscale approach demonstrates pertinent mechanisms proper to each scale and allows a better understanding of such reactors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Definition and Analysis of Heavy Water Reactor Benchmarks for Testing New Wims-D Libraries; Definicion y Analisis de Benchmarks de Reactores de Agua Pesada para Pruebas de Nuevas Bibliotecas de Datos Wims-D

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, Francisco [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    This work is part of the IAEA-WIMS Library Update Project (WLUP). A group of heavy water reactor benchmarks have been selected for testing new WIMS-D libraries, including calculations with WIMSD5B program and the analysis of results.These benchmarks cover a wide variety of reactors and conditions, from fresh fuels to high burnup, and from natural to enriched uranium.Besides, each benchmark includes variations in lattice pitch and in coolants (normally heavy water and void).Multiplication factors with critical experimental bucklings and other parameters are calculated and compared with experimental reference values.The WIMS libraries used for the calculations were generated with basic data from JEF-2.2 Rev.3 (JEF) and ENDF/B-VI iNReleaseln 5 (E6) Results obtained with WIMS-86 (W86) library, included with WIMSD5B package, from Windfrith, UK with adjusted data, are included also, for showing the improvements obtained with the new -not adjusted- libraries.The calculations with WIMSD5B were made with two methods (input program options): PIJ (two-dimension collision probability method) and DSN (one-dimension Sn method, with homogenization of materials by ring).The general conclusions are: the library based on JEF data and the DSN meted give the best results, that in average are acceptable.

  3. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics.

    Science.gov (United States)

    Kadimisetty, Karteek; Song, Jinzhao; Doto, Aoife M; Hwang, Young; Peng, Jing; Mauk, Michael G; Bushman, Frederic D; Gross, Robert; Jarvis, Joseph N; Liu, Changchun

    2018-06-30

    Molecular diagnostics that involve nucleic acid amplification tests (NAATs) are crucial for prevention and treatment of infectious diseases. In this study, we developed a simple, inexpensive, disposable, fully 3D printed microfluidic reactor array that is capable of carrying out extraction, concentration and isothermal amplification of nucleic acids in variety of body fluids. The method allows rapid molecular diagnostic tests for infectious diseases at point of care. A simple leak-proof polymerization strategy was developed to integrate flow-through nucleic acid isolation membranes into microfluidic devices, yielding a multifunctional diagnostic platform. Static coating technology was adopted to improve the biocompatibility of our 3D printed device. We demonstrated the suitability of our device for both end-point colorimetric qualitative detection and real-time fluorescence quantitative detection. We applied our diagnostic device to detection of Plasmodium falciparum in plasma samples and Neisseria meningitides in cerebrospinal fluid (CSF) samples by loop-mediated, isothermal amplification (LAMP) within 50 min. The detection limits were 100 fg for P. falciparum and 50 colony-forming unit (CFU) for N. meningitidis per reaction, which are comparable to that of benchtop instruments. This rapid and inexpensive 3D printed device has great potential for point-of-care molecular diagnosis of infectious disease in resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  5. Recent DIII-D results

    International Nuclear Information System (INIS)

    Petersen, P.I.

    1994-07-01

    This paper summarizes the recent DIII-D experimental results and the development of the relevant hardware systems. The DIII-D program focuses on divertor solutions for next generation tokamaks such as International Thermo-nuclear Experimental Reactor (ITER) and Tokamak Physics Experiment (TPX), and on developing configurations with enhanced confinement and stability properties that will lead to a more compact and economical fusion reactor. The DIII-D program carries out this research in an integrated fashion

  6. Integrated design approach of the pebble BeD modular reactor using models

    International Nuclear Information System (INIS)

    Venter, Pieter J.; Mitchell, Mark N.

    2007-01-01

    The pebble bed modular reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is developing an understanding of the expected behaviour of the reactor through analyses and simulations and managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, and how the models are used in the iterative design process that is used in the development of the reactor at PBMR

  7. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  8. Comparison of the Aerospace Systems Test Reactor loss-of-coolant test data with predictions of the 3D-AIRLOCA code

    International Nuclear Information System (INIS)

    Warinner, D.K.

    1983-01-01

    This paper compares the predictions of the revised 3D-AIRLOCA computer code to those data available from the Aerospace Systems Test Reactor's (ASTR's) loss-of-coolant-accident (LOCA) tests run in 1964. The theoretical and experimental hot-spot temperature responses compare remarkably well. In the thirteen cases studied, the irradiation powers varied from 0.4 to 8.87 MW; the irradiation times were 300, 1540, 1800, and 10 4 s. The degrees of agreement between the data and predictions provide an experimental validation of the 3D-AIRLOCA code

  9. Comparison of the aerospace systems test reactor loss-of-coolant test data with predictions of the 3D-AIRLOCA code

    International Nuclear Information System (INIS)

    Warinner, D.K.

    1984-01-01

    This paper compares the predictions of the revised 3D-AIRLOCA computer code to those data available from the Aerospace Systems Test Reactor's (ASTR's) loss-of-coolant-accident (LOCA) tests run in 1964. The theoretical and experimental hot-spot temperature responses compare remarkably well. In the thirteen cases studied, the irradiation powers varied from 0.4 to 8.87 MW; the irradiation times were 300, 1540, 1800, and 10 4 s. The degrees of agreement between the data and predictions provide an experimental validation of the 3D-AIRLOCA code. (author)

  10. Political-social reactor problems at Berkeley

    International Nuclear Information System (INIS)

    Little, G.A.

    1980-01-01

    For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitioned the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)

  11. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-15

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis.

  12. The AFR. An approved network of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele [Mainz Univ. (Germany). Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren (AFR)

    2012-10-15

    AFR (Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren) is the German acronym for 'Association for Research Reactor Operation and Safety Issues' which was founded in 1959. Reactor managers of European research reactors mainly from the German linguistic area meet regularly for their mutual benefit to exchange experience and knowledge in all areas of operating, managing and utilization of research reactors. In the last 2 years joint meetings were held together with the French association of research reactors CER (Club d'Exploitants des Reacteurs). In this contribution the AFR, its members, work and aims as well as the French partner CER are presented. (orig.)

  13. French experience in design, operation and revamping of nuclear research reactors, in support of advanced reactors development

    International Nuclear Information System (INIS)

    Barre, B.; Bergeonneau, P.; Merchie, F.; Minguet, J.L.; Rousselle, P.

    1996-01-01

    The French nuclear program is strongly based on the R and D work performed in the CEA nuclear research centers and particularly on the various experimental programs carried out in its research reactors in the frame of cooperative actions between the Commissariat a l'Energie Atomique (CEA), Framatome and Electricite de France (EDF). Several types of research reactors have been built by Technicatome and CEA to carry out successfully this considerable R and D work on fuels and materials, among them the socalled Materials Testing Reactors (MTR) SILOE (35 MW) and OSIRIS (70 MW) which are indeed very well suited for technological irradiations. Their simple and flexible design and the large irradiation space available around the core, the SILOE and OSIRIS reactors can be shared by several types of applications such as fuel and material testings for nuclear power plants, radioisotopes production, silicon doping and fundamental research. It is worthwhile recalling that Technicatome and CEA have also built research reactors fully dedicated to safety experimental studies, such as the CABRI, SCARABEE and PHEBUS reactors at Cadarache, and others dedicated to fundamental research such as ORPHEE (14 MW) and the Reacteur a Haut Flux -High Flux Reactor- (RHF 57 MW). This paper will present some of the most significant conceptual and design features of all these reactors as well as the main improvements brought to most of them in the last years. Based on this wide experience, CEA and Technicatome have specially designed for export a new multipurpose research reactor named SIRIUS, with two versions depending on the utilization spectrum and the power range (5 MW to 30 MW). At last, CEA has recently launched the preliminary project study of a new MTR, the Jules Horowitz Reactor, to meet the future needs of fuels and materials irradiations in the next 4 or 5 decades, in support of the French long term nuclear power program. (J.P.N.)

  14. Decontamination and decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N.; Lee, K. W.

    2002-05-01

    Evaluation of soil decontamination process and the liquid decontamination waste treatment technology are investigation of organic acid as a decontamination agent, investigation of the liquid waste purification process and identification of recycling the decontamination agents. Participation on IAEA CRP meeting are preparation of IAEA technical report on 'studies on decommissioning of TRIGA reactors and site restoration technologies' and exchange the research result, technology, experience and safety regulation of the research reactor D and D of USA, Great Britain, Canada, Belgium, Italy, India and so forth

  15. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  16. Nuclear propulsion apparatus with alternate reactor segments

    International Nuclear Information System (INIS)

    Szekely, T.

    1979-01-01

    Nuclear propulsion apparatus comprising: (a) means for compressing incoming air; (b) nuclear fission reactor means for heating said air; (c) means for expanding a portion of the heated air to drive said compressing means; (d) said nuclear fission reactor means being divided into a plurality of radially extending segments; (e) means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and (f) means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus. 12 claims

  17. Management of research reactor ageing

    International Nuclear Information System (INIS)

    1995-03-01

    As of December 1993, about one quarter of the operating research reactors were over 30 years old. The long life of research reactors has raised some concern amongst research reactor operators, regulators and, to some extent, the general public. The International Atomic Energy Agency commenced activities on the topic of research reactor ageing by appointing an internal working group in 1988 and convening a Consultants Meeting in 1989. The subject was also discussed at an international symposium and a regional seminar held in 1989 and 1992 respectively. A draft document incorporating information and experience exchanged at the above meetings was reviewed by a Technical Committee Meeting held in Vienna in 1992. The present TECDOC is the outcome of this meeting and contains recommendations, guidelines and information on the management of research reactor ageing, which should be used in conjunction with related publications of the IAEA Research Reactor Safety Programme, which are referenced throughout the text. This TECDOC will be of interest to operators and regulators involved with the safe operation of any type of research reactor to (a) understand the behaviour and influence of ageing mechanisms on the reactor structures, systems and components; (b) detect and assess the effect of ageing; (c) establish preventive and corrective measures to mitigate these effects; and (d) make decisions aimed at the safe and continued operation of a research reactor. 32 refs, tabs

  18. Management of research reactor ageing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As of December 1993, about one quarter of the operating research reactors were over 30 years old. The long life of research reactors has raised some concern amongst research reactor operators, regulators and, to some extent, the general public. The International Atomic Energy Agency commenced activities on the topic of research reactor ageing by appointing an internal working group in 1988 and convening a Consultants Meeting in 1989. The subject was also discussed at an international symposium and a regional seminar held in 1989 and 1992 respectively. A draft document incorporating information and experience exchanged at the above meetings was reviewed by a Technical Committee Meeting held in Vienna in 1992. The present TECDOC is the outcome of this meeting and contains recommendations, guidelines and information on the management of research reactor ageing, which should be used in conjunction with related publications of the IAEA Research Reactor Safety Programme, which are referenced throughout the text. This TECDOC will be of interest to operators and regulators involved with the safe operation of any type of research reactor to (a) understand the behaviour and influence of ageing mechanisms on the reactor structures, systems and components; (b) detect and assess the effect of ageing; (c) establish preventive and corrective measures to mitigate these effects; and (d) make decisions aimed at the safe and continued operation of a research reactor. 32 refs, tabs.

