Semiconductor laser beam bending
YILDIRIM, REMZİ; ÇELEBİ, FATİH VEHBİ
2015-01-01
This study is about a single-component cylindrical structured lens with a gradient curve that was used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independently of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single-piece cylindrical lens that can bend laser beams was developed. Lenses are made of transparent, tinted, or colored glass and are used to undermine or absorb the energy of...
International Nuclear Information System (INIS)
The mechanical behavior of a silicon crystal under bending is investigated. For a crystal of length 30 mm and thickness 3 mm, to achieve the specified bend angle of 0.64 mrad, the appropriate angle of the aluminum punches is 0.96 mrad
Dispersion suppressors with bending
Energy Technology Data Exchange (ETDEWEB)
Garren, A.
1985-10-01
Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.
1980-01-01
The very particular lattice of the AA required 2 types of dipole (bending magnets; BLG, long and narrow; BST, short and wide). The BLG had a steel length of 4.70 m, a good field width of 0.24 m, and a weight of about 70 t. Jean-Claude Brunet inspects the lower half of a BLG. For the BST magnets see 7811105 and 8006036.
Thiria, Benjamin
2010-01-01
Wing flexibility governs the flying performance of flapping wing flyers. Here we use a self-propelled flapping-wing model mounted on a "merry-go-round" to investigate the effect of wing compliance on the propulsive efficiency of the system. Our measurements show that the elastic nature of the wings can lead not only to a substantial reduction of the consumed power, but also to an increment of the propulsive force. A scaling analysis using a flexible plate model for the wings points out that, for flapping flyers in air, the time-dependent shape of the elastic bending wing is governed by the wing inertia. Based on this prediction, we define the ratio of the inertial forces deforming the wing to the elastic restoring force that limits the deformation as the 'elasto-inertial number'. Our measurements with the self-propelled model confirm that it is the appropriate structural parameter to describe flapping flyers with flexible-wings.
Energy Technology Data Exchange (ETDEWEB)
Courant, E.D. [Brookhaven National Lab., Upton, NY (United States); Garren, A.
1985-10-01
The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.
A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine
Chang Hwan Choi; Lawrence Kulinsky; Joon Soo Jun; Jin Ho Kim
2014-01-01
Recently, the rebar bending methodology started to change from field processing to utilizing rebar bending machines at plant sites prior to transport to the construction locations. Computerized control of rebar plant bending machines provides more accurate and faster bending of rebars than the low quality inefficient field processing alternative. The bending process involves plastic deformation of rebars, where bending stress beyond the yield point of the material is applied. When the bending...
Effect of bending pattern on finger joint bending strength
Directory of Open Access Journals (Sweden)
Džinčić Igor
2012-01-01
Full Text Available Limited information is available on end gluing hardwoods in contrast to softwoods, which have been extensively investigated. The objective of this study was to examine the influence of bending patern on bending strength of finger jointed beech wood. In structural uses finger jointing is finally the major method to end joint timber for the production of glue-laminated elements. There are no bending strength experimental results for finger-jointed hardwoods for investigations conducted in Serbia. Two finger jointed profiles were studied in accordance with DIN68140. The finger joints were made by side and by face of beam. Length jointed samples were loaded at the side and in the face. The obtained results led to the conclusion that the direction of load, gluing surface and the position of joint influence on the strength of continued longitudinal beams.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new kind of bend sensor is introduced.It can be used to detect the bend angle of an object or inclination between two objects.It has characteristics of small size, lightweight, high reliability, fine flexibility and plasticity.When this bend sensor is used with a proper converting circuit, it can implement dynamic measuring the bend angle of an object conveniently.The application of the bend sensor in dataglove is also described.
Bending characteristics of resin concretes
Directory of Open Access Journals (Sweden)
Ribeiro Maria Cristina Santos
2003-01-01
Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.
Combustion engineering: steam generator tube bending practices
International Nuclear Information System (INIS)
The tube bending practices and procedures employed by Combustion Engineering (CE), when bending inconel tubing is discussed. CE has two different type tube geometries in the steam generator. The innermost tubes are 1800 U-bends while the majority of the tubes have two (2) 900 bends with a straight leg between these 900 bends. The first 18 rows have U-bends (2 1/2'' to 11''R), while the remaining tubes have the double 900 geometry. All double 900 bends are bent to a 10'' radius. This presentation will address the following important parameters necessary to achieve a high quality bent tube: fabrication requirements at the tube mill; tube bending equipment; tube bending operation; inspection and final preparation; and packaging
Hormonal regulation of gravitropic bending
Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.
Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending
Wood bending using microwave heating
International Nuclear Information System (INIS)
This article presents a new technique of wood bending where microwave irradiation is used to heat and soften wet wood specimens. Compared to the traditional steaming procedure, this procedure offers many advantages : (i) as the heating occurs inside the specimen, complete softening is obtained very quickly; (ii) temperature can be easily controlled in order to obtain the best processing conditions; (iii) the benefit will be especially big in the case of large specimens whose pretreatment may take hours with steaming; (iv) in general, the applicability of wood bending is enlarged, i.e. new wood species and specimens with lower quality can endure larger deformations with a reduced loss. In the case where drastic strain levels are required, the forming and setting operations should be done inside the microwave oven, in order to take advantage of the additional ''mechano-sorptive'' flexibility appearing when wood dries under load
Bending stresses in Facetted Glass Shells
DEFF Research Database (Denmark)
Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik
structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions and...
Bending and stretching of plates
Mansfield, E H; Hemp, W S
2014-01-01
The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a
Garment-Integrated Bend Sensor
Directory of Open Access Journals (Sweden)
Guido Gioberto
2014-09-01
Full Text Available Garment-integrated sensors equip clothes with a smart sensing capability, while preserving the comfort of the user. However, this benefit can be to the detriment of sensing accuracy due to the unpredictability of garment movement (which affects sensor positioning and textile folds (which can affect sensor orientation. However, sensors integrated directly into garments or fabric structures can also be used to detect the movement of the garment during wearing. Specifically, a textile bend sensor could be used to sense folds in the garment. We tested a garment-integrated stitched sensor for five types of folds, stitched on five different weights of un-stretchable denim fabric and analyzed the effects of fold complexity and fabric stiffness, under un-insulated and insulated conditions. Results show that insulation improves the linearity and repeatability of the sensor response, particularly for higher fold complexity. Stiffer fabrics show greater sensitivity, but less linearity. Sensor response amplitude is larger for more complex fold geometries. The utility of a linear bending response (insulated and a binary shorting response (un-insulated is discussed. Overall, the sensor exhibits excellent repeatability and accuracy, particularly for a fiber-based, textile-integrated sensor.
Elastic bending modulus of monolayer graphene
International Nuclear Information System (INIS)
An analytic formula is derived for the elastic bending modulus of monolayer graphene based on an empirical potential for solid-state carbon atoms. Two physical origins are identified for the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the bond-angle effect and the other resulting from the bond-order term associated with the dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes. (fast track communication)
Elastic bending modulus of monolayer graphene
Energy Technology Data Exchange (ETDEWEB)
Lu Qiang; Huang Rui [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712 (United States); Arroyo, Marino [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)
2009-05-21
An analytic formula is derived for the elastic bending modulus of monolayer graphene based on an empirical potential for solid-state carbon atoms. Two physical origins are identified for the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the bond-angle effect and the other resulting from the bond-order term associated with the dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes. (fast track communication)
Bending magnets design of cERL
International Nuclear Information System (INIS)
We are now constructing Compact Energy Recovery Linac (cERL) to start commissioning in March of 2013. We started constructing 35MeV, 10mA, 1loop design, and after step by step reinforcement, we will complete 245MeV, 100mA, and 2loop facility of cERL. We use 2 type bending magnets, sector type magnet and branch bend. Both magnets are trapezoid shape and bending radiuses are 1m, bending angles are 45degree. After constructing second loop, we use the branch bend to separate low energy electron to first loop and high energy electron to second loop. We report these two type bending magnets design of cERL. (author)
Minimum Membrane Bending Energies of Fusion Pores
Jackson, Meyer B.
2009-01-01
Membranes fuse by forming highly curved intermediates, culminating in structures described as fusion pores. These hourglass-like figures that join two fusing membranes have high bending energies, which can be estimated using continuum elasticity models. Fusion pore bending energies depend strongly on shape, and the present study developed a method for determining the shape that minimizes bending energy. This was first applied to a fusion pore modeled as a single surface and then extended to a...
Peeling, sliding, pulling and bending
Lister, John; Peng, Gunnar
2015-11-01
The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.
Bandwidth engineering of photonic crystal waveguide bends
DEFF Research Database (Denmark)
Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;
2004-01-01
An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...
2010-10-01
....1 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). This shall not prohibit the use of..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will...
Bends and splitters in graphene nanoribbon waveguides
DEFF Research Database (Denmark)
Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger;
2013-01-01
We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...
Bending of light in conformal Weyl gravity
Sultana, Joseph; Kazanas, Demosthenes
2010-06-01
We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term γr in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.
49 CFR 195.212 - Bending of pipe.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2)...
49 CFR 192.313 - Bends and elbows.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Bends and elbows. 192.313 Section 192.313... Lines and Mains § 192.313 Bends and elbows. (a) Each field bend in steel pipe, other than a wrinkle bend... tested either before or after the bending process. (c) Wrought-steel welding elbows and...
Bending stresses in Facetted Glass Shells
DEFF Research Database (Denmark)
Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik
A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions and...
Measurement of irradiation creep in bending
International Nuclear Information System (INIS)
The major deformation modes in LMFBR fuel channels are bowing caused by neutron flux and temperature gradients and dilation due to stresses imposed by the flowing sodium. In both cases, the stress state of interest is bending. The bulk of irradiation creep data has been generated by simply loaded specimens such as tensile or biaxial pressurized tubes but it is questionable whether this data can be used to predict creep in bending. An irradiation creep experiment using beams loaded in primary bending has been designed to investigate this premise
Measurement of irradiation creep in bending. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
McSherry, A.J.; Marshall, J.; Patel, M.R.
1980-01-31
The major deformation modes in LMFBR fuel channels are bowing caused by neutron flux and temperature gradients and dilation due to stresses imposed by the flowing sodium. In both cases, the stress state of interest is bending. The bulk of irradiation creep data has been generated by simply loaded specimens such as tensile or biaxial pressurized tubes but it is questionable whether this data can be used to predict creep in bending. An irradiation creep experiment using beams loaded in primary bending has been designed to investigate this premise.
Numerical Evaluation of Bending Load Effect on the Failure Pressure of Wall-Thinned Pipe Bends
International Nuclear Information System (INIS)
During the normal operating conditions, piping systems in nuclear power plants (NPPs) are subject not only to internal pressure but also to bending loads induced by deadweight, thermal expansion, and internal pressure. Bending is thus considered to be an important factor in evaluating the integrity of piping components in NPPs. Local wall-thinning due to flow accelerated corrosion is a main degradation mechanism of carbon steel piping components in NPPs, and the integrity evaluation of wall-thinned piping components has become an important issue. This study investigated the effects of bending load on the failure of wall-thinned pipe bends under internal pressure. Our previous study experimentally evaluated the bending load effects on the failure pressure of wall-thinned elbows under displacement controlled in-plane bending load, but the numbers of experimental data were insufficient to determine the effects of bending load on the failure pressure of wall-thinned pipe bends. Therefore, the present study systematically evaluates the effects of bending load on the failure pressure of wall-thinned pipe bends using parametric finite element analyses
A derivation of the generalized model of strains during bending of metal tubes at bending machines
Directory of Open Access Journals (Sweden)
Śloderbach Z.
2014-02-01
Full Text Available According to the postulate concerning a local change of the “actual active radius” with a bending angle in the bend zone, a generalized model of strain during metal tube bending was derived. The tubes should be subjected to bending at tube bending machines by the method of wrapping at the rotating template and with the use of a lubricated steel mandrel. The model is represented by three components of strain in the analytic form, including displacement of the neutral axis. Generalization of the model during bending metal tubes at the tube bending machines as compared with the existing papers (Śloderbach, 1999; Śloderbach and Rechul, 2000 consists in including the neutral axis displacement and possibility of determination of strains at each point along the thickness of the wall of the bent tube in the bending and bend zone. The derived scheme of strain satisfies initial and boundary kinematic conditions of the bending process, conditions of continuity and inseparability of strains. The obtained analytic expressions can be classified as acceptable from the kinematic point of view
A flexible sensor measuring displacement and bending
Nishijima, Takashi; Yamamoto, Akio; Higuchi, Toshiro
2009-04-01
This paper proposes a new sensor that is capable of measuring both linear displacement and bending. The sensor is designed to be used with an electrostatic film motor that features mechanical flexibility, but can also be used as an independent sensor. The sensor employs three-phase electrodes both in sliding and stationary parts and estimates displacement and bending from the change of the capacitance between the electrodes. The paper describes an equivalent capacitance-network model for the sensor. Based on the model, sensing principles for both displacement and bending are presented and analyzed. The analyses are experimentally verified using a prototype sensor. The experimental results show that the prototype sensor could measure both displacement and bending with little interference between them.
Estimation of tensile properties of pipe bends manufactured by cold bending
International Nuclear Information System (INIS)
In this study, tensile tests were performed on specimens that simulated the cold bending and heat treatment of pipe bends to understand the mechanical properties of pipe bends manufactured by cold bending followed by heat treatment for relieving residual stress. The strength and ductility of cold worked materials were respectively found to be higher and lower than those of the parent material although heat treatment was carried out to relieve residual stress. In addition, the increase in strength and decrease in ductility were proportional to the applied strain levels for cold working. It was thus inferred that the intrados and extrados regions of pipe bends that were cold bended and heat treated show higher strength and lower ductility compared to the parent straight pipe and that the mechanical properties at the crown region are nearly the same as those of the parent straight pipe
This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.
Pipes under internal pressure and bending
Catinaccio, A
2009-01-01
This article covers the general behaviour of a straight uniform pipe, with built-in open ends, subject to internal pressure and in plane bending or curvature. It is intended as a summary of the basic equations driving the unintuitive phenomena of bending and instability of pipes under internal pressure. The analysis covers in addition the investigation of opposite pressure stabilisation effects that can be observed in some orthotropic material pipes like composite pressure hoses.
Bending rigidity of composite resin coating clasps.
Ikebe, K; Kibi, M; Ono, T; Nokubi, T
1993-12-01
The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086
A transparent bending-insensitive pressure sensor
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
New Equation for Bending Development of Arbitrary Rods and Application to Palm Fronds Bending
Abdullah, Mikrajuddin
2016-01-01
A new general equation to explain bending of arbitrary rods (from arbitrary materials, cross sections, densities, strengthnesses, bending angles, etc) was proposed. This equation can solve several problems found in classical equations, which have many limitations such as only applies for small bending angles or must be solved using very complex schemes. Experiments were also conducted to confirm the theoretical predictions. The equation might be used to explain bending of palm fronds in a very simple way. The proposed equation may be used to obtain solution of several problems which are usually obtain with iteration procedures.
Forming characteristics of thin-walled tube bending process with small bending radius
Institute of Scientific and Technical Information of China (English)
LI Heng; YANG He; ZHAN Mei; GU Rui-Jie
2006-01-01
Currently requirements of thin-walled tube with small bending radius cause the defects such as wrinkling,overthinning and cross-section distortion more prone to occur in bending process. Based on the analysis of the forming characteristics by analytical and experimental methods,a complete 3D elastic-plastic FEM model of the process was developed using ABAQUS/Explicit code,including bending process,balls retracting and unloading process,and thus the plastic deformation characteristics with small bending radius were investigated. The main results show that: 1) The utmost deformation feature of the NC bending process is its continuous progressive deformation. 2) The occurring conditions of the defects such as wrinkling and tension instability in the process are obtained. The wrinkling is traditional on the double compressive stresses state and the tension instability is on the double tension stresses state. 3) The enhanced non-uniform deformation in thin-walled tube with small bending radius is demonstrated by comparing the stress/ strains distributions under the 1.5D and 1D bending conditions. 4) For 1D small bending process,a new method-"stepped mandrel retraction" is proposed to improve the bending quality in experiment according to the FE simulation. The simulation results are verified by experiment.
Sharp bends of phononic crystal surface modes
Cicek, Ahmet; Salman, Aysevil; Adem Kaya, Olgun; Ulug, Bulent
2015-12-01
Sharp bending of surface waves at the interface of a two-dimensional phononic crystal (PnC) of steel cylinders in air and the method of using a diagonally offset cylindrical scatterer are numerically demonstrated by finite-element method simulations. The radii of the diagonally offset scatterer and the cylinder at the PnC corner, along with the distance between them, are treated as optimization parameters in the genetic algorithm optimization of sharp bends. Surface wave transmittance of at most 5% for the unmodified sharp bend is significantly enhanced to approximately 75% as a result of optimization. A series of transmittance peaks whose maxima increase exponentially, as their widths reduce, with increasing frequency is observed for the optimized sharp bend. The transmittance peaks appear at frequencies corresponding to integer plus half-beat periods, depending on the finite surface length. The optimal parameters are such that the cylinder radius at the PnC corner is not significantly modified, whereas a diagonally offset scatterer having a diameter of almost two periods and a shortest distance of about 0.7 periods between them is required for the strongest transmittance peak. Utilization of PnC surface sharp bends as acoustic ring resonators is demonstrated.
