Simulation study of Bernstein modes
The properties of Bernstein modes were investigated through computer simulations using two-dimensional and two-and-one-half-dimensional (i.e., two spatial and three velocity coordinates) electrostatic models with fixed magnetic field. The measured discrete spectrum was found to agree with the linear dispersion relation for these modes. The quasi-periodic phenomenon of early phase-mixing damping and later recurrence, predicted by Baldwin and Rowlands, was observed. For large wavenumber k/sub perpendicular/, the initial damping rate is the same as that for Landau damping in an unmagnetized plasma; for small k/sub perpendicular/, however, it is much stronger. The recurrence peaks slowly damp in time at a rate proportional to k2/sub perpendicular/D, where D is the measured cross-field particle diffusion coefficient which is dominated by convective transport. Finally, splitting of the main spectral peaks and the appearance of subpeaks at half-integral multiples of the cyclotron frequency are observed and may be explained by nonlinear mode coupling
Harmonic launching of ion Bernstein waves via mode transformation
Ion Bernstein wave excitation and propagation via finite ion-Larmor-radium mode-transformation are investigated theoretically and experimentally. It is shown that in the ion cyclotron range of frequencies omega less than or equal to 4Ω/sub i/, with modest ion temperatures (T/sub i/ less than or equal to 10 eV), the finite-Larmor-radius effect removes the wave singularity at lower-hybrid resonance layer, enabling an externally initiated electron plasma wave to transform continuously into an ion Bernstein wave. In an ACT-1 hydrogen plasma (T/sub e/ approx. = 2.5 eV, T/sub i/ less than or equal to 2.0 eV), externally excited ion Bernstein waves have been observed for omega less than or equal to 2Ω/sub i/ as well as for omega less than or equal to 3Ω/sub i/. The finite ion-Larmor-radius mode transformation process resulting in strong ion Bernstein wave excitation has been experimentally verified. Detailed measurements of the wave dispersion relation and of the wave-packet trajectory show excellent agreement with theory. The dependence of the excited ion Bernstein wave on the antenna phasing, the plasma density, and on the neutral pressure (T/sub i/) is also investigated
Ion-Bernstein wave mode conversion in hot tokamak plasmas
Mode conversion at the second harmonic cyclotron resonance is studied in a toroidal plasma, showing how the ion-Bernstein wave can dramatically affect the power profile and partition among the species. The results obtained with the gyrokinetic toroidal PENN code in particular suggest that off-axis electron and second harmonic core ion heating should become important when the temperatures in JET reach 10 keV. (author) 1 fig., 11 refs
Influence of Bernstein modes on the efficiency of electron cyclotron resonance x-ray source
The article considers the factors influencing the temperature of hot electron component in an electron cyclotron resonance (ECR) x-ray source. In such sources the electron heating occurs often due to extraordinary electromagnetic wave propagating perpendicularly to the magnetic field. In this case the possibility of the absorption of Bernstein modes is regarded as an additional mechanism of electron heating. The Bernstein modes in an ECR x-ray source can arise due to either linear transformation or parametric instability of external transversal wave. The article briefly reviews also the further experiments which will be carried out to study the influence of Bernstein modes on the increase of hot electron temperature and consequently of x-ray emission
Mode-converted electron Bernstein waves for heating and current drive in NSTX
The power coupled to electron Bernstein waves in a triplet mode conversion resonator from a fast X-mode at the plasma edge in NSTX is shown to be > 80% for fce ce. The EBW damping in the plasma is strong and localized and, thus, should be useful for heating, current drive, or profile control. (author)
Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode
A. Parvazian
2008-03-01
Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.
Ion Bernstein-wave excitation via finite-Larmor-radius mode-transformation process
It is shown that in the ion cyclotron range of frequency ω less than or equal to 2 Ω/sub i/, the finite-Larmor-radius effect removes the wave singularity at the lower-hybrid resonance layer, enabling an externally initiated electron plasma wave to propagate freely through the resonance layer, transforming continuously into an ion Bernstein wave. In an ACT-1 hydrogen plasma (T/sub e/ approx. = 2.5 eV, T/sub i/ approx. = 1.5 eV), linear excitation of ion Bernstein waves has been investigated experimentally for ω approx. = 2Ω/sub i/. The mode-transformation process resulting in a strong ω approx. = 2 Ω/sub i/ ion Berstein wave excitation without observable reflections has been experimentally verified. Detailed measurements of wave dispersion relation and of the wave-packet trajectory show excellent agreement with theory
Non Axisymmetric Three-Dimensional Magnetic Bernstein-Greene-Kruskal (BGK) Modes
Ng, Chung-Sang
2013-10-01
The theory of three-dimensional (3D) magnetic Magnetic Bernstein-Greene-Kruskal (BGK) modes has been generalized to the non axisymmetric case. While the shape of the electrostatic structure is usually elongated along the direction of the strong large-scale magnetic field, a limiting case with the elongated direction along one of the perpendicular direction is also possible. Essentially this makes the solution 2D with the magnetic field on the 2D plane. Note that such 2D BGK modes are very different from those described by another theory, of which the magnetic field is perpendicular to the 2D plane. This theory might explain 2D BGK modes observed in some numerical simulations. This work is supported by a National Science Foundation grant PHY-1004357 and by the National Science Foundation of China NSFC under Grant No. 41128004.
Formation of core transport barrier and CH-Mode by ion Bernstein wave heating in PBX-M
Observation of core transport barrier formation (for particles, ion and electron energies, and toroidal momentum) by ion Bernstein wave heating (IBWH) in PBX-M plasma is reported. The formation of a transport barrier leads to a strong peaking and significant increase of the core pressure (70%) and toroidal momentum (20%), and has been termed the core-high confinement mode (CH-Mode). This formation of a transport barrier is consistent, in terms of the expected barrier location as well as the required threshold power, with a theoretical model based on the poloidal sheared flow generation by the ion Bernstein wave power. The use of ion Bernstein wave (IBW) induced sheared flow as a tool to control plasma pressure and bootstrap current profiles shows a favorable scaling for the use in future reactor grade tokamak plasmas
Ng, C. S.; Soundararajan, S. J.; Yasin, E.
2012-05-01
Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region, and in association with shocks, turbulence, and magnetic reconnection. Due to potentially large amplitude of electric fields within these structures, their effects on particle heating, scattering, or acceleration can be important. One possible theoretical description of some of these structures is the concept of Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. BGK modes have been studied extensively for many decades, predominately in one dimension (1D), although there have been observations showing that some of these structures have clear 3D features. While there have been approximate solutions of higher dimensional BGK modes, an exact 3D BGK mode solution in a finite magnetic field has not been found yet. Recently we have constructed exact solutions of 2D BGK modes in a magnetized plasma with finite magnetic field strength in order to gain insights of the ultimate 3D theory [Ng, Bhattacharjee, and Skiff, Phys. Plasmas 13, 055903 (2006)]. Based on the analytic form of these solutions, as well as Particle-in-Cell (PIC) simulations, we will present numerical studies of their stability for different levels of background magnetic field strength.
A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs
Mode-converted electron Bernstein wave emission research on CDX-U and NSTX
Electron Bernstein waves (EBWs) may enable electron temperature profile measurements and local electron heating and current drive in high β overdense (ωpe/ωce>>1) plasmas. Significant results are presented from the measurement of X-mode radiation, converted from EBWs observed normal to the magnetic field on the mid-plane of overdense plasmas in CDX-U and NSTX. A radially scannable, in-vessel, quad-ridged antenna and Langmuir probe array on CDX-U studied EBW to X-mode conversion. A local limiter optimized the conversion efficiency by modifying the density scale length at the mode conversion layer. The fundamental EBW conversion efficiency increased, by an order of magnitude, to ∼100% when the local limiter and antenna were inserted near the conversion layer. This technique can be extended to large, high temperature devices. Another significant observation was that the EBW emission source was localized near the electron cyclotron resonance. As a result, mode-converted EBW radiometry has measured radial transport in CDX-U. In addition, a threefold increase in conversion efficiency was observed at the L to H transition in NSTX. Measured conversion efficiency agreed well with theoretical predictions. EBW ray tracing and bounce-averaged Fokker-Planck codes are being used to model EBW heating and current drive scenarios for NSTX equilibria with β up to 40%. So far, results show that it is possible to drive localized currents on the high field side of the magnetic axis in NSTX at β ∼ 12% with current drive efficiency which compares favorably with ECCD. (authors)
Electron heating by mode-converted ion-Bernstein waves in ICRF heating of tokamak plasmas
In a tokamak plasma, ion-Bernstein waves (IBW) can be excited by mode-conversion of the externally launched fast wave for ICRF heating. This conversion process is known to be efficient for low k/sub parallel/'s which carry substantial power from a single loop antenna. A detailed numerical analysis of the propagation of the IBW shows that the initial small k/sub parallel/ are significantly enhanced along the rays due to toroidal effects. The upshift can occur for short radial distances of propagation and is large enough so that the IBW can Landau damp onto the electrons. This could help explain the observed strong electron heating by ICRF waves in tokamak plasmas. The numerical ray trajectory analysis is done in toroidal geometry for a hot Maxwellian plasma with gradients in temperature, density, toroidal and poloidal magnetic fields included in a WKB sense. A simple analytical model is derived which explains the upshift in k/sub parallel/ and gives results very close to the numerically obtained values. Approximate analytical conditions for appreciable electron Landau damping of the IBW are also given
Xiao, Jianyuan; Liu, Jian, E-mail: jliuphy@ustc.edu.cn [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Yu, Zhi; Xiang, Nong [Theory and Simulation Division, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2015-09-15
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments
Ng, C. S.
2014-10-01
Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region. One possible theoretical description of some of these structures is the concept of Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear steady-state solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. We generalize exact solutions of two-dimensional BGK modes in a magnetized plasma with finite magnetic field strength to cases with azimuthal magnetic fields so that these structures carry electric current as well as steady electric and magnetic fields. Such nonlinear solutions now satisfy exactly the Vlasov-Poisson-Ampere system of equations. This work is supported by a National Science Foundation Grant PHY-1004357.
Stefan, V.
2006-10-01
A novel mechanism for the suppression of Weibel instabilities in the core of advanced fast ignition pellets is addressed. The propagation of generated suprathermal electron beam toward the core may lead to the appearance of colossal (˜10MG), small scale (L˜c/φpe, c---velocity of light, φpe---local electron plasma frequency) magnetic fields. The suppression synergy of high harmonic electron Bernstein, (EB), modes and Weibel modes, (WB), in the cone-attached laser fusion pellets is based on nonlinear mode-mode coupling. EB modes are excited by ignition, a cone guided, or implosion laser beams. High harmonic EB modes easily propagate to the core of the pellet whereby they nonlinearly interact with, and suppress, the WB. The suppression synergy is maximized at the simultaneous action of ignition and implosion lasers. E. S. Weibel, Phys. Rev. Lett., 2,83 (1959) in the core of advanced fast ignition pellets M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M.D. Perry, Phys. Plasmas 1 (5), 1626 (1994). V. Stefan, (a) Quasi-Stationary B-Fields due to Weibel Instability in FI Laser Fusion Pellets; (b) Pellet Core Heating Via High Harmonic EB Modes in FI Laser Fusion. 35th Annual A.A.C, 2005,
Relativistic Bernstein waves in a degenerate plasma
Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.
Bernstein polynomials on Simplex
Bayad, A.; Kim, T.; Rim, S. -H.
2011-01-01
We prove two identities for multivariate Bernstein polynomials on simplex, which are considered on a pointwise. In this paper, we study good approximations of Bernstein polynomials for every continuous functions on simplex and the higher dimensional q-analogues of Bernstein polynomials on simplex
Stefan, V. Alexander
2014-10-01
A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.
Hosseini Jenab, S. M.; Kourakis, I.
2014-04-01
A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on Bernstein-Greene-Kruskal (BGK) modes generated during the simulations. In particular, we aim at investigating the parametric dependence of the characteristics of BGK structures, namely of their time periodicity (τtrap) and their amplitude, on the electron-to-ion temperature ratio and on the dust concentration. In electron-ion plasma, an exponential relation between τtrap and the amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that both characteristics, namely, the periodicity τtrap and amplitude, are also related to the size of the phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes characteristics appear to depend on the dust particle density linearly.
Sun, Jicheng; Gao, Xinliang; Chen, Lunjin; Lu, Quanming; Tao, Xin; Wang, Shui
2016-02-01
Ion Bernstein modes, also known as magnetosonic waves in the magnetospheric community, are considered to play an important role in radiation belt electron acceleration. The detailed properties of perpendicular magnetosonic waves excited in the inner magnetosphere by a tenuous proton ring distribution are investigated in a two series paper with a combination of the linear theory and one-dimensional particle-in-cell simulations. Here, in this paper, we study the properties of the excited magnetosonic waves under different plasma conditions with the linear theory. When the proton to electron mass ratio or the ratio of the light speed to the Alfven speed is small, the excited magnetosonic waves are prone to having a discrete spectrum with only several wave modes. With the increase of the proton to electron mass ratio or the ratio of the light speed to the Alfven speed, the lower hybrid frequency also increases, which leads to the increase of both the number and frequency of the excited wave modes. Meanwhile, the growth rate of these wave modes also increases. When the proton to electron mass ratio or the ratio of the light speed to the Alfven speed is sufficiently large, the spectrum of the excited magnetic waves becomes continuous due to the overlapping of the adjacent wave modes. The increase of the density of the protons with the ring distribution can also result in the increase of the growth rate, which may also change the discrete spectrum of the excited waves to a continuous one, while the increase of the ring velocity of the tenuous proton ring distribution leads to a broader spectrum, but with a smaller growth rate.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-01-01
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonli...
Bernstein functions theory and applications
Schilling, René L; Vondracek, Zoran
2010-01-01
This text is a self-contained and unified approach to Bernstein functions and their subclasses, bringing together old and establishing new connections. Applications of Bernstein functions in different fields of mathematics are given, with special attention to interpretations in probability theory. An extensive list of complete Bernstein functions with their representations is provided.
Ion Bernstein wave heating research
Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity (ω/kperpendicular ∼ VTi much-lt Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α-particles. In addition, the property of IBW's that kperpendicular ρi ∼ 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research
Electron Bernstein Wave Heating and Emission in the TCV Tokamak
Anja, Mueck; Yann, Camenen; Stefano, Coda; Loïc, Curchod; Timothy P., Goodman; Heinrich P., Laqua; Antoine, Pochelon; Laurie, Porte; Victor S., Udintsev; Francesco, Volpe; Team, TCV
2007-01-01
Electron cyclotron resonance heating (ECRH) of high-density tokamak plasmas is limited because of reflections of the waves at so-called wave cutoffs. Electron Bernstein wave (EBW) heating (EBWH) via a double mode conversion process from ordinary (O)-mode, launched from the low field side, to extraordinary (X)-mode and finally to Bernstein (B)-mode offers the possibility of overcoming these density limits. In this paper, the O-X mode conversion dependence on the microwave injection angle is de...
Observations of Obliquely Propagating Electron Bernstein Waves
Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.;
1981-01-01
Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....
Electron-Bernstein-wave current drive in an overdense plasma at the Wendelstein 7-AS stellarator
Electron-Bernstein-wave (EBW) current drive in an overdense plasma was demonstrated at the Wendelstein 7-AS stellarator for the first time. The EBWs were generated by O-X-B mode conversion. The relatively high current drive efficiency was consistent with theoretical predictions. The experiments provided first investigations of EBW phase space interaction for wave refractive indices much larger than unity
Min, Kyungguk; Liu, Kaijun
2016-04-01
Fast magnetosonic waves in Earth's inner magnetosphere, which have as their source ion Bernstein instabilities, are driven by hot proton velocity distributions (fp) with ∂fp(v⊥)/∂v⊥>0. Two typical types of distributions with such features are ring and shell velocity distributions. Both have been used in studies of ion Bernstein instabilities and fast magnetosonic waves, but the differences between instabilities driven by the two types of distributions have not been thoroughly addressed. The present study uses linear kinetic theory to examine and understand these differences. It is found that the growth rate pattern is primarily determined by the cyclotron resonance condition and the structure of the velocity distribution in gyroaveraged velocity space. For ring-driven Bernstein instabilities, as the parallel wave number (k∥) increases, the discrete unstable modes approximately follow the corresponding proton cyclotron harmonic frequencies while they become broader in frequency space. At sufficiently large k∥, the neighboring discrete modes merge into a continuum. In contrast, for shell-driven Bernstein instabilities, the curved geometry of the shell velocity distribution in gyroaveraged velocity space results in a complex alternating pattern of growth and damping rates in frequency and wave number space and confines the unstable Bernstein modes to relatively small k∥. In addition, when k∥ increases, the unstable modes are no longer limited to the proton cyclotron harmonic frequencies. The local growth rate peak near an exact harmonic at small k∥ bifurcates into two local peaks on both sides of the harmonic when k∥ becomes large.