  19. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  20. Characteristics of Flameless Combustion in 3D Highly Porous Reactors under Diesel Injection Conditions

    Directory of Open Access Journals (Sweden)

    M. Weclas

    2013-01-01

    Full Text Available The heat release process in a free volume combustion chamber and in porous reactors has been analyzed under Diesel engine-like conditions. The process has been investigated in a wide range of initial pressures and temperatures simulating engine conditions at the moment when fuel injection starts. The resulting pressure history in both porous reactors and in free volumes significantly depends on the initial pressure and temperature. At lower initial temperatures, the process in porous reactors is accelerated. Combustion in a porous reactor is characterized by heat accumulation in the solid phase of the porous structure and results in reduced pressure peaks and lowered combustion temperature. This depends on reactor heat capacity, pore density, specific surface area, pore structure, and heat transport properties. Characteristic modes of a heat release process in a two-dimensional field of initial pressure and temperature have been selected. There are three characteristic regions represented by a single- and multistep oxidation process (with two or three slopes in the reaction curve and characteristic delay time distribution has been selected in five characteristic ranges. There is a clear qualitative similarity of characteristic modes of the heat release process in a free volume and in porous reactors. A quantitative influence of porous reactor features (heat capacity, pore density, pore structure, specific surface area, and fuel distribution in the reactor volume has been clearly indicated.

  1. Fusion reactors and the environment

    International Nuclear Information System (INIS)

    Wrixon, A.D.

    1976-01-01

    A summary is given of the report of a study group set up in 1971 by the Director of the UKAEA Culham Laboratory to investigate environmental and safety aspects of future commercial fusion reactors (1975, Carruthers, R., Dunster, H.J., Smith, R.D., Watson, C.J.H., and Mitchell, J.T.D., Culham Study Group Report on Fusion Reactors and the Environment, CLM-R148, HMSO, London). This report was originally issued in 1973 under limited distribution, but has only recently been made available for open circulation. Deuterium/tritium fusion is thought to be the most likely reaction to be used in the first generation of reactors. Estimates were made of the local and world-wide population hazards from the release of tritium, both under normal operating conditions and in the event of an accident. One serious type of accident would be a lithium metal fire in the blanket region of the reactor. The use of a fusible lithium salt (FLIBE), eliminating the lithium fire risk, is considered but the report concentrates on lithium metal in the blanket region. The main hazards to operating staff arise both from tritium and from neutron activation of the construction materials. Remote servicing of the reactor structure will be essential, but radioactive waste management seems less onerous than for fission reactors. Meaningful comparison of the overall hazards associated with fusion and fission power programmes is not yet possible. The study group emphasized the need for more data to aid the safety assessments, and the need for such assessments to keep pace with fusion power station design. (U.K.)

  2. Reactor physics innovations of the advanced CANDU reactor core: adaptable and efficient

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Hopwood, J.M.; Bonechi, M.

    2003-01-01

    The Advanced CANDU Reactor (ACR) is designed to have a benign, operator-friendly core physics characteristic, including a slightly negative coolant-void reactivity and a moderately negative power coefficient. The discharge fuel burnup is about three times that of natural uranium fuel in current CANDU reactors. Key features of the reactor physics innovations in the ACR core include the use of H 2 O coolant, slightly enriched uranium (SEU) fuel, and D 2 O moderator in a reduced lattice pitch. These innovations result in substantial improvements in economics, as well as significant enhancements in reactor performance and waste reduction over the current reactor design. The ACR can be readily adapted to different power outputs by increasing or decreasing the number of fuel channels, while maintaining identical fuel and fuel-channel characteristics. The flexibility provided by on-power refuelling and simple fuel bundle design enables the ACR to easily adapt to the use of plutonium and thorium fuel cycles. No major modifications to the basic ACR design are required because the benign neutronic characteristics of the SEU fuel cycle are also inherent in these advanced fuel cycles. (author)

  3. Annual report of department of research reactor, 1992

    International Nuclear Information System (INIS)

    1993-12-01

    The department of research Reactor is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4. This report describes the activities of our department in fiscal year of 1992 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as well as related R and D works. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author)

  4. Decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East. Project final report

    International Nuclear Information System (INIS)

    Fellhauer, C.R.; Clark, F.R.

    1997-10-01

    The decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East (ANL-E) was completed in October 1997. Descriptions and evaluations of the activities performed and analyses of the results obtained during the JANUS D and D Project are provided in this Final Report. The following information is included: objective of the JANUS D and D Project; history of the JANUS Reactor facility; description of the ANL-E site and the JANUS Reactor facility; overview of the D and D activities performed; description of the project planning and engineering; description of the D and D operations; summary of the final status of the JANUS Reactor facility based upon the final survey results; description of the health and safety aspects of the project, including personnel exposure and OSHA reporting; summary of the waste minimization techniques utilized and total waste generated by the project; and summary of the final cost and schedule for the JANUS D and D Project

  5. Characterization of 2D-C/C composite for application of very high temperature reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sumita, Junya; Kunimoto, Eiji; Sawa, Kazuhiro; Makita, Taiyo; Takagi, Takashi; Kim, W.J.; Jung, C.H.; Park, J.Y.

    2010-01-01

    For in-core components of VHTR (Very High Temperature Reactor), carbon fiber reinforced carbon matrix composite (C/C composite) is one of the major candidate materials. In this study, fracture behaviors of two dimensional (2D-) C/C composites were examined by SENB specimens with four-point bending test. The surface of specimens was observed by a CCD camera during the bending test, and observed by a stereomicroscope before and after the bending test. The following results were obtained through mode-I fracture test. (1) Three types of the composites were evaluated by tentatively using the stress intensity factor equation for metallic materials. The equivalent stress intensity factor of 2D-C/C composite is in the range of 5.9 - 10.0MPa m 1/2 . It was expected that the fracture mechanism for the composite materials could be assessed by this test method. (2) The crack opening displacement-load behavior of C/C composite might depend not only on the propagation of crack but also on delaminating between layers. (author)

  6. A Study on Dismantling of Westinghouse Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Lee, Sang-Guk

    2014-01-01

    KHNP started a research project this year to develop a methodology to dismantle nuclear reactors and internals. In this paper, we reviewed 3D design model of the reactor and suggested feasible cutting scheme.. Using 3-D CAD model of Westinghouse type nuclear reactor and its internals, we reviewed possible options for disposal. Among various options of dismantling the nuclear reactor, plasma cutting was selected to be the best feasible and economical method. The upper internals could be segmented by using a band saw. It is relatively fast, and easily maintained. For cutting the lower internals, plasma torch was chosen to be the best efficient tool. Disassembling the baffle and the former plate by removing the baffle former bolts was also recommended for minimizing storage volume. When using plasma torch for cutting the reactor vessel and its internal, installation of a ventilation system for preventing pollution of atmosphere was recommended. For minimizing radiation exposure during the cutting operation, remotely controlled robotic tool was recommended to be used

  7. Current status of the reactor physics code WIMS and recent developments

    International Nuclear Information System (INIS)

    Lindley, B.A.; Hosking, J.G.; Smith, P.J.; Powney, D.J.; Tollit, B.S.; Newton, T.D.; Perry, R.; Ware, T.C.; Smith, P.N.

    2017-01-01

    Highlights: • The current status of the WIMS reactor physics code is presented. • Applications range from 2D lattice calculations up to 3D whole core geometries. • Gamma transport and thermal-hydraulic feedback models added. • Calculations methodologies described for several Gen II, III and IV reactor types. - Abstract: The WIMS modular reactor physics code has been under continuous development for over fifty years. This paper discusses the current status of WIMS and recent developments, in particular developments to the resonance shielding methodology and 3D transport solvers. Traditionally, WIMS is used to perform 2D lattice calculations, typically to generate homogenized reactor physics parameters for a whole core code such as PANTHER. However, with increasing computational resources there has been a growing trend for performing transport calculations on larger problems, up to and including 3D full core models. To this end, a number of the WIMS modules have been parallelised to allow efficient performance for whole core calculations, and WIMS includes a 3D method of characteristics solver with reflective and once-through tracking methods, which can be used to analyse problems of varying size and complexity. A time-dependent flux solver has been incorporated and thermal-hydraulic modelling capability is also being added to allow steady-state and transient coupled calculations to be performed. WIMS has been validated against a range of experimental data and other codes, in particular for water and graphite moderated thermal reactors. Future developments will include improved parallelization, enhancing the thermal-hydraulic feedback models and validating the WIMS/PANTHER code system for BWRs and fast reactors.

  8. E-beam heated linear solenoid reactors

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.

    1976-01-01

    A conceptual design and system analysis shows that electron beam heated linear solenoidal reactors are attractive for near term applications which can use low gain fusion sources. Complete plant designs have been generated for fusion based breeders of fissile fuel over a wide range of component parameters (e.g., magnetic fields, reactor lengths, plasma densities) and design options (e.g., various radial and axial loss mechanisms). It appears possible that a reactor of 100 to 300 meters length operating at power levels of 1000 MWt can economically produce 2000 to 8000 kg/yr of 233 U to supply light water reactor fuel needs beyond 2000 A.D. Pure fusion reactors of 300 to 500 meter lengths are possible. Physics and operational features of reactors are described. Beam heating by classical and anomalous energy deposition is reviewed. The technology of the required beams has been developed to MJ/pulse levels, within a factor of 20 of that needed for full scale production reactors. The required repetitive pulsing appears practical

  9. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  10. Report of scientific results 1976. Section nuclear chemistry and reactor

    International Nuclear Information System (INIS)

    1976-01-01

    The report of the section Nuclear Chemistry and Reactor presents the results of R and D in the fields of neutron scattering, radiation damage in solids, reactor chemistry, trace elements research in biomedicine, geochemistry, reactor operation, radioisotope production, and gives a survey of publications and lectures. (HK) [de

  11. Scientific-technical cooperation with Russia. Transient analyses for alternative types of water-cooled reactors. Final report

    International Nuclear Information System (INIS)

    Rohde, Ulrich; Pivovarov, Valeri; Matveev, Yurij

    2010-12-01

    The recently developed multi-group version DYN3D-MG of the reactor dynamics code DYN3D has been qualified for applications to water-cooled reactor concepts different from industrial PWR and BWR. An extended DYN3D version was applied to the graphite-moderated pressure tube reactor EGP-6 (NPP Bilibino) and conceptual design studies of an advanced Boiling Water Reactor with reduced moderation (RMWR) as well as the RUTA-70 reactor for low temperature heat supply. Concerning the RUTA reactor, safe heat removal by natural circulation of the coolant at low pressure has to be shown. For the corresponding validation of thermo-hydraulic system codes like ATHLET and RELAP5, experiments on flashing-induced natural circulation instabilities performed at the CIRCUS test facility at the TU Delft were simulated using the RELAP5 code. For the application to alternative water-cooled reactors, DYN3D model extensions and modifications were implemented, in particular adaptations of heat conduction and heat transfer models. Performing code-to-code comparisons with the Russian fine-mesh neutron diffusion code ACADEM contributed to the verification of DYN3D-MG. Validation has been performed by calculating reactor dynamics experiments at the NPP Bilibino. For the reactors EGP-6, RMWR and RUTA, analyses of various protected and unprotected control rod withdrawal and ejection transients were performed. The beyond design basis accident (BDBA) scenario ''Coast-down of all main coolant pumps at nominal power without scram'' for the RUTA reactor was analyzed using the code complexes DYN3D/ATHLET and DYN3D/RELAP5. It was shown, that the reactor passes over to a save asymptotic state at reduced power with coolant natural circulation. Analyzing the BDBA ''Unprotected withdrawal of a control rod group'' for the RMWR, the safety against Departure from Nucleate Boiling (DNB) could not be shown with the necessary confidence. Finally, conclusions have been drawn

  12. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  13. DTS : un logiciel d'aide à l'élaboration de modèles d'écoulement dans les réacteurs Dts: a Software Package for Flow Simulation in Reactors

    Directory of Open Access Journals (Sweden)

    Leclerc J. P.