Sharp bends of phononic crystal surface modes
International Nuclear Information System (INIS)
Sharp bending of surface waves at the interface of a two-dimensional phononic crystal (PnC) of steel cylinders in air and the method of using a diagonally offset cylindrical scatterer are numerically demonstrated by finite-element method simulations. The radii of the diagonally offset scatterer and the cylinder at the PnC corner, along with the distance between them, are treated as optimization parameters in the genetic algorithm optimization of sharp bends. Surface wave transmittance of at most 5% for the unmodified sharp bend is significantly enhanced to approximately 75% as a result of optimization. A series of transmittance peaks whose maxima increase exponentially, as their widths reduce, with increasing frequency is observed for the optimized sharp bend. The transmittance peaks appear at frequencies corresponding to integer plus half-beat periods, depending on the finite surface length. The optimal parameters are such that the cylinder radius at the PnC corner is not significantly modified, whereas a diagonally offset scatterer having a diameter of almost two periods and a shortest distance of about 0.7 periods between them is required for the strongest transmittance peak. Utilization of PnC surface sharp bends as acoustic ring resonators is demonstrated. (paper)
Pure plate bending in couple stress theories
Hadjesfandiari, Ali R; Dargush, Gary F
2016-01-01
In this paper, we examine the pure bending of plates within the framework of modified couple stress theory (M-CST) and consistent couple stress theory (C-CST). In this development, it is demonstrated that M-CST does not describe pure bending of a plate properly. Particularly, M-CST predicts no couple-stresses and no size effect for the pure bending of the plate into a spherical shell. This contradicts our expectation that couple stress theory should predict some size effect for such a deformation pattern. Therefore, this result clearly demonstrates another inconsistency of indeterminate symmetric modified couple stress theory (M-CST), which is based on considering the symmetric torsion tensor as the curvature tensor. On the other hand, the fully determinate skew-symmetric consistent couple stress theory (C-CST) predicts results for pure plate bending that tend to agree with mechanics intuition and experimental evidence. Particularly, C-CST predicts couple-stresses and size effects for the pure bending of the ...
Tunable thermoelectric properties in bended graphene nanoribbons
Institute of Scientific and Technical Information of China (English)
潘长宁; 何军; 方卯发
2016-01-01
The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic–semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quan-tum interference effect occurs in the metallic–metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene.
Probing the elastic limit of DNA bending
Le, Tung T
2014-01-01
Many structures inside the cell such as nucleosomes and protein-mediated DNA loops contain sharply bent double-stranded (ds) DNA. Therefore, the energetics of strong dsDNA bending constitutes an essential part of cellular thermodynamics. Although the thermomechanical behavior of long dsDNA is well described by the worm-like chain (WLC) model, the length limit of such elastic behavior remains controversial. To investigate the energetics of strong dsDNA bending, we measured the opening rate of small dsDNA loops with contour lengths of 40-200 bp using Fluorescence Resonance Energy Transfer (FRET). From the measured relationship of loop stability to loop size, we observed a transition between two separate bending regimes at a critical loop size below 100 bp. Above this loop size, the loop lifetime decreased with decreasing loop size in a manner consistent with an elastic bending stress. Below the critical loop size, however, the loop lifetime became less sensitive to loop size, indicative of softening of the doub...
Finger-jointed beams in bending
DEFF Research Database (Denmark)
Andreasen, Lotte; Hoffmeyer, Preben
1997-01-01
An investigation of the dynamic and static fatique of finger-jointed beams in bending was carried out. Results were obtained for five different frequencies from static loading to a load cycle period of two minutes. A total of seven series were long-term tested and five series were short-term tested...
Demonstration model of LEP bending magnet
CERN PhotoLab
1981-01-01
To save iron and raise the flux density, the LEP bending magnet laminations were separated by spacers and the space between the laminations was filled with concrete. This is a demonstration model, part of it with the spaced laminations only, the other part filled with concrete.
Tubular lining material for pipelines having bends
Energy Technology Data Exchange (ETDEWEB)
Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.
1987-03-24
A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.
Aerosol deposition in bends with turbulent flow
Energy Technology Data Exchange (ETDEWEB)
McFarland, A.R.; Gong, H.; Wente, W.B. [Texas A& M Univ., College Station, TX (United States)] [and others
1997-08-01
The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.
Fuzzy model for Laser Assisted Bending Process
Directory of Open Access Journals (Sweden)
Giannini Oliviero
2016-01-01
Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.
Irradiation creep of stainless steel in bending
International Nuclear Information System (INIS)
The development is described of a test to measure irradiation enhanced creep in bending of 20% cold-worked Type-316 stainless steel. The test will be irradiated in the experimental fast reactor EBR-II. The rationale used in design selection is described. The selected beam designs, the supportive tests in other stress states and the measurement techniques are described in detail. (Auth.)
Irradiation creep of stainless steel in bending
International Nuclear Information System (INIS)
The development is described of a test to measure irradiation enhanced creep in bending of 20% cold-worked Type-316 stainless steel. The test will be irradiated in the experimental fast reactor EBR-II. The rationale used in design selection is described. The selected beam designs, the supportive tests in other stress states and the measurement techniques are described in detail
Bending of a thin flexible plate
Energy Technology Data Exchange (ETDEWEB)
Pobedria, B.E.
1990-12-01
A system of equations is derived which describes the one-dimensional deformation of thin shells. The analysis does not impose any constraints on the relative elongation and deflections. As an example, a solution is presented for the problem of the bending of a thin plate under uniform pressure.
Oceanic Plate Bending Along the Manila Trench
Zhang, F.; Lin, J.; Zhan, W.
2014-12-01
We quantify along-trench variations in plate flexural bending along the Manila trench in the South China Sea. A 3-D interpreted flexural deformation surface of the subducting South China Sea Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 21 across-trench profile sections along the Manila trench and then calculated five best-fitting tectonic and plate parameters that control the flexural bending for each of the across-trench profile sections. Results of analysis revealed significant along-trench variations: The trench relief of the Manila trench varies from 0.8 to 2.2 km, trench-axis vertical loading (-V0) from -0.4x1012 to 1.21x1012 N/m, and axial bending moment (-M0) from 0.005x1017 to 0.6x1017 N. The effective elastic plate thickness seaward of the Manila outer-rise region (TeM) ranges from 30 to 40 km, while that trench-ward of the outer-rise (Tem) ranges from 11 to 30 km. This corresponds to a reduction in Te of 26-63% for the Manila trench. The transition from TeM to Tem occurs at a breaking distance of 50-120 km from the Manila trench axis. The axial vertical loading, bending moment, and the effective elastic thickness of the Manila trench are much smaller than the Mariana trench (Zhang et al., 2014). The contrast in the flexural bending between the Mariana and Manila trenches might be related to the difference in the ages of the subducting plates and other tectonic variables. Zhang, F., Lin, J., Zhan, W., 2014. Variations in oceanic plate bending along the Mariana trench, Earth Planet. Sci. Lett. 401, 206-214. doi: 10.1016/j.epsl.2014.05.032
Plastic collapse loads in shape-imperfect pipe bends under in-plane opening bending moment
International Nuclear Information System (INIS)
The combined effect of ovality and thinning/thickening on collapse load of pipe bends under in-plane opening bending moment was investigated using finite element limit analysis considering large geometric change effect. The material is assumed to be elastic-perfectly plastic. Twice-elastic-slope method is used to obtain collapse moment from moment–rotation curves drawn for each bend. Variation of thickness due to thinning in the cross section of pipe bend produces negligible effect on collapse load. The effect of ovality is significant except for pipe ratio 20 with λ = 0.5. A new closed-form solution is proposed to determine collapse moment of pipe bends with ovality and it is validated with existing experimental data. -- Highlights: • Collapse loads for shape-imperfect pipe bends is determined. • Ovality and thinning are the shape imperfections considered. • Finite element limit analysis uses large geometry change effects. • Twice-elastic-slope method was used to obtain plastic loads. • Ovality needs to be considered to determine collapse load while thinning produces negligible effect
When Blood Cells Bend: Understanding Sickle Cell Disease
... please review our exit disclaimer . Subscribe When Blood Cells Bend Understanding Sickle Cell Disease For people who don’t suspect they ... Cells Bend Wise Choices Links Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...
Quantitative Evaluation of Photoinduced Bending Speed of Diarylethene Crystals
Directory of Open Access Journals (Sweden)
Daichi Kitagawa
2015-11-01
Full Text Available We investigated photoinduced crystal bending behavior of various photochromic diarylethenes. In all the diarylethene derivatives we used in this work, the relationship between the initial photoinduced bending speed and the crystal thickness was well explained by the easy-handled Timoshenkoʼs bimetal model. Moreover, we proposed a quantitative analysis method to reveal the relationship between the bending speed and the molecular structure of diarylethenes. These results provide the quantitative evaluation method of the photoinduced crystal bending speed.
The design of an agent to bend DNA.
Akiyama, T; Hogan, M E
1996-01-01
An artificial DNA bending agent has been designed to assess helix flexibility over regions as small as a protein binding site. Bending was obtained by linking a pair of 15-base-long triple helix forming oligonucleotides (TFOs) by an adjustable polymeric linker. By design, DNA bending was introduced into the double helix within a 10-bp spacer region positioned between the two sites of 15-base triple helix formation. The existence of this bend has been confirmed by circular permutation and phas...
Bending strength analysis of steel-composite submerged floating tunnels
Han, T H; Won, D.; Han, S. H.; Park, W. S.; Yum, K.D.
2013-01-01
A submerged floating tunnel (SFT) must have enough strength to resist to various external loadings such as bending, torsion, tension, and compression. The expected main deformation of SFT is caused by bending moment. And this bending moment makes tensile stress and compression stress on the wall of SFT. Thus, bending moment is a main affecting factor on the safety of SFT. Until now, a reinforced concrete tunnel was suggested for SFT by other researchers. In this study, an internal...
Ultrasonic fatigue testing device under biaxial bending
Directory of Open Access Journals (Sweden)
C. Brugger
2016-07-01
Full Text Available A new fatigue testing device has been developed to test specimens under biaxial loading at 20 kHz. A flat smooth specimen with a disc geometry is placed on a torus frame and cyclically loaded at the center of its upper face. Disc bending generates a biaxial proportional stress state at the center of the lower face. Any positive loading ratio can be applied. A cast aluminum alloy (used to produce cylinder heads has been tested under biaxial bending using this device in order to determine its fatigue strength at 109 cycles under high hydrostatic pressure. Self-heating is moderate but macroscopic fatigue cracks after testing are very long. First results in VHCF regime are consistent with literature results obtained under similar stress state but in HCF regime and at 20 Hz.
Development of Bend Sensor for Catheter Tip
Nagano, Yoshitaka; Sano, Akihito; Fujimoto, Hideo
Recently, a minimally invasive surgery which makes the best use of the catheter has been becoming more popular. In endovascular coil embolization for a cerebral aneurysm, the observation of the catheter's painting phenomenon is very important to execute the appropriate manipulation of the delivery wire and the catheter. In this study, the internal bend sensor which consists of at least two bending enhanced plastic optical fibers was developed in order to measure the curvature of the catheter tip. Consequently, the painting could be more sensitively detected in the neighborhood of the aneurysm. In this paper, the basic characteristics of the developed sensor system are described and its usefulness is confirmed from the comparison of the insertion force of delivery wire and the curvature of catheter tip in the experiment of coil embolization.
Monitoring thermoplastic composites under cyclic bending tests
Boccardi, Simone; Meola, Carosena; Carlomagno, Giovanni Maria; Simeoli, Giorgio; Acierno, Domenico; Russo, Pietro
2016-05-01
This work is concerned with the use of infrared thermography to visualize temperature variations linked to thermo-elastic effects developing over the surface of a specimen undergoing deflection under bending tests. Several specimens are herein considered, which involve change of matrix and/or reinforcement. More specifically, the matrix is either a pure polypropylene, or a polypropylene added with a certain percentage of compatibilizing agent; the reinforcement is made of glass, or jute. Cyclic bending tests are carried out by the aid of an electromechanical actuator. Each specimen is viewed, during deflection, from one surface by an infrared imaging device. As main finding the different specimens display surface temperature variations which depend on the type of material in terms of both matrix and reinforcement.
Nuclear fuels accounting interface: River Bend experience
Energy Technology Data Exchange (ETDEWEB)
Barry, J.E.
1986-01-01
This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation.
Nuclear fuels accounting interface: River Bend experience
International Nuclear Information System (INIS)
This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation
Molecular Origin of Model Membrane Bending Rigidity
International Nuclear Information System (INIS)
The behavior of the bending modulus κ of bilayers in lamellar phases was studied by Small Angle X-ray Scattering technique for various nonionic CiEj surfactants. The bilayers are either unswollen and dispersed in water or swollen by water and dispersed in dodecane. For unswollen bilayers, the values of κ decrease with both an increase in the area per surfactant molecule and in the polar head length. They increase when the aliphatic chain length increases at constant area per surfactant molecule. Whereas for water-swollen membranes, the values of κ decrease as the content of water increases converging to the value of the single monolayer bending modulus. Such a behavior results from the decoupling of the fluctuations of the two surfactant membrane monolayers. Our results emphasize the determinant contribution of the surfactant conformation to κ
Molecular Origin of Model Membrane Bending Rigidity
Kurtisovski, Erol; Taulier, Nicolas; Ober, Raymond; Waks, Marcel; Urbach, Wladimir
2007-06-01
The behavior of the bending modulus κ of bilayers in lamellar phases was studied by Small Angle X-ray Scattering technique for various nonionic CiEj surfactants. The bilayers are either unswollen and dispersed in water or swollen by water and dispersed in dodecane. For unswollen bilayers, the values of κ decrease with both an increase in the area per surfactant molecule and in the polar head length. They increase when the aliphatic chain length increases at constant area per surfactant molecule. Whereas for water-swollen membranes, the values of κ decrease as the content of water increases converging to the value of the single monolayer bending modulus. Such a behavior results from the decoupling of the fluctuations of the two surfactant membrane monolayers. Our results emphasize the determinant contribution of the surfactant conformation to κ
Characterization and study of photonic crystal fibres with bends
International Nuclear Information System (INIS)
Analysis of a photonic crystal fibre (PRCF) with bends is presented. Using the versatile finite difference time domain method, the modal characteristics of the PCFs are found. Possibilities of employing PCFs with bends in sensing are discussed. It is found that a large evanescent field is present when the bend angle exceeds 45o
Superconducting beam bending magnets at CERN
1977-01-01
The photo shows Gerhard Kesseler with the cyogenic vessels for one of the 10.8 Tesla-metre beam bending magnets. The magnet itself (not visible) is sitting inside the superinsukated helium vessel (white). The next larger shell and the biggest tubular structure (with the largest part behind the person) is the insulation vacuum tank. See CERN Courier 1970 pp. 228-229 CERN Courier 1973 pp. 144-145 Yellow Report CERN 78-03, 1978
AA, assembly of wide bending magnet
1980-01-01
The very particular lattice of the AA required 2 types of dipoles (bending magnets; BST, short and wide; BLG, long and narrow). The wide ones had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. Here we see the copper coils being hoisted onto the lower half of a BST. See also 7811105, 8006050. For a BLG, see 8001044.
Large deformation dynamic bending of composite beams
Derian, Edward J.
1985-01-01
The large deformation response of composite beams subjected to a dynamic axial load was studied. The beams were loaded with a moderate amount of eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied in order to determine the difference between the static and dynamic failure. Twelve different la...
Drag Reduction, from Bending to Pruning
Lopez, Diego; Michelin, Sébastien; de Langre, Emmanuel
2013-01-01
Most plants and benthic organisms have evolved efficient reconfiguration mechanisms to resist flow-induced loads. These mechanisms can be divided into bending, in which plants reduce their sail area through elastic deformation, and pruning, in which the loads are decreased through partial breakage of the structure. In this work, we show by using idealized models that these two mechanisms or, in fact, any combination of the two, are equally efficient to reduce the drag experienced by terrestrial and aquatic vegetation.
More on the bending of light !
Lake, Kayll
2007-01-01
Recently, Rindler and Ishak have argued that the bending of light is, in principle, changed by the presence of a cosmological constant since one must consider not only the null geodesic equation, but also the process of measurement. I agree with the fact that both must be considered. Here, on the basis of the mathematically exact solution to the classical bending problem, and independent of the cosmological constant, I show that the approximate argument found in the vast majority of texts (new and old) for the measured value of the bending of light for a single source is, despite getting a good answer, bogus. In fact, the measured value for a single source is in part the result of the almost perfect cancelation of two terms, one of which is seldom considered. When one considers two sources, this cancelation is of no consequence, and if the sources are opposite with the same associated apsidal distance, the approximate argument gives the rigorously correct answer (up to numerical evaluation), an answer which i...
First multi-bend achromat lattice consideration
International Nuclear Information System (INIS)
The first proposed lattice for a ‘diffraction-limited light source’ is reported. This approach has now more or less been used for the MAX IV project. By the beginning of 1990, three third-generation synchrotron light sources had been successfully commissioned in Grenoble, Berkeley and Trieste (ESRF, ALS and ELETTRA). Each of these new machines reached their target specifications without any significant problems. In parallel, already at that time discussions were underway regarding the next generation, the ‘diffraction-limited light source (DLSR)’, which featured sub-nm rad electron beam emittance, photon beam brilliance exceeding 1022 and the potential to emit coherent radiation. Also, at about that time, a first design for a 3 GeV DLSR was developed, based on a modified multiple-bend achromat (MBA) design leading to a lattice with normalized emittance of ∊x = 0.5 nm rad. The novel feature of the MBA lattice was the use of seven vertically focusing bend magnets with different bending angles throughout the achromat cell to keep the radiation integrals and resulting beam emittance low. The baseline design called for a 400 m ring circumference with 12 straight sections of 6 m length. The dynamic aperture behaviour of the DLSR lattice was estimated to produce > 5 h beam lifetime at 100 mA stored beam current
The role of elasticity in slab bending
Fourel, Loic; Goes, Saskia; Morra, Gabriele
2014-11-01
studies showed that plate rheology exerts a dominant control on the shape and velocity of subducting plates. Here, we perform a systematic investigation of the role of elasticity in slab bending, using fully dynamic 2-D models where an elastic, viscoelastic, or viscoelastoplastic plate subducts freely into a purely viscous mantle. We derive a scaling relationship between the bending radius of viscoelastic slabs and the Deborah number, De, which is the ratio of Maxwell time over deformation time. We show that De controls the ratio of elastically stored energy over viscously dissipated energy and find that at De>10-2, substantially less energy is required to bend a viscoelastic slab to the same shape as a purely viscous slab with the same intrinsic viscosity. Elastically stored energy at higher De favors retreating modes of subduction via unbending, while trench advance only occurs for some cases with De 1, where most zones have low De 0.1. Slabs with Deviscosities or they may be yielding, in which case our De estimates may be underestimated by up to an order of magnitude, potentially pointing towards a significant role of elasticity in ˜60% of the subduction zones. In support of such a role of elasticity in subduction, we find that increasing De correlates with increasing proportion of larger seismic events in both instrumental and historic catalogues.