A theory of coupling between electromagnetic and electron Bernstein waves in a plasma slab is presented. The theory uses an approach that associates the linear mode conversion with the singularity of the cold plasma wave equation at the upper hybrid resonance (UHR). The singularity results in linear interaction of cold plasma (electromagnetic) and hot plasma (Bernstein) modes. Applicability of the WKB theory to interacting modes is not required. In this method the full solution of the mode conversion problem including calculation of the excited Bernstein wave complex amplitude is reduced to finding a solution to the cold plasma wave equation, which describes dissipative wave power absorption at the UHR. This method is applicable to a variety of plasma configurations practically without limitations on the inhomogeneity scale-length. It permits one to consider in the framework of a single procedure particular cases like direct tunnelling of the incident wave, O-X-B conversion and transformation of the X-mode launched from the high-field side of a tokamak and having free access to the UHR
CONVERGENCE ARTE FOR INTERATES OF q-BERNSTEIN POLYNOMIALS
无
2007-01-01
Recently, q-Bernstein polynomials have been intensively investigated by a number of authors. Their results show that for q ≠ 1, q-Bernstein polynomials possess of many interesting properties. In this paper, the convergence rate for iterates of both q-Bernstein when n →∞ and convergence rate of Bn(f,q;x) when f ∈ Cn-1[0, 1], q →∞ are also presented.
Propagation and absorption of Ion Bernstein waves in U-2M torsatron by ray tracing technique
Ion Bernstein modes with frequencies higher than the ion cyclotron frequency are planned to be applied to produce and heat the Uragan-2M plasma. This brief report gives the propagation and absorption ray-tracing studies of these waves in the Uragan-2M device, taking into account the three-dimensional non-uniformities of the plasma parameters and the magnetic field. 4 refs, 5 figs
The paper describes a successful proof-of-principle experimental determination of tokamak ion temperature using cw far-infrared (FIR) collective laser scattering from externally excited ion Bernstein waves. It is shown that a viable wave excitation technique for tokamak plasmas is mode conversion of an externally launched fast Alfven wave. A fit of the experimentally determined ion Bernstein wave dispersion to the temperature-dependent theoretical dispersion yields the local ion temperature. Partial ion temperature profiles (chord-averaged) have been obtained with temperature values consistent with charge-exchange measurements. (author)
Bernstein's Lethargy Theorem in Frechet Spaces
Aksoy, Asuman Guven; Lewicki, Grzegorz
2015-01-01
In this paper we consider Bernstein's Lethargy Theorem (BLT) in the context of Fr\\'{e}chet spaces. Let $X$ be an infinite-dimensional Fr\\'echet space and let $\\mathcal{V}=\\{V_n\\}$ be a nested sequence of subspaces of $ X$ such that $ \\bar{V_n} \\subseteq V_{n+1}$ for any $ n \\in \\mathbb{N}$ and $ X=\\bar{\\bigcup_{n=1}^{\\infty}V_n}.$ Let $ e_n$ be a decreasing sequence of positive numbers tending to 0. Under an additional natural condition on $\\sup\\{\\{dist}(x, V_n)\\}$, we prove that there exists...
MULTIVARIATE WEIGHTED BERNSTEIN-TYPE INEQUALITY AND ITS APPLICATIONS
Cao Feilong; Lin Shaobo
2012-01-01
Bernstein inequality played an important role in approximation theory and Fourier analysis.This article first introduces a general system of functions and the socalled multivariate weighted Bernstein,Nikol'skiǐ,and Ul'yanov-type inequalities.Then,the relations among these three inequalities are discussed.Namely,it is proved that a family of functions equipped with Bernstein-type inequality satisfies Nikol'skiǐ-type and Ul'yanov-type inequality.Finally,as applications,some classical inequalities are deduced from the obtained results.
Generalized -Bernstein-Schurer Operators and Some Approximation Theorems
M. Mursaleen
2013-01-01
Full Text Available We study statistical approximation properties of -Bernstein-Shurer operators and establish some direct theorems. Furthermore, we compute error estimation and show graphically the convergence for a function by operators and give its algorithm.
Electron Bernstein Wave Research on NSTX and PEGASUS
Diem, S. J.; Taylor, G.; Caughman, J. B.; Bigelow, T.; Garstka, G. D.; Harvey, R. W.; LeBlanc, B. P.; Preinhaelter, J.; Sabbagh, S. A.; Urban, J.; Wilgen, J. B.
2007-09-01
Spherical tokamaks (STs) routinely operate in the overdense regime (ωpe≫ωce), prohibiting the use of standard ECCD and ECRH. However, the electrostatic electron Bernstein wave (EBW) can propagate in the overdense regime and is strongly absorbed and emitted at the electron cyclotron resonances. As such, EBWs offer the potential for local electron temperature measurements and local electron heating and current drive. A critical challenge for these applications is to establish efficient coupling between the EBWs and electromagnetic waves outside the cutoff layer. Two STs in the U.S., the National Spherical Tokamak Experiment (NSTX, at Princeton Plasma Physics Laboratory) and PEGASUS Toroidal Experiment (University of Wisconsin-Madison) are focused on studying EBWs for heating and current drive. On NSTX, two remotely steered, quad-ridged antennas have been installed to measure 8-40 GHz (fundamental, second and third harmonics) thermal EBW emission (EBE) via the oblique B-X-O mode conversion process. This diagnostic has been successfully used to map the EBW mode conversion efficiency as a function of poloidal and toroidal angles on NSTX. Experimentally measured mode conversion efficiencies of 70±20% have been measured for 15.5 GHz (fundamental) emission in L-mode discharges, in agreement with a numerical EBE simulation. However, much lower mode conversion efficiencies of 25±10% have been measured for 25 GHz (second harmonic) emission in L-mode plasmas. Numerical modeling of EBW propagation and damping on the very-low aspect ratio PEGASUS Toroidal Experiment has been performed using the GENRAY ray-tracing code and CQL3D Fokker-Planck code in support of planned EBW heating and current drive (EBWCD) experiments. Calculations were performed for 2.45 GHz waves launched with a 10 cm poloidal extent for a variety of plasma equilibrium configurations. Poloidal launch scans show that driven current is maximum when the poloidal launch angle is between 10 and 25 degrees
Electron Bernstein Wave Research on NSTX and PEGASUS
Spherical tokamaks (STs) routinely operate in the overdense regime (ωpe>>ωce), prohibiting the use of standard ECCD and ECRH. However, the electrostatic electron Bernstein wave (EBW) can propagate in the overdense regime and is strongly absorbed and emitted at the electron cyclotron resonances. As such, EBWs offer the potential for local electron temperature measurements and local electron heating and current drive. A critical challenge for these applications is to establish efficient coupling between the EBWs and electromagnetic waves outside the cutoff layer. Two STs in the U.S., the National Spherical Tokamak Experiment (NSTX, at Princeton Plasma Physics Laboratory) and PEGASUS Toroidal Experiment (University of Wisconsin-Madison) are focused on studying EBWs for heating and current drive. On NSTX, two remotely steered, quad-ridged antennas have been installed to measure 8-40 GHz (fundamental, second and third harmonics) thermal EBW emission (EBE) via the oblique B-X-O mode conversion process. This diagnostic has been successfully used to map the EBW mode conversion efficiency as a function of poloidal and toroidal angles on NSTX. Experimentally measured mode conversion efficiencies of 70±20% have been measured for 15.5 GHz (fundamental) emission in L-mode discharges, in agreement with a numerical EBE simulation. However, much lower mode conversion efficiencies of 25±10% have been measured for 25 GHz (second harmonic) emission in L-mode plasmas. Numerical modeling of EBW propagation and damping on the very-low aspect ratio PEGASUS Toroidal Experiment has been performed using the GENRAY ray-tracing code and CQL3D Fokker-Planck code in support of planned EBW heating and current drive (EBWCD) experiments. Calculations were performed for 2.45 GHz waves launched with a 10 cm poloidal extent for a variety of plasma equilibrium configurations. Poloidal launch scans show that driven current is maximum when the poloidal launch angle is between 10 and 25 degrees
Generating functions for q-Bernstein, q-Meyer-Konig-Zeller and q-Beta basis
Gupta, Vijay; Kim, Taekyun; Choi, Jongsung; Kim, Young-Hee
2010-01-01
The present paper deals with the q-analogue of Bernstein, Meyer-Konig-Zeller and Beta operators. Here we estimate the generating functions for q-Bernstein, q-Meyer-Konig-Zeller and q-Beta basis functions.
Proofs of the Cantor-Bernstein theorem a mathematical excursion
Hinkis, Arie
2013-01-01
This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schröder, Bernstein, Borel, Zermelo, Poincaré, Russell, Peano, the Königs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos’ celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly an...
77 FR 75200 - AllianceBernstein Active ETFs, Inc., et al.; Notice of Application
2012-12-19
... COMMISSION AllianceBernstein Active ETFs, Inc., et al.; Notice of Application December 13, 2012. AGENCY...Bernstein Active ETFs, Inc. (``Corporation''), AllianceBernstein L.P. (``Adviser''), and ALPS Distributors... Business Day's NAV and the market closing price or mid-point of the bid/ask spread at the time...
Electron-Bernstein Waves in Inhomogeneous Magnetic Fields
Armstrong, R. J.; Frederiksen, Å.; Pécseli, Hans;
1984-01-01
The propagation of small amplitude electron-Bernstein waves in different inhomogeneous magnetic field geometries is investigated experimentally. Wave propagation towards both cut-offs and resonances are considered. The experimental results are supported by a numerical ray-tracing analysis. Spatial...... enhancements of the wave amplitude are interpreted as a result of caustic formation....
Pointwise Approximation for the Iterated Boolean Sums of Bernstein Operators
HUO Xiao-yan; LI Cui-xiang; YAO Qiu-mei
2013-01-01
In this paper,with the help of modulus of smoothness ω2r(4)(f,t),we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator Bnn and obtain direct and inverse theorems when 1-1/r ≤ λ ≤ 1,r ∈ N.
On -Euler Numbers Related to the Modified -Bernstein Polynomials
Min-Soo Kim; Daeyeoul Kim; Taekyun Kim
2010-01-01
We consider q-Euler numbers, polynomials, and q-Stirling numbers of first and second kinds. Finally, we investigate some interesting properties of the modified q-Bernstein polynomials related to q-Euler numbers and q-Stirling numbers by using fermionic p-adic integrals on ℤp.
Ion Bernstein waves in the magnetic reconnection region
Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.
2016-01-01
Four-dimensional energy spectra and a diagram for dispersion relations are determined for the first time in a magnetic reconnection region in the magnetotail using data from four-spacecraft measurements by the Cluster mission on a spatial scale of 200 km, about 0.1 ion inertial lengths. The energy spectra are anisotropic with an extension in the perpendicular direction and axially asymmetric with respect to the mean magnetic field. The dispersion diagram in the plasma rest frame is in reasonably good agreement with the ion Bernstein waves at the second and higher harmonics of the proton gyrofrequency. Perpendicular-propagating ion Bernstein waves likely exist in an outflow region of magnetic reconnection, which may contribute to bifurcation of the current sheet in the outflow region.
Thermal Electron Bernstein Wave Emission Measurements on NST
Diem, S.J.; Taylor, G.; Efthimion, P.; LeBlanc, B.P.; Philips, C.K.; Caughman, J.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, Josef; Urban, Jakub
2006-01-01
Roč. 51, č. 7 (2006), s. 134. ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania, 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf
The nonlinear Bernstein-Schr\\"odinger equation in Economics
Galichon, Alfred; Kominers, Scott; WEBER, Simon
2015-01-01
In this paper we relate the Equilibrium Assignment Problem (EAP), which is underlying in several economics models, to a system of nonlinear equations that we call the "nonlinear Bernstein-Schr\\"odinger system", which is well-known in the linear case, but whose nonlinear extension does not seem to have been studied. We apply this connection to derive an existence result for the EAP, and an efficient computational method.
The nonlinear Bernstein-Schr\\"odinger equation in Economics
Alfred Galichon; Scott Kominers; Simon Weber
2015-01-01
In this paper we relate the Equilibrium Assignment Problem (EAP), which is underlying in several economics models, to a system of nonlinear equations that we call the "nonlinear Bernstein-Schr\\"odinger system", which is well-known in the linear case, but whose nonlinear extension does not seem to have been studied. We apply this connection to derive an existence result for the EAP, and an efficient computational method.
Electron Bernstein Wave Research on NSTX and PEGASUS
Diem, S.J.; Taylor, G.; Caughman, J.; Bigelow, T.S.; Garstka, G.D.; Harvey, R.W.; LeBlanc, B.P.; Preinhaelter, Josef; Sabbagh, S.A.; Urban, Jakub; Wilgen, J.
Vol. 933. Melville: -, 2007 - (Ryan, P.; Rasmussen, D.), s. 331-334 ISBN 978-0-7354-0444-1. ISSN 0094-243X. [Topical Conference on Radio Frequency Power in Plasmas/17th./. Clearwater (US), 07.05.2007-09.05.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Cyclotron Heating * Tokamaks * Electron Bernstein waves Subject RIV: BL - Plasma and Gas Discharge Physics
Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS
Taylor, G.; Caughman, J.B.; Carter, M.D.; Diem, S.; Efthimion, P.C.; Harvey, R.W.; Preinhaelter, Josef; Wilgen, J.B.; Bigelow, T.S.; Ellis, R.A.; Ershov, N.M.; Fonck, R.J.; Fredd, E.; Gartska, G.D.; Hosea, J.; Jaeger, F.; LeBlanck, B.; Lewicki, B.T.; Philips, C.K.; Ram, A.K.; Rasmussen, D.A.; Smirnov, A.P.; Urban, Jakub; Wilson, J.R.
USA: The University of Texas at Austin, 2006, s. 1-24. [Innovative Confinement Concepts Workshop. Austin,Texas (US), 13.02.2006-16.02.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://icc2006.ph.utexas.edu/proceedings.php http://icc2006.ph.utexas.edu/uploads/29/icc06_taylor_ebw_022706.pdf
Semiparametric Bernstein-von Mises for the error standard deviation
Jonge, de, B.; Zanten, van, M.
2013-01-01
We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein-von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a hierarchical spline-based prior on the regression function and an independent prior on the error variance, can simultaneously achieve adaptive, rate-optimal estimation of a smooth, multivariate regr...
Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles
Franklin, F R
1999-01-01
In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode- Converted Ion Bernstein Waves (MCIBWs) and Alfvé n Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control...
A new coupling scheme of ion Bernstein waves (IBW) to plasma ions, by mode conversion of fast waves, has been tested in D-3He plasma of the JET tokamak. Injecting 4.8 MW ion cyclotron radio frequency power, 1.8 MW IBW power absorption on deuterons occurs at the fundamental cyclotron resonant layer, which is located in the high field side near the plasma edge (R = 2.1 m). Plasma sheared flows, ponderomotively induced by IBW, are observed near the edge, producing an ExB shearing rate of 5 MHz, higher than the threshold expected for turbulence suppression. Transport analysis shows a 70% reduction of the thermal diffusivity of both electrons and ions in the edge plasma region where the sheared flows are observed. (author)
Solutions of differential equations in a Bernstein polynomial basis
Idrees Bhatti, M.; Bracken, P.
2007-08-01
An algorithm for approximating solutions to differential equations in a modified new Bernstein polynomial basis is introduced. The algorithm expands the desired solution in terms of a set of continuous polynomials over a closed interval and then makes use of the Galerkin method to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of Bernstein polynomials and the procedure is much simpler compared to the piecewise B spline method for solving differential equations. A recursive definition of the Bernstein polynomials and their derivatives are also presented. The current procedure is implemented to solve three linear equations and one nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations.
Verma, Prabal Singh; Sengupta, Sudip; Kaw, Predhiman
2012-07-01
A one-dimensional particle in cell simulation of large amplitude plasma oscillations is carried out to explore the physics beyond wave breaking in a cold homogeneous unmagnetized plasma. It is shown that after wave breaking, all energy of the plasma oscillation does not end up as random kinetic energy of particles, but some fraction, which is decided by Coffey's wave breaking limit in warm plasma, always remains with two oppositely propagating coherent Bernstein-Greene-Kruskal like modes with supporting trapped particle distributions. The randomized energy distribution of untrapped particles is found to be characteristically non-Maxwellian with a preponderance of energetic particles.
