WorldWideScience

Sample records for betatron oscillations

  1. Energy measurements from betatron oscillations

    International Nuclear Information System (INIS)

    Himel, T.; Thompson, K.

    1989-03-01

    In the Stanford Linear Collider the electron beam is accelerated from 1--50 GeV in a distance of 3 km. The energy is measured and corrected at the end with an energy feedback loop. There are no bends within the linear accelerator itself, so no intermediate energy measurements are made. Errors in the energy profile due to mis-phasing of the rf, or due to calibration errors in the klystrons' rf outputs are difficult to detect. As the total betatron phase advance down the accelerator is about 30 /times/ 2π, an energy error of a few percent can cause a large error in the total phase advance. This in turn degrades the performance of auto-steering programs. We have developed a diagnostic program which generates and measures several betatron oscillations in the accelerator. It then analyzes this oscillation, looking for frequency changes which indicate energy errors. One can then compensate for or correct these energy errors. 6 refs., 1 fig

  2. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  3. Betatron phase advance measurement at SPEAR

    International Nuclear Information System (INIS)

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Ross, M.

    1987-02-01

    There are many reasons to determine the betatron phase advance between two azimuthal positions in a circular accelerator or storage ring. We have measured the betatron phase advance between various pairs of azimuthal points in the SPEAR Storage Ring by two different methods. The first method is to excite a steady state coherent betatron oscillation with a network analyzer. The second method is to excite a free coherent betatron oscillation with an impulse kick, and to digitally sample the transverse position of the beam at the pickup stations. The results of these digital samples are Fourier analyzed with a computer to obtain the phase advance. The second method is discussed, and the experimental results compared to theory

  4. Betatron phase advance measurement at SPEAR

    International Nuclear Information System (INIS)

    Morton, P.L.; Pellegrin, J.L.; Raubenheimer, T.; Ross, M.

    1987-01-01

    There are many reasons to determine the betatron phase advance between two azimuthal positions in a circular accelerator or storage ring. The authors measured the betatron phase advance between various pairs of azimuthal points in the SPEAR Storage Ring by two different methods. The first method is to excite a steady state coherent betatron oscillation with a network analyzer. The second method is to excite a free coherent betatron oscillation with an impulse kick, and to digitally sample the transverse position of the beam at the pickup stations. The results of these digital samples are Fourier analyzed with a computer to obtain the phase advance. The second method is discussed, and the experimental results compared to theory

  5. Automatic Correction of Betatron Coupling in the LHC Using Injection Oscillations

    CERN Document Server

    Persson, T; Jacquet, D; Kain, V; Levinsen, Y; McAteer, M-J; Maclean, E; Skowronski, P; Tomas, R; Vanbavinckhove, G; Miyamoto, R

    2013-01-01

    The control of the betatron coupling at injection and during the energy ramp is critical for the safe operation of the tune feedback and for the dynamic aperture. In the LHC every fill is preceded by the injection of a pilot bunch with low intensity. Using the injection oscillations from the pilot bunch we are able to measure the coupling at each individual BPM. The measurement is used to calculate a global coupling correction. The correction is based on the use of two orthogonal knobs which correct the real and imaginary part of the difference resonance term f1001, respectively. This method to correct the betatron coupling has been proven successful during the normal operation of the LHC. This paper presents the method used to calculate the corrections and its performance.

  6. Measurement of betatron-tune in the KEK 12 GeV-PS/J-PARC

    International Nuclear Information System (INIS)

    Miura, Takako; Toyama, Takeshi; Igarashi, Susumu; Hayashi, Naoki

    2004-01-01

    Measurement of betatron-tune in the KEK 12 GeV-PS is performed by using band limited white noise which excites coherent betatron oscillations via stripline unit. We compared the results of the measurement for betatron oscillation amplitude with the result of calculation, and confirmed the consistency. The design of the tune-monitor in J-PARC was also discussed applying this result. (author)

  7. Measurement of the betatron phase advance and betatron amplitude ratio at the SPP-barS collider

    International Nuclear Information System (INIS)

    Bossart, R.; Scandale, W.

    1987-01-01

    A technique for the precise measurement of lattice functions in a hadron collider has been developed. The betatron functions on either side of the two low beta insertions of the SPS collider have been determined from the measured amplitude and phase of horizontal beam oscillations with a peak amplitude of 40 μm. Four directional couplers and four synchronous receivers working at 200 MHz monitor the betatron oscillations of the beam excited by the fast deflectors of the damper. A fast Fourier transform of the signals provides the phase and amplitude ratio of the beam oscillations between any pair of monitors. The relative amplitude and phase of the beam oscillations can be measured with an accuracy of 0 in phase. For achieving such an accuracy a special calibration method has been implemented to determine the propagation times and amplification factors of the measuring equipment, using the intensity signals of the beam itself. The same equipment can be used also for measuring the beam transfer function by injecting white noise into the beam deflectors

  8. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  9. The tandem betatron accelerator

    International Nuclear Information System (INIS)

    Keinigs, R.

    1991-01-01

    This paper reports that the tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength (λ < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MEV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing

  10. Nu shifts in betatron oscillations from uniform perturbations in the presence of non-linear magnetic guide fields

    International Nuclear Information System (INIS)

    Crebbin, K.C.

    1985-05-01

    Uniform magnetic field perturbations cause a closed orbit distortion in a circular accelerator. If the magnetic guide field is non-linear these perturbations can also cause a Nu shift in the betatron oscillations. Such a shift in radial Nu values has been observed in the Bevalac while studying the low energy resonant extraction system. In the Bevalac, the radial perturbation comes from the quadrants being magnetically about 0.8% longer than 90 0 . The normal effect of this type of perturbation is a radial closed orbit shift and orbit distortion. The Nu shift, associated with this type of perturbation in the presence of a non-linear guide field, is discussed in this paper. A method of handling the non-linear n values is discussed as well as the mechanism for the associated Nu shift. Computer calculations are compared to measurements. 2 refs., 4 figs

  11. Betatrons with kiloampere beams

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1982-11-01

    Although the magnetic-induction method of acceleration used in the betatron is inherently capable of accelerating intense particle beams to high energy, many beam-instability questions arise when beams in the kilo-ampere range are considered. The intense electromagnetic fields produced by the beam, and by the image currents and charges induced in the surrounding walls, can produce very disruptive effects. Several unstable modes of collective oscillation are possible; the suppression of any one of them usually involves energy spread for Landau damping and careful design of the electrical character of the vacuum chamber. The various design criteria are often mutually incompatible. Space-charge detuning can be severe unless large beam apertures and high-energy injection are used. In order to have an acceptably low degree of space-charge detuning in the acceleration of a 10-kilo-ampere electron beam, for example, an injection energy on the order of 50 MeV seems necessary, in which case the forces due to nearby wall images can have a larger effect than the internal forces of the beam. A method of image compensation was invented for reducing the net image forces; it serves also to decrease the longitudinal beam impedance and thus helps alleviate the longitudinal instability as well. In order to avoid the ion-electron collective instability a vacuum in the range of 10 - 8 torr is required for an acceleration time of 1 millisecond. A multi-ring betatron system using the 50-MeV Advanced Test Accelerator at LLNL as an injector was conceptually designed

  12. Experimental results of the betatron sum resonance

    International Nuclear Information System (INIS)

    Wang, Y.; Ball, M.; Brabson, B.

    1993-06-01

    The experimental observations of motion near the betatron sum resonance, ν x + 2ν z = 13, are presented. A fast quadrupole (Panofsky-style ferrite picture-frame magnet with a pulsed power supplier) producing a betatron tune shift of the order of 0.03 at rise time of 1 μs was used. This quadrupole was used to produce betatron tunes which jumped past and then crossed back through a betatron sum resonance line. The beam response as function of initial betatron amplitudes were recorded turn by turn. The correlated growth of the action variables, J x and J z , was observed. The phase space plots in the resonance frame reveal the features of particle motion near the nonlinear sum resonance region

  13. Correction of dispersion and the betatron functions in the CEBAF accelerator

    International Nuclear Information System (INIS)

    Lebedev, V.A.; Bickley, M.; Schaffner, S.; Zeijts, J. van; Krafft, G.A.; Watson, C.

    1996-01-01

    During the commissioning of the CEBAF accelerator, correction of dispersion and momentum compaction, and, to a lesser extent, transverse transfer matrices were essential for robust operation. With changing machine conditions, repeated correction was found necessary. To speed the diagnostic process the authors developed a method which allows one to rapidly track the machine optics. The method is based on measuring the propagation of 30 Hz modulated betatron oscillations downstream of a point of perturbation. Compared to the usual methods of dispersion or difference orbit measurement, synchronous detection of the beam displacement, as measured by beam position monitors, offers significantly improved speed and accuracy of the measurements. The beam optics of the accelerator was altered to decrease lattice sensitivity at critical points and to simplify control of the betatron function match. The calculation of the Courant-Snyder invariant from signals of each pair of nearby beam position monitors has allowed one to perform on-line measurement and correction of the lattice properties

  14. Synchronisation of the LHC Betatron Coupling and Phase Advance Measurement System

    CERN Document Server

    Gasior, M

    2014-01-01

    The new LHC Diode ORbit and OScillation (DOROS) system will provide beam position readings with submicrometre resolution and at the same time will be able to perform measurements of local betatron coupling and beam phase advance with micrometre beam excitation. The oscillation sub-system employs gain-controlled RF amplifiers, shared with the orbit system, and followed by dedicated diode detectors to demodulate the beam oscillation signals into the kHz frequency range, subsequently digitized by multi-channel 24-bit ADCs. The digital signals are processed in each front-end with an FPGA and the results of reduced throughput are sent using an Ethernet protocol to a common concentrator, together with the orbit data. The phase advance calculation between multiple Beam Position Monitors (BPMs) requires that all DOROS front-ends have a common phase reference. This paper presents methods used to generate such a reference and to maintain a stable synchronous sampling on all system front-ends. The performance of the DOR...

  15. Performance of a correlator filter in betatron tune measurements and damping on the NSLS booster

    International Nuclear Information System (INIS)

    Galayda, J.

    1985-01-01

    A ''compensated correlator filter'', described by Kramer, et al. has been used for measurement and damping of betatron oscillations in the NSLS booster. The filter consists of a zero-degree power splitter, a 180-degree splitter, a length of 7/8'' air dielectric coaxial cable, and a short length of RG-58 cable. Connected to a beam position monitor, the output of the filter is proportional to the difference in transverse position of each bunch on subsequent turns. The useful bandwidth of the filter for damping rigid bunch oscillations extends from 10 MHz to 250 MHz, in contrast with the gigahertz bandwidth requirements for stochastic cooling, for which the filter was originally proposed. Attenuation of all rotation harmonics in this bandwidth is 40 to 60 dB

  16. Application of betatrons to quality control of structures

    International Nuclear Information System (INIS)

    Klevtsov, V.A.; Matveev, Yu.K.; Trefilov, V.V.

    1986-01-01

    The results of laboratory investigations on the applicability of modificated PMB-6 betatron to quality control of reinforced concrete structures are presented. The investigations have been performed for the purposes of refinement of the technique for detecting voids and establishing real reinforcement. On the basis of experimental investigations the technique and schemes of structure translucence have been developed. Examples of using betatrons for flaw detection of reinforred concrete structures are given

  17. Betatron radiation from a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schnell, Michael

    2014-01-01

    The presented thesis investigates the processes which lead to the generation of highenergetic X-ray radiation, also known as ''betatron radiation'', by means of a relativistic laser-plasma interaction. The generated betatron radiation has been extensively characterized by measuring its radiated intensity, energy distribution, far-field beam profile, and source size. It was shown for the first time that betatron radiation can be used as a non-invasive diagnostic tool to retrieve very subtle information on the electron acceleration dynamics within the plasma wave. Furthermore, a compact polarimeter setup has been developed in a unique experiment in which the polarization state of the laser-plasma generated betatron radiation was measured in single-shot mode. This lead to a detailed study of the orientation of the electron trajectory within the plasma interaction. By controlling the injection of the electrons into the plasma wave it was demonstrated that one can tune the polarization state of the emitted X-rays. This result is very promising for further applications, particularly for feeding the electrons into an additional conventional accelerator or a permanent magnet based undulator for the production of intense X-ray beams. During this work, the experimental setup for accelerating electrons and generating high-energy X-ray beams was consistently improved: to enhance both its reliability and stability. Subsequently, the betatron radiation was used as a reliable diagnostic tool of the electron dynamics within the plasma. Parallel to the experimental work, 3-Dimensional Particle-In-Cell (3D-PlC) simulations were performed together with colleagues from the University of Duesseldorf. The simulations included the electron acceleration and the X-ray generation processes together with the recoil force acting on an accelerating electron caused by the emitted radiation during which one can also ascertain its polarization state. The simulations proved to be in good agreement

  18. Synchro-betatron resonance excitation in LEP

    International Nuclear Information System (INIS)

    Myers, S.

    1987-01-01

    The excitation of synchrotro-betatron resonances due to spurious dispersion and induced transverse deflecting fields at the RF cavities has been simulated for the LEP storage ring. These simulations have been performed for various possible modes of operation. In particular, a scenario has been studied in which LEP is operated at the maximum possible value of the synchrotron tune throughout the acceleration cycle, in an attempt to maximise the threshold intensity at which the Transverse Mode Coupling Instability (TMCI) occurs. This mode of operation necessitates the crossing of synchro-betatron resonances at some points in the acceleration cycle if low order non-linear machine resonances are to be avoided. Simulations have been performed in which the machine tune is swept across these synchro-betratron resonances at a rate given by the bandwidth of the magnet plus power supply circuits of the main quadrupole chain. The effect of longitudinal and transverse wake-fields on the excitation of these resonances has been investigated. These studies indicate that the distortion of the RF potential well caused by the longitudinal wake fields increases the non-linear content of the synchrotron motion and consequently increases significantly the excitation of the higher order synchro-betatron resonances

  19. Application of a Betatron in Photonuclear Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D [AB Atomenergi, Nykoeping (Sweden); Mattsson, K; Liden, K [Dept . of Radiation Physics, Univ. of Lund (Sweden)

    1968-08-15

    The present study concerns the determination of fluorine, iodine, lead and mercury by means of photonuclear activation technique using a betatron. The detection limit obtained for the elements in the above given sequence amounted to 3, 50, 400 and 15 {mu}g respectively. The technique has been applied in the determination of iodine in pharmaceuticals. A rotating sample holder device was inserted in the Bremsstrahlung beam of the betatron in order to ensure uniform irradiation of the samples.

  20. Improved control of the betatron coupling in the Large Hadron Collider

    Science.gov (United States)

    Persson, T.; Tomás, R.

    2014-05-01

    The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f1001 to the ΔQmin is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM) pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.

  1. Improved control of the betatron coupling in the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    T. Persson

    2014-05-01

    Full Text Available The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f_{1001} to the ΔQ_{min} is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.

  2. High current betatron research at the University of New Mexico

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Len, L.K.

    1987-01-01

    Betatrons are among the simplest of high energy accelerators. Their circuit is equivalent to a step-up transformer; the electron beam forms a multi-turn secondary winding. Circulation of the beam around the flux core allows generation of high energy electrons with relatively small core mass. As with any transformer, a betatron is energy inefficient at low beam current; the energy balance is dominated by core losses. This fact has prompted a continuing investigation of high current betatrons as efficient, compact sources of beta and gamma radiation. A program has been supported at the University of New Mexico by the Office of Naval Research to study the physics of high current electron beams in circular accelerators and to develop practical technology for high power betatrons. Fabrication and assembly of the main ring was completed in January of this year. In contrast to other recent high current betatron experiments the UNM device utilizes a periodic focusing system to contain high current beams during the low energy phase of the acceleration cycle. The reversing cusp fields generated by alternating polarity solenoidal lenses cancel beam drift motions induced by machine errors. In consequence, they have found that the cusp geometry has had significantly better stability properties than a monodirectional toroidal field. In comparison to other minimum-Β geometries such as the Stelllatron cusps have open field lines which facilitate beam injection and neutralization

  3. Betatron tune measurement

    International Nuclear Information System (INIS)

    Dinev, D.

    2001-01-01

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  4. Investigation of betatron instability in a wiggler pumped ion-channel free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Raghavi, A [Physics Department, Payame Noor University, 19395-4697 (Iran, Islamic Republic of); Mehdian, H, E-mail: Raghavi@tmu.ac.ir, E-mail: Mehdian@tmu.ac.ir [Department of Physics, Teacher Training University, Tehran (Iran, Islamic Republic of)

    2011-10-15

    Betatron emission from an ion-channel free electron laser in the presence of a helical wiggler pump and in the high gain regime is studied. The dispersion relation and the frequency of betatron emission are derived. Growth rate is illustrated and maximum growth rate as a function of ion-channel density is considered. Finally, the relation between beam energy, the density of ion channel and the region of betatron emission is discussed.

  5. Betatron tune correction schemes in nuclotron

    International Nuclear Information System (INIS)

    Shchepunov, V.A.

    1992-01-01

    Algorithms of the betatron tune corrections in Nuclotron with sextupolar and octupolar magnets are considered. Second order effects caused by chromaticity correctors are taken into account and sextupolar compensation schemes are proposed to suppress them. 6 refs.; 1 tab

  6. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  7. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  8. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    International Nuclear Information System (INIS)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A.R.; Zigler, A.

    2016-01-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  9. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  10. Iron-free betatrons - short radiation pulse generators for roentgenography of fast-going processes

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovskij, A P; Zenkov, D I; Kuropatkin, Yu P; Mironenko, V D; Suvorov, V N [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The possibilities of further increasing the current in high-current iron-free betatrons are studied. The efficiency of electron capture has been successfully increased by introducing local disturbances of the betatron magnetic field. At the optimum ratios of the disturbing and the betatron field, and at the optimum winding geometry as for the field disturbances and their attenuation rate, a multi-revolution electron capture has been achieved. The dependence of the circulating current on the injection energy was studied at the optimized facility with a porcelain accelerating chamber and a conducting cover. The experimental dependence is close to the calculated one. The maximum circulating current achieved was 28030 A which is the record value for circular accelerators. (J.U.). 1 tab., 5 figs., 2 refs.

  11. Inductive-pulsed power supplying system for a betatron electromagnet

    International Nuclear Information System (INIS)

    Otrubyannikov, Yu.A.; Safronov, A.S.

    1984-01-01

    Circuit of producing quasitriangular current pulses designed for the pulsed power supply system of betatron electromagnet is described. Introduction of additional winding into electromagnet provides circuit galvanic isolation, artificial commutation of basic circuit thyristors and inductive power input to the winding during thyristor commutation. The considered system is used for excitation of betatron electromagnet up to 18 MeV. Magnetic field energy equals 1100 Y. The maximal voltage in energy storage capacitor - 4.8 kV. Current amplitude in basic winding - 335 A. The number of loops in basic winding equals 80, in additional one - 32. Current pulse duration in electromagnet-3.8 ms. The system provides operation with controlled current pulse frequency from 0 up to 150 Hz. The maximal consumption power - 18 kW

  12. Tune shift and betatron modulations due to insertion devices in SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.

    1989-12-01

    SPEAR will soon operate as a dedicated synchrotron radiation source with up to 5 beamlines fed from insertion devices. These magnets introduce additional focusing forces into the storage ring lattice which increase the vertical betatron tune and modulate the beam envelope in the vertical plane. The lattice simulation code 'GEMINI' is used to evaluate the tune shifts and estimate the degree of betatron modulation as each magnetic insertion device is brought up to full power. A program is recommended to correct the tunes with the FODO cell quadrupoles. 4 refs., 8 figs., 1 tab

  13. Dispersion and betatron matching into the linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Adolphsen, C.; Corbett, W.J.; Emma, P.; Hsu, I.; Moshammer, H.; Seeman, J.T.; Spence, W.L.

    1991-05-01

    In high energy linear colliders, the low emittance beam from a damping ring has to be preserved all the way to the linac, in the linac and to the interaction point. In particular, the Ring-To-Linac (RTL) section of the SLAC Linear Collider (SLC) should provide an exact betatron and dispersion match from the damping ring to the linac. A beam with a non-zero dispersion shows up immediately as an increased emittance, while with a betatron mismatch the beam filaments in the linac. Experimental tests and tuning procedures have shown that the linearized beta matching algorithms are insufficient if the actual transport line has some unknown errors not included in the model. Also, adjusting quadrupole strengths steers the beam if it is offset in the quadrupole magnets. These and other effects have lead to a lengthy tuning process, which in the end improves the matching, but is not optimal. Different ideas will be discussed which should improve this matching procedure and make it a more reliable, faster and simpler process. 5 refs., 2 figs

  14. Betatron stochastic cooling in the Debuncher: Present and future

    International Nuclear Information System (INIS)

    Visnjic, V.

    1993-07-01

    A detailed study of the betatron stochastic cooling in the Debuncher is presented. First, a complete theoretical model including the emittance-dependent signal-to-noise ratio as well as time-dependent mixing is constructed. The emittance measurements in the Debuncher are described and it is shown that the model is in excellent agreement with the experimental data. The idea of gain shaping is proposed and it is shown that the gain shaping would improve the cooling of the beam. Several proposals for future improvements are studied and appraised, in particular, gain shaping, ramped η, and cryogenic and ''smart'' pickups and kickers. Finally, the demands which the Main Injector will impose on the Debuncher are analyzed and a design of the betatron stochastic cooling system for the Main Injector era is outlined

  15. Positron Source from Betatron X-rays Emitted in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.K.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-04-21

    In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3 x 10{sup 17}cm{sup -3}, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.

  16. Chromaticity measurement via the fourier spectrum of transverse oscillations

    International Nuclear Information System (INIS)

    Xi Yang

    2004-01-01

    Turn-by-turn data from a single BPM includes information on the chromaticity in sidebands displaced above and below the betatron frequency by an amount of the synchrotron frequency. It may be necessary to induce small amplitude synchrotron oscillation by giving the beam a small kick. Power spectrum of the BPM data gives clear chromatic sidebands, and they can be applied to the chromaticity measurement in the Fermilab Booster

  17. Synchro-betatron resonances driven by the beam-beam interaction

    International Nuclear Information System (INIS)

    Furman, M.A.

    1994-01-01

    We present a selective summary of the discussions on beam-beam-driven synchrobetatron resonances at the 6th Advanced ICFA Beam Dynamics Workshop on the subject ''Synchro-Betatron Resonances,'' held in Funchal (Madeira, Portugal), October 24--30, 1993

  18. Phase mixing of transverse oscillations in the linear and nonlinear regimes for IFR relativistic electron beam propagation

    International Nuclear Information System (INIS)

    Shokair, I.R.

    1991-01-01

    Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs

  19. Modified betatron for ion beam fusion

    International Nuclear Information System (INIS)

    Rostoker, N.; Fisher, A.

    1986-01-01

    An intense neutralized ion beam can be injected and trapped in magnetic mirror or tokamak geometry. The details of the process involve beam polarization so that the beam crosses the fringing fields without deflection and draining the polarization when the beam reaches the plasma. Equilibrium requires that a large betatron field be added in tokamak geometry. In mirror geometry a toroidal field must be added by means of a current along the mirror axis. In either case, the geometry becomes that of the modified betatron which has been studied experimentally and theoretically in recent years. We consider beams of d and t ions with a mean energy of 500 kev and a temperature of about 50 kev. The plasma may be a proton plasma with cold ions. It is only necessary for beam trapping or to carry currents. The ion energy for slowing down is initially 500 kev and thermonuclear reactions depend only on the beam temperature of 50 kev which changes very slowly. This new configuration for magnetic confinement fusion leads to an energy gain of 10--20 for d-t reactions whereas previous studies of beam target interaction predicted a maximum energy gain of 3--4. The high beam energy available with pulsed ion diode technology is also essential for advanced fuels. 16 refs., 3 figs

  20. Characteristics of a betatron core for extraction in a proton-ion medical synchrotron

    CERN Document Server

    Badano, L

    1997-01-01

    Medical synchrotrons for radiation therapy require a very stable extraction of the beam over a period of about one second. The techniques for applying resonant extraction to achieve this long spill can be classified into two groups, those that move the resonance and those that move the beam. The latter has the great advantage of keeping all lattice functions, and hence the resonance conditions, constant. The present report examines the possibility of using a betatron core to accelerate the waiting ion beam by induction into the resonance. The working principle, the proposed characteristics and the expected performances of this device are discussed. The betatron core is a smooth high-inductance device compared to the small quadrupole lenses that are normally used to move the resonance and is therefore better suited to delivering a very smooth spill. The large stored energy in a betatron core compared to a small quadrupole is also a safety feature since it responds less quickly to transients that could send lar...

  1. Linear theory of beam depolarization due to vertical betatron motion

    International Nuclear Information System (INIS)

    Chao, A.W.; Schwitters, R.F.

    1976-06-01

    It is well known that vertical betatron motion in the presence of quantum fluctuations leads to some degree of depolarization of a transversely polarized beam in electron-positron storage rings even for energies away from spin resonances. Analytic formulations of this problem, which require the use of simplifying assumptions, generally have shown that there exist operating energies where typical storage rings should exhibit significant beam polarization. Due to the importance of beam polarization in many experiments, we present here a complete calculation of the depolarization rate to lowest order in the perturbing fields, which are taken to be linear functions of the betatron motion about the equilibrium orbit. The results are applicable to most high energy storage rings. Explicit calculations are given for SPEAR and PEP. 7 refs., 8 figs

  2. Photoneutron source based on a compact 10 MeV betatron

    International Nuclear Information System (INIS)

    Bell, Z.W.; Chaklov, V.L.; Golovkov, V.M.

    1998-01-01

    Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. The authors report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron (466 kg total weight, 900 by 560 by 350 mm betatron dimensions) at the Institute of Introscopy of the Tomsk Polytechnic University. Electrons were accelerated to energies up to 10 MeV and produced a bremsstrahlung beam with a dose rate of 0.16 Gy/min (at 10 MeV, 1 meter from the bremsstrahlung target) to irradiate LiD, Be, depleted U, and Pb neutron-producing targets. The angular distributions of photoneutrons produced by bremsstrahlung beams were measured with a long counter and integrated to determine neutron yield. In addition, neutron time of flight spectra were recorded from all targets using a 15 meter flight path perpendicular to the photon beam. The maximum observed yields were 5.2 x 10 4 n/rad/gram target obtained with LiD, 1.7 x 10 4 n/rad/gram from Be, 3.3 x 10 3 n/rad/gram from U, and 7.5 x 10 2 n/rad/gram from Pb. Optimization of target dimensions, shape, and positioning is expected to increase the yield from the LiD target by a factor of 35. With the increased yield, this compact betatron-based system could find application in the interrogation of waste containers for fissile material

  3. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)

    2016-07-15

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  4. Coherent betatron instability in the Tevatron

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Harrison, M.; Ng, K.Y.