2010-11-24
... Jeffries, District Ranger, Bend-Fort Rock Ranger District, Red Oaks Square, 1230 NE. Third Street, Suite A...-Fort Rock Ranger District, Red Oaks Square, 1230 NE. Third Street, Suite A-262, Bend, Oregon 97701... Forest Service Bend/Ft. Rock Ranger District; Deschutes National Forest; Deschutes County, OR; West...
2013-01-22
... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0... Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant... (RCOL) application for UniStar's Calvert Cliffs Nuclear Power Plant, Unit 3 (CCNPP3). The NRC...
2011-12-29
... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0..., Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear... application is based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs...
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian
2016-01-15
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Standard test methods for bend testing of material for ductility
American Society for Testing and Materials. Philadelphia
2009-01-01
1.1 These test methods cover bend testing for ductility of materials. Included in the procedures are four conditions of constraint on the bent portion of the specimen; a guided-bend test using a mandrel or plunger of defined dimensions to force the mid-length of the specimen between two supports separated by a defined space; a semi-guided bend test in which the specimen is bent, while in contact with a mandrel, through a specified angle or to a specified inside radius (r) of curvature, measured while under the bending force; a free-bend test in which the ends of the specimen are brought toward each other, but in which no transverse force is applied to the bend itself and there is no contact of the concave inside surface of the bend with other material; a bend and flatten test, in which a transverse force is applied to the bend such that the legs make contact with each other over the length of the specimen. 1.2 After bending, the convex surface of the bend is examined for evidence of a crack or surface irregu...
Bending response of single layer MoS2
Xiong, Si; Cao, Guoxin
2016-03-01
Using molecular mechanics (or dynamics) simulations, three different approaches, including the targeted molecular mechanics, four-point bending and nanotube methods, are employed to investigate the bending response of single layer MoS2 (SLMoS2), among which four-point bending is the most accurate approach to determine the bending stiffness according to the continuum theory. It is found that when the bending curvature radius is large enough (e.g. >4 nm), three approaches will give the same bending stiffness of SLMoS2 and the bending behavior is isotropic for SLMoS2, whereas the nanotube method with small tubes (e.g. theory, the revised Stillinger-Weber (SW) and reactive empirical bond-order (REBO) potentials can give the reasonable bending stiffness of SLMoS2 (8.7-13.4 eV) as well as the effective deformed conformation. In addition, since the Mo-S bond deformation of SLMoS2 under bending is similar to that under in-plane tension/compression, the continuum bending theory can quite accurately predict the bending stiffness of SLMoS2 if a reasonable thickness of SLMoS2 is given. For SLMoS2, the reasonable thickness should be larger than the distance between its two S atomic planes and lower than the distance between two Mo atomic planes of bulk MoS2 crystal, e.g. 0.375-0.445 nm.
Evolving efficiency of restraining bends within wet kaolin analog experiments
Hatem, Alexandra E.; Cooke, Michele L.; Madden, Elizabeth H.
2015-03-01
Restraining bends along strike-slip fault systems evolve by both propagation of new faults and abandonment of fault segments. Scaled analog modeling using wet kaolin allows for qualitative and quantitative observations of this evolution. To explore how bend geometry affects evolution, we model bends with a variety of initial angles, θ, from θ = 0° for a straight fault to θ = 30°. High-angle restraining bends (θ ≥ 20°) overcome initial inefficiencies by abandoning unfavorably oriented restraining segments and propagating multiple new, inwardly dipping, oblique-slip faults that are well oriented to accommodate convergence within the bend. Restraining bends with 0° < θ ≤ 15° maintain activity along the restraining bend segment and grow a single new oblique slip fault on one side of the bend. In all restraining bends, the first new fault propagates at ~5 mm of accumulated convergence. Particle Image Velocimetry analysis provides a complete velocity field throughout the experiments. From these data, we quantify the strike-slip efficiency of the system as the percentage of applied plate-parallel velocity accommodated as slip in the direction of plate motion along faults within the restraining bend. Bends with small θ initially have higher strike-slip efficiency compared to bends with large θ. Although they have different fault geometries, all systems with a 5 cm bend width reach a steady strike-slip efficiency of 80% after 50 mm of applied plate displacement. These experimental restraining bends resemble crustal faults in their asymmetric fault growth, asymmetric topographic gradient, and strike-slip efficiency.
Cricket antennae shorten when bending (Acheta domesticus L.
Directory of Open Access Journals (Sweden)
CatherineLoudon
2014-06-01
Full Text Available Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100 of subsegments (flagellomeres that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus with bending in four different directions: dorsal, ventral, medial and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension does not have a lot of slack cuticle to "unfold" and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head.
Self-bending symmetric cusp beams
Gong, Lei; Liu, Wei-Wei; Ren, Yu-Xuan; Lu, Yao; Li, Yin-Mei
2015-12-01
A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.
Self-bending symmetric cusp beams
Energy Technology Data Exchange (ETDEWEB)
Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei, E-mail: liyinmei@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Ren, Yu-Xuan [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States)
2015-12-07
A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.
Bending of X65 Offshore Steel Pipes
Lofthaug, Kristoffer; Digerud, Erik
2014-01-01
This thesis is part of an ongoing research program between SIMLab and Statoil about impact loads on X65 offshore pipelines and it is a continuation of previous work.Offshore pipelines are frequently impacted by accidental loads, e.g. trawl gear or anchors. Such loads may cause severe damage to the pipe and a complex stress-strain history locally in the impacted area.Fracture have previously been found in pipes dynamically impacted. Quasi-static bending of similar pipes with the same boundary ...
Great Bend tornadoes of August 30, 1974
Umenhofer, T. A.; Fujita, T. T.; Dundas, R.
1977-01-01
Photogrammetric analyses of movies and still pictures taken of the Great Bend, Kansas Tornado series have been used to develop design specifications for nuclear power plants and facilities. A maximum tangential velocity of 57 m/sec and a maximum vertical velocity of 27 m/sec are determined for one suction vortex having a translational velocity of 32 m/sec. Three suction vortices with radii in the 20 to 30 m range are noted in the flow field of one tornado; these suction vortices apparently form a local convergence of inflow air inside the outer portion of the tornado core.
Bending moduli of polymeric surfactant interfaces
Milner, S.T.; Witten, T. A.
1988-01-01
Our recent theory of the free energy and conformations of end-grafted polymer « brushes » is extended to polymers attached to curved surfaces. Several important systems, e.g., layers of polymeric surfactants or of strongly segregated diblock copolymers, can be well described as brushes. By expanding in powers of the curvature the free energy of a brush on a curved surface, the mean and Gaussian bending moduli may be obtained analytically. Results for K and K of monodisperse brushes are consis...
Storm, C; Storm, Cornelis; Nelson, Philip
2002-01-01
We formulate and solve a two-state model for the elasticity of nicked, double-stranded DNA that borrows features from both the Worm Like Chain and the Bragg--Zimm model. Our model is computationally simple, and gives an excellent fit to recent experimental data through the entire overstretching transition. The fit gives the first value for the bending stiffness of the overstretched state as about 10 nm*kbt, a value quite different from either B-form or single-stranded DNA.
Bending of light in quantum gravity.
Bjerrum-Bohr, N E J; Donoghue, John F; Holstein, Barry R; Planté, Ludovic; Vanhove, Pierre
2015-02-13
We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or photons from an external massive scalar field. These results allow a semiclassical computation of the bending angle for light rays grazing the Sun, including long-range ℏ contributions. We discuss implications of this computation, in particular, the violation of some classical formulations of the equivalence principle. PMID:25723201
Extension versus Bending for Continuum Robots
Directory of Open Access Journals (Sweden)
George Grimes
2008-11-01
Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.
Wooden Model of Wide AA Bending Magnet
1978-01-01
The very particular lattice of the AA required 2 types of dipoles (bending magnets: BLG, long and narrow; BST, short and wide). A wide one had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. A wooden model was build in 1978, to gain dimensional experience. Here, Peter Zettwoch, one of the largest men at CERN at that time, is putting a hand in the mouth of the wooden BST monster.
Nonlinear Bending Stiffness of Plates Clamped by Bolted Joints under Bending Moment
Naruse, Tomohiro; Shibutani, Yoji
Equivalent stiffness of plates clamped by bolted joints for designing should be evaluated according to not only the strength of bolted joints but also the deformation and vibration characteristics of the structures. When the applied external axial load or the bending moment is sufficiently small, the contact surfaces of the bolted joint are stuck together, and thus both the bolt and the clamped plates deform linearly. Although the sophisticated VDI 2230 code gives the appropriate stiffness of clamped plates for the infinitesimal deformation, the stiffness may vary nonlinearly with increasing the loading because of changing the contact state. Therefore, the present paper focuses on the nonlinear behaviour of the bending stiffness of clamped plates by using Finite Element (FE) analyses, taking the contact condition on bearing surfaces and between the plates into account. The FE models of the plates with thicknesses of 3.2, 4.5, 6.0 and 9.0 mm tightened with M8, 10, 12 and 16 bolts were constructed. The relation between bending moment and bending compliance of clamped plates is found to be categorized into three regions, namely, (i) constant compliance with fully stuck contact surfaces, (ii) transition showing the nonlinear compliance, and (iii) constant compliance with one-side contact surfaces. The mechanical models for these three regions are proposed and compared with FEM solutions. The prediction on the bounds of three regions is in a fairly good agreement except the case with smaller bolts and thicker plates.
COMPARATIVE STUDY ON BENDING LOSS BETWEEN DIFFERENT S-SHAPED WAVEGUIDE BENDS USING MATRIX METHOD
Directory of Open Access Journals (Sweden)
Koushik Bhattacharya
2013-02-01
Full Text Available Bending loss in the waveguide as well as the leakage losses and absorption losses along with a comparative study among different types of S-shaped bend structures has been computed with the help of a simple matrix method.This method needs simple 2×2 matrix multiplication. The effective-index profile of the bended waveguide is then transformed to an equivalent straight waveguide with the help of a suitable mapping technique and is partitioned into large number of thin sections of different refractive indices. The transfer matrix of the two adjacent layers will be a 2×2 matrix relating the field components in adjacent layers. The total transfer matrix is obtained through multiplication of all these transfer matrices. The excitation efficiency of the wave in the guiding layer shows a Lorentzian profile. The power attenuation coefficient of the bent waveguide is the full-width-half-maximum (FWHM of this peak .Now the transition losses and pure bending losses can be computed from these FWHM datas.The computation technique is quite fast and it is applicable for any waveguide having different parameters and wavelength of light for both polarizations(TE and TM.
Bending strain tolerance of MgB2 superconducting wires
Kováč, P.; Hušek, I.; Melišek, T.; Kulich, M.; Kopera, L.
2016-04-01
This work describes the strain tolerance of MgB2 superconductors subjected to variable bending stresses. Bending of MgB2 wire was done at room temperature in different modes: (i) direct bending of straight annealed samples to variable diameters and by (ii) indirect bending by straightening of bent and annealed samples. I c-bending strain characteristics of samples made by in situ PIT and by the internal magnesium diffusion (IMD) process were measured at 4.2 K. The results show a good agreement between the direct and indirect bending mode, which allows easier estimation of limits important for the winding process of MgB2 superconductors with brittle filaments. A comparison of MgB2 wires made by in situ PIT and IMD processes showed improved strain tolerance for IMD due to better grain connectivity the low annealing temperature, which does not appear to reduce the mechanical strength of sheath material.
Reduction Bending of Thin Crystalline Silicon Solar Cells
Institute of Scientific and Technical Information of China (English)
SHEN Lan-xian; LIU Zu-ming; LIAO Hua; TU Jie-lei; DENG Shu-kang
2009-01-01
Reported are the results of reduction the bending of thin crystalline silicon solar ceils after printing and sintering of back electrode by changing the back electrode paste and adjusting the screen printing parameters without effecting the electrical properties of the cell. Theory and experiments showed that the bending of the cell is changed with its thickness of suhstrate, the thinner cell, the more serious bending. The bending of the cell is decreased with the thickness decrease of the back contact paste. The substrate with the thickness of 190μm printing with sheet aluminum paste shows a relatively lower bend compared with that of the substrate printing with ordinary aluminum paste, and the minimum bend is 0.55 mm which is reduced by52%.
49 CFR 192.315 - Wrinkle bends in steel pipe.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel pipe to be operated at a pressure that produces a hoop stress of 30 percent, or more, of SMYS. (b)...
Bamboo Taper Effect on Third Point Loading Bending Test
Naresworo Nugroho; Effendi Tri Bahtiar
2013-01-01
Geometrical shape of bamboo usually assumed as tapered hollow pipe. This study proved that the dimensional changes along the bamboo stem significantly affected to its Modulus of Rupture (SR) value which measured from third point loading bending test. Therefore if the bending test applied using third point loading configuration, the SR value should be adjusted by strength ratio of taper (Ct). Ct is theratio between (SR) calculated in the center span and the maximum bending stress along the bam...
Bending instability characteristics of double-walled carbon nanotubes
Wang, Q.; Hu, T.; Chen, G.; Jiang, Q.
2005-01-01
The bending instability characteristics of double-walled carbon nanotubes (DWNTs) of various configurations are studied using a hybrid approach in which the deformation-induced increase of the intratube interaction energy is modeled with the bending deformation energy using the elastic theory of beams. The intertube interaction energy is calculated using the van der Waals interatomic potential. This study shows that the bending instability may take place through the formation of a single kink...
Compliance measurements of chevron notched four point bend specimen
Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.
1994-01-01
The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.
PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING
International Nuclear Information System (INIS)
One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10-9 cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for MCU
Static Fatigue of Optical Fibers in Bending
Roberts, D.; Cuellar, E.; Middleman, L.; Zucker, J.
1987-02-01
While delayed fracture, or static fatigue, of optical fibers is well known, it is not well understood, and the prediction of the time to failure under a given set of conditions can be problematic. Unlike short term fracture, which is quite well understood and quantified in terms of the theory of linear elastic fracture mechanics, the long term strength remains empirical. The goal of this study is to determine the design criteria for optical fibers subjected to long term applied mechanical loads. One difficulty in making lifetime predictions, as pointed out by Matthewson (Reference 1) and others, is that predictions made from data taken in tension and in bending do not agree. Another difficulty is the statistical nature of the fracture of glass. In making lifetime predictions it becomes important therefore that one (a) have ample data for statistical analysis and (b) have data for the loading configuration of interest. This is the purpose of our work. Since there is less data available in bending, and since several applications (such as wiring in aircraft and missiles) require bending, the data are taken in that configuration. The most significant finding in our work so far is the very large difference in static fatigue behavior between buffer coatings. Chandan and Kalish (Reference 2) and others have reported static fatigue curves, log (time to failure) versus log (applied stress), which are not linear, but rather bimodal. Our study confirms this result, but so far only for acrylate coated fibers. Silicone coated fibers show unimodal behavior. That is, the log (time to failure) versus log (applied stress) curve is linear, at least on the time scale studied so far. Data for acrylate coated fibers at 80°C in water are linear only for time scales of about one day, where a pronounced "knee" is observed. Data for silicone coated fibers under the same conditions are linear up to at least 6 months. Longer time scale tests and tests on fibers with other buffer materials
Bend sensors based on periodically-tapered soft glass fibers
Wang, Y.; Richardson, D. J.; Brambilla, G; Feng, X.; Petrovich, M.N.; Ding, M.; Song, Z.(Central China Normal University, Wuhan, China)
2011-01-01
We demonstrate a technique for tapering periodically an all-solid soft glass fiber consisting of two types of lead silicate glasses by the use of a CO2 laser and investigate the bend sensing applications of the periodically-tapered soft glass fiber. Such a soft glass fiber with periodic microtapers could be used to develop a promising bend sensor with a sensitivity of ?27.75 ?W/m-1 by means of measuring the bend-induced change of light intensity. The proposed bend sensor exhibits a very low m...
Wide range pure bending strains of Nb3Sn wires
International Nuclear Information System (INIS)
Pure bending behavior of Nb3Sn wire over a wide range of bending has been characterized. A previously developed test device designed to apply variable bending strains to Nb3Sn strands using a beam style sample holder was used. Based on finite element and experimental investigations, two sample holder beams were developed to cover pure bending strains up to 1.25% for ITER-type Nb3Sn wires. These newly designed beams were optimized to apply consistent and uniform pure bending strains to Nb3Sn strands over the entire bending range. Their performance was evaluated by testing two ITER-type Nb3Sn wires including one internal tin and one bronze route. The internal tin strands experienced around 55% critical current degradation at 1.25% bending strain while the critical current of the bronze route strands were only reduced by 40%. Upon removal of the bending load, the internal tin wires experienced significant permanent degradation whereas the bronze route wires were completely reversible. These critical current results were evaluated and explained using an existing integrated model accounting for neutral axis shift, current transfer length, filament breakage and uniaxial strain release under pure bending loads. (paper)
A preliminary bending fatigue spectrum for steel monostrand cables
DEFF Research Database (Denmark)
Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.; Kotas, Agnieszka
2011-01-01
This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension and...
Sorting of bed load sediment by flow in meander bends.
Parker, G.; Andrews, E.D.