A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks
Urban, Jakub; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George
2011-01-01
The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-beta regimes, in which the usual EC O- and X- modes are cut-off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves---controllable localized H&CD that can be utilized for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled...
B. Jones; G. Taylor; P.C. Efthimion; T. Munsat
2004-01-28
Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic.
Bernstein - Von Mises theorem and its application in survival analysis
Timková, Jana
2010-01-01
Roč. 22, č. 3 (2010), s. 115-122. ISSN 1210-8022. [16. letní škola JČMF Robust 2010. Králíky, 30.01.2010-05.02.2010] R&D Projects: GA AV ČR(CZ) IAA101120604 Institutional research plan: CEZ:AV0Z10750506 Keywords : Cox model * bayesian asymptotics * survival function Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2010/SI/timkova-bernstein - von mises theorem and its application in survival analysis.pdf
Brian Davies
2003-01-01
Neste texto o autor procura elucidar o modo pelo qual Basil Bernstein utilizou e enriqueceu a contribuição de Durkheim para a análise de questões abordadas pela sociologia da educação.The author attempts to elucidate how Basil Bernstein used and enhanced Durkheim's contribution to the analysis of issues addressed by the sociology of education.
A high power radio wave, launched into the polar ionosphere at angle θ with the earth's magnetic field from a ground-based transmitter in the vicinity of twice the electron cyclotron frequency (2.75 MHz), is reported to create an airglow at an effective radiated power (ERP) = 10 MW. We interpret this result as a consequence of parametric decay of the radio wave into an electron Bernstein wave (EBW) and an ion acoustic wave (IAW). The oscillatory velocity of electrons due to the pump couples with the density perturbation due to the IAW to produce a current, driving the Bernstein mode. The latter, in connection with the pump, exerts a ponderomotive force on electrons, driving the IAW. The growth rate of the parametric instability is maximum for θ = 0. At the same time, for any given value of θ, the growth rate increases with b(=k12vth2/2ωc2) and attains a maximum around b ∼ 2, then falls gradually. The EBW produces energetic electrons via cyclotron damping. These electrons collide with the neutral atoms of the plasma to excite them to higher energy states. As the excited atoms return to lower energy states, they radiate in the visible
Lower hybrid and Electron Bernstein Wave current drive experiments in MST
Inductive current profile modification in MST has been successful in reducing fluctuations and transport but is transient and radially non-localized. Current profile control with rf waves offers steady and more precise control. Studies of lower hybrid (LH) wave and electron Bernstein wave (EBW) injection are underway. This first application of LH waves to the high dielectric RFP presents challenges in rf physics, e.g., limited wave accessibility. The novel interdigital line antenna, chosen because of stringent vacuum vessel constraints, operates at 800 MHz and nparallel ∼ 7.5 parameters chosen to drive current in the edge (r/a ∼ 0.8) with strong single-pass absorption. Extensive antenna loading studies have been performed to validate the design up to the present source power limit of 225 kW with up to 125 kW being coupled to the plasma. Hard-x-ray emission with energies as high as 50 keV has been observed. The emission is spatially localized to the antenna location with a toroidal spread of about 60 degrees. This interesting toroidal localization of the emission that occurs in the dominantly poloidal magnetic field of the RFP could result from the formation of a localized current structure. Presently, a 250 kW system designed to heat electrons and drive current via the electron Bernstein wave is in operation on the MST reversed field pinch. The antenna is a grill of four half-height S-band waveguides with each arm powered by a separate, phase controlled traveling wave tube amplifier at 3.6 GHz. The X-mode polarization is being used to launch electromagnetic waves that mode convert to EBWs in the edge plasma. Coupling to the plasma (as measured by the reflected power ratio) is dependent on the relative phasing between adjacent waveguides. The total reflected power can be maintained near the 10% level. The antenna face is outfitted with a pair of triple Langmuir probes to measure local electron density; the density gradient at the upper hybrid resonance
$L^p$ Bernstein Inequalities and Inverse Theorems for RBF Approximation on $\\mathbb{R}^d$
Ward, John Paul
2010-01-01
Bernstein inequalities and inverse theorems are a recent development in the theory of radial basis function(RBF) approximation. The purpose of this paper is to extend what is known by deriving $L^p$ Bernstein inequalities for RBF networks on $\\mathbb{R}^d$. These inequalities involve bounding a Bessel-potential norm of an RBF network by its corresponding $L^p$ norm in terms of the separation radius associated with the network. The Bernstein inequalities will then be used to prove the corresponding inverse theorems.
Generation of magnetospheric radiation by decay of Bernstein waves
Recent observations show that extremely narrow emission lines are present in the spectrum of the terrestrial myriametric radiation, which on the basis of earlier observations has been characterized as nonthermal contiunuum radiation. The occurance of these monochromatic emissions is not predicted by previoiusly published theories for the generation of the radiaiton. A linear instability, exciting low frequency electrostatic turbulence, is required by theories invoking a nonlinear coalescence to produce the radiation, but there are no conclusive observations associating low frequency electrostatic waves with the sources of myriametric radiation. In this study, the possibility that the radiation is produced by a nonlinear decay of electrostatic Bernstein waves with frequency near the upper hybrid frequency is considered. This mechanism can explain the narrow spectral lines, and does not require a linear instability at low frequencies. (Author)
A teoria de Basil Bernstein: alguns aspectos fundamentais
Ana Maria Morais
2007-12-01
Full Text Available The article begins with a reference to the pieces of work that Basil Bernstein considered to have been the landmarks of the evolution of his thought. This is followed by a detailed description of the two models that contain the main concepts of his theory – Model of Cultural Reproduction and Transformation and Model of Pedagogic Discourse – where the theoretical meaning of these models and concepts is explained and where are given some examples of how to put them into practice at the level of pedagogic texts and contexts. The article also includes the most recent developments of Bernstein’s thought by explaining his ideas about the forms discourses can take – Vertical and Horizontal Discourses. Finally, Bernstein’s theory is approached within the framework of the empirical research, highlighting his epistemological positioning and explicating the methodological model that he suggested should be the driving force of any theory.
Ion Bernstein wave experiments on the Alcator C tokamak
Ion Bernstein wave experiments are carried out on the Alcator C tokamak to study wave excitation, propagation, absorption, and plasma heating due to wave power absorption. It is shown that ion Bernstein wave power is coupled into the plasma and follows the expected dispersion relation. The antenna loading is maximized when the hydrogen second harmonic layer is positioned just behind the antenna. Plasma heating results at three values of the toroidal magnetic field are presented. Central ion temperature increases of ΔT/sub i//Ti /approx lt/ 0.1 and density increases Δn/n 6s/sup /minus/1/ for plasmas within the density range 0.6 /times/ 1020m/sup /minus/3/ ≤ /bar n//sub e/ ≤ 4 /times/ 1020m/sup /minus/3/ and magnetic fields 2.4 ≥ ω/Ω/sub H/ ≥ 1.1. The density increases is usually accompanied by an improvement in the global particle confinement time relative to the Ohmic value. The ion heating rate is measured to be ΔT/sub i//P/sub rf/ ≅ 2-4.5 eV/kW at low densities. At higher densities /bar n//sub e/ ≤ 1.5 /times/ 1020m/sup /minus/3/ the ion heating rate dramatically decreases. It is shown that the decrease in the ion heating rate can be explained by the combined effects of wave scattering through the edge turbulence and the decreasing on energy confinement of these discharges with density. The effect of observed edge turbulence is shown to cause a broadening of the rf power deposition profile with increasing density. It is shown that the inferred value of the Ohmic ion thermal conduction, when compared to the Chang-Hinton neoclassical prediction, exhibits an increasing anomaly with increasing plasma density
Design and testing of an electron Bernstein wave emission radiometer for the TJ-II Stellarator
Efficient Electron Bernstein wave (EBW) mode conversion is important for heating dense plasmas in TJ-II. The O-X-B mode conversion scenario is being considered for heating plasmas with densities over 1,3 x 1019 m-3, which will be very interesting to study high-density physics and for heating NBI plasmas. Measurement of the thermal EBW emission from the plasma allows the EBW mode conversion efficiency to be determined, and also has the potential to offer a diagnostic for measuring electron temperature profile evolution in overdense plasmas. A dual-polarized quad-ridged broadband horn with a focusing lens will be used to measure the EBW emission at 28 GHz on TJ-II. A focused beam is needed to achieve efficient coupling at the mode conversion layer. Emission from the plasma is reflected from a steerable internal mirror, propagates through a glass lens, and is focused on the horn. The field pattern from the horn-lens combination has been measured as a function of horn-lens spacing and lens focal length with a 3-D scanning system in an effort to minimize the beam waist at the plasma edge. Beam waist sizes have been measured at distances of up to 80 cm from the lens. Details of the experimental results and future plans will be presented. [Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. A part of this work is performed under support of Spanish 'Subdireccion General de Proyectos de Investigacion, Ministerio de Educacion y Ciencia' with reference ENE2004-06957]. (author)
Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak
Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced
q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli polynomials
Kim, T.
2010-01-01
In this paper, we give new identities involving Phillips q-Bernstein polynomials and we derive some interesting properties of q-Berstein polynomials associated with q-Stirling numbers and q-Bernoulli polynomials.
Ryoo CS
2010-01-01
Full Text Available The purpose of this paper is to give some properties of several Bernstein type polynomials to represent the fermionic -adic integral on . From these properties, we derive some interesting identities on the Euler numbers and polynomials.
Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak
Okamoto, M.; Ono, M.
1985-11-01
Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced.
Bernstein dual-Petrov-Galerkin method: application to 2D time fractional diffusion equation
Jani, Mostafa; Babolian, Esmail
2016-01-01
In this paper, we develop a dual-Petrov-Galerkin method using Bernstein polynomials. The method is then implemented for the numerical simulation of the two-dimensional subdiffusion equation. The method is based on a finite difference discretization in time and a spectral method in space utilizing a suitable compact combinations of dual Bernstein basis as the test functions and the Bernstein polynomials as the trial ones. We derive the exact sparse operational matrix of differentiation for the dual Bernstein basis which provides a matrix-based approach for spatial discretization of the problem. It is also shown that the proposed method leads to banded linear systems. Finally some numerical examples are provided to show the efficiency and accuracy of the method.
On the approximation properties of bivariate $(p, q)-$Bernstein operators
Karaisa, Ali
2016-01-01
In the present study, we have given a corrigendum to our paper on the approximation properties of bivariate $(p, q)-$Bernstein operators. Recently, we \\cite{kar} have defined the bivariate $(p, q)-$Bernstein operators. Later, we have aware of Acar et. al \\cite{acar} already have given some moments. In this case, we have revised \\cite[Lemma 2.3]{kar}.
Solution of the Lane-Emden Equation Using the Bernstein Operational Matrix of Integration
Narayan Kumar; Pandey, Rajesh K.; Carlo Cattani
2011-01-01
Lane-Emden's equation has fundamental importance in the recent analysis of many problems in relativity and astrophysics including some models of density profiles for dark matter halos. An efficient numerical method is presented for linear and nonlinear Lane-Emden-type equations using the Bernstein polynomial operational matrix of integration. The proposed approach is different from other numerical techniques as it is based on the Bernstein polynomial integration matrix. Some illustrative exam...
Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles
Heeter, R F
1999-01-01
In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...
Ion Bernstein wave antenna loading measurements on the DIII-D tokamak
Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Porkolab, M.; Chiu, S. C.; Cary, W. P.; Prater, R.
1993-04-01
Antenna loading measurements carried out during high power ion Bernstein wave (IBW) heating experiments on the DIII-D tokamak indicate that efficient, direct coupling to the IBW at ω lesssim 2ωci as predicted by linear coupling theory did not occur. Whereas strong peaking in the loading resistance near cyclotron harmonics is predicted for high edge densities (ω front of the antenna, thus allowing coupling to the cold plasma lower hybrid wave (LHW). A linear LHW coupling code including the modified density profile due to the ponderomotive force reproduces the measured dependence of antenna loading on toroidal magnetic field, edge density, antenna frequency and antenna phasing. Further evidence for the ponderomotive force is obtained from reactive loading measurements which indicate that the plasma is pushed away from the antenna as the radiofrequency power level is increased. The results indicate that the lack of central ion heating observed during DIII-D IBW experiments may be due to a lack of efficient mode transformation from the coupled LHW to a centrally propagating IBW, possibly as a result of nonlinear mechanism(s)
Uchida Masaki
2015-01-01
Full Text Available An extremely overdense special Tokamak plasma has been non-inductively formed and maintained by electron Bernstein (EB wave heating and current drive in the Low Aspect ratio Torus Experiment (LATE device. The plasma current reaches 12 kA and the line-averaged electron density exceeds 7 times the plasma cut off density by injecting a 2.45 GHz microwave power of 60 kW. Such a highly overdense plasma is obtained when the upper hybrid resonance layer lies to the higher field side of the 2nd harmonic ECR layer, which may realize a good coupling to EB waves at their first propagation band. The effect of the injection polarization on the mode conversion rate to EB waves at the extremely overdense regime has been investigated and an improvement in the plasma current is observed.
Active core profile and transport modification by application of Ion Bernstein Wave power in PBX-M
Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large triangledown ne, triangledown Te, triangledown vphi, and triangledown Ti, delimiting the confinement zone. This regime is reminiscent of the H(high)-mode but with a confinement zone moved inwards. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhanced NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to H-mode) and better beam penetration. Bootstrap current fractions of up to 0.32--0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma
MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation
Howard Daniel
2006-01-01
Full Text Available Stochastic Bernstein (SB approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned (for constant or tuned with evolutionary computation (for .
李翠香; 任孟霞
2007-01-01
本文利用光滑模及最佳逼近多项式的性质,研究了Bernstein-Kantorovich算子的迭代布尔和对Lp[0,1]中的函数的逼近性质,得到了逼近正定理,弱逆不等式及等价定理.
Boardsen, S. A.; Kim, E.-H.; Raines, J. M.; Slavin, J. A.; Gershman, D. J.; Anderson, B. J.; Korth, H.; Sundberg, T.; Schriver, D.; Travnicek, P.
2015-06-01
We show that ~1 Hz magnetic compressional waves observed in Mercury's inner magnetosphere could be interpreted as ion-Bernstein waves in a moderate proton beta ~0.1 plasma. An observation of a proton distribution with a large planetary loss cone is presented, and we show that this type of distribution is highly unstable to the generation of ion-Bernstein waves with low magnetic compression. Ray tracing shows that as these waves propagate back and forth about the magnetic equator; they cycle between a state of low and high magnetic compression. The group velocity decreases during the high-compression state leading to a pileup of compressional wave energy, which could explain the observed dominance of the highly compressional waves. This bimodal nature is due to the complexity of the index of refraction surface in a warm plasma whose upper branch has high growth rate with low compression, and its lower branch has low growth/damping rate with strong compression. Two different cycles are found: one where the compression maximum occurs at the magnetic equator and one where the compression maximum straddles the magnetic equator. The later cycle could explain observations where the maximum in compression straddles the equator. Ray tracing shows that this mode is confined within ±12° magnetic latitude which can account for the bulk of the observations. We show that the Doppler shift can account for the difference between the observed and model wave frequency, if the wave vector direction is in opposition to the plasma flow direction. We note that the Wentzel-Kramers-Brillouin approximation breaks down during the pileup of compressional energy and that a study involving full wave solutions is required.
A critique of Bernstein's beyond objectivism and relativism: science, hermeneutics, and praxis.
Matusitz, Jonathan; Kramer, Eric
2011-06-01
This analysis comments on Bernstein's lack of clear understanding of subjectivity, based on his book, Beyond Objectivism and Relativism: Science, Hermeneutics, and Praxis. Bernstein limits his interpretation of subjectivity to thinkers such as Gadamer and Habermas. The authors analyze the ideas of classic scholars such as Edmund Husserl and Friedrich Nietzsche. Husserl put forward his notion of transcendental subjectivity and phenomenological ramifications of the relationship between subjectivity and objectivity. Nietzsche referred to subjectivity as "perspectivism," the inescapable fact that any and all consciousnesses exist in space and time. Consciousness is fundamentally constituted of cultural, linguistic, and historical dimensions. PMID:21874130
Approximation and Shape Preserving Properties of the Bernstein Operator of Max-Product Kind
Barnabás Bede
2009-01-01
question of improving the order of approximation 1√(;1/ is raised. The first aim of this note is to obtain this order of approximation but by a simpler method, which in addition presents, at least, two advantages: it produces an explicit constant in front of 1√(;1/ and it can easily be extended to other max-prod operators of Bernstein type. However, for subclasses of functions including, for example, that of concave functions, we find the order of approximation 1(;1/, which for many functions is essentially better than the order of approximation obtained by the linear Bernstein operators. Finally, some shape-preserving properties are obtained.