    1988-01-01

    The coherent betatron instability was first observed during the recent 1987-88 Tevatron fixed target run. In this operating mode 1000 consecutive bunches are loaded into the machine at 150 GeV with a bunch spacing of 18.8 /times/ 10 -9 sec (53 MHz). The normalized transverse emittance is typically 15 π /times/ 10 -6 m rad in each plane with a longitudinal emittance of about 1.5 eV-sec. The beam is accelerated to 800 GeV in 13 sec. and then it is resonantly extracted during a 23 sec flat top. As the run progressed the bunch intensities were increased until at about 1.4 /times/ 10 10 ppb (protons per bunch) we experienced the onset of a coherent horizontal oscillation taking place in the later stages of the acceleration cycle (>600 GeV). This rapidly developing coherent instability results in a significant emittance growth, which limits machine performance and in a catastrophic scenario it even prevents extraction of the beam. In this paper we will present a simple analytic description of the observed instability. We will show that a combination of a resistive wall coupled bunch effect and a single bunch slow head-tail instability is consistent with the above observations. Finally, a systematic numerical analysis of our model (growth-time vs chromaticity plots) points to the existence of the ≥1 slow head-tail modes as a plausible mechanism for the observed coherent instability. This last claim, as mentioned before, does not have conclusive experimental evidence, although it is based on a very good agreement between the measured values of the instability growth-time and the ones calculated on the basis of our model. 4 refs., 3 figs

  5. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Rhee, Yong Joo [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Shin, Jung Hun; Jo, Sung Ha [Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of)

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  6. Betatron activation analysis of cupriferous flotation pulp

    International Nuclear Information System (INIS)

    Kaminski, R.; Matenko, J.; Mencel, J.; Janiczek, J.; Kielsznia, J.

    1974-01-01

    A method of copper determination in cupriferous flotation pulp by photo-activation analysis using betatron and another equipments of existent ''analytical line'' intended for copper determination in dry samples has been described. An activation has been achieved with 14.9 MeV γ-photons. The excitation activity was investigated by using two scintillation detectors and a fast coincidence circuit with resolution time 80 ns. The precision of method was determined as +- 4.25% in 0.95 confidence level for pulp with concentration 5% Cu and +- 24% for 0.06% Cu. (author)

  7. Long-wavelength negative mass instabilities in high current betatrons

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Hughes, T.P.

    1985-01-01

    Growth rates of negative mass instabilities in conventional and modified betatrons are calculated by analytic methods and by performing three-dimensional particle simulations. In contrast to earlier work, toroidal corrections to the field equations are included in the analytic model. As a result, good agreement with numerical simulations is obtained. The simulations show that the nonlinear development of the instabilities can seriously disrupt the beam

  8. The effects of betatron motion on the preservation of FEL microbunching

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-05-15

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  9. The effects of betatron motion on the preservation of FEL microbunching

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-05-01

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  10. Experimental investigation of a small-sized betatron with superposed magnetization

    International Nuclear Information System (INIS)

    Kas'yanov, V.A.; Rychkov, M.V.; Filimonov, A.A.; Furman, Eh.G.; Chakhlov, V.L.; Chertov, A.S.; Shtejn, M.M.

    2001-01-01

    The aim of the paper is to study possibilities of small-sized betatrons (SSB) with direct current superposed magnetization (DSM). It is shown that DSM permits to decrease the SSB weight and cost of the electromagnet and capacitor storage and to shape the prolonged beam dump. It is noted that the DSM realization has the most expediency in SSB operating in a short-time mode [ru

  11. Study of betatron oscillations in a constant field and alternating gradient accelerator; Etude des oscillations betatron dans l'accelerateur a champ fixe et a gradient alterne

    Energy Technology Data Exchange (ETDEWEB)

    Lauzanne, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The conditions for the stability of a constant energy particle beam circulating in the magnetic field of the F.F.A.G. accelerator are studied. By a mathematical study it is possible to derive the equations for the equilibrium orbit and for the low amplitude oscillations, and the expressions for the amplitude stability limits of the beam. For this, approximation methods are used, in particular the linearization of the differential equations of the movement, and the method of gradual approximation. Numerical investigations carried out with the help of the IBM 7090 computer make it possible to judge the precision of the results given by the theory. A systematic variation of the parameters makes it possible to understand more clearly the mechanism of the amplitude variations of the trajectories. Finally, for the radial sector model, the possibility of introducing zones free from the magnetic field is considered. The case of short straight sections, respecting the field periodicity, and of that of long straight sections creating super-periods are considered. For the two cases are given solutions which should lead to a practical machine. (author) [French] On etudie les conditions de stabilite d'un faisceau de particules circulant a energie constante dans le champ magnetique de l'accelerateur F.F.A.G. Une etude mathematique permet d'etablir les equations de l'orbite d'equilibre et des oscillations de faible amplitude, les expressions des limites de stabilite en amplitude du faisceau. On emploie a cet effet des methodes d'approximation, essentiellement la linearisation des equations differentielles du mouvement et la methode de l'approximation douce. Des investigations numeriques effectuees a l'aide de la calculatrice IBM 7090 permettent d'apprecier l'exactitude des resultats fournis par la theorie. Une variation systematique des parametres permet de mieux comprendre le mecanisme des variations d'amplitude des trajectoires. On etudie enfin, pour le modele a secteur radial

  12. Betatron emission as a diagnostic for injection and acceleration mechanisms in laser plasma accelerators

    International Nuclear Information System (INIS)

    Corde, S; Thaury, C; Phuoc, K Ta; Lifschitz, A; Lambert, G; Lundh, O; Brijesh, P; Sebban, S; Rousse, A; Faure, J; Malka, V; Arantchuk, L

    2012-01-01

    Betatron x-ray emission in laser plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser–plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half. (paper)

  13. Successful betatron acceleration of kiloampere electron rings in RECE-Christa

    International Nuclear Information System (INIS)

    Taggart, D.P.; Parker, M.R.; Hopman, H.J.; Jayakumar, R.; Fleischmann, H.H.

    1984-01-01

    This paper reports on betatron acceleration experiments using the space-charge-neutralized electron rings in the RECE-Christa device. Magnetic probe and x-ray-absorption measurements indicate that electron ring currents of up to 2 kA were accelerated to 3.3 +- 0.3 MeV without indication of instabilities. A similar neutralization and acceleration method also appears applicable to electron rings generated in B/sub theta/-free configurations

  14. Reminder of Lagrange-Hamilton formalism and of the corpuscular optics invariants; Rappel du formalisme de Lagrange-Hamilton et sur les invariants de l'optique corpusculaire

    Energy Technology Data Exchange (ETDEWEB)

    Griess, F.

    1958-03-14

    Hamiltonian formalism - Canonical transformations - Invariants of Liouville, Helmholtz-Lagrange, Busch, Stoermer and Lagrange - Synchrotron's Hamiltonian - Betatron oscillation damping. (author) [French] Formalisme Hamiltonien. Transformations canoniques. Invariants de Liouville, Helmholtz-Lagrange, Busch, Stoermer et Lagrange, Hamiltonien pour le synchrotron, Amortissement des oscillations betatrons (auteur)

  15. Betatron coupling: Merging Hamiltonian and matrix approaches

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2005-03-01

    Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.

  16. Kinetic description of self-field effects on laser and betatron emission in wiggler-pumped ion-channel free electron lasers

    International Nuclear Information System (INIS)

    Alimohamadi, M; Mehdian, H; Hasanbeigi, A

    2011-01-01

    The effects of self-fields on the free electron lasers (FELs) with a helical wiggler and ion-channel guiding are considered. The steady-state orbits for a single electron in this configuration are obtained. The rate of change of axial velocity with energy, the characteristic function Φ, is derived and studied numerically. A kinetic approach has been used to get the effects of self-field on the FEL and betatron gain formula in the low-gain-pre-pass limit. It is shown that betatron gain is smaller than FEL gain. We also found a gain decrement (enhancement), arising from diamagnetism (paramagnetism) generated by the self-magnetic field for group I (group II) orbits. It is interesting that the gain enhancement is found for the non-relativistic part of group II orbits. The FEL gain and betatron gain have also been investigated for different relativistic factors γ.

  17. Application of digital beam position processor Libera on tune measurement

    International Nuclear Information System (INIS)

    Zhang Chunhui; Sun Baogen; Cao Yong; Lu Ping; Li Jihao

    2006-01-01

    Digital signal processing (DSP) is widely used in the field of beam diagnostics. Especially, DSP achieves very good performance in beam position signal analysis and betatron tune measurement. In Hefei light source, when beam was excited by narrow-band Gaussian white nose, Libera, a digital beam position processor, was used to process the signals from beam position monitor (BPM), which contained betatron oscillation. Fast Fourier transform (FFT) was applied to finding out betatron resonance frequency, from which the decimal part of betatron oscillation tune was calculated. By this means, the measure of horizontal tune was 3.5352 and the measure of vertical tune is 2.6299. (authors)

  18. Landau damping due to tune spreads in betatron amplitude and momentum

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tran, P.; Weng, W.T.

    1989-01-01

    Due to the large space charge transverse impedance in a low energy synchrotron, the coherent tune shift causes the Landau damping to be ineffective in damping the transverse coherent motion. We analyze the effect of Landau damping that is caused by the tune spreads of the betatron amplitude (space charge and/or octupole) and momentum. We find that the Landau damping becomes more significant in our two dimensional analysis. 5 refs

  19. High-speed radiography and x-ray cinematography by high-current betatrons

    International Nuclear Information System (INIS)

    Akimochkin, Yu.V.; Akulov, G.V.; Leunov, F.G.; Moskalev, V.A.; Ryabukhin, V.L.

    1979-01-01

    The paper provides a description of an equipment system comprising a pair of 25 MeV high-current betatrons and an X-ray drum-type cinecamera for high-speed radiography and X-ray cinematography for use when studying dynamics of objects moving at a rate of 0.5 - 3.0 km/s as well as in X-ray cinematography of processes at a rate of up to 1 m/s. (author)

  20. Coherent betatron instability driven by electrostatic separators: Stability analysis of the Tevatron

    International Nuclear Information System (INIS)

    Harfoush, F.A.; Bogacz, S.A.

    1989-03-01

    This paper outlines possible intensity limits due to the coherent betatron motion for the upgraded Tevatron with the electrostatic separators. Numerical simulation shows that this new vacuum chamber structure dominates the high frequency part of the coupling impedance spectrum and more likely will excite a slow head-tail instability. A simple stability analysis yields the characteristic growth-time of the unstable modes. 4 refs., 4 figs., 1 tab

  1. Measurement and stabilization of the longitudinal and transversal tune on the fast energy ramp at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Maren [Electron Stretcher Accelerator ELSA, Physikalisches Institut, Universitaet Bonn (Germany)

    2008-07-01

    At the electron stretcher accelerator ELSA, an external beam of unpolarized or polarized electrons is supplied to experimental set-ups. In order to correct for dynamic effects caused by eddy currents induced on the fast energy ramp, the accelerator tunes have to measured in situ with high precision. The measurements of betatron tunes during the fast energy ramp are based on the excitation of coherent betatron oscillations generated by a pulsed kicker magnet. The betatron frequency is determined by a Fourier analysis of the measured oscillations of the beam position. This technique was successfully applied to measure the horizontal tune on the fast energy ramp. During the fast energy ramp shifts of the betatron tune caused by eddy currents are induced. These tune shifts are measured and corrected when operating the accelerator with polarized beam. Measurements of coherent synchrotron oscillations will also be presented. These are excited by a phase modulation of the acceleration voltage using an electrical phase shifter in the reference RF signal path.

  2. Photoneutron source based on a compact 10 MeV betatron

    International Nuclear Information System (INIS)

    Chakhlov, V.L.; Bell, Z.W.; Golovkov, V.M.; Shtein, M.M.

    1999-01-01

    Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. We report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron. Electrons were accelerated to energies up to 10 MeV and produced a bremsstrahlung beam with a dose rate of 0.16 Gy/min (at 10 MeV, 1 m from the bremsstrahlung target) to irradiate LiD, Be, depleted U, and Pb neutron-producing targets. The angular distributions of photoneutrons produced by bremsstrahlung beams were measured with a 'long' counter and integrated to determine neutron yield. In addition, neutron time of flight spectra were recorded from all targets using a 15.5 m flight path perpendicular to the photon beam. The maximum observed yields were 4.6x10 7 n/s obtained with 1 kg of LiD, 5.7x10 7 n/s from a 3.3 kg Be block, 6.2x10 6 n/s from 1.5 kg of depleted U, and 7.0x10 6 n/s from 10.7 kg of Pb. Optimization of target dimensions, shape, and positioning is expected to increase the yield from the LiD target by a factor of 35, while optimization of the other targets is expected to yield at most a factor of 10. With the increased yield and a deuteride target, this compact betatron-based system could find application in the interrogation of waste containers for fissile material

  3. Synchro-betatron resonance due to gap voltage asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Baartman, R

    1992-11-01

    RF cavities for synchrotrons are not in general axially symmetric. This can be due, for example, to the location of the input power coupling loop. It can cause the voltage on one side of the accelerating gap to be different from that on the other side. Associated with this asymmetry is an rf magnetic field which deflects a beam particle by an amount depending upon its rf phase. The deflection can accumulate if the betatron tune is situated on a synchrotron sideband of the integer resonance. We develop the theory for this resonance and apply it to the KAON Factory Booster and to the SSC LEB. We find that the upper limit on allowable voltage asymmetry across the beam pipe is 0.1% in both cases. (author) 5 refs., 1 tab.

  4. Collective centroid oscillations as an emittance preservation diagnostic in linear collider linacs

    International Nuclear Information System (INIS)

    Adolphsen, C.E.; Bane, K.L.F.; Spence, W.L.; Woodley, M.D.

    1997-08-01

    Transverse bunch centroid oscillations, induced at operating beam currents at which transverse wakefields are substantial, and observed at Beam Position Monitors, are sensitive to the actual magnetic focusing, energy gain, and rf phase profiles in a linac, and are insensitive to misalignments and jitter sources. In the pulse stealing set-up implemented at the SLC, they thus allow the frequent monitoring of the stability of the in-place emittance growth inhibiting or mitigating measures--primarily the energy scaled magnetic lattice and the rf phases necessary for BNS damping--independent of the actual emittance growth as driven by misalignments and jitter. The authors have developed a physically based analysis technique to meaningfully reduce the data. Oscillation beta-beating is a primary indicator of beam energy errors; shifts in the invariant amplitude reflect differential internal motion along the longitudinally extended bunch and thus are a sensitive indicator of the real rf phases in the machine; shifts in betatron phase advance contain corroborative information sensitive to both effects

  5. A simple way to characterize linear coupling in a storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring, assuming that the beam emittances and betatron actions respectively are provided as parameters. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillations as in the uncoupled case. We discuss a technique for making direct measurements of the ratio of the coupled lattice functions at different points in the lattice

  6. Therapy by stationary photon fields from a 42 MeV betatron using wedge filters

    International Nuclear Information System (INIS)

    Wicke, L.; Kaercher, K.H.; Naesiger, H.; Prokosch, E.; Vienna Univ.

    1975-01-01

    The dose distribution in photon beams from a 42 MeV betatron using wedge filters of lead with different angles of slope is described. The wedge coefficient to be considered at a field size of 10 x 10 cm is given. The scope for isodoses modified by wedge filters is discussed with regard to stationary-field photon therapy. (orig.) [de

  7. The production of radioisotopes with a betatron using an internal bombarding technique; Production de radioisotopes par bombardement interne dans un betatron; Proizvodstvo radioizotopov s pomoshch'yu betatrona s ispol'zovaniem metoda vnutrennej bombardirovki; Obtencion de radioisotopos por bombardeo interno en el betatron

    Energy Technology Data Exchange (ETDEWEB)

    Morinaga, H [Department of Physics, Tohoku University, Sendai (Japan)

    1962-01-15

    A new technique for producing radioisotopes of high specific activity with a betatron has been developed and is being used successfully. Materials to be activated are placed inside the doughnut at the end of a blind cylinder inserted from outside; thus samples are bombarded under one atmosphere just behind the bremsstrahlung target where the radiation intensity is extremely high. The saturation activity of Cu{sup 62} produced on a small piece of copper exceeded 1 mc, and the highest specific activity obtainable was approximately 500 times that produced in a conventional arrangement. So far, this internal-target technique has been used only for nuclear spectroscopy work; eight new species of radioactive isotopes (Co{sup 63}, Ga{sup 75}, As{sup 81}, In{sup 121}, In{sup 123}, Tm{sup 173}, Tm{sup 175} and Ac{sup 231}) have been identified and several new isomers have been found. The feasibility of this bombarding technique opens neiv possibilities, since medical, industrial or research betatrons may now be used, for isotope production. Short-lived isotopes are often more convenient in various applications because of their fast decay and high-energy radiation, and they may be made readily without any special skill. (author) [French] On a mis au point et utilise avec succes line technique nouvelle pour la production de radioisotopes d'activite specifique elevee dans un betatron. Les matieres a activer sont placees a l'interieur d'un tube toroidal, a l'extremite d'un cylindre a ouverture unique introduit de l'exterieur; les echantillons se trouvent ainsi bombardes, sous une atmosphere, juste derriere la cible de rayonnement de freinage, a l'endroit ou l'intensite du rayonnement est extremement elevee. L'activite de saturation du {sup 62}Cu produite sur de petits morceaux de cuivre depassait 1 millicurie et l'activite specifique la plus elevee que l'on ait pu obtenir egalait environ 500 fois l'activite produite dans un dispositif classique. Jusqu'a present, cette technique

  8. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  9. Evaluation of the combined betatron and momentum cleaning in point 3 in terms of cleaning efficiency and energy deposition for the LHC Collimation upgrade

    CERN Document Server

    Lari, L; Boccone, V; Brugger, M; Cerutti, F; Ferrari, A; Rossi, A; Versaci, R; Vlachoudis, V; Wollmann, D; Mereghetti, A; Faus-Golfe, A

    2011-01-01

    The Phase I LHC Collimation System Upgrade could include moving part of the Betatron Cleaning from LHC Point 7 to Point 3 to improve both operation flexibility and intensity reach. In addition, the partial relocation of beam losses from the current Betatron cleaning region at Point 7 will mitigate the risks of Single Event Upsets to equipment installed in adjacent and partly not sufficient shielded areas. The combined Betatron and Momentum Cleaning at Point 3 implies that new collimators have to be added as well as to implement a new collimator aperture layout. This paper shows the whole LHC Collimator Efficiency variation with the new layout at different beam energies. As part of the evaluation, energy deposition distribution in the IR3 region give indications about the effect of this new implementations not only on the collimators themselves but also on the other beam line elements as well as in the IR3 surrounding areas.

  10. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  11. Thyristor current-pulse generator for betatron electromagnet with independent low-voltage supply

    International Nuclear Information System (INIS)

    Baginskii, B.A.; Makarevich, V.N.; Shtein, M.M.

    1989-01-01

    A thyristor generator is described that produces unipolar current pulses in the winding of a betatron electromagnet. The voltage on the electro-magnet is increased and the shape of the current pulses is improved by use of an intermediate inductive storage device. The current pulses have a duration of 11 msec, an amplitude of 190 A, and a repetition frequency of 50 Hz. The maximum magnetic-field energy is 450 J, the voltage on the electromagnet winding is 1.5 kV, and the supply voltage is 27 V

  12. Normal form analysis of linear beam dynamics in a coupled storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Woodley, Mark D.

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillation amplitude as in the uncoupled case. Application of this analysis to the online modeling of the PEP-II rings is also discussed

  13. Approximate method for calculating heat conditions in the magnetic circuits of transformers and betatrons

    International Nuclear Information System (INIS)

    Loginov, V.S.

    1986-01-01

    A technique for engineering design of two-dimensional stationary temperature field of rectangular cross section blending pile with inner heat release under nonsymmetrical cooling conditions is suggested. Area of its practical application is determined on the basis of experimental data known in literature. Different methods for calculating temperature distribution in betatron magnetic circuit are compared. Graph of maximum temperature calculation error on the basis of approximated expressions with respect to exact solution is given

  14. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    Science.gov (United States)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek’s life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek’s life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  15. Betatron tomography with the use of non-linear backprojection techniques

    International Nuclear Information System (INIS)

    Baranov, V.A.; Temnik, A.K.; Chakhlov, V.L.; Chekalin, A.S.

    1995-01-01

    The testing of heavy components under non-steady-state condition (at erection and building sites, at jigs, for testing of welded joints and valving of oil and gas pipelines, power and boiler plants repair, building construction and for testing of castings and welded joints of large thickness) traditionally belongs to most pressing NDT problems. One of essential prerequisites for success at this point was the elaboration of appropriate high energy radiation sources, in particular small size pulse betatrons like MIB-4 and MIB-6 with the energy 4 and 6 MeV. Now, taking into account the new possibilities of tomography, the adaptation of fresh methods of cross-sectional visualisation (like non-linear tomosynthesis) to this conventional problem-solving area is of special interest. (orig./RHM)

  16. Fundamentals of particle beam dynamics and phase space

    International Nuclear Information System (INIS)

    Weng, W.T.; Mane, S.R.

    1991-01-01

    This report discusses the following topics on synchrotron accelerators: Transverse motion---betatron oscillations; machine lattice; representation of a particle beam; and longitudinal motion---synchrotron oscillations

  17. Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Ferri, Julien

    2016-01-01

    An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilo-joule and pico-second laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment. Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X

  18. Analysis of the analytic formulae application area for free oscillation frequency calculation in isochronous cyclotrons

    International Nuclear Information System (INIS)

    Kiyan, I.N.; Taraszkiewicz, R.

    2005-01-01

    Selection of optimal analytic formulae for calculation of free oscillation frequencies of the particles in isochronous cyclotrons, ν r (r) and ν z (r), and their application area are described. The selected formulae are used in the program BORP SR - Betatron Oscillation Research Program Second Release - written in C++ with the help of MS Visual C++ .NET. The free oscillation frequencies, calculated by using the program, are used for the evaluation of the modeled regimes of the work of the AIC144 isochronous cyclotron. The analytic formulae were selected by comparing the results of the calculations performed by using formulae adduced by T.Stammbach, Y.Jongen - S.Zaremba, V.V.Kolga with the results of the calculations performed by using the CYCLOPS iterative program, developed by M.M.Gordon. The least difference in the calculation results was obtained for the analytic formulae adduced by V.V.Kolga. The ν r (r) calculation difference ranged from -0.5 to 1.5% and the ν z (r) calculation difference ranged from -5 to 4% for the working radii of the isochronous cyclotron. As the beam was obtained, the selected analytic formulae can be successfully used in the program BORP SR for free oscillation frequency calculation during the evaluation of the modeled regimes of the work of different isochronous cyclotrons

  19. Demonstration of no feasibility of a crystalline beam in a Betatron Magnet II

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1993-01-01

    This paper investigates the feasibility of a Crystalline Beam in a weak-focusing Betatron Magnet. The curvature effect due to the bending magnet is also investigated. The case of circular one- dimensional string of electrically-charged particles is examined. It is found that the motion is unstable due to the dependence of the precession movement with the radial displacement. That is a form of negative-mass instability which can be avoided with an alternating-focussing structure. The calculation of the particle-particle interaction as well as of the forces due to the external magnetic field is done directly in the laboratory frame

  20. Betatron-collimation Studies for Heavy Ions in the FCC-hh

    CERN Multimedia

    Logothetis Agaliotis, Efstathios

    2018-01-01

    One of the biggest challenges in the design of the FCC-hh is the collimation system. From LHC experience it is known that a collimation system optimized for proton cleaning has a significantly reduced efficiency for heavy ions. The study presented in this contribution evaluates the betatron-collimation efficiency for the heavy-ion operation with lead nuclei at a beam energy of 50 Z TeV in the system designed for proton operation. The fragmentation processes of the main beam particles in the primary collimator are simulated with FLUKA and fragments are individually tracked with SixTrack until being lost in the downstream aperture. In this way a first-impact loss-map is obtained, identifying locations where high energy deposition are to be expected. This provides a first-level assessment of feasibility and allows to include countermeasures in the conceptual accelerator design.

  1. Temporal profile of betatron radiation from laser-driven electron accelerators

    Czech Academy of Sciences Publication Activity Database

    Horný, Vojtěch; Nejdl, Jaroslav; Kozlová, Michaela; Krůs, Miroslav; Boháček, Karel; Petržílka, Václav; Klimo, Ondřej

    2017-01-01

    Roč. 24, č. 6 (2017), č. článku 063107. ISSN 1070-664X R&D Projects: GA ČR GA15-03118S; GA MŠk LQ1606; GA MŠk(CZ) LM2015083; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; GA MŠk(CZ) LM2015042 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : X-ray betatron * laser * X-ray pulses Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.115, year: 2016 http://aip.scitation.org/doi/full/10.1063/1.4985687

  2. A Fokker-Planck treatment of stochastic particle motion within the framework of a fully coupled 6-dimensional formalism for electron-positron storage rings including classical spin motion in linear approximation

    International Nuclear Information System (INIS)

    Barber, D.P.; Heinemann, K.; Mais, H.; Ripken, G.

    1991-12-01

    In the following report we investigate stochastic particle motion in electron-positron storage ring in the framework of a Fokker-Planck treatment. The motion is described by using the canonical variables χ, p χ , z, p z , σ = s - cxt, p σ = ΔE/E 0 of the fully six-dimensional formalism. Thus synchrotron- and betatron-oscillations are treated simultaneously taking into account all kinds of coupling (synchro-betatron coupling and the coupling of the betatron oscillations by skew quadrupoles and solenoids). In order to set up the Fokker-Planck equation, action-angle variables of the linear coupled motion are introduced. The averaged dimensions of the bunch, resulting from radiation damping of the synchro-betatron oscillations and from an excitation of these oscillations by quantum fluctuations, are calculated by solving the Fokker-Planck equation. The surfaces of constant density in the six-dimensional phase space, given by six-dimensional ellipsoids, are determined. It is shown that the motion of such an ellipsoid under the influence of external fields can be described by six generating orbit vectors which may be combined into a six-dimenional matrix B(s). This 'bunch-shape matrix', B(s), contains complete information about the configuration of the bunch. Classical spin diffusion in linear approximation has also been included so that the dependence of the polarization vector on the orbital phase space coordinates can be studied and another derivation of the linearized depolarization time obtained. (orig.)

  3. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  4. Influence of vertical dispersion and crossing angle on the performance of the LHC

    CERN Document Server

    Leunissen, L H A

    1999-01-01

    Misalignments, magnetic field deviations and the beam crossing angle induce closed orbit deviations and residual dispersions at the interaction points (IPs) of the LHC. At IP1 and IP5, the horizontal and vertical dispersion functions are approximately ±2 cm while at IP2 and IP8 they can reach values up to 50 cm. A numerical study of the excitation of synchro-betatron resonances by crossing angles and dispersions shows that the beam size changes by less than 5% and has corresponding effects on the luminosity. Since the effects of bunch length are important in this context we have used the numerical code BBC for the study. When the betatron tunes are close to a synchro-betatron resonance excited by the crossing angle the amplitude of particle oscillations increases. The superposition of vertical dispersion modifies the strength of the resonance. For example, sidebands of the resonance 13Qx = 4 yield an increase of the amplitude of the betatron oscillation by less than 10 % at an initial amplitude of 5s. Includ...

  5. Neutron doses to personnel from a 24 MeV betatron

    International Nuclear Information System (INIS)

    Beckham, W.A; Entwistle, R.F.

    1987-01-01

    Neutrons are produced by bombardment of most materials by high-energy photons. Because the x-ray shielding around high-energy x-ray generators may not have been designed with neutrons in mind there may be unexpected contributions to the radiation doses of staff working in the immediate vicinity. Neutron fluxes in the working area close to an Allis-Chalmers 24 MeV betatron have been measured using a lithium-6-loaded scintillator and the dose rates calculated. Hazard of staff has been found to be low; typical dose-equivalent rates in occupied areas range from 0.0042 to 0.012 mrem/hour. The flux of fast neutrons in the treatment room was found to be essentially zero. Measurements of neutron flux may be routinely performed using the scintillation detector (NE 912) described, and could usefully form part of the acceptance protocol for any new accelerator

  6. Theoretical aspects of some collective instabilities in high-energy particle storage rings

    International Nuclear Information System (INIS)

    Ruggiero, F.