    2006-11-01

    Full Text Available Cet article a pour but la présentation d'un logiciel d'aide à la construction de modèles d'écoulement à partir de la méthode des distributions de temps de séjour (DTS. La théorie des distributions de temps de séjour ainsi que des méthodes de traçage couramment utilisées sont rappelées. Une description du logiciel est ensuite effectuée. Le modèle est basé sur l'association de modules élémentaires (réacteur parfaitement agité, réacteur piston. . . , la détermination de la fonction de transfert étant effectuée en résolvant les bilans de matière dans l'espace de Laplace. Le logiciel peut donner la réponse à un signal d'entrée quelconque et plusieurs paramètres du modèle peuvent être optimisés. Différents couples de traceurs et de détecteurs sont donnés et les précautions à prendre lors des traçages sont décrites. Finalement, différentes études effectuées à l'aide du logiciel sont présentées afin de montrer les utilisations possibles. Improving the performance of an existing reactor or studying a new design requires modeling the flow of the different phases. Computational fluid dynamics can give an accurate a priori description of the velocity and concentration fields. However, this approach is too complicated in some cases (complicated geometry, random flow media, etc. , and this results in an abundance of information. A simpler approach relies on the theory of Residence Time Distribution (RTD, which is a theoretical interpretation framework for tracer experiments. This paper describes a software package that simulates hydrodynamic models derived from RTD experiments. The concept of RTD, introduced by Danckwerts in 1953, is briefly reviewed. Then tracer experiments, commonly used tracers and detectors are dealt with. Finally, the care required in tracer experiments is described in detail. Visual inspection of the tracer response makes it is possible to guess the main characteristics of the flow pattern

  14. Today's attitudes and future prospects of fast reactors in Italy

    International Nuclear Information System (INIS)

    Barabaschi, S.; Cicognani, G.; Pierantoni, F.

    1982-01-01

    The Italian fast reactor programme is reviewed. The 15 year collaboration with France has resulted in the construction of the PEC reactor, development of the Superphenix-1 and a common R and D programme for future large fast reactors. The CNEN 4th five year (1980-84) plan is outlined. The budget breakdown for different areas shows the importance attached to the fast reactor. (U.K.)

  15. Mixing-Structure Relationship in Jet-Stirred Reactors

    KAUST Repository

    Ayass, Wassim W.

    2016-05-26

    In this study, measurements were performed to assess the overall mixing in jet-stirred reactors (JSRs) passively agitated by feed nozzles. The reactor diameter, nozzle shape, and nozzle diameter were varied to determine the effects of these geometrical parameters on mixing. The mixing was studied at ambient conditions using laser absorption spectroscopy to follow the exit concentration of a tracer gas, carbon dioxide, after a step change in its input flow. The results indicate that the use of a JSR of diameter D = 40 mm, having inclined or crossed nozzles of diameter d = 1 mm is recommended for low residence times up to 0.4 sec, while at moderate/high residence times 0.5-5 sec the use of a JSR of D = 56 mm and d = 0.3 mm having crossed nozzles is suggested.

  16. The success of operation and utilization of the Indonesia multipurpose reactor G.A. Siwabessy

    International Nuclear Information System (INIS)

    Taryo, Taswanda; Kuntoro, Iman

    2000-01-01

    The Indonesia Multipurpose Reactor G.A. Siwabessy (RSG-GAS), operated by Multipurpose Reactor Center (MPRC/PRSG-BATAN), went its first criticality in July 1987. The reactor then achieved the power of 30 MW thermal in March 1992. Based on user requirement, the reactor is usually operated at the power of 20 MW thermal. The RSG-GAS is put to use mainly for radioisotope production, R and D on reactor safety and by using beam tubes, the reactor can also be applied for R and D on science and materials. Operation and maintenance of the reactor have been well organized due to well technical and administrative management from the top manager to all people involved in those two activities. Within their support, the RSG-GAS has occupied great advantages not only for man power development in our center but also for scientific cooperation with whoever would like to apply the RSG-GAS for R and D with mutual benefit agreement. (author)

  17. Materials development for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Mathew, M.D.; Laha, K.; Sandhya, R., E-mail: san@igcar.gov.in

    2013-12-15

    Highlights: • A modified version of alloy D9 designated as IFAC-1 has been developed. • Oxide dispersion strengthened Grade 91 steel with good creep strength developed. • 0.14 wt% nitrogen in 316LN stainless steel leads to improved mechanical properties. • Type IV cracking resistant Grade 91 steel with boron addition developed. • Mechanical properties of SFR materials evaluated in sodium environment. -- Abstract: Materials play a crucial role in the economic competitiveness of electricity produced from fast reactors. It is necessary to increase the fuel burn-up and design life in order to realize this objective. The burnup is largely limited by the void swelling and creep resistance of the fuel cladding and wrapping materials. India's 500 MWe Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are D9 austenitic stainless steel as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup, titanium, phosphorous and silicon contents in alloy D9 have been optimized for decreased void swelling and increased creep strength and this has led to the development of a modified version of alloy D9 as IFAC-1. Ferritic steels are inherently resistant to void swelling. The disadvantage is their poor creep strength. Creep resistance of 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long-term creep strength, comparable to alloy D9 so as to achieve higher fuel burnup. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt% having higher creep strength to increase the life of fast reactors and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator

  18. A series of lectures on operational physics of power reactors

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.; Rastogi, B.P.

    1982-01-01

    This report discusses certain aspects of operational physics of power reactors. These form a lecture series at the Winter College on Nuclear Physics and Reactors, Jan. - March 1980, conducted at the International Centre for Theoretical Physics, Trieste, Italy. The topics covered are (a) the reactor physics aspects of fuel burnup (b) theoretical methods applied for burnup prediction in power reactors (c) interpretation of neutron detector readings in terms of adjacent fuel assembly powers (d) refuelling schemes used in power reactors. The reactor types chosen for the discussion are BWR, PWR and PHWR. (author)

  19. Analysis of the interim safe storage of reactors at the Hanford site

    International Nuclear Information System (INIS)

    Wang Hailiang

    2014-01-01

    The nine production reactors, i.e. B, C, D, DR, F, H, KE, KW and N, at the Hanford site are all water-cooled and graphite-moderated reactors with natural uranium fuel. In 1993, the U.S. Department of Energy (DOE) decided to put eight production reactors (except for B) into Interim Safe Storage (ISS) for 75 years followed by deferred one-piece removal. Reactor B will remain as a national historical landmark. By the end of 2013, six reactors C, F, D, DR, H and N had been successfully put into the ISS. Reactors KE and KW will be put into the ISS in the coming years. Taking reactor C as an example, this paper mainly talks about how to put the production reactors in the Interim Safe Storage, e.g. how to make site preparation, how to construct the safe storage enclosure (SSE) and how to perform surveillance and maintenance during the ISS period, etc. (authors)

  20. Conversion of reactor neutrons by lithium deuteride; Konverzija reaktorskih neutrona pomocu litijumdeuterida

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Altiparmakov, D [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1979-07-01

    Nuclear reactors are powerful neutron sources. But for many purposes, neutrons of higher than fission energy are needed. Such neutrons may be produced by the conversion of reactor neutrons into 14 MeV neutrons using lithium deuteride converter. For that converter is generally employed {sup 6}LiD, the usual material for the thermonuclear weapons, and therefore hardly accessible in needed quantity. That was the reason to analyse such converter made of LiD with the lithium of natural isotopic content. This analysis starts with the basic conversion relations, takes into account neutron absorption and tritium generation, and finally, estimates the 14 MeV neutron flux and the heat generated in proposed converter, when the converter was coupled to each of three Yugoslav nuclear reactors. Results show that the converter made of LiD with the natural lithium is 50% less efficient than the converter of {sup 6}LiD. Intensity of 14 MeV neutrons is within limits 5. 10{sup 5} - 10{sup 10} (n/cm{sup 2}.s) for the converter used either as external converter with reactor RB, within the thermal column in the reactor TRIGA or as a 'fuel' segment at the reactor RA. (author)

  1. Possibilities of TWR and long life reactor

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Shimazu, Yoichiro; Handa, Norihiko

    2010-01-01

    Bill Gates identified the need to switch to zero-emission energy and clarified investing in Terra Power developing the TWR (Traveling Wave Reactor) in February 2010. He also visited Toshiba developing small reactor 4S (Super Safe Small and Simple). In Japan design studies of the TWR have been conducted on the CANDLE reactor without refueling and the 4S long life reactor with maintenance free. In this feature article, the state of R and D on the TWR in Japan and IAEA's activities on small reactors without online refueling were reviewed in addition to articles on impacts of Bill Gates' investment in the TWR and state of the TWR development from an interview with John Gilleland of Terra Power. (T. Tanaka)

  2. Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Gentile, C.; Parsells, R.; Rule, K.; Strykowsky, R.; Viola, M.

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D and D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D and D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D and D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget

  3. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  4. The resonance absorption controlled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R

    1977-07-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D{sub 2}O/H{sub 2}O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs.

  5. The resonance absorption controlled reactor

    International Nuclear Information System (INIS)

    Caro, R.

    1977-01-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D 2 O/H 2 O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs

  6. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  7. Economic Effect on the Plutonium Cycle of Employing {sup 235}U in Fast Reactor Start-Up; Incidence Economique du Demarrage des Reacteurs Rapides a l'Aide d'Uranium-235 sur le Cycle du Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Van Dievoet, J.; Egleme, M.; Hermans, L. [BELGONUCLEAIRE, Bruxelles (Belgium)

    1967-09-15

    factors, inventory factors) from one cycle to another, with a comparative study of the use of {sup 235}U in thermal and fast reactors, variations in the discounted fuel cycle costs from one cycle to another, and weight and characteristics of the recycled fuel, of the additional fuel required and of excess fuel. (author) [French] Le memoire presente les premiers resultats d'une etude entreprise dans le cadre d'un contrat d'association Euratom-Belgique et destinee a evaluer l'interet de l'alimentation de reacteurs rapides en uranium-235. Plusieurs possibilites se presentent pour le demarrage d'un reacteur rapide a l'aide d'uranium-235. 1. Le reacteur peut etre alimente en permanence avec de l'uranium enrichi, le plutonium produit servant a demarrer et a alimenter d'autres reacteurs; dans ce cas, l'uranium est recycle dans le reacteur en y ajoutant de l'uranium enrichi. 2. Le plutonium produit dans le reacteur peut etre partiellement recycle dans celui-ci, ainsi que l'uranium; dans ce cas, le reacteur se transforme progressivement en un reacteur au plutonium. Ces deux cas peuvent etre combines pour un reacteur a plusieurs zones d'enrichissement, ou l'on peut appliquer simultanement les deux politiques a des zones differentes, c'est-a-dire: alimenter, par exemple, la zone interne en uranium enrichi et recycler le plutonium dans la zone externe. Le mode de traitement du combustible irradie rend egalement le probleme complexe, selon que l'on traite ensemble ou separement le coeur et les couvertures axiales; de meme, pour un reacteur a plusieurs zones d'enrichissement, celles-ci peuvent etre traitees ensemble ou separement. Les calculs sont effectues a l'aide d'un code de calcul utilisant, pour lavpartie relative aux caracteristiques des reacteurs successifs, les coefficients d'equivalence definis par Baker and Ross et, pour la partie economique, la methode du cout actualise du cycle du combustible. Dans la premiere phase des travaux, une analyse approcheedu phenomene a ete

  8. French activities on gas cooled reactors

    International Nuclear Information System (INIS)

    Bastien, D.

    1996-01-01

    The gas cooled reactor programme in France originally consisted of eight Natural Uranium Graphite Gas Cooled Reactors (UNGG). These eight units, which are now permanently shutdown, represented a combined net electrical power of 2,375 MW and a total operational history of 163 years. Studies related to these reactors concern monitoring and dismantling of decommissioned facilities, including the development of methods for dismantling. France has been monitoring the development of HTRs throughout the world since 1979, when it halted its own HTR R and D programme. France actively participates in three CRPs set up by the IAEA. (author). 1 tab

  9. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  10. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  11. Reactor physics analysis of the pin-cell Doppler effect in a thermal nuclear reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de.