Localized electron heating experiments by ion Bernstein wave in the TNT-A tokamak
Plasma heating by ion Bernstein wave in the range of 2 ωD D is investigated in deuterium dominant plasma of the TNT-A tokamak. The localized electron heating is observed at the harmonic (3 ωD) and subharmonic (2.5 ωD) resonance layers, while the electron heating on the whole plasma region is observed at ω = 2 ωD. It is also shown that the heating is efficient and heating layer is localized by ion Bernstein wave in comparison with fast magnetosonic wave. (author)
Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials
Saito, Morihiko
2015-01-01
We show that there is a pair of homogeneous polynomials such that the sets of roots of their Bernstein-Sato polynomials which are strictly supported at the origin are different although the sets of roots which are not strictly supported at the origin are the same and moreover their graded Milnor algebras have the same Hilbert series. This shows that the roots of the Bernstein-Sato polynomials strictly supported at the origin cannot be determined uniquely by the Hilbert series of the Milnor al...
Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers
Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com
2009-05-11
A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.
Code Switching and Sexual Orientation: A Test of Bernstein's Sociolinguistic Theory
Lumby, Malcolm E.
1976-01-01
Bernstein's theory was tested in the homosexual's "closed" community to determine code-switching ability and its relationship to jargon. Subjects told a story based on homoerotic photographs where knowledge of sexual orientation was varied. Results suggest that homosexual homophyly encouraged elaboration. (Author)
Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval
Alford, John A., II
2012-01-01
We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.
Solving Bernstein's Problem: A Proposal for the Development of Coordinated Movement by Selection.
Sporns, Olaf; Edelman, Gerald M.
1993-01-01
In the 1930s, Bernstein pointed out that more than one motor signal can trigger the same physical movement and that identical motor signals can lead to different movements, a dilemma that continues to puzzle scientists. Based on results from computer simulations, posits that these motor signals can be grouped into categories that correspond to…
Measurements of Intrinsic Ion Bernstein Waves in a Tokamak by Collective Thomson Scattering
Korsholm, Søren Bang; Stejner Pedersen, Morten; Bindslev, Henrik; Furtula, Vedran; Leipold, Frank; Meo, Fernando; Michelsen, Poul; Moseev, Dmitry; Nielsen, Stefan Kragh; Salewski, Mirko; de Baar, M.; Delabie, E.; Kantor, M.; Bürger, A.
2011-01-01
In this Letter we report measurements of collective Thomson scattering (CTS) spectra with clear signatures of ion Bernstein waves and ion cyclotron motion in tokamak plasmas. The measured spectra are in accordance with theoretical predictions and show clear sensitivity to variation in the density...
Iterates of Bernstein Type Operators on a Triangle with All Curved Sides
Teodora Cătinaş
2014-01-01
Full Text Available We consider some Bernstein-type operators as well as their product and Boolean sum for a function defined on a triangle with all curved sides. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.
Iterates of Bernstein Type Operators on a Triangle with All Curved Sides
Teodora Cătinaş
2014-01-01
We consider some Bernstein-type operators as well as their product and Boolean sum for a function defined on a triangle with all curved sides. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.
Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi
2009-02-01
To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic. PMID:19256646
To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.
Preliminary Observation on Coordination of Pellet Injection and Ion Bernstein Wave on a HT-7 Tokamak
杨愚; 赵燕平; 李建刚; 万宝年; 罗家融; 辜学茂
2002-01-01
A pellet injection (PI) experiment was performed during the application of the ion Bernstein wave on a HT-7tokamak. A preliminary coordination effect was observed. With a lower wave power, shortly after PI, the couplingof the wave was enhanced, and the particle confinement was improved. With higher power, off-axis heating for 15% at about a/3 in the low field side was observed.
Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX
Harvey, R. W. [CompX, Del Mar, CA (United States)
2009-11-12
This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over
Ion Bernstein wave heating experiments on PBX-M
A multi-megawatt level IBWH experiment on PBX-M1 is in preparation. The goal of the expriment is to contribute to the attainment of the high beta, second regime of stability. The high power IBWH will be used as an additional heating power source to supplement the existing 6 MW of NBI power to achieve higher β values in PBX-M. Bulk ion heating via IBW excitation with localized, off-axis deposition can be used to modify the pressure profile for improved plasma stability at high β. The high power off-axis heating in principle can generate a significant boostrap current 2(∼30%) in the outer region of the PBX-M plasma complementing LHCD for broadening the current profiles. It is also interesting to note that the available rf power (∼4 MW) is comparable to the predicted power levels required for the rf ponderomotive stabilization of pressure driven modes (such as the high-n ballooning3 and external kink modes4) for the closely fitted stabilizing shell configuration of PBX-M. There are, however, several experimental factors that require careful consideration in planning a high power experiment. Four important factors are discussed here in some detail: 1. Antenna location. 2. Effects of parallel electric fields. 3. Modification of launched wave spectrum due to antenna misalignement 4. Possible interference of wave launching by protective limiters
Full text: In LHD, electron Bernstein wave (EBW) heating was successfully demonstrated by two ways of mode conversion to EBWs from injected EC-waves, by so-called slow-XB and OXB techniques. To realize the excitation of EBWs by the slow-XB technique, EC-waves in X-mode polarization should be injected to plasmas from high magnetic field side (HFS). In LHD, newly installed inner-vessel mirror close to a helical coil is used for the HFS injection. Evident increases in Te at the plasma core region and Wp were caused by the HFS injection with 0.18 s pulse width to a plasma with ne(0) of 24 x 1019 m-3, that is, 3.3 times higher than the plasma cut-off density for O-mode waves, and 1.6 x higher than the left-hand cut-off density of 14.7 x 1019 m-3 for slow-X-mode waves. Thus, the heating effects especially the increase in Te at the plasma core region should be attributed to the mode-converted EBWs, not to the X- or O-mode waves. For excitation of EBWs by the OXB technique, O-mode waves should be injected from the low magnetic filed side toward the so-called 'mode conversion window' . Two pulses of 77 GHz, 1.05 MW EC-wave (0.1 s pulse width each with a 0.1 s interval) in O-mode polarization were injected to an NB-sustained plasma, aiming at the mode conversion window calculated in advance. With both of the two ECH pulses, increases in Wp and mitigations of decreasing trend in Te measured with ECE are recognized. The line average electron density continuously increased during the ECH pulse injection. At the start timing of the 1st pulse, ne(0) was equal to the O-mode cut-off density, 7.35 x 1019 m-3, and ne(0) gradually increased to 7.7 x 1019 m-3 at the end of the 2nd pulse. The heating efficiency Pabs/Pech is evaluated as ∼ 15%. Using the high-power, long-pulse 77 GHz ECH system, 2nd harmonic on-axis ECCD experiments with 775 kW injection power and the line average electron density of 0.3 x 1019 m-3 were conducted. At optimum beam directions, maximum EC-driven currents
On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution
Alan Stark
2012-01-01
Full Text Available Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed.
On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution.
Stark, Alan; Seneta, Eugene
2012-04-01
Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions) from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed. PMID:22888285
The new features of ion Bernstein Wave Heating in JIPP T-IIU tokamak
Ion Bernstein Wave Heating experiment was conducted in JIPP T-IIU tokamak. A relatively high frequency, 130 MHz, was used to reduce impurity influx and IBW power up to 400kW was injected without plasma disruption. It was found that the radial profiles of electron density, electron temperature, and ion temperature are all peaked during the IBWH. It was also found that ion distribution function does not have high energy tail above certain critical energy. These are favorable and useful features in optimizing fusion reactivity in reactor applications. (author)
Bernstein diffusions for a class of linear parabolic partial differential equations
Vuillermot, Pierre-A.; Zambrini, Jean-Claude
2013-01-01
In this article we prove the existence of Bernstein processes which we associate in a natural way with a class of non-autonomous linear parabolic initial- and nal-boundary value problems de ned in bounded convex subsets of Euclidean space of arbitrary dimension. Under certain conditions regarding their joint endpoint distributions, we also prove that such processes become reversible Markov di¤usions. Furthermore we show that those di¤usions satisfy two Itô equations for some suitably constru...
Transport Implementation of the Bernstein-Vazirani Algorithm with Ion Qubits
Fallek, Spencer; McMahon, Brian; Maller, Kara; Brown, Kenneth; Amini, Jason
2016-01-01
Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture relies upon ion transport and can readily be expanded to larger systems. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.
PAC-Bayes-Bernstein Inequality for Martingales and its Application to Multiarmed Bandits
Seldin, Yevgeny; Auer, Peter; Laviolette, François; Shawe-Taylor, John
2011-01-01
We combine PAC-Bayesian analysis with a Bernstein-type inequality for martingales to obtain a result that makes it possible to control the concentration of multiple (possibly uncountably many) simultaneously evolving and interdependent martingales. We apply this result to derive a regret bound for the multiarmed bandit problem. Our result forms a basis for integrative simultaneous analysis of exploration-exploitation and model order selection trade-offs. It also opens a way for applying PAC-Bayesian analysis in other fields, where sequentially dependent samples and limited feedback are encountered.
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs
A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks
Urban, Jakub; Decker, J.; Peysson, Y.; Preinhaelter, Josef; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.
2011-01-01
Roč. 51, č. 8 (2011), 083050-083050. ISSN 0029-5515 R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : spherical tokamak * electron Bernstein wave (EBW) * heating * current drive * electron cyclotron wave Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.090, year: 2011 http://iopscience.iop.org/0029-5515/51/8/083050/pdf/0029-5515_51_8_083050.pdf
Power Deposition of Ion Bernstein Wave Heating on the HT-7 Tokamak
BAO Yi; LI Jian-Gang; ZHAO Yan-Ping; CUI Ning-Zhuo
2001-01-01
Effcient direct heating of electrons by ion Bernstein waves has been obtained on the HT-7 tokamak. Off-axis heating, which is considered to be the result of electron Landau damping, was observed and studied by means of soft x-ray imaging. The measured power deposition was found to be independent of magnetic field through scanning the toroidal field from 1.5 to 1.7 T, in contrast to the ion heating results. It is suggested that the electron Landau damping is dominant in this heating regime.
Laqua, H.P.; Andruczyk, D.; Marsen, S.; Otte, M.; Podoba, Y.; Preinhaelter, Josef; Urban, Jakub
Geneva: IAEA, 2008, EXP6-18-EXP6-18. ISBN N. [IAEA Fusion Energy Conference/22nd./. Geneva (CH), 13.10.2008-18.10.2008] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Stellarators * Electron Bernstein waves * Simulation * WEGA Subject RIV: BL - Plasma and Gas Discharge Physics http://www-pub.iaea.org/MTCD/Meetings/FEC2008/ex_p6-18.pdf
Transfinite diameter of Bernstein sets in
Bialas-Cież Leokadia; Jedrzejowski Mieczysław
2002-01-01
Let be a compact set in satisfying the following generalized Bernstein inequality: for each such that , for each polynomial of degree where is a constant independent of and , is an infinite set of natural numbers that is also independent of and . We give an estimate for the transfinite diameter of the set : For satisfying the usual Bernstein inequality (i.e., ), we prove that
Extracting the QCD Cutoff Parameter Using the Bernstein Polynomials and the Truncated Moments
A. Mirjalili
2014-01-01
Full Text Available Since there are not experimental data over the whole range of x-Bjorken variable, that is, 0
Ion Bernstein waves in a plasma with a kappa velocity distribution
Using a Vlasov-Poisson model, a numerical investigation of the dispersion relation for ion Bernstein waves in a kappa-distributed plasma has been carried out. The dispersion relation is found to depend significantly on the spectral index of the ions, κi, the parameter whose smallness is a measure of the departure from thermal equilibrium of the distribution function. Over all cyclotron harmonics, the typical Bernstein wave curves are shifted to higher wavenumbers (k) if κi is reduced. For waves whose frequency lies above the lower hybrid frequency, ωLH, an increasing excess of superthermal particles (decreasing κi) reduces the frequency, ωpeak, of the characteristic peak at which the group velocity vanishes, while the associated kpeak is increased. As the ratio of ion plasma to cyclotron frequency (ωpi/ωci) is increased, the fall-off of ω at large k is smaller for lower κi and curves are shifted towards larger wavenumbers. In the lower hybrid frequency band and harmonic bands above it, the frequency in a low-κi plasma spans only a part of the intraharmonic space, unlike the Maxwellian case, thus exhibiting considerably less coupling between adjacent bands for low κi. It is suggested that the presence of the ensuing stopbands may be a useful diagnostic for the velocity distribution characteristics. The model is applied to the Earth's plasma sheet boundary layer in which waves propagating perpendicularly to the ambient magnetic field at frequencies between harmonics of the ion cyclotron frequency are frequently observed
McLean, Monica; Abbas, Andrea; Ashwin, Paul
2013-01-01
This paper illustrates how critical use of Basil Bernstein's theory illuminates the mechanisms by which university knowledge, curriculum and pedagogy both reproduce and interrupt social inequalities. To this end, empirical examples are selected from the findings of the ESRC-funded project "Pedagogic Quality and Inequality in University First…
Peng, X; Fang, X; Feng, M; Liu, M; Gao, K; Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin
2002-01-01
Based on ''spectral implementation'' proposed by Madi et al. (J. Chem. Phys. 109, 10603, 1998), we have experimentally realized a pseudo-pure state by the line-selective excitation and a three-qubit Bernstein-Vazirani's algorithm using a carbon-13 analine sample in NMR. The superiority of quantum computation to classical counterpart is well displayed.
Parameter dependence of ray trajectory and damping for the ion Bernstein wave in the TNT-A tokamak
The dependence of ray trajectories and damping on various plasma parameters was studied using three-dimensional ray tracing for an ion Bernstein wave in the TNT-A tokamak. The condition for wave power absorption dominated by electron Landau damping was also estimated. (author)
The O-X-B mode conversion scheme for ECRH of a high-density Tokamak plasma
Hansen, F. R.; Lynov, Jens-Peter; Michelsen, Poul
1985-01-01
A method to apply electron cyclotron resonance heating (ECRH) to a Tokamak plasma with central density higher than the critical density for cut-off of the ordinary mode (O-mode) has been investigated. This method involves two mode conversions, from an O-mode via an extraordinary mode (X-mode) int...... an electron Bernstein mode (B-mode). Radial profiles for the power deposition and the wave-drive current due to the B-waves are calculated for realistic antenna radiation patterns with parameters corresponding to the Danish DANTE Tokamak and to Princeton's PLT....
Ion Bernstein wave heating experiment on JIPPT-II-U device
Ion Bernstein wave heating is investigated in the JIPPT-II-U tokamak plasma, n-bar sub(o) asymptoticaly equals 1.5 x 1013 cm-3, Tsub(eo) asymptoticaly equals 700 eV, and Tsub(io) = 300 eV for Psub(rf) 1-- 100 kW. In a two-ion-species helium-hydrogen plasma, the third harmonics of helium minority cyclotron resonance (deuterium-like) is heated. The background hydrogen ion temperature monitored by charge-exchange shows a significant rise, ΔTsub(i) 1-- 600 eV, when the helium harmonic resonance layer is placed near the center of the plasma. Typical observed hydrogen ion heating quality factor, ΔTsub(i)/Psub(rf)/n-barsub(o), is 1-- 10 eV/kW/1013cm-3. The dependence of ion heating efficiency on rf power, magnetic field and ion concentration is presented. (author)
Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.
2013-09-01
Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.
Electron cyclotron-electron Bernstein wave emission diagnostics for the COMPASS tokamak
The COMPASS tokamak recently started operation at the Institute of Plasma Physics AS CR, v.v.i., Prague. A new 16-channel radiometer, operating alternatively in three frequency bands, has been designed and constructed. The system is prepared for detection of normal electron cyclotron emission (O1 or X2) or oblique electron Bernstein wave emission. The end-to-end calibration method includes all components that influence the antenna radiation pattern. A steady recalibration is possible using a noise generator connected to the radiometer input through a fast waveguide PIN-switch. Measurements of the antenna radiation characteristics (2D electric field) were performed in free space as well as in the tokamak chamber, showing the degradation effect of structures on the Gaussian beam shape. First plasma radiation temperature measurements from low-field circular plasmas are available.
