Sample records for benactyzine

  1. Effects of benactyzine on action potentials and contractile force of guinea pig papillary muscles


    Aim:To explore the effects of benactyzine (BEN) on the action potential and contractile force in guinea pig papillary muscles.Methods:Conventional microelectrode technique was used to record the fast action potentials (FAP) and slow action potentials (SAP) of guinea pig papillary muscles.Results:Benactyzine 5,10,50 μmol·L-1 suppressed the maximal upstroke velocity (vmax) of FAP and contractile force (Fc) concentration-dependently while prolonged the action potential duration at 50%,90% repolarization (APD50,APD90) and effective refractory period (ERP) of FAP.The suppression on the vmax was frequency-dependent.Benactyzine 5,10,50μmol·L-1 lengthened the APD50,APD90 of SAP induced by isoprenaline or histamine when perfused with KCl 22 mmol·L-1 Tyrode's solution.The vmax of the SAP was not decreased by benactyzine 5,10 μmol·L-1 but by 50 μmol·L-1.The effects on the SAP were antagonized by elevation of the extracellular calcium from 2.0 to 5.6 mmol·L-1.The effects of benactyzine on SAP elicited by tetrodotoxin resembled that by isoprenaline or histamine except the more pronounced suppression on vmax and action potential amplitude (APA).The persistent rapid spontaneous activity and triggered tachyarrhythmia induced by ouabain were also abolished immediately by benactyzine 5 μmol·L-1.Conclusion:Benactyzine can inhibit Na+,K+,Ca2+ transmembrane movement and intracellular Ca2+ mobilization in the myocardium,and this may be the electrophysiological basis of its effects against experimental arrhythmias.

  2. Indikation und Anwendung psychotroper Arzneimittel unter besonderer Berücksichtigung der Benzodiazepine in der Stomatologie in der DDR von 1949-1990

    Mielke, Renate


    To summarise, it can be stated that many psychotropic substances or drugs were used in the field of dentistry in East Germany (GDR). During the 1950s the most commonly used psychotropic drugs used in dentistry in the GDR were herbal medizines, bromides, and bromid-urea derivatives, methyl pentinol Pentinol®), aconitine, caffeine, codeine, reserpine, numerous barbituric acid derivatives Lepinal® and Kalypnon®, the guaiacol glycerine ether Neuroton®, the benactyzine product Procalm®, the hydant...

  3. Therapy against organophosphate poisoning: The importance of anticholinergic drugs with antiglutamatergic properties

    Potent cholinesterase inhibitors (e.g., soman, sarin), induce a wide range of deleterious effects including convulsions, behavioral impairments and ultimately, death. Due to the likelihood of various scenarios of military or terrorist attacks by these and other chemical weapons, research has to be aimed at finding optimal therapies. Early accumulation of acetylcholine in synaptic clefts was suggested to trigger an array of toxic events including an excessive release of glutamate, culminating in the activation of its receptors. Stimulation of the N-Methyl-D-Aspartate (NMDA) subtype of these receptors was associated with the neuronal injury that initiates organophosphate-induced brain damage. The notion of a stepwise mechanism yielded treatments based on a combination of an immediate administration of enzyme reactivators and anticholinergic drugs. This strategy dramatically increased survival rates but did not abolish convulsions and failed to prevent the ensuing cognitive dysfunction. Efforts to improve this paradigm by adding anticonvulsants or antiglutamatergic drugs with anti-epileptic characteristics produced dubious results. Under these conditions, benactyzine and caramiphen, agents with anticholinergic and antiglutamatergic properties, provided improved protection when introduced as adjunct agents to oximes, reversible cholinesterase inhibitors and/or specific antimuscarinic drugs such as atropine. In contrast, the specific antimuscarinic drug scopolamine failed to block soman-induced changes in glutamatergic and behavioral parameters even when given prophylactically. These findings along with a large number of additional reports led towards the conclusion that the therapeutic advantage of drugs such as benactyzine and caramiphen could derive from their ability to modulate central cholinergic and glutamate neurotransmission

  4. Effects of organophosphorus anticholinesterase compounds on brain glucose and energy metabolism. Final summary report, 1 October 1981-29 February 1984

    Medina, M.A.; Miller, A.L.


    The effects of Soman and paraoxon on cerebral metabolic rate (CMRg) and the levels of various metabolites in rate brain were investigated. In non-convulsing animals, 0.8 of the paraoxon LD50 and 0.5 of the Soman LD50 tended to lower CMRg. A higher dose of Soman, 0.8-0.95 of the LD50, resulted in convulsive seizures in some but not all of the animals. In convulsing rats the CMRg and lactate levels were elevated primarily in the cortex and thalamus/basal ganglia. Decreased ATP and glucose levels with an elevated CMRg and lactate concentration was observed in the cortex, suggesting that Soman may be uncoupling oxidative phosphorylation. Pretreatment with atropine prevented the behavioral manifestations and the elevated CMRg but not the hyperglycemia produced by an 0.8 LD50 dose of Soman. These results suggest that Soman-induced convulsions are similar to those produced by other central nervous system (CNS) excitatory agents in that only certain brain regions are affected. The use of atropine to block the CNS disturbances produced by Soman appears to be effective also does not result in the extensive depression of CMRg observed with TAB, a mixture of trimedoxime, atropine and benactyzine.