    1995-01-01

    This report has also been published as a PhD thesis. It deals with the Doppler effect in thermal nuclear reactors. Especially the behaviour of the reactor in transient conditions is an important issue. During such a transient the radial temperature profile in a fuel pin changes. In this PhD research effective fuel temperatures have been calculated for arbitrary temperature profiles in the fuel pin with the improved slowing-down code ROLAIDS-CPM. A general expression for the effective fuel temperature in a specific fuel pin is found by defining this effective fuel temperature as a weighted sum of the temperatures in different radial fuel zones. Also, the radial power profile in a fuel pin has been calculated by performing detailed burnup calculations, which agree very well with experimental data. (orig.)

  12. Operation and utilization of Indonesia Research Reactors

    International Nuclear Information System (INIS)

    Kuntoro, Iman; Sujalmo, Saiful; Tarigan, Alim

    2004-01-01

    For supporting the R and D in nuclear science and technology and its application, BATAN own and operate three research reactors namely, TRIGA-2000, KARTINI and RSG-GAS having thermal power of 2 MW, 100 kW and 30 MW respectively. The main features, operation and utilization progress of the reactors are described in this report. (author)

  13. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1981-01-01

    A fuel assembly for use in pressurized water cooled nuclear fast breeder reactors is described in which moderator to fuel ratios, conducive to a high Pu-U-D 2 O reactor breeding ratio, are obtained whilst at the same time ensuring accurate spacing of fuel pins without the parasitic losses associated with the use of spacer grids. (U.K.)

  14. Nuclear data requirements for fusion reactor nucleonics

    International Nuclear Information System (INIS)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future

  15. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  16. An evaluation of alternative reactor vessel cutting technologies for the decommissioning of the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1991-01-01

    This paper will detail (1) a brief overview of the current status of the EBWR D ampersand D Project, and (2) the results of a study performed to evaluate the metal cutting technologies available to size reduce the EBWR reactor vessel. The techniques evaluated were: Plasma arc, Arc saw, Oxyacetylene, Electric arc gouging, Mechanical cladding removal/flame cutting, Exothermic reaction, Diamond wire, Water jet, Laser, Mechanical milling, Controlled explosives, and Electrical discharge. After a detailed review of these 12 techniques, the decision was made by ANL that the most appropriate method for segmenting the EBWR reactor vessel would be to rift the vessel from the vessel cavity and use an abrasive water jet positioned on the main floor to perform the cutting of the reactor vessel

  17. Simulations. 3D nuclear reactions; Simulations. Reactions nucleaires en 3D

    Energy Technology Data Exchange (ETDEWEB)

    Deleurence, Guillaume

    2012-05-15

    At CEA Saclay, the research programme for the forth generation of nuclear reactors, named 'Astrid' (Advanced Sodium Technological Reactor for Industrial Demonstration) of the Direction of nuclear energy (DEN), uses 2D or 3D movies and a 16 m{sup 2} image wall for the display of simulation results. This digest paper focusses on the technological means used for the simulations: the Curie supercomputer designed by Bull and the images display device. (J.S.)

  18. Environmental assessment for the deactivation of the N Reactor facilities. Revision 1

    International Nuclear Information System (INIS)

    1994-11-01

    This environmental assessment (EA) provides information for the US Department of Energy (DOE) to decide whether the Proposed Action for the N Reactor facilities warrants a Finding of No Significant Impact or requires the preparation of an environmental impact statement (EIS). The EA describes current conditions at the N Reactor facilities, the need to take action at the facilities, the elements of the Proposed Action and alternatives, and the potential environmental impacts. The N Reactor facilities are currently in a surveillance and maintenance program, and will eventually be decontaminated and decommissioned (D and D). Operation and maintenance of the facilities resulted in conditions that could adversely impact human health or the environment if left as is until final D and D. The Proposed Action would deactivate the facilities to remove the conditions that present a potential threat to human health and the environment and to reduce surveillance and maintenance requirements. The action would include surveillance and maintenance after deactivation. Deactivation would take about three years and would involve about 80 facilities. Surveillance and maintenance would continue until final D and D, which is expected to be complete for all facilities except the N Reactor itself by the year 2018

  19. Reactor Radiation Loops as Large Gamma Sources; Boucles d'irradiation des reacteurs nucleaires utilisees comme sources gamma intenses; Radiatsionnye kontury yadernykh reaktorov kak moshchnye gamma-istochniki; Empleo de circuitos de irradiacion de los reactores como fuentes gamma de gran intensidad

    Energy Technology Data Exchange (ETDEWEB)

    Ryabukhina, Yu. S.

    1963-11-15

    Since 1957, study and research on the' production of radiation loops has been going on in the Soviet Union. Methods for calculating such systems were worked out and the possibilities of various gamma carriers examined. Indium alloy loops, liquid at room temperature, were first selected for practical experiment. The behaviour of two eutectic indium alloys was studied in relation to certain constructional materials and at the beginning of 1960 the first test indium-gallium loop was operated. Further work led to the installation of a model indium-gallium loop in the IRT reactor of the Georgian SSR Academy of Sciences with an irradiation source activity of 100 g Ra equivalent and a test In-Ga-Sn loop in a channel of the IRT reactor at the Institute of Atomic Energy, USSR Academy of Sciences. Finally in 1962, a pilot In-Ga-Sn loop for semi-industrial radiation processes was put into service in the IRT reactor of the Latvian SSR Academy of Sciences; its maximum irradiation source activity was 30 000 g Ra equivalent. The paper has the following sections: (1) ''Radiation loop calculation'', summarizing the work done on the computation techniques involved. (2) ''A model In-Ga radiation loop for the IRT-2000 reactor in Tbilisi'', describing the loop in operation. (3) ''An In-Ga-Sn radiation loop for the Latvian SSR Academy of Sciences IRT Reactor'', describing the loop in operation. (4) ''Possibilities of further radiation loop development'', describing experiments and systems and giving calculations on the basis of which it is considered possible to build hard manganese and mobile liquid indium-alloy loops. (author) [French] Depuis 1957, on execute en Union sovietique des travaux en vue d'etudier et de construire des boucles d'irradiation. On a elabore des methodes permettant de les calculer et d'examiner les possibilites offertes par differents emetteurs gamma. Le choix a porte tout d'abord sur les boucles utilisant des alliages liquides d'indium a la temperature ambiante

  20. RBEC lead-bismuth cooled fast reactor: review of conceptual decisions

    International Nuclear Information System (INIS)

    Alekseev, P.; Fomichenko, P.; Mikityuk, K.; Nevinitsa, V.; Shchepetina, T.; Subbotin, S.; Vasiliev, A.

    2001-01-01

    A concept of the RBEC lead-bismuth fast reactor-breeder is a synthesis, on one hand, of more than 40-year experience in development and operation of fast sodium power reactors and reactors with Pb-Bi coolant for nuclear submarines, and, on the other hand, of large R and D activities on development of the core concept for modified fast sodium reactor. The report briefly presents main parameters of the RBEC reactor, as a candidate for commercial exploitation in structure of the future nuclear power. (author)

  1. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  2. Partial combustion of a fuel cartridge in reactor G1; Combustion partielle d'une cartouche de combustible dans le reacteur G 1

    Energy Technology Data Exchange (ETDEWEB)

    De, Rouville; Leduc,; Segot, [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    -devices, some null regulating tension systems, annealing the background due to continuous pollution. This event has been fruitful. A grid trap has been set right ahead the reactor. Stricter instructions have been given for rising power operations and automatic burst slug sy (already improved as said above) has been duplicated by a human control. At last, the fault has pointed out that the reactors with gap had the disadvantage of facilitating the contamination of channels from one to another. On the other hand, graphite stores the radioactive dusts and hinders an easy decontamination. (author) [French] Le 26 octobre 1956, le reacteur G1 etait remis en marche apres un arret de quelques jours. L'installation de detection de rupture de gaines donna un premier signal de prealerte a 19h07 cote chargement, un second a 19h13 cote dechargement, puis d'autres. Le chef de quart ordonna a 19h15 une baisse rapide de la puissance mais voulant reperer le canal fautif avec precision la fit remonter ensuite a 2 puis a 5 MW. Bientot, par crainte de contamination exterieure, on dut arreter l'exploration et c'est par detection {gamma} a l'exterieur des tuyaux de detection de rupture de gaine qu'on identifia la cartouche endommagee dans le canal 19-13. Les enregistrements des stations de sante montrerent que les pointes observees etaient restees notablement inferieures aux limites maxima admissibles. L'examen methodique et le degagement du canal accidente occuperent trois semaines. On put apercevoir cote chargement les billettes d'uranium nues sur un lit de poudre de magnesie; cote dechargement, la gaine etait intacte mais l'extremite de la cartouche 'pendait' a l'interieur de la fente d'arrivee d'air. Repoussee cote chargement d'environ 30 cm, la cartouche se bloqua. Apres des essais divers, toujours sous injection d'argon, et avec des protections severes du personnel, on mit en oeuvre un tube fraise, analogue a ceux utilises pour les forages. On nettoya le canal par aspiration, sans toutefois

  3. Overview of Nuclear Reactor Technologies Portfolio

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2012-01-01

    Office of Nuclear Energy Roadmap R&D Objectives: • Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; • Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; • Develop sustainable nuclear fuel cycles; • Develop capabilities to reduce the risks of nuclear proliferation and terrorism

  4. Remote maintenance design for Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tachikawa, K.; Iida, H.; Nishio, S.; Tone, T.; Aota, T.; Iwamoto, T.; Niikura, S.; Nishizawa, H.

    1984-01-01

    Design of Fusion Experimental Reactor, FER, has been conducted by Japan Atomic Energy Research Institute (JAERI) since 1981. Two typical reactors can be classified in general from the viewpoints of remote maintenance among four design concepts of FER. In the case of the type 1 FER, the torus module consists of shield structure and blanket, and the connective joints between toruses provided at the outer region of the reactor. As for the type 2 FER, the shield structure is joined with the vacuum cryostat, and only the blanket module is allowed to move, but connection between toruses are located in the inner region of the reactor. Comparing type 1 with type 2 FER, this paper describes on the remote maintenance of FER including reactor configurations, work procedures, remote systems/equipments, repairing facility and future R and D problems. Reviewing design studies and investigation for the existing robotics technologies, R and D for FER remote maintenance technology should be performed under the reasonable long-term program. The main items of remote technology required to start urgently are multi-purpose manipulator system with performance of dextrousity, tele-viewing system which reduces operator fatigue and remote tests for commercially available components

  5. Testing of a reactimeter for a light water reactor in the range + 500 to - 5000 pcm; Essai d'un reactimetre pour reacteur a eau legere dans la gamme + 500, - 5000 pcm

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    This apparatus is designed to measure instantaneously the positive or negative reactivity of a uranium reactor moderated by light water, on condition that the point of departure is the critical state of the reactor, or an already known sub-critical state. Slight modifications only are required to adapt it to another type of reactor. It is an analogue computer which simply inverses the transfer function of the reactor; it is not therefore a model reactor of which the output voltage is connected by a servo-mechanism to the power of the reactor to give the reactivity; the principle of the calculation of the reactivity does not depend on a servomechanism. One of its disadvantages is that it cannot operate outside a power variation range of 2.5 decades. However the measurement of a negative reactivity value between 0 and 3000 pcm is immediate. It measures the reactivity without deducting it from the period; it therefore gives the reactivity very precisely both for divergence and convergence even through in this latter case the period does not in fact exist. The equipment makes it possible to calibrate very rapidly the control rods of a reactor (the rod-drop method), to measure the reactivity of an experiment in the core, and to measure certain temperature effects. It is also possible by introducing a control into the core at a measured rate, to deduce directly its efficiency curve. (author) [French] Cet appareil est destine a mesurer instantanement la reactivite positive ou negative d'un reacteur a uranium modere a l'eau legere, a condition de partir de l'etat critique du reacteur, ou eventuellement d'un etat sous-critique deja connu. De legeres modifications permettent de l'adapter a un autre type de moderateur. C'est un calculateur analogique, qui inverse purement et simplement la fonction de transfert du reacteur; ce n'est donc pas un simulateur de pile dont la tension de sortie est asservie a la puissance du reacteur pour elaborer la reactivite; le principe du