Kinetic simulations of X-B and O-X-B mode conversion
Arefiev, A. V., E-mail: alexey@austin.utexas.edu [Institute for Fusion Studies, The University of Texas, Austin, Texas 78712 (United States); Du Toit, E. J.; Vann, R. G. L. [York Plasma Institute, Department of Physics, University of York, York (United Kingdom); Köhn, A. [IGVP, University of Stuttgart, Stuttgart (Germany); Max Planck Institute for Plasma Physics, Garching (Germany); Holzhauer, E. [IGVP, University of Stuttgart, Stuttgart (Germany); Shevchenko, V. F. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)
2015-12-10
We have performed fully-kinetic simulations of X-B and O-X-B mode conversion in one and two dimensional setups using the PIC code EPOCH. We have recovered the linear dispersion relation for electron Bernstein waves by employing relatively low amplitude incoming waves. The setups presented here can be used to study non-linear regimes of X-B and O-X-B mode conversion.
Harvey, R.W.; Cary, J.R.; Taylor, G.; Barnes, D.C.; Bigelow, T.S.; Coda, S.; Carlsson, J.; Caughman, J.B.; Carter, M.D.; Diem, S.; Efthimion, P.C.; Ellis, R.A.; Ershov, N.M.; Fonck, R.J.; Fredd, E.; Gartska, G.D.; Hosea, J.; Jaeger, F.; LeBlanck, B.; Lewicki, B.T.; Phillips, C.K.; Preinhaelter, Josef; Ram, A.K.; Rasmussen, D.A.; Smirnov, A.P.; Urban, Jakub; Wilgen, J.B.; Wilson, J.R.; Xiang, N.
Čína: IAEA, 2006, TH/P6-11. [IAEA Fusion Energy Conference/21st./. Chengdu, China (CN), 16.10.2006-21.10.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * NSTX * Particle in cell Subject RIV: BL - Plasma and Gas Discharge Physics http://www-pub.iaea.org/MTCD/Meetings/FEC2006/th_p6-11.pdf
Dumitru Baleanu; Mohsen Alipour; Hossein Jafari
2013-01-01
We obtain the approximate analytical solution for the fractional quadratic Riccati differential equation with the Riemann-Liouville derivative by using the Bernstein polynomials (BPs) operational matrices. In this method, we use the operational matrix for fractional integration in the Riemann-Liouville sense. Then by using this matrix and operational matrix of product, we reduce the problem to a system of algebraic equations that can be solved easily. The efficiency and accuracy of the propos...
A. Cardinali; A. Post-Zwicker; F. Paoletti; S. Bernabei; S. Von Goeler; W. Tighe
1998-02-01
The synergistic behavior of lower hybrid and ion Bernstein waves on the Princeton Beta Experiment-Modified tokamak [Phys. Fluids B 2, 1271 (1990)] is experimentally studied using a 2-D hard X-ray camera. The hard X-ray bremsstrahlung emission from suprathermal electrons, generated with lower hybrid current drive, is enhanced during ion Bernstein wave power injection. This enhancement is observed in limited regions of space suggesting the formation of localized current channels. The effects on plasma electrons during combined application of these two types of waves are theoretically investigated using a quasilinear model. The numerical code simultaneously solves the 3-D (R, Z, {Phi}) toroidal wave equation for the electric field (in the WKBJ approximation) and the Fokker-Planck equation for the distribution function in two dimensions (v{sub parallel}, v{sub perpendicular}) with an added quasilinear diffusion coefficient. The radial profile of the non-inductively generated current density, the transmitted power traces and the total power damping curve are calculated. The beneficial effects of a combined utilization of ion Bernstein and lower hybrid waves on the current drive are emphasized. The numerical results are compared with the experimental observations.
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Modification of boundary plasma behavior by Ion Bernstein Wave heating on the HT-7 tokamak
The boundary plasma behavior during Ion Bernstein Wave heating was investigated using Langmuir probe arrays on the HT-7 tokamak. A distinct weak turbulence regime was reproducibly observed in the 30 MHz IBW heated plasmas with RF power larger than 120 kW, which resulted in a particle confinement improvement of a factor of 2. The strong suppression and decorrelation effect of fluctuations resulted in the turbulent particle flux dropping by more than an order of magnitude in the plasma boundary region. An additional inward radial electric field and associated poloidal ExB flows were produced, which could account for the additional poloidal velocity in the electron diamagnetic direction at some radial locations of the boundary plasma. The electrostatic fluctuations were nearly completely decorrelated in the high frequency region and only low frequency fluctuations remained. The poloidal correlation was considerably reduced in the high poloidal wave number region and only the fluctuations with long poloidal wavelength remained. Three-wave nonlinear phase coupling between the whole frequency domain and the very low frequency region increased significantly in both the plasma edge and the SOL. Quite low frequency fluctuations (about 5 kHz) were generated, which dominated the boundary turbulence during IBW heating. Detailed analyses suggested that, when an IBW with a frequency of 30 MHz was launched into a plasma with the toroidal magnetic field between 1.75 T and 2.0 T, the ion cyclotron resonant layer of 5/2.D was located in the plasma edge region. The poloidal ExB sheared flows generated by IBW near this layer due to a ponderomotive interaction were found to be the mechanism underlying these phenomena. (author)
Sesnic, S.; Kaita, R.; Batha, S. H.; Bell, R. E.; Bernabei, S.; Chance, M. S.; DeLa Luna, E.; Dunlap, J. L.; England, A. C.; Isler, R. C.; Jones, S.; Kaye, S. M.; Kesner, J.; Kugel, H. W.; LeBlanc, B.; Levinton, F. M.; Luckhardt, S. C.; Manickam, J.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S. F.; Post-Zwicker, A. P.; Sanchez Sanz, J.; Sauthoff, N. R.; Seki, T.; Takahashi, H.; Tighe, W.; Von Goeler, S.; Woskov, P.; Zolfaghari, A.
1998-06-01
If the ion Bernstein wave (IBW) heating power in an H mode discharge of the PBX-M experiment exceeds a threshold power of about 200 kW, a core transport barrier is created in the central region of the plasma. At lower neutral beam injection (NBI) powers, the core barrier is accompanied by an edge L mode. The high edge localized mode (ELM) repetition frequency (1 kHz) prevents the creation of a strong barrier, so the edge first has to make an H-to-L transition before a strong core transport barrier can be created. At higher NBI powers, the ELM repetition frequency is lowered to less than 200 Hz, which allows the immediate creation of a strong core barrier. Edge localized mode loss, which propagates radially first on a fast (non-diffusive) and then on a slow (diffusive) time-scale all the way to the plasma core, is strongly reduced in the core barrier region. Correlated with the reduced ELM loss, the fluctuations in the core barrier region are also strongly reduced, both during the ELM and during the quiet periods between the ELMs. There is strong evidence that the IBW induced poloidal flow shear is responsible for the stabilization of core turbulence and the creation of the core transport barrier. The large perpendicular E × B flow shear component of the measured toroidal velocity in co-injection neutral beam heated discharges seems to be largely cancelled by the ion diamagnetic drift shear produced by large ion pressure gradients in the core barrier region. The value of IBW induced poloidal flow has not been experimentally determined, but its numerical value is found to be a factor of 4 larger than either the toroidal velocity or the ion diamagnetic drift shear components, leaving only IBW induced flow shear as the most probable cause for the turbulence stabilization. The core turbulence suppression and the creation of the core transport barrier is also consistent with expectations from a comparison between the E × B flow shear rate and a rough estimate of the
If the ion Bernstein wave (IBW) heating power in an H mode discharge of the PBX-M experiment exceeds a threshold power of about 200 kW, a core transport barrier is created in the central region of the plasma. At lower neutral beam injection (NBI) powers, the core barrier is accompanied by an edge L mode. The high edge localized mode (ELM) repetition frequency (1 kHz) prevents the creation of a strong barrier, so the edge first has to make an H-to-L transition before a strong core transport barrier can be created. At higher NBI powers, the ELM repetition frequency is lowered to less than 200 Hz, which allows the immediate creation of a strong core barrier. Edge localized mode loss, which propagates radially first on a fast (non-diffusive) and then on a slow (diffusive) time-scale all the way to the plasma core, is strongly reduced in the core barrier region. Correlated with the reduced ELM loss, the fluctuations in the core barrier region are also strongly reduced, both during the ELM and during the quite periods between the ELMs. There is strong evidence that the IBW induced poloidal flow shear is responsible for the stabilization of core turbulence and the creation of the core transport barrier. The large perpendicular E x B flow shear component of the measured toroidal velocity in co-injection neutral beam heated discharges seems to be largely cancelled by the ion diamagnetic drift shear produced by large ion pressure gradients in the core barrier region. The value of IBW induced poloidal flow has not been experimentally determined, but its numerical value is found to be a factor of 4 larger than either the toroidal velocity or the ion diamagnetic drift shear components, leaving only IBW induced flow shear as the most probable cause for the turbulence stabilization. The core turbulence suppression and the creation of the core transport barrier is also consistent with expectations from a comparison between the E x B flow shear rate and a rough estimate of the
Ghizzo, A.
2013-08-01
The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the "multiring" model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al. [Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.
Mode conversion and local heating below the second electron cyclotron harmonic
An extraordinary wave is normally incident on a large volume magnetoplasma. Below the second gyroharmonic, conversion into short-wavelength Bernstein wave is observed near the upper-hybrid layer. Significant conversion efficiency is attained in the optimum conditions. In the high-power incidence, considerable electron heating due to the converted wave is found to be localized in the mode-conversion region. (author)
Electron Bernstein Driven and Bootstrap Current Estimations in the TJ-II Stellarator
Full text: The control of the total parallel current may lead to the possibility of continuous operation in tokamak plasmas and it can provide access to improved confinement regimes in stellarators, by means of control of the rotational transform profile. In fact one of the main lines of research at the stellarator TJ-II is the relation between confinement and the magnetic configuration, putting emphasis on the rotational transform profile. The two main non-inductive parallel currents in plasma confinement devices are the bootstrap and the ones driven by external means, like radio frequency or NBI. The current drive (CD) systems must be appropriated to work on overdense plasmas, since this could be mandatory in a reactor. Therefore, electron Bernstein waves (EBW), which do not present density cut-off have been considered as CD system for TJ-II. In this work we present calculations of the bootstrap and the EBW currents in the dense plasmas confined in a complex 3D confinement device like the TJ-II stellarator. The precise calculation of the bootstrap current is a numerical challenge, since the error estimates for computations of this current, specially in the long-mean-free-path (lmfp) regime of stellarators, are very large. This issue is particularly relevant for the lmfp regime of stellarators, particularly for TJ-II, which is characterized by its very complex magnetic configuration. A new code, NEO-MC, has been developed in order to overcome this problem. It combines the standard δf method with an algorithm employing constant particle weights and re-discretizations of the test particle distribution. In this way, it is able to provide, for the first time, calculations of the contribution of the lmfp regime to the bootstrap current of TJ-II with very low error estimates. For a fast estimation of EBCD, different linear models based on the adjoint approach or Langevin equations techniques have been developed in order to simplify the task of solving the kinetic
This proposal was peer reviewed and funded as a Collaboration on ''Low Phase Speed Radio Frequency Current Drive Experiments at the Tokamak Fusion Test Reactor''. The original plans we had were to carry out the collaboration proposal by including a post doctoral scientist stationed at PPPL. In response to a 60+% funding cut, all expenses were radically pruned. The post doctoral position was eliminated, and the Principal Investigator (T. Intrator) carried out the brunt of the collaboration. Visits to TFTR enabled T. Intrator to set up access to the TFTR computing network, database, and get familiar with the new antennas that were being installed in TFTR during an up to air. One unfortunate result of the budget squeeze that TFTR felt for its last year of operation was that the experiments that we specifically got funded to perform were not granted run time on TFTR., On the other hand we carried out some modeling of the electric field structure around the four strap direct launch Ion Bernstein Wave (IBW) antenna that was operated on TFTR. This turned out to be a useful exercise and shed some light on the operational characteristics of the IBW antenna and its coupling to the plasma. Because of this turn of events, the project was renamed ''Modeling of Ion Bernstein Wave Antenna Array and Coupling to Plasma on Tokamak Fusion Test Reactor''
Purpose: To acknowledge the tacit rules underpinning academic practice of undergraduate radiographers in determining normality vs. abnormality when appraising skeletal images. Methodology: Twelve students were interviewed (individually) using in-depth semi-structured questions. Interviews were mediated through a PowerPoint presentation containing two digital X-ray images. Each image was based on a level of expertise; the elementary (Case 1) and the complicated (Case 2). The questions were based on regular ‘frames’ created from observing tutor–student contact in class, and then validated through a group interview. Bernstein's theory of pedagogic discourse was then utilised as a data analysis instrument to determine how third year diagnostic radiography students interpreted X-ray images, in relation to the ‘recognition’ and ‘realisation’ rules of the Educational Theoretical Framework. Conclusion: Bernstein's framework has made it possible to specify, in detail, how issues and difficulties are formed at the level of the acquirer during interpretation. The recognition rules enabled students to meaningfully recognise what trauma characteristics can be associated with the image and the demands of a detailed scrutiny so as to enact a competent interpretation. Realisation rules, made it possible for students to establish their own systematic approach and realise legitimate meanings of normality and abnormality. Whereas obvious or visible trauma generated realisation rules (represented via homogenous terminology), latent trauma authorised students to deviate from legitimate meanings. The latter rule, in this context, has directed attention to the student issue of visioning abnormality when images are normal
Urška Valenčič Arh
2014-01-01
Bernstein, Nils (2011): „kennen sie mich herren/meine damen und herren”. Phraseologismen in Moderner Lyrik am Beispiel von Ernst Jandl und Nicanor Parra. Würzburg: Königshausen&Neumann. ISBN: 978-3-8260-4699-5, mehka vezava, 262 strani, 38,00 EUR
Urška Valenčič Arh
2014-01-01
Full Text Available Bernstein, Nils (2011: „kennen sie mich herren/meine damen und herren”. Phraseologismen in Moderner Lyrik am Beispiel von Ernst Jandl und Nicanor Parra. Würzburg: Königshausen&Neumann. ISBN: 978-3-8260-4699-5, mehka vezava, 262 strani, 38,00 EUR
SJ Cornelius
2012-12-01
Full Text Available Parties generally enter into contractual relations with the sincere intention to fulfil all the obligations created in terms of their contract. However, for various reasons, parties sometimes do not comply with the terms of their contract. Where a party fails to perform at the agreed date and time or after receiving a demand from the creditor, the debtor commits breach of contract in the form of mora debitoris. The question then arises whether or not a debtor would also commit breach in the form of mora debitoris if the delay in performance cannot be attributed to wilful disregard of the contract or a negligent failure to perform on time. This was the question which the court had to determine in Scoin Trading (Pty Ltd v Bernstein.
1998-01-01
Conference "Internet, Web, What's next?" on 26 June 1998 at CERN: Mark Bernstein, Vice President of CNN Interactive, describes the impact of the Web on world media and predicts what we can expect as the next developments
Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin
2002-01-01
A quantum circuit is introducted to describe the preparation of a labeled pseudo-pure state by mutiplet-component excitation scheme which has been experimentally implemented on a 4-qubit nuclear magnetic resonance quantum processor. Meanwhile, we theoretically analyze and numerically inverstigate the low-power selective single-pulse implementation of a controlled-rotation gate, which manifests its validity in our experiment. Based on the labeled pseudo-pure state prepared, a 3-qubit Bernstein...
Raghunathan, M.; Ganesh, R.
2013-03-01
In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815-2818 (1997)] using long-time simulations up to t = 1600 ωp - 1 . The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as "BGK structures"). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions for long times, up to t = 3000 ωp - 1 . We show that BGK structures are found only for a certain range of q-values around q = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of q 1 where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.
General Proof of Symmetries in Mode Conversions
Bers, A.; Ram, A. K.