1985-01-01
Equilibrium sorting of coarse mobile bed load sediment in meander bends is considered. A theory of two-dimensional bed load transport of graded material, including the effects of gravity on lateral slopes and secondary currents, is developed. This theory is coupled with a simple tratement of flow in bends, an analytically determined bend shape, and the condition of continuity of each grain size range in transport to describe sorting. The theory indicates that the locus of coarse sediment shifts from the inside bank to the outside bank near the bend apex, as is observed.-Authors
SRI CAT Section 1 bending magnet beamline description
International Nuclear Information System (INIS)
This report discusses: APS bending magnet source; beamline layout; beamline optical components; beamline operation; time-resolved studies station; polarization studies station; and commissioning and operational schedule
Design Study: ELENA Bending Magnet Prototype
Schoerling, D
2013-01-01
The ELENA bending magnet prototype shall prove that the proposed design meets the requirements set by the ELENA beam dynamics. The following points will be discussed in detail: (i) production process of a magnetic yoke diluted with stainless steel plates, (ii) the stability and repeatability of the field homogeneity of such a yoke over the full working range, (iii) choice of soft magnetic steel, (iv) hysteresis effects, (v) mechanical deformations, (vi) thermal insulation to intercept heat load from baking for activation of NEG coating in the vacuum chamber, (vii) end shim design. In order to verify these points the following measurements will be performed: (i) Hall probe scanning, (ii) integrated field homogeneity measurement (DC), (iii) integrated field homogeneity measurement (AC).
Bending the Cost Curve in Childhood Cancer.
Russell, Heidi; Bernhardt, M Brooke
2016-08-01
Healthcare for children with cancer costs significantly more than other children. Cost reduction efforts aimed toward relatively small populations of patients that use a disproportionate amount of care, like childhood cancer, could have a dramatic impact on healthcare spending. The aims of this review are to provide stakeholders with an overview of the drivers of financial costs of childhood cancer and to identify possible directions to curb or decrease these costs. Costs are incurred throughout the spectrum of care. Recent trends in pharmaceutical costs, evidence identifying the contribution of administration costs, and overuse of surveillance studies are described. Awareness of cost and value, i.e., the outcome achieved per dollar or burden spent, in delivery of care and research is necessary to bend the cost curve. Incorporation of these dimensions of care requires methodology development, prioritization, and ethical balance. PMID:27193602
Bending of pipes with inconel cladding
Energy Technology Data Exchange (ETDEWEB)
Nachpitz, Leonardo; Menezes, Carlos Eduardo B.; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)
2009-07-01
The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)
Separation of blood in microchannel bends
Blattert, Christoph; Jurischka, Reinhold; Schoth, Andreas; Kerth, Paul; Menz, Wolfgang
2004-01-01
Biological applications of micro assay devices require integrated on-chip microfluidics for separation of plasma or serum from blood. This is achieved by a new blood separation technique based on a microchannel bend structure developed within the collaborative Micro-Tele-BioChip (μTBC) project co-funded by the German Ministry For Education and Research (BMBF). Different prototype polymer chips have been manufactured with an UV-LIGA process and hot embossing technology. The separation efficiency of these chips has been determined by experimental measurements using human whole blood. Results show different separation efficiencies for cells and plasma depending on microchannel geometry and blood sample characteristics and suggest an alternative blood separation method as compared to existing micro separation technologies.
On the gravitational seesaw and light bending
Accioly, Antonio; Shapiro, Ilya L
2016-01-01
Local gravitational theories with more than four derivatives are superrenormalizable, and also may be unitary in the Lee-Wick sense. It makes sense to study low-energy properties of these theories, e.g., identify observables which might be useful for experimental detection of higher derivatives. Using an analogy with neutrino Physics, we explore the possibility of a gravitational seesaw mechanism, in which several dimensional parameters of the same order of magnitude produce a hierarchy in the masses of propagating particles and make a relatively light degree of freedom detectable by frequency dependence in the gravitational light bending. It turns out that such a seesaw mechanism in the six- and more-derivative theories is unable to reduce the lightest mass more than in the simplest four-derivative model. Adding more derivatives can only make heavier masses even larger. This fact may be favorable for protecting the theory from instabilities, but makes experimental detection of higher derivatives more difficu...
Factors affecting U-bend cracking
International Nuclear Information System (INIS)
Stress corrosion cracking of alloy 600 in pure water is assumed to be the damaging process of a large number of small radius U-bends of PWR steam generators. The possible influencing parameters are reviewed. The determining factor is a too high level of stress arising from two main origins: residual stresses; and overstresses induced by the inner pressure in deformed cross sections. The latter have been assessed by two dimensional finite elements computation and by strain gages measurements. Stress corrosion tests in boiling MgCl2 sustain the previous results for outer surface overstresses. Geometrical characterizations were performed on: in service SG tubes by internal spherical gages; and laboratory samples by internal spherical gages, LVDT and ultrasonic measurements, cross sectioning
Ruggiero, Matteo Luca
2016-05-01
In the framework of f(T) gravity, we focus on a weak-field and spherically symmetric solution for the Lagrangian f(T) = T + αT2, where α is a small constant which parametrizes the departure from general relativity (GR). In particular, we study the propagation of light and obtain the correction to the general relativistic bending angle. Moreover, we discuss the impact of this correction on some gravitational lensing observables, and evaluate the possibility of constraining the theory parameter α by means of observations. In particular, on taking into account the astrometric accuracy in the Solar System, we obtain that |α|≤ 1.85 × 105m2; this bound is looser than those deriving from the analysis of Solar System dynamics, e.g. |α|≤ 5 × 10‑1m2 [L. Iorio, N. Radicella and M. L. Ruggiero, J. Cosmol. Astropart. Phys. 1508 (2015) 021, arXiv:1505.06996 [gr-qc].], |α|≤ 1.8 × 104m2 [L. Iorio and E. N. Saridakis, Mon. Not. R. Astron. Soc. 427 (2012) 1555, arXiv:1203.5781 [gr-qc].] or |α|≤ 1.2 × 102m2 [Y. Xie and X. M. Deng, Mon. Not. R. Astron. Soc. 433 (2013) 3584, arXiv:1312.4103 [gr-qc].]. However, we suggest that, since the effect only depends on the impact parameter, better constraints could be obtained by studying light bending from planetary objects.
On the accuracy of analyses for in-plane bending of smooth pipe bends with end constraints
International Nuclear Information System (INIS)
The accuracy of theoretical analyses for in-plane bending of smooth pipebends with end constraints is discussed and investigated with a view to explaining and reducing the differences between the major works. An earlier theory of the authors is improved to give more accurate answers for bends with rigid flanges. Flanged bends are then examined in some detail, quantifying for the first time the important influence of the flange rigidity on the bend flexibility and stresses. A summary of some finite element analyses is presented from which it is clear that further work is desirable. (orig.)
The effect of cracks on the limit load of pipe bends under in-plane bending
International Nuclear Information System (INIS)
The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound has been established which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into analysis, and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60%. (author)
Regulation of transcription by synthetic DNA-bending agents.
Bednarski, David; Firestine, Steven M
2006-11-01
Gene expression is regulated by a complex interplay between binding and the three-dimensional arrangement of transcription factors with RNA polymerase and DNA. Previous studies have supported a direct role for DNA bending and conformation in gene expression, which suggests that agents that induce bends in DNA might be able to control gene expression. To test this hypothesis, we examined the effect of triple-helix-forming oligonucleotide (TFO) bending agents on the transcription of luciferase in an in vitro transcriptional/translational system. We find that transcription is regulated only by a TFO that induces a bend in the DNA. Related TFOs that do not induce bends in DNA have no effect on transcription. Reporter expression can be increased by as much as 80 % or decreased by as much as 50 % depending on the phasing of the upstream bend relative to the promoter. We interpret the results as follows: when the bend is positioned such that the upstream DNA is curved toward the RNA polymerase on the same DNA face, transcription is enhanced. When the upstream DNA is curved away, transcription is attenuated. These results support the hypothesis that DNA-bending agents might have the capability to regulate gene expression, thereby opening up a previously undervalued avenue in research on the artificial control of gene expression. PMID:17004274
APPLICABILITY OF THE BEND DEVELOPMENT THEORY IN NATURAL ALLUVIAL RIVERS
Institute of Scientific and Technical Information of China (English)
M.M.RAHMAN; M.A.HAQUE; M.M.HOQUE
2002-01-01
The theoretical conditions for the bend development or attenuation have been reviewed and tested for a study reach of the Meghna river.The field observations in the natural alluvial meander do not support the theories developed for bend development.The limitations of the theory to apply in the natural meandering river are discussed.
A numerical investigation of the continuous bending under tension test
Hadoush, A.; Boogaard, van den A.H.; Emmens, W.C.
2011-01-01
In this paper the continuous bending under tension test is analyzed by numerical simulation. The ability of achieving high strains by combined stretching and bending is considered. This deformation mode has similarities with the deformation that takes place in incremental sheet forming (ISF) and may
Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay
Mangum, Jeffrey G
2014-01-01
In this tutorial we summarize the physics and mathematics behind refractive electromagnetic wave bending and delay. Refractive bending and delay through the Earth's atmosphere at both radio/millimetric and optical/IR wavelengths are discussed, but with most emphasis on the former, and with Atacama Large Millimeter Array (ALMA) applications in mind. As modern astronomical measurements often require sub-arcsecond position accuracy, care is required when selecting refractive bending and delay algorithms. For the spherically-uniform model atmospheres generally used for all refractive bending and delay algorithms, positional accuracies $\\lesssim 1^{\\prime\\prime}$ are achievable when observing at zenith angles $\\lesssim 75^\\circ$. A number of computationally economical approximate methods for atmospheric refractive bending and delay calculation are presented, appropriate for astronomical observations under these conditions. For observations under more realistic atmospheric conditions, for zenith angles $\\gtrsim 75^...
Revisit the anomalous bending elasticity of sharply bent DNA
Cong, Peiwen; Chen, Hu; van der Maarel, Johan R C; Doyle, Patrick S; Yan, Jie
2015-01-01
Several recent experiments have suggested that sharply bent DNA has a surprisingly high bending flexibility, but the cause is poorly understood. It has been demonstrated that excitation of flexible defects can explain the results; while whether such defects can be excited under the level of DNA bending in those experiments has remained unclear and been debated. Interestingly, due to experimental design DNA contained pre-existing nicks in nearly all those experiments, while the potential effect of nicks have never been considered. Here, using full-atom molecular dynamics (MD) simulations, we show that nicks promote DNA basepair disruption at the nicked sites which drastically reduced DNA bending energy. In the absence of nicks, basepair disruption can also occur, but it requires a higher level of DNA bending. Overall, our results challenge the interpretations of previous sharp DNA bending experiments and highlight that the micromechanics of sharply bent DNA still remains an open question.
Ultimate Bending Capacity of Strain Hardening Steel Pipes
Institute of Scientific and Technical Information of China (English)
陈严飞; 张娟; 张宏; 李昕; 周晶; 曹静
2016-01-01
Based on Hencky’s total strain theory of plasticity, ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material, the simplified analytical solution is proposed as well. Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes. It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material. Thus, the ignorance of strain hardening effect, as commonly assumed in current codes, may underestimate the ultimate bending capacity of steel pipes. The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes, supports of offshore platforms and other tubular structural steel members.
Limits of stability in supported graphene nanoribbons subject to bending
Korhonen, Topi; Koskinen, Pekka
2016-06-01
Graphene nanoribbons are prone to in-plane bending even when supported on flat substrates. However, the amount of bending that ribbons can stably withstand remains poorly known. Here, by using molecular dynamics simulations, we study the stability limits of 0.5-1.9-nm-wide armchair and zigzag graphene nanoribbons subject to bending. We observe that the limits for maximum stable curvatures are below ˜10 deg /nm in case the bending is externally forced and the limit is caused by buckling instability. Furthermore, it turns out that the limits for maximum stable curvatures are also below ˜10 deg /nm in case the bending is not forced and the limit arises only from the corrugated potential-energy landscape due to the substrate. Both of the stability limits lower rapidly when ribbons widen. These results agree with recent experiments and can be understood by means of transparent elasticity models.
Bending Modulus Measurement of Single High Performance Fiber
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of the fiber. We have measured this property by the axial compression bending method where single fiber with suitable slenderness is compressed in the fiber axial direction to obtain the peak point of the force-displacement curve. Then the bending modulus and the flexural rigidity can be calculated by measuring the protruding length and diameter of fiber needles and the critical force, Pcr. The measured data show that the bending characteristics of all kinds of high performance fiber are dissimilar evidently.
Bending analysis of laminated composite box beams
Energy Technology Data Exchange (ETDEWEB)
Tripathy, A.K.; Patel, H.J.; Pang, S.S. (Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Mechanical Engineering)
1994-01-01
Box beams are widely used in weight reduction structures such as aircraft wings. The use of composite box beams further reduces the weight factor for such structures with the same deflection and stress as that of isotropic box beams. The difference in the behavior of composite box beam with different fiber orientation, number of plies, and number of stringers also provides a wide range of designing parameters to achieve the required performance for a given problem. A bending analysis has been carried out for the study of deflections and stresses for box beams of different material (isotropic and laminated composites), size, and number of stringers subjected to different kinds of loading conditions. A finite element model has been developed based on the strain energy principle, and the results are compared with an available commercial code COSMOS/M.'' Experiments using aluminum and scotchply composite laminates were conducted to verify the results. An optimal design for size and number of stiffeners for a given loading condition has been achieved. Investigations have also been carried out to find the effect of transverse shear on the span-wise normal stress.
Occipital bending (Yakovlevian torque) in bipolar depression.
Maller, Jerome J; Anderson, Rodney; Thomson, Richard H; Rosenfeld, Jeffrey V; Daskalakis, Zafiris J; Fitzgerald, Paul B
2015-01-30
Differing levels of occipital lobe asymmetry and enlarged lateral ventricles have been reported within patients with bipolar disorder (BD) compared with healthy controls, suggesting different rates of occipital bending (OB). This may exert pressure on subcortical structures, such as the hippocampus, reduced among psychiatric patients. We investigated OB prevalence in 35 patients with BD and 36 healthy controls, and ventricular and occipital volumes. Prevalence was four times higher among BD patients (12/35 [34.3%]) than in control subjects (3/36 [8.3%]), as well as larger lateral ventricular volumes (LVVs). Furthermore, we found OB to relate to left-to-right ventricular and occipital lobe volume (OLV) ratios. Those with OB also had reduced left-to-right hippocampal volume ratios. The results suggest that OB is more common among BD patients than healthy subjects, and prevalent in both BD Type I and Type II patients. We posit that anomalies in neural pruning or ventricular enlargement may precipitate OB, consequently resulting in one occipital lobe twisting around the other. Although the clinical implications of these results are unclear, the study suggests that asymmetrical ventricular volume matched with a pattern of oppositely asymmetrical occipital volume is related to OB and may be a marker of psychiatric illness. PMID:25480522
Product Evaluation In Elliptical Helical Pipe Bending
Directory of Open Access Journals (Sweden)
Wasantha Samarathunga
2013-10-01
Full Text Available This research proposes a computation approach to address the evaluation of end product machining accuracy in elliptical surfaced helical pipe bending using 6dof parallel manipulator as a pipe bender. The target end product is wearable metal muscle supporters used in build-to-order welfare product manufacturing. This paper proposes a product testing model that mainly corrects the surface direction estimation errors of existing least squares ellipse fittings, followed by arc length and central angle evaluations. This post-machining modelling requires combination of reverse rotations and translations to a specific location before accuracy evaluation takes place, i.e. the reverse comparing to pre-machining product modelling. This specific location not only allows us to compute surface direction but also the amount of excessive surface twisting as a rotation angle about a specified axis, i.e. quantification of surface torsion. At first we experimented three ellipse fitting methods such as, two least-squares fitting methods with Bookstein constraint and Trace constraint, and one non-linear least squares method using Gauss-newton algorithm. From fitting results, we found that using Trace constraint is more reliable and designed a correction filter for surface torsion observation. Finally we apply 2D total least squares line fitting method with a rectification filter for surface direction detection.
Field measurement for large bending magnets
Energy Technology Data Exchange (ETDEWEB)
Lazzaro, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: cappuzzello@lns.infn.it; Cunsolo, A.; Cavallaro, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)
2008-02-01
The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms.
PROGRESS IN STUDIES ON ICE ACCUMULATION IN RIVER BENDS
Institute of Scientific and Technical Information of China (English)
WANG Jun; CHEN Pang-pang; SUI Jue-yi
2011-01-01
River ice is an important hydraulic element in temperate and polar environments and would affect hydrodynamic conditions of rivers through changes both in the boundary conditions and the thermal regime.The river bend has been reported as the common location for the initiation of ice jams because the water flow along a river bend is markedly affected by the channel curvature.In this article,the experimental studies about the ice accumulation in a river bend are reviewed.Based on experiments conducted so far,the criteria for the formation of ice jams in the river bend,the mechanisms of the ice accumulation in the river bend and the thickness profile of the ice accumulation in the river bend are discussed.The k- ε two-equation turbulence model is used to simulate the ice accumulation under an ice cover along a river bend.A formula is proposed for describing the deformation of the ice jam bottom.Our results indicate that all simulated thickness of the ice accumulation agrees reasonably well with the measured thickness of the ice accumulation in the laboratory.