    1986-01-01

    After an introduction to single-particle dynamics, based on a unified Hamiltonian treatment of betatron and synchrotron oscillations, we consider two examples of collective instabilities which can limit the performances of high-energy storage rings: the transverse mode coupling instability, due to wake fields, and the incoherent beam-beam instability. Special emphasis is placed on the localization of the interactions between particles and surrounding structures, such as the accelerating RF cavities. We derive an exact invariant for the linearized synchrotron motion and, starting from the Vlasov equation, we discuss the coherent synchro-betatron resonances caused by localized impedance. Under suitable assumptions, we show that the effect of the beam-beam kicks in electron-positron machines can be described by new diffusive terms in a ''renormalized'' Fokker-Planck equation and is therefore equivalent to an additional source of noise for the betatron oscillations. (orig.)

  7. Algorithms for a Precise Determination of the Betatron Tune

    CERN Document Server

    Bartolini, R; Giovannozzi, Massimo; Todesco, Ezio; Scandale, Walter

    1996-01-01

    In circular accelerators the precise knowledge of the betatron tune is of paramount importance both for routine operation and for theoretical investigations. The tune is measured by sampling the transverse position of the beam for N turns and by performing the FFT of the stored data. One can also evaluate it by computing the Average Phase Advance (APA) over N turns. These approaches have an intrinsic error proportional to 1/N. However, there are special cases where either a better precision or a faster measurement is desired. More efficient algorithms can be used, as those suggested by E.Asseo [1] and recently by J. Laskar [2]. They provide tune estimates by far more precise than those of a plain FFT, as discussed in Ref. [3]. Another important isssue is the effect of the finite resolution of the instrumentation used to measure the beam position. This introduces a noise and the frequency response of the beam is modified [4,5} thus reducing the precision by which the tune is determined. In Section 2 we recall ...

  8. Electromagnetic Waves Dispersion and Interaction of an Annular Beam-Ion Channel System in Plasma Waveguide

    Directory of Open Access Journals (Sweden)

    Jixiong Xiao

    2017-01-01

    Full Text Available A linear theory for the electromagnetic properties and interactions of an annular beam-ion channel system in plasma waveguide is presented. The dispersion relations for two families of propagating modes, including the electrostatic and transverse magnetic modes, are derived. The dependencies of the dispersion behavior and interaction for different wave modes on the thickness of the annular beam and betatron oscillation frequency are studied in detail by numerical calculations. The results show that the inner and outer radii of the beam have different influences on propagation properties of the electrostatic and electromagnetic modes with different betatron oscillation parameters. In the weak ion channel situation, the two types of electrostatic waves, that is, space charge and betatron modes, have no interaction with the transverse magnetic modes. However, in the strong ion channel situation, the transverse magnetic modes will have two branches and a low frequency mode emerged as the new branch. In this case, compared with the solid beam case, the betatron modes not only can interact with the high frequency branch at small wavenumber but also can interact with the low frequency branch at large wavenumber.

  9. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    Directory of Open Access Journals (Sweden)

    C. S. Edmonds

    2014-05-01

    Full Text Available In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  10. Programmable high power beam damper for the Tevatron

    International Nuclear Information System (INIS)

    Crisp, J.; Goodwin, R.; Gerig, R.

    1985-06-01

    A bunch-by-bunch beam damper has been developed for the Fermilab Tevatron. The system reduces betatron oscillation amplitudes and incorporates some useful machine diagnostics. The device is programmable via look-up tables so the output is an arbitrary function, on a bunch-by-bunch basis, of the beam displacement. We are presently using this feature to measure the betatron tune throughout the acceleration cycle. 4 refs

  11. Reminder of Lagrange-Hamilton formalism and of the corpuscular optics invariants

    International Nuclear Information System (INIS)

    Griess, F.

    1958-01-01

    Hamiltonian formalism - Canonical transformations - Invariants of Liouville, Helmholtz-Lagrange, Busch, Stoermer and Lagrange - Synchrotron's Hamiltonian - Betatron oscillation damping. (author) [fr

  12. Acceleration region influence on beam parameters on stripping foil

    International Nuclear Information System (INIS)

    Samsonov, E.V.; Tomic, S.

    1999-01-01

    Some formulas describing the beam parameters on the stripping foil (SF) as a function of the radial amplitude of betatron oscillations and energy gain are derived. The results computed by these formulas are in good agreement with the results of the numerical calculations. Obtained results show that between the radial emittance and the energy spread exists parametric dependence via amplitude of radial betatron oscillations. This conclusion allows one to create a working diagram of expected beam parameters on SF. This diagram may be particularly useful for the extraction system designers since it gives relationship between parameters considered as the extraction system input parameters. (author)

  13. Demonstration of no feasibility of a Crystalline Beam in a Betatron Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A.G.

    1993-09-13

    This technical report investigates the feasibility of a Crystalline Beam in a weak-focussing storage ring like a Betatron. At the same time the curvature effect due to the bending magnet is also investigated. As a special case, the example of a circular one-dimensional string of electrically charged particles is examined. It is found that the motion of the particles is unstable due to the dependence of the precession movement with respect to each other on their radial displacement. That is a form of negative-mass instability which can be avoided with an alternating-focussing structure corresponding to a transition energy above the energy of the particles. The calculation of the particle-particle interaction as well as of the forces due to the external magnetic field is done directly in the laboratory frame. The retarded potential expressions are used at this purpose.

  14. Experimental studies of nonlinear beam dynamics

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.; Collins, J.; Curtis, S.A.; Derenchuck, V.; DuPlantis, D.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Jones, W.P.; Lamble, W.; Lee, S.Y.; Li, D.; Minty, M.G.; Sloan, T.; Xu, G.; Chao, A.W.; Ng, K.Y.; Tepikian, S.

    1992-01-01

    The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for betatron tunes near the third, fourth, fifth, and seventh integer resonances. This motion is described by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced

  15. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  16. Simulation study of the beam-beam interaction at SPEAR

    International Nuclear Information System (INIS)

    Tennyson, J.

    1980-01-01

    A two dimensional simulation study of the beam-beam interaction at SPEAR indicates that quantum fluctuations affecting the horizontal betatron oscillation play a critical role in the vertical beam blowup

  17. Single feedback systems for simultaneous damping of horizontal and longitudinal coherent oscillations

    International Nuclear Information System (INIS)

    Chao, A.W.; Morton, P.L.; Rees, J.R.

    1979-03-01

    To describe the horizontal motion of the bunch, we need four coordinates, x and z are the horizontal and longitudinal displacements of the bunch center relative to the ideal trajectory; x' is the angle between the bunch's direction of motion and the ideal trajectory; and δ=ΔE/E is relative energy error of the bunch. Among the four variables, x and z are easy to measure by position monitors, while x' and δ are easy to change by electromagnetic devices. In combination, this suggests four possible types of feedback systems. In the following, we will present a complete analysis of the Type (x, δ) feedback system, using a matrix method. The analyses of other types are similar to that of Type (x, δ) and only the results are included. We then include some comparisons of these types of feedback schemes in terms of power consumptions and the effectiveness in damping the horizontal-betatron and synchrotron oscillations. We will also discuss some effects of position measuring errors on the performance of the feedback system. 2 refs., 3 tabs

  18. The damper for the transverse instabilities of the SPS

    CERN Document Server

    Bossart, Rudolf; Gareyte, Jacques; de Raad, Bastiaan; Rossi, V

    1979-01-01

    For beam intensities above 10/sup 12/ protons per pulse in the SPS, collective transverse beam instabilities develop with frequencies between 15 kHz and 3 MHz because of the resistive wall effect of the vacuum chamber. An active feedback system with an electrostatic deflector has been installed in the SPS for damping the resistive wall instabilities in both the vertical and horizontal planes. Measurements have been made to determine the threshold and growth rate of these instabilities. As a novel application, the damper can be used also for the excitation of small coherent betatron oscillations. A phase-locked loop tracks the beam oscillations and provides a continuous display of the betatron wave-number Q during the cycle. (4 refs).

  19. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    Science.gov (United States)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    betatron radiation via manipulating the e-beam transverse oscillation in the wakefield. Very brilliant quasi-monochromatic betatron x-rays in tens of keV with significant enhancement both in photon yield and peak energy have been generated. Besides, by employing a self-synchronized all-optical Compton scattering scheme, in which the electron beam collided with the intense driving laser pulse via the reflection of a plasma mirror, we produced tunable quasi-monochromatic MeV γ-rays ( 33% full-width at half-maximum) with a peak brilliance of 3.1×1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV, which is one order of magnitude higher than ever reported value in MeV regime to the best of our knowledge. 1. J. S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011). 2. X. Wang, et al., Nat. Commun. 4, 1988 (2013). 3. W. P. Leemans, et al., Phys. Rev. Lett. 113, 245002 (2014) 4. W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016). 5. Z. J. Zhang et al., Phys. Plasmas 23, 053106 (2016). 6. C. H. Yu et al., Sci. Rep. 6, 29518 (2016).

  20. Tuning the arcs of the SLAC linear collider

    International Nuclear Information System (INIS)

    Fieguth, T.; Bambade, P.; Barklow, T.; Brown, K.L.; Bulos, F.; Burke, D.L.; Fischer, G.E.; Hutton, A.; Jung, C.; Kheifets, S.A.; Komamiya, S.; Mattison, T.; Murray, J.J.; Phinney, N.; Ritson, D.M.; Sands, M.; Sheppard, J.C.; Spence, W.; Toge, N.; Weinstein, A.; Haissinski, J.; Placidi, M.

    1988-01-01

    New experience with the operation of the SLC Arcs is described. Each of these Arcs consists of sequential second-order achromats. Initial measurements showed that the betatron phase advances were systematically offset from the design values. This effect, combined with the abrupt rolls of the achromats needed to follow the local terrain, led to strong cross-plane coupling and to growth of the betatron oscillations. The methods and modifications developed to establish proper operation of the Arcs are described in this paper

  1. Multiple resonance compensation for betatron coupling and its equivalence with matrix method

    CERN Document Server

    De Ninno, G

    1999-01-01

    Analyses of betatron coupling can be broadly divided into two categories: the matrix approach that decouples the single-turn matrix to reveal the normal modes and the hamiltonian approach that evaluates the coupling in terms of the action of resonances in perturbation theory. The latter is often regarded as being less exact but good for physical insight. The common opinion is that the correction of the two closest sum and difference resonances to the working point is sufficient to reduce the off-axis terms in the 4X4 single-turn matrix, but this is only partially true. The reason for this is explained, and a method is developed that sums to infinity all coupling resonances and, in this way, obtains results equivalent to the matrix approach. The two approaches is discussed with reference to the dynamic aperture. Finally, the extension of the summation method to resonances of all orders is outlined and the relative importance of a single resonance compared to all resonances of a given order is analytically desc...

  2. New microfocus bremsstrahlung source based on betatron B-18 for high-resolution radiography and tomography

    Science.gov (United States)

    Rychkov, M. M.; Kaplin, V. V.; Malikov, E. L.; Smolyanskiy, V. A.; Stepanov, I. B.; Lutsenko, A. S.; Gentsel'man, V.; Vas'kovskiy, I. K.

    2018-01-01

    New microfocus source of hard bremsstrahlung (photon energy > 1 MeV), based on the betatron B-18 with a narrow Ta target inside, for high-resolution radiography and tomography is presented. The first studies of the source demonstrate its possibilities for practical applications to detect the microdefects in products made from heavy materials and to control gaps in joints of parts of composite structures of engineering facilities. The radiography method was used to investigate a compound object consisting of four vertically arranged steel bars between which surfaces were exposed gaps of 10 μm in width. The radiographic image of the object, obtained with a magnification of 2.4, illustrates the good sensitivity of detecting the gaps between adjacent bars, due to the small width of the linear focus of the bremsstrahlung source.

  3. Pump requirements for betatron-generated femtosecond X-ray laser at saturation from inner-shell transitions

    International Nuclear Information System (INIS)

    Ribiere, M.; Grunenwald, J.; Ribeiro, P.; Sebban, S.; Phuoc, K.Ta; Gautier, J.; Kozlova, M.; Zeitoun, P.; Rousse, A.; Jacquemot, S.; Cheron, B.G.

    2012-01-01

    We study pump requirements to produce femtosecond X-ray laser pulses at saturation from inner-shell transitions in the amplified spontaneous emission regime. Since laser-based betatron radiation is considered as the pumping source, we first study the impact of the driving laser power on its intensity. Then we investigate the amplification behavior of the K-a transition of nitrogen at 3.2 nm (395 eV) from radiative transfer calculations coupled with kinetics modeling of the ion population densities. We show that the saturation regime may be experimentally achieved by using PW-class laser-accelerated electron bunches. Finally, we show that this X-ray laser scheme can be extended to heavier atoms and we calculate pump requirements to reach saturation at 1.5 nm (849 eV) from the K-a transition of neon. (authors)

  4. Synchrotron radiation based on laser-plasma interaction in the relativistic range

    International Nuclear Information System (INIS)

    Albert, F.

    2007-12-01

    This work illustrates the experimental characterization of a new compact X-ray source: the Betatron X-ray source. It is the first time that collimated hard X-ray source is produced by laser. Through the focusing of an ultra-intense laser radiation (30 TW, 30 fs) on a helium plasma, the ponderomotive force linked to the light intensity gradient expels the plasma electrons forming an accelerating cavity in the wake of the laser plasma. Some electrons trapped in the back of this structure, are accelerated and oscillate to produce X-radiation. This document is composed of 8 chapters. The first one is a presentation of the topic. The second chapter gives an account of the physics behind the laser-plasma interaction in the relativistic range and for ultra-short pulses. The third chapter presents the theoretical characteristics of the Betatron X-ray source. This chapter begins with an analogy with current synchrotron radiation and the radiation emitted by an electron undergoing Betatron oscillations is described in terms of power, spectral intensity and photon flux. The fourth chapter is dedicated to the numerical simulation of the Betatron radiation. The trajectories of the electrons are computed from the equation of motion, taking into account longitudinal and transverse forces. The radiation emission term is then computed from the radiation equation detailed in the previous chapter. The fifth chapter presents the experimental setting to produce Betatron X-rays. The sixth chapter gives the experimental characterization of the source (size, divergence and spectrum) on one hand, and on the other hand studies how source flux and spectra vary when laser and plasma parameters change. The seventh chapter presents experimental methods used to characterize the electrons trajectories in the plasma wiggler. The last chapter draws some perspectives on this source in terms of improvement and uses. (A.C.)

  5. Design status of the 2.5 GeV National Synchrotron Light Source x-ray ring

    International Nuclear Information System (INIS)

    Krinsky, S.; Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Schuchman, J.C.; van Steenbergen, A.

    1979-01-01

    The present state of the design of the 2.5 GeV electron storage ring for the National Synchrotron Light Source is described. This ring will serve as a dedicated source of synchrotron radiation in the wavelength range 0.1 A to 30 A. While maintaining the basic high brigtness features of the eariler developed lattice structure, recent work resulted in a more economical magnet system, is simplified chromaticity corrections, and improved distribution of the X-ray beam lines. In addition, the adequacy of the dynamic aperture for stable betatron oscillations has been verified for a variety of betatron tunes

  6. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  7. γ -Ray Generation from Plasma Wakefield Resonant Wiggler

    Science.gov (United States)

    Lei, Bifeng; Wang, Jingwei; Kharin, Vasily; Zepf, Matt; Rykovanov, Sergey

    2018-03-01

    A flexible gamma-ray radiation source based on the resonant laser-plasma wakefield wiggler is proposed. The wiggler is achieved by inducing centroid oscillations of a short laser pulse in a plasma channel. Electrons (self-)injected in such a wakefield experience both oscillations due to the transverse electric fields and energy gain due to the longitudinal electric field. The oscillations are significantly enhanced when the laser pulse centroid oscillations are in resonance with the electron betatron oscillations, extending the radiation spectrum to the gamma-ray range. The polarization of the radiation can be easily controlled by adjusting the injection of the laser pulse into the plasma channel.

  8. Relative measurements of fast neutron contamination in 18-MV photon beams from two linear accelerators and a betatron

    International Nuclear Information System (INIS)

    Gur, D.; Bukovitz, A.G.; Rosen, J.C.; Holmes, B.G.

    1979-01-01

    Fast neutron contamination in photon beams in the 20 MV range have been reported in recent years. In order to determine if the variations were due mainly to differences in measurement procedures, or inherent in the design of the accelerators, three different 18-MV (BJR) photon beams were compared using identical analytical techniques. The units studied were a Philips SL/75-20 and a Siemens Mevatron-20 linear accelerators and a Schimadzu betatron. Gamma spectroscopy of an activated aluminum foil was the method used. By comparing the relative amounts of neutron contamination, errors associated with absolute measurements such as detector efficiency and differences in activation foils were eliminated. Fast neutron contaminations per rad of x rays in a ratio of 6.7:3.7:1 were found for the Philips, Schimadzu and Siemens accelerators, respectively

  9. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  10. Simple model with damping of the mode-coupling instability

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D V [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-08-01

    In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)

  11. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  12. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Science.gov (United States)

    Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  13. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Directory of Open Access Journals (Sweden)

    A. V. Petrenko

    2011-09-01

    Full Text Available Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  14. Suppression of resistive instability of a bunched beam in the UNK first stage using a digital recursive filter in the feedback circuit

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1993-01-01

    Technique and new fast system of proton bunch beam coherent betatron oscillations suppression in the UNK first stage are suggested. The system comprises two beam monitors and two pushers. Differential equations are reduced to linear difference matrix equation which is investigated for stability using unilateral Z-transformation. 10 refs

  15. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  16. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  17. RF fields due to Schottky noise in a coasting particle beam

    CERN Document Server

    Faltin, L

    1977-01-01

    The RF fields inside a rectangular chamber excited by the Schottky noise current inherently present in a coasting particle beam are calculated, using a simple beam model. Vertical betatron oscillations are assumed. The power flow accompanying the beam is given as well as the resulting characteristic impedance. Numerical results are presented.

  18. A normal form approach to the theory of nonlinear betatronic motion

    International Nuclear Information System (INIS)

    Bazzani, A.; Todesco, E.; Turchetti, G.; Servizi, G.

    1994-01-01

    The betatronic motion of a particle in a circular accelerator is analysed using the transfer map description of the magnetic lattice. In the linear case the transfer matrix approach is shown to be equivalent to the Courant-Snyder theory: In the normal coordinates' representation the transfer matrix is a pure rotation. When the nonlinear effects due to the multipolar components of the magnetic field are taken into account, a similar procedure is used: a nonlinear change of coordinates provides a normal form representation of the map, which exhibits explicit symmetry properties depending on the absence or presence of resonance relations among the linear tunes. The use of normal forms is illustrated in the simplest but significant model of a cell with a sextupolar nonlinearity which is described by the quadratic Henon map. After recalling the basic theoretical results in Hamiltonian dynamics, we show how the normal forms describe the different topological structures of phase space such as KAM tori, chains of islands and chaotic regions; a critical comparison with the usual perturbation theory for Hamilton equations is given. The normal form theory is applied to compute the tune shift and deformation of the orbits for the lattices of the SPS and LHC accelerators, and scaling laws are obtained. Finally, the correction procedure of the multipolar errors of the LHC, based on the analytic minimization of the tune shift computed via the normal forms, is described and the results for a model of the LHC are presented. This application, relevant for the lattice design, focuses on the advantages of normal forms with respect to tracking when parametric dependences have to be explored. (orig.)

  19. The beam slow extraction from a magnetic ring of Moscow meson facility

    International Nuclear Information System (INIS)

    Gusev, O.A.; Malitsky, N.D.; Severgin, Yu.P.; Titov, V.A.; Shukeilo, I.A.; Aseev, V.N.; Grachev, M.I.; Lobashev, V.M.; Ostroumov, P.N.; Ponomaryov, O.V.

    1990-01-01

    The beam slow extraction from the circular accelerators or stretcher rings is generally realized by the resonant excitation of betratron oscillations. A precise betatron frequency control is proved to be quite necessary for high-efficient slow ejection. The Coulomb field turns out to have a significant influence upon the slow extraction from the high-current medium energy proton storage rings. It prevents resonant excitation at a reasonable rate and reduces the ejection efficiency. The proton storage ring of Moscow meson facility is an example of a stretcher with a noticeable beam space charge. The detailed investigation of the resonant ejection, having been performed for our stretcher, resulted in the conclusion that extracted beam average current should be limited by the value of 50 mA, which is only 10% of the linac design current. The search for the alternative version to the resonant ejection made us to analyze in details and to develop an old-fashioned method, based on the radial betatron oscillation excitation while the beam is being gradually shifted onto the thin target. (author) 5 refs., 4 figs

  20. Theoretical treatment of transverse feedback systems with memory

    International Nuclear Information System (INIS)

    Cornacchia, M.; Wang, J.M.

    1981-01-01

    The differential equation of the dipole moment of coherent oscillations in the presence of a feedback system is derived. The analysis, which starts in the time domain, is extended to the frequency domain; this allows a straightforward derivation of the damping rate for both coasting and bunched beams. The damping rate is expressed in terms of the transfer function of the feedback system and in a general form which takes into account the β-function and betatron phase modulation along the beam trajectory, the effect of memory arising from the finiteness of the system bandwidth, the effect of the time delay and of the betatron phase advance between detector and kicker. Some examples of the dependence of the damping rate on the feedback parameters are given

  1. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  2. Beam separation for p-anti p collisions in a single ring in the multibunch mode

    International Nuclear Information System (INIS)

    Berley, D.; Garren, A.A.; Month, M.

    1978-01-01

    A discussion is given of proton-antiproton colliding beam operation in storage rings. Some means of separating the beams at points where no experiment is being performed seems to be an important feature for a p-anti p colliding beam ring. By exciting a betatron oscillation in some appropriate, localized region, one could create a specific collision point while at the same time cause the p and anti p beams to oscillate in opposition so that their orbits meet at only a small number of points, roughly given by twice the tune, 2ν

  3. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  4. Determination of linear optics functions from turn-by-turn data

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y; Gianfelice-Wendt, E, E-mail: alexahin@fnal.gov [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510 (United States)

    2011-10-15

    A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.

  5. Beam Manipulation with an RF Dipole

    International Nuclear Information System (INIS)

    Bai, M.

    1999-01-01

    Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, they have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function

  6. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  7. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  8. Estimation of a beam centering error in the JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Fukuda, M.; Okumura, S.; Arakawa, K.; Ishibori, I.; Matsumura, A.; Nakamura, N.; Nara, T.; Agematsu, T.; Tamura, H.; Karasawa, T.

    1999-01-01

    A method for estimating a beam centering error from a beam density distribution obtained by a single radial probe has been developed. Estimation of the centering error is based on an analysis of radial beam positions in the direction of the radial probe. Radial motion of a particle is described as betatron oscillation around an accelerated equilibrium orbit. By fitting the radial beam positions of several consecutive turns to an equation of the radial motion, not only amplitude of the centering error but also frequency of the radial betatron oscillation and energy gain per turn can be evaluated simultaneously. The estimated centering error amplitude was consistent with a result of an orbit simulation. This method was exceedingly helpful for minimizing the centering error of a 10 MeV proton beam during the early stages of acceleration. A well-centered beam was obtained by correcting the magnetic field with a first harmonic produced by two pairs of harmonic coils. In order to push back an orbit center to a magnet center, currents of the harmonic coils were optimized on the basis of the estimated centering error amplitude. (authors)

  9. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  10. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating

  11. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  12. Reactor oscillator - I - III, Part I; Reaktorski oscilator - I-III, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction.

  13. Advanced nonlinear theory: Long-term stability at the SSC

    International Nuclear Information System (INIS)

    Heifets, S.

    1987-01-01

    This paper discussed the long-term stability of the particle beams in the Superconducting Super Collider. In particular the dynamics of a single particle beam is considered in depth. The topics of this paper include: the Hamiltonian of this particle approach, perturbation theory, canonical transformations, interaction of the resonances, structure of the phase space, synchro-Betatron oscillations, modulation diffusion and noise-resonance interaction. 36 refs

  14. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  15. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  16. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  17. Delayed radionecrosis of the cerebral hemispheres following betatron electron beam irradiation for scalp cancer. Pathological and clinical findings in one case

    International Nuclear Information System (INIS)

    Buge, A.; Escourolle, R.; Rancurel, G.; Gray, F.; Pertuiset, B.F.

    1979-01-01

    Three years following an irradiation by the Betatron's electron beam of an epithelioma in left parieto occipital area of the scalp in a female patient aged 77, early suffering from high blood pressure, a fatal pseudo-tumoral brain necrosis occurs presenting as a rapidly increasing from of Wernicke's aphasia. The necropsy shows intense radionecrosis lesions of the brain and the bone, free of any parenchymatous malignant proliferation note-wortly for the striking density of microvascular changes as previously described in radiation therapy. The case observed some years ago, allows to definite again the limits doses of the extracranial irradiations now estimated at 1760 rets. That is the 'Nominal Standard Dose' (NSD) measured by rets and taking into account the number of seances (N) and the duration of irradiation (T) which would be to take the place of 'the total dose' (D) (rads). These dosimetric criteria themselves must be adjusted to the age and the vascular features of each patient [fr

  18. Delayed radionecrosis of the cerebral hemispheres following betatron electron beam irradiation for scalp cancer. Pathological and clinical findings in one case

    Energy Technology Data Exchange (ETDEWEB)

    Buge, A; Escourolle, R; Rancurel, G; Gray, F; Pertuiset, B F [Clinique Neurologique de la Salpetriere, 75 - Paris (France)

    1979-01-01

    Three years following an irradiation by the Betatron's electron beam of an epithelioma in left parieto occipital area of the scalp in a female patient aged 77, early suffering from high blood pressure, a fatal pseudo-tumoral brain necrosis occurs presenting as a rapidly increasing from of Wernicke's aphasia. The necropsy shows intense radionecrosis lesions of the brain and the bone, free of any parenchymatous malignant proliferation note-wortly for the striking density of microvascular changes as previously described in radiation therapy. The case observed some years ago, allows to definite again the limits doses of the extracranial irradiations now estimated at 1760 rets. That is the 'Nominal Standard Dose' (NSD) measured by rets and taking into account the number of seances (N) and the duration of irradiation (T) which would be to take the place of 'the total dose' (D) (rads). These dosimetric criteria themselves must be adjusted to the age and the vascular features of each patient.

  19. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  20. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  1. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  2. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  3. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  4. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  5. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  6. Suppression and revival of oscillation in indirectly coupled limit cycle oscillators

    International Nuclear Information System (INIS)

    Sharma, P.R.; Kamal, N.K.; Verma, U.K.; Suresh, K.; Thamilmaran, K.; Shrimali, M.D.

    2016-01-01

    Highlights: • The phenomena of suppression and revival of oscillations are studied in indirectly coupled nonlinear oscillators. • The decay parameter and a feedback factor play a crucial role in emergent dynamical behavior of oscillators. • The critical curves for different dynamical regions are obtained analytically using linear stability analysis. • Electronic circuit experiments demonstrate these emergent dynamical states. - Abstract: We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.