2001-10-01
We consider linear mode conversions (MC) in a dissipation-free region of the plasma. Outside of this mode conversion region (MCR), the waves are described by their WKB form and have wave energy flows into and out of the MCR. In general, the relationship between the complex wave amplitudes a and b of these external waves is given by a scattering matrix S: b = S \\cdot a. Using energy flow conservation and Onsager-like time reversibility symmetry, we prove that S is symmetric. The proof is valid for any kinetic (Vlasov) full-wave description of a plasma in a magnetic field with an equilibrium distribution function symmetric in parallel (to the magnetic field) velocity. The symmetry in S gives all the symmetries in transmission, reflection, and mode conversion excitation and emission. This will be illustrated with results, presented at this meeting,(A. K. Ram, A. Bers, G. Taylor, and P. C. Efthimion, ``Emission of Electron Bernstein Waves from NSTX," to be presented at the 43rd Annual Meeting of the Division of Plasma Physics.) from numerical integration of a full-wave kinetic MC problem relevant to spherical tokamaks.
Mateus Casanova dos Santos
2010-12-01
Full Text Available O presente artigo é um estudo de caso investigativo de caráter participante e descritivo, a partir da vivência pedagógica no disparador de aprendizagem Simulação em Enfermagem, do segundo semestre do primeiro ciclo da graduação da Faculdade de Enfermagem (FEn da Universidade Federal de Pelotas (UFPel, onde se desenvolve a simulação clínica de semiologia e semiotécnica em Enfermagem. O objetivo é estudar a recontextualização da prática pedagógica da Simulação com base em teorizações do sociólogo da educação Basil Bernstein, contribuindo para o processo de aperfeiçoamento do planejamento de ensino e, especialmente, da avaliação deste disparador de aprendizagem. A partir das reflexões deste estudo, observa-se a teorização de Bernstein como uma potente ferramenta semiológica das práticas pedagógicas, a qual contribui para o planejamento e análise do dispositivo pedagógico curricular.Este artículo es un caso de estudio de carácter descriptivo y de investigación participante, desde la experiencia educativa de aprendizaje en el gatillo Simulación en Enfermería, de la segunda mitad del primer ciclo de la Escuela Enfermería (FEN de la Universidade Federal de Pelotas (UFPel donde se desarrolla la simulación de la semiología clínica y la semiótica en Enfermería. El objetivo es estudiar la recontextualización de la práctica pedagógica de teorías basadas en la simulación del sociólogo de la educación Basil Bernstein, contribuyendo al proceso de mejora de la educación, planificación y aprendizaje, especialmente la evaluación de gatillo. De las reflexiones de este estudio, existe la teoría de Bernstein como una poderosa herramienta de semiótica prácticas pedagógicas, lo que contribuye a la planificación y el análisis de dispositivos educativos curriculares.This article is a case study of investigative and descriptive participant character, from the educational experience of learning in the trigger
Enhanced loss of fusion products during mode conversion heating in TFTR
Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v perpendicular due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to ∼1.5 times their birth energy
Enhanced loss of fusion products during mode conversion heating in TFTR
Ion Bernstein waves (IBWs) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v perpendicular due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to ∼1.5 times their birth energy. copyright 1996 American Institute of Physics
On a New Family of Trigonometric Summation Polynomials of Bernstein Type%关于一类新的Bernstein型三角求和多项式
袁学刚; 何甲兴
2006-01-01
A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are superior to others.It is proved that Gn,r(f; θ) converges to arbitrary continuous functions with period 2π uniformly on (-∞, +∞) as n →∞. In particular, Gn,r(f; θ) has the best convergence order, and its saturation order is 1/n2r+4.
Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks
Wright, J.C.; Bonoli, P.T.; Brambilla, M.;
2004-01-01
Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first...... time are capable of achieving the resolution and speed necessary to address mode conversion phenomena in full two-dimensional (2-D) toroidal geometry. These codes have been used in conjunction with theory and experimental data from the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994)] to...
Uvidet heruvima / Boris Bernstein
Bernštein, Boriss, 1924-
2006-01-01
Inglite kujundi loomisest euroopalike traditsioonide baasil. Inglite kujutamine Euroopa kunstis. Vaadeldud Jean Fouquet, Benozzo Gozzoli, Raffaeli, Luigi Bernini, Aleksandr Ivanovi, Alek Rapoporti töid
Full-wave modeling of the O-X mode conversion in the Pegasus Toroidal Experiment
Köhn, Alf; Bongard, Michael W; Gallian, Sara; Hinson, Edward T; Volpe, Francesco A
2011-01-01
The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus Toroidal Experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBW). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as \\pm 10 cm.
Full-wave modeling of the O-X mode conversion in the Pegasus toroidal experiment
Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart, D-70569 (Germany); Jacquot, J. [IRFM, CEA, F-13108 Saint-Paul-lez-Durance (France); Bongard, M. W.; Hinson, E. T.; Volpe, F. A. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Gallian, S. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2011-08-15
The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus toroidal experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBWs). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as {+-}10 cm.
Full-wave modeling of the O-X mode conversion in the Pegasus toroidal experiment
The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus toroidal experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBWs). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as ±10 cm.
Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo; Sørensen, John Dalsgaard
1999-01-01
The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...
Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.
2013-10-01
Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.
Julia Bertschik
2001-07-01
Full Text Available Das Themenheft „Mode/Kunst – Fashion/Art“ der Zeitschrift figurationen versammelt heterogene Beiträge, die die Beziehung zwischen Kleidermode und Kunst von der Renaissance bis in die Gegenwart unter literaturwissenschaftlichem Schwerpunkt untersuchen. Reflexionen internationaler Künstler/-innen, Autorinnen und Autoren über die modischen Inszenierungsweisen des Körpers werden dabei auf ihre Darstellung der Geschlechter ebenso überprüft wie auf ihre ästhetische Stellung innerhalb des künstlerischen Gesamtwerks oder des zeitspezifischen Kanons.
Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system
Yadav, V K; Yadav, Vipin K.
2004-01-01
Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing {\\em in situ} is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at $10^{-3}$ mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper.
Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system
Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10-3 mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)
On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes
N.N. Gorelenkov, N.J. Fisch and E. Fredrickson
2010-03-09
An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.
On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes
An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.
Berreman mode and epsilon near zero mode.
Vassant, Simon; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques
2012-10-01
In this paper, we discuss the existence of an electromagnetic mode propagating in a thin dielectric film deposited on a metallic film at the particular frequency such that the dielectric permittivity vanishes. We discuss the remarkable properties of this mode in terms of extreme subwavelength mode confinment and its potential applications. We also discuss the link between this mode, the IR absorption peak on a thin dielectric film known as Berreman effect and the surface phonon polariton mode at the air/dielectric interface. Finally, we establish a connection with the polarization shift occuring in quantum wells. PMID:23188363
Neutron Flux Measurements in an ICRF Mode Conversion Regime Heating Plasmas on HT-7
LI Xiao-Ling; WAN Bao-Nian; ZHONG Guo-Qiang; HU Li-Qun; LIN Shi-Yao; ZHANG Xin-Jun; ZANG Qing
2011-01-01
Ion cyclotron resonance heating experiments using antenna, in the high Reid side (HFS) have been carried out on HT-7 in different target plasmas. Unlike a standard-mode conversion heating scheme with dominant electron heating, anomalous ion heating and DD neutron fluxes higher than those estimated from thermal ions were observed in the present experiments with the ion-ion hybrid resonant layer near the center of plasma. The features of ion cyclotron range frequency (ICRF) antenna in HFS and experiments suggest that this is most probably due to the nonlinear 3/2 harmonic deuterium heating by the mode-converted ion Bernstein wave, which could produce a high energy tail on ion energy distribution.%Ion cyclotron resonance heating experiments using antenna in the high field side (HFS) have been carried out on HT-7 in different target plasmas.Unlike a standard-mode conversion heating scheme with dominant electron heating,anomalous ion heating and DD neutron fluxes higher than those estimated from thermal ions were observed in the present experiments with the ion-ion hybrid resonant layer near the center of plasma.The features of ion cyclotron range frequency (ICRF) antenna in HFS and experiments suggest that this is most probably due to the nonlinear 3/2 harmonic deuterium heating by the mode-converted ion Bernstein wave,which could produce a high energy tail on ion energy distribution.Neutron diagnostics have been applied in ion cyclotron range frequency (ICRF) plasmas on HT-7 for measurements of the fusion reaction product,which give a direct measure of the ICRF heating.The neutron emission is recorded by a 3He proportional counter,whose sensitive size is φ30 mm × 300 mm,gas pressure is 49.34 kPa and the responsibility to thermal neutrons is 133 cps/n.cm-2.s-1.It exploits large reaction cross sections and is therefore embedded in polythene moderators to thermalize the incident neutrons.
Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime
Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f0 = 15 GHz, and maximum amplitude E0 = 105 V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, Cmodelling = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around 36% and 17%, respectively
Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime
Ali Asgarian, M., E-mail: maliasgarian@ph.iut.ac.ir, E-mail: maa@msu.edu [Physics Department, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824-1226 (United States); Parvazian, A.; Abbasi, M. [Physics Department, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of); Verboncoeur, J. P. [Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824-1226 (United States)
2014-09-15
Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f{sub 0} = 15 GHz, and maximum amplitude E{sub 0} = 10{sup 5 }V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, C{sub modelling} = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around ∼36% and 17%, respectively.
Direct Excitation of High-Amplitude Chirped Bucket-BGK Modes
Bertsche, William
2004-11-01
Using a low amplitude, chirped-frequency localized potential drive(W. Bertsche, J. Fajans and L. Friedland, Direct Excitation of High-Amplitude Chirped Bucket-BGK Modes, Phys. Rev. Lett., 91: 265003, 2003. ), we excited undamped large amplitude electrostatic plasma waves in a relatively hot plasma. We believe these waves to be BGK waves, stationary, non-linear kinetic waves which are untouched by classical Landau damping. Even though BGK modes underpin much of kinetic wave theory, direct experimental evidence of undamped BGK waves has proven elusive. Large-amplitude responses have been observed in the past, however such structures have generally been unstable and short-lived. Other excitations generated during continuous driving have resulted in stable but low-amplitude waves. Our technique generates a tailored distribution function along with a self-consistent field, yielding large oscillations long after the drive has been removed. A theory for this excitation has been developed, which agrees with many features observed experimentally(L. Friedland, F. Peinetti, W. Bertsche, J. Fajans, and J. Wurtele, Driven Phase Space Holes and Synchronized Bernstein, Green, and Kruskal (BGK) Modes , Phys. Plasmas (accepted, 2004).). Restricted two-dimensional PIC simulations of an electron plasma column with a localized chirped drive are in close agreement with experimental data. This technique may lend laboratory insight to physical phenomena observed in other fields such as laser plasma interactions.
List mode multichannel analyzer
Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.
2007-08-07
A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.
Theory of anomalous backscattering in second harmonic X-mode ECRH experiments
Gusakov, E. Z.; Popov, A. Yu.
2016-08-01
A quantitative model explaining generation of the anomalous backscattering signal in the second harmonic X-mode electron cyclotron resonance heating (ECRH) experiments at TEXTOR tokamak as a secondary nonlinear process which accompanies a primary low-threshold parametric decay instability (PDI) leading to excitation of two—upper hybrid (UH)—plasmons trapped in plasma is developed. The primary absolute PDI enhancing the UH wave fluctuations from the thermal noise level is supposed to be saturated due to a cascade of secondary low-threshold decays of the daughter UH wave leading to excitation of the secondary UH waves down-shifted in frequency and the ion Bernstein wave. A set of equations describing the cascade is derived and solved numerically. The results of numerical modelling are shown to be in agreement with the analytical estimations of the growth rate of the initial and secondary parametric decays and the saturation level. The generation of backscattering signal is explained by coupling of the daughter UH waves. The fine details of the frequency spectrum of the anomalously reflected extraordinary wave and the absolute value of the observed backscattering signal in the second harmonic X-mode ECRH experiments at TEXTOR are reproduced.
Santamaría Sotillo, Beatriz; Ni, Shuang
2008-01-01
Topic:When an MNC seeks to enter a foreign country, it must choose the most appropriate entry mode for that specific market, such as exporting, licensing, a turnkey project, franchising, joint ventures or wholly-owned subsidiaries. There are many factors which affect the choice of entry modes. Influential factors contributing to the entry mode decision can have different degrees of impact for each particular country. As a consequence, an MNC has to use different entry modes in order to adapt ...
Beard, David W.
1980-01-01
The subject of switching mode power supplies was examined. A comparison between linear regulators and switching mode power supplies was made to show the options available for the various types of convertors. Two switching mode power supplies were constructed and tested. The operating efficiency of both systems was found to be more than eighty percent over the specified input voltage and load current conditions. The switching mode power supply circuits required additional ...
Integrated mode converter for mode division multiplexing
Perez-Galacho, Diego; Alonso-Ramos, Carlos Alberto; Marris-Morini, Delphine; Vakarin, Vladyslav; Le Roux, Xavier; Ortega-Moñux, Alejandro; Wangüemert-Perez, Juan Gonzalo; Vivien, Laurent
2016-05-01
The ever growing demands of bandwidth in optical communication systems are making traditional Wavelength Division Multiplexing (WDM) based systems to reach its limit. In order to cope with future bandwidth demand is necessary to use new levels of orthogonality, such as the waveguide mode or the polarization state. Mode Division Multiplexing (MDM) has recently attracted attention as a possible solution to increase aggregate bandwidth. In this work we discuss the proposition a of mode converter that can cover the whole C-Band of optical communications. The Mode Converter is based on two Multimode Interference (MMI) couplers and a phase shifter. Insertion loss (IL) below 0.2 dB and Extinction ratio (ER) higher than 20 dB in a broad bandwidth range of 1.5 μm to 1.6 μm have been estimated. The total length of the device is less than 30 μm.
Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.
2011-01-01
The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Ei
Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K
2011-01-01
The physical modes of a recently proposed D-dimensional "critical gravity", linearized about its anti-de Sitter vacuum, are investigated. All "log mode" solutions, which we categorize as `spin 2' or `Proca', arise as limits of the massive spin 2 modes of the non-critical theory. The linearized Einstein tensor of a spin 2 log mode is itself a 'non-gauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.
2014-01-01
The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...
Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown
Stochastic component mode synthesis
Bah, Mamadou T.; Nair, Prasanth B.; Bhaskar, Atul; Keane, Andy J.
2003-01-01
In this paper, a stochastic component mode synthesis method is developed for the dynamic analysis of large-scale structures with parameter uncertainties. The main idea is to represent each component displacement using a subspace spanned by a set of stochastic basis vectors in the same fashion as in stochastic reduced basis methods [1, 2]. These vectors represent however stochastic modes in contrast to the deterministic modes used in conventional substructuring methods [3]. The Craig-Bampton r...
Streaming gravity mode instability
In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs
Resistive ballooning mode equation
Bateman, G.; Nelson, D. B.
1978-10-01
A second-order ordinary differential equation on each flux surface is derived for the high mode number limit of resistive MHD ballooning modes in tokamaks with arbitrary cross section, aspect ratio, and shear. The equation is structurally similar to that used to study ideal MHD ballooning modes computationally. The model used in this paper indicates that all tokamak plasmas are unstable, with growth rate proportional to resistivity when the pressure gradient is less than the critical value needed for ideal MHD stability.
Microwave plasma mode conversion
The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.)
Modes of collaborative reflection
Degeling, Martin; Prilla, Michael
2011-01-01
In this paper, we describe different modes of collaborative reflection as processes of learning at the workplace. We explain why reflection is a decisive means of learning and - based on the modes we describe - how groups of people can be supported in reflection together. For this, we describe how scheduled, concurrent and spontaneous collaborative reflection can be supported by articulation, guidance and synergizing.
R.G. 1.92 modal combination rules for the response spectrum method design of multiple degrees of freedom (MDOF) piping systems are known to yield highly overestimated results for correlated close modes, so-called ''twin modes.'' These modes occur either when two independent sub-structures of a system possess identical natural frequencies, or when a large mass ratio exists between two coupled sub-structures at tuned natural frequencies. The Twin Mode Rotation (TMR) method aims at removing this unwanted degree of conservatism by performing a rotation of the twin mode pair in the modal space before combining them following R.G. 1.92. The theoretical basis and validation of the method and its practical implementation are presented. Academic problems and real cases in large-scale piping systems are discussed
Sernelius, Bo E
2011-01-01
Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The
This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.