  6. Heavy water moderated gas-cooled reactors; Filiere eau lourde - gaz

    Energy Technology Data Exchange (ETDEWEB)

    Bailly du Bois, B; Bernard, J L; Naudet, R; Roche, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    France has based its main effort for the production of nuclear energy on natural Uranium Graphite-moderated gas-cooled reactors, and has a long term programme for fast reactors, but this country is also engaged in the development of heavy water moderated gas-cooled reactors which appear to present the best middle term prospects. The economy of these reactors, as in the case of Graphite, arises from the use of natural or very slightly enriched Uranium; heavy water can take the best advantages of this fuel cycle and moreover offers considerable development potential because of better reactor performances. A prototype plant EL 4 (70 MW) is under construction and is described in detail in another paper. The present one deals with the programme devoted to the development of this reactor type in France. Reasons for selecting this reactor type are given in the first part: advantages and difficulties are underlined. After reviewing the main technological problems and the Research and Development carried out, results already obtained and points still to be confirmed are reported. The construction of EL 4 is an important step of this programme: it will be a significant demonstration of reactor performances and will afford many experimentation opportunities. Now the design of large power reactors is to be considered. Extension and improvements of the mechanical structures used for EL 4 are under study, as well as alternative concepts. The paper gives some data for a large reactor in the present state of technology, as a result from optimization studies. Technical improvements, especially in the field of materials could lead to even more interesting performances. Some prospects are mentioned for the long run. Investment costs and fuel cycles are discussed in the last part. (authors) [French] La France, qui a base son effort principal pour la production d'energie nucleaire sur la filiere des reacteurs a uranium naturel et graphite refroidis par gaz, et qui a un programme a plus

  7. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates.

    Science.gov (United States)

    Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Apollo-L2, an advanced fuel tokamak reactor utilizing direct conversion

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Blanchard, J.P.; El-Guebaly, L.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.E.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Witt, R.J.

    1989-01-01

    A scoping study of a tokamak reactor fueled by a D- 3 He plasma is presented. The Apollo D- 3 He tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The low neutron wall loading (0.1 MW/m 2 ) permits a first wall lasting the life of the plant and enables the reactor to be classified as inherently safe. The cost of electricity is less than that from a similar power level DT reactor. 10 refs., 1 fig., 4 tabs

  9. Sharing of Rensselaer Polytechnic Institute Reactor Critical Facility (RCF)

    International Nuclear Information System (INIS)

    1995-01-01

    The RPI Reactor Critical Facility (RCF) operated successfully over the period fall 1994 - fall 1995. During this period, the RCF was used for Critical Reactor Laboratory spring 1995 (12 students); Reactor Operations Training fall 1994 (3 students); Reactor Operations Training spring 1995 (3 students); and Reactor Operations Training fall 1995 (3 students). Thirty-two Instrumentation and Measurement students used the RCF for one class for hands-on experiments with nuclear instruments. In addition, a total of nine credits of PhD thesis work were carried out at the RCF. This document constitutes the 1995 Report of the Rensselaer Polytechnic Institute's Reactor Critical Facility (RCF) to the USNRC, to the USDOE, and to RPI management

  10. The Experience of Storage and Shipment for Reprocessing of HEU Nuclear Fuel Irradiated in the IRT-M Research Reactor and Pamir-630 Mobile Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sikorin, S. N.; Polazau, S. A.; Luneu, A. N.; Hrigarovich, T. K. [Joint Institute for Power and Nuclear Research–Sosny of the National Academy of Sciences of Belarus, Minsk (Belarus)

    2014-08-15

    At the end of 2010 under the Global Threat Reduction Initiative (GTRI), the Joint Institute for Power and Nuclear Research–“Sosny” (JIPNR–Sosny) of the National Academy of Sciences of the Republic of Belarus repatriated HEU spent nuclear fuel to the Russian Federation. The spent nuclear fuel was from the decommissioned Pamir-630D mobile reactor and IRT-M research reactor. The paper discusses the Pamir-630D spent nuclear fuel; experience and problems of spent nuclear fuel storage; and various aspects of the shipment including legal framework, preparation activities and shipment logistics. The conceptual project of a new research reactor for Belarus is also presented.

  11. Design of the fuel element 'snow-flake' in uranium oxide, canned with aluminium, for the experimental reactor EL 3 (1960); Etude d'un element combustible en oxyde d'uranium gaine d'aluminium, type ''cristal de neige'' pour la pile EL 3 (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M; Guibert, B [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This report sums up the main studies have been carried out on the fuel element 'Snowflake' (uranium oxide, canned with aluminium), designed to replace the present element of the experimental reactor EL3 in order to increase the reactivity without modifying the neutron flux/thermal power ratio. (author) [French] Ce rapport resume les principales etudes qui ont ete faites sur l'element combustible 'Cristal de Neige' (a oxyde d'uranium, gaine d'aluminium) destine a remnlacer l'element actuel du reacteur experimental EL3, afin d'en augmenter la reactivite sans modifier le rapport flux neutronique-puissance thermique. (auteur)

  12. Assessment of capability for modeling the core degradation in 2D geometry with ASTEC V2 integral code for VVER type of reactor

    International Nuclear Information System (INIS)

    Dimov, D.

    2011-01-01

    The ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out since 2004. The purpose of this analysis is to assess ASTEC code modelling of main phenomena arising during hypothetical severe accidents and particularly in-vessel degradation in 2D geometry. The investigation covers both early and late phase of degradation of reactor core as well as determination of corium which will enter the reactor cavity. The initial event is station back-out. In order to receive severe accident condition, failure of all active component of emergency core cooling system is apply. The analysis is focus on ICARE module of ASTEC code and particularly on so call MAGMA model. The aim of study is to determine the capability of the integral code to simulate core degradation and to determine the corium composition entering the reactor cavity. (author)

  13. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  14. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H

    International Nuclear Information System (INIS)

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for inertial confinement reactors. The first of three volumes briefly discusses the following: Introduction; Key objectives, requirements, and assumptions; Systems modeling and trade studies; Prometheus-L reactor plant design overview; Prometheus-H reactor plant design overview; Key technical issues and R ampersand D requirements; Comparison of IFE designs; and study conclusions

  15. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    International Nuclear Information System (INIS)

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition

  16. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Zamonsky, G.

    1991-01-01

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author) [es

  17. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  18. Simulation of Molten Salt Reactor dynamics

    International Nuclear Information System (INIS)

    Krepel, J.; Rohde, U.; Grundmann, U.

    2005-01-01

    Dynamics of the Molten Salt Reactor - one of the 'Generation IV' concepts - was studied in this paper. The graphite-moderated channel type MSR was selected for the numerical simulation of the reactor with liquid fuel. The MSR dynamics is very specific because of two physical peculiarities of the liquid fueled reactor: the delayed neutrons precursors are drifted by the fuel flow and the fission energy is immediately released directly into the coolant. Presently, there are not many accessible numerical codes appropriate for the MSR simulation, therefore the DYN3D-MSR code was developed based on the FZR in-house code DYN3D. It allows calculating of full 3D transient neutronics in combination with parallel channel type thermal-hydraulics. By means of DYN3D-MSR, several transients typical for the liquid fuel system were analyzed. Those transients were initiated by reactivity insertion, by overcooling of fuel at the core inlet, by the fuel pump start-up or coast-down, or by the blockage of selected fuel channels. In these considered transients, the response of the MSR is characterized by the immediate change of the fuel temperature with changing power and fast negative temperature feedback to the power. The response through the graphite temperature is slower. Furthermore, for big MSR cores fueled with U233 the graphite feedback coefficient can be positive. In this case the addition of erbium to the graphite can ensure the inherent safety features. The DYN3D-MSR code has been shown to be an effective tool for MSR dynamics studies. (author)

  19. Advanced fusion reactor

    International Nuclear Information System (INIS)

    Tomita, Yukihiro

    2003-01-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p- 6 Li and p- 11 B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D- 3 He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D- 3 He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of 3 He per a year. On the other hand, 1 million tons of 3 He is estimated to be in the moon. The 3 He of about 10 23 kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  20. Rod drop in the LR-0 reactor core comprising 55 fuel assemblies

    International Nuclear Information System (INIS)

    Hadek, J.; Grundmann, U.

    1989-09-01

    Data from the third stage of kinetic measurements on the LR-0 reactor, performed in 1988, were employed for additional calculations using the 3-dimensional neutron kinetics code HEXDYN3D. The reactor consists of subassemblies similar to those in the WWER-1000 (PWR) reactor. The theoretical and experimental results are compared for the time behavior of the neutron flux caused by drop of the control rod cluster in various subassemblies of the reactor. The results demonstrate that the HEXDYN3D code is well suited to the treatment of the space-time behavior of the neutron flux. (author). 21 figs., 2 tabs., 16 refs

  1. Research, Development and Demonstration (RD&D) Needs for Light Water Reactor (LWR) Technologies A Report to the Reactor Technology Subcommittee of the Nuclear Energy Advisory Committee (NEAC) Office of Nuclear Energy U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Bradley J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    The LWR RD&D Working Group developed a detailed list of RD&D suggestions and recommendations, which are provided in Appendix D. The Working Group then undertook a systematic ranking process, described in Appendix E. The results of the ranking process are not meant to be a strict set of priorities, but rather should provide insight into how the items generally ranked within the Working Group. Future discussions and investigation into these items could provide information that would support a change in these priorities or in their emphasis. The results of this prioritization are provided below. Note that in general, many RD&D ideas are applicable to both new Advanced Light Water Reactor (ALWR) plants and currently operating plants.

  2. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    1996-01-01

    The main R and D results of Japanese activities are summarized as follows: (1) the experimental 140 MW(th) sodium cooled fast reactor 'Joyo' provided abundant experimental data and excellent operational records, attaining more than 50,000 hours of operation since its first criticality in 1977; (2) the prototype 280 MW(e) fast reactor 'Monju' reached initial criticality on 5 April 1994; presently Monju is under the cold shutdown state because of secondary sodium leak on 8 December 1995, and multiple cause investigations of the sodium leak are being performed; (3) the Japan Atomic Power Company is promoting design studies for demonstration fast reactor (DFBR) with a power output of 600 MW(e) and R and D for DFBR are being conducted under the cooperation of governmental and private sectors. (author)

  3. Adaptation of GRS calculation codes for Soviet reactors

    International Nuclear Information System (INIS)

    Langenbuch, S.; Petri, A.; Steinborn, J.; Stenbok, I.A.; Suslow, A.I.