Bolted flanged connections with longitudinal bending moments: Experimental results
International Nuclear Information System (INIS)
Flanges in piping systems and on tall vertical pressure vessels such as columns or fractionators, are often subjected to external, longitudinal bending moments of considerable magnitude. In piping systems, such bending moments are usually caused by thermal expansion. On pressure vessel flanges, external bending moments are often the result of wind or seismic loadings. In the ASME Code, only Section III, the Nuclear Power Plant Code, Subsections NB, NC, and ND, contain design rules for external bending moments on flanges. In Subsections NB, NC, and ND, an empirical formula is given, expressing a longitudinal bending moment in bolted flanged connections in terms of an equivalent internal pressure to be added to the design pressure of the flange. Other sections of the ASME Code, in particular Section VIII, Divisions 1 and 2, also the ASME-ANSI Piping Codes, do not contain rules for such external, longitudinal bending moments. In previous papers by the same authors, it was shown that a single empirical expression to convert external bending moments to intemal pressure, cannot include the differences between the geometries of flanges of various sizes. An attempt was also made to analyse the stresses in the flange-bolt assembly due to extemal bending moments and to compare flange thicknesses thus obtained with thicknesses required using the equivalent design pressure, specified in Subsections NB, NC, and ND. The present paper reports the findings of a series of experiments on a pair of 100 mm, Class 10 (4 inch, Class 150) pipe flanges which were subjected to various combinations of intemal pressure and extemal longitudinal bending. Measured values are compared with a proposed analytic design method and with results using the empirical formula of the ASME Code, Section III
Response of Flexible Risers in Bend Stiffener Area
Løseth, Kim
2011-01-01
Flexible risers is a vital part of a floating production system (FPS). In order to predict the riser life time, many procedure may be applied. In this thesis it is assumed that the pipe could be represented with help of performing two sets of global anlayis. Where in the first set it is assumed that the bending stiffness of the pipe is similar to the stick region of the flexible pipe and in the second part the bending stiffness it is assumed a bending stiffness similar to the slip regime of t...
Response of Flexible Risers in Bend Stiffener Area
Løseth, Kim
2011-01-01
Flexible risers is a vital part of a floating production system (FPS). In order to predict the riser life time, many procedure may be applied.In this thesis it is assumed that the pipe could be represented with help of performing two sets of global anlayis. Where in the first set it is assumed that the bending stiffness of the pipe is similar to the stick region of the flexible pipe and in the second part the bending stiffness it is assumed a bending stiffness similar to the slip regime of th...
Bends in nanotubes allow electric spin control and coupling
DEFF Research Database (Denmark)
Flensberg, Karsten; Marcus, Charles Masamed
2010-01-01
fields. Device geometries that allow general rotation of single spins are presented and analyzed. In addition, capacitive coupling along bends provides coherent spin-spin interaction, including between otherwise disconnected nanotubes, completing a universal set of one- and two-qubit gates.......We investigate combined effects of spin-orbit coupling and magnetic field in carbon nanotubes containing one or more bends along their length. We show how bends can be used to provide electrical control of confined spins, while spins confined in straight segments remain insensitive to electric...
Investigation of ion induced bending mechanism for nanostructures
International Nuclear Information System (INIS)
Ion induced bending is a promising controlled technique for manipulating nanoscale structures. However, the underlying mechanism of the process is not well understood. In this letter, we report a detailed study of the bending mechanism of Si nanowires (NWs) under Ga+ irradiation. The microstructural changes in the NW due to ion beam irradiation are studied and molecular dynamics simulations are used to explore the ion–NW interaction processes. The simulation results are compared with the microstructural studies of the NW. The investigations inform a generic understanding of the bending process in crystalline materials, which we suggest to be feasible as a versatile manipulation and integration technique in nanotechnology. (paper)
Hamiltonian system for orthotropic plate bending based on analogy theory
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.
Influence of plywood grain direction on sandwich panel bending properties
Jaroslav Kljak; Mladen Brezović; Alan Antonović
2009-01-01
This paper investigates the influence of plywood grain direction on bending properties of a sandwich panel, as well as on stress distribution in each layer. Experimental sandwich panels (tnom= 29 mm) were made of two three-ply plywood panels and a rigid PVC core between them. Grain directions of plywood panels were between 0° and 90°, continuously raised by 15°. Seven models of sandwich panels were made. Bending properties of a sandwich panel was determined by three point bending method and s...
Damage Analysis of Rectangular Section Composite Beam under Pure Bending
Liu, Yiping; Xiao, Fan; Liu, Zejia; Tang, Liqun; Fang, Daining
2013-02-01
Laminated composite beams are commonly used in engineering applications involving macro to nano structures. Based on the assumption that plain sections remain plain after deformation, this paper analyzes stress distributions in cross-ply laminated composite beams with rectangular cross-sections, and formulates the basic damage equations through Kachanov's damage definition and Janson's failure criterion. The location of the neutral axis and the ultimate bending moment are obtained for pure bending cases. The effect of the elastic modulus of the two layers on the damage evolution is analyzed; a reasonable damage composite beam model is proposed to predict the ultimate bending moment.
Localized bending fatigue behavior of high-strength steel monostrands
DEFF Research Database (Denmark)
Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.
2012-01-01
strain distribution in the strand and helps in identifying potential failure mechanisms along the strand and at the wedge location. Initial analysis of the deformations shows that the bending fatigue behavior of the monostrand may be controlled either by local bending deformations or by relative......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the...
Bending Analysis of Symmetrically Laminated Plates
Directory of Open Access Journals (Sweden)
Bouazza MOKHTAR
2010-12-01
Full Text Available In the classical plate theory, it is assumed that the plane cross sections initially normal to the plate midsurface before deformation remain plane and normal to that surface during deformation. This is the result of neglecting the transverse shear strains. However, in thick and moderately thick laminated plates, significant transverse shear strains occur, and the theory gives inaccurate results for the plates. So, it is obvious that the shear strains have to be taken into account. There are numerous theories of plates and laminated plates that include the transverse shear strains. One of them is the Reissner and Midlin theory , known as the first-order shear deformation theory, which defines the displacement field as linear variations of midplane displacements. This theory, where the relation between the resultant shear forces and the shear strains is obtained by using shear correction factors, has some advantages due to its simplicity and low computational cost. Some other plate theories, namely the higher-order shear deformation theories, include the effect of transverse shear strains . For example, the theory developed by Reddy allows not only for the transverse shear strains, but also for parabolic variations in the strains across the plate thickness, and thus there is no need to use shear correction coefficients in computing the shear stresses. The present stud is a survey of plate bending of cross-ply laminate by using the finite element method (F.E.M. Using ANSYS, the most known software in the domain for it, two types of modeling are proposed: the first is modeling using a type of shell element, Shell 99 and the second is an approach based on a of type solid element, Solid 46. The results obtained are compared with the results of the theory of Reddy.
Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program
Energy Technology Data Exchange (ETDEWEB)
Womack, R.L.; Addison, J.A.
1996-12-01
At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.
Preliminary Project Investigation : Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This report covers the proposed expansion of Holla Bend National Wildlife Refuge to increase the quantity and quality of wintering habitat primarily for mallards...
NUMERICAL INVESTIGATION ON FLOW CHARACTERISTICS IN RIBBED BEND
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Previous research［1］by the author has proved that ribbed bend technology is a simple and efficient anti-erosion method. The present paper is a further study to unveil the mechanism of the technology by using numerical method. The flow characteristics in ribbed bend were studied. A k-ε turbulence model was used and the simulations were carried out in the body-fitted coordinates. This procedure was confirmed to be credible by showing the satisfactory agreement between the predications and experimental results. It is concluded that the character of the longitudinal flow in ribbed bend especially in the concave parts between ribs has a beneficial effect on increasing the anti-erosion ability of ribbed bend but the secondary flow will have little effect on determining the particle trajectory.
Holla Bend National Wildlife Refuge: Comprehensive Conservation Plan
US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Holla Bend NWR for the next 15 years. This plan outlines the Refuge vision and purpose...
Fishery Manangement Plan : Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This plan describes fishery management for Holla Bend National Wildlife Refuge in 1990. The plan outlines goals, objectives for fishery management for the benefit...
Monitoring Composites under Bending Tests with Infrared Thermography
Directory of Open Access Journals (Sweden)
Carosena Meola
2012-01-01
Full Text Available The attention of the present paper is focused on the use of an infrared imaging device to monitor the thermal response of composite materials under cyclic bending. Three types of composites are considered including an epoxy matrix reinforced with either carbon fibres (CFRP or glass fibres (GFRP and a hybrid composite involving glass fibres and aluminium layers (FRML. The specimen surface, under bending, displays temperature variations pursuing the load variations with cooling down under tension and warming up under compression; such temperature variations are in agreement with the bending moment. It has been observed that the amplitude of temperature variations over the specimen surface depends on the material characteristics. In particular, the presence of a defect inside the material affects the temperature distribution with deviation from the usual bending moment trend.
Computational Strategies for the Architectural Design of Bending Active Structures
DEFF Research Database (Denmark)
Tamke, Martin; Nicholas, Paul
2013-01-01
stiffness, it is possible to control and pre-calibrate the bending behaviour of a composite element. This material capacity challenges architecture’s existing methods for design, specification and prediction. In this paper, we demonstrate how architects might connect the designed nature of composites with...... the design of bending-active structures, through computational strategies. We report three built structures that develop architecturally oriented design methods for bending-active systems using composite materials. These projects demonstrate the application and limits of the introduction of advanced......Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification of their...
1984 Deer Harvest Summary for Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This memo summarizes the 1984 deer harvest for Holla Bend National Wildlife Refuge. Tables summarize numerical findings, including bucks, does, and points.
Technique cuts time and cost of bending jacketed piping
Gardner, J. N.
1967-01-01
Technique uses a stiff medium in the annular space between inner and outer pipes of jacketed piping in transfer lines. The process eliminates splitting and welding and makes possible the use of standard pipe-bending tools.
Cylindrical Bending of Deformable Textile Rectangular Patch Antennas
Freek Boeykens; Hendrik Rogier; Luigi Vallozzi
2012-01-01
Textile patch antennas are well known as basic components for wearable systems that allow communication between a human body and the external world. Due to their flexibility, textile antennas are subjected to bending when worn, causing a variation in resonance frequency and radiation pattern with respect to the flat state in which their nominal design is performed. Hence, it is important for textile antenna engineers to be able to predict these performance parameters as a function of the bend...
Species-specific patterns of DNA bending and sequence.
VanWye, J D; Bronson, E C; Anderson, J N
1991-01-01
Nucleotide sequences in the GenEMBL database were analyzed using strategies designed to reveal species-specific patterns of DNA bending and DNA sequence. The results uncovered striking species-dependent patterns of bending with more variations among individual organisms than between prokaryotes and eukaryotes. The frequency of bent sites in sequences from different bacteria was related to genomic A + T content and this relationship was confirmed by electrophoretic analysis of genomic DNA. How...
Theory of bending waves with applications to disk galaxies
Energy Technology Data Exchange (ETDEWEB)
Mark, J.W.K.
1982-01-01
A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.
Theory of bending waves with applications to disk galaxies
International Nuclear Information System (INIS)
A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way
Dynamics of fast charged particle beam rotation in bended crystals
International Nuclear Information System (INIS)
Dynamics of fast charged particle beam rotation in a bended monocrystal is considered. Face and volume mechanisms of capture in channels are taken into account simultaneously in the model presented. Functions of distribution in transverse energies (φ) of channeled and dechanneled particles are obtained. Charge-energy ''scale invariance'' in ion channeling with charge Z in a bended crystal determined by scale parameter W=pv/Z (p and v are pulse and velocity local to transverse planes) follows from the model presented
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Power monitor miter bends for high-power microwave transmission
Energy Technology Data Exchange (ETDEWEB)
Doane, John, E-mail: doane@fusion.gat.com; Anderson, James; Grunloh, Howard; Wu, Wen
2015-04-15
Two miter bends are described for monitoring the power transmitted in an oversized corrugated wave-guide. One has an array of holes in its mirror that couples a small fraction of the incident power to a rectangular waveguide directly machined into the mirror. Millimeter-wave detectors on the outputs of this miter bend can respond very rapidly to the transmitted power, but the coupling is sensitive to the mode purity in the oversized waveguide. The other miter bend monitors the power by measuring the rise in temperature of the cooling water passing through the mirror. The mirror is well isolated from the miter bend housing to prevent heat from neighboring waveguides from reaching the mirror. The measurement requires about 200 s to reach steady state, but it is relatively insensitive to mode purity. The measurement does require knowledge of the input polarization. Thermo-mechanical analyses of the miter bends indicate that they are capable of reliable operation with 1.5 MW transmitted through them. High-power long-pulse 170 GHz tests of these miter bends at the Japan Atomic Energy Agency (JAEA) are described.
Influence of plywood grain direction on sandwich panel bending properties
Directory of Open Access Journals (Sweden)
Jaroslav Kljak
2009-06-01
Full Text Available This paper investigates the influence of plywood grain direction on bending properties of a sandwich panel, as well as on stress distribution in each layer. Experimental sandwich panels (tnom= 29 mm were made of two three-ply plywood panels and a rigid PVC core between them. Grain directions of plywood panels were between 0° and 90°, continuously raised by 15°. Seven models of sandwich panels were made. Bending properties of a sandwich panel was determined by three point bending method and stress in each layer was determined by using finite element method. Simulation models were developed with equal load conditions as applied during empirical measurement of bending properties of the sandwich panel. The research results show that grain direction has a great influence on bending properties of the sandwich panel, as well as on stress values in each layer. Results also indicate the importance of analyzing stress in each layer of plywood for the purpose of avoiding stress concentration in respective layers and for optimizing structural construction of the sandwich panel. Such stress analyses are not covered by standardized empirical methods for determining bending properties of sandwich panels.
Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Chen, Lei; Li, Ping; Wen, Yu-Mei; Zhu, Yong
2013-07-01
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the ΔE effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with Hdc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.
Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Institute of Scientific and Technical Information of China (English)
Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong
2013-01-01
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.
Optimal Orthogonal Graph Drawing with Convex Bend Costs
Bläsius, Thomas; Wagner, Dorothea
2012-01-01
Traditionally, the quality of orthogonal planar drawings is quantified by either the total number of bends, or the maximum number of bends per edge. However, this neglects that in typical applications, edges have varying importance. Moreover, as bend minimization over all planar embeddings is NP-hard, most approaches focus on a fixed planar embedding. We consider the problem OptimalFlexDraw that is defined as follows. Given a planar graph G on n vertices with maximum degree 4 and for each edge e a cost function cost_e : N_0 --> R defining costs depending on the number of bends on e, compute an orthogonal drawing of G of minimum cost. Note that this optimizes over all planar embeddings of the input graphs, and the cost functions allow fine-grained control on the bends of edges. In this generality OptimalFlexDraw is NP-hard. We show that it can be solved efficiently if 1) the cost function of each edge is convex and 2) the first bend on each edge does not cause any cost (which is a condition similar to the posi...
2013-12-24
... as described in 78 FR 4465 (January 22, 2013). On April 12, 2013, PPL submitted Revision 4 to the COL... Bend Nuclear Power Plant (BBNPP), in Luzerne County, Pennsylvania (Agencywide Documents Access...
Impact of Road Bends on Traffic Flow in a Single-Lane Traffic System
Directory of Open Access Journals (Sweden)
Zeng Junwei
2014-01-01
Full Text Available Taking the characteristics of road bends as a research object, this work proposes the cellular model (CA with road bends based on the NaSch model, with which the traffic flow is examined under different conditions, such as bend radius, bend arc length, and road friction coefficiency. The simulation results show that, with the increase of the bend radius, the peak flow will be continuously increased, and the fundamental diagram will become more similar to that of the classic NaSch model; the smaller the bend radius is, the easier it is for the occurrence of blockage; for different bend lengths, all the corresponding traffic flows show that the phenomenon of go-and-stop and the bends exert slight inhibitory effect on traffic flow; under the same bend radius, the inhibition effect of the bends on the traffic flow will be weakened with the increase of the friction coefficiency.
Advances and Trends on Tube Bending Forming Technologies
Institute of Scientific and Technical Information of China (English)
YANG He; LI Heng; ZHANG Zhiyong; ZHAN Mei; LIU Jing; LI Guangjun
2012-01-01
As one kind of key components with enormous quantities and diversities,the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects.The bent tubes have been widely used in many high-end industries such as aviation,aerospaee,shipbuilding,automobile,energy and health care.The tube bending has become one of the key manufacturing technologies for lightweight product forming.Via the analysis of bending characteristics and multiple defects,advances on exploring the common issues in tube bending are summarized regarding wrinkling instability at the intrados,wall thinning (cracking) at the extrados,springback phenomenon,cross-section deformation,forming limit and process/tooling design/optimization.Some currently developed bending techniques are reviewed in terms of their advantages and limitations.Finally,in view of the urgent requirements of high-performance complex bent tube components with difficult-to-deform and lightweight materials in aviation and aerospace fields,the development trends and corresponding challenges are presented for realizing the precise and high-efficiency tube bending deformation.
Temperature Induced Instabilities in Macro-bend Fiber Based Wavelength Measurement Systems
Rajan, Ginu; Semenova, Yuliya; Wang, Pengfei; Farrell, Gerald
2009-01-01
An investigation of temperature-induced instabilities in a wavelength measurement system based on macro-bend fiber filter used in the ratiometric scheme are presented. Two wavelength measurement systems based on macro-bend fiber, a standard low bend loss single-mode fiber filter based system and a high bend loss fiber filter based system are considered. In the case of a low bend loss fiber filter based system, the oscillatory variation in the ratio response with temperature and the difference...
Segmental Bridges under Combined Torsion, Bending and Shear
Institute of Scientific and Technical Information of China (English)
黄真; 刘西拉
2003-01-01
Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research resuits were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.
Validity of fracture toughness determined with small bend specimens
International Nuclear Information System (INIS)
This report considers the validity of fracture toughness estimates obtained with small bend specimens in relation to fracture toughness estimates obtained with large specimens. The study is based upon the analysis and comparison of actual test results. The results prove the validity of the fracture toughness determined based upon small bend specimens, especially when the results are only used to determine the fracture toughness transition temperature To. In this case the possible error is typically less than 5 deg C and at most 10 deg C. It can be concluded that small bend specimens are very suitable for the estimation of fracture toughness in the case of brittle fracture, provided the results are corrected for statistical size effects. (orig.). (20 refs., 17 figs.)
Strain localization and damage development in 2060 alloy during bending
Institute of Scientific and Technical Information of China (English)
Xiao Jin; Bao-qin Fu; Cheng-lu Zhang; Wei Liu
2015-01-01
The microstructure evolution and damage development of the third-generation Al–Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.