Fohrmann, Lena Simone; Petrov, Alexander Yu; Lang, Slawa; Jalas, Dirk; Krauss, Thomas F; Eich, Manfred
2015-10-19
We report on the properties of a thermal emitter which radiates into a single mode waveguide. We show that the maximal power of thermal radiation into a propagating single mode is limited only by the temperature of the thermal emitter and does not depend on other parameters of the waveguide. Furthermore, we show that the power of the thermal emitter cannot be increased by resonant coupling. For a given temperature, the enhancement of the total emitted power is only possible if the number of excited modes is increased. Either a narrowband or a broadband thermal excitation of the mode is possible, depending on the properties of the emitter. We finally discuss an example system, namely a thermal source for silicon photonics. PMID:26480429
Kolpakov, Stanislav A; Loika, Yuri; Tarasov, Nikita; Kalashnikov, Vladimir; Agrawal, Govind P
2015-01-01
A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. However, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy...
Supersymmetric mode converters
Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon; Nolte, Stefan; Szameit, Alexander; Christodoulides, Demetrios N.
2015-08-01
In recent years, the ever-increasing demand for high-capacity transmission systems has driven remarkable advances in technologies that encode information on an optical signal. Mode-division multiplexing makes use of individual modes supported by an optical waveguide as mutually orthogonal channels. The key requirement in this approach is the capability to selectively populate and extract specific modes. Optical supersymmetry (SUSY) has recently been proposed as a particularly elegant way to resolve this design challenge in a manner that is inherently scalable, and at the same time maintains compatibility with existing multiplexing strategies. Supersymmetric partners of multimode waveguides are characterized by the fact that they share all of their effective indices with the original waveguide. The crucial exception is the fundamental mode, which is absent from the spectrum of the partner waveguide. Here, we demonstrate experimentally how this global phase-matching property can be exploited for efficient mode conversion. Multimode structures and their superpartners are experimentally realized in coupled networks of femtosecond laser-written waveguides, and the corresponding light dynamics are directly observed by means of fluorescence microscopy. We show that SUSY transformations can readily facilitate the removal of the fundamental mode from multimode optical structures. In turn, hierarchical sequences of such SUSY partners naturally implement the conversion between modes of adjacent order. Our experiments illustrate just one of the many possibilities of how SUSY may serve as a building block for integrated mode-division multiplexing arrangements. Supersymmetric notions may enrich and expand integrated photonics by versatile optical components and desirable, yet previously unattainable, functionalities.
NASTRAN component-mode synthesis
Guyan, R. J.
1976-01-01
Procedure for dynamic substructuring analysis technique is generally as follows: calculation of component modes; selection of component normal modes, calculation of component generalized matrices, assembly of system matrices, and computation of normal modes; and retrieval of component response.
Sliding mode control and observation
Shtessel, Yuri; Fridman, Leonid; Levant, Arie
2014-01-01
The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...
Nielsen, Jakob Isak
2013-01-01
Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie.......Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie....
Modeli recikliranja nezbrinutih tekstilija
Lv, Lihua; Wang, Xiao; Wei, Chunyan; Cui, Yongzhu; Zhang, Oi
2014-01-01
Modeli recikliranja nekih nezbrinutih prirodnih vlakana (pamuka, lana i svile) i sintetičkog polipropilenskog vlakna opisani su na temelju njihovog životnog ciklusa koji obuhvaća proizvodnju - potrošnju - prikupljanje i klasifikaciju - recikliranje - vraćanje na tržište nezbrinutih tekstilija. Nezbrinute tekstilije su podijeljene u "neupotrijebljene" i "rabljene" nezbrinute tekstilije. Modeli recikliranja su opisani u radu i oni su vodič za razumno i učinkovito recikliranje nezbrinutih teksti...
Zhao Fei
2010-01-01
@@ As Asia's lingerie &beachwear industry leaders,the 6th session of Shanghai Mode Lingerie aiming at creating the best international lingerie &beachwear pageant was held on October 19th-20th at the Shanghai Exhibition Center,with a sparkling new look and a new conception.
Thermodynamics of Radiation Modes
Pina, Eduardo; de la Selva, Sara Maria Teresa
2010-01-01
We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…
Dewatripont, Mathias; Tirole, Jean
2005-01-01
The paper develops a theory of costly communication in which the sender's and receiver's motivations and abilities endogenously determine the communication mode and the transfer of knowledge. Communication is modeled as a problem of moral hazard in teams, in which the sender and receiver select persuasion and message elaboration efforts. The model…
Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be
Practical modes of presentation
Glick, E.
2015-01-01
The Intellectualist thesis that know-how is a kind of propositional knowledge faces a simple problem: For any proposition p, it seems that one could know p without knowing how to do the activity in question. For example, it seems that one could know that w is a way to swim even if one didn't know how to swim oneself. In this paper I argue that this "sufficiency problem" cannot be adequately addressed by appealing to practical modes of presentation.
Probing plasmonic breathing modes optically
The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations
Helmholtz's model predicts correctly the frequency of the lowest mode of a bottle. A simple generalization of Helmholtz's model correctly predicts this mode and also the next few modes: ''flute modes'': of flasks with long uniform necks but arbitrarily shaped bodies. Wine bottles have additional low-frequency ''cavity modes'' that require a further easy generalization. For a bottle with slowly varying cross section an additional generalization can be made that retains the one-dimensional (1-D) character of the previous models and gives results that are in good agreement with experiment for the lowest mode: the ''diametral mode'': of a hollow sphere. For higher modes of a sphere, the 1-D model is inadequate and must be discarded in favor of exact solutions of the 3-D wave equation
Photons in polychromatic rotating modes
van Enk, S. J.; Nienhuis, G.
2007-01-01
We propose a quantum theory of rotating light beams and study some of its properties. Such beams are polychromatic and have either a slowly rotating polarization or a slowly rotating transverse mode pattern. We show that there are, for both cases, three different natural types of modes that qualify as rotating, one of which is a type not previously considered. We discuss differences between these three types of rotating modes on the one hand and nonrotating modes as viewed from a rotating fra...
Atomic dynamics in the mode-mode competition system
Wu Qin; Fang Mao-Fa
2004-01-01
The atomic dynamical properties in the system with competing k-photon and l-photon transitions are studied fully by means of quantum theory. We discuss the influences of the mode-mode competition, the relative competing strengths of the atom and the two-mode field, and the initial state of the system on the atomic dynamics. We show that the presence of the mode-mode competition can result in quite a periodical collapses-revivals of the atomic inversion and the increase of the initial photons of the system can lead to the collapse-revival phenomenon and prolong the revival time of the atomic inversion.
Localized Acoustic Surface Modes
Farhat, Mohamed
2015-08-04
We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.
Next-generation gravitational wave detectors will start taking data in the near future. Here we discuss the chances to detect the continuous emission from r-mode oscillations in compact stars and study which properties of compact stars we can infer from such novel data. In particular we show that the combination of the gravitational wave data with electromagnetic multi-messenger observations could give us detailed insight into compact star properties, ranging from precise mass-radius measurements to the determination of the equation of state and the phase structure of dense matter. (orig.)
Kokkotas, Kostas D.; Schwenzer, Kai [Eberhard Karls University of Tuebingen, Theoretical Astrophysics (IAAT), Tuebingen (Germany)
2016-02-15
Next-generation gravitational wave detectors will start taking data in the near future. Here we discuss the chances to detect the continuous emission from r-mode oscillations in compact stars and study which properties of compact stars we can infer from such novel data. In particular we show that the combination of the gravitational wave data with electromagnetic multi-messenger observations could give us detailed insight into compact star properties, ranging from precise mass-radius measurements to the determination of the equation of state and the phase structure of dense matter. (orig.)
Damage mechanics - failure modes
Krajcinovic, D.; Vujosevic, M. [Arizona State Univ., Tempe, AZ (United States)
1996-12-31
The present study summarizes the results of the DOE sponsored research program focused on the brittle failure of solids with disordered microstructure. The failure is related to the stochastic processes on the microstructural scale; namely, the nucleation and growth of microcracks. The intrinsic failure modes, such as the percolation, localization and creep rupture, are studied by emphasizing the effect of the micro-structural disorder. A rich spectrum of physical phenomena and new concepts that emerges from this research demonstrates the reasons behind the limitations of traditional, deterministic, and local continuum models.
Zimmerman, Aaron; Mark, Zachary; Chen, Yanbei; Lehner, Luis
2014-01-01
The quasinormal modes (QNMs) of a black hole spacetime are the free, decaying oscillations of the spacetime, and are well understood in the case of Kerr black holes. We discuss a method for computing the QNMs of spacetimes which are slightly deformed from Kerr. We mention two example applications: the parametric, turbulent instability of scalar fields on a background which includes a gravitational QNM, and the shifts to the QNM frequencies of Kerr when the black hole is weakly charged. This method may be of use in studies of black holes which are deformed by external fields or are solutions to alternative theories of gravity.
Fluxon modes in superconducting multilayers
Pedersen, Niels Falsig; Madsen, Søren Peder
We show how to construct fluxon modes from plasma modes in the inductively coupled stacked Josephson junctions, and consider some special cases of these fluxon modes analytically. In some cases we can find exact analytical solutions when we choose the bias current in a special way. We also consid...
ACCA College English Teaching Mode
Ding, Renlun
2008-01-01
This paper elucidates a new college English teaching mode--"ACCA" (Autonomous Cooperative Class-teaching All-round College English Teaching Mode). Integrated theories such as autonomous learning and cooperative learning into one teaching mode, "ACCA", which is being developed and advanced in practice as well, is the achievement…
Schopf, J.M.
1975-01-01
The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.
Montagner, Jean-Paul; Roult, Genevieve [Institut de Physique du Globe, UMR/CNRS 7154, 4 Place Jussieu, 75252 Paris (France)], E-mail: jpm@ipgp.jussieu.fr
2008-10-15
The free oscillations of the Earth were observed for the first time in the 1960s. They can be divided into spheroidal modes and toroidal modes, which are characterized by three quantum numbers n,l, and m. In a spherically symmetric Earth, the modes are degenerate in m, but the influence of rotation and lateral heterogeneities within the Earth splits the modes and lifts this degeneracy. The occurrence of the Great Sumatra-Andaman earthquake on 24 December 2004 provided unprecedented high-quality seismic data recorded by the broadband stations of the FDSN (Federation of Digital Seismograph Networks). For the first time, it has been possible to observe a very large collection of split modes, not only spheroidal modes but also toroidal modes.
The free oscillations of the Earth were observed for the first time in the 1960s. They can be divided into spheroidal modes and toroidal modes, which are characterized by three quantum numbers n,l, and m. In a spherically symmetric Earth, the modes are degenerate in m, but the influence of rotation and lateral heterogeneities within the Earth splits the modes and lifts this degeneracy. The occurrence of the Great Sumatra-Andaman earthquake on 24 December 2004 provided unprecedented high-quality seismic data recorded by the broadband stations of the FDSN (Federation of Digital Seismograph Networks). For the first time, it has been possible to observe a very large collection of split modes, not only spheroidal modes but also toroidal modes.
Galtarossa, Andrea
2005-01-01
This book contains a series of tutorial essays on polarization mode dispersion (PMD) by the leading experts in the field. It starts with an introductory review of the basic concepts and continues with more advanced topics, including a thorough review of PMD mitigation techniques. Topics covered include mathematical representation of PMD, how to properly model PMD in numerical simulations, how to accurately measure PMD and other related polarization effects, and how to infer fiber properties from polarization measurements. It includes discussions of other polarization effects such as polarization-dependent loss and the interaction of PMD with fiber nonlinearity. It additionally covers systems issues like the impact of PMD on wavelength division multiplexed systems. This book is intended for research scientists or engineers who wish to become familiar with PMD and its system impacts.
The new method of collecting EXAFS data in dispersive mode will be recalled. Polychromatic radiation is used so that data over the entire EXAFS spectrum can be recorded simultaneously. The improved efficiency in data collection opens up the possibility of kinetic studies in material science, chemistry and biophysics. The first data obtained with a self-scanned photodiode array manufactured by EGandG Reticon (RC 256 EC/17) working at room temperature show that XANES study at a few ms time-scale can be expected since only 1.3 ms were required to collect the XANES plot of elemental Ni, the D.C.I. storage ring running at a 1.72 GeV, 250 mA positron energy and current. (orig.)
Tunable asymmetric mode conversion using the dark-mode of three-mode waveguide system.
Kim, Joonsoo; Lee, Seung-Yeol; Lee, Yohan; Kim, Hwi; Lee, Byoungho
2014-11-17
A design scheme for low-reflection asymmetric mode conversion structure in three-mode waveguide system is proposed. By using a dark-mode of three-mode system, which can be interpreted in terms of destructive interference of transition amplitudes, the transmission characteristics for forward and backward directions can be designed separately. After explanation of the proposed design scheme, we demonstrate an example of asymmetric mode converter that consists of two gratings. The proposed scheme may be useful for the design of tunable asymmetric transmission devices due to its design flexibility and efficient design process. PMID:25402109
Mitigation of mode instabilities by dynamic excitation of fiber modes
Otto, Hans-Jürgen; Jauregui, Cesar; Stutzki, Fabian; Jansen, Florian; Limpert, Jens; Tünnermann, Andreas
2013-03-01
By dynamically varying the power content of the excited fiber modes of the main amplifier of a fiber-based MOPA system at high average output power levels, it was possible to mitigate mode instabilities to a large extent. In order to achieve the excitation variation, we used an acousto-optic deflector in front of the Yb-doped rod-type fiber. Therewith, it was possible to significantly increase both the average and the instantaneous minimum power content of the fundamental mode. This, consequently, led to a substantial improvement of the beam quality and pointing stability at power levels well beyond the threshold of mode instabilities.
Automatic determination of important mode-mode correlations in many-mode vibrational wave functions
König, Carolin; Christiansen, Ove
2015-04-01
We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Frank W. Wise
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by exc...
Fiber propagation of vector modes
Ndagano, Bienvenu; McLaren, Melanie; Duparre, Michael; Forbes, Andrew
2015-01-01
Here we employ both dynamic and geometric phase control of light to produce radially modulated vector-vortex modes, the natural modes of optical fibers. We then measure these modes using a vector modal decomposition set-up as well as a tomography measurement, the latter providing a degree of the non-separability of the vector states, akin to an entanglement measure for quantum states. We demonstrate the versatility of the approach by creating the natural modes of a step-index fiber, which are known to exhibit strong mode coupling, and measure the modal cross-talk and non-separability decay during propagation. Our approach will be useful in mode division multiplexing schemes for transport of classical and quantum states.
Waveguides having patterned, flattened modes
Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.
2015-10-27
Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.
Waveguides having patterned, flattened modes
Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.
2015-10-27
Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.
Analyzing Modes of Foreign Entry
Müller, Thomas
2001-01-01
This paper studies the entry decision of a multinational enterprise into a foreign market. Two alternative entry modes for a foreign direct investment are considered: Greenfield investment versus acquisition. In contrast to existing approaches, the acquisition price and the profits under both entry modes are endogenously determined. Interestingly, we find that the optimal entry mode decision is a ected by the competition intensity in the market in a non-monotonic way. When markets are very mu...
Checking modes of HAL programs
de la Banda, MG; Harvey, W; Marriott, K.; Stuckey, PJ; Demoen, Bart
2005-01-01
Recent constraint logic programming (CLP) languages, such as HAL and Mercury, require type, mode and determinism declarations for predicates. This information allows the generation of efficient target code and the detection of many errors at compile-time. Unfortunately, mode checking in such languages is difficult. One of the main reasons is that, for each predicate mode declaration, the compiler is required to appropriately re-order literals in the predicate's definition. The task is further...
Principal modes in fiber amplifiers
Fridman, Moti; Dubinskii, Mark; Friesem, Asher A; Davidson, Nir
2010-01-01
The dynamics of the state of polarization in single mode and multimode fiber amplifiers are presented. The experimental results reveal that although the state of polarizations at the output can vary over a large range when changing the temperatures of the fiber amplifiers, the variations are significantly reduced when resorting to the principal states of polarization in single mode fiber amplifiers and principal modes in multimode fiber amplifiers.
Mode coupling structure in Tokamaks
A m=1, helically displaced current channel was identified in the ASDEX plasma interior during m=2 mode activity. This was achieved by means of simultaneous data obtained from a new gradient sensitive schlieren diagnostic and BP measurements. They clearly show a rotational-transform-dependent coupling mechanism between the driver m=1 current helix and the m=2 perturbation of the bulk current surrounding it. The mechanism is of central importance for the development of the instability and for the theoretical understanding of mode coupling, mode locking and other varieties of mode structures in plasma. (orig.)
Methods of component mode synthesis
Craig, R. R., Jr.
1977-01-01
A generalized substructure coupling, or component mode synthesis, procedure is described. Specific methods, applications, and such special topics as damping and experimental verification are surveyed.