    1994-01-01

    The use of ATHLET for incident calculation of WWER has been tested and verified in numerous calculations. Further adaptation may be needed for the WWER 1000 plants. Coupling ATHLET with the 3D nuclear model BIPR-8 for WWER cores clearly improves studies of the influence of neutron kinetics. In the case of FBMK reactors ATHLET calculations show that typical incidents in the complex RMBK reactors can be calculated even though verification still has to be worked on. Results of the 3D-core model QUABOX/CUBBOX-HYCA show good correlation of calculated and measured values in reactor plants. Calculations carried out to date were used to check essential parameters influencing RBMK core behaviour especially dependence of effective voidre activity on the number of control rods. (orig./HP) [de

  4. Development and application of reactor noise diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Joakim K.H

    1999-04-01

    A number of problems in reactor noise diagnostics have been investigated within the framework of the present thesis. The six papers presented cover three relatively different areas, namely the use of analytical calculations of the neutron noise in simple reactor models, some aspects of boiling water reactor (BWR) stability and diagnostics of core barrel motion in pressurized water reactors (PWRs). The noise induced by small vibrations of a strong absorber has been the subject of several previous investigations. For a conventional {delta}-function source model, the equations can not be linearized in the traditional manner. Thus, a new source model, which is called the {epsilon}/d model, was developed. The correct solution has been derived in the {epsilon}/d model for both 1-D and 2-D reactor models. Recently, several reactor diagnostic problems have occurred which include a control rod partially inserted into the reactor core. In order to study such problems, we have developed an analytically solvable, axially non-homogenous, 2-D reactor model. This model has also been used to study the noise induced by a rod maneuvering experiment. Comparisons of the noise with the results of different reactor kinetic approximations have yielded information on the validity of the approximations in this relatively realistic model. In case of an instability event in a BWR, the noise may consist of one or several co-existing modes of oscillation and besides the fundamental mode, a regional first azimuthal mode has been observed in e.g. the Swedish BWR Ringhals-1. In order to determine the different stability characteristics of the different modes separately, it is important to be able to decompose the noise into its mode constituents. A separation method based on factorisation of the flux has been attempted previously, but without success. The reason for the failure of the factorisation method is the presence of the local component of the noise and its axial correlation properties. In

  5. Development and application of reactor noise diagnostics

    International Nuclear Information System (INIS)

    Karlsson, Joakim K.H.

    1999-04-01

    A number of problems in reactor noise diagnostics have been investigated within the framework of the present thesis. The six papers presented cover three relatively different areas, namely the use of analytical calculations of the neutron noise in simple reactor models, some aspects of boiling water reactor (BWR) stability and diagnostics of core barrel motion in pressurized water reactors (PWRs). The noise induced by small vibrations of a strong absorber has been the subject of several previous investigations. For a conventional δ-function source model, the equations can not be linearized in the traditional manner. Thus, a new source model, which is called the ε/d model, was developed. The correct solution has been derived in the ε/d model for both 1-D and 2-D reactor models. Recently, several reactor diagnostic problems have occurred which include a control rod partially inserted into the reactor core. In order to study such problems, we have developed an analytically solvable, axially non-homogenous, 2-D reactor model. This model has also been used to study the noise induced by a rod maneuvering experiment. Comparisons of the noise with the results of different reactor kinetic approximations have yielded information on the validity of the approximations in this relatively realistic model. In case of an instability event in a BWR, the noise may consist of one or several co-existing modes of oscillation and besides the fundamental mode, a regional first azimuthal mode has been observed in e.g. the Swedish BWR Ringhals-1. In order to determine the different stability characteristics of the different modes separately, it is important to be able to decompose the noise into its mode constituents. A separation method based on factorisation of the flux has been attempted previously, but without success. The reason for the failure of the factorisation method is the presence of the local component of the noise and its axial correlation properties. In the paper

  6. Reactor R ampersand D programs tough to eliminate; just ask NRC staff

    International Nuclear Information System (INIS)

    Lane, E.

    1993-01-01

    Even if the Clinton administration succeeds in eliminating funding for the advanced liquid metal reactor (ALMR) and modular high-temperature gas reactor (MHTGR) in the fiscal year 1994 budget, it will not wipe out the programs entirely as shown by a recent exchange of letters between the Nuclear Regulatory Commission and the Energy Department. This article examines the political and bureaucratic maneuverings involved in the funding of nuclear power projects

  7. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    International Nuclear Information System (INIS)

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T.H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-01-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  8. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Stimpson, Shane, E-mail: stimpsonsg@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Kelley, Blake W., E-mail: kelleybl@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Young, Mitchell T.H., E-mail: youngmit@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Kochunas, Brendan, E-mail: bkochuna@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Graham, Aaron, E-mail: aarograh@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Larsen, Edward W., E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Downar, Thomas, E-mail: downar@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Godfrey, Andrew, E-mail: godfreyat@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  9. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  10. Gas Cooled Fast Reactors: Recent advances and prospects

    International Nuclear Information System (INIS)

    Poette, C.; Guedeney, P.; Stainsby, R.; Mikityuk, K.; Knol, S.

    2013-01-01

    Gas Cooled Fast Reactors: Conclusion - GFR: an attractive longer term option allowing to combine Fast spectrum & Helium coolant benefits; • Innovative SiC fuel cladding solutions were found; • A first design confirming the encouraging potential of the reactor system Design improvements are nevertheless recommended and interesting tracks have been identified (core & system design, DHR system); • The GFR requires large R&D needs to confirm its potential (fuel & core materials, specific Helium technology); • ALLEGRO prototype studies are the first step and are drawing the R&D priorities

  11. Denitrification performance of Pseudomonas denitrificans in a fluidized-bed biofilm reactor and in a stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, C.; Nicolella, C.; Rovatti, M. [Department of Chemical and Process Engineering, Faculty of Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa (Italy)

    2003-04-09

    Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems - a fluidized-bed biofilm reactor (FBBR) and a stirred tank reactor (STR) - using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg {sub N} . m{sup -3} . d{sup -1}) was higher than in the STR, due to higher biomass concentration (10 kg {sub BM} . m{sup -3} vs 1.2 kg {sub BM} m{sup -3}). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  12. Positron annihilation studies on structural materials for nuclear reactors

    International Nuclear Information System (INIS)

    Rajaraman, R.; Amarendra, G.; Sundar, C.S.

    2012-01-01

    Structural steels for nuclear reactors have renewed interest owing to the future advanced fission reactor design with increased burn-up goals as well as for fusion reactor applications. While modified austenitic steels continue to be the main cladding materials for fast breeder reactors, Ferritic/martensitic steels and oxide dispersion strengthened ferritic steels are the candidate materials for future reactors applications in India. Sensitivity and selectivity of positron annihilation spectroscopy to open volume type defects and nano clusters have been extensively utilized in studying reactor materials. We have recently reviewed the application of positron techniques to reactor structural steels. In this talk, we will present successful application of positron annihilation spectroscopy to probe various structural materials such as D9, ferritic/martensitic, oxide dispersion strengthened (ODS) steels and related model alloys, highlighting our recent studies. (author)

  13. Transient Analysis Needs for Generation IV Reactor Concepts

    International Nuclear Information System (INIS)

    Siefken, L.J.; Harvego, E.A.; Coryell, E.W.; Davis, C.B.

    2002-01-01

    The importance of nuclear energy as a vital and strategic resource in the U. S. and world's energy supply mix has led to an initiative, termed Generation IV by the U.S. Department of Energy (DOE), to develop and demonstrate new and improved reactor technologies. These new Generation IV reactor concepts are expected to be substantially improved over the current generation of reactors with respect to economics, safety, proliferation resistance and waste characteristics. Although a number of light water reactor concepts have been proposed as Generation IV candidates, the majority of proposed designs have fundamentally different characteristics than the current generation of commercial LWRs operating in the U.S. and other countries. This paper presents the results of a review of these new reactor technologies and defines the transient analyses required to support the evaluation and future development of the Generation IV concepts. The ultimate objective of this work is to identify and develop new capabilities needed by INEEL to support DOE's Generation IV initiative. In particular, the focus of this study is on needed extensions or enhancements to SCDAP/RELAP5/3D code. This code and the RELAP5-3D code from which it evolved are the primary analysis tools used by the INEEL and others for the analysis of design-basis and beyond-design-basis accidents in current generation light water reactors. (authors)

  14. Assessment of fusion reactor development. Proceedings

    International Nuclear Information System (INIS)

    Inoue, N.; Tazima, T.

    1994-04-01

    Symposium on assessment of fusion reactor development was held to make clear critical issues, which should be resolved for the commercial fusion reactor as a major energy source in the next century. Discussing items were as follows. (1) The motive force of fusion power development from viewpoints of future energy demand, energy resources and earth environment for 'Sustainable Development'. (2) Comparison of characteristics with other alternative energy sources, i.e. fission power and solar cell power. (3) Future planning of fusion research and advanced fuel fusion (D 3 He). (4) Critical issues of fusion reactor development such as Li extraction from the sea water, structural material and safety. (author)

  15. Treatment of spent fuels from research reactors and reactor development programs in Germany

    International Nuclear Information System (INIS)

    Closs, K.D.

    1999-01-01

    Quite a great number of different types of spent fuel from research reactors and development programs exists in Germany. The general policy is to send back to the USA as long as possible fuel from MTRs and TRIGAs of USA origin. An option is reprocessing in Great Britain or France. This option is pursued as long as reprocessing and reuse of the recovered material is economically justifiable. For those fuels which cannot be returned to the USA or which will not be reprocessed, a domestic back-up solution of spent fuel management has been developed in Germany, compatible with the management of spent fuel from power reactors. It consists in dry storage in special casks and, later on, direct disposal. Preliminary results from experimental R and D investigations with research reactor fuel and experience from LWR fuel lead to the conclusion that the direct disposal option even for research reactor fuel or exotic fuel does not impose major technical difficulties for the German waste management and disposal concept. (author)

  16. Investigation of the deposit formation in pipelines connecting liquefaction reactors; 1t/d PSU ni okeru ekika hanno tokan fuchakubutsu no seisei yoin ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Y.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-28

    The liquefaction reaction system of an NEDOL process coal liquefaction 1t/d PSU was opened and checked to investigate the cause of the rise of differential pressure between liquefaction reactors of the PSU. The liquefaction test at a coal concentration of 50 wt% using Tanito Harum coal was conducted, and it was found that the differential pressure between reactors was on the increase. By the two-phase flow pressure loss method, deposition thickness of deposit in pipelines was estimated at 4.4mm at the time of end operation, which agreed with a measuring value obtained from a {gamma} ray. The rise of differential pressure was caused by deposit formation in pipelines connecting reactors. The main component of the deposit is calcite (CaCO3 60-70%) and is the same as the usual one. It is also the same type as the deposit on the reactor wall. Ca in coal ash is concerned with this. To withdraw solid matters deposited in the reactor, there are installed pipelines for the withdrawal at the reactor bottom. The solid matters are regularly purged by reverse gas for prevention of clogging. As the frequency of purge increases, the deposit at the reactor bottom decreases, but the deposit attaches strongly to pipelines connecting reactors. It is presumed that this deposit is what Ca to be discharged out of the system as a form of deposition solid matter naturally in the Ca balance precipitated as calcite in the pipeline connecting the reactor. 3 refs., 5 figs., 4 tabs.

  17. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  18. Argentinean activities related to Fast Reactors

    International Nuclear Information System (INIS)

    Azpitarte, Osvaldo

    2012-01-01

    CNEA objectives in the area of Generation IV nuclear reactors: Implement a programme for the monitoring of the global progress of new technologies for Generation IV nuclear reactors and their fuel cycles, in order to generate and assess associated lines of R&D. – Perform studies and evaluations for defining the Generation IV line or lines on which CNEA would be interested; – Promote the participation on specific international projects; – Implementation of experimental facilities

  19. Economic incentives of short out-of-reactor time for fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Bentley, B.W.; Haffner, D.R.