  7. Wakefield effects in a linear collider

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1986-12-01

    In this paper the wakefields for the Stanford Linear Accelerator Center (SLAC) accelerating structure are first discussed, and then some considerations dealing with the longitudinal wakefields are described. The main focus is on the effects of the transverse wakefield on the beam, including the case when there is an energy variation along the bunch. The use of an energy spread to inhibit emittance growth in a linac, indeed to damp the oscillations of the core of the bunch to below the unperturbed betatron oscillations, (in a process that is similar to Landau Damping) is qualitatively detailed. The example of the SLC, including errors, is also in detail

  8. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  9. Phase advance and β function measurements using model-independent analysis

    OpenAIRE

    Chun-xi Wang; Vadim Sajaev; Chih-Yuan Yao

    2003-01-01

    Phase advance and β function are basic lattice functions characterizing the linear properties of an accelerator lattice. Accurate and efficient measurements of these quantities are important for commissioning and operating a machine. For rings with little coupling, we report a new method to measure these lattice functions based on the model-independent analysis technique, which uses beam histories of excited betatron oscillations measured simultaneously at a large number of beam position moni...

  10. Single-Particle Quantum Dynamics in a Magnetic Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  11. Are the North Atlantic oscillation and the southern oscillation related in any time-scale?

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Ribera, P.; Hernandez, E. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Fisicas; Gimenoo, L. [Fac. Ciencias, Univ. Vigo, Ourense (Spain)

    2000-02-01

    The north Atlantic oscillation (NAO) and the southern oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6-8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6-8 years' oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6-8 years that represents about 20% of the SO variance and about 25% of the NAO variance. (orig.)

  12. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  13. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  14. Reactor oscillator - Proposal of the organisation for oscillator operation; Reaktorski oscilator - Predlog organizacije rada na oscilatoru

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.

  15. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com [School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695016 (India); Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India); Suresh, K. [Department of Physics, Anjalai Ammal-Engineering College, Kovilvenni 614 403, Tamilnadu (India); Centre for Nonlinear Dynamics, Bharathidasan University, Trichy 620024, Tamilnadu (India); Chandrasekar, V. K. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India); Zou, Wei [School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074 (China); Centre for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074 (China); Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Kathamuthu, Thamilmaran [Centre for Nonlinear Dynamics, Bharathidasan University, Trichy 620024, Tamilnadu (India); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam D-14415 (Germany); Institute of Physics, Humboldt University Berlin, Berlin D-12489 (Germany); Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX (United Kingdom); Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod (Russian Federation)

    2016-04-15

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  16. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  17. Nonstationary oscillation of gyrotron backward wave oscillators with cylindrical interaction structure

    International Nuclear Information System (INIS)

    Chen, Shih-Hung; Chen, Liu

    2013-01-01

    The nonstationary oscillation of the gyrotron backward wave oscillator (gyro-BWO) with cylindrical interaction structure was studied utilizing both steady-state analyses and time-dependent simulations. Comparisons of the numerical results reveal that the gyro-BWO becomes nonstationary when the trailing field structure completely forms due to the dephasing energetic electrons. The backward propagation of radiated waves with a lower resonant frequency from the trailing field structure interferes with the main internal feedback loop, thereby inducing the nonstationary oscillation of the gyro-BWO. The nonstationary gyro-BWO exhibits the same spectral pattern of modulated oscillations with a constant frequency separation between the central frequency and sidebands throughout the whole system. The frequency separation is found to be scaled with the square root of the maximum field amplitude, thus further demonstrating that the nonstationary oscillation of the gyro-BWO is associated with the beam-wave resonance detuning

  18. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  19. Neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Mikheyev, S.P.; Smirnov, A.Yu.

    1986-01-01

    In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)

  20. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  1. Bounded-oscillation Pushdown Automata

    Directory of Open Access Journals (Sweden)

    Pierre Ganty

    2016-09-01

    Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.

  2. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T. P., E-mail: tongpu@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, Y.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Pukhov, A. [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany)

    2014-05-15

    By using three-dimensional particle-in-cell simulations with synchrotron radiation damping incorporated, dynamics of ultra-intense laser driven mass-limited foils is presented. When a circularly polarized laser pulse with a peak intensity of ∼10{sup 22} W/cm{sup 2} irradiates a mass-limited nanofoil, electrons are pushed forward collectively and a strong charge separation field forms which acts as a “light sail” and accelerates the protons. When the laser wing parts overtake the foil from the foil boundaries, electrons do a betatron-like oscillation around the center proton bunch. Under some conditions, betatron-like resonance takes place, resulting in energetic circulating electrons. Finally, bright femto-second x rays are emitted in a small cone. It is also shown that the radiation damping does not alter the foil dynamics radically at considered laser intensities. The effects of the transverse foil size and laser polarization on x-ray emission and foil dynamics are also discussed.

  3. LHC Report: Production and small angles

    CERN Multimedia

    Jan Uythoven for the LHC team

    2012-01-01

    The last two weeks have seen steady luminosity production. The total luminosity of ATLAS and CMS exceeded 19 fb-1, while LHCb reached 1.8 fb-1 and ALICE, 6 pb-1.   As reported in previous LHC reports, the continuous running with large beam intensities is resulting in beam-induced heating of certain elements, such as the synchrotron light monitor (BSRT), the ALFA detector and the injection kicker magnets. These first two elements had shown a sudden increase in temperature in the previous weeks - but only for the components that are on the counter-clockwise rotating beam. By making slight changes to the radiofrequency parameters, which affect the bunch length, the power spectrum of the beam was changed. This significantly reduced the observed heating of the BSRT and the ALFA detector. Another improvement was recently made to the measurement process of the number of transverse oscillations of the beam in one turn, known as the “betatron tune”. The frequency of the betatron tune ...

  4. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F

    1997-01-01

    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  5. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  6. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.; Omran, Hesham; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  7. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  8. Operation of the transverse feedback system at the CERN SPS

    International Nuclear Information System (INIS)

    Bossart, R.; Louwerse, R.; Mourier, J.; Vos, L.

    1987-01-01

    To prevent transverse instabilities at high beam intensity in the SPS, the transverse feedback system for damping the betatron oscillations has been upgraded for larger damping decrements and for increased system's bandwidth. The feedback loop now contains a digital delay line cancellor, so that the damper works with a velocity feedback Δx/Δt, unaffected by the closed orbit position x at the pick-up station. The digital processing of the feedback signal facilitates nonlinear feedback techniques such as antidamping and ''band-bang'' feedback. The ''bang-bang'' feedback provides the maximum possible damping rate of the injection oscillations in the SPS-collider, in order to minimize the emittance increase caused by filamentation. The antidamping nonlinearity provides small continuous beam oscillations of 50 μm amplitude for tracking the machine tune Q with a phase locked loop

  9. A theory of generalized Bloch oscillations

    International Nuclear Information System (INIS)

    Duggen, Lars; Lassen, Benny; Lew Yan Voon, L C; Willatzen, Morten

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics. (paper)

  10. Reactor oscillator - I - III, Part I

    International Nuclear Information System (INIS)

    Lolic, B.

    1961-12-01

    Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction

  11. Lattice function measurement with TBT BPM data

    International Nuclear Information System (INIS)

    Yang, M.J.

    1995-06-01

    At Fermilab Main Ring some of the Beam Position Monitors (BPM) are instrumented with Turn-By-Turn (TBT) capability to record up to 1,024 consecutive turns of BPM data for each given trigger. For example, there are 9 horizontal plane and 8 vertical plane BPM's in the sector D3 and D4. The BPM data, which records the betatron oscillation, is fitted to obtain beam parameters x, x', y, y', and Δp/p, using the calculated beam line transfer matrix. The resulted TBT beam parameters (x, x') or (y, y') are fitted to ellipses to obtain the lattice function β, α, and the emittance associated with the betatron oscillation. The tune of the machine can be calculated from the phase space angles of the successive turns, in the normalized phase space. The beam parameters can also be used to extract transfer matrix to be used for local and global coupling analysis. The process of fitting the BPM data produces information that can be used to diagnose problems such as calibration, noise level and polarity. Being available at every turn and at changing beam position the information carries a lot of statistical power. Since most of the BPM's are located at high beta location only the x and y beam position information is not simultaneously available. The BPM data fitting processing essentially bridged the gap

  12. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  13. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  14. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  15. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  16. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  17. Driven, autoresonant three-oscillator interactions

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.; Henis, Z.

    2007-01-01

    An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate

  18. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Kondratenko, M A; Filatov, Yu N; Kondratenko, A M

    2016-01-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented. (paper)

  19. Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels

    International Nuclear Information System (INIS)

    Esarey, E.; Schroeder, C. B.; Shadwick, B. A.; Wurtele, J. S.; Leemans, W. P.

    2000-01-01

    Nonparaxial propagation of ultrashort, high-power laser pulses in plasma channels is examined. In the adiabatic limit, pulse energy conservation, nonlinear group velocity, damped betatron oscillations, self-steepening, self-phase modulation, and shock formation are analyzed. In the nonadiabatic limit, the coupling of forward Raman scattering (FRS) and the self-modulation instability (SMI) is analyzed and growth rates are derived, including regimes of reduced growth. The SMI is found to dominate FRS in most regimes of interest. (c) 2000 The American Physical Society

  20. Multibunch feedback: Strategy, technology and implementation options

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Oxoby, G.; Sapozhnikov, L.; Linscott, I.; Serio, M.

    1992-10-01

    The proposed next generation accelerator and synchrotron light facilities will require active feedback systems to control multi-bunch instabilities. These feedback systems must operate in machines with thousands of circulating bunches and with short (2--4 ns) interbunch intervals. The functional requirements for transverse (betatron) and longitudinal (synchrotron) feedback systems are presented. Several possible implementation options are discussed and system requirements developed. Results are presented from a digital signal processing based synchrotron oscillation damper operating at the SSRL/SLAC SPEAR storage ring

  1. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    Science.gov (United States)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  2. Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations

    International Nuclear Information System (INIS)

    Khalili, Farit Ya

    2003-01-01

    Several physical effects and methodological issues relating to the ground state of an oscillator are considered. Even in the simplest case of an ideal lossless harmonic oscillator, its ground state exhibits properties that are unusual from the classical point of view. In particular, the mean value of the product of two non-negative observables, kinetic and potential energies, is negative in the ground state. It is shown that semiclassical and rigorous quantum approaches yield substantially different results for the ground state energy fluctuations of an oscillator with finite losses. The dependence of zero-point fluctuations on the boundary conditions is considered. Using this dependence, it is possible to transmit information without emitting electromagnetic quanta. Fluctuations of electromagnetic pressure of zero-point oscillations are analyzed, and the corresponding mechanical friction is considered. This friction can be viewed as the most fundamental mechanism limiting the quality factor of mechanical oscillators. Observation of these effects exceeds the possibilities of contemporary experimental physics but almost undoubtedly will be possible in the near future. (methodological notes)

  3. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  4. Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    J. W. Horng

    2011-09-01

    Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.

  5. The study on pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Bui, Ngoc Hung; Jung, Hyun Seok; Lee, Wook Hyun

    2003-01-01

    In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40 vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90 .deg., the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest

  6. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  7. Theses. Beam studies for the CERN antiproton decelerator and a new interpretation of the resonance theory for betatron motion

    Energy Technology Data Exchange (ETDEWEB)

    De Ninno, G

    1999-07-01

    The two parts of the thesis are a mission-oriented task devoted to solve some practical problems of the Antiproton Decelerator (AD) project at CERN, and a theoretical study leading to a new method for representing and compensating betatron resonances. The AD is a new machine (at the moment under commissioning at CERN) that will allow the collection and the deceleration of an antiproton beam from 3.5 GeV/c down to 100 MeV/c (the momentum favoured for the foreseen physics experiments). The need to employ the AD magnets over a wide range required a careful study of their characteristics. The presence of a solenoid inside the AD electron cooling device generates linear coupling between the transverse degrees of freedom of the single-particle motion. Coupling can lead to operational problems and therefore a compensation scheme had tobe designed. The long-standing problem has been solved of how to establish a relationship between the two standard methods for dealing with linear coupling: the matrix approach and the Hamiltonian approach. The bridge was built by including in the Hamiltonian approach in the high frequency part of the perturbative Hamiltonian due to coupling. The procedure was generalised to the nonlinear case and, a new method was proposed for dealing both with linear and nonlinear resonances. (author)

  8. Theses. Beam studies for the CERN antiproton decelerator and a new interpretation of the resonance theory for betatron motion

    International Nuclear Information System (INIS)

    De Ninno, G.

    1999-01-01

    The two parts of the thesis are a mission-oriented task devoted to solve some practical problems of the Antiproton Decelerator (AD) project at CERN, and a theoretical study leading to a new method for representing and compensating betatron resonances. The AD is a new machine (at the moment under commissioning at CERN) that will allow the collection and the deceleration of an antiproton beam from 3.5 GeV/c down to 100 MeV/c (the momentum favoured for the foreseen physics experiments). The need to employ the AD magnets over a wide range required a careful study of their characteristics. The presence of a solenoid inside the AD electron cooling device generates linear coupling between the transverse degrees of freedom of the single-particle motion. Coupling can lead to operational problems and therefore a compensation scheme had to be designed. The long-standing problem has been solved of how to establish a relationship between the two standard methods for dealing with linear coupling: the matrix approach and the Hamiltonian approach. The bridge was built by including in the Hamiltonian approach in the high frequency part of the perturbative Hamiltonian due to coupling. The procedure was generalised to the nonlinear case and, a new method was proposed for dealing both with linear and nonlinear resonances. (author)

  9. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  10. Anharmonic oscillator and Bogoliubov transformation

    International Nuclear Information System (INIS)

    Pattnayak, G.C.; Torasia, S.; Rath, B.

    1990-01-01

    The anharmonic oscillator occupies a cornerstone in many problems in physics. It was observed that none of the authors have tested Bogoliubov transformation to study anharmonic oscillator. The groundstate energy of the anharmonic oscillator is studied using Bogoliubov transformation and the results presented. (author)

  11. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  12. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  13. Primordial oscillations in life: Direct observation of glycolytic oscillations in individual HeLa cervical cancer cells

    Science.gov (United States)

    Amemiya, Takashi; Shibata, Kenichi; Itoh, Yoshihiro; Itoh, Kiminori; Watanabe, Masatoshi; Yamaguchi, Tomohiko

    2017-10-01

    We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.

  14. Spectral function calculation of angle wakes, wake moments, and misalignment wakes for the SLAC Damped Detuned Structures (DDS)

    International Nuclear Information System (INIS)

    Jones, R.M.; Miller, R.H.; Kroll, N.M.

    1997-05-01

    Transverse wake functions so far reported for the SLAC DDS have been limited to those caused by uniform offset of the drive beam in a straight perfectly aligned structure. The complete description of the betatron oscillations of wake coupled bunches requires an array of wake functions, referred to as moments. Modifications of these arrays induced by structure misalignments are also of interest. In this paper we express the array elements in terms of a spectral function array. Examples are given based upon DDS1

  15. Computer programs in accelerator physics

    International Nuclear Information System (INIS)

    Keil, E.

    1984-01-01

    Three areas of accelerator physics are discussed in which computer programs have been applied with much success: i) single-particle beam dynamics in circular machines, i.e. the design and matching of machine lattices; ii) computations of electromagnetic fields in RF cavities and similar objects, useful for the design of RF cavities and for the calculation of wake fields; iii) simulation of betatron and synchrotron oscillations in a machine with non-linear elements, e.g. sextupoles, and of bunch lengthening due to longitudinal wake fields. (orig.)

  16. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic of the ampli......A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  17. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  18. Polymerization and oscillation stuttering in a filamentous model of the subcellular Min oscillation

    Science.gov (United States)

    Rutenberg, Andrew; Sengupta, Supratim; Sain, Anirban; Derr, Julien

    2011-03-01

    We present a computational model of the E. coli Min oscillation that involves polymerization of MinD filaments followed by depolymerization stimulated by filament-end zones of MinE. Our stochastic model is fully three-dimensional, and tracks the diffusion and interactions of every MinD and MinE molecule. We recover self-organized Min oscillations. We investigate the experimental phenomenon of oscillation stuttering, which we relate to the disruption of MinE tip-binding at the filament scale.

  19. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  20. Neuromorphic computing with nanoscale spintronic oscillators.

    Science.gov (United States)

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  1. Rabi oscillation between states of a coupled harmonic oscillator

    International Nuclear Information System (INIS)

    Park, Tae Jun

    2003-01-01

    Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves

  2. Transition from amplitude to oscillation death in a network of oscillators

    International Nuclear Information System (INIS)

    Nandan, Mauparna; Hens, C. R.; Dana, Syamal K.; Pal, Pinaki

    2014-01-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics

  3. Transition from amplitude to oscillation death in a network of oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Mauparna [Dr. B. C. Roy Engineering College, Durgapur 713206 (India); Department of Mathematics, National Institute of Technology, Durgapur 713209 (India); Hens, C. R.; Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Pal, Pinaki [Department of Mathematics, National Institute of Technology, Durgapur 713209 (India)

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  4. Oscillating universe with quintom matter

    International Nuclear Information System (INIS)

    Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin

    2008-01-01

    In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing

  5. Improved memristor-based relaxation oscillator

    KAUST Repository

    Mosad, Ahmed G.

    2013-09-01

    This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.

  6. The supersymmetric Pegg-Barnett oscillator

    International Nuclear Information System (INIS)

    Shen, Jian Qi

    2005-01-01

    The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons

  7. LSND neutrino oscillation results

    International Nuclear Information System (INIS)

    Louis, W.C.

    1996-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations

  8. Some comparison of two fractional oscillators

    International Nuclear Information System (INIS)

    Kang Yonggang; Zhang Xiu'e

    2010-01-01

    The other form of fractional oscillator equation comparing to the widely discussed one is ushered in. The properties of vibration of two fractional oscillators are discussed under the influence of different initial conditions. The interpretation of the characteristics of the fractional oscillators using different method is illustrated. Based on two fractional oscillator equations, two linked bodies and the continuous system are studied.

  9. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  10. Parametric oscillators from factorizations employing a constant-shifted Riccati solution of the classical harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Khmelnytskaya, K.V. [Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas s/n, C.P. 76010 Santiago de Queretaro, Qro. (Mexico)

    2011-09-19

    We determine the kind of parametric oscillators that are generated in the usual factorization procedure of second-order linear differential equations when one introduces a constant shift of the Riccati solution of the classical harmonic oscillator. The mathematical results show that some of these oscillators could be of physical nature. We give the solutions of the obtained second-order differential equations and the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry. Possible applications are mentioned. -- Highlights: → A particular Riccati solution of the classical harmonic oscillator is shifted by a constant. → Such a solution is used in the factorization brackets to get different equations of motion. → The properties of the parametric oscillators obtained in this way are examined.

  11. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  12. Memristor-based relaxation oscillators using digital gates

    KAUST Repository

    Khatib, Moustafa A.

    2012-11-01

    This paper presents two memristor-based relaxation oscillators. The proposed oscillators are designed without the need of any reactive elements, i.e., capacitor or inductor. As the \\'resistance storage\\' property of the memristor can be exploited to generate the oscillation. The proposed oscillators have the advantage that they can be fully integrated on-chip giving an area-efficient solution. Furthermore, these oscillators give higher frequency other than the existing reactance-less oscillator and provide a wider range of the resistance. The concept of operation and the mathematical analysis for the proposed oscillators are explained and verified with circuit simulations showing an excellent agreement. © 2012 IEEE.

  13. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Chemical oscillators; phase flip; oscillation death. PACS No. 05.45 .... array oscillate (with varying amplitudes and frequencies), while the others experience oscillation death .... Barring the boundary cells, one observes near phase flip and near ...

  14. Low-frequency oscillations in Hall thrusters

    International Nuclear Information System (INIS)

    Wei Li-Qiu; Han Liang; Yu Da-Ren; Guo Ning

    2015-01-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. (review)

  15. Coupled oscillators with parity-time symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tsoy, Eduard N., E-mail: etsoy@uzsci.net

    2017-02-05

    Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.

  16. Slow oscillations orchestrating fast oscillations and memory consolidation.

    Science.gov (United States)

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  18. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  19. pH-regulated chemical oscillators.

    Science.gov (United States)

    Orbán, Miklós; Kurin-Csörgei, Krisztina; Epstein, Irving R

    2015-03-17

    The hydrogen ion is arguably the most ubiquitous and important species in chemistry. It also plays a key role in nearly every biological process. In this Account, we discuss systems whose behavior is governed by oscillations in the concentration of hydrogen ion. The first chemical oscillators driven by changes in pH were developed a quarter century ago. Since then, about two dozen new pH oscillators, systems in which the periodic variation in pH is not just an indicator but an essential prerequisite of the oscillatory behavior, have been discovered. Mechanistic understanding of their behavior has grown, and new ideas for their practical application have been proposed and, in some cases, tested. Here we present a catalog of the known pH oscillators, divide them into mechanistically based categories based on whether they involve a single oxidant and reductant or an oxidant and a pair of reductants, and describe general mechanisms for these two major classes of systems. We also describe in detail the chemistry of one example from each class, hydrogen peroxide-sulfide and ferricyanide-iodate-sulfite. Finally, we consider actual and potential applications. These include using pH oscillators to induce oscillation in species that would otherwise be nonoscillatory, creating novel spatial patterns, generating periodic transitions between vesicle and micelle states, stimulating switching between folded and random coil states of DNA, building molecular motors, and designing pulsating drug delivery systems. We point out the importance for future applications of finding a batch pH oscillator, one that oscillates in a closed system for an extended period of time, and comment on the progress that has been made toward that goal.

  20. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  1. Exact folded-band chaotic oscillator.

    Science.gov (United States)

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  2. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  3. A Survey on Forced Oscillations in Power System

    OpenAIRE

    Ghorbaniparvar, Mohammadreza

    2016-01-01

    Oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations caught many attentions. Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system ...

  4. Neutrino oscillations. Theory and experiment

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2001-01-01

    Theoretical schemes on neutrino oscillations are considered. The experimental data on neutrino oscillations obtained in the Super-Kamiokande (Japan) and SNO (Canada) experiments are given. Comparison of these data with the predictions obtained in the theoretical schemes is done. Conclusion is made that the experimental data confirm only the scheme with transitions (oscillations) between aromatic ν e -, ν μ -, ν τ - neutrinos with maximal angle mixings. (author)

  5. Reactor oscillator - I - III, Part III - Electronic device; Reaktorski oscilator - I-III, III Deo - Elektronski uredjaj

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Jovanovic, S [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report describes functioning of the reactor oscillator electronic system. Two methods of oscillator operation were discussed. The first method is so called method of amplitude modulation of the reactor power, and the second newer method is phase method. Both methods are planned for the present reactor oscillator.

  6. Pile oscillator ROB-1, cooperation NPY

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Markovic, V; Obradovic, D; Kocic, A; Velickovic, LJ; Jovanovic, S [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1965-11-15

    The present paper explains the purpose of the work on reactor kinetics and separately deals with the region for which the ROB-1 reactor oscillator is constructed. The theoretical part concerns the basic principles on which the oscillator operates. the paper also discusses the details of the oscillator, the procedure for preparation and measurement, and analyzes the source of errors. In addition several examples of the use of oscillator are given. (author)

  7. Pile oscillator ROB-1, cooperation NPY

    International Nuclear Information System (INIS)

    Petrovic, M.; Markovic, V.; Obradovic, D.; Kocic, A.; Velickovic, LJ.; Jovanovic, S.

    1965-11-01

    The present paper explains the purpose of the work on reactor kinetics and separately deals with the region for which the ROB-1 reactor oscillator is constructed. The theoretical part concerns the basic principles on which the oscillator operates. the paper also discusses the details of the oscillator, the procedure for preparation and measurement, and analyzes the source of errors. In addition several examples of the use of oscillator are given. (author)

  8. Nonlocal synchronization in nearest neighbour coupled oscillators

    International Nuclear Information System (INIS)

    El-Nashar, H.F.; Elgazzar, A.S.; Cerdeira, H.A.

    2002-02-01

    We investigate a system of nearest neighbour coupled oscillators. We show that the nonlocal frequency synchronization, that might appear in such a system, occurs as a consequence of the nearest neighbour coupling. The power spectra of nonadjacent oscillators shows that there is no complete coincidence between all frequency peaks of the oscillators in the nonlocal cluster, while the peaks for neighbouring oscillators approximately coincide even if they are not yet in a cluster. It is shown that nonadjacent oscillators closer in frequencies, share slow modes with their adjacent oscillators which are neighbours in space. It is also shown that when a direct coupling between non-neighbours oscillators is introduced explicitly, the peaks of the spectra of the frequencies of those non-neighbours coincide. (author)

  9. Observation of Quasichanneling Oscillations

    International Nuclear Information System (INIS)

    Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.

    2017-01-01

    Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.

  10. Mutual phase-locking of planar nano-oscillators

    Directory of Open Access Journals (Sweden)

    K. Y. Xu

    2014-06-01

    Full Text Available Characteristics of phase-locking between Gunn effect-based planar nano-oscillators are studied using an ensemble Monte Carlo (EMC method. Directly connecting two oscillators in close proximity, e.g. with a channel distance of 200 nm, only results in incoherent oscillations. In order to achieve in-phase oscillations, additional considerations must be taken into account. Two coupling paths are shown to exist between oscillators. One coupling path results in synchronization and the other results in anti-phase locking. The coupling strength through these two paths can be adjusted by changing the connections between oscillators. When two identical oscillators are in the anti-phase locking regime, fundamental components of oscillations are cancelled. The resulting output consists of purely second harmonic oscillations with a frequency of about 0.66 THz. This type of second harmonic generation is desired for higher frequency applications since no additional filter system is required. This transient phase-locking process is further analyzed using Adler's theory. The locking range is extracted, and a criterion for the channel length difference required for realizing phased arrays is obtained. This work should aid in designing nano-oscillator arrays for high power applications and developing directional transmitters for wireless communications.

  11. Stochastic cooling equipment at the ISR

    CERN Multimedia

    1983-01-01

    The photo shows (centre) an experimental set-up for stochastic cooling of vertical betatron oscillations, used at the ISR in the years before the ICE ring was built. Cooling times of about 30 min were obtained in the low intensity range (~0.3 A). To be noted the four 50 Ohm brass input/output connections with cooling fins, and the baking-out sheet around the cylinder. On the left one sees a clearing electrode box allowing the electrode current to be measured, and the pressure seen by the beam to be evaluated.

  12. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  13. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  14. WE7000 network for KEK Proton Synchrotron

    International Nuclear Information System (INIS)

    Yamaguchi, Yuji; Yagyu, Hiroshi

    2000-01-01

    A new PC-Based measurement system, WE7000, has been developed. The WE7000 is based on a new concept and the leading-edge technologies, such as 250 Mbps high speed optical fiber network and complete Plug and Play mechanism. This paper describes an application to the betatron oscillation monitor and a magnetic field monitor of beam extraction system for neutrino experiment at 12 GeV Proton Synchrotron (PS) Accelerator in High Energy Accelerator Organization (KEK). It was found that these system are very effective in the operation of the accelerator. (author)

  15. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    International Nuclear Information System (INIS)

    Kostyukov, I.Yu.; Shvets, G.; Fisch, N.J.; Rax, J.M.

    2001-01-01

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made

  16. A resonant beam detector for TEVATRON tune monitoring

    International Nuclear Information System (INIS)

    Martin, D.; Fellenz, B.; Hood, C.; Johnson, M.; Shafer, R.; Siemann, R.; Zurawski, J.