Tomography of Spatial Mode Detectors
Bobrov, Ivan; Markov, Anton; Straupe, Stanislav; Kulik, Sergey
2014-01-01
Transformation and detection of photons in higher-order spatial modes usually requires complicated holographic techniques. Detectors based on spatial holograms suffer from non-idealities and should be carefully calibrated. We report a novel method for analyzing the quality of projective measurements in spatial mode basis inspired by quantum detector tomography. It allows us to calibrate the detector response using only gaussian beams. We experimentally investigate the inherent inaccuracy of the existing methods of mode transformation and provide a full statistical reconstruction of the POVM (positive operator valued measure) elements for holographic spatial mode detectors.
Zero Modes and Entanglement Entropy
Yazdi, Yasaman K
2016-01-01
Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.
Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi
Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.
Nonlinear mode coupling in whispering-gallery-mode resonators
D'Aguanno, Giuseppe
2016-01-01
We present a first principle derivation of the coupled nonlinear Schr\\"{o}dinger equations that govern the interaction between two families of modes with different transverse profiles in a generic whispering-gallery-mode resonator. We find regions of modulational instability and the existence of trains of bright solitons both in the normal and in the anomalous dispersion regime.
Nonlinear mode coupling in whispering-gallery-mode resonators
D'Aguanno, Giuseppe; Menyuk, Curtis R.
2016-04-01
We present a first-principles derivation of the coupled nonlinear Schrödinger equations that govern the interaction between two families of modes with different transverse profiles in a generic whispering-gallery-mode resonator. We find regions of modulational instability and the existence of trains of bright solitons in both the normal and the anomalous dispersion regime.
Multi-dimensional laser mode combs (mode hyper-combs)
Schwartz, Alon
2012-01-01
Laser frequency combs, as most lasers, are one-dimensional. Here we present a realization of d-dimensional laser mode lattices (mode hyper-combs) with unique properties. They are constructed from regular 1-dimensional combs by multi-frequency modulation in active mode-locking (AML). The hyper-comb, with near neighbor mode interaction and noise functioning as temperature, is mapped to interacting magnetic spin-lattices in the spherical-model, which is one of the few statistical-mechanics systems soluble in all dimensions. The important result is that such systems have, in d>2 dimensions, a phase-transition to a global mode-phase-ordered hyper-comb. It changes the nature of AML lasers, giving ultimately short and robust pulses which can capture very broad frequency bandwidths. Additionally, the hyper-combs can serve as a rare physical realization of the spherical-model in any dimension.
Single-mode squeezing in arbitrary spatial modes
Semmler, Marion; Chille, Vanessa; Gabriel, Christian; Banzer, Peter; Aiello, Andrea; Marquardt, Christoph; Leuchs, Gerd
2016-01-01
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as fl...
Theory of resistive fishbone modes
A special kind of internal kink mode, the fishbone, can be excited by the energetic particles in tokamak plasma. Theoretical analysis of fishbone modes based on the ideal MHD framework have predicted that two branches of modes exist. One is the Chen-White branch with ω ≅ dm>, corresponding to a higher threshold in βh, the other is the Coppi's branch with ω ≅ ω*i, and a much lower threshold in βh. The latter mode should put a rather unfavourable restriction on heating efficiency and plasma energy confinement. However, we find that resistivity effect is essential for this mode. A new resistive fishbone mode analysis is carried out. In the (γmbd,βb) space, the stability diagram shows complicated structure, the Coppi's branch is replaced by a weakly unstable mode and there is no longer closed stable region. The growth rate varies with the increase in βh, its peak value is still very small compared to other internal modes. The implications of these results to the future tokamak experiments are discussed
Mode Combinations and International Operations
Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.
2011-01-01
reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time—providing a potentially important optional path for international expansion. The data show...
Mode Combinations and International Operations
Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.
2011-01-01
reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time – providing a potentially important optional path for international expansion. Our data...
Homogeneous modes of cosmological instantons
We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or ColemanendashDe Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe
Theory of psychological adaptive modes.
Lehti, Juha
2016-05-01
When an individual is facing a stressor and normal stress-response mechanism cannot guarantee sufficient adaptation, special emotional states, adaptive modes, are activated (for example a depressive reaction). Adaptive modes are involuntary states of mind, they are of comprehensive nature, they interfere with normal functioning, and they cannot be repressed or controlled the same way as many emotions. Their transformational nature differentiates them from other emotional states. The object of the adaptive mode is to optimize the problem-solving abilities according to the situation that has provoked the mode. Cognitions and emotions during the adaptive mode are different than in a normal mental state. These altered cognitions and emotional reactions guide the individual to use the correct coping skills in order to deal with the stressor. Successful adaptation will cause the adaptive mode to fade off since the adaptive mode is no longer necessary, and the process as a whole will lead to raised well-being. However, if the adaptation process is inadequate, then the transformation period is prolonged, and the adaptive mode will turn into a dysfunctional state. Many psychiatric disorders are such maladaptive processes. The maladaptive processes can be turned into functional ones by using adaptive skills that are used in functional adaptive processes. PMID:27063089
Burst Mode Transmission in GPON
LI Liang-chuan; ZHANG Yan-gan; LI Ling; XU Da-xiong
2004-01-01
In this paper, a newly approved standard G.984 for Gigabit-capable Passive Optical Networks (GPON) is introduced. Technical challenges about high-speed burst-mode data transmission in GPON are discussed and key issues such as Forward Error Correction (FEC), timing to uplink performance of burst mode are high-lighted.
Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Häggström, I.; Kalishin, A. S.
2015-12-01
We present experimental results concentrating on a variety of phenomena in the high latitude ionosphere F2 layer induced by an extraordinary (X-mode) HF pump wave at high heater frequencies (fH=6.2-8.0 MHz), depending on the pump frequency proximity to the ordinary and extraordinary mode critical frequencies, foF2 and fxF2. The experiments were carried out at the EISCAT HF heating facility with an effective radiated power of 450-650 MW in October 2012 and October-November 2013. Their distinctive feature is a wide diapason of critical frequency changes, when the fH/foF2 ratio was varied through a wide range from 0.9 to 1.35. It provides both a proper comparison of X-mode HF-induced phenomena excited under different ratios of fH/foF2 and an estimation of the frequency range above foF2 in which such X-mode phenomena are still possible. It was shown that the HF-enhanced ion and plasma lines are excited above foF2 when the HF pump frequency is lying in range between the foF2 and fxF2, foF2≤fH≤fxF2, whereas small-scale field-aligned irregularities continued to be generated even when fH exceeded fxF2 by up to 1 MHz and an X-polarized pump wave cannot be reflected from the ionosphere. Another parameter of importance is the magnetic zenith effect (HF beam/radar angle direction) which is typical for X-mode phenomena under fH/foF2 >1 as well as fH/foF2 ≤1. We have shown for the first time that an X-mode HF pump wave is able to generate strong narrowband spectral components in the SEE spectra (within 1 kHz of pump frequency) in the ionosphere F region, which were recorded at distance of 1200 km from the HF heating facility. The observed spectral lines can be associated with the ion acoustic, electrostatic ion cyclotron, and electrostatic ion cyclotron harmonic waves (otherwise known as neutralized ion Bernstein waves). The comparison between the O- and X-mode SEE spectra recorded at distance far from HF heating facility clearly demonstrated that variety of the narrowband
Inter-comb synchronization by mode-to-mode locking
Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo
2016-08-01
Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52 × 10‑16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.
Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser
Chusseau, Laurent; Philippe, Fabrice; Viktorovitch, Pierre; Letartre, Xavier
2013-01-01
This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode ...
Geodesic acoustic modes with poloidal mode couplings ad infinitum
Singh, Rameswar; Garbet, X; Hennequin, P; Vermare, L; Morel, P; Singh, R
2015-01-01
Geodesic acoustic modes (GAMs) are studied, for the first time, including all poloidal mode $(m)$ couplings using drift reduced fluid equations. The nearest neighbor coupling pattern, due to geodesic curvature, leads to a semi-infinite chain model of the GAM with the mode-mode coupling matrix elements proportional to the radial wave number $k_{r}$. The infinite chain can be reduced to a renormalized bi-nodal chain with a matrix continued fractions. Convergence study of linear GAM dispersion with respect to $k_{r}$ and the $m$-spectra confirms that high m couplings become increasingly important with $k_{r}$. The radially sorted roots overlap with experimentally measured GAM frequency profile in low collisionality shots in Tore Supra thus explaining the reduced frequency of GAM in Tore Supra.
A dual-cavity TM02–TM01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM01 mode feedback
Distributed Mode Filtering Rod Fiber Amplifier With Improved Mode Stability
Laurila, Marko; Alkeskjold, Thomas Tanggaard; Broeng, Jes;
2012-01-01
We report 216W of average output power from a photonic crystal rod fiber amplifier. We demonstrate 44% power improvement before onset of the mode instability by operating the rod fiber in a leaky guiding regime.......We report 216W of average output power from a photonic crystal rod fiber amplifier. We demonstrate 44% power improvement before onset of the mode instability by operating the rod fiber in a leaky guiding regime....
Modes of clustered star formation
Pfalzner, S; Olczak, C
2012-01-01
The realization that most stars form in clusters, raises the question of whether star/planet formation are influenced by the cluster environment. The stellar density in the most prevalent clusters is the key factor here. Whether dominant modes of clustered star formation exist is a fundamental question. Using near-neighbour searches in young clusters Bressert et al. (2010) claim this not to be the case and conclude that star formation is continuous from isolated to densely clustered. We investigate under which conditions near-neighbour searches can distinguish between different modes of clustered star formation. Near-neighbour searches are performed for model star clusters investigating the influence of the combination of different cluster modes, observational biases, and types of diagnostic and find that the cluster density profile, the relative sample sizes, limitations in observations and the choice of diagnostic method decides whether modelled modes of clustered star formation are detected. For centrally ...
Adaptive Structural Mode Control Project
National Aeronautics and Space Administration — M4 Engineering proposes the development of an adaptive structural mode control system. The adaptive control system will begin from a "baseline" dynamic model of the...
Breathing Modes in Dusty Plasma
王晓钢; 王爽; 潘秋惠; 刘悦; 贺明峰
2003-01-01
Acoustic breathing modes of dusty plasmas have been investigated in a cylindricalsystem with an axial symmetry. The linear wave solution and a "dispersion" relation were derived.It was found that in an infinite area, the mode is reduced to a "classical" dust acoustic wave inthe region away from the center. If the dusty plasma is confined in a finite region, however, thebreathing (or heart-beating) behavior would be found as observed in many experiments.
Reconfigurable Mixed Mode Universal Filter
Neelofer Afzal; Devesh Singh
2014-01-01
This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types) at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite lar...
Amplitude oscillation of DCLC mode
A quasilinear model and a simulation code taking into account the electron bounce resonance damping have been developed to describe the amplitude oscillation of the drift cyclotron loss-cone mode, which has been observed in mirror experiments. It was found that this oscillatory behavior of the amplitude is caused by the temporal variation of the growth rate and the effect of electron bounce resonance damping on the amplitude of this mode. (author)
Hydrodynamic Modes for Granular Gases
Dufty, James W.; Brey, J. Javier
2003-01-01
The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d=3) or disks (d=2) corresponding to d+2 hydrodynamic modes, are calculated in the long wavelength limit for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an exactly solvable kinetic model. A collisional continuum is bounded away from ...
Single mode levitation and translation
Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)
1988-01-01
A single frequency resonance mode is applied by a transducer to acoustically levitate an object within a chamber. This process allows smooth movement of the object and suppression of unwanted levitation modes that would urge the object to a different levitation position. A plunger forms one end of the chamber, and the frequency changes as the plunger moves. Acoustic energy is applied to opposite sides of the chamber, with the acoustic energy on opposite sides being substantially 180 degrees out of phase.
The effective degeneracy of protein normal modes
Na, Hyuntae; Song, Guang
2016-06-01
Normal modes are frequently computed and used to portray protein dynamics and interpret protein conformational changes. In this work, we investigate the nature of normal modes and find that the normal modes of proteins, especially those at the low frequency range (0–600 cm‑1), are highly susceptible to degeneracy. Two or more modes are degenerate if they have the same frequency and consequently any orthogonal transformation of them also is a valid representation of the mode subspace. Thus, degenerate modes can no longer characterize unique directions of motions as regular modes do. Though the normal modes of proteins are usually of different frequencies, the difference in frequency between neighboring modes is so small that, under even slight structural uncertainty that unavoidably exists in structure determination, it can easily vanish and as a result, a mode becomes effectively degenerate with its neighboring modes. This can be easily observed in that some modes seem to disappear and their matching modes cannot be found when the structure used to compute the modes is modified only slightly. We term this degeneracy the effective degeneracy of normal modes. This work is built upon our recent discovery that the vibrational spectrum of globular proteins is universal. The high density of modes observed in the vibrational frequency spectra of proteins renders their normal modes highly susceptible to degeneracy, under even the smallest structural uncertainty. Indeed, we find the degree of degeneracy of modes is proportional to the density of modes in the vibrational spectrum. This means that for modes at the same frequency, degeneracy is more severe for larger proteins. Degeneracy exists also in the modes of coarse-grained models, but to a much lesser extent than those of all-atom models. In closing, we discuss the implications of the effective degeneracy of normal modes: how it may significantly affect the ways in which normal modes are used in various normal modes
Mode characteristics of hollow core Bragg fiber
Minning Ji; Zhidong Shi; Qiang Guo
2005-01-01
Analytical expression to calculate propagation constant and mode field of the hollow core Bragg fiber is derived. Numerical results are presented. It is shown that the fundamental mode of the hollow core Bragg fiber is circularly symmetric TE01 mode with no polarization degeneracy, while the higher order mode may be HE11, TM01, or TE02 etc.. This property is different from conventional optical fiber that its fundamental mode is the linearly polarized HE11 mode and is polarization degeneracy.
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-01-01
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Tapping mode microwave impedance microscopy
Lai, K.
2009-01-01
We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.
Reconfigurable Mixed Mode Universal Filter
Neelofer Afzal
2014-01-01
Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.
Macroscopic (and microscopic massless modes
Michael C. Abbott
2015-05-01
Full Text Available We study certain spinning strings exploring the flat directions of AdS3×S3×S3×S1, the massless sector cousins of su(2 and sl(2 sector spinning strings. We describe these, and their vibrational modes, using the D(2,1;α2 algebraic curve. By exploiting a discrete symmetry of this structure which reverses the direction of motion on the spheres, and alters the masses of the fermionic modes s→κ−s, we find out how to treat the massless fermions which were previously missing from this formalism. We show that folded strings behave as a special case of circular strings, in a sense which includes their mode frequencies, and we are able to recover this fact in the worldsheet formalism. We use these frequencies to calculate one-loop corrections to the energy, with a version of the Beisert–Tseytlin resummation.
Schneider, N.; di Lorenzo, E.
2007-12-01
Discussion of North Pacific Decadal decadal variability has focused primarily on the Pacific Decadal Oscillation, the leading mode of sea surface temperature anomalies north of the tropics. The PDO appears to result from a superposition of SST pattern forced by the North Pacific atmosphere due to its intrinsic dynamics and teleconnected from the tropics, with a regional impact of the ocean circulation in the frontal regions associated with the Kuroshio/Oyashio and their extensions into the interior. Recent modeling, however, suggest that previously unexplained decadal changes of salinity, nutrient upwelling and chlorophyl in the California Current are not dominated by the PDO. Rather, these are associated with a mode of variability associated with wind driven changes of the North Pacific Gyre. Consideration of this mode variability may thus be important to understand present and future variations of the North Pacific ecosystem, and in the interpretation of climate proxies.
Tearing mode in RFP configurations
The tearing mode appearing in RFP configurations is studied both by numerical solution of the exact eigenequations and by using Δ'theory. Systematic parameter studies for force free configurations have been carried out. We find that Δ'theory is a good approximation only when β=0. In general, the growth rate is sensitive to the β value and 3/5 Δ' scaling no longer applies for finite beta. For typical experimental beta values we find that the tearing mode is always unstable within the parametri- zation considered. 17 figs
Hydrodynamic modes for granular gases.
Dufty, James W; Brey, J Javier
2003-09-01
The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d=3) or disks (d=2) corresponding to d+2 hydrodynamic modes are calculated in the long wavelength limit for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an exactly solvable kinetic model. A collisional continuum is bounded away from the hydrodynamic spectrum, assuring a hydrodynamic description at long times. The bound is closely related to the power law decay of the velocity distribution in the reference homogeneous cooling state. PMID:14524742