    1975-01-01

    Economic benefits (primarily reduced uranium ore and enrichment expenditures) can be realized by reducing the LMFBR out-of-reactor fuel cycle time only if process cost penalties and R and D costs can be minimized. The results of the evaluation presented show the potential gross benefits of reducing the out-of-reactor time and the effects of various associated cost penalties on these benefits. The gross benefit results estimate the potential savings in electrical power generation in the next 50 years using constant 1975 dollars and discounting the costs at 7 1 / 2 percent per year

  20. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  1. Theoretical study for ICRF sustained LHD type p-11B reactor

    International Nuclear Information System (INIS)

    Watanabe, Tsuguhiro

    2003-04-01

    This is a summary of the workshop on 'Theoretical Study for ICRF Sustained LHD Type p- 11 B Reactor' held in National Institute for Fusion Science (NIFS) on July 25, 2002. In the workshop, study of LHD type D- 3 He reactor is also reported. A review concerning the advanced nuclear fusion fuels is also attached. This review was reported at the workshop of last year. The development of the p- 11 B reactor research which uses the LHD magnetic field configuration has been briefly summarized in section 1. In section 2, an integrated report on advanced nuclear fusion fuels is given. Ignition conditions in a D- 3 He helical reactor are summarized in section 3. 0-dimensional particle and power balance equations are solved numerically assuming the ISS95 confinement law including a confinement factor (γ HH ). It is shown that high average beta plasma confinement, a large confinement factor (γ HH > 3) and the hot ion mode (T i /T e > 1.4) are necessary to achieve the ignition of the D- 3 He helical reactor. Characteristics of ICRF sustained p- 11 B reactor are analyzed in section 4. The nuclear fusion reaction rate is derived assuming a quasilinear plateau distribution function (QPDF) for protons, and an ignition condition of p- 11 B reactor is shown to be possible. The 3 of the presented papers are indexed individually. (J.P.N.)

  2. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  3. Status of French R and D for advanced light water reactors

    International Nuclear Information System (INIS)

    Nigon, J.L.

    1987-01-01

    Present PWRs lead to a significant reduction of electricity cost when compared to other sources. Then it seems reasonable to keep the main features of PWRs when looking for improvements of investment cost, of operating and fuel costs, of flexibility and of safety. Besides that we have to think about uranium conservation; if nuclear starts again in many countries, as we hope, the uranium market could get into a crisis during the first half of the 21st century, and uranium shortage could become a reality. Advanced PWRs are also aimed at fissile material saving. The three French partners CEA, EdF and FRAMATOME decided to lead a three year programme 1984-1987. FRAMATOME in fact had started a little bit earlier, namely in 1982 (first publication in RNG - a French technical journal) and developed the RCVS, spectral shift convertible reactor core (for both Uranium and Plutonium fuel). FRAMATOME's effort is estimated to about 40.10 6 FF per year. EdF, R and D Division, is associated with this feasibility study. CEA performs an R and D programme, the objectives of which are: to support FRAMATOME for RCVS design; to explore a wider range of parameters in order to estimate the feasibility and the interest of tight lattice PWR cores. Simultaneously, EdF is defining the preliminary specifications of ''REP 2000'' (future standard for French PWRs in the year 2000 and following); the objectives of REP 2000 are: load follow capacity; cost effectiveness; operation flexibility. FRAMATOME's RCVS and the CEA RSM feasibility study have to be considered in this context. The main objectives are: 1) To improve performances, safety and to minimise cost; 2) To save fissile materials according to a global strategy; 3) While minimum modifications of present PWR components will be accepted. The R and D budget for PWRs (outside safety) of French CEA is around 450 10 6 FF per year. Among this, 40 10 6 FF/year are devoted to tight lattice core feasibility studies (period 1984-1987). 3 figs

  4. Contribution to the development of methods for nuclear reactor core calculations with APOLLO3 code: domain decomposition in transport theory with nonlinear diffusion acceleration for 2D and 3D geometries

    International Nuclear Information System (INIS)

    Lenain, Roland

    2015-01-01

    This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems' size ranging from color-sets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each sub-domain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the sub-domains). The multi-group problem is solved in each sub-domain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the sub-domains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of

  5. TFTR D-T results

    International Nuclear Information System (INIS)

    Meade, D.M.

    1994-01-01

    Temperatures, densities and confinement of deuterium plasmas confined in tokamaks have been achieved within the last decade that are approaching those required for a D-T reactor. As a result, the unique phenomena present in a D-T reactor plasma (D-T plasma confinement, alpha confinement, alpha heating and possible alpha driven instabilities) can now be studied in the laboratory. Recent experiments on the Tokamak Fusion Test Reactor (TFTR) have been the first magnetic fusion experiments to study plasmas with reactor fuel concentrations of tritium. The injection of ∼ 20 MW of tritium and 14 MW of deuterium neutral beams into the TFTR produced a plasma with a T/D density ratio of ∼1 and yielded a maximum fusion power of ∼ 9.2 MW. The fusion power density in the core of the plasma was ∼ 1.8 MW m -3 approximating that expected in a D-T fusion reactor. A TFTR plasma with T/D density ratio of ∼ 1 was found to have ∼ 20% higher energy confinement time than a comparable D plasma, indicating a confinement scaling with average ion mass, A, of τ E ∼ A 0.6 . The core ion temperature increased from 30 keV to 37 keV due to a 35% improvement of ion thermal conductivity. Using the electron thermal conductivity from a comparable deuterium plasma, about 50% of the electron temperature increase from 9 keV to 10.6 keV can be attributed to electron heating by the alpha particles. The ∼ 5% loss of alpha particles, as observed on detectors near the bottom edge of the plasma, was consistent with classical first orbit loss without anomalous effects. Initial measurements have been made of the confined energetic alphas and the resultant alpha ash density. At fusion power levels of 7.5 MW, fluctuations at the Toroidal Alfven Eigenmode frequency were observed by the fluctuation diagnostics. However, no additional alpha loss due to the fluctuations was observed

  6. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  7. The Siemens-Argonaut reactor as a driver zone for a high-temperature reactor cell. Der Siemens-Argonaut-Reaktor als Treiberzone fuer eine Hochtemperaturreaktorzelle

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Schuerrer, F; Ninaus, W; Oswald, K; Rabitsch, H; Kreiner, H [Technische Univ., Graz (Austria). Inst. fuer Theoretische Physik und Reaktorphysik; Neef, R D [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung

    1984-12-15

    To enable a validation of neutron physics calculation methods for pebble bed reactors the inner reflector of an Argonaut research reactor was substituted by a full of about 1200 fuel elements of the AVR-Juelich type. The report describes the measuring instruments and the reactor physical layout of the arrangement by the code packages GAMTEREX, ZUT-D.G.L. and MUPO. Comparison of calculated reaction rates with measurements show good agreement. Application of the codes to high-temperature reactors in abnormal states is envisaged. (Author, translated by G.Q.)

  8. 105-H Reactor Interim Safe Storage Project Final Report

    International Nuclear Information System (INIS)

    Ison, E.G.

    2008-01-01

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D and D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  9. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  10. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States); Peko, D. [US Dept. of Energy, Washington, DC (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Humrickhouse, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  11. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  12. NEPTUNE: a modular scheme for the calculation of light water reactors

    International Nuclear Information System (INIS)

    Kavenoky, A.

    1975-01-01

    The NEPTUNE modular scheme has been developed to provide the physicist and the design engineer with a single system of codes for the calculation of light water reactors. The APOLLO code is included in NEPTUNE for the multigroup transport treatment of cells, groups of cells and complete fuel assemblies; few groups cross section libraries are automatically transmitted to the reactor multidimensional diffusion modules. In the reactor phase, 1D and 2D diffusion calculations can be performed by use of the finite difference method; 2D and 3D calculations are done respectively by the BILAN and TRIDENT modules using the finite element method. For the depletion calculation coarse and refined computations are offered. NEPTUNE is characterized by two special features for the data processing: the OTOMAT system which provides a virtual memory simulation and the intervention Monitor which allow to disconnect the computation modules and the control modules [fr

  13. CFD Model of HDS Catalyst Tests in Trickle-Bed Reactor

    OpenAIRE

    Tukač, V.

    2014-01-01

    The goal of this study was to evaluate hydrodynamic influence on experimental HDS catalyst activity measurement carried out in pilot scale trickle-bed reactor. Hydrodynamic data were evaluated by RTD method in laboratory glass model of pilot reactor. Mathematical models of the process were formulated both like 1D pseudohomogeneou and 3D heterogeneous ones. The aim of this work was to forecast interaction between intrinsic reaction kinetic, hydrodynamics and mass transfer.

  14. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    International Nuclear Information System (INIS)

    Faghihi, F.; Mirvakili, S.M.

    2009-01-01

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity (ρ ex ), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10 3 Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  15. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of); Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Mirvakili, S.M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)

    2009-06-15

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity ({rho}{sub ex}), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10{sup 3}Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  16. FIREBIRD - a conceptual design of a field reversed configuration compact torus fusion reactor (CTFR)

    International Nuclear Information System (INIS)

    Raman, R.; Zubrin, R.M.

    1987-01-01

    This paper is a summary of the work carried out by the Nuclear Engineering 512 design team at the University of Washington on a conceptual design study of a Compact-Torus (Field-Reversed) Fusion Reactor Configuration (CTFR). The primary objective of the study was to develop a reactor design that strived for high engineering power density, modest recirculating power and competitive cost of electrical power. A Conceptual design was developed for a translating field-reversed configuration reactor; based on the Physics developed by Tuszewski and Lindford at LANL and by Hoffman and Milroy at MSNW. Furthermore, it also appears possible to operate a simplified form of this reactor using a pure D-D fuel cycle after an initial D-T ignition ramp to reach the advanced fuel operating regime. One optimistic reactor so designed has a length of about 35 meters, producing a net electrical power of about 375 MWe

  17. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  18. Qualification of the core model DYN3D coupled with the code ATHLET as an advanced tool for the accident analysis of VVER type reactors. Pt. 2. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Rohde, U.

    2002-10-01

    Benchmark calculations for the validation of the coupled neutron kinetics/thermohydraulic code complex DYN3D-ATHLET are described. Two benchmark problems concerning hypothetical accident scenarios with leaks in the steam system for a VVER-440 type reactor and the TMI-1 PWR have been solved. The first benchmark task has been defined by FZR in the frame of the international association 'Atomic Energy Research' (AER), the second exercise has been organized under the auspices of the OECD. While in the first benchmark the break of the main steam collector in the sub-critical hot zero power state of the reactor was considered, the break of one of the two main steam lines at full reactor power was assumed in the OECD benchmark. Therefore, in this exercise the mixing of the coolant from the intact and the defect loops had to be considered, while in the AER benchmark the steam collector break causes a homogeneous overcooling of the primary circuit. In the AER benchmark, each participant had to use its own macroscopic cross section libraries. In the OECD benchmark, the cross sections were given in the benchmark definition. The main task of both benchmark problems was to analyse the re-criticality of the scrammed reactor due to the overcooling. For both benchmark problems, a good agreement of the DYN3D-ATHLET solution with the results of other codes was achieved. Differences in the time of re-criticality and the height of the power peak between various solutions of the AER benchmark can be explained by the use of different cross section data. Significant differences in the thermohydraulic parameters (coolant temperature, pressure) occurred only at the late stage of the transient during the emergency injection of highly borated water. In the OECD benchmark, a broader scattering of the thermohydraulic results can be observed, while a good agreement between the various 3D reactor core calculations with given thermohydraulic boundary conditions was achieved. Reasons for the

  19. Development of high nickel austenitic steels for the application to fast reactor cores, (I). Alloy design with the aid of the d-electrons concept

    International Nuclear Information System (INIS)

    Murata, Yoshinori; Morinaga, Masahiko; Yukawa, Natsuo; Ukai, Shigeharu; Nomura, Shigeo; Okuda, Takanari; Harada, Makoto