Platonic scattering cancellation for bending waves in a thin plate
Farhat, M.
2014-04-10
We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.
Single crystal plasticity with bend-twist modes
Elkhodary, Khalil I.; Bakr, Mohamed A.
2015-06-01
In this work a formulation is proposed and computationally implemented for rate dependent single crystal plasticity, which incorporates plastic bend-twist modes that arise from dislocation density based poly-slip mechanisms. The formulation makes use of higher order continuum theory and may be viewed as a generalized micromechanics model. The formulation is then linked to the burgers and Nye tensors, showing how their material rates are derivable from a newly proposed third-rank tensor Λp, which incorporates a crystallographic description of bend-twist plasticity through selectable slip-system level constitutive laws. A simple three-dimensional explicit finite element implementation is outlined and employed in three simulations: (a) bi-crystal bending; (b) tension on a notched single crystal; and (c) the large compression of a microstructure to induce the plastic buckling of secondary phases. All simulation are transient, for computational expediency. The results shed light on the physics resulting from dynamic inhomogeneous plastic deformation.
Contact and Bending Durability Calculation for Spiral-Bevel Gears
Vijayakar, Sandeep
2016-01-01
The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.
What bends wide-angle tailed radio sources
International Nuclear Information System (INIS)
The authors discuss the mechanism responsible for bending WAT sources. The actual bending of the radio tails results from an interaction between the intracluster medium (ICM) and the extended radio plasma. Pressure gradients within the ICM will distort the plasma flow from linearity. Such pressure gradients could be seen as asymmetries in the X-ray emission produced by the hot cluster gas. Unlike the large-scale structure, the inner X-ray emission has an anisotropic, egg-shape near the cD with the excess between the radio tails. The origin of this gas anisotropy and its implications for the bending of the 3C465 tails are briefly considered using four models. (Auth.)
Flow resistance of ice slurry in bends and elbow pipes
Niezgoda-Żelasko, B.; Żelasko, J.
2014-08-01
The present paper covers the flow of ice slurry made of a 10.6% ethanol solution through small-radius bends and elbow pipes. The paper presents the results of experimental research on the flow resistances of Bingham-fluid ice slurry in bends and elbows. The research, performed for three pipe diameters and a relative bend radius of 1<=D/di<=2, has made it possible to take into consideration the influence of friction resistances as well the of the flow geometry on the total local resistance coefficients. The study attempts to make the local resistance coefficient dependent on the Dean number defined for a generalized Reynolds number according to Metzner-Reade
Bending failure of laminated fibrous composite plates with a hole
Energy Technology Data Exchange (ETDEWEB)
Kwon, Y.W.; Yang, S.T. [Naval Postgraduate School, Monterey, CA (United States). Dept. of Mechanical Engineering
1995-08-01
This study investigates failure modes and failure strengths of laminated fibrous composite plates with stress concentration and subjected to bending loads. Graphite/epoxy composites are used for the present study. Lamina material properties, such as stiffness and strength, of the composite are determined from experiments. A series of four-point bending tests are conducted for laminated, graphite/epoxy composite plates with and without a hole to examine their failure modes and strengths. The paper compares different failure modes and strengths of various composite specimens. In addition, finite element analyses are performed to compute stress distributions around holes of the composite plates subjected to bending loads. Numerically predicted failure loads agree well with experimental results.
Bend-twist coupling potential of wind turbine blades
DEFF Research Database (Denmark)
Fedorov, Vladimir; Berggreen, Christian
2014-01-01
and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend......In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed......-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling into a...
Photomechanical Bending of Azobenzene-Based Photochromic Molecular Fibers
Directory of Open Access Journals (Sweden)
Riku Matsui
2013-03-01
Full Text Available Microfibers composed of azobenzene-based photochromic amorphous molecular materials, namely low molecular-mass photochromic materials with a glass-forming property, could be fabricated. These fibers were found to exhibit mechanical bending motion upon irradiation with a laser beam. In addition, the bending direction could be controlled by altering the polarization direction of the irradiated light without changing the position of the light source or the wavelength of the light. In-situ fluorescence observation of mass transport induced at the surface of the fiber doped with CdSe quantum dots suggested that the bending motions were related with the photoinduced mass transport taking place near the irradiated surface of the fiber.
Qualification of a motorized scanner for feeder bend inspection
International Nuclear Information System (INIS)
This paper will review the qualification of the Inspection System based on the motorized feeder bend-cracking crawler designed by IREQ and the inspection procedure COG-JP-4107- V43 developed by Hydro-Quebec and New-Brunswick Power. The mechanization of the inspection was necessary to address new concerns found after the discovery in 2003 of cracks on second bends and also the finding that several removed cracked bends had additional incipient OD cracks on the extrados. This document describes the apparatus, procedure and test-results that support the adequacy of the inspection system to meet the inspection specifications and the CSA N285.4 Standard. A review of the qualification process is included. A particular aspect of the work is the emphasis set on detecting OD flaws. Field results from PLGS and G-2 outages will be addressed. (author)
In situ heat treatment of U-bends: Final report
International Nuclear Information System (INIS)
Row 1 nuclear steam generator tubes of mill annealed Alloy 600 tubing were stress relief annealed at 14500F for 15 minutes using a special internally placed flexible electrical resistance heater. The U-bends were strained to simulate differential thermal expansion stresses and tested for primary water stress corrosion cracking (PWSCC) resistance in two reference accelerated test environments (6800F high purity water and 7500F superheated steam), both of which contained hydrogen partial pressures. Prototypical axial throughwall cracking at the extrados of the irregular U-bend transition tangent was produced in base line, non-stress relieved U-bends, while no throughwall cracking occurred in any stress relieved sample. An improvement in PWSCC resistance due to this stress relief of at least a factor of 30 can be inferred for the 7/8 in. tubing material that was of a highly PWSCC susceptible heat. The 3/4 in. tubing material, which was more resistant to PWSCC in the mill annealed condition, exhibited an inferred factor in PWSCC resistance, due to the 14500F stress relief, or at least 11. The program identified and qualified a lower temperature, shorter time, stress relief cycle of 13000F for five minutes. Accelerated PWSCC testing in 7500F steam indicated that 7/8 in. OD U-bends stress relieved at 13000F for five minutes exhibit a resistance to PWSCC that is at least 100 times greater than as-bent samples that were readily cracked in the steam exposures. It is concluded that in-situ stress relief of mill annealed Alloy 600 nuclear steam generator U-bends is highly beneficial in reducing, or possibly eliminating, PWSCC at the U-bend tangent points where instances of PWSCC have been documented in operating plants. 10 refs., 44 figs., 16 tabs
Bending of light in modified gravity at large distances
Sultana, Joseph; Kazanas, Demosthenes
2012-04-01
We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)10.1103/PhysRevLett.105.211303PRLTAO0031-9007]. We consider the static, spherically symmetric metric with cosmological constant Λ and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. DPRVDAQ1550-7998 76, 043006 (2007).10.1103/PhysRevD.76.043006] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis [Phys. Rev. DPRVDAQ1550-7998 83, 124024 (2011)10.1103/PhysRevD.83.124024], using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r0 of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r0. This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric.
Bruce NGS B U-bend support stabilization
International Nuclear Information System (INIS)
The steam generators at Bruce NGS B have experienced a degree of tube fretting at the U-bend scalloped bar support locations. Investigation attributed the tube fretting to flow induced vibration induced wear as a result of U-bend supports which were too widely spaced (compared to current criteria), and insufficiently rigid. The paper describes the problem, the development of a stabilization configuration, its qualification, its installation tooling and procedures, and the installation of the initial trial assemblies. 4 refs., 9 figs
Bending of solitons in weak and slowly varying inhomogeneous plasma
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata-700064 (India)
2015-12-15
The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.
Solution structure of an A-tract DNA bend.
MacDonald, D; Herbert, K; Zhang, X; Pologruto, T; Lu, P; Polgruto, T
2001-03-01
The solution structure of a DNA dodecamer d(GGCAAAAAACGG)/d(CCGTTTTTTGCC) containing an A-tract has been determined by NMR spectroscopy with residual dipolar couplings. The structure shows an overall helix axis bend of 19 degrees in a geometry consistent with solution and gel electrophoresis experiments. Fourteen degrees of the bending occurs in the GC regions flanking the A-tract. The remaining 5 degrees is spread evenly over its six AT base-pairs. The A-tract is characterized by decreasing minor groove width from the 5' to the 3' direction along the A strand. This is a result of propeller twist in the AT pairs and the increasing negative inclination of the adenine bases at the 3' side of the run of adenine bases. The four central thymine bases all have negative inclination throughout the A-tract with an average value of -6.1 degrees. Although this negative inclination makes the geometry of the A-tract different from all X-ray structures, the proton on N6 of adenine and the O4 of thymine one step down the helix are within distance to form bifurcated hydrogen bonds. The 5' bend of 4 degrees occurs at the junction between the GC flank and the A-tract through a combination of tilt and roll. The larger 3' bend, 10 degrees, occurs in two base steps: the first composed of tilt, -4.1 degrees, and the second a combination of tilt, -4.2 degrees, and roll, 6.0 degrees. This second step is a direct consequence of the change in inclination between an adjacent cytosine base, which has an inclination of -12 degrees, and the next base, a guanine, which has 3 degrees inclination. This bend is a combination of tilt and roll. The large change in inclination allows the formation of a hydrogen bond between the protons of N4 of the 3' cytosine and the O6 of the next 3' base, a guanine, stabilizing the roll component in the bend. These structural features differ from existing models for A-tract bends.For comparison, we also determined the structure of the control sequence, d
Four point bending setup for characterization of semiconductor piezoresistance
DEFF Research Database (Denmark)
Richter, Jacob; Arnoldus, Morten Berg; Hansen, Ole;
2008-01-01
We present a four point bending setup suitable for high precision characterization of piezoresistance in semiconductors. The compact setup has a total size of 635 cm3. Thermal stability is ensured by an aluminum housing wherein the actual four point bending fixture is located. The four point...... characterization. As a proof of concept, we show measurements of the piezocoefficient pi44 in p-type silicon at three different doping concentrations in the temperature range from T=30 °C to T=80 °C. The extracted piezocoefficients are determined with an uncertainty of 1.8%. ©2008 American Institute of Physics...
Elastostatic bending of a bimaterial plate with a circular interface
Ogbonna, Nkem
2015-08-01
The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.
Axisymmetrical bending of circular plates with eccentric stiffeners
International Nuclear Information System (INIS)
Small deflection bending theory of stiffened circular plates with uniformly spaced radial and circunferential ribs is presented. Equilibrium differential equations for the axisymmetric case, in terms of the displacements u and w of the middle surface of the plate are derived, and their general solutions are found. Closed form solutions for the circular plate with uniformly distributed bending moments along its edge are given for the special case in which geometrical and elastic properties of the ribs are constant and equal along both radial and circunferential directions. (Author)
Ballistic thermoelectric properties in double-bend graphene nanoribbons
International Nuclear Information System (INIS)
Ballistic thermoelectric properties in double-bend graphene nanoribbons (GNRs) are investigated by using the nonequilibrium Green's function. We find that due to the elastic scattering caused by the interface mismatching, the thermal conductance contributed by phonons is greatly reduced, while ballistic transport behaviors for electrons are dramatically demolished, and even some gaps can be opened at antiresonance energies. Near these antiresonance gaps, the maximum value of ZT (ZTmax) can be observed, much larger than that for straight GNRs. Moreover, this ZTmax can be effectively tuned by modulating the length or width of double-bend GNRs.
Origin of bending in uncoated microcantilever - Surface topography?
International Nuclear Information System (INIS)
We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography
Quasimolecular Dynamic Simulation for Bending Fracture of Laminar Composite Materials
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomistic and continuum simulations, molecules are aggregated into large units, called quasimolecules, to evaluate large scale material behavior. In this paper, a 2-dimensional numerical simulation using quasimolecular dynamics was performed to investigate laminar composite material fractures and crack propagation behavior in the uniform bending of laminar composite materials. It was verified that under bending deformation laminar composite materials deform quite differently from homogeneous materials
Influence of bending test configuration on cracking behavior of FRC
DEFF Research Database (Denmark)
Finazzi, Silvia; Paegle, Ieva; Fischer, Gregor;
2014-01-01
(SFRC) and Engineered Cementitious Composites (ECC), were tested and are described in this study. The materials were chosen so that one of them would be strain hardening (ECC) and the other tension softening (SFRC). Notched and un-notched three- and four-point bending tests were carried out to determine......This paper describes an investigation of the influence of the testing configuration for Fiber Reinforced Concrete in bending and aims at evaluating the influence of the test configuration details on the characterization of the material. Two different types of FRC, Steel Fiber Reinforced Concrete...
Test Equal Bending by Gravity for Space and Time
Sweetser, Douglas
2009-05-01
For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.
Nonstandard bending mechanism in Bi2Te3 single crystals
International Nuclear Information System (INIS)
Nonstandard bending mechanism for layered Bi2Te3 single crystals is studied by their three-point loading in the direction perpendicular to the cleavage planes (0001). It is shown that the Bi2Te3 sample under the influence of external load acquires complex internal substructure analogous to the known mechanism two-dimensional plane-parallel spring-actuated suspension. Change in form of the sample bend from the V-type regular one for monolithic solid bodies to the Ω-type nonstandard from. 7 refs.; 5 figs
Bending strength model for internal spur gear teeth
Savage, Michael; Rubadeux, K. L.; Coe, H. H.
1995-01-01
Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.
Photoacoustic elastic bending in thin film—Substrate system
International Nuclear Information System (INIS)
Theoretical model for optically excited two-layer elastic plate, which includes plasmaelastic, thermoelastic, and thermodiffusion mechanisms, is given in order to study the dependence of the photoacoustic (PA) elastic bending signal on the optical, thermal, and elastic properties of thin film—substrate system. Thin film-semiconductor sample (in our case Silicon) is modeled by simultaneous analysis of the plasma, thermal, and elastic wave equations. Multireflection effects in thin film are included in theoretical model and analyzed. Relations for the amplitude and phase of electronic and thermal elastic bending in the optically excited two-layer mechanically-supported circular plate are derived. Theoretical analysis of the thermodiffusion, plasmaelastic, and thermoelastic effects in a sample-gas-microphone photoacoustic detection configuration is given. Two normalization procedures of the photoacoustic elastic bending signal in function of the modulation frequency of the optical excitation are established. Given theoretical model can be used for various photoacoustic detection configurations, for example, in the study of optical, thermal, and elastic properties of the dielectric-semiconductor or metal-semiconductor structure, etc., Theoretical analysis shows that it is possible to develop new noncontact and nondestructive experimental method—PA elastic bending method for thin film study, with possibility to obtain the optical, thermal, and elastic parameters of the film thinner than 1 μm
Enhanced resolution of long-period grating bend sensor
DEFF Research Database (Denmark)
Glavind, Lars; Gao, S; Cook, K; Canning, J; Skipper, BF; Luo, Y; Peng, G; Kristensen, M
2013-01-01
We present an optical fiber bend sensor with enhanced resolution based on the principle of a Mach-Zehnder interferometer in transmission. The sensor is based on two identical Long-Period Gratings separated by approximately 100 mm in a D-shaped single-mode optical fiber. The sensor provides a narrow...
Electrical Reliability of a Film-Type Connection during Bending
Directory of Open Access Journals (Sweden)
Ryosuke Mitsui
2015-10-01
Full Text Available With the escalating demands for downsizing and functionalizing mobile electronics, flexible electronics have become an important aspect of future technologies. To address limitations concerning junction deformation, we developed a new connection method using a film-type connector that is less than 0.1 mm thick. The film-type connector is composed of an organic film substrate, a UV-curable adhesive that deforms elastically under pressure, and electrodes that are arranged on the adhesive. The film-type connection relies on a plate-to-plate contact, which ensures a sufficient contact area. The electrical reliability of the film-type connection was investigated based on changes in the resistance during bending at curvature radii of 70, 50, 25, 10, 5, and 2.5 mm. The connection was bent 1000 times to investigate the reproducibility of the connector’s bending properties. The tests showed that no disconnections occurred due to bending in the vertical direction of the electrode, but disconnections were observed due to bending in the parallel direction at curvature radii of 10, 5, and 2.5 mm. In addition, the maximum average change in resistance was less than 70 milliohms unless a disconnection was generated. These results support the application of the new film-type connection in future flexible devices.
A Second Look at Brian Simon's "Bending the Rules"
Cox, Sue
2016-01-01
In this article the author revisits an important book: Brian Simon's "Bending the Rules: the Baker reform of education." Written by a key figure in the history of the journal FORUM as well as in the history of education, Simon's book documented the features of the Education Reform Bill of 1987 (the precursor to the Education Reform Act…
Multiphase fluid structure interaction in bends and T-joints
Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van
2010-01-01
Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations
Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons
DEFF Research Database (Denmark)
Yang, Yihao; Chen, Hongsheng; Xiao, Sanshui; Mortensen, N. Asger; Zhang, Jingjing
2015-01-01
surface plasmons around 90-degree sharp bends on ultrathin metallic films in the microwave regime. We demonstrate that by judiciously engineering the structure, the dispersion relation can be designed to reduce the scattering. Furthermore, the reflection can be suppressed by proper structural decoration...
A theoretical model for suspended sediment transport in river bends
Talmon, A.M.
1989-01-01
A two dimensional depth-averaged model for the concentration field of suspended sediment in river bend flow is formulated. Transport of suspended sediment in horizontal and vertical directions is modelled. Convection by the main and secondary flow and turbulent diffusion are incorporated. The model
A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Tian-xiao Zhou; Xiao-ping Xie
2003-01-01
In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.
Optimal semi-active damping of cables with bending stiffness
Boston, C.; Weber, F.; Guzzella, L.