    1989-03-01

    An inductively resonated, balanced stripline pickup has been constructed for observing tune spectra. The device is a sensitive betatron oscillation and Schottky noise pickup, providing 25 dB gain over untuned detectors of like geometry. The electrodes are motorized so the device center and aperture may be remotely adjusted. To tune the resonator onto the 21.4 MHz operating frequency, a motorized capacitor is employed. Quadrature signals from a pair of detectors has enabled observation of individual p and p coherent motions to nanometer levels. 8 refs., 5 figs

  17. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  18. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  19. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  20. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  1. Phase-locked Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  2. Stable And Oscillating Acoustic Levitation

    Science.gov (United States)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  3. Umbral oscillations as a probe of sunspot

    International Nuclear Information System (INIS)

    Abdelatif, T.E.H.

    1985-01-01

    The interaction of the solar five-minute oscillations with a sunspot is thoroughly explored, both on observational and theoretical grounds. Simple theoretical models are developed in order to understand the observations of umbral oscillations. Observations made at the National Solar Observatory detected both the three-minute and five-minute umbral oscillations at photospheric heights. The three-minute oscillations were found to have a kinetic energy density six times higher in the photosphere than in the chromosphere and to be concentrated in the central part of the umbra, supporting the photospheric resonance theory for the three-minute umbral oscillations. The five-minute oscillations are attenuated in the umbra, which appears to act as a filter in selecting some of the peaks in the power spectrum of five-minute oscillations in the surrounding photosphere. The k-omega power spectrum of the umbral oscillations shows a shift of power to longer wavelengths. Theoretical models of the transmission of acoustic waves into a magnetic region explain both observed effects

  4. Lepton asymmetry and neutrino oscillations interplay

    Energy Technology Data Exchange (ETDEWEB)

    Kirilova, Daniela, E-mail: dani@astro.bas.bg [Bulgarian Academy of Sciences, Institute of Astronomy and NAO (Bulgaria)

    2013-03-15

    We discuss the interplay between lepton asymmetry L and {nu} oscillations in the early Universe. Neutrino oscillations may suppress or enhance previously existing L. On the other hand L is capable to suppress or enhance neutrino oscillations. The mechanism of L enhancement in MSW resonant {nu} oscillations in the early Universe is numerically analyzed. L cosmological effects through {nu} oscillations are discussed. We discuss how L may change the cosmological BBN constraints on neutrino and show that BBN model with {nu}{sub e}{r_reversible}{nu}{sub s} oscillations is extremely sensitive to L - it allows to obtain the most stringent constraints on L value. We discuss also the cosmological role of active-sterile {nu} mixing and L in connection with the indications about additional relativistic density in the early Universe, pointed out by BBN, CMB and LSS data and the analysis of global {nu} data.

  5. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  6. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  7. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  8. Integrated optoelectronic oscillator.

    Science.gov (United States)

    Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming

    2018-04-30

    With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

  9. Cancellation of the centrifugal space-charge force

    International Nuclear Information System (INIS)

    Lee, E.P.

    1990-01-01

    The transverse dynamics of high-energy electrons confined in curved geometry are examined, including the effects of space-charge-induced fields. Attention is restricted to the centrifugal-space-charge force, which is the result of noncancellation of beam-induced transverse electric and magnetic fields in the curved geometry. This force is shown to be nearly cancelled in the evaluation of the horizontal tune and chromaticity by another, often overlooked term in the equation of motion. The additional term is the consequence of oscillations of the kinetic energy, which accompany betatron oscillations in the beam-induced electric potential. In curved geometry this term is of first order in the amplitude of the radial oscillation. A highly simplified system model is employed so that physical effects appear in as clear a form as possible. We assume azimuthal and median plane symmetry, static fields, and ultrarelativistic particle velocity (1/γ 2 ->0). (author) 9 refs

  10. FARADAY CUP AWARD: High Sensitivity Tune Measurement using Direct Diode Detection

    CERN Document Server

    Gasior, M

    2012-01-01

    Direct Diode Detection (3D) is a technique developed at CERN initially for the LHC tune measurement system, to reach a sensitivity allowing observation of beam betatron oscillations with amplitudes below a micrometre. In this technique simple peak diode detectors are used to convert short beam pulses from a beam position pick-up into slowly varying signals. Their DC components, constituting a large background related to beam offsets, are suppressed by series capacitors, while the small signals related to beam oscillations are passed to the subsequent stages for amplification and filtering. As the demodulated beam oscillation signals are already in the kHz range, their processing is simple and they can be digitised with high resolution audio ADCs. This paper presents the history as well as the adventures of the 3D development and prototyping, along with some technical details. It documents a very efficient collaboration between CERN and Brookhaven National Laboratory (BNL), with contributions from other labora...

  11. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  12. Oscillations of the Outer Boundary of the Outer Radiation Belt During Sawtooth Oscillations

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2006-09-01

    Full Text Available We report three sawtooth oscillation events observed at geosynchronous orbit where we find quasi-periodic (every 2-3 hours sudden flux increases followed by slow flux decreases at the energy levels of ˜50-400 keV. For these three sawtooth events, we have examined variations of the outer boundary of the outer radiation belt. In order to determine L values of the outer boundary, we have used data of relativistic electron flux observed by the SAMPEX satellite. We find that the outer boundary of the outer radiation belt oscillates periodically being consistent with sawtooth oscillation phases. Specifically, the outer boundary of the outer radiation belt expands (namely, the boundary L value increases following the sawtooth particle flux enhancement of each tooth, and then contracts (namely, the boundary L value decreases while the sawtooth flux decreases gradually until the next flux enhancement. On the other hand, it is repeatedly seen that the asymmetry of the magnetic field intensity between dayside and nightside decreases (increases due to the dipolarization (the stretching on the nightside as the sawtooth flux increases (decreases. This implies that the periodic magnetic field variations during the sawtooth oscillations are likely responsible for the expansion-contraction oscillations of the outer boundary of the outer radiation belt.

  13. Sustaining GHz oscillation of carbon nanotube based oscillators via a MHz frequency excitation

    International Nuclear Information System (INIS)

    Motevalli, Benyamin; Taherifar, Neda; Liu, Jefferson Zhe

    2016-01-01

    There have been intensive studies to investigate the properties of gigahertz nano-oscillators based on multi-walled carbon nanotubes (MWCNTs). Many of these studies, however, revealed that the unique telescopic translational oscillations in such devices would damp quickly due to various energy dissipation mechanisms. This challenge remains the primary obstacle against its practical applications. Herein, we propose a design concept in which a GHz oscillation could be re-excited by a MHz mechanical motion. This design involves a triple-walled CNT, in which sliding of the longer inner tube at a MHz frequency can re-excite and sustain a GHz oscillation of the shorter middle tube. Our molecular dynamics (MD) simulations prove this design concept at ∼10 nm scale. A mathematical model is developed to explore the feasibility at a larger size scale. As an example, in an oscillatory system with the CNT’s length above 100 nm, the high oscillatory frequency range of 1.8–3.3 GHz could be excited by moving the inner tube at a much lower frequency of 53.4 MHz. This design concept together with the mechanical model could energize the development of GHz nano-oscillators in miniaturized electro-mechanical devices. (paper)

  14. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...... using process knowledge. The tested methods show potential for detecting the oscillations, however, transient components in the signals cause false detections as well, motivating usage of models in order to remove the expected signals behavior....

  15. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  16. Feedback control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.

    1993-05-01

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques

  17. Isotropic oscillator: spheroidal wave functions

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.

    1985-01-01

    Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states

  18. Chaotic solar oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)

    1981-09-01

    A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.

  19. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  20. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2009-01-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  1. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  2. Flashing oscillation in pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya

    1996-01-01

    This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis

  3. New Realizations of Single OTRA-Based Sinusoidal Oscillators

    Directory of Open Access Journals (Sweden)

    Hung-Chun Chien

    2014-01-01

    Full Text Available This study proposes three new sinusoidal oscillators based on an operational transresistance amplifier (OTRA. Each of the proposed oscillator circuits consists of one OTRA combined with a few passive components. The first circuit is an OTRA-based minimum RC oscillator. The second circuit is capable of providing independent control on the condition of oscillation without affecting the oscillation frequency. The third circuit exhibits independent control of oscillation frequency through a capacitor. This study first introduces the OTRA and the related formulations of the proposed oscillator circuits, and then discusses the nonideal effects, sensitivity analyses, and frequency stability of the presented circuits. The proposed oscillators exhibit low sensitivities and good frequency stability. Because the presented circuits feature low impedance output, they can be connected directly to the next stage without cascading additional voltage buffers. HSPICE simulations and experimental results confirm the feasibility of the new oscillator circuits.

  4. Neutrino oscillations: present status and outlook

    International Nuclear Information System (INIS)

    Schwetz, T.

    2005-01-01

    In this talk the present status of neutrino oscillations is reviewed, based on a global analysis of world neutrino oscillation data from solar, atmospheric, reactor, and accelerator neutrino experiments. Furthermore, I discuss the expected improvements in the determination of neutrino parameters by future oscillation experiments within a timescale of 10 years. (author)

  5. Neutrino oscillations in the early universe

    International Nuclear Information System (INIS)

    Enqvist, K.

    1990-01-01

    The oscillations of electron neutrinos into inert neutrinos may have resonant behaviour in the heat bath of the early Universe. It is shown that any initial neutrino asymmetry will be washed away by the oscillations. Neutrino oscillations would affect also primordial helium production, which implies stringent limits on the neutrino mixing parameters. (orig.)

  6. Coding of Information in Limit Cycle Oscillators

    Science.gov (United States)

    Schleimer, Jan-Hendrik; Stemmler, Martin

    2009-12-01

    Starting from a general description of noisy limit cycle oscillators, we derive from the Fokker-Planck equations the linear response of the instantaneous oscillator frequency to a time-varying external force. We consider the time series of zero crossings of the oscillator’s phase and compute the mutual information between it and the driving force. A direct link is established between the phase response curve summarizing the oscillator dynamics and the ability of a limit cycle oscillator, such as a heart cell or neuron, to encode information in the timing of peaks in the oscillation.

  7. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  8. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    Hoeye, Gudrun Kristine

    1999-01-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  9. Atmospheric neutrino oscillations for earth tomography

    International Nuclear Information System (INIS)

    Winter, Walter

    2016-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  10. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  11. Generalized model for Memristor-based Wien family oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-23

    In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types though oscillating resistance and time dependent poles are present. We have also proposed an analytical model to estimate the desired amplitude of oscillation before the oscillation starts. These Memristor-based oscillation results, presented for the first time, are in good agreement with simulation results. © 2011 Elsevier Ltd.

  12. Breaking of ensembles of linear and nonlinear oscillators

    International Nuclear Information System (INIS)

    Buts, V.A.

    2016-01-01

    Some results concerning the study of the dynamics of ensembles of linear and nonlinear oscillators are stated. It is shown that, in general, a stable ensemble of linear oscillator has a limited number of oscillators. This number has been defined for some simple models. It is shown that the features of the dynamics of linear oscillators can be used for conversion of the low-frequency energy oscillations into high frequency oscillations. The dynamics of coupled nonlinear oscillators in most cases is chaotic. For such a case, it is shown that the statistical characteristics (moments) of chaotic motion can significantly reduce potential barriers that keep the particles in the capture region

  13. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  14. Harmonic oscillations, chaos and synchronization in systems consisting of Van der Pol oscillator coupled to a linear oscillator

    International Nuclear Information System (INIS)

    Woafo, P.

    1999-12-01

    This paper deals with the dynamics of a model describing systems consisting of the classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. Both the forced and autonomous cases are considered. Harmonic response is investigated along with its stability boundaries. Condition for quenching phenomena in the autonomous case is derived. Neimark bifurcation is observed and it is found that our model shows period doubling and period-m sudden transitions to chaos. Synchronization of two and more systems in their chaotic regime is presented. (author)

  15. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-12-31

    Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  16. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-01-01

    Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  17. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  18. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  19. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  20. Circuit oscillations in odor perception and memory.

    Science.gov (United States)

    Kay, Leslie M

    2014-01-01

    Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.

  1. Quantum oscillations of conductivity in bismuth wires

    International Nuclear Information System (INIS)

    Condrea, Elena

    2011-01-01

    Measurements of the resistance of bismuth nanowires with several diameters and different quality reveal oscillations on the dependence of resistance under uniaxial strain at T = 4.2 K. Amplitude of oscillations is significant (38 %) at helium temperature and becomes smearing at T = 77 K. Observed oscillations originate from quantum size effect. A simple evaluation of period of oscillations allows us to identify the groups of carriers involved in transport. Calculated periods of 42.2 and 25.9 nm satisfy approximately the ratio 2:1 for two experimentally observed sets of oscillations from light and heavy electrons.

  2. Theory of a quantum anharmonic oscillator

    International Nuclear Information System (INIS)

    Carusotto, S.

    1988-01-01

    The time evolution of a quantum single-quartic anharmonic oscillator is considered. The study is carried on in operational form by use of the raising and lowering operators of the oscillator. The equation of motion is solved by application of a new integration method based on iteration techniques, and the rigorous solutions that describe the time development of the displacement and momentum operators of the oscillator are obtained. These operators are presented as a Laplace transform and a subsequent inverse Laplace transform of suitable functionals. Finally, the results are employed to describe the time evolution of a quasiclassical anharmonic oscillator

  3. Symmetries and symmetry-breaking in oscillator ensembles

    International Nuclear Information System (INIS)

    Ujjwal, Sangeeta R.; Ramaswamy, Ram

    2017-01-01

    The behaviour of collections of oscillators has also been of interest for at least a few centuries as well. As it happens, Huygens described the interaction of two pendulums that resulted in their synchrony, namely the entrainment of one oscillator by the other. He gave a fairly accurate physical explanation for the process, namely that the pendulums oscillated in 'sympathy', adjusting their rhythms as a consequence of the weak coupling between them. The study of synchrony has thus been of interest since long, given the wide variety of systems that show 'sync'. These range from simple mechanical oscillators such as pendulums, to chemical and biological oscillators, coupled Josephson junctions and so on. In short, any system that is capable of showing sustained oscillations is also potentially able to synchronise

  4. Reactor Neutrino Oscillations: KamLAND and KASKA

    International Nuclear Information System (INIS)

    Suekane, F.

    2006-01-01

    Nuclear reactors generate a huge number of low energy ν-bar e 's. The reactor neutrinos have been used to study properties of neutrinos since its discovery a half century ago. Recently, KamLAND group finally discovered reactor neutrino oscillation with average baseline 180 km. According to the 3 flavor scheme of standard theory and measured oscillation parameters so far, the reactor neutrino is expected to perform another type of small oscillation at a baseline 1.8 km. KASKA experiment is a project to detect this small oscillation and to measure the last neutrino mixing angle θ 13 by using the world most powerful reactor complex, Kashiwazaki-Kariwa nuclear power station. In this proceedings, phenomena of neutrino oscillation and the two reactor oscillation experiments, KamLAND and KASKA, are introduced

  5. Ka Band Phase Locked Loop Oscillator Dielectric Resonator Oscillator for Satellite EHF Band Receiver

    Directory of Open Access Journals (Sweden)

    S. Coco

    2008-01-01

    Full Text Available This paper describes the design and fabrication of a Ka Band PLL DRO having a fundamental oscillation frequency of 19.250 GHz, used as local oscillator in the low-noise block of a down converter (LNB for an EHF band receiver. Apposite circuital models have been created to describe the behaviour of the dielectric resonator and of the active component used in the oscillator core. The DRO characterization and measurements have shown very good agreement with simulation results. A good phase noise performance is obtained by using a very high Q dielectric resonator.

  6. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2011-01-01

    State space modeling of Memristor based Wien 'A' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  7. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-12-01

    State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  8. Two particle states, lepton mixing and oscillations

    CERN Document Server

    Kachelriess, M; Schönert, S

    2000-01-01

    Discussions of lepton mixing and oscillations consider generally only flavor oscillations of neutrinos and neglect the accompanying charged leptons. In cases of experimental interest like pion or nuclear beta decay an oscillation pattern is expected indeed only for neutrinos if only one of the two produced particles is observed. We argue that flavor oscillations of neutrinos without detecting the accompanying lepton is a peculiarity of the two-particle states $|l\

  9. Optical oscillator-amplifier laser configuration

    International Nuclear Information System (INIS)

    McAllister, G.L.

    1975-01-01

    A laser is described that has incorporated therein an oscillator formed by a pair of mirrors, at least one of the mirrors being positioned outside of the envelope. The mirrors are dimensioned and spaced from each other so that the resonator has a relatively low Fresnel number and is operated unstably. The entire surface of one of these mirrors is convex and diffracts a portion of the energy outside of the oscillator region. Also incorporated into the laser is an amplifier region defined by a separate pair of mirrors which receive the energy diffracted from the oscillator region. The second pair of mirrors form an optical system with a high Fresnel number. A filter, modulator or other control for the laser signal may be placed outside the laser envelope in the optical path of the oscillator

  10. Activity patterns in networks stabilized by background oscillations.

    Science.gov (United States)

    Hoppensteadt, Frank

    2009-07-01

    The brain operates in a highly oscillatory environment. We investigate here how such an oscillating background can create stable organized behavior in an array of neuro-oscillators that is not observable in the absence of oscillation, much like oscillating the support point of an inverted pendulum can stabilize its up position, which is unstable without the oscillation. We test this idea in an array of electronic circuits coming from neuroengineering: we show how the frequencies of the background oscillation create a partition of the state space into distinct basins of attraction. Thus, background signals can stabilize persistent activity that is otherwise not observable. This suggests that an image, represented as a stable firing pattern which is triggered by a voltage pulse and is sustained in synchrony or resonance with the background oscillation, can persist as a stable behavior long after the initial stimulus is removed. The background oscillations provide energy for organized behavior in the array, and these behaviors are categorized by the basins of attraction determined by the oscillation frequencies.

  11. A Conspiracy of Oscillators

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2008-01-01

    We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....

  12. Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy

    Science.gov (United States)

    Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.

    2017-07-01

    We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.

  13. Multivariate Time Series Decomposition into Oscillation Components.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  14. Augmenting cognition by neuronal oscillations

    NARCIS (Netherlands)

    Horschig, J.M.; Zumer, J.; Bahramisharif, A.

    2014-01-01

    Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both

  15. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  16. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  17. MEDIA PEMBELAJARAN ANALOG OSCILLATOR VIRTUAL LABOLATORY

    Directory of Open Access Journals (Sweden)

    Aji Widhi Wibowo

    2016-01-01

    Full Text Available The purpose of this research is to design and implement a Virtual Labolatory Materials Signal Processing Sub discussion 'Oscillator' Analog as Newspapers. Developers using the model Sutopo Ariesto Hadi (2003 as a method to produce the product. Consists of six stages: concept, design, material collecting, assembly, testing and distribution. This results in the development of Virtual media Labolatory with material 'Oscillator' with the results of 4 (four practicum digital oscillator, namely (1 Oscillator Wien Bridge, (2 Colpitts oscillator, (3 Oscillator Hartley and (4 astable multivibrator. Another result is that a user be jobsheet practicum. There are two types, namely: (1 jobsheet grip lecturers and (2 jobsheet for students. In Jobsheet there is a short book that contains the Manual on procedures for the use of virtual labolatory when practical and anatomical description of the product. Virtual Labolatory consists of the initial page (flash scren, the main page (home, pages and pages about the developer's lab referring to the story board. There are four (4 test are: (1 the truth polarity capacitor, (2 the connection (wiring, (3 mode frequency and time in the meter frequency

  18. New neutrino oscillation results from NOVA

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses.  The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...

  19. Disturbed solution of the El Niño-southern oscillation sea—air delayed oscillator

    International Nuclear Information System (INIS)

    Xie Feng; Lin Wan-Tao; Lin Yi-Hua; Mo Jia-Qi

    2011-01-01

    A class of delayed oscillators of El Niño-southern oscillation (ENSO) models is considered. Using the delayed theory, the perturbed theory and other methods, the asymptotic expansions of the solutions for ENSO models are obtained and the asymptotic behaviour of solution of corresponding problem is studied. (general)

  20. Voltage-driven quantum oscillations in graphene

    International Nuclear Information System (INIS)

    Yampol'skii, V A; Savel'ev, S; Nori, Franco

    2008-01-01

    We predict unusual (for non-relativistic quantum mechanics) electron states in graphene, which are localized within a finite-width potential barrier. The density of localized states in the sufficiently high and/or wide graphene barrier exhibits a number of singularities at certain values of the energy. Such singularities provide quantum oscillations of both the transport (e.g. conductivity) and thermodynamic properties of graphene-when increasing the barrier height and/or width, similarly to the well-known Shubnikov-de-Haas (SdH) oscillations of conductivity in pure metals. However, here the SdH-like oscillations are driven by an electric field instead of the usual magnetically driven SdH-oscillations

  1. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  2. Recent Progress in Silicon Mems Oscillators

    Science.gov (United States)

    2008-12-01

    MEMS oscillator. As shown, a MEMS resonator is connected to an IC. The reference oscillator, which is basically a transimpedance amplifier ...small size), and (3) DC bias voltage required to operate the resonators. As a result, instead of Colpitts or Pierce architecture, a transimpedence ... amplifier is typically used for sustain the oscillation. The frequency of the resonators is determined by both material properties and geometry of

  3. Chemical Oscillations

    Indian Academy of Sciences (India)

    IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.

  4. Chemical Oscillations

    Indian Academy of Sciences (India)

    the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.

  5. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  6. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  7. Electronically tunable RC sinusoidal oscillators

    International Nuclear Information System (INIS)

    Florescu, Valeriu

    2008-01-01

    This paper presents two types of active configurations for realizing electronically tunable RC sinusoidal oscillators. The type-1 network employs two grounded scaled resistances KR 1 and KR 2 , where K is scaling factor. The frequency of oscillation W 0 is controlled conveniently by adjusting K, since W 0 appears in the form W 0 =1/K √ R 1 C 1 R 2 C 2 . For realizing the scaled resistances, an active configuration is proposed, which realizes KR 1 =R 1 /(1+f(V B )), where f(V B ) denotes a function of a controlling voltage V B . Thus the frequency tuning can be effected by controlling a voltage V B . The type-2 oscillator uses two periodically switched conductances. It is shown that the tuning of oscillation frequency can be done by varying the pulse width-to-period ratio (t/T) of the periodically switched conductances. (author)

  8. Oscillators and operational amplifiers

    OpenAIRE

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.

  9. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  10. A family of memristor-based reactance-less oscillators

    KAUST Repository

    Zidan, Mohammed A.

    2013-05-03

    In this paper, we present for the first time a family of memristor-based reactance-less oscillators (MRLOs). The proposed oscillators require no reactive components, that is, inductors or capacitors, rather, the ‘resistance storage’ property of memristor is exploited to generate the oscillation. Different types of MRLO family are presented, and for each type, closed form expressions are derived for the oscillation condition, oscillation frequency, and range of oscillation. Derived equations are further verified using transient circuit simulations. A comparison between different MRLO types is also discussed. In addition, detailed fabrication steps of a memristor device and experimental results for the first MRLO physical realization are presented.

  11. A family of memristor-based reactance-less oscillators

    KAUST Repository

    Zidan, Mohammed A.; Omran, Hesham; Smith, Casey; Syed, Ahad; Radwan, Ahmed Gomaa; Salama, Khaled N.

    2013-01-01

    In this paper, we present for the first time a family of memristor-based reactance-less oscillators (MRLOs). The proposed oscillators require no reactive components, that is, inductors or capacitors, rather, the ‘resistance storage’ property of memristor is exploited to generate the oscillation. Different types of MRLO family are presented, and for each type, closed form expressions are derived for the oscillation condition, oscillation frequency, and range of oscillation. Derived equations are further verified using transient circuit simulations. A comparison between different MRLO types is also discussed. In addition, detailed fabrication steps of a memristor device and experimental results for the first MRLO physical realization are presented.

  12. Gamma oscillations: precise temporal coordination without a metronome.

    Science.gov (United States)

    Nikolić, Danko; Fries, Pascal; Singer, Wolf

    2013-02-01

    Gamma oscillations in the brain should not be conceptualized as a sine wave with constant oscillation frequency. Rather, these oscillations serve to concentrate neuronal discharges to particular phases of the oscillation cycle and thereby provide the substrate for various, functionally relevant synchronization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  14. A Class-F CMOS Oscillator

    NARCIS (Netherlands)

    Babaie, M.; Staszewski, R.B.

    2013-01-01

    An oscillator topology demonstrating an improved phase noise performance is proposed in this paper. It exploits the time-variant phase noise model with insights into the phase noise conversion mechanisms. The proposed oscillator is based on enforcing a pseudo-square voltage waveform around the LC

  15. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  16. Ion beam dynamics in the acceleration region of the Vincy Cyclotron

    International Nuclear Information System (INIS)

    Tomic, S.; Samsonov, E.

    1998-01-01

    Modern concept of heavy ion cyclotrons assumes a tendency of decreasing the gaps between magnet poles, enabling better efficiency of the magnetic field circuit. This restricts possible solutions of acceleration structure and imposes the necessity of installing the dees in valleys of magnetic structures. This approach, which is accepted in the VINCY Cyclotron, requires a detailed study of the ion beam dynamics in the acceleration region. Consequently, we analyzed ion beams with eta = 1,05 and 0.25 in radial and axial phase space. Also, the energy spread in emittances and the influence of the first harmonic of the magnetic field on the radial betatron oscillations are discussed. The transformation of coherent into incoherent radial oscillations as well as the effect to radial off-centering on the beam vertical size at Walkinshaw resonance location, is pointed out (author)

  17. Neutrino oscillations in the Kerr-Newman spacetime

    International Nuclear Information System (INIS)

    Ren Jun; Zhang Chengmin

    2010-01-01

    The mass neutrino oscillation in the Kerr-Newman (K-N) spacetime is studied in the plane θ = θ 0 , and general equations of the oscillation phases are given. The effect of the rotation and electric charge on the phase is presented. Then, we consider three special cases. (1) The neutrinos travel along the geodesics with angular momentum L = aE in the equatorial plane. (2) The neutrinos travel along the geodesics with L = 0 in the equatorial plane. (3) The neutrinos travel along the radial geodesics in the direction θ = 0. Finally, we calculate the proper oscillation length in the K-N spacetime. The effect of the gravitational field on the oscillation length is embodied in the gravitational red shift factor. When the neutrino travels out of the gravitational field, a blue shift of the oscillation length takes place. We discuss the variation of the oscillation length influenced by the gravitational field strength, the rotation a 2 and charge Q.

  18. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  19. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  20. Oscillations of neutral B mesons systems

    CERN Document Server

    Boucrot, J.

    1999-01-01

    The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is

  1. Chimera States in Mechanical Oscillator Networks

    OpenAIRE

    Martens, Erik Andreas; Thutupalli, Shashi; Fourrière, Antoine; Hallatschek, Oskar

    2013-01-01

    The synchronization of coupled oscillators is a fascinating manifestation of self-organization that nature uses to orchestrate essential processes of life, such as the beating of the heart. Although it was long thought that synchrony and disorder were mutually exclusive steady states for a network of identical oscillators, numerous theoretical studies in recent years have revealed the intriguing possibility of “chimera states,” in which the symmetry of the oscillator population is broken into...

  2. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  3. Coherent states for oscillators of non-conventional statistics

    International Nuclear Information System (INIS)

    Dao Vong Duc; Nguyen Ba An

    1998-12-01

    In this work we consider systematically the concept of coherent states for oscillators of non-conventional statistics - parabose oscillator, infinite statistics oscillator and generalised q-deformed oscillator. The expressions for the quadrature variances and particle number distribution are derived and displayed graphically. The obtained results show drastic changes when going from one statistics to another. (author)

  4. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    Science.gov (United States)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  5. Chromatic effects in the superconducting accelerator NUCLOTRON

    International Nuclear Information System (INIS)

    Dinev, D.