    1999-01-01

    The design of high nickel austenitic steels for the core materials of the fast reactors was performed following the d-electrons concept devised on the basis of molecular orbital calculations of transition-metal based alloys. In this design two calculated parameters are mainly utilized. The one is the d-orbital energy level (Md) of alloying transition elements, and the other is the bond order (Bo) that is a measure of the covalent bond strength between atoms. Using the Md-bar - Bo-bar phase stability diagram accurate prediction become possible for the phase stability of the austenite phase and 5% swelling at 140 dpa for nickel ions. Here, Md-bar and Bo-bar are the compositional average of Md and Bo parameters, respectively. On the basis of the phase stability diagram and preliminary experiments, guidelines for the alloy design of carbo-nitrides precipitated high nickel austenitic steels were constructed. Following the guidelines several new austenitic steels were designed for the fast reactors core material. (author)

  20. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  1. GeN-Foam: a novel OpenFOAM"® based multi-physics solver for 2D/3D transient analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Fiorina, Carlo; Clifford, Ivor; Aufiero, Manuele; Mikityuk, Konstantin

    2015-01-01

    Highlights: • Development of a new multi-physics solver based on OpenFOAM"®. • Tight coupling of thermal-hydraulics, thermal-mechanics and neutronics. • Combined use of traditional RANS and porous-medium models. • Mesh for neutronics deformed according to the predicted displacement field. • Use of three unstructured meshes, adaptive time step, parallel computing. - Abstract: The FAST group at the Paul Scherrer Institut has been developing a code system for reactor analysis for many years. For transient analysis, this code system is currently based on a state-of-the-art coupled TRACE-PARCS routine. This work presents an attempt to supplement the FAST code system with a novel solver characterized by tight coupling between the different equations, parallel computing capabilities, adaptive time-stepping and more accurate treatment of some of the phenomena involved in a reactor transient. The new solver is based on OpenFOAM"®, an open-source C++ library for the solution of partial differential equations using finite-volume discretization. It couples together a multi-scale fine/coarse mesh sub-solver for thermal-hydraulics, a multi-group diffusion sub-solver for neutronics, a displacement-based sub-solver for thermal-mechanics and a finite-difference model for the temperature field in the fuel. It is targeted toward the analysis of pin-based reactors (e.g., liquid metal fast reactors or light water reactors) or homogeneous reactors (e.g., fast-spectrum molten salt reactors). This paper presents each “single-physics” sub-solver and the overall coupling strategy, using the sodium-cooled fast reactor as a test case, and essential code verification tests are described.

  2. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle

  3. Series lecture on advanced fusion reactors

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1983-01-01

    The problems concerning fusion reactors are presented and discussed in this series lecture. At first, the D-T tokamak is explained. The breeding of tritium and the radioactive property of tritium are discussed. The hybrid reactor is explained as an example of the direct use of neutrons. Some advanced fuel reactions are proposed. It is necessary to make physics consideration for burning advanced fuel in reactors. The rate of energy production and the energy loss are important things. The bremsstrahlung radiation and impurity radiation are explained. The simple estimation of the synchrotron radiation was performed. The numerical results were compared with a more detailed calculation of Taimor, and the agreement was quite good. The calculation of ion and electron temperature was made. The idea to use the energy more efficiently is that one can take X-ray or neutrons, and pass them through a first wall of a reactor into a second region where they heat the material. A method to convert high temperature into useful energy is the third problem of this lecture. The device was invented by A. Hertzberg. The lifetime of the reactor depends on the efficiency of energy recovery. The idea of using spin polarized nuclei has come up. The spin polarization gives a chance to achieve a large multiplication factor. The advanced fuel which looks easiest to make go is D plus He-3. The idea of multipole is presented to reduce the magnetic field inside plasma, and discussed. Two other topics are explained. (Kato, T.)

  4. Comparison of Analysis Results Between 2D/1D Synthesis and RAPTOR-M3G in the Korea Standard Nuclear Plant (KSNP

    Directory of Open Access Journals (Sweden)

    Lim Mi Joung

    2016-01-01

    Full Text Available The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP-OPR (Optimized Power Reactor 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.

  5. Radiological characterization of the concrete biological shield of the APSARA reactor

    OpenAIRE

    Srinivasan Priya; Srinivasan Panchapakesan; Thomas Shibu; Gopalakrishnan R.K.; Goswami A.

    2013-01-01

    The first Indian research reactor, APSARA, was utilized for various R&D programmes from 1956 until its shutdown in 2009. The biological shield of the reactor developed residual activity due to neutron irradiation during the operation of the reactor. Dose rate mapping and in-situ gamma spectrometry of the concrete structures of the reactor pool were carried out. Representative concrete samples collected from various locations were subjected to high-resolution gamma spectrometry analysis....

  6. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  7. Power Reactor Design at Zero Power; Etudes de Reacteurs de Puissance, au Moyen de Machines de Puissance Zero; Konstruktsiya ehnergeticheskogo reaktora nulevoj moshchnosti; Diseno de Reactores Generadores con Ayuda de Reactores de Potencia Nula

    Energy Technology Data Exchange (ETDEWEB)

    Redman, W. C.; Plumlee, K. E.; Baird, Q. L. [Argonne National Laboratory, Argonne, IL (United States)

    1964-02-15

    reliance placed in the past on exponential and critical systems for fulfilling Argonne's responsibilities in reactor development. An indication of their future role is provided by a brief summary of the current and planned programmes for the existing members of, and anticipated additions to, Argonne's family of operating zero-power reactors. (author) [French] Avec le reacteur de puissance zero du Laboratoire national d'Argonne, on a procede a des etudes de reacteurs tres divers; reacteurs de recherche, generatrices nucleaires, reacteurs pour la propulsion, pour la production de radioisotopes et reacteurs experimentaux; les ensembles associes - exponentiels et critiques non empoisonnes - ont fourni les donnees debase. Afin de rendre compte d'experiences recentes et de montrer quelle masse de renseignements sur la physique des reacteurs on peut obtenir avec des systemes a bas flux, les auteurs exposent les programmes experimentaux ci-apres: 1. Etude des proprietes des elements combustibles en oxydes d'uranium et de thorium, immerges dans l'eau lourde, en s'attachant particulierement aux donnees necessaires pour l'etude d'un deuxieme coeur pour le reacteur experimental a eau bouillante du Laboratoire d'Argonne; 2. Maquette d'un reacteur de recherche a haut flux, qui permettra de verifier les calculs faits au cours de l'etude, de determiner la geometrie optimale et d'estimer l'effet du taux de combustion; 3. Determination des repartitions energetiques et de l'effet de l'immersion des cartouches sur la reactivite pour un reacteur experimental a ebullition et a surchauffe combinees; 4. Etude d'un coeur de reacteur surgenerateur plutonigene a neutrons rapides, alimente en U{sup 235} et refroidi au sodium qui constituerait la charge initiale du Deuxieme reacteur surgenerateur experimental d'Argonne; 5. Etude des caracteristiques d'un reacteur a deux regions, l'une thermique et l'autre rapide, en interaction. Dans l'expose de ces programmes, les auteurs expliquent pourquoi on a

  8. Reactor Pressure Vessel (RPV) Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    The Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Reactor Pressure Vessel (RPV). This component will be larger than any nuclear reactor pressure vessel presently in service in the United States. The RPV will be taller, larger in diameter, thicker walled, heavier and most likely fabricated at the Idaho National Laboratory (INL) site of multiple subcomponent pieces. The pressure vessel steel can either be a conventional materials already used in the nuclear industry such as listed within ASME A508/A533 specifications or it will be fabricated from newer pressure vessel materials never before used for a nuclear reactor in the US. Each of these characteristics will present a

  9. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  10. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  11. Prospects for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.D.

    1994-01-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  12. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  13. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  14. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  15. Nuclear data for advanced fast reactors

    International Nuclear Information System (INIS)

    Rabotnov, N.S.

    2001-01-01

    Interest revives to fast reactors as the only proven technology obviously able of satisfying human energy needs for the next millennium by using full energy content of both natural uranium resources and of vast stocks of depleted uranium. This interest stimulates revision and improvement of fast reactor ND. Progress in reactor calculations accuracy due to better codes and much faster computers also increases relative importance of the input data uncertainties, especially in case of small reactivity margin and fuels of equilibrium compositions. The main objects of corresponding R and D efforts should be minor actinides and heavy liquid metal coolant. Data error bands and covariance information also gain importance as necessary components of neutron physics calculations. (author)

  16. The reactor Cabri

    International Nuclear Information System (INIS)

    Ailloud, J.; Millot, J.P.

    1964-01-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m 3 /h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  17. The Calculation Of Total Radioactivity Of Kartini Reactor Fuel Element

    International Nuclear Information System (INIS)

    Budisantoso, Edi Trijono; Sardjono, Y.

    1996-01-01

    The total radioactivity of Kartini reactor fuel element has been calculated by using ORIGEN2. In this case, the total radioactivity is the sum of alpha, beta, and gamma radioactivity from activation products nuclides, actinide nuclides and fission products nuclides in the fuel element. The calculation was based on irradiation history of fuel in the reactor core. The fuel element no 3203 has location history at D, E, and F core zone. The result is expressed in graphics form of total radioactivity and photon radiations as function of irradiation time and decay time. It can be concluded that the Kartini reactor fuel element in zone D, E, and F has total radioactivity range from 10 Curie to 3000 Curie. This range is for radioactivity after decaying for 84 days and that after reactor shut down. This radioactivity is happened in the fuel element for every reactor operation and decayed until the fuel burn up reach 39.31 MWh. The total radioactivity emitted photon at the power of 0.02 Watt until 10 Watt

  18. Neutronic study of the two french heavy water reactors

    International Nuclear Information System (INIS)

    Horowitz, J.

    1955-01-01

    The two french reactors - the reactor of Chatillon, named Zoe, and the reactor of Saclay - P2 - were the object of detailed neutronic studies which the main ideas are exposed in this report. These studies were mostly done by the Department of the Reactor Studies (D.E.P.). We have thus studied the distribution of neutronic fluxes; the factors influencing reactivity; the link between reactivity and divergence with the formula of Nordheim; the mean time life of neutrons; neutron spectra s of P2; the xenon effect; or the effect of the different adjustments of the plates and controls bar. (M.B.) [fr

  19. Segmentation and packaging reactor vessels internals

    International Nuclear Information System (INIS)

    Boucau, Joseph

    2014-01-01

    Document available in abstract form only, full text follows: With more than 25 years of experience in the development of reactor vessel internals and reactor vessel segmentation and packaging technology, Westinghouse has accumulated significant know-how in the reactor dismantling market. The primary challenges of a segmentation and packaging project are to separate the highly activated materials from the less-activated materials and package them into appropriate containers for disposal. Since disposal cost is a key factor, it is important to plan and optimize waste segmentation and packaging. The choice of the optimum cutting technology is also important for a successful project implementation and depends on some specific constraints. Detailed 3-D modeling is the basis for tooling design and provides invaluable support in determining the optimum strategy for component cutting and disposal in waste containers, taking account of the radiological and packaging constraints. The usual method is to start at the end of the process, by evaluating handling of the containers, the waste disposal requirements, what type and size of containers are available for the different disposal options, and working backwards to select a cutting method and finally the cut geometry required. The 3-D models can include intelligent data such as weight, center of gravity, curie content, etc, for each segmented piece, which is very useful when comparing various cutting, handling and packaging options. The detailed 3-D analyses and thorough characterization assessment can draw the attention to material potentially subject to clearance, either directly or after certain period of decay, to allow recycling and further disposal cost reduction. Westinghouse has developed a variety of special cutting and handling tools, support fixtures, service bridges, water filtration systems, video-monitoring systems and customized rigging, all of which are required for a successful reactor vessel internals

  20. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor; Etude par simulation numerique des ecoulements turbulents reactifs dans les reacteurs d'oxydation hydrothermale: application a un reacteur agite double enveloppe

    Energy Technology Data Exchange (ETDEWEB)

    Moussiere, S

    2006-12-15

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)