2011-05-01
The problem of optimal semi-active damping of cables with bending stiffness is investigated with an evolutionary algorithm. The developed damping strategy is validated on a single strand cable with a linear motor attached close to the anchor position. The motor is operated in force feedback mode during free decay of cable vibrations, during which time the decay ratios of the cable modes are measured. It is shown from these experiments that the damping ratios predicted in simulation are close to those measured. The semi-active damping strategy found by the evolutionary algorithm is very similar in character to that for a cable without bending stiffness, being the superposition of an amplitude-dependent friction and negative stiffness element. However, due to the bending stiffness of the cable, the tuning of the above elements as a function of the relevant cable parameters is greatly altered, especially for damper positions close to a fixed end anchor, where the mode shape depends strongly on bending stiffness. It is furthermore demonstrated that a semi-active damper is able to dissipate significantly more energy for a cable with simply supported ends compared to fixed ends due to larger damper strokes and thereby increased energy dissipation in the device.
Cylindrical Bending of a Plate on an Elastic Foundation
Czech Academy of Sciences Publication Activity Database
Gronát, Petr
Ostrava : VŠB - Technical University of Ostrava, 2011, C376-C393. ISBN 978-80-248-2257-0 R&D Projects: GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : elastic foundation * cylindrical bending Subject RIV: JI - Composite Materials
Basic Characteristics of a New Flexible Pneumatic Bending Joint
Institute of Scientific and Technical Information of China (English)
SHAO Tiefeng; ZHANG Libin; BAO Guanjun; LUO Xinyuan; YANG Qinghua
2014-01-01
Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint (FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook’s law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ’s bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint’s statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ’s structure design.
A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers
Directory of Open Access Journals (Sweden)
Yingxiang Liu
2015-08-01
Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.
Tidal bending of glaciers: a linear viscoelastic approach
DEFF Research Database (Denmark)
Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph;
2003-01-01
glaciers are in the range 0.9-3 GPa. It has therefore been suggested that the elastic-beam model with a single value of E approximate to 1 GPa adequately describes tidal bending of glaciers.In contrast, laboratory experiments with ice give E =93 GPa, i.e. 3-10 times higher than the glacier-derived values...
Space charge effects in a bending magnet system
International Nuclear Information System (INIS)
In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented
Study of transmission properties for waveguide bends by use of a circular photonic crystal
Xiao, Sanshui; Qiu, Min
2005-01-01
We study the transmission properties for the waveguide bends composed by a circular photonic crystal. Two types (Y and U type) of the waveguide bends utilizing the circular photonic crystal are studied. It has been shown, compared with the conventional photonic crystal waveguide bends, transmission properties for these bends can be significantly improved. Over a 6.4% bandwidth, less than 1-dB loss/bend are observed. U bent waveguide, i.e., $180^o$ bend, can be easily realized with low loss us...
Influence of Additional Tensile Force on Springback of Tube Under Rotary Draw Bending
E, Daxin; Guan, Zhiping; Chen, Jisheng
2012-11-01
According to the characteristics of tube under rotary draw bending, the formulae were derived to calculate the springback angles of tubes subjected to combined bending and additional tension. Especially, as the neutral layer (NL) moves to the inner concave surface of the bend, the analytical values agree very well with the experimental results. The analysis shows that the additional tensile force causes the movement of the NL toward the bending center and makes the deformation behavior under rotary draw bending or numerically controlled (NC) bending different with that under pure bending, and also it could enlarge the springback angle if taking the movement of the NL into consideration. In some range, the springback angle would increase slightly with larger wall thickness/diameter ratio and decrease with wall thinning. The investigation could provide reference for the analysis of rotary draw bending, the design of NC tube bender and the related techniques.
Jui-Chang Lin; Kingsun Lee
2015-01-01
The three-dimensional tube (or pipe) is manufactured by CNC tube bending machine. The key techniques are determined by tube diameter, wall thickness, material, and bending radius. The obtained technique through experience and the trial and error method is unreliable. Finite element method (FEM) simulation for the tube bending process before production can avoid wasting manpower and raw materials. The computer-aided engineering (CAE) software ABAQUS 6.12 is applied to simulate bending characte...
An All-fiber Temperature Sensor Based on a Macro-bend Singlemode Fiber Loop
Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald
2008-01-01
An all-fibre temperature sensor is proposed based on a macro-bend singlemode fibre loop using a ratiometric power measurement scheme. The sensor has a linear characteristic with temperature at a fixed wavelength and bend radius. A direct linear relationship between the bend loss of the singlemode fibre and temperature is reported for the first time. By measuring the change in bend loss of the system a change in temperature can be measured assuming the system is calibrated. The proposed sensor...
Novel low-loss 60° bends in photonic crystal waveguides
DEFF Research Database (Denmark)
Thorhauge, Morten; Frandsen, Lars Hagedorn; Borel, Peter Ingo; Harpøth, Anders; Zhuang, Y. X.; Kristensen, Martin; Bogaerts, W; Dumon, P; Baets, Roel; Wiaux, V; Wouters, J; Beckx, S
2004-01-01
A novel type of 60 degree photonic crystal waveguide bend has been designed, simulated and fabricated in silicon-on-insulator material utilizing deep ultraviolet lithography. Loss-free bending has been observed in certain wavelength regions.......A novel type of 60 degree photonic crystal waveguide bend has been designed, simulated and fabricated in silicon-on-insulator material utilizing deep ultraviolet lithography. Loss-free bending has been observed in certain wavelength regions....
Local and Global Light Bending in Einstein's and Other Gravitational Theories
Ehlers, J.; Rindler, W.
1997-01-01
To remedy a certain confusion in the literature, we stress the distinction between local and global light bending. Local bending is a purely kinematic effect between mutually accelerating reference frames tracking the same signal, and applies via Einstein's equivalence principle exactly and equally in Newton's, Einstein's, Nordström's and other gravitational theories, independently of all field equations. Global bending, on the other hand, arises as an integral of local bending and depends cr...
Emittance dilution through coherent energy spread generation in bending systems
International Nuclear Information System (INIS)
For a bunched beam, coherent energy spread generated within a bending system may couple to the transverse (bending) plane coordinates through the chromatic transfer functions of the particular beamline - even an achromatic beamline. The resulting transverse emittance dilution is dependent on the magnitude of the energy spread, its generation rate along the beamline, and the beamline's chromatic transfer functions. The coherent energy spread may be due to resistive-wall wakefields or coherent synchrotron radiation. For specific beamlines, such as a periodic arc or wiggler, the longitudinal-to-transverse coupling is minimal and, in ideal cases, completely suppressed resulting in reduction or cancellation of all transverse emittance dilution effects. This is of particular interest for micro-bunch transport or compression systems such as exist in future FEL or linear collider projects
Effect of Accelerated Global Expansion on Bending of Light
Aghili, Mir Emad; Bombelli, Luca
2014-01-01
In 2007 Rindler and Ishak showed that, contrary to previous claims, the value of the cosmological constant does have an effect on light deflection by a gravitating object in an expanding universe, modeled by a Schwarzschild-de~Sitter spacetime. In this paper we consider light bending in the more general situation of a gravitating object in a cosmological background with varying expansion rate $H(t)$. We calculate numerically the null geodesics representing light rays deflected by a black hole in an accelerating Friedmann-Lema\\^itre-Robertson-Walker universe, modeled by a McVittie metric. Keeping the values of the distances from the observer to the lensing object and to the source fixed, we plot the dependence of the bending angle measured by two different sets of observers in this spacetime on the rate of change of $H(t)$.
Elasticity solutions for functionally graded plates in cylindrical bending
Institute of Scientific and Technical Information of China (English)
YANG Bo; DING Hao-jiang; CHEN Wei-qiu
2008-01-01
The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion formula for displacements is adopted. While keeping the assumption that the material parameters can vary along the thickness direction in an arbitrary fashion, this paper considers orthotropic materials rather than isotropic materials. In addition, the traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. The plate theory for the particular case of cylindrical bending is presented by considering an infinite extent in the y-direction. Effects of boundary conditions and material inhomogeneity on the static response of functionally graded plates are investigated through a numerical example.
Transfer matrices of dipoles with bending radius variation
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
With the increasing demand of high brightness in light source, the uniform dipole can not meet the needs of low emittance, and thus the dipole with bending radius variation is introduced in this paper. The transfer matrix of a non-uniform dipole whose bending radius is linearly changed is chosen as an example and a very simple calculation formula of non-uniform dipole transfer matrices is given. The transfer matrices of some common profile non-uniform dipoles are also listed. The comparison of these transfer matrices and the matrices calculated with slices method verifies the numerical accuracy of this formula. This method can make the non-uniform beam dynamic problem simpler, very helpful for emittance research and lattice design with non-uniform dipoles.
Coupled Torsional and Bending Vibrations of Actively Controlled Drillstrings
YIGIT, A. S.; CHRISTOFOROU, A. P.
2000-06-01
The dynamics of actively controlled drillstrings is studied. The equations of motion are derived using a lumped parameter model in which the coupling between torsional and bending vibrations is considered. The model also includes the dynamics of the rotary drive system which contains the rotary table, the gearbox and an armature controlled DC motor. The interactions between the drillstring and the borehole which are considered, include the impacts of collars with the borehole wall as well as bit rotation-dependent weight and torque on bit (WOB and TOB). Simulation results obtained by numerically solving the equations of motion are in close qualitative agreement with field and laboratory observations regarding stick-slip oscillations. A linear quadratic regulator (LQR) controller is designed based on a linearized model and is shown to be effective in eliminating this type of oscillations. It is also shown that for some operational parameters the control action may excite large bending vibrations due to coupling with the torsional motion.
An approach to the hot bending process simulation
International Nuclear Information System (INIS)
An approach to the simulation of the thermal shaping or bending of large steel sheets, by ABAQUS/Standard code, will be presented. A thermal source representation, which can produce a temperature distribution, adequate to the processes which must be considered, has been set up. Some problems connected with the hot sheet shaping or bending process simulation have been approached and calculations have been executed in order to single out how to perform the sheet heating, so that the required sheet shape may be obtained. The results for one reference model for different source situations and one heating line, object of the first phase of the analyses performed, will be presented and discussed. The work will be presented at the 8th International Abaqus Users' Conference at Paris, 31 May - 2 June 1995
Bending and rotational behaviour of semi-continuous composite beams
Institute of Scientific and Technical Information of China (English)
2008-01-01
Stresses and deflections were measured in various semi-continuous composite beams.The bending and rotational capacities of the composite connections were measured in terms of beam curvatures and deflections by using two full-scale semi-rigid composite frames with monotonic loadings.The effect of semi-rigid connections on the performance of composite beams with various loadings was compared with predictions and codes.The tests show that the semi-continuous composite beams are more economic and effective than the simple or continuous composite beams.The semi-rigid connections affect the bending capacities and beam deflections,so the connection behavior should be considered in the design of composite beams.Yielding analysis of the steel beam bottom flange has some influence on the deflection calculation of composite beams.
Flow resistance in a compound gravel-bed bend
Indian Academy of Sciences (India)
Hossein Afzalimehr; Manouchehr Heidarpour; Alireza Salimi
2006-12-01
In this paper, the effect of a gravel-bed in a compound bend (similar to sinusoidal top view) of a natural river (Zayandehrud River ﬂowing through Isfahan, Iran) has been investigated for ﬂow resistance analysis, measuring the velocity with a micro current meter. The data were analysed and the following observations were made. In a compound bend, the law of the wall can be valid for up to 66% of the ﬂow depth from the bed. The parabolic law is the most effective method for the determination of shear velocity. Based on the existing criteria for verifying the equilibrium boundary layer, the ﬂow cannot be in equilibrium. The shear stress distribution and the sediment transport parameters have considerable inﬂuence on resistance to ﬂow. Froude number and the ﬂow depth relative to the representative gravel size have little effect on the ﬂow resistance estimation.
Pure Bending Characteristic of Tilted Fiber Bragg Grating
Institute of Scientific and Technical Information of China (English)
Bo Liu; Yin-Ping Miao; Hai-Bin Zhou; Qi-Da Zhao
2008-01-01
a novel structure of the pure macro-bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.
NUMERICAL MODELING OF SUSPENDED SEDIMENT TRANSPORT IN CHANNEL BENDS
Institute of Scientific and Technical Information of China (English)
HUANG Sui-liang; JIA Y. F.; WANG Sam S. Y.
2006-01-01
An algorithm to compute three-dimensional sediment transport effect was proposed in this paper to enhance the capability of depth-averaged numerical models. This algorithm took into account of non-uniform distributions of flow velocities and suspended sediment concentrations along water depth, it significantly enhanced the applicability of 2D models in simulating open channel flows, especially in channel bends. Preliminary numerical experiments in a U-shaped and a sine-generated experimental channel indicate that the proposed method performs quite well in predicting the change of bed-deformation in channel bends due to suspended sediment transport. This method provides an effective alternative for the simulations of channel morphodynamic changes.
Analytical dynamic modeling of fast trilayer polypyrrole bending actuators
International Nuclear Information System (INIS)
Analytical modeling of conjugated polymer actuators with complicated electro-chemo-mechanical dynamics is an interesting area for research, due to the wide range of applications including biomimetic robots and biomedical devices. Although there have been extensive reports on modeling the electrochemical dynamics of polypyrrole (PPy) bending actuators, mechanical dynamics modeling of the actuators remains unexplored. PPy actuators can operate with low voltage while producing large displacement in comparison to robotic joints, they do not have friction or backlash, but they suffer from some disadvantages such as creep and hysteresis. In this paper, a complete analytical dynamic model for fast trilayer polypyrrole bending actuators has been proposed and named the analytical multi-domain dynamic actuator (AMDDA) model. First an electrical admittance model of the actuator will be obtained based on a distributed RC line; subsequently a proper mechanical dynamic model will be derived, based on Hamilton's principle. The purposed modeling approach will be validated based on recently published experimental results
About resonance frequencies of aluminium alloy bending vibrations
International Nuclear Information System (INIS)
Using ultrasonic method resonance frequencies of bending vibrations and elastic moduli of aluminium alloy SAV-1 samples are investigated. On the base of spectra of bending vibrations in low-frequency range data on values of a number of elastic properties are obtained as well as dispersion characteristics of main moduli for number of frequencies before and after ionizing irradiation (60Co, 5x103-1.6x107 Gy) of samples. Considerable stability of sample elastic moduli during common storage conditions and nonlinear dose dependence of these parameters within wide range of absorbed doses are pointed out. Possible causes of revealed effects of radiation modification of elastic properties of SAV-1 alloy are analyzed
BENDING-SHEAR INTERACTION OF LONGITUDINALLY STIFFENED GIRDERS
Beg, Darko; Sinur, Franc
2011-01-01
To understand behaviour of longitudinally stiffened plated girders subjected to high bending moments and shear forces, four tests on large scale test specimens were performed. The results of these tests were used to verify the numerical model, which was employed for further parametric studies. With a verified simplified numerical model a parametric nonlinear analysis was systematically carried out to determine the resistance of longitudinally stiffened plated girders. Based on 630 numerical s...
Bend loss in surface plasmon polariton band-gap structures
DEFF Research Database (Denmark)
Bozhevolnyi, S.I.; Volkov, V.S.; Leosson, Kristjan;
2001-01-01
Using near-field optical microscopy, we investigate propagation of surface plasmon polaritons (SPPs) excited in the wavelength range of 720-830 nm at a corrugated gold-film surface with areas of 200-nm-wide and 45-nm-high scatterers arranged in a 410-nm-period triangular lattice containing line...... the bend angle. We also demonstrate splitting and combining of two SPP line-defect modes in a 20-mum-long Y junction....
GFRP Bar: Determining Tensile Strength with Bending Test
Almerich Chulia, Ana Isabel; Fenollosa Forner, Ernesto Jesús; Cabrera Fausto, Ivan
2015-01-01
In order to obtain GFRP reinforcement bars it is necessary to undertake tests regulated code which require important mechanical tools. This paper presents a method which allows for determining GFRP rebars tensile strength value from their flexural strength value which has been obtained with a simple, inexpensive and reliable test. This method results will be verified by applying it to values obtained in a series of bending tests and comparing these results with values obtained in tensile test...
Problems with cryogenic operation of piezoelectric bending elements
Duffield, C. L.; Moreland, John; Fickett, F. R.
1986-05-01
Piezoelectric bimorphs constructed from lead titanate-zirconate (PZT) ceramic bonded to a brass sheet have been tested at cryogenic temperatures to determine their suitability for use in a low-temperature micropositioner. Experimental data are presented on bimorph sensitivity (displacement per volt) as a function of the number of temperature cycles. Results indicate that bimorphs of this type cannot be calibrated because of irreversible changes in the bending characteristics that occur while cycling from room temperature to 4 K.
Predicting the static bending behavior of pallets with panel decks
Mackes, Kurt H.
1998-01-01
With increased use of pallets constructed utilizing structural panel decks, there is a need for a standardized, reliability-based design system, PDS-PANEL, to assist in the design and manufacture of panel-deck pallets. The primary objective of this research was to develop finite element models which predict the static bending behavior of pallets with at least one panel deck. stringer and block pallets were modeled using plate elements to simulate deck behavior and were...
Analysis of the optical Viscometer utilizing bend lost of fiber
Czech Academy of Sciences Publication Activity Database
Fedorchenko, Alexander I.; Stachiv, Ivo
Perth : Technical Digest, 2010 - (Wlodarsky, W.; Faraone, L.; Kalantar-Zadeh, K.; Matthews, G.), s. 67-68 ISBN 978-1-74052-208-3. [International meeting on Chemical Sensors /13./ IMC -13. Perth (AU), 11.07.2010-14.07.2010] R&D Projects: GA AV ČR(CZ) IAA200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : viscosity * bend loss of the fibe * resonance Subject RIV: BK - Fluid Dynamics
Buoyancy, bending, and seismic visibility in deep slab stagnation
Bina, Craig R.; Kawakatsu, Hitoshi; Suetsugu, D.; Bina, C.; Inoue, T.; Wiens, D.; Jellinek, M.