    1998-01-01

    A systematic study of the chromatic effects in the superconducting heavy ion synchrotron NUCLOTRON in the JINR, Dubna has been performed. The natural chromaticity has been evaluated taking into account the effect of the dipole magnets. The impact of the systematic and random imperfections in the magnetic field of dipoles on the chromaticity and the dependence of the betatron tunes on the amplitude of oscillations have been investigated. The strengths of the sextupole corrections necessary to cancel the chromaticity have been calculated. The chromatic perturbations have been studied by the means of the Montague chromatic functions (author)

  6. Suppression of tilting instability of a compact torus by energetic particle beams

    International Nuclear Information System (INIS)

    Nomura, Yasuyuki.

    1984-11-01

    It is shown that the tilting instability of a compact torus can be suppressed by toroidally circulating energetic particle beams. The stabilizing mechanism is based on the properties of the forced oscillation in the motion of beam particles in a plasma ring. The required beam current for the stabilization is estimated to be sufficiently small compared to the plasma current in the case that the angular velocity of beam particles is close to the betatron frequency. This stabilizing method is applied to a field reversed configuration. Effects of the plasma surface current and beam divergences are also examined. (author)

  7. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  8. Implementing a memristive Van der Pol oscillator coupled to a linear oscillator: synchronization and application to secure communication

    International Nuclear Information System (INIS)

    Megam Ngouonkadi, E B; Fotsin, H B; Louodop Fotso, P

    2014-01-01

    This paper investigates the dynamics of a memristor-based Van der Pol oscillator coupled to a linear circuit (VDPCL). This chaotic oscillator is a modification of the classical Van der Pol coupled to a linear circuit, and is obtained by replacing the classical cubic nonlinearity by the memristive one. The memristive VDPCL oscillator, in addition to having a very special stability property, exhibits interesting spectral characteristics, which makes it suitable for chaos-based secure communication applications. The memristor is realized by using off-the-shelf components. The basic properties of the circuit are analyzed by means of bifurcation analysis. Chaotic attractors from numerical and experimental analysis are presented, followed by a comparison of results obtained from the modified VDPCL oscillator and those from the classical VDPCL oscillator. An application to synchronization and chaos secure communication is also presented. (paper)

  9. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  10. Anharmonic potential in the oscillator representation

    International Nuclear Information System (INIS)

    Dineykhan, M.; Efimov, G.V.

    1994-01-01

    In the non relativistic and relativized Schroedinger equation the Wick ordering method called the oscillator representation is proposed to calculate the energy spectrum for a wide class of potentials allowing the existence of a bound state. The oscillator representation method gives a unique regular way to describe and calculate the energy levels of ground as well as orbital and radial excitation states for a wide class of potentials. The results of the zeroth approximation oscillator representation are in good agreement with the exact values for the anharmonic potentials. The oscillator representation method was applied to the relativized Schroedinger equation too. The perturbation series converges fairly fast, i.e., the highest perturbation corrections over the interaction Hamiltonian are small enough. 29 refs.; 4 tabs. (author)

  11. Implications of shorter cells in PEP

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1975-01-01

    Further studies on the beam-stay-clear requirements in PEP led to the conclusion that the vertical aperture needed to be enlarged. There are two main reasons for that: Observations at SPEAR indicate that the aperture should be large enough for a fully coupled beam. Full coupling of the horizontal and vertical betatron oscillations occurs not only occasionally when the energy, tune or betatron function at the interaction point is changed but also due to the beam/endash/beam effect of two strong colliding beams. The second reason for an increased aperture requirement is the nonlinear perturbation of the particle trajectories by the sextupoles. This perturbation increases a fully coupled beam by another 50% to 80%. Both effects together with a +-5 mm allowance for closed orbit perturbation result in a vertical beam-stay-clear in the bending magnets of +-4.8 to +-5.6 cm, compared to the present +-2.0 cm. This beam-stay-clear, together with additional space for vacuum chamber, etc., leads to very costly bending magnets. In this note, a shorter cell length is proposed which would reduce considerably the vertical beam-stay-clear requirements in the bending magnets. 7 figs

  12. Waves and oscillations in nature an introduction

    CERN Document Server

    Narayanan, A Satya

    2015-01-01

    Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,

  13. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  14. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  15. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  16. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.; Rameika, G.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but the authors believe a substantial consensus emerged

  17. Sunspot Oscillations From The Chromosphere To The Corona

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.

    The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.

  18. The gamma oscillation: master or slave?

    Science.gov (United States)

    Schroeder, Charles E; Lakatos, Peter

    2009-06-01

    The idea that gamma enhancement reflects a state of high neuronal excitability and synchrony, critical for active brain operations, sets gamma up as a "master" or executor process that determines whether an input is effectively integrated and an effective output is generated. However, gamma amplitude is often coupled to the phase of lower frequency delta or theta oscillations, which would make gamma a "slave" to lower frequency activity. Gamma enslavement is productive and typical during rhythmic mode brain operations; when a predictable rhythm is in play, low and mid-frequency oscillations can be entrained and their excitability fluctuations of put to work in sensory and motor functions. When there is no task relevant rhythm that the system can entrain to, low frequency oscillations become detrimental to processing. Then, a continuous (vigilance) mode of operation is implemented; the system's sensitivity is maximized by suppressing lower frequency oscillations and exploiting continuous gamma band oscillations. Each mode has costs and benefits, and the brain shifts dynamically between them in accord with task demands.

  19. Evaluation of thermal margin during BWR neutron flux oscillation

    International Nuclear Information System (INIS)

    Takeuchi, Yutaka; Takigawa, Yukio; Chuman, Kazuto; Ebata, Shigeo

    1992-01-01

    Fuel integrity is very important, from the view point of nuclear power plant safety. Recently, neutron flux oscillations were observed at several BWR plants. The present paper describes the evaluations of the thermal margin during BWR neutron flux oscillations, using a three-dimensional transient code. The thermal margin is evaluated as MCPR (minimum critical power ratio). The LaSalle-2 event was simulated and the MCPR during the event was evaluated. It was a core-wide oscillation, at which a large neutron flux oscillation amplitude was observed. The results indicate that the MCPR had a sufficient margin with regard to the design limit. A regional oscillation mode, which is different from a core-wide oscillation, was simulated and the MCPR response was compared with that for the LaSalle-2 event. The MCPR decrement is greater in the regional oscillation, than in the core wide -oscillation, because of the sensitivity difference in a flow-to-power gain. A study was carried out about regional oscillation detectability, from the MCPR response view point. Even in a hypothetically severe case, the regional oscillation is detectable by LPRM signals. (author)

  20. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    Science.gov (United States)

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  1. Search for νμ → νe oscillations

    International Nuclear Information System (INIS)

    Godley, A.R.

    1998-01-01

    Full text: Neutrino oscillations, the changing of neutrino flavour state from one of τ, μ or e, to another, are proof of massive neutrinos, in turn pointing to Physics beyond the Standard Model, and so are of great current interest. Solar and atmospheric neutrino results suggested evidence for neutrino oscillations. Further, a tau neutrino mass of ∼ 10 eV could supply the missing mass needed to close the Universe. To satisfy the increasing interest, CERN's Neutrino Physics Program commissioned two concurrent experiments to investigate the possibility of neutrino oscillations, one of which is NOMAD, Neutrino Oscillation Magnetic Detector. NOMAD was designed to verify or deny the earlier positive neutrino oscillations results by searching for muon to tauon neutrino oscillations in accelerator neutrinos. The LSND experiment later provided evidence for muon to electron neutrino oscillations, but due to the multi-purpose design of NOMAD, it was also possible to investigate this channel. Moreover, the area of phase space being uncovered, (related to neutrino energy and oscillation length), overlaps considerably with that of LSND. An electron neutrino oscillation search involves looking for electron neutrinos in what is primarily a muon neutrino beam, with just a small contamination of electron neutrinos. It is surmised that the excess of electron neutrinos come from oscillated muon neutrinos. This type of search is called an appearance search. The principles of such a search will be detailed herein. These include a breakdown of the CERN Neutrino Beam and a method for detecting and collating different neutrino flavours at NOMAD

  2. Modified variational iteration method for an El Niño Southern Oscillation delayed oscillator

    International Nuclear Information System (INIS)

    Cao Xiao-Qun; Song Jun-Qiang; Zhu Xiao-Qian; Zhang Li-Lun; Zhang Wei-Min; Zhao Jun

    2012-01-01

    This paper studies a delayed air—sea coupled oscillator describing the physical mechanism of El Niño Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model. (general)

  3. Synchronization in Coupled Oscillators with Two Coexisting Attractors

    International Nuclear Information System (INIS)

    Han-Han, Zhu; Jun-Zhong, Yang

    2008-01-01

    Dynamics in coupled Duffing oscillators with two coexisting symmetrical attractors is investigated. For a pair of Duffing oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions. (general)

  4. Electrostatically actuated oscillator of bundle and double-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Song, Ki Oh; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Yoon, Young Sik; Song, Young Jin [Konyang University, Nonsan (Korea, Republic of)

    2006-03-15

    Schematics of capacitively driven carbon nanotube (CNT) oscillators were presented and investigated by using classical molecular dynamics simulations. While the capacitive force acting on a CNT oscillator extruded it, the force exerted by the excess van der Waals energy sucked the CNT oscillator into the bundle or outer shell. The CNT oscillator could be oscillated by using both the Coulomb and the van der Waals interactions. The van der Waals force of the bundle-type CNT oscillator was less than the van der Waals force of the double-walled CNT oscillator. Molecular dynamics simulation results showed that double-walled CNT oscillators were better than bundle-type CNT oscillators in the aspects of both energy dissipation and stable operation.

  5. Amplitude death and spatiotemporal bifurcations in nonlocally delay-coupled oscillators

    International Nuclear Information System (INIS)

    Guo, Yuxiao; Niu, Ben

    2015-01-01

    Amplitude death and spatiotemporal oscillations are remarkable patterns in coupled systems. We consider a ring of n identical oscillators with distance-dependent couplings and time delay. The amplitude death region is the intersection of three stable regions. Employing the method of multiple scales and normal form theory, the stability and criticality of spatiotemporal oscillations are determined. Around the amplitude death boundary there exist one branch of synchronized oscillations, n − 3 branches of co-existing phase-locked oscillations, n branches of mirror-reflecting oscillations, n branches of standing-wave oscillations, one branch of quasiperiodic oscillations and two branches of co-existing synchronized oscillations. It is proved that amplitude death is robust to small inhomogeneity of couplings, and the stability of synchronized or phase-locked oscillations inherits that of the individual decoupled oscillator. For the arbitrary form of coupling functions, some general results are also obtained for the thermodynamic limit. Finally, two examples are given to support the main results. (paper)

  6. Modelling solar-like oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be

    2008-10-15

    The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.

  7. A 65--70 year oscillation in observed surface temperatures

    International Nuclear Information System (INIS)

    Schlesinger, M.E.; Ramankutty, N.

    1994-01-01

    There are three possible sources for the 65--70-year ''global'' oscillation: (1) random forcing of the ocean by the atmosphere, such as by white noise; (2) external oscillatory forcing of the climate system, such as by a variation in the solar irradiance; and (3) an internal oscillation of the atmosphere-ocean system. It is unlikely that putative variations in solar irradiance are the source of the oscillation because solar forcing should generate a global response, but the oscillation is not global. It is also unlikely that white-noise forcing is the source of the oscillation because such forcing should generate an oceanwide response, but the oscillation is not panoceanic. Consequently, the most probable cause of the oscillation is an internal oscillation of the atmosphere-ocean system. This conclusion is supported by a growing body of observational evidence and coupled atmosphere/ocean general circulation model simulation results. Comparison of the regional and global-mean temperature changes caused by the oscillation with those induced by GHG + ASA forcing shows that the rapid rise in global-mean temperature between about 1908 and 1946, and the subsequent reversal of this warming until about 1965 were the result of the oscillation. In the North Atlantic and North American regions, the domination of the GHG + ASA-induced warming by the oscillation has obscured and confounded detection of this warming

  8. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  9. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  10. Stochastic Kuramoto oscillators with discrete phase states

    Science.gov (United States)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  11. Stochastic Kuramoto oscillators with discrete phase states.

    Science.gov (United States)

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  12. Optimal parameters uncoupling vibration modes of oscillators

    Science.gov (United States)

    Le, K. C.; Pieper, A.

    2017-07-01

    This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.

  13. Chimera States in Neural Oscillators

    Science.gov (United States)

    Bahar, Sonya; Glaze, Tera

    2014-03-01

    Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.

  14. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  15. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  16. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  17. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  18. Analysis of free electron laser performance utilizing the National Bureau of Standards' CW microtron

    International Nuclear Information System (INIS)

    Tang, C.M.; Sprangle, P.; Penner, S.; Maruyama, X.K.

    1987-01-01

    The National Bureau of Standards' (NBS) CW racetrack microtron (RTM) will be utilized as a driver for a free electron laser (FEL) oscillator. The NBS RTM possesses many exceptional properties of value for the FEL: i) CW operation, ii) energy from 20-185 MeV, iii) small energy spread and emittance, iv) excellent energy stability, and v) high average power. The 1-D FEL gain formula predicts that the FEL would oscillate at the fundamental approximately from 0.25 μm to 10 μm when up-grading the peak current to ≥ 2 A. In this paper, the authors present 3-D self-consistent numerical results including several realistic effects, such as emittance, betatron oscillations, diffraction and refraction. The results indicate that the design value of the transverse emittance is small enough that it does not degrade the FEL performance for intermediate to long wavelengths, and only slightly degrades the performance at the shortest wavelength under consideration. Due to the good emittance, the current density is high enough that focusing, or guiding, begins to manifest itself for wavelengths > 2.0 μm

  19. Development of the System Test for the LHC Tune Measurement and Abort Gap Monitoring

    CERN Document Server

    Beccati, B

    2008-01-01

    The Large Hadron Collider (LHC) is the largest accelerator in the world and it will collide opposing beams of 7 TV protons together. It is built inside a 27km tunnel on the border between France and Switzerland. Within the framework of the project IUSS- Ferrara, I collaborated with the members of the AB-BI section at CERN: Accelerator Beam - Beam Instrumentation. My degree thesis is the result of this cooperation. My project is made of two sections, one for each themes analyzed during this year at CERN: the first one concerns the Tune, the second one is about the Abort gap. LHC is a synchrotron, an accelerator using dipole magnets to bending and quadrupole magnets to transverse focusing. Passing through this pattern of magnets, particles make oscillations. We refer to these ones as Betatron oscillations. The number of such oscillations/turn is called Tune. The ability tomeasure the tune is important for many kinds of diagnostic. In the base band tune (BBQ) measurement system developed at CERN the signal is di...

  20. Entanglement of higher-derivative oscillators in holographic systems

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, Hristo, E-mail: h_dimov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Mladenov, Stefan, E-mail: smladenov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Rashkov, Radoslav C., E-mail: rash@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8–10, 1040 Vienna (Austria); Vetsov, Tsvetan, E-mail: vetsov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2017-05-15

    We study the quantum entanglement of coupled Pais–Uhlenbeck oscillators using the formalism of thermo-field dynamics. The entanglement entropy is computed for the specific cases of two and a ring of N coupled Pais–Uhlenbeck oscillators of fourth order. It is shown that the entanglement entropy depends on the temperatures, frequencies and coupling parameters of the different degrees of freedom corresponding to harmonic oscillators. We also make remarks on the appearance of instabilities of higher-derivative oscillators in the context of AdS/CFT correspondence. Finally, we advert to the information geometry theory by calculating the Fisher information metric for the considered system of coupled oscillators.

  1. NREM sleep oscillations and brain plasticity in aging

    Directory of Open Access Journals (Sweden)

    Stuart eFogel

    2012-12-01

    Full Text Available The human electroencephalogram (EEG during non-rapid eye movement sleep (NREM is characterized mainly by high-amplitude (> 75 µV, slow-frequency (< 4 Hz waves (slow waves; SW and sleep spindles (~11-15 Hz; > 0.25 s. These NREM oscillations play a crucial role in brain plasticity, and importantly, NREM sleep oscillations change considerably with aging. This review discusses the association between NREM sleep oscillations and cerebral plasticity as well as the functional impact of age-related changes on NREM sleep oscillations. We propose that age-related reduction in sleep-dependent memory consolidation may be due in part to changes in NREM sleep oscillations.

  2. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article investi...... investigates how cylinder pressure oscillations may be reduced by shaping the valve opening trajectory without the need for closed loop pressure feedback. Furthermore the energy costs of reducing pressure oscillations are investigated....

  3. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.

    2001-03-01

    We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)

  4. The vertical oscillations of coupled magnets

    International Nuclear Information System (INIS)

    Li Kewei; Lin Jiahuang; Kang Zi Yang; Liang, Samuel Yee Wei; Juan, Jeremias Wong Say

    2011-01-01

    The International Young Physicists' Tournament (IYPT) is a worldwide, annual competition for high school students. This paper is adapted from the winning solution to Problem 14, Magnetic Spring, as presented in the final round of the 23rd IYPT in Vienna, Austria. Two magnets were arranged on top of each other on a common axis. One was fixed, while the other could move vertically. Various parameters of interest were investigated, including the effective gravitational acceleration, the strength, size, mass and geometry of the magnets, and damping of the oscillations. Despite its simplicity, this setup yielded a number of interesting and unexpected relations. The first stage of the investigation was concerned only with the undamped oscillations of small amplitudes, and the period of small amplitude oscillations was found to be dependent only on the eighth root of important magnet properties such as its strength and mass. The second stage sought to investigate more general oscillations. A numerical model which took into account magnet size, magnet geometry and damping effects was developed to model the general oscillations. Air resistance and friction were found to be significant sources of damping, while eddy currents were negligible.

  5. Non-linear oscillations of fluid in a container

    NARCIS (Netherlands)

    Verhagen, J.H.G.; van Wijngaarden, L.

    1965-01-01

    This paper is concerned with forced oscillations of fluid in a rectangular container. From the linearized approximation of the equations governing these oscillations, resonance frequencies are obtained for which the amplitude of the oscillations becomes infinite. Observation shows that under these

  6. Open-loop control of quasiperiodic thermoacoustic oscillations

    Science.gov (United States)

    Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.

    2017-11-01

    The open-loop application of periodic acoustic forcing has been shown to be a potentially effective strategy for controlling periodic thermoacoustic oscillations, but its effectiveness on aperiodic thermoacoustic oscillations is less clear. In this experimental study, we apply periodic acoustic forcing to a ducted premixed flame oscillating quasiperiodically at two incommensurate natural frequencies, f1 and f2. We find that (i) above a critical forcing amplitude, the system locks into the forcing by oscillating only at the forcing frequency ff, producing a closed periodic orbit in phase space with no evidence of the original T2 torus attractor; (ii) the critical forcing amplitude required for lock-in decreases as ff approaches either f1 or f2, resulting in characteristic ∨-shaped lock-in boundaries around the two natural modes; and (iii) for a wide range of forcing frequencies, the system's oscillation amplitude can be reduced to less than 20% of that of the unforced system. These findings show that the open-loop application of periodic acoustic forcing can be an effective strategy for controlling aperiodic thermoacoustic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  7. Acoustic Pressure Oscillations Induced in I-Burner

    Science.gov (United States)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  8. Self oscillating PWM modulators, a topological comparison

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2004-01-01

    or fs/ð range respectively, where fs is the switching frequency of the converter. For some applications this will require unacceptable high switching frequency to achieve enough control loop bandwidth for the desired dynamic performance. With self oscillating modulators, the open loop bandwidth is equal...... to fs which makes this type of modulators an excellent choice for a wide range of applications. Self oscillating PWM modulators can be made in a number of ways, either as voltage or current mode modulators, and the self oscillating behavior can be achieved either by using hysteresis control...... or by shaping the open loop function of the modulator so its gain and phase response causes a closed loop natural oscillation. The two main types of self oscillating modulators have many similarities, but differences in dynamic performance and linearity are present. The work presented is related to the author...

  9. Oscillations in glycolysis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kloster, Antonina; Olsen, Lars Folke

    2012-01-01

    also decreases by stimulating the ATPase activity, e.g. by FCCP or Amphotericin B. Thus, ATPase activity strongly affects the glycolytic oscillations. We discuss these data in relation to a simple autocatalytic model of glycolysis which can reproduce the experimental data and explain the role...... of membrane-bound ATPases . In addition we also studied a recent detailed model of glycolysis and found that, although thismodel faithfully reproduces the oscillations of glycolytic intermediates observed experimentally, it is not able to explain the role of ATPase activity on the oscillations....

  10. Quantum electronics maser amplifiers and oscillators

    CERN Document Server

    Fain, V M; Sanders, J H

    2013-01-01

    Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma

  11. Planar channeling and quasichanneling oscillations in a bent crystal

    International Nuclear Information System (INIS)

    Sytov, A.I.; Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A.; Tikhomirov, V.V.

    2016-01-01

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  12. Planar channeling and quasichanneling oscillations in a bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy); Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); INFN, Ferrara (Italy); Tikhomirov, V.V. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy)

    2016-02-15

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  13. An electronically tunable current-mode quadrature oscillator using PCAs

    OpenAIRE

    Herencsár, Norbert; Lahiri, Abhirup; Vrba, Kamil; Koton, Jaroslav

    2012-01-01

    The paper presents a new realization of active RC sinusoidal oscillator with electronically tunable condition and frequency of oscillation. As compared to the class of three resistors, two capacitors (3R-2C) based canonic oscillators, the proposed circuit here uses only two resistors and two capacitors as the passive components and still provides non-interactive tuning laws for the condition of oscillation (CO) and the frequency of oscillation (FO). The proposed circuit employs new bipolar pr...

  14. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  15. Effect of boundary on controlled memristor-based oscillator

    KAUST Repository

    Fouda, Mohamed E.

    2012-10-01

    Recently, the applications of memristors have spread into many fields and especially in the circuit theory. Many models have been proposed for the HP-memristor based on the window functions. In this paper, we introduce a complete mathematical analysis of the controlled reactance-less oscillator for two different window functions of Joglekar\\'s model (linear and nonlinear dopant drift) to discuss the effect of changing the window function on the oscillator\\'s behavior. The generalized necessary and sufficient conditions based on the circuit elements and control voltages for both the linear and nonlinear models are introduced. Moreover, closed form expressions for the oscillation frequency and duty cycle are derived for these models and verified using PSPICE simulations showing an excellent matching. Finally a comparison between the linear and nonlinear models which shows their effect on the oscillation frequency and conditions of oscillation is introduced. © 2012 IEEE.

  16. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  17. Pure odd-order oscillators with constant excitation

    Science.gov (United States)

    Cveticanin, L.

    2011-02-01

    In this paper the excited vibrations of a truly nonlinear oscillator are analyzed. The excitation is assumed to be constant and the nonlinearity is pure (without a linear term). The mathematical model is a second-order nonhomogeneous differential equation with strong nonlinear term. Using the first integral, the exact value of period of vibration i.e., angular frequency of oscillator described with a pure nonlinear differential equation with constant excitation is analytically obtained. The closed form solution has the form of gamma function. The period of vibration depends on the value of excitation and of the order and coefficient of the nonlinear term. For the case of pure odd-order-oscillators the approximate solution of differential equation is obtained in the form of trigonometric function. The solution is based on the exact value of period of vibration. For the case when additional small perturbation of the pure oscillator acts, the so called 'Cveticanin's averaging method' for a truly nonlinear oscillator is applied. Two special cases are considered: one, when the additional term is a function of distance, and the second, when damping acts. To prove the correctness of the method the obtained results are compared with those for the linear oscillator. Example of pure cubic oscillator with constant excitation and linear damping is widely discussed. Comparing the analytically obtained results with exact numerical ones it is concluded that they are in a good agreement. The investigations reported in the paper are of special interest for those who are dealing with the problem of vibration reduction in the oscillator with constant excitation and pure nonlinear restoring force the examples of which can be found in various scientific and engineering systems. For example, such mechanical systems are seats in vehicles, supports for machines, cutting machines with periodical motion of the cutting tools, presses, etc. The examples can be find in electronics

  18. Magma chamber interaction giving rise to asymmetric oscillations

    Science.gov (United States)

    Walwer, D.; Ghil, M.; Calais, E.

    2017-12-01

    Geodetic time series at four volcanoes (Okmok, Akutan, Shishaldin, and Réunion) are processed using Multi-channel Singular Spectrum Analysis (M-SSA) and reveal sawtooth-shaped oscillations ; the latter are characterized by short intervals of fast inflations followed by longer intervals of slower deflations. At Okmok and Akutan, the oscillations are first damped and then accentuated. At Okmok, the increase in amplitude of the oscillations is followed by an eruption. We first show that the dynamics of these four volcanoes bears similarities with that of a simple nonlinear, dissipative oscillator, indicating that the inflation-deflation episodes are relaxation oscillations. These observations imply that ab initio dynamical models of magma chambers should possess an asymmetric oscillatory regime. Next, based on the work of Whitehead and Helfrich [1991], we show that a model of two magma chambers — connected by a cylindrical conduit in which the magma viscosity depends on temperature — gives rise to asymmetric overpressure oscillations in the magma reservoirs. These oscillations lead to surface deformations that are consistent with those observed at the four volcanoes in this study. This relaxation oscillation regime occurs only when the vertical temperature gradient in the host rock between the two magma chambers is large enough and when the magma flux entering the volcanic system is sufficiently high. The magma being supplied by a deeper source region, the input flux depends on the pressure difference between the source and the deepest reservoir. When this difference is not sufficiently high, the magma flux exponentially decreases, leading to damped oscillations as observed at Akutan and Okmok. The combination of observational and modeling results clearly supports the role of relaxation oscillations in the dynamics of volcanic systems.