2010-11-01
The petrological consequences of deep subhorizontal deflection ("stagnation") of subducting slabs should affect both apparent seismic velocity structures and slab morphology. We construct kinematic thermal models of stagnant slabs and perform thermodynamic modeling of the consequent perturbation of high-pressure phase transitions in mantle minerals, focusing upon Japan as our study area. We calculate associated thermo-petrological buoyancy forces and bending moments which (along with other factors such as viscosity variations and rollback dynamics) may contribute to slab deformation. We consider effects of variations in depth of stagnation, post-stagnation dip angle, phase transition sharpness, transition triplication due to multiple intersection of geotherms with phase boundaries, and potential persistence of metastable phases due to kinetic hindrance. We also estimate seismic velocity anomalies, as might be imaged by seismic tomography, and corresponding seismic velocity gradients, as might be imaged by receiver-function analysis. We find that buoyant bending moment gradients of petrological origin at the base of the transition zone may contribute to slab stagnation. Such buoyancy forces vary with the depth at which stagnation occurs, so that slabs may seek an equilibrium slab stagnation depth. Metastable phase bending moment gradients further enhance slab stagnation, but they thermally decay after ∱/4600•700 km of horizontal travel, potentially allowing stagnant slabs to descend into the lower mantle. Stagnant slabs superimpose zones of negative velocity gradient onto a depressed 660-km seismic discontinuity, affecting the seismological visibility of such features. Seismologically resolvable details should depend upon both stagnation depth and the nature of the imaging technique (travel-time tomography vs. boundary-interaction phases). While seismic tomography appears to yield images of stagnant slabs, discontinuity topography beneath Japan resolved by
Mathematical aspects of bending of plates with transverse shear deformation
International Nuclear Information System (INIS)
The boundary integral equation method is applied to investigate the existence and uniqueness of regular solutions of a two-dimensional theory of bending of plates with transverse shear deformation. The stress function technique is then used to obtain the general analytic solution of the equilibrium equations and to elucidate the physical meaning of the mathematical restrictions arising in the analysis of the model. (orig.)
Bending and Deformation of Sandwich Panels Due to Localized Pressure
Bambang K. Hadi; Fajar, A.
2005-01-01
Bending and deformation of sandwich panels due to localized pressure were analyzed using both Rayleigh-Ritz and finite element methods. The faces were made of laminated composite plates, while the core was a honeycomb material. Carbon fiber and glass fiber reinforced plastics were used for composite plate faces. In the case of Rayleigh-Ritz method, first the total energy of the system was calculated and then taking the variations of the total energy, the sandwich panel deflections could be co...
Strength of arch-shaped members in bending and shear
Campana, Stefano; Fernández Ruiz, Miguel; Muttoni, Aurelio
2014-01-01
Arch-shaped members are widely used for construction of tunnels, bridges, silos and shells. These members are not typically provided with transverse reinforcement and may thus have a brittle behaviour at failure. When subjected to bending or shear, traditional design methods used for straight members are not applicable due to deviation forces developing at the curved chords carrying compression and tension, which is not always accounted in design codes. In this paper, two experimental series ...
[On fatigue bending strength of PMMA-specimen (author's transl)].
Rojczyk, M; Rojczyk-Pflüger, J
1980-01-01
The fatigue response of PMMA-specimen was tested under cyclic bending of 1.5 Hz in a particularly designed testing device. Specimen were tested that a "Wöhler" curve and the corresponding fatigue strength could be evaluated. The fatigue strength was reached after a comparatively short time and ranged in the order of 33 per cent of static breaking strength. PMID:7447658
Bending and compressive behaviours of a new cement composite
P. Rossi; ARCA, A; PARANT, E; FAKHRI, P
2005-01-01
The Laboratoire Central des Ponts et Chaussées (LCPC) has recently developed and patented a new cement composite, the CEMTECmultiscale, which is stress hardening in tension and has a very high uniaxial tensile strength, more than 20 MPa. This paper is about the determination of the compressive and bending behaviors of the CEMTECmultiscale used in the frame of ribbed slabs. The principal results obtained are the following: - the characteristic modulus of rupture is equal to 42 MPa for the "sla...
Bending resistance of composite steel truss and concrete beam
Silva, Mickael; Piloto, P.A.G.; Roque, Sérgio; VILA REAL Paulo; Plizzari, Giovanni
2013-01-01
This study presents the numerical simulation of the bending resistance of CSTCB in stage 1 (element made only by the self-supported steel truss and base plate). Two different base plates were considered (Steel and Concrete) and two different types of steel trusses (Type I and II). The numerical results are also compared with analytical results, assuming the full interaction between steel truss and concrete, neglecting the tensile strength of concrete, considering the effective area of concret...
BENDING ANALYSIS OF COMPOSITE PLATES USING HIGHER ORDER THEORY
N UPENDRA; B. Sidda Reddy; K TIRUPATI REDDY; AJAY KUMAR REDDY K
2013-01-01
In this paper, an analytical formulation and solutions are developed to investigate the bending characteristics of laminated composite plates based on higher order shear deformation theory. The equation ofmotion of laminated plates is deduced using Hamilton’s principle. Closed-form solutions are obtained by using the Navier’s technique for simply supported boundary conditions. The effect of side to thickness ratio, aspect ratio, degree of orthotropic, stacking sequence ad no of layers on defl...
Wooden models of an AA quadrupole between bending magnets
1978-01-01
At two points in the AA lattice, a quadrupole (QDN, defocusing, narrow) was tightly wedged between two bending magnets (BST, short, wide). This picture of wooden models lets one imagine the strong interaction between their magnetic fields. There was no way one could calculate with the necessary accuracy the magnetic effects and their consequences for the machine optics. The necessary corrections were made after measurements with a circulating beam, in a tedious iterative procedure, with corrrection coils and shims.
Bending and Focusing with Plasmas and Crystals - Potential and Challenges
Zimmermann, F
2013-01-01
This talk review the potential of plasmas and crystals for focusing and bending high-energy charged particle beams. It covers topics like plasma lenses, plasma wigglers, plasma dipoles, crystal channeling & reflection, radiation in crystals, crystal accelerators, crystalline beams and ultimate limitations. Past, ongoing or required R&D efforts are highlighted. Invited presentation at EuCARD'13 "Visions for the Future of Particle Accelerators," CERN, 11 June 2013.
Bending instability in galactic discs. Advocacy of the linear theory
Rodionov, S A
2013-01-01
We demonstrate that in N-body simulations of isolated disc galaxies there is numerical vertical heating which slowly increases the vertical velocity dispersion and the disc thickness. Even for models with over a million particles in a disc, this heating can be significant. Such an effect is just the same as in numerical experiments by Sellwood (2013). We also show that in a stellar disc, outside a boxy/peanut bulge, if it presents, the saturation level of the bending instability is rather close to the value predicted by the linear theory. We pay attention to the fact that the bending instability develops and decays very fast, so it couldn't play any role in secular vertical heating. However the bending instability defines the minimal value of the ratio between the vertical and radial velocity dispersions $\\sigma_z / \\sigma_R \\approx 0.3$ (so indirectly the minimal thickness) which could have stellar discs in real galaxies. We demonstrate that observations confirm last statement.
Cylindrical Bending of Deformable Textile Rectangular Patch Antennas
Directory of Open Access Journals (Sweden)
Freek Boeykens
2012-01-01
Full Text Available Textile patch antennas are well known as basic components for wearable systems that allow communication between a human body and the external world. Due to their flexibility, textile antennas are subjected to bending when worn, causing a variation in resonance frequency and radiation pattern with respect to the flat state in which their nominal design is performed. Hence, it is important for textile antenna engineers to be able to predict these performance parameters as a function of the bending radius. Therefore, we propose a comprehensive analytical model that extends the cylindrical cavity model for conformal rigid patch antennas by incorporating the effects of patch stretching and substrate compression. It allows to predict the resonance frequency and the radiation pattern as a function of the bending radius. Its validity has been verified experimentally. Unlike previous contributions, which concerned only qualitative studies by means of measurements and numerical full-wave simulations, the proposed model offers advantages in terms of physical insight, accuracy, speed, and cost.
Stress intensity factors under combined bending and torsion moments
Institute of Scientific and Technical Information of China (English)
Al Emran ISMAIL; Ahmad Kamal ARIFFIN; Shahrum ABDULLAH; Mariyam Jameelah GHAZALI; Mohammed ABDULRAZZAQ; Ruslizam DAUD
2012-01-01
This paper discusses stress intensity factor (SIF) calculations for surface cracks in round bars subjected to combined torsion and bending loadings.Different crack aspect ratios,a/b,ranging from 0.0 to 1.2 and relative crack depths,a/D,ranging from 0.1 to 0.6 were considered.Since the loading was non-symmetrical for torsion loadings,a whole finite element model was constructed.Then,the individual and combined bending and torsion loadings were remotely applied to the model.The equivalent SIF method,F* EQ,was then used explicitly to combine the individual SIFs from the bending and torsion loadings.A comparison was then carried out with the combined SIE F* FE,obtained using the finite element analysis (FEA) under similar loadings.It was found that the equivalent SIF method successfully predicted the combined SIF for Mode (I).However,discrepancies between the results determined from the different approaches occurred when FⅢ was involved.It was also noted that the predicted F* FE using FEA was higher than the F* EQ predicted through the equivalent SIF method due to the difference in crack face interactions.
Effects of large bending deflections on blade flutter limits
Energy Technology Data Exchange (ETDEWEB)
Kallesoee, Bjarne Skovmose; Hartvig Hansen, Morten
2008-04-15
The coupling of bending and torsion due to large blade bending are assumed to have some effects of the flutter limits of wind turbines. In the present report, the aeroelastic blade model suggested by Kallesoee, which is similar to a second order model, is used to investigate the aeroelastic stability limits of the RWT blade with and without the effects of the large blade deflection. The investigation shows no significant change of the flutter limit on the rotor speed due to the blade deflection,whereas the first edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic simulations using HAWC2. This work is part of the UpWind project funded by the European Commission under the contract number SES6-CT-2005-019945 which is gratefully acknowledged. This report is the deliverable D2.3 of the UpWind project. (au)
Biomorphodynamic modelling of inner bank advance in migrating meander bends
Zen, Simone; Zolezzi, Guido; Toffolon, Marco; Gurnell, Angela M.
2016-07-01
We propose a bio-morphodynamic model at bend cross-sectional scale for the lateral migration of river meander bends, where the two banks can migrate separately as a result of the mutual interaction between river flow, sediments and riparian vegetation, particularly at the interface between the permanently wet channel and the advancing floodplain. The model combines a non-linear analytical model for the morphodynamic evolution of the channel bed, a quasi-1D model to account for flow unsteadiness, and an ecological model describing riparian vegetation dynamics. Simplified closures are included to estimate the feedbacks among vegetation, hydrodynamics and sediment transport, which affect the morphology of the river-floodplain system. Model tests reveal the fundamental role of riparian plants in generating bio-morphological patterns at the advancing floodplain margin. Importantly, they provide insight into the biophysical controls of the 'bar push' mechanism and into its role in the lateral migration of meander bends and in the temporal variations of the active channel width.
Bamboo Taper Effect on Third Point Loading Bending Test
Directory of Open Access Journals (Sweden)
Naresworo Nugroho
2013-06-01
Full Text Available Geometrical shape of bamboo usually assumed as tapered hollow pipe. This study proved that the dimensional changes along the bamboo stem significantly affected to its Modulus of Rupture (SR value which measured from third point loading bending test. Therefore if the bending test applied using third point loading configuration, the SR value should be adjusted by strength ratio of taper (Ct. Ct is theratio between (SR calculated in the center span and the maximum bending stress along the bamboo beam. This study resulted mathematical formulae to calculate the Ct value for overall range of bamboo taper based on six species namely Tali (Gigantochloa apus (Bl.Ex Schult.f Kurz, Hitam (Gigantochloa atroviolaceae Widjaja, Andong (Gigantochloa psedorundinaceae, Ampel (Bambusa vulgaris Schrad, Gombong (Gigantochloa verticillata (Willd Munro, and Mayan (Gigantochloa robusta Kurz. The first tree species were obtained from the Bogor market, while the others were harvested from bamboo clumps in Arboretum Bamboo – Bogor Agricultural University. Then the formula was applied to sketch the graphical style in order to simplify the result.
Bending-induced symmetry breaking of lithiation in germanium nanowires.
Gu, Meng; Yang, Hui; Perea, Daniel E; Zhang, Ji-Guang; Zhang, Sulin; Wang, Chong-Min
2014-08-13
From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending the GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion. PMID:25025296
Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires
Energy Technology Data Exchange (ETDEWEB)
Gu, Meng; Yang, Hui; Perea, Daniel E.; Zhang, Jiguang; Zhang, Sulin; Wang, Chong M.
2014-08-01
From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on one hand lithiation-generated stress mediates lithiation kinetics, and on the other electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.
A rotary piezoelectric actuator using longitudinal and bending hybrid transducer
Directory of Open Access Journals (Sweden)
Yingxiang Liu
2012-12-01
Full Text Available A rotary piezoelectric actuator using bolt-clamped type transducer with double driving feet is proposed in this study. The first-order longitudinal and fourth-order bending vibration modes are superimposed in the actuator to produce elliptical movements on the driving tips. Longitudinal PZT and bending PZT are clamped between the exponential shape horns and the flange by bolts. The vibration shape changes of the actuator are presented to give a clear explanation of its working principle. Several structural parameters of the exponential shape horn are selected and adjusted to accomplish the tuning process of the longitudinal and bending resonance frequencies. The input impedance and vibration characteristics are calculated by using FEM method; the gained results verify the feasibility of the proposed actuator. After the fabrication of a prototype, its vibration characteristics are measured by using a scanning laser Doppler vibrometer; the tested results are in good agreement with the FEM calculated results. The mechanical output performance experiments state that the prototype achieves a maximum speed of 129 r/min and a maximum torque of 1.5 Nm.
Bending light on demand by holographic sculpturing its wavefront
Latychevskaia, Tatiana
2015-01-01
A classical light beam propagates along a straight line and does not bend unless in a medium of variable refractive index. It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. Examples are optical lenses or Fresnel Zone Plates for focusing an incident wave to a point at the focal plane. Another example are Airy beams created by modifying the phase distribution of the wavefront into an Airy function resulting in a bending of the light intensity while propagating. A further example is holography, where the phase of the wavefront passing through a hologram is changed to mimic the object wavefront, thus providing the illusion that the original object is present in space. However, all these known techniques allow for limited light modifications: either focusing within a limited region in space2 or shaping a certain class of parametric curves along the optical axis or creating a bend in a quadratic-dependent declination as in the case of Airy ...
Modeling of a cracked beam section under bending
International Nuclear Information System (INIS)
Numerical simulations are widely used to study the dynamical behaviour of turbines cracked shaft as this event is rare and then doesn't enable to have an useful industrial feedback. A new method, which enables to calculate the constitutive law of a cracked beam subjected to bending was previously proposed. Based on three-dimensional computations taking into account the unilateral contact between both lips of the crack, it consists in defining a (non-linear) behaviour relation between the bending moment applied to the cracked section and the resulting field of displacements, compatible with the beam theory so that it can be used in rotor-dynamics software. The aim of this paper is to complete this first model by adding shear effects. For some crack geometries, a simpler model can be derived, based on the recognition that bending moments and shear forces are uncoupled and the dependence of the behaviour law with respect to the shear forces becomes linear. Developments have been achieved in this case and some results of the validation tests are shown. (authors)
A missing-bending-magnet scheme for PEP
International Nuclear Information System (INIS)
This article presents a missing-bending-magnet scheme for PEP as a modification that could be considered if PEP were available as a fully dedicated synchrotron radiation source. The scheme can be applied to one or more PEP sextants without changing the rest. By removing some bending magnets, rearranging the remaining magnets, and adding two quadrupoles, ten additional straight sections per sextant can be created, each 5 m or more in length, for insertion devices. Beam lines therefrom, plus possible beam lines from bending magnets would enter a continuous experimental hall instead of individual tunnels and halls for each beam line. This should result in construction cost savings and increased operations efficiency. The ideal beam orbit is unchanged at the two ends and the middle of the sextant. At the end of the curved part of the sextant the lattice functions match those of the long interaction region straight section in the low emittance configuration of PEP. The electron beam characteristics in the newly created straight sections are described, including the enlargement of the horizontal beam size due to the nonzero dispersion. Some disadvantages of the scheme are increased operations complexity due to the need for nine new quadrupole families, increased beam emittance (by 14.5% is one sextant is modified), and reduced dynamic aperture. However, the dynamic aperture is still about as large as the physical aperture and should be adequate for good beam lifetime and injection. (orig.)
Brightness of synchrotron radiation from undulators and bending magnets
International Nuclear Information System (INIS)
We consider the maximum of the Wigner distribution (WD) of synchrotron radiation (SR) fields as a possible definition of SR source brightness. Such figure of merit was originally introduced in the SR community by Kim. The brightness defined in this way is always positive and, in the geometrical optics limit, can be interpreted as maximum density of photon flux in phase space. For undulator and bending magnet radiation from a single electron, the WD function can be explicitly calculated. In the case of an electron beam with a finite emittance the brightness is given by the maximum of the convolution of a single electron WD function and the probability distribution of the electrons in phase space. In the particular case when both electron beam size and electron beam divergence dominate over the diffraction size and the diffraction angle, one can use a geometrical optics approach. However, there are intermediate regimes when only the electron beam size or the electron beam divergence dominate. In this asymptotic cases the geometrical optics approach is still applicable, and the brightness definition used here yields back once more the maximum photon flux density in phase space. In these intermediate regimes we find a significant numerical disagreement between exact calculations and the approximation for undulator brightness currently used in literature. We extend the WD formalism to a satisfactory theory for the brightness of a bending magnet. We find that in the intermediate regimes the usually accepted approximation for bending magnet brightness turns out to be inconsistent even parametrically.