  19. Using qubits to reveal quantum signatures of an oscillator

    Science.gov (United States)

    Agarwal, Shantanu

    In this thesis, we seek to study the qubit-oscillator system with the aim to identify and quantify inherent quantum features of the oscillator. We show that the quantum signatures of the oscillator get imprinted on the dynamics of the joint system. The two key features which we explore are the quantized energy spectrum of the oscillator and the non-classicality of the oscillator's wave function. To investigate the consequences of the oscillator's discrete energy spectrum, we consider the qubit to be coupled to the oscillator through the Rabi Hamiltonian. Recent developments in fabrication technology have opened up the possibility to explore parameter regimes which were conventionally inaccessible. Motivated by these advancements, we investigate in this thesis a parameter space where the qubit frequency is much smaller than the oscillator frequency and the Rabi frequency is allowed to be an appreciable fraction of the bare frequency of the oscillator. We use the adiabatic approximation to understand the dynamics in this quasi-degenerate qubit regime. By deriving a dressed master equation, we systematically investigate the effects of the environment on the system dynamics. We develop a spectroscopic technique, using which one can probe the steady state response of the driven and damped system. The spectroscopic signal clearly reveals the quantized nature of the oscillator's energy spectrum. We extend the adiabatic approximation, earlier developed only for the single qubit case, to a scenario where multiple qubits interact with the oscillator. Using the extended adiabatic approximation, we study the collapse and revival of multi-qubit observables. We develop analytic expressions for the revival signals which are in good agreement with the numerically evaluated results. Within the quantum restriction imposed by Heisenberg's uncertainty principle, the uncertainty in the position and momentum of an oscillator is minimum and shared equally when the oscillator is prepared

  20. Introduction to Classical and Quantum Harmonic Oscillators

    International Nuclear Information System (INIS)

    Latal, H

    1997-01-01

    As the title aptly states, this book deals with harmonic oscillators of various kinds, from classical mechanical and electrical oscillations up to quantum oscillations. It is written in a lively language, and occasional interspersed anecdotes make the reading of an otherwise mathematically oriented text quite a pleasure. Although the author claims to have written an 'elementary introduction', it is certainly necessary to have a good deal of previous knowledge in physics (mechanics, electrodynamics, quantum theory), electrical engineering and, of course, mathematics in order to follow the general line of his arguments. The book begins with a thorough treatment of classical oscillators (free, damped, forced) that is followed by an elaboration on Fourier analysis. Lagrange and Hamilton formalisms are then introduced before the problem of coupled oscillations is attacked. A chapter on statistical perspectives leads over to the final discussion of quantum oscillations. With the book comes a diskette containing a number of worksheets (Microsoft Excel) that can be used by the reader for instant visualization to get a better qualitative and quantitative understanding of the material. To the reviewer it seems difficult to pinpoint exactly the range of prospective readership of the book. It can certainly not be intended as a textbook for students, but rather as a reference book for teachers of physics or researchers, who want to look up one or other aspect of harmonic oscillations, for which purpose the diskette represents a very valuable tool. (book review)

  1. Synchrony-optimized networks of non-identical Kuramoto oscillators

    International Nuclear Information System (INIS)

    Brede, Markus

    2008-01-01

    In this Letter we discuss a method for generating synchrony-optimized coupling architectures of Kuramoto oscillators with a heterogeneous distribution of native frequencies. The method allows us to relate the properties of the coupling network to its synchronizability. These relations were previously only established from a linear stability analysis of the identical oscillator case. We further demonstrate that the heterogeneity in the oscillator population produces heterogeneity in the optimal coupling network as well. Two rules for enhancing the synchronizability of a given network by a suitable placement of oscillators are given: (i) native frequencies of adjacent oscillators must be anti-correlated and (ii) frequency magnitudes should positively correlate with the degree of the node they are placed at

  2. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  3. Solar-like oscillations in red giants observed with Kepler: comparison of global oscillation parameters from different methods

    DEFF Research Database (Denmark)

    Hekker, Saskia; Elsworth, Yvonne; De Ridder, Joris

    2011-01-01

    investigate the differences in results for global oscillation parameters of G and K red-giant stars due to different methods and definitions. We also investigate uncertainties originating from the stochastic nature of the oscillations. Methods: For this investigation we use Kepler data obtained during...... obtain results for the frequency of maximum oscillation power (ν_max) and the mean large separation () from different methods for over one thousand red-giant stars. The results for these parameters agree within a few percent and seem therefore robust to the different analysis methods and definitions...

  4. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.

    Science.gov (United States)

    Hong, Hyunsuk; Strogatz, Steven H

    2011-02-04

    We consider a generalization of the Kuramoto model in which the oscillators are coupled to the mean field with random signs. Oscillators with positive coupling are "conformists"; they are attracted to the mean field and tend to synchronize with it. Oscillators with negative coupling are "contrarians"; they are repelled by the mean field and prefer a phase diametrically opposed to it. The model is simple and exactly solvable, yet some of its behavior is surprising. Along with the stationary states one might have expected (a desynchronized state, and a partially-synchronized state, with conformists and contrarians locked in antiphase), it also displays a traveling wave, in which the mean field oscillates at a frequency different from the population's mean natural frequency.

  5. Phase Multistability in Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Postnov, D.E.; Sosnovtseva, Olga

    2003-01-01

    along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase multistability, the paper examines a variety of phase-locked patterns. In particular we demonstrate the nested structure of synchronization regions for oscillations with multicrest wave forms...

  6. Silicon Bipolar Distributed Oscillator Design and Analysis | Aku ...

    African Journals Online (AJOL)

    The design of high frequency silicon bipolar oscillator using common emitter (CE) with distributed output and analysis is carried out. The general condition for oscillation and the resulting analytical expressions for the frequency of oscillators were reviewed. Transmission line design was carried out using Butterworth LC ...

  7. A Design Principle for a Posttranslational Biochemical Oscillator

    Directory of Open Access Journals (Sweden)

    Craig C. Jolley

    2012-10-01

    Full Text Available Multisite phosphorylation plays an important role in biological oscillators such as the circadian clock. Its general role, however, has been elusive. In this theoretical study, we show that a simple substrate with two modification sites acted upon by two opposing enzymes (e.g., a kinase and a phosphatase can show oscillations in its modification state. An unbiased computational analysis of this oscillator reveals two common characteristics: a unidirectional modification cycle and sequestering of an enzyme by a specific modification state. These two motifs cause a substrate to act as a coupled system in which a unidirectional cycle generates single-molecule oscillators, whereas sequestration synchronizes the population by limiting the available enzyme under conditions in which substrate is in excess. We also demonstrate the conditions under which the oscillation period is temperature compensated, an important feature of the circadian clock. This theoretical model will provide a framework for analyzing and synthesizing posttranslational oscillators.

  8. Oyster Creek fuel thermal margin during core thermal-hydraulic oscillations

    International Nuclear Information System (INIS)

    Dougher, J.D.

    1990-01-01

    The Oyster Creek nuclear facility, a boiling water reactor (BWR)-2 plant type, has never experienced core thermal-hydraulic instability. Power oscillations, however, have been observed in other BWR cores both domestically and internationally. Two modes of oscillations have been observed, core wide and regional half-core. During core wide oscillations, the neutron flux in the core oscillates in the radial fundamental mode. During regional half-core oscillations, higher order harmonics in the radial plane result in out-of-phase oscillations with the neutron flux in one half of the core oscillating 180 deg out-of-phase with the neutron flux in the other half of the core. General Design Criteria 12 requires either prevention or detection and suppression of power oscillations which could result in violations of fuel design limits. Analyses performed by General Electric have demonstrated that for large-magnitude oscillations the potential exists for violation of the safety limit minimum critical power ratio (MCPR). However, for plants with a flow-biased neutron flux scram automatic mitigation of oscillations may be provided at an oscillation magnitude below that at which the safety limit is challenged. Plant-specific analysis for Oyster Creek demonstrates that the existing average power range monitor (APRM) system will sense and suppress power oscillations prior to violation of any safety limits

  9. Condensate oscillations in a Penrose tiling lattice

    Science.gov (United States)

    Akdeniz, Z.; Vignolo, P.

    2017-07-01

    We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.

  10. First integral method for an oscillator system

    Directory of Open Access Journals (Sweden)

    Xiaoqian Gong

    2013-04-01

    Full Text Available In this article, we consider the nonlinear Duffing-van der Pol-type oscillator system by means of the first integral method. This system has physical relevance as a model in certain flow-induced structural vibration problems, which includes the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. Firstly, we apply the Division Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to explore a quasi-polynomial first integral to an equivalent autonomous system. Then, through solving an algebraic system we derive the first integral of the Duffing-van der Pol-type oscillator system under certain parametric condition.

  11. A test device for premixed gas turbine combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-03-01

    This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.

  12. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  13. Classical mechanics and electromagnetism in accelerator physics

    CERN Document Server

    Stupakov, Gennady

    2018-01-01

    This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagne...

  14. Discontinuous Spirals of Stable Periodic Oscillations

    DEFF Research Database (Denmark)

    Sack, Achim; Freire, Joana G.; Lindberg, Erik

    2013-01-01

    We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...

  15. Neutrino oscillations and neutrino-electron scattering

    International Nuclear Information System (INIS)

    Kayser, B.; Rosen, S.P.

    1980-10-01

    Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments

  16. Synchronization of indirectly coupled Lorenz oscillators

    Indian Academy of Sciences (India)

    Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...

  17. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  18. Anti-synchronization of chaotic oscillators

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai

    2003-01-01

    We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation

  19. From kaons to neutrinos: quantum mechanics of particle oscillations

    International Nuclear Information System (INIS)

    Zralek, M.

    1998-01-01

    The problem of particle oscillation is considered in a pedagogical and comprehensive way. Examples from K, B and neutrino physics are given. Conceptual difficulties of the traditional approach to particle oscillation are discussed. It is shown how the probability current density and the wave packet treatments of particle oscillations resolve some problems. It is also shown that only full field theoretical approach is free from conceptual difficulties. The possibility of oscillation of particles produced together with kaons or neutrinos is considered in full wave packet quantum mechanics language. Precise definition of the oscillation of particles which recoil against mixed states is given. The general amplitude which describes the oscillation of two particles in the final states is found. Using this EPR-type amplitude the problem of oscillation of particles recoiling against kaons or neutrinos is resolved. The relativistic EPR correlations on distances of the order of coherence lengths are considered. (author)

  20. Anyons, deformed oscillator algebras and projectors

    International Nuclear Information System (INIS)

    Engquist, Johan

    2009-01-01

    We initiate an algebraic approach to the many-anyon problem based on deformed oscillator algebras. The formalism utilizes a generalization of the deformed Heisenberg algebras underlying the operator solution of the Calogero problem. We define a many-body Hamiltonian and an angular momentum operator which are relevant for a linearized analysis in the statistical parameter ν. There exists a unique ground state and, in spite of the presence of defect lines, the anyonic weight lattices are completely connected by the application of the oscillators of the algebra. This is achieved by supplementing the oscillator algebra with a certain projector algebra.

  1. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  2. Time Series Decomposition into Oscillation Components and Phase Estimation.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  3. Characteristics of Oscillating Flames in a Coaxial Confined Jet

    Directory of Open Access Journals (Sweden)

    Min Suk Cha

    2010-12-01

    Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.

  4. Reactor oscillator - I - III, Part III - Electronic device

    International Nuclear Information System (INIS)

    Lolic, B.; Jovanovic, S.

    1961-12-01

    This report describes functioning of the reactor oscillator electronic system. Two methods of oscillator operation were discussed. The first method is so called method of amplitude modulation of the reactor power, and the second newer method is phase method. Both methods are planned for the present reactor oscillator

  5. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  6. Antineutrino Oscillations in the Atmospheric Sector

    International Nuclear Information System (INIS)

    Himmel, Alexander I.

    2011-01-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for ν μ → (bar ν) μ transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |Δ(bar m) atm 2 | = (3.36 -0.40 +0.46 (stat) ± 0.06(syst)) x 10 -3 eV 2 and sin 2 (2(bar θ) 23 ) = 0.860 -0.12 +0.11 (stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  7. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  8. Quantum correlations in terms of neutrino oscillation probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Alok, Ashutosh Kumar, E-mail: akalok@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Uma Sankar, S., E-mail: uma@phy.iitb.ac.in [Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-08-15

    Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given flavour eigenstate. Given this mode entanglement, it is pertinent to consider the relation between the oscillation probabilities and other quantum correlations. In this work, we show that all the well-known quantum correlations, such as the Bell's inequality, are directly related to the neutrino oscillation probabilities. The results of the neutrino oscillation experiments, which measure the neutrino survival probability to be less than unity, imply Bell's inequality violation.

  9. OnWien Bridge Oscillators as Modified Multi-vibrators

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2014-01-01

    A tutorial introduction to electrical oscilla- tors. Investigating Wien bridge oscillators as modified multi-vibrators. Introducing chaotic behavior into a Wien bridge oscillator by means of adding a simple nonlinear cir- cuit as a load of one of the amplifier input terminals......A tutorial introduction to electrical oscilla- tors. Investigating Wien bridge oscillators as modified multi-vibrators. Introducing chaotic behavior into a Wien bridge oscillator by means of adding a simple nonlinear cir- cuit as a load of one of the amplifier input terminals...

  10. Triple inverter pierce oscillator circuit suitable for CMOS

    Science.gov (United States)

    Wessendorf,; Kurt, O [Albuquerque, NM

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  11. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  12. Multi-mode interactions in an FEL oscillator

    CERN Document Server

    Dong Zhi Wei; Masuda, K; Yamazaki, T; Yoshikawa, K

    2000-01-01

    A 3D time-dependent FEL oscillator simulation code has been developed by using the transverse mode spectral method to analyze interaction among transverse modes. The competition among them in an FEL oscillator was investigated based on the parameters of LANL FEL experiments. It is found that under typical FEL oscillator operation conditions, the TEM sub 0 sub 0 mode is dominant, and the effects of other transverse modes can be negligible.

  13. Self-induced free surface oscillations caused by water jet

    International Nuclear Information System (INIS)

    Fukaya, M.; Madarame, H.; Okamoto, K.; Iida, M.; Someya, S.

    1995-01-01

    The interaction between the high speed flow and the free surfaces could induced surface oscillations. Recently, some kinds of self-induced free surface oscillations caused by water jet were discovered, e.g., a self-induced sloshing, 'Jet-Flutter' and a self-induced manometer oscillation. These oscillations have many different characteristics with each other. In this study, the similarities and differences of these oscillations are examined, and the geometrical effects on the phenomena are experimentally investigated. The self-induced sloshing and the Jet-Flutter have different dimensionless traveling times, which suggests a difference in the energy supply mechanism. When the distance between the inlet and the outlet is small in a vessel, the self-induced manometer oscillation could occur in the multi-free-surface system. (author)

  14. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  15. Recurring events. Power oscillations in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    During almost two decennia, the recurrence of power oscillations in domestic and foreign BWRs has represented a challenge to one important design safety criterion, even if the occurred power oscillations have not resulted in conditions exceeding the specified fuel design limits. Several reasons may explain the recurrence. One reason has been a worldwide trend for an aggressive fuel economy optimisation, which from time to another has resulted in reduced core stability margins. Another reason relates to the analytical tools for prediction of core stability. These tools were scarce during many years. A third aspect is that adequate and reliable core monitors were not early available for installation at the plants. Issues related to power oscillations have during many years received attention from both the regulatory body and utilities, and from the fuel manufacturers. The present report provides examples of important corrective actions which support this conclusion. However, recent events indicate that the complex issue of BWR power oscillations has not been suitably solved, at least domestically.

  16. Recurring events. Power oscillations in BWRs

    International Nuclear Information System (INIS)

    2000-12-01

    During almost two decennia, the recurrence of power oscillations in domestic and foreign BWRs has represented a challenge to one important design safety criterion, even if the occurred power oscillations have not resulted in conditions exceeding the specified fuel design limits. Several reasons may explain the recurrence. One reason has been a worldwide trend for an aggressive fuel economy optimisation, which from time to another has resulted in reduced core stability margins. Another reason relates to the analytical tools for prediction of core stability. These tools were scarce during many years. A third aspect is that adequate and reliable core monitors were not early available for installation at the plants. Issues related to power oscillations have during many years received attention from both the regulatory body and utilities, and from the fuel manufacturers. The present report provides examples of important corrective actions which support this conclusion. However, recent events indicate that the complex issue of BWR power oscillations has not been suitably solved, at least domestically

  17. Optics-free x-ray FEL oscillator

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-01-01

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide (∼0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  18. Optics-free x-ray FEL oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  19. Oscillations and chaos in renal blood flow control

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1993-01-01

    In normotensive, halothane-anesthetized rats, oscillations can be found both in the single-nephron blood flow and in the tubular pressure. Experimental data and computer simulations support the hypothesis that the oscillations are caused by the tubuloglomerular feedback (TGF) mechanism. Model...... oscillations. The parameter range where model studies show instability overlaps with the physiologic range for the values of the same parameters. The system appears to be poised on the border between stability and oscillation, and a small parameter change may cause the system to move from one state...

  20. Chirality oscillation of primordial gravitational waves during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong; Wang, Yu-Tong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)

    2017-03-06

    We show that if the gravitational Chern-Simons term couples to a massive scalar field (m>H), the primordial gravitational waves (GWs) will show itself the chirality oscillation, i.e., the amplitudes of the left- and right-handed GWs modes will convert into each other and oscillate in their propagations. This oscillation will eventually develop a permanent difference of the amplitudes of both modes, which leads to nearly opposite oscillating shapes in the power spectra of the left- and right-handed primordial GWs. We discuss its implication to the CMB B-mode polarization.

  1. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.

    Science.gov (United States)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    2016-09-01

    The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  2. Chaos in generically coupled phase oscillator networks with nonpairwise interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana [Centre for Systems, Dynamics and Control and Department of Mathematics, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-09-15

    The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  3. Developmental Changes in Sleep Oscillations during Early Childhood

    Directory of Open Access Journals (Sweden)

    Eckehard Olbrich

    2017-01-01

    Full Text Available Although quantitative analysis of the sleep electroencephalogram (EEG has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n=8; 3 males at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., “ultrafast” spindle-like oscillations, theta oscillation incidence/frequency also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.

  4. Auto-indexing of oscillation images

    International Nuclear Information System (INIS)

    Higashi, Tsuneyuki

    1990-01-01

    A method is presented which indexes spots recorded on single oscillation images without any a priori knowledge of cell parameters. The strategy is similar to that used in four-circle diffractometry and the method works in a fully automatic manner. It is applicable to multiple oscillation images or multiple stills. A complementary method is also described to obtain orientation angles for the case where cell parameters have already been determined. (orig.)

  5. Oscillation theory for second order dynamic equations

    CERN Document Server

    Agarwal, Ravi P; O''Regan, Donal

    2003-01-01

    The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.

  6. Superconducting low-noise oscillator

    International Nuclear Information System (INIS)

    Riebman, L.

    1992-01-01

    This patent describes a cryogenic oscillator having low phase noise and low noise. It comprises resonant circuit means formed of superconducting material for generating a signal at a desired frequency; linear amplifier means electrically connected to the resonant circuit means at first and second locations thereon; limiter means electrically connected to the resonant circuit means at a third location thereon; and buffer amplifier means for applying the signal generated by the resonant circuit means to a load and electrically connected to the resonant circuit means at a fourth location thereon. This patent also describes a method of minimizing phase noise and 1/f noise in an oscillator circuit of the type having a resonant circuit driving a load and at least a linear amplifier connected to the resonant circuit defining a closed loop having a loop gain greater than unity, and having a limiter for stabilizing the oscillator. It comprises connecting between the resonant circuit and the load a buffer amplifier and connecting the linear amplifier and the buffer amplifier to the resonant circuit

  7. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  8. Mode competition and hopping in optomechanical nano-oscillators

    Science.gov (United States)

    Zhang, Xingwang; Lin, Tong; Tian, Feng; Du, Han; Zou, Yongchao; Chau, Fook Siong; Zhou, Guangya

    2018-04-01

    We investigate the inter-mode nonlinear interaction in the multi-mode optomechanical nano-oscillator which consists of coupled silicon nanocantilevers, where the integrated photonic crystal nanocavities provide the coupling between the optical and mechanical modes. Due to the self-saturation and cross-saturation of the mechanical gain, the inter-mode competition is observed, which leads to the bistable operation of the optomechanical nano-oscillator: only one of the mechanical modes can oscillate at any one time, and the oscillation of one mode extremely suppresses that of the other with a side mode suppression ratio (SMSR) up to 40 dB. In the meantime, mode hopping, i.e., the optomechanical oscillation switches from one mode to the other, is also observed and found to be able to be provoked by excitation laser fluctuations.

  9. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    Science.gov (United States)

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  10. Oscillator representations for self-adjoint Calogero Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L, E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru [Lebedev Physical Institute, Moscow (Russian Federation)

    2011-10-21

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = {alpha}x{sup -2}. We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d{sub x}{sup 2}+{alpha}x{sup -2} for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat{sup +} a-hat and A-hat = a-hat a-hat{sup +} are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat{sup +}. An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  11. Oscillator representations for self-adjoint Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2011-01-01

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = αx -2 . We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d x 2 +αx -2 for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat + a-hat and A-hat = a-hat a-hat + are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat + . An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  12. Homotopic mapping solution of an oscillator for the El Niño/La Niña-southern oscillation

    International Nuclear Information System (INIS)

    Xian-Chun, Zhou; Yi-Hua, Lin; Wan-Tao, Lin; Jia-Qi, Mo

    2009-01-01

    This paper considers a class of oscillator for the El Niño/La Niña-southern oscillation (ENSO) model. By using the homotopic mapping method, it obtains approximations of the solution for the ENSO model. (general)

  13. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  14. Oscillation criteria for delay difference equations

    Directory of Open Access Journals (Sweden)

    Jianhua Shen

    2001-01-01

    Full Text Available This paper is concerned with the oscillation of all solutions of the delay difference equation $$ x_{n+1}-x_n+p_nx_{n-k}=0, quad n=0,1,2,dots $$ where ${p_n}$ is a sequence of nonnegative real numbers and $k$ is a positive integer. Some new oscillation conditions are established. These conditions concern the case when none of the well-known oscillation conditions $$ limsup_{no infty}sum_{i=0}^kp_{n-i}>1 quad{ m and}quad liminf_{no infty}frac{1}{k}sum_{i=1}^kp_{n-i}>frac{k^k}{(k+1^{k+1}} $$ is satisfied.

  15. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  16. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  17. Oscillating and rotating sine-Gordon system

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1986-01-01

    The interaction between a 2π kink and the background or vacuum is investigated in the pure sine-Gordon system. For an oscillating background (i.e., the k=0 part of the phonon spectrum) the 2π kink oscillates, while for increasing or decreasing vacuum two phenomena have been observed, depending...

  18. Three-dimensional analysis of nonlinear plasma oscillation

    International Nuclear Information System (INIS)

    Miano, G.

    1990-01-01

    In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)

  19. Nonstationary oscillations in gyrotrons revisited

    International Nuclear Information System (INIS)

    Dumbrajs, O.; Kalis, H.

    2015-01-01

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper

  20. Regulating Cortical Oscillations in an Inhibition-Stabilized Network.

    Science.gov (United States)

    Jadi, Monika P; Sejnowski, Terrence J

    2014-04-21

    Understanding the anatomical and functional architecture of the brain is essential for designing neurally inspired intelligent systems. Theoretical and empirical studies suggest a role for narrowband oscillations in shaping the functional architecture of the brain through their role in coding and communication of information. Such oscillations are ubiquitous signals in the electrical activity recorded from the brain. In the cortex, oscillations detected in the gamma range (30-80 Hz) are modulated by behavioral states and sensory features in complex ways. How is this regulation achieved? Although several underlying principles for the genesis of these oscillations have been proposed, a unifying account for their regulation has remained elusive. In a network of excitatory and inhibitory neurons operating in an inhibition-stabilized regime, we show that strongly superlinear responses of inhibitory neurons facilitate bidirectional regulation of oscillation frequency and power. In such a network, the balance of drives to the excitatory and inhibitory populations determines how the power and frequency of oscillations are modulated. The model accounts for the puzzling increase in their frequency with the salience of visual stimuli, and a decrease with their size. Oscillations in our model grow stronger as the mean firing level is reduced, accounting for the size dependence of visually evoked gamma rhythms, and suggesting a role for oscillations in improving the signal-to-noise ratio (SNR) of signals in the brain. Empirically testing such predictions is still challenging, and implementing the proposed coding and communication strategies in neuromorphic systems could assist in our understanding of the biological system.

  1. OSCILLATING MODE OF TOPINAMBUR TUBERS DRYING

    Directory of Open Access Journals (Sweden)

    A. V. Golubkivich

    2015-01-01

    Full Text Available Specifics of a chemical composition of tubers and green material of a topinambur (Helianthus tuberosus, high efficiency and ecological plasticity, profitability of growing, biotechnological potential of use enable to identify a topinambur as a of high-energy cultures of the future. High moisture of various topinambur parts, features of the mechanism of a heat and mass transfer set a problem of search of the new drying methods promoting to increase dehydration efficiency and produce a quality product. A method of calculation of duration of the oscillating mode of topinambur tubers drying in a dense layer is worked out. The topinambur tubers cut on cubes with the side of 6 mm were taken as object of researches. Researches were conducted in the setting of various drying modes: two experiences at the oscillating mode with height of a material layer of 0.07 m and 0.17 m; and also as a check experiment was material drying at a constant temperature of the drying agent. Duration of the oscillating mode of topinambur tubers drying was calculated on their basis of received curves of changes of moisture content at various modes of drying. Estimate indicators were confirmed with experimental data. Results of determination of duration of the oscillating modes of topinambur tubers drying proved that efficiency of the oscillating modes is 18 percent higher, than at control experiment.

  2. Resonant Spin-Transfer-Torque Nano-Oscillators

    Science.gov (United States)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2017-12-01

    Spin-transfer-torque nano-oscillators are potential candidates for replacing the traditional inductor-based voltage-controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions, which have the disadvantages of low power outputs and poor conversion efficiencies. We theoretically propose using resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present viable device designs geared toward a high microwave output power and an efficient conversion of the dc input power. We attribute these robust qualities to the resulting nontrivial spin-current profiles and the ultrahigh tunnel magnetoresistance, both of which arise from resonant spin filtering. The device designs are based on the nonequilibrium Green's-function spin-transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation and Poisson's equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around 1150% and an efficiency enhancement of over 1100% compared to typical trilayer designs. We rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. We also demonstrate the robustness of our structures against device design fluctuations and elastic dephasing. This work sets the stage for pentalyer spin-transfer-torque nano-oscillator device designs that ameliorate major issues associated with typical trilayer designs.

  3. Antineutrino Oscillations in the Atmospheric Sector

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Alexander I. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for vμ → $\\bar{v}$μ transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |Δ$\\bar{m}$atm 2| = (3.36-0.40+0.46(stat) ± 0.06(syst)) x 10-3 eV2 and sin2(2$\\bar{θ}$23) = 0.860-0.12+0.11(stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  4. Matrix formulation of the particle motion in crystalline beams

    International Nuclear Information System (INIS)

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-01-01

    To investigate the properties of Crystalline Beams in their ground state, the equations of motion of a single ion and the envelope equations are derived. It is possible to express the status of motion with a set of transfer matrices associated to each of the magnet elements of the storage ring. By inspection of the eigenvalues of the total transfer matrix one then determines the onset of crystalline structures and the stability limits. An analytical approach is also possible, based on the estimate of the shifting of the frequencies of oscillation, betatron and longitudinal, and on the approaching of a major half-integral stopband resonance driven by the space charge

  5. Calibration of the Nonlinear Accelerator Model at the Diamond Storage Ring

    CERN Document Server

    Bartolini, Riccardo; Rowland, James; Martin, Ian; Schmidt, Frank

    2010-01-01

    The correct implementation of the nonlinear ring model is crucial to achieve the top performance of a synchrotron light source. Several dynamics quantities can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these methods are based on the analysis of turn-by-turn data of excited betatron oscillations. We present the experimental results of the campaign of measurements carried out at the Diamond. A combination of Frequency Map Analysis (FMA) and detuning with momentum measurements has allowed a precise calibration of the nonlinear model capable of reproducing the nonlinear beam dynamics in the storage ring

  6. Emittance Growth due to Crab Cavity Ramping for LHC Beam-1 Lattice

    CERN Document Server

    Morita, A

    2008-01-01

    In LHC upgrade scenarios using global crab crossing, it is desired to turn on the crab cavity only at top energy. Turning on the crab cavity could increase the emittance of the stored beam, since the transverse kick of the crab cavity excites betatron oscillations. For a sufficiently slow ramping speed of the crab cavity voltage, however, the changes in z-dependent closed orbit are sufficiently adiabatic that the emittance growth becomes negligible. In order to determine the safe ramping speed of the LHC crab-cavity voltage, the dependence of the emittance growth on the ramping speed is estimated via a 6D particle-tracking simulation.

  7. Damping the e-p instability in the SNS accumulator ring

    Science.gov (United States)

    Evans, N. J.; Deibele, C.; Aleksandrov, A.; Xie, Z.

    2018-03-01

    A broadband, digital damper system for both transverse planes developed for the SNS accumulator ring has recently damped the first indications of the broadband 50-150 MHz e-p instability in a 1.2 MW neutron production beam. This paper presents details of the design and operation of the SNS damper system as well as results of active damping of the e-p instability in the SNS ring showing a reduction in power of betatron oscillation over the 10-300 MHz band of up to 70%. The spectral content of the beam during operation, with and without the damper system is presented and performance of the damper system is evaluated.

  8. Emittance growth from transient coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Bohn, C.L.; Li, R.; Bisognano, J.J.

    1996-01-01

    If the energies of individual particles in a bunch change as the bunch traverses a bending system, even if it is achromatic, betatron oscillations can be excited. Consequently, the transverse emittance of the bunch will grow as it moves downstream. Short bunches may be particularly susceptible to emission of coherent synchrotron radiation which can act back on the particles to change their energies and trajectories. Because a bend spans a well-defined length and angle, the bunch-excited wakefield and its effect back on the bunch are inherently transient. We outline a recently developed theory of this effect and apply it to example bending systems

  9. Global competition and local cooperation in a network of neural oscillators

    Science.gov (United States)

    Terman, David; Wang, DeLiang

    An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate the model's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ ground segregation.

  10. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.

    Science.gov (United States)

    Kang, Jeong Won; Lee, Kang Whan

    2014-12-01

    Graphene nanoflakes (GNFs) have been of interest for a building block in order to develop electromechanical devices on a nanometer scale. Here, we present the oscillation motions of a square GNF oscillator on graphene nanoribbon (GNR) in the retracting-motions by performing classical molecular dynamics simulations. The simulation results showed that the GNF oscillators can be considered as a building block for nanoelectromechanical systems such as carbon-nanotube (CNT) oscillators. The oscillation dynamics of the GNF oscillator were similar to those of the CNT oscillators. When the square GNF had an initial velocity as impulse dynamics, its oscillation motions on the GNR were achieved from its self-retracting van der Waals force. For low initial velocity, its translational motions were dominant in its motions rather than its rotational motions. The kinetic energy damping ratio rapidly decreased as initial velocity increased and the kinetic energy for the translational motion of the GNF oscillator rapidly transferred into that for its rotational motion. The oscillation frequency of the GNF oscillator was dependent on its initial velocity.

  11. Klein-Gordon oscillators in noncommutative phase space

    International Nuclear Information System (INIS)

    Wang Jianhua

    2008-01-01

    We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly. (authors)

  12. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  13. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  14. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet

    Science.gov (United States)

    Zang, Duyang; Chen, Zhen; Geng, Xingguo

    2016-01-01

    We have investigated the dynamics of a third mode sectorial oscillation of nanoparticle-coated droplets using acoustic levitation in combination with active modulation. The presence of nanoparticles at the droplet surface changes its oscillation amplitude and frequency. A model linking the interfacial rheology and oscillation dynamics has been proposed in which the compression modulus ɛ of the particle layer is introduced into the analysis. The ɛ obtained with the model is in good agreement with that obtained by the Wilhelmy plate approach, highlighting the important role of interfacial rheological properties in the sectorial oscillation of droplets.

  15. Experimental study of a premixed oscillating flame stabilized inside the tube

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.I.; Shin, H.D. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-04-01

    An experimental study of premixed oscillating flame stabilized inside the tube has been conducted in order to examine the kinematic behavior of premixed flame under the flow oscillation and flame/flow interaction. Flow oscillation is accomplished by an acoustic excitation. Oscillating nature of flow has been studied with and without the flame using velocity and pressure measurements by a LDV and microphone, respectively Kinematic behavior of the oscillating flame is examined using triggered ICCD camera system. Velocity oscillation and flame oscillation is the same frequency as that produced by the acoustic excitation and flame shape has a similarity at various phase of oscillation. Upstream velocity field near the flame zone is greatly influenced by the flame oscillation. This is the typical example of flame/flow interaction. (author). 9 refs., 7 figs.

  16. A simple approach to nonlinear oscillators

    International Nuclear Information System (INIS)

    Ren Zhongfu; He Jihuan

    2009-01-01

    A very simple and effective approach to nonlinear oscillators is suggested. Anyone with basic knowledge of advanced calculus can apply the method to finding approximately the amplitude-frequency relationship of a nonlinear oscillator. Some examples are given to illustrate its extremely simple solution procedure and an acceptable accuracy of the obtained solutions.

  17. Golden quantum oscillator and Binet–Fibonacci calculus

    International Nuclear Information System (INIS)

    Pashaev, Oktay K; Nalci, Sengul

    2012-01-01

    The Binet formula for Fibonacci numbers is treated as a q-number and a q-operator with Golden ratio bases q = φ and Q = −1/φ, and the corresponding Fibonacci or Golden calculus is developed. A quantum harmonic oscillator for this Golden calculus is derived so that its spectrum is given only by Fibonacci numbers. The ratio of successive energy levels is found to be the Golden sequence, and for asymptotic states in the limit n → ∞ it appears as the Golden ratio. We call this oscillator the Golden oscillator. Using double Golden bosons, the Golden angular momentum and its representation in terms of Fibonacci numbers and the Golden ratio are derived. Relations of Fibonacci calculus with a q-deformed fermion oscillator and entangled N-qubit states are indicated. (paper)

  18. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  19. Golden quantum oscillator and Binet-Fibonacci calculus

    Energy Technology Data Exchange (ETDEWEB)

    Pashaev, Oktay K; Nalci, Sengul, E-mail: oktaypashaev@iyte.edu.tr [Department of Mathematics, Izmir Institute of Technology, Urla-Izmir 35430 (Turkey)

    2012-01-13

    The Binet formula for Fibonacci numbers is treated as a q-number and a q-operator with Golden ratio bases q = {phi} and Q = -1/{phi}, and the corresponding Fibonacci or Golden calculus is developed. A quantum harmonic oscillator for this Golden calculus is derived so that its spectrum is given only by Fibonacci numbers. The ratio of successive energy levels is found to be the Golden sequence, and for asymptotic states in the limit n {yields} {infinity} it appears as the Golden ratio. We call this oscillator the Golden oscillator. Using double Golden bosons, the Golden angular momentum and its representation in terms of Fibonacci numbers and the Golden ratio are derived. Relations of Fibonacci calculus with a q-deformed fermion oscillator and entangled N-qubit states are indicated. (paper)

  20. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-10

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  1. Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2008-01-01

    This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions

  2. The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator

    International Nuclear Information System (INIS)

    Borzov, V. V.; Damaskinsky, E. V.

    2014-01-01

    In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators

  3. Generalized oscillator systems and their parabosonic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, A J [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics

    1994-12-31

    The Fock space description of various bosonic oscillator systems are carried out. All descriptions are based on a single creation - annihilation pair. Special attention is paid to the q-deformed Calogero-Vasiliev oscillator. 23 refs.

  4. Temporal structure of neuronal population oscillations with empirical model decomposition

    International Nuclear Information System (INIS)

    Li Xiaoli

    2006-01-01

    Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation

  5. Basin stability measure of different steady states in coupled oscillators

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  6. Chimera and phase-cluster states in populations of coupled chemical oscillators

    Science.gov (United States)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  7. Oscillating neutrinos from the Galactic center

    International Nuclear Information System (INIS)

    Crocker, R.M.; Volkas, R.R.; Melia, F.

    1999-11-01

    It has recently been demonstrated that the γ-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π 0, s produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically. The ratio of γ-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino Cerenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal, but that such an observation will probably not further constrain the oscillation parameter space mapped out by current atmospheric, solar, reactor and accelerator neutrino oscillation experiments

  8. Invariant box-parameterization of neutrino oscillations

    International Nuclear Information System (INIS)

    Weiler, Thomas J.; Wagner, DJ

    1998-01-01

    The model-independent 'box' parameterization of neutrino oscillations is examined. The invariant boxes are the classical amplitudes of the individual oscillating terms. Being observables, the boxes are independent of the choice of parameterization of the mixing matrix. Emphasis is placed on the relations among the box parameters due to mixing-matrix unitarity, and on the reduction of the number of boxes to the minimum basis set. Using the box algebra, we show that CP-violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. General analyses of neutrino oscillations among n≥3 flavors can readily determine the boxes, which can then be manipulated to yield magnitudes of mixing matrix elements

  9. David Shoenberg and the beauty of quantum oscillations

    Science.gov (United States)

    Pudalov, V. M.

    2011-01-01

    The quantum oscillation effect was discovered in Leiden in 1930, by W. J. de Haas and P. M. van Alphen when measuring magnetization, and by L. W. Shubnikov and de Haas when measuring magnetoresistance. Studying single crystals of bismuth, they observed oscillatory variations in the magnetization and magnetoresistance with magnetic field. Shoenberg, whose first research in Cambridge had been on bismuth, found that much stronger oscillations are observed when a bismuth sample is cooled to liquid helium temperature rather than liquid hydrogen, which had been used by de Haas. In 1938 Shoenberg went from Cambridge to Moscow to study these oscillations at Kapitza's Institute where liquid helium was available at that time. In 1947, J. Marcus observed similar oscillations in zinc and that persuaded Schoenberg to return to this research. After that, the dHvA effect became one of his main research topics. In particular, he developed techniques for quantitative measurement of this effect in many metals. A theoretical explanation of quantum oscillations was given by L. Onsager in 1952, and an analytical quantitative theory by I. M. Lifshitz and A. M. Kosevich in 1955. These theoretical advances seemed to provide a comprehensive description of the effect. Since then, quantum oscillations have been widely used as a tool for measuring Fermi surface extremal cross-sections and all-angle electron scattering times. In his pioneering experiments of the 1960's, Shoenberg revealed the richness and deep essence of the quantum oscillation effect and showed how the beauty of the effect is disclosed under nonlinear conditions imposed by interactions in the system under study. It was quite surprising that "magnetic interaction" conditions could cause the apparently weak quantum oscillation effect to have such strong consequences as breaking the sample into magnetic (now called "Shoenberg") domains and forming an inhomogeneous magnetic state. With his contributions to the field of quantum

  10. David Schoenberg and the beauty of quantum oscillations

    International Nuclear Information System (INIS)

    Pudalov, V.M.

    2012-01-01

    The quantum oscillation effect was discovered in Leiden, in 1930, by W.J. de Haas and P.M. van Alphen in magnetization measurement, and by L.W. Shubnikov and de Haas - in magnetoresistance. Studying single crystals of bismuth, they observed oscillatory variations of magnetization and magnetoresistance with magnetic field. Shoenberg, whose first research in Cambridge had been on bismuth, found that much stronger oscillations are observed when a bismuth sample is cooled to liquid helium rather than to liquid hydrogen, which had been used by de Haas. In 1938 Shoenberg came from Cambridge to Moscow to study these oscillations at Kapitza Institute where liquid helium was available at that time. In 1947, J. Marcus observed similar oscillations in zinc, that persuaded Shoenberg to return to this research, and, since then, the dHvA effect had been one of his main research topic. In particular, he developed techniques for quantitative measurements of the effect in many metals. Theoretical explanation of quantum oscillations was given by L. Onsager in 1952, and the analytical quantitative theory by I.M. Lifshitz and A.M. Kosevich in 1955. These theoretical advancements seemed to provide a comprehensive description of the effect. Since then, quantum oscillations were commonly considered as a tool for measuring Fermi surface extremal cross-sections and all-angle electron scattering times. However, in his pioneering experiments in 1960s, Shoenberg revealed the richness and deep essence of the quantum oscillation effect and showed how the beauty of the effect is disclosed under nonlinear conditions imposed by interactions in the system under study. It was quite unexpected, that under 'magnetic interaction' conditions, the apparently weak effect of quantum oscillations may lead to such strong consequences as breaking the sample into magnetic (now called 'Shoenberg') domains and the formation of an inhomogeneous magnetic state. Owing to his contribution to the field of quantum

  11. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.A.; Rameika, R.; Stanton, N.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increase intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery can not be overstated. The current experimental status and future possibilities are discussed below

  12. Xenon oscillation tests in four-loop PWR cores

    International Nuclear Information System (INIS)

    Aoki, Norihiko; Osaka, Kenichi; Shimada, Shoichiro; Tochihara, Hiroshi; Machii, Seigo

    1980-01-01

    The Kansai Electric Power Co.'s OHI Unit 1 and 2 are the first 4-loop PWRs in Japan which use 17 x 17 fuel assemblies and have essentially the same plant parameters. A 4-loop core has larger core radius and higher power density than those of 2- or 3-loop cores, and is less stable for Xe oscillation. It is therefore important to confirm that Xe oscillations in radial direction are sufficiently stable in a 4-loop core. Radial and axial Xe oscillation tests were performed during the startup physics tests of OHI Unit 1 and 2; Xe oscillation was induced by perturbation of control rods and the Xe effect on power distribution observed periodically. The test results show that the transverse Xe oscillation in the 4-loop core is sufficiently stable and that the agreement between the measurement and the calculated prediction is good. (author)

  13. Neutrino oscillations in discrete-time quantum walk framework

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Mandal, Sanjoy; Chandrashekar, C.M. [C. I. T. Campus, The Institute of Mathematical Sciences, Chennai (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India)

    2017-02-15

    Here we present neutrino oscillation in the framework of quantum walks. Starting from a one spatial dimensional discrete-time quantum walk we present a scheme of evolutions that will simulate neutrino oscillation. The set of quantum walk parameters which is required to reproduce the oscillation probability profile obtained in both, long range and short range neutrino experiment is explicitly presented. Our scheme to simulate three-generation neutrino oscillation from quantum walk evolution operators can be physically realized in any low energy experimental set-up with access to control a single six-level system, a multiparticle three-qubit or a qubit-qutrit system. We also present the entanglement between spins and position space, during neutrino propagation that will quantify the wave function delocalization around instantaneous average position of the neutrino. This work will contribute towards understanding neutrino oscillation in the framework of the quantum information perspective. (orig.)

  14. Power spectrum of an injection-locked Josephson oscillator

    International Nuclear Information System (INIS)

    Stancampiano, C.V.; Shapiro, S.

    1975-01-01

    Experiments have shown that a Josephson oscillator, exposed to a weak narrow-band input signal, exhibits behavior characteristic of an injection-locked oscillator. When in lock, Adler's theory of injection locking describes the experimental observations reasonably well. The range of applicability of the theory is extended to the out-of-lock regime where a spectrum of output frequencies is observed. Obtaining the theoretical output power spectrum requires solving a differential equation having the same form as the equation describing the resistively shunted junction model of Stewart and of McCumber. Experimental measurements of the output spectrum of a nearly locked Josephson oscillator are shown to be in reasonable agreement with the theory. Additional results discussed briefly include the observation of a frequency dependence of the locked Josephson oscillator output and experiments in which a Josephson oscillator-mixer was injection locked by a weak signal at the rf

  15. Oscillation characteristics of the reactor 'A'; Oscilatorne karakteristike reaktora 'A'

    Energy Technology Data Exchange (ETDEWEB)

    Zecevic, V; Lolic, B [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1961-07-01

    In addition to good knowledge of reactor physical properties, design of the reactor oscillator demands determining of the oscillator operating points as well as oscillation reactor properties. This paper contains study of the RA reactor power changes due to oscillations in in one of the vertical experimental channels. It has been concluded that the reactor optimum operating conditions are attained when the oscillator operates at optimum points, and other parameters are determined dependent on the sensitivity of the method and reactor stability.

  16. Mass and oscillations of Dirac neutrinos

    International Nuclear Information System (INIS)

    Collot, J.

    1989-01-01

    In the most economical extension of the standard model, we have presented the theory of massive Dirac neutrinos. We have particularly emphasized that, in this model, a complete analogy between quarks and leptons can be erected and predicts neutrino flavor oscillations. We have reviewed the last experimental results concerning kinetic neutrino mass experiments and neutrino oscillation investigations

  17. Sun oscillations and the problem of its internal structure

    International Nuclear Information System (INIS)

    Severnyj, A.B.; Kotov, V.A.; Tsap, T.T.

    1979-01-01

    Analysis of global solar oscillation measurements for five years (1974-1978, more than 1000 hours of observations, 215 days) is given. It is shown that the period of oscillations is 160sup(m)x0.10+-0sup(m)x004 and the amplitude is 1 m/s. The phases of oscillations, obtained at the Crimea, Stanford, Kitt Peak and Pic du Midi, are in good agreement, thus making the assumption on ''telluric origin'' of the oscillations improbable. It has been found: 1) slow, synchronous (at Crimea and Stanford) drift of the phase of velocity maximum from year to year and 2) the dependence of amplitude on the phase of 27-day rotational period of the Sun which favours the assumption on the quadrupole character of oscillations. It is pointed out that these facts, as well as the absence of oscillation waves in the telluric line observed simultaneously with the solar line, exclude the possibility of explaining the results as a statistical artifact. It has also been shown that the differential extinction effect produces an oscillation effect which is by an order of magnitude lower than the observed one. The following preliminary results are noted: a) the appearance of synchronous oscillations of the mean solar magnetic field of the brightness of the Sun and of the solar radio emission; b) the disappearance of the oscillations from time to time, possibly due to the effect of the supergranulation passage across the solar disk. The oscillations observed imply new important restrictions on the problem of the internal constitution of the Sun, and point to the possibility of non-radiative heat-transfer inside the Sun which might help the solution of the low neutrino flux problem

  18. Chemical event chain model of coupled genetic oscillators.

    Science.gov (United States)

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  19. Chemical event chain model of coupled genetic oscillators

    Science.gov (United States)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  20. Adaptive elimination of synchronization in coupled oscillator

    Science.gov (United States)

    Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei

    2017-08-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.

  1. Adaptive elimination of synchronization in coupled oscillator

    International Nuclear Information System (INIS)

    Zhou, Shijie; Lin, Wei; Ji, Peng; Feng, Jianfeng; Zhou, Qing; Kurths, Jürgen

    2017-01-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh–Nagumo spiking oscillators and the Hindmarsh–Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy. (paper)

  2. Truly neutral microobjects and oscillations in particle physics

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1982-01-01

    Oscillation phenomena between different states of neutral elementary particles are discussed. The known kaon oscillation and the proposed neutrino, neutron and other kinds of oscillations are analysed. The proper bound states of neutral objects (neutrinos, neutrons, hydrogen atoms) are investigated in the case of small and strong violation of CP symmetry. Consequences concerning the observable masses and quantum numbers of such neutral objects are drawn. (D.Gy.)

  3. Automated Detection of Oscillating Regions in the Solar Atmosphere

    Science.gov (United States)

    Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.

    2010-01-01

    Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.

  4. Pattern recognition with simple oscillating circuits

    International Nuclear Information System (INIS)

    Hoelzel, R W; Krischer, K

    2011-01-01

    Neural network devices that inherently possess parallel computing capabilities are generally difficult to construct because of the large number of neuron-neuron connections. However, there exists a theoretical approach (Hoppensteadt and Izhikevich 1999 Phys. Rev. Lett. 82 2983) that forgoes the individual connections and uses only a global coupling: systems of weakly coupled oscillators with a time-dependent global coupling are capable of performing pattern recognition in an associative manner similar to Hopfield networks. The information is stored in the phase shifts of the individual oscillators. However, to date, even the feasibility of controlling phase shifts with this kind of coupling has not yet been established experimentally. We present an experimental realization of this neural network device. It consists of eight sinusoidal electrical van der Pol oscillators that are globally coupled through a variable resistor with the electric potential as the coupling variable. We estimate an effective value of the phase coupling strength in our experiment. For that, we derive a general approach that allows one to compare different experimental realizations with each other as well as with phase equation models. We demonstrate that individual phase shifts of oscillators can be experimentally controlled by a weak global coupling. Furthermore, supplied with a distorted input image, the oscillating network can indeed recognize the correct image out of a set of predefined patterns. It can therefore be used as the processing unit of an associative memory device.

  5. Sum rules for neutrino oscillations

    International Nuclear Information System (INIS)

    Kobzarev, I.Yu.; Martemyanov, B.V.; Okun, L.B.; Schepkin, M.G.

    1981-01-01

    Sum rules for neutrino oscillations are obtained. The derivation of the general form of the s matrix for two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) (where lsub(i)sup(-)e, μ, tau, ... are initial leptons with flavor i and lsub(k)sup(+-) is final lepton) is presented. The consideration of two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) gives the possibility to take into account neutrino masses and to obtain the expressions for the oscillating cross sections. In the case of Dirac and left-handed Majorana neutrino is obtained the sum rule for the quantities 1/Vsub(K)σ(lsub(i)sup(-)→lsub(K)sup(+-)), (where Vsub(K) is a velocity of lsub(K)). In the left-handed Majorana neutrino case there is an additional antineutrino admixture leading to lsub(i)sup(-)→lsub(K)sup(+) process. Both components (neutrino and antineutrino) oscillate independently. The sums Σsub(K)1/Vsub(k)σ(lsub(i)sup(-) - lsub(K)sup(+-) then oscillate due to the presence of left-handed antineutrinos and right-handed neutrinos which do not take part in weak interactions. If right-handed currents are added sum rules analogous to considered above may be obtained. All conclusions are valid in the general case when CP is not conserved [ru

  6. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  7. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  8. Two port network analysis for three impedance based oscillators

    KAUST Repository

    Said, Lobna A.

    2011-12-01

    Two-port network representations are applied to analyze complex networks which can be dissolved into sub-networks connected in series, parallel or cascade. In this paper, the concept of two-port network has been studied for oscillators. Three impedance oscillator based on two port concept has been analyzed using different impedance structures. The effect of each structure on the oscillation condition and the frequency of oscillation have been introduced. Two different implementations using MOS and BJT have been introduced. © 2011 IEEE.

  9. A combined treatment of neutrino decay and neutrino oscillations

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2001-01-01

    Neutrino decay in vacuum has often been considered as an alternative to neutrino oscillations. Because nonzero neutrino masses imply the possibility of both neutrino decay and neutrino oscillations, we present a model-independent formal treatment of these combined scenarios. For that, we show for the example of Majoron decay that in many cases decay products are observable and may even oscillate. Furthermore, we construct a minimal scenario in which we study the physical implications of neutrino oscillations with intermediate decays

  10. Oscillator clustering in a resource distribution chain

    DEFF Research Database (Denmark)

    Postnov, D.; Sosnovtseva, Olga; Mosekilde, Erik

    2005-01-01

    separate the inherent dynamics of the individual oscillator from the properties of the coupling network. Illustrated by examples from microbiological population dynamics, renal physiology, and electronic oscillator theory, we show how competition for primary resources in a resource distribution chain leads...

  11. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  12. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...

  13. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  14. Temperature Oscillations in Loop Heat Pipes - A Revisit

    Science.gov (United States)

    Ku, Jentung

    2018-01-01

    Three types of temperature oscillation have been observed in the loop heat pipes. The first type is an ultra-high frequency temperature oscillation with a period on the order of seconds or less. This type of temperature oscillation is of little significance in spacecraft thermal control because the amplitude is in the noise level. The second type is a high frequency, low amplitude temperature oscillation with a period on the order of seconds to minutes and an amplitude on the order of one Kelvin. It is caused by the back-and-forth movement of the vapor front near the inlet or outlet of the condenser. The third type is a low frequency, high amplitude oscillation with a period on the order of hours and an amplitude on the order of tens of Kelvin. It is caused by the modulation of the net heat load into the evaporator by the attached large thermal mass which absorbs and releases energy alternately. Several papers on LHP temperature oscillation have been published. This paper presents a further study on the underlying physical processes during the LHP temperature oscillation, with an emphasis on the third type of temperature oscillation. Specifically, equations governing the thermal and hydraulic behaviors of LHP operation will be used to describe interactions among LHP components, heat source, and heat sink. The following sequence of events and their interrelationship will also be explored: 1) maxima and minima of reservoir and thermal mass temperatures; 2) the range of the vapor front movement inside the condenser; 3) rates of change of the reservoir and thermal mass temperatures; 4) the rate of heat absorption and heat release by the thermal mass and the rate of vapor front movement; and 5) inflection points of the reservoir and thermal mass temperatures.

  15. Analysis and measurement of the stability of dual-resonator oscillators

    KAUST Repository

    Ghaed, Hassan

    2012-01-01

    This paper investigates the stability of oscillators with dual-resonating tanks. After deriving oscillator models, it is shown that contrary to prior belief, there can be only one stable oscillating state. Sufficient conditions for stable oscillating states are derived and silicon measurement results are used to prove their validity. A fully integrated transmitter for intraocular pressure sensing that leverages the dual-resonator tank is designed and fabricated based on the derived models. An unstable version of the transmitter is also demonstrated to prove the concept of instability in dual-resonator oscillators © 2012 IEEE.

  16. Wigner distribution function for an oscillator

    International Nuclear Information System (INIS)

    Davies, R.W.; Davies, K.T.R.

    1975-01-01

    We present two new derivations of the Wigner distribution function for a simple harmonic oscillator Hamiltonian. Both methods are facilitated using a formula which expresses the Wigner function as a simple trace. The first method of derivation utilizes a modification of a theorem due to Messiah. An alternative procedure makes use of the coherent state representation of an oscillator. The Wigner distribution function gives a semiclassical joint probability for finding the system with given coordinates and momenta, and the joint probability is factorable for the special case of an oscillator. An important application of this result occurs in the theory of nuclear fission for calculating the probability distributions for the masses, kinetic energies, and vibrational energies of the fission fragments at infinite separation. (U.S.)

  17. Neutrino oscillations with the OPERA experiment

    CERN Document Server

    Galati, Giuliana

    2016-01-01

    OPERA (Oscillation Project with Emulsion tRacking Apparatus) was a long-baseline experiment at the Gran Sasso laboratory (LNGS) designed to search for ν μ → ν τ oscillations in appearance mode. OPERA took data from 2008 to 2012 with the CNGS neutrino beam from CERN. The observation of five ν τ candidates allowed assessing the discovery of ν μ → ν τ appearance in the CNGS neutrino beam with a significance of 5 . 1 σ . The data analysis is still ongoing, with the goal of improving the sensitivity to the sterile neutrino search in the ν μ → ν τ and ν μ → ν e appearance channels and oscillation parameters with reduced statistical uncertainties. Current results will be presented and perspectives discussed.

  18. Invariant box parameterization of neutrino oscillations

    International Nuclear Information System (INIS)

    Weiler, T.J.; Wagner, D.

    1998-01-01

    The model-independent 'box' parameterization of neutrino oscillations is examined. The invariant boxes are the classical amplitudes of the individual oscillating terms. Being observables, the boxes are independent of the choice of parameterization of the mixing matrix. Emphasis is placed on the relations among the box parameters due to mixing matrix unitarity, and on the reduction of the number of boxes to the minimum basis set. Using the box algebra, we show that CP-violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. General analyses of neutrino oscillations among n≥3 flavors can readily determine the boxes, which can then be manipulated to yield magnitudes of mixing matrix elements. copyright 1998 American Institute of Physics

  19. Spontaneous low-frequency oscillations in cerebral vessels

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Hansson, Andreas; Phillip, Dorte

    2010-01-01

    ). Analysis of CA by measurement of spontaneous oscillations in the low-frequency spectrum in cerebral vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD) and stroke. We reviewed studies exploring spontaneous oscillations...

  20. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs