WorldWideScience

Sample records for beam extraction

  1. Beam Extraction and Transport

    CERN Document Server

    Kalvas, T.

    2013-12-16

    This chapter gives an introduction to low-energy beam transport systems, and discusses the typically used magnetostatic elements (solenoid, dipoles and quadrupoles) and electrostatic elements (einzel lens, dipoles and quadrupoles). The ion beam emittance, beam space-charge effects and the physics of ion source extraction are introduced. Typical computer codes for analysing and designing ion optical systems are mentioned, and the trajectory tracking method most often used for extraction simulations is described in more detail.

  2. MTN magnet for the SPS extracted beam.

    CERN Document Server

    CERN PhotoLab

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  3. Test~of~Beam~Extraction~by~Crystal~Channeling~at~the~SPS: A First Step towards a LHC Extracted Beam

    CERN Multimedia

    2002-01-01

    % RD22 \\\\ \\\\ The availability of a beam extracted out of the LHC accelerator would open up very interesting possibilities for B-physics, in particular for the study of CP-violation. Channeling in bent crystals appears to be the most promising method to produce an extracted beam of intensity $\\sim$~10$^{8}$ p/sec. This would provide as many as 10$^{10}$ $ B \\bar{B} $ pairs per year of run, two orders of magnitude more than could be produced by an e$^+$e$^-$ B-factory with L~=~10$^{34}$ cm$^{-2}$s$^{-1}$ We propose a R\\&D program to study beam extraction at the CERN SPS, using a silicon bent crystal to be installed in the SPS beam pipe and placed next to the beam in such a way as to intercept the beam halo. Transverse excitation of the beam in presence of non-linearities will be used to create halo conditions similar to what are expected for LHC.

  4. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  5. Manufacture of electrostatic septum for extracting particle beam

    International Nuclear Information System (INIS)

    Tokumoto, Shuichi

    1979-01-01

    In the main ring of National Laboratory for High Energy Physics, fast and slow extractions of accelerated proton beam are carried out by using electrostatic septa. The electrostatic septum is an apparatus to deflect beam by an electrostatic field, basically composed of a couple of parallel plate electrodes installed in a vacuum chamber. The electrostatic septum is required to satisfy the following two conditions: it must be very thin and flat to reduce the loss of extracted beam, and sufficiently high electric field must be generated to deflect beam in a limited length. The structure and manufacture of electrostatic septa are described. The manufacturing is explained by dividing a septum into an anode and a cathode, terminals introducing high voltage, a vacuum chamber, and high voltage circuit. The performance is also described on the experiments for no-beam condition and beam extraction. Beam extraction has been carried out over 1500 hours thus far, the average beam intensity being 1 x 10 12 ppp, and extraction efficiency more than 90%. There have been no serious failure to affect the performance nor metal wire breakage. They have satisfied their purposes, being used for both fast and slow extractions. Presently, lengthening of the electrostatic field region is being planned to increase the length of the septa to 1.5 m per unit. (Wakatsuki, Y.)

  6. SPS Beam Steering for LHC Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Bartosik, Hannes [CERN; Cornelis, Karel [CERN; Norderhaug Drøsdal, Lene [CERN; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN; Papaphilippou, Yannis [CERN; Wenninger, Jorg [CERN

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.

  7. Negative ion beam extraction in ROBIN

    International Nuclear Information System (INIS)

    Bansal, Gourab; Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren; Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak

    2013-01-01

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10 12 cm −3 is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm 2 as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10 11 cm −3 has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated

  8. First beam extracted from the SSC

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    On the 25th July 1986 the first 2,8 μA 66 MeV proton beam was successfully extracted from the separated sector cyclotron (SSC) at the National Accelerator Centre at Faure, South Africa. The beam has now also been transported for the first time down the high-energy beamline up to the last Faraday cup in front of the neutron therapy vault. A brief description of the extraction system of the SSC, consisting of an electrostatic extraction channel and two septum magnets is given

  9. Beam dynamics prior to extraction in Kolkata superconducting cyclotron

    International Nuclear Information System (INIS)

    Paul, S.; Debnath, J.; Dey, M.K.; Mallik, C.; Bhandari, R.K.

    2011-01-01

    The Kolkata Superconducting Cyclotron has already accelerated test beams up to its extraction radius. Efforts are underway to extract the internal beam with the aid of the various extraction elements. A detailed study of the accelerated beams dynamics has been carried out to ensure that before extraction, optimum turn separation is achieved and the beam does not cross the harmful third order coupling resonance, while keeping distortions to a manageable levels. This paper discusses those results and the studies conducted. (author)

  10. CONTINOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE

    International Nuclear Information System (INIS)

    GLENN, J.W.; TSOUPAS, N.; BROWN, K.A.; BIRYUKOV, V.M.

    2001-01-01

    A method to split off a few percent of the 6 x 10 13 AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given

  11. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  12. Extraction and beam transfer for the SHiP facility

    CERN Document Server

    Goddard, Brennan; Borburgh, Jan; Balhan, Bruno; Le Godec, Gilles; Zerlauth, Markus; Tommasini, Davide; Kain, Verena; Cornelis, Karel; Wenninger, Jorg; Jensen, Lars; Todd, Benjamin; Bauche, Jeremie; Puccio, Bruno

    2015-01-01

    This document summarises the key feasibility issues associated with the SPS extraction and beam transfer systems required for the SHiP facility. It describes the expected performance limits of the electrostatic septa, the expected beam losses during extraction and consequences, the design of the new beamline geometry and equipment systems and the expected extracted spill structure.

  13. Extracted-beam-detection system around synchrotron saturne

    International Nuclear Information System (INIS)

    Anne, Remy; Milleret, Gerard; Giuliani, Arlette; Lefol, Andre; Perret, Robert; Poupard, Joseph; Trogno, Andre; Van den Bossche, Maurice; N'Guyen Sieu Viet.

    1977-07-01

    The extracted-beam-detection system working around the synchrotron Saturne is presented. The whole system is composed of about forty multiwire chambers used for beam tuning and providing beams profiles. Optic beam parameters such as position, divergence, dimension, emittance can be easily measured, or calculated with a program running on a computer. They are working in large range intensity beams (10 2 to 5.10 11 p/cm 2 /s of protons, alpha particles, deutons, pions, tritons and electrons [fr

  14. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    International Nuclear Information System (INIS)

    Delferriere, O.; De Menezes, D.

    2004-01-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D + extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D + ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H + beam emittance will be compared with experimental measurements

  15. Shielding calculation of slow extracted beam facility at KEK proton synchrotron

    International Nuclear Information System (INIS)

    Hirabayashi, Hiromi; Katoh, Kazuaki

    1978-01-01

    The KEK proton synchrotron has two external beam lines, i.e. a fast extracted beam line for a bubble chamber and a slow extracted beam line for counter experiments. The maximum total intensity of the slow beam is estimated as 5 x 10 12 protons per sec. For beam losses along the line, shielding calculation was made, and on the basis of these results, adequacy of the current shielding construction plans was discussed. (Mori, K.)

  16. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  17. Analytical studies of plasma extraction electrodes and ion beam formation

    International Nuclear Information System (INIS)

    Hassan, A.; Elsaftawy, A.; Zakhary, S. G.

    2007-01-01

    In this work a theoretical and computational study on the space charge dominated beams extracted from a plasma ion source through a spherical and planer electrode is simulated and optimized. The influence of some electrode parameters: axial position, electrode diameter, material and shape; on ion current extracted from a plasma source; were investigated and compared. The optimum values and conditions of the curvature of the plasma boundary, angular divergence, perveance, and the extraction gap were optimized to extract a high quality beams. It has shown that for a planar electrode system there is usually a minimum for optimum perveance versus angular divergence at about ? 0.6 for corresponding aspect ratios. This was assured by experimental data. The appropriate spherical electrode system focus the beam to a minimum value located at a distance equal to the focal length of the spherical extraction electrode.

  18. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fracti...

  19. Beam optics of the AmPS extraction line

    International Nuclear Information System (INIS)

    Hoekstra, R.

    1991-01-01

    The design of the Amsterdam Pulse Stretcher includes a feasibility study of part of the extraction trajectory. The latter includes some proposed curves projected through the hall of the beam switch yard. Since extraction is performed in the north line of the ring and the connection to the trajectory of the spectrometers is planned in a trajectory parallel to the east line of the ring the curves contain bending magnets for bending 90 degrees either by only two magnets or by making use of ring bending magnets in the same way as the ring curves are constructed. The bending through 90 degrees has optimal imaging properties of a unit cell much the same as the curves in the ring. This one-to-one (or one-to-minus-one) property is intended to shift the known required beam dimensions stream upwards from a defined point in the trajectory of the spectrometers to be able to create the dimensions at this shifted point by means of a so called beam transformer, placed in between the extraction point and this position. This report deals with the further developments with respect to the extraction trajectory. (author). 5 refs.; 9 figs.; 3 tabs

  20. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    International Nuclear Information System (INIS)

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers

  1. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  2. Electron beam extraction from a HVPES

    International Nuclear Information System (INIS)

    Marghitu, S.; Cramariuc, R.; Nicolescu, I.; Niculescu, M.

    1996-01-01

    The results of the research concerning the extraction system of the fast electrons from a cold cathode high voltage glow discharge plasma electron source (HVPES) are presented. For using the electron beam in a more flexible way, that is changing the shape of the minimum cross-section, (or beam cross-over), of the beam in a sample S frontal plane, without perturbing the discharge parameters, some modifications to a reference internal geometry were tested. Finally, a geometry was found in which the discharge volume may be separated in two parts, one, 'a discharge space', filled with plasma and fast electrons and another, 'working space', occupied specially by the fast electron beam. In this new geometry the electrical discharge parameters, I d - discharge current, U d - discharge voltage, were the same as for the reference geometry. (authors)

  3. Some techniques to improve time structure of slow extracted beam

    International Nuclear Information System (INIS)

    Shoji, Y.; Sato, H.; Toyama, T.; Marutsuka, K.; Sueno, T.; Mikawa, K.; Ninomiya, S.; Yoshii, M.

    1992-01-01

    In order to improve the time structure of slow extracted beam spill for the KEK 12GeV PS, the spill control system has been upgraded by adding feed forward signal to feedback signal. Further, the wake field in the RF cavity has been cancelled by the beam bunch signal to reduce the re-bunch effect during extraction period. (author)

  4. Hollow beam formation in the extraction region of ECRIS

    International Nuclear Information System (INIS)

    Batygin, Y.; Goto, A.; Yano, Y.

    1995-01-01

    Beam optics in the extraction system of an ECR ion source (ECRIS) are examined both analytically and numerically, by taking nonlinear effect due to aberrations of einzel lens into account. It is shown that this effect can cause hollow beam formation. Simple analytical criteria to keep the good beam quality in the focusing system are given. (author)

  5. Calibration Measurements of the LHC Beam Dumping System Extraction Kicker Magnets

    CERN Document Server

    Uythoven, J; Ducimetière, L; Goddard, B; Gräwer, G; Olivieri, F; Pereira, L; Vossenberg, Eugène B

    2006-01-01

    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. They have been produced, tested and calibrated by measuring the integrated magnetic field and the magnet current at different beam energies. The calibration data have been analysed, and the critical parameters are compared with the specifications. Implications for the configuration, control and operation of the beam dumping system are discussed.

  6. Electron beam extraction from a HVPES

    Energy Technology Data Exchange (ETDEWEB)

    Marghitu, S; Cramariuc, R [Accelerators Laboratory, Institute of Physics and Technology for Radiation Devices, PO Box MG-06, R-76900 Bucharest (Romania); Nicolescu, I; Niculescu, M [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica, Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1997-12-31

    The results of the research concerning the extraction system of the fast electrons from a cold cathode high voltage glow discharge plasma electron source (HVPES) are presented. For using the electron beam in a more flexible way, that is changing the shape of the minimum cross-section, (or beam cross-over), of the beam in a sample S frontal plane, without perturbing the discharge parameters, some modifications to a reference internal geometry were tested. Finally, a geometry was found in which the discharge volume may be separated in two parts, one, `a discharge space`, filled with plasma and fast electrons and another, `working space`, occupied specially by the fast electron beam. In this new geometry the electrical discharge parameters, I{sub d} - discharge current, U{sub d} - discharge voltage, were the same as for the reference geometry. (authors) 5 refs., 4 figs., 3 tabs.

  7. Slaw extracted proton beam formation and monitoring for the ''QUARTZ'' setup

    International Nuclear Information System (INIS)

    Bushnin, Yu.B.; Gres', V.N.; Davydenko, Yu.P.

    1982-01-01

    The version of optical mode of the beam channel providing with simultaneous operating the experimental setups FODS and ''QUARTZ'' at consecutive usage of the slow extracted proton beam is reported. The ''QUARTZ'' setup beam diagnostics system comprises two subsystems: for measuring beam profile beam timing structure and beam intensity and operates in the beam extraction duration from 20 ns to few seconds at beam intensity from 10 10 to 5x10 12 protons/pulse. The ''QUARTZ'' setup represents a focusing crystal-diffraction spectrometer with 5-meter focal distance and Ge(Li) special construction detector. High efficiency target is applied in the setup. The ''QUARTZ'' setup is designed for studying exotic atoms produced by negative charged heavy particles (π, K, μ, P tilde) and atomic nuclei. Precise energy measurement of X ray transitions in such atoms is performed. For measuring beam geometric parameters 32-channel secondary emission chambers are used. As detector of beam intensity and timing structure of slow extracted beam the secondary emission chamber is employed. The principle circuit of current integrator is given. As data transmission line a 50-pair telephone cable is used. Information conversion into digital form and its subsequent processing is performed in the CAMAC system and the SM-3 computer. The proton beam full intensity measuring system provides with accuracy not worse than +-4.5% in the 10 10 -10 12 proton/sec range. The implemented optical mode of the beam channel and proton beam monitoring system permitted to begin fulfillment of the experimental program on the ''QUARTZ'' setup

  8. Electron beam extraction system with a ring radiation field

    International Nuclear Information System (INIS)

    Auslender, V.L.; Kuksanov, N.K.; Polyakov, V.A.; Salimov, R.A.; Chertok, I.L.

    1979-01-01

    Description and results of testings of two electron beam extraction systems for shaping of a circular irradiation field are given. One of the systems contains three 20 cm long outlet windows arranged at 120 deg angle with respect to each other. Tests at the ILU-6 accelerator have shown that the given system provides 150 mm zone irradiation from three sides. Beam utilization factor when irradiating three 40 mm dia tubes amounted to 35% which provides capacity of 2.5 txMrad/h at 20 kW beam power. The other extraction system includes two C-form magnets producing nonuniform and opposing magnetic fields. This system tests at the EhLV-2 accelerator have shown that at 0.8-1.5 MeV electron energy it is possible to irradiate of 60 and 100 mm dia objects, accordingly. The system may be used together with both constant-action and pulse-action accelerators having extraction with linear scanning [ru

  9. Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Oguri

    2005-06-01

    Full Text Available High-current Cu^{+} ion beams were extracted from a laser-produced plasma using a pulsed high-voltage multiaperture diode driven by an induction cavity. The amplitude and the duration of the extraction voltage were 130 kV and 450 ns, respectively. During the extraction, explosive beam divergence due to the strong space-charge force was suppressed by the focusing action of the gap between concentric hemispheres. Modulation of the extracted beam flux due to the plasma prefill in the gap has been eliminated by using a biased control grid put on the anode holes. By means of this extraction scheme we obtained a rectangular beam pulse with a rise time as short as ≈100  ns. The beam current behind the cathode was limited to ≈0.1   A, owing to space-charge effects, as well as to poor geometrical transmission through the cathode sphere. From the measurement of the extracted beam current density distribution along the beam axis and the beam profile measurement, we found a beam waist slightly downstream of the spherical center of the diode structure. The measured beam behavior was consistent with numerical results obtained via a 3D particle code. No serious degradation of the beam emittance was observed for the grid-controlled extraction scheme.

  10. Microcontroller based two axis microtron beam extraction system

    International Nuclear Information System (INIS)

    Ashoka, H.; Jathar, M.; Meshram, V.; Rao, Nageswara

    2009-01-01

    Microtron is an electron accelerator which is used to accelerate the electron beam. The Microtron consists of electro magnet with two poles separated by yoke for completion of path for magnetic flux lines. A compact Microtron capable of accelerating electrons up to 12 MeV has been developed in RRCAT. The beam from the Microtron has to be extracted from various orbits depending upon the user requirement (X-Y stage is built with an accuracy of 100 μm). This paper describes the design and development of microcontroller based two axis beam extraction system for Microtron, with a resolution of 50 μm to position the extraction tube with respect to selected orbit. Two axis motion controller is developed using current controlled micro-stepping driver mechanism, which uses Bipolar Chopper Drive for driving stepper motors. Each phase has 2A continuous driving capability. The system is provided with user selectable controls like speed, steps, direction, and mode. This system is provided with RS-232 interface, to accept commands from PC. This system also has local keyboard and LCD interface to use in Stand-alone mode (local Mode). (author)

  11. A feasibility study of H{sup -} beam extraction technique using YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Hasegawa, Kazuo; Ikeda, Yujiro; Oigawa, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aoki, Nobutada [Toshiba Power System Co., Ltd. (Japan); Nakagawa, Satoshi [Toshiba Co., Tokyo (Japan)

    2002-12-01

    Under a framework of JAERI-KEK joint project of high intensity proton accelerator, as for research and develop of the accelerator driven nuclear transmutation of the long lived radioactive nuclide, it is planed to built the Transmutation Physics Experiment Facility (TEF-P) and the Transmutation Engineering Experiment Facility (TEF-E). The TEF-P is used for the experiments for subcritical system coupled with a spallation neutron target bombarded with 600-MeV proton beam accelerated by the LINAC. To limit the maximum thermal power less than 500 W at the TEF-P, an incident beam power should be less than 10 W. On the contrary, at the TEF-E, high power beam of 200 kW is requested. Both high and low power beams are demanded for the transmutation facilities. It is difficult to deliver a low power beam to the TEF-P. Conventional beam extraction technique with a thin foil, is not desirable because the scattering of the beam at the foil requires the massive shield. Therefore, we study a new technique to extract a small portion of the beam precisely from the high intensity beam by using a laser beam. By a laser beam, H{sup -} in the beam from LINAC is partially changed to H{sup 0} beam so that a low current H{sup 0} beam can be obtained. As the cross section of the charge exchange reaction for H{sup -} ions has a peak around at a wave length of 1 {mu}m for photons, YAG laser is suitable for this charge exchange because of its 1.06 {mu}m wave length. It is derived that 10 W beam for 600-MeV proton can be extracted by the YAG laser with power of 2 J for each pulse of 25 Hz. By this technique, the pulse width for the extracted beam can be controlled by changing the time width of laser irradiation. When a charge exchanger having the beam collide point existing in straight section, a background beam current of projectile, however, will be increased due to the interaction with the residual gas in the beam duct. Thus, a charge exchanger is devised having the beam collide point in a

  12. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' AccelerateurLineaire (LAL), Universite Paris SudOrsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Kovalenko, A.D.; Taratin, A.M. [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2017-03-11

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  13. Studies on beam extraction from the 1 GeV proton accumulator ring

    International Nuclear Information System (INIS)

    Goyal, Pradeep Kumar; Sharma, Amalendu; Kumar, Vinit; Ghodke, A.D.

    2015-01-01

    For the proposed Indian Spallation Neutron Source (ISNS), a 1 GeV proton Accumulator Ring (AR) is presently being designed at RRCAT. Two optics configurations of AR, namely FODO and Hybrid lattices are under consideration. Each lattice configuration has four superperiods. In this paper, preliminary studies on beam extraction from AR are presented for both the optics configurations. The extraction system will be accommodated in one of the long dispersion free straight sections. Bunch length of the proton beam in AR is 700 ns, and the revolution time of the bunch in AR is 1 ms. This leaves a gap of ∼300 ns for bunch extraction. The proton bunch will be extracted to Ring to Target Beam Transport (RTBT) line, with the help of fast kicker and septum magnets. In this paper, we present the details of the beam extraction scheme with suitable number of kicker magnets, and find out their optimal location and strength. Estimation of field error tolerances for kicker magnets is also presented. (author)

  14. Frequency response of slow beam extraction process

    International Nuclear Information System (INIS)

    Toyama, Takeshi; Sato, Hikaru; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    A servo control system has been incorporated into the practical slow extraction system in order to stabilize the spill structure less than a few kHz. Frequency responses of the components of the servo-spill control system and the open-loop frequency response were measured. The beam transfer function of the slow extraction process was derived from the measured data and approximated using a simple function. This is utilized to improve the performance of the servo-loop. (author)

  15. Low-energy ion beam extraction and transport: Experiment--computer comparison

    International Nuclear Information System (INIS)

    Spaedtke, P.; Brown, I.; Fojas, P.

    1994-01-01

    Ion beam formation at low energy (∼1 keV or so) is more difficult to accomplish than at high energy because of beam blowup by space-charge forces in the uncompensated region within the extractor, an effect which is yet more pronounced for heavy ions and for high beam current density. For the same reasons, the extracted ion beam is more strongly subject to space charge blowup than higher energy beams if it is not space-charge neutralized to a high degree. A version of vacuum arc ion source with an extractor that produces low-energy metal ion beams at relatively high current (∼0.5--10 kV at up to ∼100 mA) using a multi-aperture, accel--decel extractor configuration has been created. The experimentally observed beam extraction characteristics of this source is compared with those predicted using the AXCEL-INP code, and the implied downstream beam transport with theoretical expectations. It is concluded that the low-energy extractor performance is in reasonable agreement with the code, and that good downstream space charge neutralization is obtained. Here, the code and the experimental results are described, and the features that contribute to good low-energy performance are discussed

  16. Abnormally large energy spread of electron beams extracted from plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1976-07-01

    Intense electron beams extracted from DUOPLASMATRON-plasma cathodes show a high degree of modulation in intensity and an abnormally large energy spread; these facts cannot be explained simply by the temperature of the plasma electrons and the discharge structure. However, an analysis of the discharge stability behaviour and the interaction of source- and extracted beam-plasma leads to an explanation for the observed effects.

  17. High-intensity positive beams extracted from a compact double-chamber ion source

    International Nuclear Information System (INIS)

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-01-01

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission

  18. Proposal for Efficiency Improvement of Beam Extraction from the AIC-l44 Beam Formation During Its Acceleration

    International Nuclear Information System (INIS)

    Schwabe, J.; Godunowa, H.

    1998-10-01

    The computer simulations of the beam dynamics both in the radial and vertical phase planes for the AIC-144 cyclotron are presented. The calculation results show how it is possible to improve the beam extraction efficiency

  19. The effect of space charge force on beams extracted from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1989-01-01

    A new 3 dimensional ray tracing code BEAM-3D, with a simple model to calculate the space charge force of multiple ion species, is under development and serves as a theoretical tool to study the ECRIS beam formation. Excellent agreement between the BEAM-3D calculations and beam profile and emittance measurements of the total extracted helium 1+ beam from the RTECR ion source was obtained when a low degree of beam neutralization was assumed in the calculations. The experimental evidence indicates that the positive space charge effects dominate the early RTECR ion source beam formation and beamline optics matching process. A review of important beam characteristics is made, including a conceptual model for the space charge beam blow up. Better beam transport through the RTECR beamline analysis magnet has resulted after an extraction geometry modification in which the space charge force was more correctly matched. This work involved the development of an online beam characteristic measuring apparatus which will also be described

  20. Fast beam cut-off method in RF-knockout extraction for spot-scanning

    CERN Document Server

    Furukawa, T

    2002-01-01

    An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 mu s from 700 mu s by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.

  1. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  2. First results from negative ion beam extraction in ROBIN in surface mode

    Science.gov (United States)

    Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.

    2017-08-01

    ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the

  3. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  4. Simulation of the CERN GTS-LHC ECR ion source extraction system with lead and argon ion beams

    CERN Document Server

    Toivanen, V; Küchler, D; Lombardi, A; Scrivens, R; Stafford-Haworth, J

    2014-01-01

    A comprehensive study of beam formation and beam transport has been initiated in order to improve the performance of the CERN heavy ion injector, Linac3. As part of this study, the ion beam extraction system of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance Ion Source (ECRIS) has been modelled with the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The model is used to investigate the performance of the current extraction system and provides a basis for possible future improvements. In addition, the extraction simulation provides a more realistic representation of the initial beam properties for the beam transport simulations, which aim to identify the performance bottle necks along the Linac3 low energy beam transport. The results of beam extraction simulations with Pb and Ar ion beams from the GTS-LHC will be presented and compared with experimental observations.

  5. Extractable proteins from electron beam (EB) irradiated natural rubber (NR) latex

    International Nuclear Information System (INIS)

    Feroza Akhtar; Fumio Yoshii; Keizo Makuuchi

    1996-01-01

    The protein assay of natural rubber latex (NRL) vulcanized by low energy electron beam (EB, 300 keV, 30 mA) has been carried out using Bicinchoninic acid (BCA) reagent. Extractable protein in irradiated latex film was determined by measuring the absorption of colored solution at 562 nm using UV spectrometer. The effect of various radiation doses on the extractable protein content of NRL was investigated. It was ,found that the quantities of extractable protein increases with radiation dose. When compared with ,gamma-ray irradiated samples the same trend was observed. Electron beam irradiated latex films are leached in 1% (ammonia water for various lengths of time. From the results it was established that within 2 hours of leaching in ammonia water most of the extractable protein (96%) were removed from rubber film

  6. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    International Nuclear Information System (INIS)

    Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.

    2008-01-01

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be ∼70 π mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was ∼25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data

  7. Beam Extraction for 1-MV Electrostatic Accelerator at the 300 kV Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Seoul (Korea, Republic of); Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. A beam extraction experiment for the test stand was performed, and the beam current was measured using a faraday cup in the chamber. A beam extraction results for the RF ion source will be presented. Beam extraction from the RF ion source of the test stand is verified by measuring the beam current with a faraday cup in the chamber. Thus far NI Labview, PLC and faraday cup have been used to measure the beam current. The OPC server is useful for monitoring the PLC values. The average beam current of (a), (b) and (c) shown in figure 2 are 110.241µA, 105.8597µA and 103.5278µA respectively.

  8. The beam slow extraction from a magnetic ring of Moscow meson facility

    International Nuclear Information System (INIS)

    Gusev, O.A.; Malitsky, N.D.; Severgin, Yu.P.; Titov, V.A.; Shukeilo, I.A.; Aseev, V.N.; Grachev, M.I.; Lobashev, V.M.; Ostroumov, P.N.; Ponomaryov, O.V.

    1990-01-01

    The beam slow extraction from the circular accelerators or stretcher rings is generally realized by the resonant excitation of betratron oscillations. A precise betatron frequency control is proved to be quite necessary for high-efficient slow ejection. The Coulomb field turns out to have a significant influence upon the slow extraction from the high-current medium energy proton storage rings. It prevents resonant excitation at a reasonable rate and reduces the ejection efficiency. The proton storage ring of Moscow meson facility is an example of a stretcher with a noticeable beam space charge. The detailed investigation of the resonant ejection, having been performed for our stretcher, resulted in the conclusion that extracted beam average current should be limited by the value of 50 mA, which is only 10% of the linac design current. The search for the alternative version to the resonant ejection made us to analyze in details and to develop an old-fashioned method, based on the radial betatron oscillation excitation while the beam is being gradually shifted onto the thin target. (author) 5 refs., 4 figs

  9. Concept for ELENA Extraction and Beam Transfer Elements

    CERN Document Server

    Borburgh, J; Balhan, B; Barna, D; Bartmann, W; Fowler, T; Pricop, V; Sermeus, L; Vanbavinckhove, G

    2013-01-01

    In 2011 the ELENA decelerator was approved as a CERN project. Initially one extraction was foreseen, which should use a kicker and a magnetic septum which can be recuperated from an earlier installation. Since then a second extraction has been approved and a new solution was studied using only electric fields to extract the beam. This will be achieved by fast pulsing a separator, allowing single-bunch but also a full single-turn extraction from ELENA towards the experiments. The extraction and transfer requirements of ELENA are described, followed by the principal differences between the magnetic and electric field concepts. The design of electrostatic focussing and bending devices for the transfer lines will be presented. Finally the field quality which can be achieved with the separator and the concept of its power supply will be discussed.

  10. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  11. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    Science.gov (United States)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  12. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, H.

    2004-01-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j +ext , and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j +ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects

  13. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    International Nuclear Information System (INIS)

    Pandya, Kaushal; Bansal, Gourab; Soni, Jignesh

    2015-01-01

    ROBIN (Replica Of BATMAN source in India) is a replica of BATMAN source of IPP, Garching. Plasma production (inductively coupled, RF produced plasma), plasma diagnostic (langmuir probe, optical emission spectroscopy), negative ion beam extraction in volume mode with reduced extraction area of 2 cm 2 (4 apertures) using small bench top type power supply (10kV, 400mA), with increase extraction area of 73 cm 2 (146 apertures) and using actual power supplies (Extraction Power Supply System, EPSS (11kV, 35A), and Accelerator Power Supply System, APSS (35kV, 15A)) and beam diagnostic etc have been performed successfully in ROBIN. This paper will describe the details of the system upgradation for surface mode negative ion experiments and its performance in ROBIN

  14. Magnetic study of extraction elements of compact cyclotron beam with AGOR superconducting coils

    International Nuclear Information System (INIS)

    Gustafsson, S.

    1991-12-01

    The extraction system of the superconducting cyclotrons is normally making a large use of electric extractors followed by magnetostatic elements. The electric field limit initially hoped for (14 MV/m) has been shown to be too optimistic. A more realistic value is around 10 MV/m in the concerned geometries. The first element of the AGOR extraction system is an electrostatic channel where the maximum electric field is limited to 10.5 MV/m. The smaller separation between the internal beam and the extracted beam at the entrance of the first magnetic element is compensated by the replacement of the usual magnetostatic channels with high power electromagnetic channels placed in the reduced space close to the internal beam and where the horizontal position can be adjusted according to the kind of ion accelerated and its energy. The fringing field very close to the channels is controlled with the help of correction coils reducing the perturbations of the internal beam trajectories to an acceptable level

  15. Analysis for extraction and bunching of ion beam from spherical reflex triode

    International Nuclear Information System (INIS)

    Kawata, Shigeo; Abe, Takashi; Kasuya, Koichi; Niu, Keishiro.

    1978-11-01

    Since an ion beam is hoped to impinge on a target in a spherically symmetric way for inertial confinement fusion, an analysis is developed here for the intense ion beam which is extracted from a spherical reflex triode. The basic equations are the Poisson equation for the electric potential and the conservation equations of energies for the ion and electron velocities. According to the asymptotic solution, the extracted ion-beam-current density is proportional to the power of 3/2 of the voltage imposed on the triode. This dependence of the current density on the voltage is improved to be the power of 1.6 by the numerical analysis. A special time-dependence of the ion-beam power at the target surface is required for an optimal implosion of the target. Using the bunching theory for the ion beam, we derive numerically an optimal time-dependence of the voltage imposed on the triode. Asymptotic forms are also obtained analytically for the voltage. (author)

  16. Beam extraction control systems of the fast-cycling synchrotron

    International Nuclear Information System (INIS)

    Toumanian, A.; Zapolski, N.; Nickogosian, V.; Ananian, A.; Kazarian, A.; Khoetsian, M.; Agababian, A.; Matevosian, A.

    1992-01-01

    A compact system controlling the extraction of different beams (gamma, electron, synchrotron radiation) in single and simultaneous operation modes at high electromagnetic disturbances level based on using one computer of IBM PC/AT type is described. (author)

  17. Analysis of the servo-spill control for slow beam extraction

    International Nuclear Information System (INIS)

    Sato, Hikaru; Toyama, Takeshi; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    This report describes an analysis of servo-spill control system for the slow beam extraction from the KEK PS. Transfer function of extraction process is derived from measurement of the closed-loop characteristic using measured frequency response of each equipment. Result indicates the restriction of the present servo-spill control and give a guide line for the improvement. (author)

  18. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    International Nuclear Information System (INIS)

    Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2015-01-01

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described

  19. A new concept for the control of a slow-extracted beam in a line with rotational optics, 2

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    For pt.I see ibid., vol.430, p.512-22, 1999. The current trend in hadron therapy is towards high-precision, conformal scanning of tumours with a `pencil' beam of light ions or protons, delivered by a synchrotron using slow extraction. The particular shape of the slow- extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer- pi phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from `hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined p...

  20. A New Concept for the Control of a Slow-Extracted Beam in a Line with Rotational Optics, 2

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    The current trend in hadrontherapy is towards high-precision, conformal scanning of tumours with a 'pencil' beam of light ions, or protons, delivered by a synchrotron using slow-extraction. The particular shape of the slow-extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer-p phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from 'hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined phase-shifter and 'stepper', at a point close to ...

  1. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  2. A new concept for the control of a slow-extracted beam in a line with rotational optics: Part II

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    The current trend in hadrontherapy is towards high-precision, conformal scanning of tumours with a 'pencil' beam of light ions or protons, delivered by a synchrotron using slow extraction. The particular shape of the slow-extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer-pi phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from 'hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined phase shifter and 'stepper', at a point close to ...

  3. Studies for determining thermal ion extraction potential for aluminium plasma generated by electron beam evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V Dileep; Barnwal, Tripti A; Mukherjee, Jaya; Gantayet, L M, E-mail: dileepv@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2010-02-01

    For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.

  4. Extraction of a long-pulsed intense electron beam from a pulsed plasma based on hollow cathode discharge

    International Nuclear Information System (INIS)

    Uramoto, Johshin.

    1977-05-01

    An intense electron beam (up to 1.0 kV, 0.8 kA in 0.8 cm phi) is extracted along a uniform magnetic field with a long decay time (up to 2 msec) from a pulsed high density plasma source which is produced with a fast rise time (< 100 μsec) by a secondary discharge based on a dc hollow cathode discharge. Through a back stream of ionized ions from a beam-extracting anode region where a neutral gas is fed, a space charge limit of the electron beam is so reduced that the beam current is determined by an initially injected electron flux and concentrated in a central aperture of the extracting anode. Moreover, the beam pulse width is much extended by the neutral gas feed into the anode space. (auth.)

  5. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D. [CERN, 1211 Geneva 23 (Switzerland); Midttun, Ø. [University of Oslo, P.O. Box 1048, 0316 Oslo (Norway); CERN, 1211 Geneva 23 (Switzerland); Valerio-Lizarraga, C. A. [Departamento de Investigación en Fisica, Universidad de Sonora, Hermosillo (Mexico); CERN, 1211 Geneva 23 (Switzerland)

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  6. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  7. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    -ECR plasma source [3] with transversal magnetic filter for electron temperature control. 12 ECR plasma cells are placed 7.5 cm apart on the top of a cubic chamber 40x40x40 cm3. Each cell can be controlled independently by tuning the injected microwave power. The discharge is operated at pressures below 1 m......Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...

  8. Computer simulation of 2-D and 3-D ion beam extraction and acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Shunji; Nakajima, Yuji [Saitama Univ., Urawa (Japan). Faculty of Engineering

    1997-03-01

    The two-dimensional code and the three-dimensional code have been developed to study the physical features of the ion beams in the extraction and acceleration stages. By using the two-dimensional code, the design of first electrode(plasma grid) is examined in regard to the beam divergence. In the computational studies by using the three-dimensional code, the axis-off model of ion beam is investigated. It is found that the deflection angle of ion beam is proportional to the gap displacement of the electrodes. (author)

  9. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q ext and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes

  10. DESIGN OF BEAM-EXTRACTION SEPTUM MAGNET FOR THE SNS

    International Nuclear Information System (INIS)

    TSOUPAS, N.; LEE, Y.Y.; RANK, J.; TUOZZOLO, J.

    2001-01-01

    The beam-extraction process from the SNS accumulator ring [1,2] requires a Lambertson septum magnet. In this paper we discuss the geometrical and magnetic field requirements of the magnet and present results obtained from two and three dimensional magnetic field calculations that shows the field quality in the regions of interest of the septum magnet

  11. Design of the extraction arc for the 2nd beam line of the free-electron laser FLASH

    International Nuclear Information System (INIS)

    Scholz, Matthias

    2014-01-01

    In this thesis, I deal with the design of the extraction arc for the second beam line of FLASH, an FEL (Free-Electron Laser) user facility at DESY Hamburg. Both beam lines will use the same linear accelerator and their separation will take place behind the last accelerating module. I present the constraints for the extraction arc given by the beam line layout of the existing machine, by the building environment of the new beam line and in particular, by coherent synchrotron radiation (CSR). The impact from CSR is presented, and I show how to mitigate these effects and what that means for the beam line design. The optimization of the extraction arc was done applying the downhill simplex algorithm which is presented, first in its basic form to explain the operation principle and then in a more advanced version as used in the applied program. I introduce in this thesis the final layout of the extraction arc including the following matching section. This layout fulfills all given constraints and can provide the required electron beam quality for FEL operation. In order to prove this, I present start-to-end simulations for different bunch charges and for two different wavelengths.

  12. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  13. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed

  14. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  15. Improvements of the beam timing structure during a slow extraction from the 70 GeV IFVE accelerator

    International Nuclear Information System (INIS)

    Vorob'ev, V.K.; Levin, A.V.; Mojzhes, L.L.; Myznikov, K.P.; Tatarenko, V.M.; Fedotov, Yu.S.

    1977-01-01

    To improve the density uniformity of an extracted beam in the slow extraction system of the IFVE accelerator a correlation analysis of a timing structure of a proton beam is developed. A passive filter for a power supply system of an annular electromagnet is reconstructed by introduction of a double-loop circuit to reduce pulsations of 600 Hz main frequency and higher harmonics. To suppress accelerator field pulsations of subharmonic components from 50 to 300 Hz an active filter was introduced, where high Q qualities band filters were inserted. Using the above methods of pulsation suppression permits to improve the density uniformity of the extracted beam

  16. Improved Light Extraction Efficiency by Photonic Crystal Arrays on Transparent Contact Layer Using Focused Ion Beams

    International Nuclear Information System (INIS)

    Wu, G.M.; Tsai, B.H.; Kung, S.F.; Wu, C.F.

    2011-01-01

    Nitride-based thin-film materials have become increasingly important for the high brightness light-emitting diode applications. The improvements in light extraction and lower power consumption are highly desired. Although the internal quantum efficiency of GaN-based LED has been relatively high, only a small fraction of light can be extracted. In this study, a new design of two-dimensional photonic crystal array has been prepared on the top transparent contact layer of indium-tin oxide film to improve the light extraction efficiency using focused ion beam. The acceleration voltage of the Ga dual-beam nanotechnology system SMI 3050 was 30 kV and the ion beam current was 100 pA. The cylindrical air holes had the diameter of 150 nm and depth of 100 nm. The micro photoluminescence analysis results showed that the light output intensity could be 1.5 times of that of the non-patterned control sample. In addition, the structural damage from the focused ion beam drilling of GaN step could be eliminated. The excellent I-V characteristics have been maintained, and the external light extraction efficiency would be still improved for the LED devices. (author)

  17. Beam, multi-beam and broad beam production with COMIC devices

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Peaucelle, C.

    2012-01-01

    The COMIC discharge cavity is a very versatile technology. We will present new results and devices that match new applications like: molecular beams, ultra compact beam line for detectors calibrations, quartz source for on-line application, high voltage platform source, sputtering /assistance broad beams and finally, a quite new use, high energy multi-beam production for surface material modifications. In more details, we will show that the tiny discharge of COMIC can mainly produce molecular ions (H 3+ ). We will present the preliminary operation of the fully quartz ISOLDE COMIC version, in collaboration with IPN Lyon, we will present a first approach for a slit extraction version of a three cavity device, and after discussing about various extraction systems on the multi discharge device (41 cavities) we will show the low energy broad beam (2 KV) and high energy multi-beams (10 beams up to 30 KV) productions. We will specially present the different extraction systems adapted to each application and the beams characteristics which are strongly dependent on the voltage distribution of an accel-accel two electrodes extraction system. The paper is followed by the slides of the presentation. (authors)

  18. A study on effective extraction of isoflavones from soy germ using the electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Hoon [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongup-si, 580-185 Jeollabuk-do (Korea, Republic of); Choi, Tae Beom [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongup-si, 580-185 Jeollabuk-do (Korea, Republic of); Department of Chemistry, Dongguk University, 3 Pildong, Chunggu, Seoul 100-715 (Korea, Republic of); Kim, Sang Wook [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongup-si, 580-185 Jeollabuk-do (Korea, Republic of)], E-mail: swkim@kaeri.re.kr; Hur, Min Goo; Yang, Seung Dae [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongup-si, 580-185 Jeollabuk-do (Korea, Republic of); Yu, Kook Hyun [Department of Chemistry, Dongguk University, 3 Pildong, Chunggu, Seoul 100-715 (Korea, Republic of)], E-mail: yukook@dongguk.edu

    2009-07-15

    Soy germ was irradiated with 2 MeV electron beam with different doses ranging from 1 to 20 kGy. The amount of isoflavones from irradiated soy germ was compared with those from natural soy germ by extracting with ethanol and methanol. The changed amounts of isoflavones were measured by high-performance liquid chromatography with standard calibration curve. Each extract of soy germ was quantified for antioxidant activity with 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging method. The amount of isoflavones was found to be increased after electron-beam irradiation. Particularly ethanol extract with 15 kGy irradiated soy germ contained the maximum amount of isoflavones. Antioxidant activity of irradiated soy germ was higher than that of natural soy germ.

  19. Development of a high-current ion source with slit beam extraction for neutral beam injector of VEST

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Bong-ki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr; An, Young-Hwa; Park, Jong-Yoon; Hwang, Y.S.

    2015-10-15

    Highlights: • A high-current ion source is developed for NBI system of VEST. • A cold-cathode electron gun is employed to produce primary electrons. • A hemi-cylindrical discharge chamber with cusp magnetic field is used. • Plasma density is measured to be 2 × 10{sup 18} m{sup −3} near the extraction aperture. • NBI power of 90 kW with beam energy of 20 keV is expected to be achieved. - Abstract: A high-current pulsed ion source has been developed for the neutral beam injector of the VEST (Versatile Experiment Spherical Torus) to accommodate high-beta fusion plasma experiments. The ion source consists of two parts: an electron gun for supplying sufficient primary electrons by cold-cathode arc discharge and a hemi-cylindrical discharge chamber where uniform, high-density plasma generated by the primary electrons is confined by multi-cusp magnetic field. A pulse forming network is also developed to drive high current of ∼1 kA to sustain the cold-cathode discharge in the electron gun up to 10 ms. Diagnostics with a triple probe in the discharge chamber shows that a hydrogen plasma whose density is as high as 1 × 10{sup 18} m{sup −3} can be obtained near extraction slits at the gas pressure lower than 0.5 Pa. This value is estimated to be sufficient to deposit a heating power of 90 kW to the VEST plasma when the appropriate extraction through slits with 20 cm{sup 2} in area and acceleration of ion beams up to 20 kV are fulfilled.

  20. Optics measurements and transfer line matching for the SPS injection of the CERN Multi-Turn Extraction beam

    CERN Document Server

    Benedetto, E; Cettour Cave, S; Follin, F; Gilardoni, S; Giovannozzi, M; Roncarolo, F

    2010-01-01

    Dispersion and beam optics measurements were carried out in the transfer line between the CERN PS and SPS for the new Multi-Turn Extraction beam. Since the extraction conditions of the four islands and the core are different and strongly dependent on the non-linear effects used to split the beam in the transverse plane, a special care was taken during the measurement campaigns. Furthermore, an appropriate strategy was devised to minimize the overall optical mismatch at SPS injection. All this led to a new optical configuration that will be presented in the paper.

  1. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Wee, D.; Parish, G.; Nener, B. [Microelectronics Research Group, The University of Western Australia, 35 Stirling Highway, 6009 Crawley (Perth) (Australia)

    2010-10-15

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys {sup registered} Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    International Nuclear Information System (INIS)

    Wee, D.; Parish, G.; Nener, B.

    2010-01-01

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys registered Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Smoothing of the Time Structure of Slowly Extracted Beam From Synchrotron by RF-Knock-out Method

    International Nuclear Information System (INIS)

    Voloshnyuk, A.V.; Bezshyjko, O.A.; Dolinskiy, A.V.; Dolinskij, A.V.

    2005-01-01

    Results of the study are presented in work on smoothing of the time structure of the bunch, slowly extracted from synchrotron. The numerical algorithm has been designed for study of the influence of the radio-frequency field of the resonator on time structure of the bunch. The numerical algorithm is based on method Monte-Carlo, where particles in the beam have been extracted by means of slow moving to the third-order resonance conditions. Characteristics of the time structure are vastly smoothed when synchrotron oscillations have been used as first experiments showed. Theoretical motivation of the reasons, influencing upon time structure of the slowly extracted beam is explained in given work

  4. Simulations of beam trajectory for position target optimization of extraction system output beams cyclotron proton Decy-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik

    2015-01-01

    Positioning and track simulation beam the cyclotron Decy-13 for laying optimization the target system have been done using lorentz force function and scilab 5.4.1 simulation. Magnetic field and electric field is calculated using Opera3D/Tosca as a simulation input. Used radio frequency is 77.66 MHz with the amplitude voltage is 40 kV is obtained energy 13 MeV. The result showed that the coordinates of the laying of the target system in a vacuum chamber is located at x = -389 mm and y = 445 mm with the width of the output beam is 10 mm. The laying stripper position for the output in center target is located at x = -76 mm and y =416 mm from the center coordinate on the center of dee with the energy of proton is 13 MeV at the point of beam extraction carbon foil. The changes position laying is carried out on range x = -70; y = 424 mm until x = - 118; y = 374 mm result for shifting area stripper which is still capable of deflection the electron beam. (author)

  5. Steel septum magnets for the LHC beam injection and extraction

    CERN Document Server

    Bidon, S; Guinand, M; Gyr, Marcel; Sassowsky, M; Weisse, E; Weterings, W; Abramov, A; Ivanenko, A I; Kolatcheva, E; Lapyguina, O; Ludmirsky, E; Mishina, N; Podlesny, P; Riabov, A; Tyurin, N

    2002-01-01

    The Large Hadron Collider (LHC) will be a superconducting accelerator and collider to be installed in the existing underground LEP ring tunnel at CERN. It will provide proton-proton collisions with a centre of mass energy of 14 TeV. The proton beams coming from the SPS will be injected into the LHC at 450 GeV by vertically deflecting kicker magnets and horizontally deflecting steel septum magnets (MSI). The proton beams will be dumped from the LHC with the help of two extraction systems comprising horizontally deflecting kicker magnets and vertically deflecting steel septum magnets (MSD). The MSI and MSD septa are laminated iron-dominated magnets using an all welded construction. The yokes are constructed from two different half cores, called coil core and septum core. The septum cores comprise circular holes for the circulating beams. This avoids the need for careful alignment of the usually wedge-shaped septum blades used in classical Lambertson magnets. The MSI and MSD septum magnets were designed and buil...

  6. A Beam Quality Monitor for LHC Beams in the SPS

    CERN Document Server

    Papotti, G

    2008-01-01

    The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. At the highest level the SPS-LHC synchronization and global beam structure are verified. If the specifications are not met, the beam should be dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this pape...

  7. Design of scan-horn and beam extraction window for a 3 MeV electron accelerator

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Acharya, S.; Puthran, G.P.; Majumder, R.; Mittal, K.C.; Mahendra Kumar; Sethi, R.C.

    2003-01-01

    A 3 MeV, 30 kW D.C. electron accelerator is being developed for installation at the Electron Beam Center at Khargar, Navi Mumbai to cater to industrial uses like cable irradiation. This paper describes the design of the scan horn and beam extraction window of this accelerator. (author)

  8. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Huschauer

    2017-06-01

    Full Text Available Following a successful commissioning period, the multiturn extraction (MTE at the CERN Proton Synchrotron (PS has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  9. The influence of coupled synchrotron-betatron resonances on the extracted beam of the stretcher ring ELSA

    International Nuclear Information System (INIS)

    Neckenig, M.

    1987-09-01

    For the correction of the chromaticity for horizontal and vertical direction each four sextupoles are installed in ELSA. At a working point near 14/3 their influence on the quantity of the stable region of the transverse phase space is essentially smaller than that of the extraction sextupoles. On the other hand the latter lie at positions of low dispersion so that their influence on the chromaticity is negligible; therefore chromaticity correction and choice of the stable phase-space region are not strongly mutually dependent which will be of advance for the later operation. In extraction with corrected chromaticity the electrons are extracted only because of their different position in the transverse phase space which leads to a timely alteration of the η coordinate and by this to a migration of the extracted beam. Consequences of this are the strongly against extraction without chromaticity correction increased emittance and the doubled momentum uncertainty of the beam. Of advance however is the high extraction efficiency of 80% and the small number of the electrons remaining in the ring (below 2%). (orig./HSI) [de

  10. Optimization of moderators and beam extraction at the ESS

    DEFF Research Database (Denmark)

    Holst Andersen, Ken; Bertelsen, Mads; Zanini, Luca

    2018-01-01

    A global approach coupling the moderator to the beam extraction system has been applied for the design optimization of the thermal and cold moderators of the European Spallation Source (ESS), which will be the brightest neutron source in the world for condensed-matter studies. The design is based...... on the recently developed high-brightness low-dimensional moderator concepts. Para-hydrogen is used for the cold neutron source, while thermal neutrons are provided by moderation in water. The overall moderation configuration was chosen in order to satisfy a range of requirements on bispectral extraction......, beamport configuration and instrument performance. All instruments are served by a single moderator assembly above the target, arranged in a `butterfly' geometry with a height of 3cm. This was determined to be the optimal height for trade-off between high brightness and efficient guide illumination...

  11. Microwave frequency dependence of the properties of the ion beam extracted from a CAPRICE type ECRIS

    International Nuclear Information System (INIS)

    Maimone, F.; Tinschert, K.; Spaedtke, P.; Maeder, J.; Rossbach, J.; Lang, R.; Celona, L.

    2012-01-01

    In order to improve the quality of ion beams extracted from ECR ion sources it is mandatory to better understand the relations between the plasma conditions and the beam properties. The present investigations concentrate on the analysis of different beam properties under the influence of various applications of frequency tuning and of multiple frequency heating. The changes in the microwave frequency feeding the plasma affect the electromagnetic field distribution and the dimension and position of the ECR surface inside the plasma chamber. This in turn has an influence on the generation of the extracted ion beam in terms of intensity, shape and emittance. In order to analyze the corresponding effects, measurements have been performed with the CAPRICE-Type ECRIS installed at the ECR Injector Setup (EIS) of GSI. The experimental setup uses a microwave sweep generator which feeds a TWTA (Traveling Wave Tube Amplifier) covering a wide frequency range from 12.5 to 16.5 GHz. This arrangement provides a precise determination of the frequencies and of the reflection coefficient along with the beam properties and it confirms again how the frequency and the corresponding electromagnetic field feeding the plasma affects the ECRIS performances. A sequence of viewing targets positioned inside the beam line monitors the beam shape evolution. The paper is followed by the associated poster

  12. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Capista, D. [Fermilab; Adams, P. [Fermilab; Morris, D. [Fermilab; Yang, M. J. [Fermilab; Hazewood, K. [Fermilab

    2016-10-03

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summer Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.

  13. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  14. Extraction of pulsed ion beams from an anode covered with liquid material

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yano, Syukuro

    1982-01-01

    In order to extend the life of anodes of pulsed ion diodes, a trial was made to extract ions from a plasma created by surface flashover on the oil-covered anode. The diode with this anode worked well as a so-called pinched electron beam diode. Production of proton beams of 10 kA with energies of about 400 keV was confirmed by measurements with biased ion collectors and those of prompt γ-rays from the reaction 19 F(p,γα) 16 O. Substantial reduction of damage and substantial extension of the life of the anode disc were realized. (author)

  15. Two-cascade push-pull synchrotron with 100% time duty factor of extracted beam

    International Nuclear Information System (INIS)

    Karabekov, I.P.

    1987-01-01

    Schemes of producing beams of electrons and gamma-quanta in energy range of several GeV using synchroton accelerating principle is suggested. Results of calculating basic parameters of suggested accelerator for 6 GeV energy and 40 μA current which prove the idea of its construction are presented. Two sections of particle input and impinge have been created in the accelerator. Particles in the ring are twice accelerated during the oscillation period of feed electromagnet variable component in opposite directions of orbit circulation. Extracted beam axes intersect in some point of the orbit plane. The mixing magnetic field, directing both beams along the common trajectory to the target is established in this point. In order to achieve 100% beam duty factor it is suggested to use the scheme of combining two magnetic tracks in electromagnet with fluxes, characterized by Π/2 phase shift

  16. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  17. Natural frequency extraction of a beam-moving mass system with periodic passages using its pseudo-natural frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Esmaeil; Keshmiri, Mehdi [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2016-07-15

    Wind turbines, helicopters, and turbo-machineries' rotary motion, along with a variety of nonlinear structures linearized with their periodic limit cycles, may all contain time-periodic terms in their equations of motion even if the equations remain linear. The purpose of this study is to model these systems into a beam-moving mass system. Natural frequencies of the beam are calculated using past work in which pseudo-natural frequencies of a beam-moving mass system were extracted, followed by the homotopy perturbation method. The findings of this study are valuable to the industry, and they decrease error margin in resonance range assessment. This approach indicates that for beam-moving mass systems, extraction of natural frequencies that ignore the moving mass effect can lead to inaccurate results, whereas only a limited amount of physical data are needed obtain accurate calculations. Furthermore, this study used homotopy perturbation for operational modal analysis purposes and not for solving nonlinear equations.

  18. The investigations of beam extraction and collimation at U-70 proton synchrotron of IHEP by using short silicon crystals

    CERN Document Server

    Afonine, A G; Biryukov, V M; Breese, M B H; Chepegin, V N; Chesnokov, Yu A; Drees, A; Fedotov, Y S; Guidi, V; Kotov, V I; Maisheev, V A; Martinelli, G; Scandale, Walter; Stefancich, M; Terekhov, V I; Trbojevic, D; Troyanov, E F; Vincenzi, D

    2002-01-01

    The new results of using short (2-4 mm) bent crystals for extraction and collimation of proton beam at IHEP 70 GeV proton synchrotron are reported. A broad range of energies from 6 to 65 GeV has been studied in the same crystal collimation set-up where earlier the extraction efficiency of 85% was obtained for 70 GeV protons using a 2-mm Si crystal. The new regime of extraction is applied now at the accelerator to deliver the beam for different experimental setups within the range of intensity 10E7-10E12ppp. (6 refs).

  19. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  20. Computer experiments on ion beam cooling and guiding in fair-wind gas cell and extraction RF-funnel system

    International Nuclear Information System (INIS)

    Varentsov, Victor; Wada, Michiharu

    2004-01-01

    Here we present results of the further development of two novel ideas in the field of slow RI-beams production. They are a fair-wind gas cell concept for big-size high-pressure buffer gas cells and a new approach to the extraction system. For this purpose, detailed gas dynamic simulations based on the solution of a full system of time-dependent Navier-Stokes equations have been performed for both the fair-wind gas cell of 500 mm length at 1 bar helium buffer gas pressure and the RF-funnel extraction system at low buffer gas pressure. The results of gas dynamic calculations were used for detailed microscopic Monte Carlo ion-beam trajectory simulations under the combined effect of the buffer gas flow and electric fields of the RF-funnels. The obtained results made it apparent that the use of the fair-wind gas cell concept and extraction RF-funnels look very promising for production of high-quality low-energy RI-beams

  1. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  2. Dual branch high voltage pulse generator for the beam extraction of the Large Hadron Collider

    CERN Document Server

    Bonthond, J; Ducimetière, L; Jansson, U; Vossenberg, Eugène B

    2002-01-01

    The LHC beam extraction kicker system, MKD, is composed of 15 fast kicker magnets per beam to extract the particles in one turn from the collider and to dispose them, after dilution, on an external absorber. Each magnet is powered by a separate pulse generator. The original single branch generator consisted of a discharge capacitor in series with a solid state closing switch left bracket 1 right bracket operating at 30 kV. In combination with a parallel freewheel diode stack this generator produced a current pulse of 2.7 mus rise time, 18.5 kA amplitude and about 1.8 ms fall time, of which only about 90 mus are needed to dump the beam. The freewheel diode circuit is equipped with a flat top current droop compensation network, consisting of a low voltage, low stray inductance, high current discharge capacitor. Extensive reliability studies have meanwhile suggested to further increase the operational safety of this crucial system by equipping each generator with two parallel branches. This paper presents the re...

  3. The Investigations Of Beam Extraction And Collimation At U-70 Proton Synchrotron Of IHEP By Using Short Silicon Crystals

    CERN Document Server

    Afonine, A.G.; Biryukov, V.M.; Chepegin, V.N.; Chesnokov, Y.A.; Fedotov, Y.S.; Kotov, V.I.; Maisheev, V.A.; Terekhov, V.I.; Troyanov, E.F.; Drees, A.; Trbojevic, D.; Scandale, W.; Breese, M.B.H.; Guidi, V.; Martinelli, G.; Stefancich, M.; Vincenzi, D.

    2002-01-01

    The new results of using short (2-4mm) bent crystals for extraction and collimation of proton beam at IHEP 70 Gev proton synchrotron are reported. A broad range of energies from 6 to 65 GeV has been studied in the same crystal collimation set-up. The efficiency of extraction more than 85% and intensity more than 10E12 were obtained by using crystal with the length 2-mm and the angle 1 mrad. The new regime of extraction is applied now at the accelerator to deliver the beam for different experimental setups within the range of intensity 10E7-10E12ppp.

  4. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Niu, Hongsen.

    1995-01-01

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T e ) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n e ) is in the range 10 8 --10 10 -cm at the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 near the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10 4 --10 5 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z 2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z 2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument

  5. Study of first harmonic field effects on beam extraction for VEC K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Dey, M.K.; Debnath, J.; Mallik, C.; Bhandari, R.K.

    2002-01-01

    In superconducting cyclotron large momentum compaction at extraction region makes the turn separation very small. The first harmonic effects on the He +1 beam using simulated magnetic field for VEC K500 cyclotron is reported

  6. ORIC Beam Energy Increase

    CERN Document Server

    Mallory, Merrit L; Dowling, Darryl; Hudson, Ed; Lord, Dick; Tatum, Alan

    2005-01-01

    The detection of and solution to a beam interference problem in the Oak Ridge Isochronous Cyclotron (ORIC) extraction system has yielded a 20% increase in the proton beam energy. The beam from ORIC was designed to be extracted before the nu r equal one resonance. Most cyclotrons extract after the nu r equal one resonance, thus getting more usage of the magnetic field for energy acceleration. We have now determined that the electrostatic deflector septum interferes with the last accelerated orbit in ORIC, with the highest extraction efficiency obtained near the maximum nu r value. This nu r provides a rotation in the betatron oscillation amplitude that is about the same length as the electrostatic septum thus allowing the beam to jump over the interference problem with the septum. With a thinned septum we were able to tune the beam through the nu r equal one resonance and achieve a 20% increase in beam energy. This nu r greater than one extraction method may be desirable for very high field cyclotrons since it...

  7. Intense-proton-beam transport through an insulator beam guide

    International Nuclear Information System (INIS)

    Hanamori, Susumu; Kawata, Shigeo; Kikuchi, Takashi; Fujita, Akira; Chiba, Yasunobu; Hikita, Taisuke; Kato, Shigeru

    1998-01-01

    In this paper we study intense-proton-beam transport through an insulator guide. In our previous papers (Jpn. J. Appl. Phys. 34 (1995) L520, Jpn. J. Appl. Phys. 35 (1996) L1127) we proposed a new system for intense-electron-beam transport using an insulator guide. In contrast to the electron beam, an intense-proton beam tends to generate a virtual anode, because of the large proton mass. The virtual anode formation at the initial stage is prevented by prefilled plasma in this system. During and after this, electrons are extracted from the plasma generated at the insulator surface by the proton beam space charge and expand over the transport area. The proton beam charge is effectively neutralized by the electrons. Consequently, the proton beam propagates efficiently through the insulator beam guide. The electron extraction is self-regulated by the net space charge of the proton beam. (author)

  8. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  9. Panofsky magnet for the beam extraction from the synchrotron using a fast Q-magnet and RF-knockout

    Science.gov (United States)

    Masubuchi, S.; Nakanishi, T.

    2011-12-01

    The fast control of the beam spill extracted from a synchrotron is a key function for the spot scanning irradiation in cancer therapy application. The authors propose an extraction method which uses the quadruple field of fast response, as well as the RF-knockout. A Panofsky magnet was developed as a quadruple magnet, with a frequency response of around 10 kHz. The Panofsky magnet has a rectangular beam aperture and plate coils attached to the pole face. A model magnet has been manufactured with ferrite, and static and dynamic magnetic fields were measured. From the measurement we observed that the effects of eddy current in the plate coils were large and the uniformity of the magnetic field gradient in the beam aperture was worse than ±5% with a plate thickness of 0.02 cm and a frequency of current of 10 kHz. For the future, in a detailed design the eddy current effects have to be taken into account.

  10. Bevalac extraction

    International Nuclear Information System (INIS)

    Kalnins, J.G.; Krebs, G.; Tekawa, M.; Cowles, D.; Byrne, T.

    1992-02-01

    This report will describe some of the general features of the Bevatron extraction system, primarily the dependence of the beam parameters and extraction magnet currents on the Bevalac field. The extraction magnets considered are: PFW, XPl, XP2, XS1, XS2, XM1, XM2, XM3, XQ3A and X03B. This study is based on 84 past tunes (from 1987 to the present) of various ions (p,He,O,Ne,Si,S,Ar,Ca,Ti,Fe,Nb,La,Au and U), for Bevalac fields from 1.749 to 12.575 kG, where all tunes included a complete set of beam line wire chamber pictures. The circulating beam intensity inside the Bevalac is measured with Beam Induction Electrodes (BIE) in the South Tangent Tank. The extracted beam intensity is usually measured with the Secondary Emission Monitor (SEM) in the F1-Box. For most of the tunes the extraction efficiency, as given by the SEM/BIE ratio, was not recorded in the MCR Log Book, but plotting the available Log Book data as a function of the Bevalac field, see Fig.9, we find that the extraction efficiency is typically between 30->60% with feedback spill

  11. Initial results from beam commissioning of the LHC beam dump system

    CERN Document Server

    Goddard, B; Carlier, E; Ducimetière, L; Gallet, E; Gyr, M; Jensen, L; Jones, R; Kain, V; Kramer, T; Lamont, M; Meddahi, M; Mertens, V; Risselada, Thys; Uythoven, J; Wenninger, J; Weterings, W

    2010-01-01

    Initial commissioning of the LHC beam dump system with beam took place in August and September 2008. The preparation, setting-up and the tests performed are described together with results of the extractions of beam into the dump lines. Analysis of the first detailed aperture measurements of the extraction channels and kicker performance derived from dilution sweep shapes are presented. The performance of the other equipment subsystems is summarised, in particular that of the dedicated dump system beam instrumentation.

  12. Effect of electron-beam irradiation on the antioxidant activity of extracts from Citrus unshiu pomaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Wan [Department of Food Science and Biotechnology, Kyungnam University, Masan 631-701 (Korea, Republic of); Lee, Byung Cheol [Laboratory for Quantum Optics, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of); Lee, Jong-Hwa [School of Bioresource Sciences, Andong National University, Andong 760-749 (Korea, Republic of); Nam, Ki-Chang [Chemistry and Biotechnology Examinations Bureau, Korean Intellectual Property Office, Daejeon 302-701 (Korea, Republic of); Lee, Seung-Cheol [Department of Food Science and Biotechnology, Kyungnam University, Masan 631-701 (Korea, Republic of)], E-mail: sclee@kyungnam.ac.kr

    2008-01-15

    After electron-beam irradiation of citrus pomaces (CP), the total phenolic content (TPC), radical scavenging activity (RSA), and reducing power (RP) were evaluated. When CP were irradiated at 37.9 kGy; the TPC, RSA and RP of water extract of CP increased from 6543.2 to 7405.4 {mu}M, 37.6% to 52.9%, and 0.64 to 0.90, respectively, compared with the non-irradiated control. The results indicate that the electron-beam irradiation can be an efficient process for increasing the antioxidant activity of CP.

  13. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    Science.gov (United States)

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  14. The preparation of particle beams for experiments of hadron physics: Slow extraction at ELFE rate at DESY and ELSA, as well as beam cooling at HERA

    International Nuclear Information System (INIS)

    Gentner, M.

    1999-02-01

    Various complementary experimental approaches are possible to study hadron physics, all of which require dedicated accelerator facilities. One approach, known as the ELFE rate at DESY project, makes use of a continuous electron beam with an energy of 15 to 25 GeV, a current of at least 30 μA and very small emittance, for fixed target experiments. The formation of such a beam by stretching a pulsed LINAC beam with the help of the HERA electron ring has been studied. At lower beam energies and currents this concept is already being used at the ELSA facility of Bonn University. Here the extraction process has been studied intensively and has been compared with measurements. Another approach to study hadron physics is the use of an electron - ion collider. To achieve high integrated luminosities cooling of the ion beam is necessary, especially in the case of heavy ions. For HERA high energy beam cooling with the help of an electron storage ring has been studied. (orig.)

  15. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  16. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  17. Modeling of negative ion extraction from a magnetized plasma source: Derivation of scaling laws and description of the origins of aberrations in the ion beam

    Science.gov (United States)

    Fubiani, G.; Garrigues, L.; Boeuf, J. P.

    2018-02-01

    We model the extraction of negative ions from a high brightness high power magnetized negative ion source. The model is a Particle-In-Cell (PIC) algorithm with Monte-Carlo Collisions. The negative ions are generated only on the plasma grid surface (which separates the plasma from the electrostatic accelerator downstream). The scope of this work is to derive scaling laws for the negative ion beam properties versus the extraction voltage (potential of the first grid of the accelerator) and plasma density and investigate the origins of aberrations on the ion beam. We show that a given value of the negative ion beam perveance correlates rather well with the beam profile on the extraction grid independent of the simulated plasma density. Furthermore, the extracted beam current may be scaled to any value of the plasma density. The scaling factor must be derived numerically but the overall gain of computational cost compared to performing a PIC simulation at the real plasma density is significant. Aberrations appear for a meniscus curvature radius of the order of the radius of the grid aperture. These aberrations cannot be cancelled out by switching to a chamfered grid aperture (as in the case of positive ions).

  18. Theoretical and experimental studies on the improvement of the time structure of the extracted electron beam from the stretcher ring ELSA

    International Nuclear Information System (INIS)

    Neckenig, M.

    1993-03-01

    The Electron Stretcher Accelerator ELSA of Bonn University is the first electron-pulse-stretcher-ring in the GeV-range. It delivers an external electron beam in the energy range from 500 MeV to 3.5 GeV, with a current between 10 pA and 100 nA, depending on the demands of the experiments. A synchrotron is used to preaccelerate the electrons to energies between 500 MeV and 1.8 GeV. In this energy-range, ELSA is used in the pure stretcher-mode, whereas for higher energies it is used as a post accelerator. For beam extraction, a third-integer resonance, driven by sextupoles, is applied. The problems, delimiting the duty-factor of the extracted beam in the pure stretcher-mode, have been investigated and solved. In this mode, duty-factors -measured by coincidence methods - of up to 55% have been reached, which are of the order of the theoretical limit for the applied extraction method of about 60%. (orig.) [de

  19. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  20. Experimental study of the molecular beam destruction by beam-beam and beam-background scattering

    International Nuclear Information System (INIS)

    Bossel, U.; Dettleff, G.

    1974-01-01

    The extraction of flow properties related to the molecular motion normal to stream lines of an expanding gas jet from observed intensity profiles of supersonic beams is critically assessed. The perturbation of the profile curves by various effects is studied for a helium beam. Exponential laws appear to describe scattering effects to a satisfactory degree

  1. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); John Adams Institute for Accelerator Science, Department of Physics, University of Oxford (United Kingdom); Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom)

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  2. Beam Techniques - Beam Control and Manipulation

    International Nuclear Information System (INIS)

    Minty, Michiko G

    2003-01-01

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization

  3. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  4. Machine development studies for PSB extraction at 160 MeV and PSB to PS beam transfer

    CERN Document Server

    Forte, V; Bartmann, W; Borburgh, J; Ferrero Colomo, A; Damerau, H; Di Giovanni, G P; Coralejo Feliciano, L M; Fraser, M A; Gamba, D; Mikulec, B; Guerrero Ollacarizqueta, A; Serluca, M; Sermeus, L; Sterbini, G

    2017-01-01

    This paper collects the machine development (MD) activities for the beam transfer studies in 2016 concerning the PSB extraction and the PSB-to-PS transfer. Many topics are covered: from the 160 MeV extraction from the PSB, useful for the future commissioning activities after the connection with Linac4, to new methodologies for measuring the magnetic waveforms of kickers and dispersion reduction schemes at PS injection, which are of great interest for the LHC Injectors Upgrade (LIU) [1] project.

  5. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tokuzawa, T., E-mail: tokuzawa@nifs.ac.jp; Kisaki, M.; Nagaoka, K.; Ito, Y.; Ikeda, K.; Nakano, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tsumori, K.; Osakabe, M.; Takeiri, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Kaneko, O. [National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2016-11-15

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 10{sup 15} to 3 × 10{sup 18} m{sup −3} in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  6. Collimator for the SPS extracted beam

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  7. First observations of intensity-dependent effects for transversely split beams during multiturn extraction studies at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    Simone Gilardoni

    2013-05-01

    Full Text Available During the commissioning of the CERN Proton Synchrotron multiturn extraction, tests with different beam intensities were performed in order to probe the behavior of resonance crossing in the presence of possible space charge effects. The initial beam intensity before transverse splitting was varied and the properties of the five beamlets obtained by crossing the fourth-order horizontal resonance were studied. A clear dependence of the beamlets’ parameters on the total beam intensity was found, which is the first direct observation of intensity-dependent effects for such a peculiar beam type. The experimental results are presented and discussed in detail in this paper.

  8. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  9. Radioprotective efficacy of Carica papaya (L.) leaf extract in electron beam irradiated Swiss albino mice

    International Nuclear Information System (INIS)

    Yogish Somayaji, T.; Suchetha Kumari, N.

    2016-01-01

    Previous studies have shown that leaf extract of Carica papaya (Linn.) has antibacterial, antitumor, antioxidant, anti-sickling properties and has shown to increase the platelets in patients with dengue fever. In the present study, the radioprotective effects and radioadaptive response of Carica papaya (L.) was evaluated in mice irradiated with electron beam radiation. Radiation induced hematological suppression was seen at sublethal doses of 6 Gy irradiated groups. There was a decrease in hemoglobin, red blood cell, total white blood cell count and platelet counts in irradiated groups whereas papaya leaf extract enhanced platelet levels indicated thrombopoietic effect

  10. Criticality in the fabrication of ion extraction system for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Jana, M.R.; Mattoo, S.K.

    2008-01-01

    For the heating of plasma in steady-state superconducting tokamak (SST-1) (Y.C. Saxena, SST-1 Team, Present status of the SST-1 project, Nucl. Fusion 40 (2000) 1069-1082; D. Bora, SST-1 Team, Test results on systems developed for the SST-1 tokamak, Nucl. Fusion 43 (2003) 1748-1758), a neutral beam injector is provided to raise the ion temperature to ∼1 keV. This injector has a capability of injecting hydrogen beam with the power of 0.5 MW at 30 keV. For the upgrade of SST-1, power of 1.7 MW at 55 KeV is required. Further, beam power is to be provided for a pulse length of 1000S. We have designed a neutral beam injector (S.K. Mattoo, A.K. Chakraborty, U.K. Baruah, P.K. Jayakumar, M. Bandyopadhyay, N. Bisai, Ch. Chakrapani, M.R. Jana, R. Onali, V. Prahlad, P.J. Patel, G.B. Patel, B. Prajapati, N.V.M. Rao, S. Rambabu, C. Rotti, S.K. Sharma, S. Shah, V. Sharma, M.J. Singh, Engineering design of the steady-state neutral beam injector for SST-1, Fusion Eng. Des. 56 (2001) 685-691; A.K. Chakraborty, N. Bisai, M.R. Jana, P.K. Jayakumar, U.K. Baruah, P.J. Patel, K. Rajasekar, S.K. Mattoo, Neutral beam injector for steady-state superconducting tokamak, Fusion Technol. (1996) 657-660; P.K. Jayakumar, M.R. Jana, N. Bisai, M. Bajpai, N.P. Singh, U.K. Baruah, A.K. Chakraborty, M. Bandyopadhyay, C. Chrakrapani, D. Patel, G.B. Patel, P. Patel, V. Prahlad, N.V.M. Rao, C. Rotti, V. Sreedhar, S.K. Mattoo, Engineering issues of a 1000S neutral beam ion source, Fusion Technol. 1 (1998) 419-422) satisfying the requirements for both SST-1 and its upgrade. Since intense power is to be transported to SST-1 situated at a distance of several meters from the ion source, the optical quality of the beam becomes a primary concern. This in turn, is determined by the uniformity of the ion source plasma and the extractor geometry. To obtain the desired optical quality of the beam, stringent tolerances are to be met during the fabrication of ion extractor system. SST-1 neutral beam injector is

  11. Experimental study and simulation of the extraction conditions of a multicharged ion beam from an electron cyclotron resonance source

    International Nuclear Information System (INIS)

    Mandin, J.

    1996-01-01

    This thesis concerns the beam extraction studies of ECR Ion Sources for the SPIRAL project at GANIL (France). The optical properties (i.e. the emittances) of the radioactive ion beam production source is a crucial point in this project. We performed emittance measurements with a very high transport efficiency and developed a computer code for simulating the extraction and transport conditions. This simulation takes into account all the parameters acting on the extraction process: the characteristics of the ions and electrons emitted by the plasma, their space and energy distributions, the space charge, the magnetic filed of the source and the accelerating electric field. We explained the evolution of the emittances for two different types of ECR Ion Source. The simulation-experiment comparison showed us that the magnetic field and the intrinsic energy of the ions seem to be the most important parameters for explaining the overall emittance behaviour of the ECRIS. We precise their values and comment them. (author)

  12. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  13. Calculation of extracted ion beam particle distribution including within-extractor collisions from H-alpha Doppler shift measurements

    International Nuclear Information System (INIS)

    Kim, Tae-Seong; Kim, Jinchoon; In, Sang Ryul; Jeong, Seung Ho

    2008-01-01

    Prototype long pulse ion sources are being developed and tested toward the goal of a deuterium beam extraction of 120 keV/65 A. The latest prototype source consists of a magnetic bucket plasma generator and a four-grid copper accelerator system with multicircular apertures of 568 holes. To measure the angular divergence and the ion species of the ion beam, an optical multichannel analyzer (OMA) system for a Doppler-shifted H-alpha lights was set up at the end of a gas-cell neutralizer. But the OMA data are very difficult to analyze due to a large background level on the top of the three energy peaks (coming from H + , H 2 + , and H 3 + ). These background spectra in the OMA signals seem to result from partially accelerated ion beams in the accelerator. Extracted ions could undergo a premature charge exchange as the accelerator column tends to have a high hydrogen partial pressure from the unused gas from the plasma generator, resulting in a continuous background of partially accelerated beam particles at the accelerator exit. This effect is calculated by accounting for all the possible atomic collision processes and numerically summing up three ion species across the accelerator column. The collection of all the atomic reaction cross sections and the numerical summing up will be presented. The result considerably depends on the background pressure and the ion beam species ratio (H + , H 2 + , and H 3 + ). This effect constitutes more than 20% of the whole particle distribution. And the energy distribution of those suffering from collisions is broad and shows a broad maximum in the vicinity of the half and the third energy region

  14. Protective effect of allium sativum ethanol extract on cultured human lymphocytes against electron beam radiation

    International Nuclear Information System (INIS)

    Rao, Shama; Shetty, Sukanya; Suchetha Kumari; Madhu, L.N.

    2013-01-01

    The development of radioprotective agent has been the subject of intense research because exposure to ionizing radiation causes DNA damage which may cause mutation and ultimately leads to cancer, on the other hand radiotherapy has become an integral part in treatment of cancer which uses ionizing radiations like X rays, gamma rays to kill the cancer cells. Amifostine is a well-known radioprotector which is clinically approved. There are many other radioprotectors like cysteine, cystamine, serotine but they are not used because of its normal tissue toxicity. Allium sativum is commonly known as garlic which has already been reported for its medicinal properties. In this study we evaluated radioprotection property of Allium sativum on DNA damage caused by electron beam radiation in cultured human lymphocytes. Allium sativum ethanol extract was used for this study. Cell viability was performed by MTT assay. DNA damage was assessed by comet assay parameters. The cultured lymphocytes were incubated with different concentrations 10, 50 and 100 μg/mL of Allium sativum extracts for 2, 4, 6 and 24 hour time intervals. Treatment of lymphocytes with various concentration of Allium sativum extract resulted in significant decrease in the level of DNA damage (Percentage tail DNA 6%) and increase in cell viability 93% (p>0.05) compare to the radiation control group. Results of this study revealed that Allium sativum protects cultured lymphocytes when exposed to electron beam radiation at its sub lethal dose. (author)

  15. Effects of beam, target and substrate potentials in ion beam processing

    International Nuclear Information System (INIS)

    Harper, J.M.E.

    1982-01-01

    Ion beam etching and deposition are normally carried out with beam, target and substrate potentials near ground potential. In this paper, the effects of intentional or unintentional changes in these potentials are described. Examples include beam neutralization, a single extraction grid, substrate bias, and target bias. Each example is described in terms of beam plasma parameters. (Auth.)

  16. Modeling of the negative ions extraction from a hydrogen plasma source. Application to ITER Neutral Beam Injector

    International Nuclear Information System (INIS)

    Mochalskyy, S.

    2011-12-01

    The development of a high performance negative ion (NI) source constitutes a crucial step in the construction of a Neutral Beam Injector of the future fusion reactor ITER. NI source should deliver 40 A of H - or of D - . To address this problem in a realistic way, a 3D particles-in-cell electrostatic collisional code was developed. Binary collisions between the particles are introduced using Monte-Carlo collision scheme. This code called ONIX was used to investigate the plasma properties and the transport of the charged particles close to a typical extraction aperture. Results obtained from this code are presented in this thesis. They include negative ions and electrons 3D trajectories. The ion and electron current density profiles are shown for different local magnetic field configurations. Results of production, destruction, and transport of H - in the extraction region are also presented. The production of H - is investigated via 3 atomic processes: 1) electron dissociative attachment to the vibrationally excited molecules H 2 (v) in the volume, 2) interaction of the positive ions H + and H 2 + with the aperture wall and 3) collisions of the neutral gas H, H 2 with aperture wall. The influence of each process on the total extracted NI current is discussed. The extraction efficiency of H - from the volume is compared to the one of H - coming from the wall. Moreover, a parametric study of the H - surface production is presented. Results show the role of sheath behavior in the vicinity of the aperture developing a double layer structure responsible of the NI extraction limitations. The 2 following issues are also analysed. First the influence of the external extracted potential value on the formation of negative sheath and secondly the strength of the magnetic filter on the total extracted NI and co-extracted electron current. The suppression of the electron beam by the negative ion produced at the plasma grid wall is also discussed. Results are in good agreement

  17. Characterization of an ion beam produced by extraction and acceleration of ions from a wire plasma source

    International Nuclear Information System (INIS)

    Gueroult, R.

    2011-09-01

    In this study we first model a DC low pressure wire plasma source and then characterize the properties of an ion gun derived from the plasma source. In order to study the properties of the derived ion gun, we develop a particle-in-cell code fitted to the modelling of the wire plasma source operation, and validate it by confrontation with the results of an experimental study. In light of the simulation results, an analysis of the wire discharge in terms of a collisional Child-Langmuir ion flow in cylindrical geometry is proposed. We interpret the mode transition as a natural reorganization of the discharge when the current is increased above a threshold value which is a function of the discharge voltage, the pressure and the inter-electrodes distance. In addition, the analysis of the energy distribution function of ions impacting the cathode demonstrates the ability to extract an ion beam of low energy spread around the discharge voltage assuming that the discharge is operated in its high pressure mode. An ion source prototype allowing the extraction and acceleration of ions from the wire source is then proposed. The experimental study of such a device confirms that, apart from a shift corresponding to the accelerating voltage, the acceleration scheme does not spread the ion velocity distribution function along the axis of the beam. It is therefore possible to produce tunable energy (0 - 5 keV) ion beams of various ionic species presenting limited energy dispersion (∼ 10 eV). The typical beam currents are about a few tens of micro-amperes, and the divergence of such a beam is on the order of one degree. A numerical modelling of the ion source is eventually conducted in order to identify potential optimizations of the concept. (author)

  18. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.; Hanada, M.; Kojima, A.

    2013-01-01

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  19. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  20. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  1. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  2. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    International Nuclear Information System (INIS)

    Mochalskyy, S; Wünderlich, D; Ruf, B; Fantz, U; Franzen, P; Minea, T

    2014-01-01

    The development of a large area (A source,ITER  = 0.9 × 2 m 2 ) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (A source,BATMAN  ≈ 0.32 × 0.59 m 2 ) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child–Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion–ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated

  3. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  4. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  5. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  6. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  7. Beam-helicity and beam-charge asymmetries associated with deeply virtual Compton scattering on the unpolarised proton

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)

    2012-03-15

    Beam-helicity and beam-charge asymmetries in the hard exclusive leptoproduction of real photons from an unpolarised hydrogen target by a 27.6 GeV lepton beam are extracted from the HERMES data set of 2006-2007 using a missing-mass event selection technique. The asymmetry amplitudes extracted from this data set are more precise than those extracted from the earlier data set of 1996-2005 previously analysed in the same manner by HERMES. The results from the two data sets are compatible with each other. Results from these combined data sets are extracted and constitute the most precise asymmetry amplitude measurements made in the HERMES kinematic region using a missing-mass event selection technique. (orig.)

  8. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    Cordero Lopez, F.

    1961-01-01

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  9. A study on the effects of electron beam irradiation on tooth extraction wound healing in rats

    International Nuclear Information System (INIS)

    Suzuki, Akiyoshi

    1983-01-01

    The wound of the upper jaw 3 days after the first molar tooth extraction in female rats was exposed to 1,500 rads (Group 2) and 2,000 rads (Group 3) of the 10 MeV electron beams, and its pathohistological changes were compared with those of rats with the tooth extraction alone (control group). In the control group, the tooth extraction wound was covered with epithelium 10 days later and new bones were formed 17 days later. Wound healing with the epithelium was seen in all irradiated rats 24 days later. The formation of the new teeth was seen 24 days later in the Group 2 and 38 days later in Group 3. Cell infiltration under the epithelial layers was still observed in some of the Group 3, although the wound was covered with epithelium, and the new bone covering the extraction wound was formed 38 days later. Healing was prolonged in Group 3, as compared with that in Group 2. (Namekawa, K.)

  10. Development of a PIXE (Particle Induced X-ray Emission) analysis device using an extracted proton beam

    International Nuclear Information System (INIS)

    Saidi, A.

    1989-01-01

    The experimental device described allows the extention of the PIXE (Particle Induced X-ray Emission) method to the analysis, by means of proton beams, of solid or liquid samples, which can not be analyzed under vacuum conditions. The homogeneity of the surfaces to be analysed and elements (in the atmosphere) which absorb X-rays must be taken into account. Liquid samples do not need special care. The results show that: at high energies, the extracted beam sensibility is of the same order of magnitude as those obtained under vacuum; at low energies, the performance under vacuum conditions is better. The particles energy losses, at the exit membrane and in the outer atmosphere, decrease the X-rays production efficiency [fr

  11. Design of extraction system in BRing at HIAF

    Science.gov (United States)

    Ruan, Shuang; Yang, Jiancheng; Zhang, Jinquan; Shen, Guodong; Ren, Hang; Liu, Jie; Shangguan, Jingbing; Zhang, Xiaoying; Zhang, Jingjing; Mao, Lijun; Sheng, Lina; Yin, Dayu; Wang, Geng; Wu, Bo; Yao, Liping; Tang, Meitang; Cai, Fucheng; Chen, Xiaoqiang

    2018-06-01

    The Booster Ring (BRing), which is the key part of HIAF (High Intensity heavy ion Accelerator Facility) complex at IMP (Institute of Modern Physics, Chinese Academy of Sciences), can provide uranium (A / q = 7) beam with a wide extraction energy range of 200-800 MeV/u. To fulfill a flexible beam extraction for multi-purpose experiments, both fast and slow extraction systems will be accommodated in the BRing. The fast extraction system is used for extracting short bunched beam horizontally in single-turn. The slow extraction system is used to provide quasi-continuous beam by the third order resonance and RF-knockout scheme. To achieve a compact structure, the two extraction systems are designed to share the same extraction channel. The general design of the fast and slow extraction systems and simulation results are discussed in this paper.

  12. Radiologic study of the healing process of the extracted socket of beagle dogs using cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Won; Lee, Won; Lee, Byung Do [Department of Oral and Maxillofacial Radiology, School of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Kim, De Sok [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-03-15

    To longitudinally observe the healing process of extracted socket and the alterations of the residual ridge in healthy adult dogs using cone beam CT (CBCT). The mandibular premolars of two beagle dogs were removed and the extraction sites were covered with the gingival tissue. CBCTs (3D X-ray CT scanner, Alphard vega, Asahi Co.) were taken at baseline and at 1 week interval for 12 weeks. Radiographic density of extracted wounds was measured on normalized images with a custom-made image analysis program. The amount of alveolar crestal resorption after the teeth extraction was measured with a reformatted three-dimensional image using CBCT. Bony healing pattern of extracted wound of each group was also longitudinally observed and analyzed. Dimensional changes occurred during the first 6 weeks following the extraction of dogs' mandibular premolars. The reduction of the height of residual ridge was more pronounced at the buccal than at the lingual aspect of the extraction socket. Radiographic density of extracted wounds increased by week 4, but the change in density stabilized after week 6. New bone formation was observed at the floor and the peripheral side of extracted socket from week 1. The entrance of extracted socket was sealed by a hard-tissue bridge at week 5. The healing process of extracted wound involved a series of events including new bone formation and residual ridge resorption.

  13. Radiologic study of the healing process of the extracted socket of beagle dogs using cone beam CT

    International Nuclear Information System (INIS)

    Cho, Bong Won; Lee, Won; Lee, Byung Do; Kim, De Sok

    2009-01-01

    To longitudinally observe the healing process of extracted socket and the alterations of the residual ridge in healthy adult dogs using cone beam CT (CBCT). The mandibular premolars of two beagle dogs were removed and the extraction sites were covered with the gingival tissue. CBCTs (3D X-ray CT scanner, Alphard vega, Asahi Co.) were taken at baseline and at 1 week interval for 12 weeks. Radiographic density of extracted wounds was measured on normalized images with a custom-made image analysis program. The amount of alveolar crestal resorption after the teeth extraction was measured with a reformatted three-dimensional image using CBCT. Bony healing pattern of extracted wound of each group was also longitudinally observed and analyzed. Dimensional changes occurred during the first 6 weeks following the extraction of dogs' mandibular premolars. The reduction of the height of residual ridge was more pronounced at the buccal than at the lingual aspect of the extraction socket. Radiographic density of extracted wounds increased by week 4, but the change in density stabilized after week 6. New bone formation was observed at the floor and the peripheral side of extracted socket from week 1. The entrance of extracted socket was sealed by a hard-tissue bridge at week 5. The healing process of extracted wound involved a series of events including new bone formation and residual ridge resorption.

  14. Efficiency evaluation of slow extraction from the synchrotron

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Mikhajlov, V.A.

    1986-01-01

    Analytical calculation of slow extraction of the beam out of the JINR synchrotron is made. The formulae for evaluation of the sextupole amplitudes and phases, quadrupole lens gradient range are obtained, the connection with circulated and extracted beam parameters is shown. The formulae for calculating optimal position of the septum-magnet or electrostatic septum are presented. On this basis the formula for estimating the efficiency of beam slow extraction out of the synchrotron is obtained under assumption that in the septum region during the extraction a quasistationary distribution of the beam density occurs

  15. SLIM (SEM for Low Interception Monitoring) An Innovative Non-Destructive Beam Monitor for the Extraction Lines of a Hadrontherapy Centre

    CERN Document Server

    Badano, L; Pezzetta, M; Molinari, G

    2003-01-01

    Real time monitoring of hadrontherapy beam intensity and profile is a critical issue for the optimisation of the dose delivery to the patient carcinogenic tissue, the patient safety and the operation of the accelerator complex. For this purpose an innovative beam monitor, based on the secondary emission of electrons by a nonperturbative, sub-micron thick Al target placed directly in the extracted beam path, is being proposed. The secondary electrons, accelerated by an electrostatics focusing system, are detected by a monolithic silicon position sensitive sensor, which provides the beam intensity and its position with a precision of 1 mm at 10 kHz frame rate. The conceptual design and the engineering study optimised for hadrontherapy, together with the results of the preliminary tests of the first system prototype, will be presented.

  16. Electrochemical chloride extraction of a beam polluted by chlorides after 40 years in the sea

    OpenAIRE

    BOUTEILLER, Véronique; LAPLAUD, André; MALOULA, Aurélie; MORELLE, René Stéphane; DUCHESNE, Béatrice; MORIN, Mathieu

    2006-01-01

    A beam element, naturally polluted by chlorides after 40 years of a marine tidal exposure, has been treated by electrochemical chloride extraction. The chloride profiles, before and after treatment, show that free chlorides are extrated with an efficiency of 70 % close to the steel, 50 % in the intermediate cover and only 5 % at the concrete surface. From the electrochemical characterizations (before, after, 1, 2 and 17 months after treatment), the steel potential values can, semehow, indicat...

  17. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  18. The effect of electron range on electron beam induced current collection and a simple method to extract an electron range for any generation function

    International Nuclear Information System (INIS)

    Lahreche, A.; Beggah, Y.; Corkish, R.

    2011-01-01

    The effect of electron range on electron beam induced current (EBIC) is demonstrated and the problem of the choice of the optimal electron ranges to use with simple uniform and point generation function models is resolved by proposing a method to extract an electron range-energy relationship (ERER). The results show that the use of these extracted electron ranges remove the previous disagreement between the EBIC curves computed with simple forms of generation model and those based on a more realistic generation model. The impact of these extracted electron ranges on the extraction of diffusion length, surface recombination velocity and EBIC contrast of defects is discussed. It is also demonstrated that, for the case of uniform generation, the computed EBIC current is independent of the assumed shape of the generation volume. -- Highlights: → Effect of electron ranges on modeling electron beam induced current is shown. → A method to extract an electron range for simple form of generation is proposed. → For uniform generation the EBIC current is independent of the choice of it shape. → Uses of the extracted electron ranges remove some existing literature ambiguity.

  19. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  20. Consideration of beam plasma ion-source

    International Nuclear Information System (INIS)

    Sano, Fumimichi; Kusano, Norimasa; Ishida, Yoshihiro; Ishikawa, Junzo; Takagi, Toshinori

    1976-01-01

    Theoretical and experimental analyses and their comparison were made on the plasma generation and on the beam extraction for the beam plasma ion-source. The operational principle and the structure of the ion-source are explained in the first part. Considerations are given on the electron beam-plasma interaction and the resulting generation of high frequency or microwaves which in turn increases the plasma density. The flow of energy in this system is also explained in the second part. The relation between plasma density and the imaginary part of frequency is given by taking the magnetic flux density, the electron beam energy, and the electron beam current as parameters. The relations between the potential difference between collector and drift tube and the plasma density or the ion-current are also given. Considerations are also given to the change of the plasma density due to the change of the magnetic flux density at drift tube, the change of the electron beam energy, and the change of the electron beam current. The third part deals with the extraction characteristics of the ion beam. The structure of the multiple-aperture electrode and the relation between plasma density and the extracted ion current are explained. (Aoki, K.)

  1. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  2. Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up

    International Nuclear Information System (INIS)

    Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.

    1994-03-01

    It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities

  3. 3D Terahertz Beam Profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Jepsen, Peter Uhd

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  4. The space charge effects on the slow extraction process

    International Nuclear Information System (INIS)

    Ohmori, Chihiro.

    1992-06-01

    The calculation of the slow extraction which includes the space charge effects has been performed for the Compressor/Stretcher Ring (CSR) of the proposed Japanese Hadron Project. We have investigated the slow extraction of 1 GeV proton beam with an average current of 100μA. Calculation shows not only the emittance growth of the extracted beam but also decrease of the extraction efficiency and discontinuity of beam spill. (author)

  5. Using cone beam computed thomography in planning the extraction of impacted third molars

    Directory of Open Access Journals (Sweden)

    Vlahović Zoran

    2016-01-01

    Full Text Available The panoramic radiography is the most used diagnostic imaging method in planning impacted lower third molar extractions. However, often panoramic radiography does not provide enough information in treatment planning for performing safely surgical extraction of impacted third molars. CBCT (Cone beam computed tomography provides more precise information in diagnostic analysis especially for planning surgical procedures where complications can be expected due to close relationship between mandibular canal and lower impacted third molars. The aim of this study is comparative analysis of panoramic radiography and CBCT in evaluating the topographic relationship between mandibular canal and impacted third molars. The study included 50 patients with close relationship between mandibular canal and impacted third molars detected using panoramic radiography. After panoramic radiography analysis CBCT was performed in order to diagnose, plan and prevent complications during the surgical tooth extraction. CBCT examination considered comparative analysis with panoramic radiography, marking, volume rendering and assessment of mandibular canal in buccolingual direction. Out of total patients where suprimposition of mandibular canal and impacted third molar on panoramic radiography was detected, in 32 patients mandibular chanal was localised on lingual side. Mandibular canal was positioned at bucal side in 18 of 50 patients. Results of this research indicate that panoramic radiography can be useful in everyday practice for diagnosis, planning and preparing lower third molar extractions, but in cases where close relationship between mandibular canal and lower third molars is detected CBCT is recommended as more precise radiographic imaging method in order to prevent complications.

  6. Radioprotective effect of Tamarindus indica pod extract in Swiss albino mice exposed to whole body electron beam radiation

    International Nuclear Information System (INIS)

    Nandini, S.; Suchetha Kumari, N.; Ganesh Sanjeev; D'sa, Prima

    2013-01-01

    The objective of the study was to investigate the radioprotective effect of Tamarindus indica pod extract against radiation induced damage.The effect of 100 mg of hydroalcoholic extract of Tamarindus indica pod was studied in Swiss albino mice exposed to 6 Gy whole body electron beam radiation. Treatment of mice with extract for 15 days before irradiation reduced the symptoms of radiation sickness when compared with the untreated irradiated group. The irradiated animals showed an elevation in lipid peroxidation and reduction in glutathione, total antioxidants and antioxidant enzymes such as glutathione peroxidase and catalase activities. Radiation induced mice has shown micronucleus in the bone marrow cells. Treatment of mice with Tamarindus indica pod extract before irradiation caused a significant reduction in lipid peroxidation followed by significant elevation in reduced glutathione, total antioxidants, glutathione peroxidase and catalase activity. It also showed a reduction in the micronucleus formation in bone marrow cells. Results indicate that the radioprotective activity of Tamarindus indica pod extract may be due to free radical scavenging attributed as a result of increased antioxidant level in mice. (author)

  7. Design of fast extraction system for the KEK proton synchrotron

    International Nuclear Information System (INIS)

    McCarthy, J.D.; Kimura, Yoshitaka.

    1975-03-01

    A fast beam extraction system is designed for the KEK 12 GeV Proton Synchrotron. The extraction is performed by the multi-turn beam shaving method in which hyper thin electrostatic septum inflectors are used as shaving elements. The beam loss and the emittance of the extracted beam are analyzed numerically as a function of thickness of the electrostatic septum wires. Specifications of the extraction elements, electrostatic septa, fast and slow bumps, and septum magnets, are given for the configuration of the designed system. (auth.)

  8. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Jae-Kyung [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Srinivasan, Periasamy; Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Tamarind (Tamarindus indica L) seed polysaccharide (TSP) is of great important due to its various biological activities. The present investigation was carried out to compare extraction yield, morphological characteristics, average molecular weights and antioxidant activities of TSP from gamma- and electron beam (EB)-irradiated tamarind kernel powder. The tamarind kernel powder was irradiated with 0, 5 and 10 kGy by gamma ray (GR) and electron beam, respectively. The extraction yield of TSP was increased significantly by EB and GR irradiation, but there was no significant difference between irradiation types. Morphological studies by scanning electron microscope showed that TSP from GR-irradiated tamarind seed had a fibrous structure, different from that of EB irradiated with a particle structures. The average molecular weight of TSP was decreased by the irradiation, and EB treatment degraded more severely than GR. Superoxide radical scavenging ability and total antioxidant capacity of EB-treated TSP showed higher than those of GR-treated TSP.

  9. Improving extraction efficiency of the third integer resonant extraction using higher order multipoles

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tomizawa, M. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2017-03-09

    The new accelerator complex at J-PARC will operate with both high energy and very high intensity proton beams. With a design slow extraction efficiency of greater than 99% this facility will still be depositing significant beam power onto accelerator components [2]. To achieve even higher efficiencies requires some new ideas. The design of the extraction system and the accelerator lattice structure leaves little room for improvement using conventional techniques. In this report we will present one method for improving the slow extraction efficiency at J-PARC by adding duodecapoles or octupoles to the slow extraction system. We will review the theory of resonant extraction, describe simulation methods, and present the results of detailed simulations. From our investigations we find that we can improve extraction efficiency and thereby reduce the level of residual activation in the accelerator components and surrounding shielding.

  10. Evaluation of a feature extraction framework for FPGA firmware generation during a beam-test at CERN-SPS for the CBM-TRD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Chavez, Cruz de Jesus; Munoz Castillo, Carlos Enrique; Kebschull, Udo [Infrastructure and Computer Systems in Data Processing (IRI), Goethe University, Frankfurt am Main (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    A feature extraction framework has been developed to allow easy FPGA firmware generation for specific feature extraction algorithms in order to find and extract regions of interest within time-based signals. This framework allows the instantiation of multiple well-known feature extraction algorithms such as center of gravity, time over threshold and cluster finder, just to mention a few of them. A graphical user interface has also been built on top of the framework to provide a user-friendly way to visualize the data-flow architecture across processing stages. The FPGA platform constraints are automatically set up by the framework itself. This feature reduces the need of low-level hardware configuration knowledge that would normally be provided by the user, centering the attention in setting up the processing algorithms for the given task more than in writing hardware description code. During November 2015, a beam-test was performed at the CERN-SPS hall. The presented framework was used to generate a firmware for the SysCore3 FPGA development board used to readout two TRD detectors by means of the SPADIC 1.0 front-end chip. The framework architecture, design methodology, as well as the achieved results during the mentioned beam-test are presented.

  11. Extraction of carrier-free 103Pd from thin rhodium wire irradiated with a proton beam in U-150 cyclotron

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Khudajbergenov, U.; Gulamov, I.R.; Mirzarva, M.A.; Rylov, A.A.

    2003-01-01

    A procedure for preparation of 103 Pd isotope of 99.9 % purity from a thin rhodium wire irradiated by 21 MeV proton beam in a cyclotron was developed. The desired product was prepared by electrolytic dissolution of the irradiated target in 6 M HCl with subsequent extraction of 103 Pd isotope without carrier by dimethylglyoxime in chloroform [ru

  12. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  13. submitter Light Extraction From Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam

    CERN Document Server

    Modrzynski, Pawel; Knapitsch, Arno; Kunicki, Piotr; Lecoq, Paul; Moczala, Magdalena; Papakonstantinou, Ioannis; Auffray, Etiennette

    2016-01-01

    “Photonic Crystals (PhC)” have been used in a variety of fields as a structure for improving the light extraction efficiency from materials with high index of refraction. In previous work we already showed the light extraction improvement of several PhC covered LYSO crystals in computer simulations and practical measurements. In this work, new samples are made using different materials and techniques which allows further efficiency improvements. For rapid prototyping of PhC patterns on scintillators we tested a new method using “Focused Ion Beam (FIB)” patterning. The FIB machine is a device similar to a “Scanning Electron Microscope (SEM)”, but it uses ions (mainly gallium) instead of electrons for the imaging of the samples' surface. The additional feature of FIB devices is the option of surface patterning in nano-scale which was exploited for our samples. Three samples using FIB patterning have been produced. One of them is a direct patterning of the extraction face of a 0.8×0.8×10 $mm^3$ LYS...

  14. Determination of the meniscus shape of a negative ion beam from an experimentally obtained beam profile

    Science.gov (United States)

    Ichikawa, M.; Kojima, A.; Chitarin, G.; Agostinetti, P.; Aprile, D.; Baltador, C.; Barbisan, M.; Delogu, R.; Hiratsuka, J.; Marconato, N.; Nishikiori, R.; Pimazzoni, A.; Sartori, E.; Serianni, G.; Tobari, H.; Umeda, N.; Veltri, P.; Watanabe, K.; Yoshida, M.; Antoni, V.; Kashiwagi, M.

    2017-08-01

    In order to understand the physics mechanism of a negative ion extraction in negative ion sources, an emission surface of the negative ions around an aperture at a plasma grid, so-called a meniscus, has been analyzed by an inverse calculation of the negative ion trajectory in a two dimensional beam analysis code. In this method, the meniscus is defined as the final position of the negative ion trajectories which are inversely calculated from the measured beam profile to the plasma grid. In a case of the volume-produced negative ions, the calculated meniscus by the inverse calculation was similar to that obtained in conventional beam simulation codes for positive ion extractions such as BEAMORBT and SLACCAD. The negative ion current density was uniform along the meniscus. This indicates that the negative ions produced in the plasma are transported to the plasma grid uniformly as considered in the transportation of the positive ions. However, in a surface production case of negative ions, where the negative ions are generated near the plasma grid with lower work function by seeding cesium, the current density in the peripheral region of the meniscus close to the plasma grid surface was estimated to be 2 times larger than the center region, which suggested that the extraction process of the surface-produced negative ions was much different with that for the positive ions. Because this non-uniform profile of the current density made the meniscus shape strongly concave, the beam extracted from the peripheral region could have a large divergence angle, which might be one of origins of so-called beam halo. This is the first results of the determination of the meniscus based on the experiment, which is useful to improve the prediction of the meniscus shape and heat loads based on the beam trajectories including beam halo.

  15. How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?

    Science.gov (United States)

    Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R

    2015-03-01

    The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.

  16. Long pulse characteristics of 5 MW ion source for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M.R. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: mukti@ipr.res.in; Mattoo, S.K.; Chakraborty, A.K.; Baruah, U.K.; Patel, G.B.; Jayakumar, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2008-10-15

    We present characteristics of a 5 MW ion source for SST-1 neutral beam injector. Before the source could be tested for its performance, it was conditioned by 480 arc discharges of 1 s and beam extraction of hydrogen species at various beam voltages ranging between 19 kV and 56 kV. Breakdown free beam extraction could be secured only after about 3000 beam second extraction. The ion source is capable of delivering 1.7 MW of neutral beam power at 55 kV with horizontal and vertical focal length of 5.4 m and 7 m respectively. Beam divergence is {approx}0.97 deg. Steady-state beam energy of 31 MJ at 41 kV was achieved during 14 s long beam extraction. We have not noticed any deterioration of beam parameters, including beam divergence during long pulse operation. These results indicate that 0.5 MW of neutral beam power at 30 kV required for heating of plasma in SST-1 can be delivered.

  17. Long pulse characteristics of 5 MW ion source for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Jana, M.R.; Mattoo, S.K.; Chakraborty, A.K.; Baruah, U.K.; Patel, G.B.; Jayakumar, P.K.

    2008-01-01

    We present characteristics of a 5 MW ion source for SST-1 neutral beam injector. Before the source could be tested for its performance, it was conditioned by 480 arc discharges of 1 s and beam extraction of hydrogen species at various beam voltages ranging between 19 kV and 56 kV. Breakdown free beam extraction could be secured only after about 3000 beam second extraction. The ion source is capable of delivering 1.7 MW of neutral beam power at 55 kV with horizontal and vertical focal length of 5.4 m and 7 m respectively. Beam divergence is ∼0.97 deg. Steady-state beam energy of 31 MJ at 41 kV was achieved during 14 s long beam extraction. We have not noticed any deterioration of beam parameters, including beam divergence during long pulse operation. These results indicate that 0.5 MW of neutral beam power at 30 kV required for heating of plasma in SST-1 can be delivered.

  18. Slow extraction control system of HIRFL-CSR

    International Nuclear Information System (INIS)

    Liu Wufeng; Qiao Weimin; Yuan Youjin; Mao Ruishi; Zhao Tiecheng

    2013-01-01

    For heavy-ion radiotherapy, HIRFL-CSR (Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring) needs a long term uniform ion beam extraction from HIRFL-CSR main ring to high energy beam transport line to meet the requirement of heavy-ion radiotherapy's ion beam. Slow extraction control system uses the synchronous signal of HIRFL-CSR control system's timing system to realize process control. When the synchronous event data of HIRFL-CSR control system's timing system trigger controlling and changing data (frequency value, tune value, voltage value), the waveform generator will generate waveform by frequency value, tune value and voltage value, and will amplify the generated waveform by power amplifier to electrostatic deflector to achieve RF-KO slow extraction. The synchronous event receiver of slow extraction system is designed by using FPGA and optical fiber interface to keep high transmission speed and anti-jamming. HIRFL-CSR's running for heavy-ion radiotherapy and ten thousand seconds long period slow extraction experiments show that slow extraction control system is workable and can meet the requirement of heavy-ion radiotherapy's ion beam. (authors)

  19. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    Saadatmand, K.; Johnson, K.F.; Schneider, J.D.

    1991-01-01

    A visual diagnostic technique has been developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position). 3 refs., 5 figs

  20. IBEX - annular beam propagation experiment

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Miller, R.B.; Shope, S.L.; Poukey, J.W.; Ramirez, J.J.; Ekdahl, C.A.; Adler, R.J.

    1983-01-01

    IBEX is a 4-MV, 100-kA, 20-ns cylindrical isolated Blumlein accelerator. In the experiments reported here, the accelerator is fitted with a specially designed foilless diode which is completely immersed in a uniform magnetic field. Several diode geometries have been studied as a function of magnetic field strength. The beam propagates a distance of 50 cm (approx. 10 cyclotron wavelengths) in vacuum before either striking a beam stop or being extracted through a thin foil. The extracted beam was successfully transported 60 cm downstream into a drift pipe filled either with 80 or 640 torr air. The main objectives of this experiment were to establish the proper parameters for the most quiescent 4 MV, 20 to 40 kA annular beam, and to compare the results with available theory and numerical code simulations

  1. Accidental Beam Losses and Protection in the LHC

    Science.gov (United States)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  2. Accidental Beam Losses and Protection in the LHC

    International Nuclear Information System (INIS)

    Schmidt, R.; Wenninger, J.

    2005-01-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection

  3. Beam commissioning and operation of the J-PARC main ring synchrotron

    International Nuclear Information System (INIS)

    Koseki, Tadashi; Arakaki, Yoshitugu; Chin, Yong Ho; Hara, Keigo; Hasegawa, Katsushi; Hashimoto, Yoshinori; Hori, Yoichiro; Igarashi, Susumu; Ishii, Koji; Kamikubota, Norihiko; Kimura, Takuro; Koseki, Kunio; Fan, Kuanjyun; Kubota, Chikashi; Kuniyasu, Yuu; Kurimoto, Yoshinori; Lee, Seishu; Matsumoto, Hiroshi; Molodozhentsev, Alexander; Morita, Yuichi; Murasugi, Shigeru; Muto, Ryotaro; Naito, Fujio; Nakagawa, Hidetoshi; Nakamura, Shu; Niki, Kazuaki; Ohmi, Kazuhito; Ohmori, Chihiro; Okada, Masashi; Okamura, Katsuya; Oogoe, Takao; Ooya, Kazufumi; Sato, Kenichi; Sato, Yoichi; Sato, Yoshihiro; Satou, Kenichirou; Shimamoto, Masayuki; Shirakata, Masashi; Someya, Hirohiko; Sugimoto, Takuya; Takano, Junpei; Takeda, Yasuhiro; Takiyama, Yoichi; Tejima, Masaki; Toda, Makoto; Tomizawa, Masahito; Toyama, Takeshi; Uota, Masahiko; Yamada, Shuei; Yamamoto, Noboru; Yanaoka, Eiichi; Yoshii, Masahito; Harada, Hiroyuki; Hatakeyama, Shuichiro; Hotchi, Hideaki; Nomura, Masahiro; Schnase, Alexander; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Shimogawa, Tetsushi

    2012-01-01

    The slow cycling main ring synchrotron (MR) is located the furthest downstream in the J-PARC accelerator cascade. It became available for user operation in 2009 and provides high-intensity 30 GeV proton beams for various experiments on particle and nuclear physics. The MR has two beam extraction systems: a fast extraction system for beam delivery to the neutrino beam line of the Tokai-to-Kamioka (T2K) experiment and a slow extraction system for beam delivery to the hadron experimental hall. After a nine-month beam shutdown during the recovery from the Great East Japan Earthquake, the J-PARC facility resumed beam operation in December 2011. The MR delivers a 160-200 kW beam to the T2K experiment and a 3.5-6 kW beam to users in the hadron experimental hall. In this paper, a brief review of the MR and the recent status of beam operation are presented. Near-future plans for a beam intensity upgrade are also discussed. (author)

  4. The broad beam ion implanter with the use of radio frequency source

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E; Zakhary, S G; Ghanem, A A [Accelerators Dept., Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The project started with the design of the broad beam RF ion source and the single gap accelerating column. The preliminary results of the source show that the ion current extracted from the source could reach 30 m A with extraction voltage = 2 kV. The beam uniformity was made by the use of multi apertures graphite cathode designed to make perveance matching to the normal Gaussian distribution of the ion beam. The beam uniformity could reach 66% of the beam width of 6 cm. The design of the single gap accelerating column based on tracing of beam lines inside the accelerating gap and estimation of the minimum value of the electric field required to contain the beam against space charge expansion in order to achieve minimum beam emittance without aberrations. The preliminary results of the acceleration of the ion beams up to 20 KeV show an increase of the extracted ion current with increase of the extraction voltage. This increase is due to decrease of the angular divergence of the beam due to the effect of increasing the axial velocity component of the accelerated field. 9 figs.

  5. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  6. Extracting Wair from the electron beam measurements of Domen and Lamperti.

    Science.gov (United States)

    Tessier, Frédéric; Cojocaru, Claudiu D; Ross, Carl K

    2018-01-01

    The average energy expended by an energetic electron to create an ion pair in dry air, W air , is a key quantity in radiation dosimetry. Although W air is well established for electron energies up to about 3 MeV, there is limited data for higher energies. The measurements by Domen and Lamperti [Med. Phys. 3, 294-301 (1976)] using electron beams in the energy range from 15 to 50 MeV can, in principle, be used to deduce values for W air , if the electron stopping power of graphite and air are known. A previous analysis of these data revealed an anomalous variation of 2% in W air as a function of the electron energy. We use Monte Carlo simulation techniques to reanalyze the original data and obtain new estimates for W air , and to investigate the source of the reported anomaly. Domen and Lamperti (DL) reported the ratio of the response of a graphite calorimeter to that of a graphite ionization chamber for broad beams of electrons with energies between 15 and 50 MeV and at different depths in graphite (including depths well beyond the range of the primary electrons, i.e., in the bremsstrahlung photon regime). Using a detailed EGSnrc model of the DL apparatus, as well as up-to-date stopping powers, we compute the dose ratio between the ionization chamber cavity and the calorimeter core, for plane-parallel electron beams. This dose ratio, multiplied by the DL measured ratio, provides a direct estimate for W air . Despite an improved analysis of the original work, the extracted values of W air still exhibit an increase as the mean electron energy at the point of measurement decreases below about 15 MeV. This anomalous trend is dubious physically, and inconsistent with extensive data for W air obtained at lower energies. A thorough sensitivity analysis indicates that this trend is unlikely to stem from errors in extrapolation and correction procedures, uncertainties in electron stopping powers, or bias in calorimetry or ionization chamber measurements. However, we find

  7. Numerical simulation research of 300 kV, 5 electrodes negative ion beam system

    International Nuclear Information System (INIS)

    Wang Huisan; Jian Guangde

    2001-01-01

    According to the characteristic of high current negative ion beam extraction and acceleration system for negative ion-based neutral beam injector, a numerical simulation model and a calculation code of the negative ion beam system are established in order to assist the design of the system. The movement behavior of the negative ion beam and accompanying electron beam in joint effect of the electric and magnetic field of the system is calculated. The effect of relative parameters on the negative ion beam optics characteristic is investigated, such as beam density, negative ion initial temperature and stripping losses, final electrode aperture displacement. The electromagnetic configuration in the system is optimized. The initial optimized results for the 300 kV, 5 electrodes negative ion beam system show that the magnetic field of this system can deflect the electron beam to the extraction electrode as electron acceptor at lower energy and that assuming 20% stripping losses of the H - ion in extraction region and 21 mA ·cm -2 extracted H - beam density, the r.m.s. divergence angle of all output beam lets and divergence angle of 85% output beam lets are 0.327 deg. and 0.460 deg., respectively

  8. Simulation studies of the extraction region from glow discharge ion sources

    International Nuclear Information System (INIS)

    Abdelrahman, M.M.

    2012-01-01

    This paper studies the influence of various parameters and conditions on the performance of an ion-beam extraction system, the trajectories of the particles in the beam being simulated by a commercial software (SIMION 3D). Space-charge effects are accounted for and criteria allowing optimization of the system are proposed. Ion beam trajectories with and without space charge have been determined and, from the results, optimum extraction conditions have been deduced. Simulation of singly charged ion trajectories for a concave meniscus with 3.5 mm curvature radius was studied with and without space charge has been done using a singly charge argon ion trajectories. Firstly, for a concave meniscus with 3.5 mm curvature radius, the influence of the current density on the ion beam shape was investigated. Furthermore, influence of the extraction voltage applied to the extraction electrode on the ion beam envelope was studied. Finally, the influence of the extraction gap width on the ion beam envelope was also studied

  9. Beam-Beam effects at the CMS BRIL van-der-Meer scans

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is devoted to the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS Experiment at CERN. The project is engaged in operating and developing new detectors, compatible with the high luminosity experimental environments at the LHC. BRIL operates several detectors based on different physical principles and technologies. The detectors are calibrated using van-der-Meer scans to measure the luminosity that is a fundamental quantity of the LHC beam. In van-der-Meer scans the count rate in a detector is measured as a function of the distance between beams in the plane perpendicular to beam direction, to extract the underlying beam overlap area. The goal of the van-der-Meer scans is to obtain the calibration constant for each luminometer to be used at calibration then in physics data taking runs. The note presents the overview of beam-beam effects at the van-der-Meer scan and the corresponding corrections that sh...

  10. Strong beam production for some elements

    International Nuclear Information System (INIS)

    Camplan, J.; Chaumont, J.; Meunier, R.

    1974-01-01

    Three electromagnetic isotope separators are installed in Rene Bernas Laboratory, one being especially adapted to ion implantation. The three apparatus use the same type of ion source and system of beam extraction. The special ion source is distinguishable from the others only by its smaller dimensions. These sources allow strong currents to be obtained for almost every element. The source and its extraction system are briefly described, examples of beams obtained are given [fr

  11. MODELLING SLOW EXTRACTION INDUCED RADIOACTIVITY IN SPS LSS2

    CERN Document Server

    Araujo Martinez, Aurora Cecilia; CERN. Geneva. TE Department

    2017-01-01

    The Accelerator and Beam Transfer (ABT) group is investigating the impact of recent proposals to extract higher proton intensities to Fixed Target experiments at the SPS. The 400 GeV high-energy proton beam is typically extracted over a few seconds using a resonant slow-extraction technique that induces small but unavoidable beam losses on the extraction equipment in SPS LSS2. In this report, the induced radioactivity for 2016-2017 is used to predict future activation levels and cool-down times, using a past intervention as a reference to predict dose to the personnel carrying-out maintenance of the accelerator.

  12. Beam transmission efficiency between injector and target in the GANIL complex

    International Nuclear Information System (INIS)

    Beck, R.; Bru, B.; Ricaud, C.

    1984-06-01

    In order to achieve a maximum transmission efficiency, efforts have been made in three directions: beam measurements, understanding of the physical phenomenon, tuning method. The characteristics of the beam extracted from the three cyclotrons have been measured. The ensuing optical effects are analysed. The tuning of the transport-lines, depending on the characteristics of the extracted beams and the required beam properties on the target, is described

  13. Simulation and beam line experiments for the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-01-01

    The particle-in-cell code Warp has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving Warp the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disc. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS

  14. Non-local Fast Extraction from the CERN SPS at 100 and 440 GeV

    CERN Document Server

    Velotti, F M; Bartmann, W; Carlier, E; Cornelis, K; Efthymiopoulos, I; Goddard, B; Jensen, L K; Kain, V; Kowalska, M; Mertens, V; Steerenberg, R

    2013-01-01

    The Long Straight Section 2 (LSS2) of the CERN SPS is connected with the North Area (NA), to which the beam to date has always been extracted using a resonant extraction technique. For new proposed short- and long-baseline neutrino experiments, a fast single turn extraction to this experimental area is required. As there are no kickers in LSS2, and the integration of any new kickers with the existing electrostatic septum would be problematic, a solution has been developed to fast extract the beam using non-local extraction with other SPS kickers. Two different kicker systems have been used, the injection kicker in LSS1 and the stronger extraction kicker in LSS6 to extract 100 and 440 GeV beam, respectively. For both solutions a large emittance beam was extracted after 5 or 9 full betatron periods. The concept and simulation details are presented with the analysis of the aperture and beam loss considerations and experimental results collected during a series of beam tests.

  15. SLIM (secondary emission monitor for low interception monitoring) an innovative non-destructive beam monitor for the extraction lines of a hadrontherapy centre

    International Nuclear Information System (INIS)

    Gibson, P.N.; Holzwarth, U.; Abbas, K.

    2005-01-01

    Real time monitoring of hadron therapy beam intensity and profile is a critical issue for the optimisation of dose delivery to carcinogenic tissue, patient safety and operation of the accelerator complex. For this purpose an innovative beam monitor, SLIM (Secondary electron emission for Low Interception Monitoring) is being developed in the framework of the EC-funded SUCIMA (Silicon Ultra-fast Cameras for electrons and gamma sources In Medical Application) project. The detector system is based on the secondary emission of electrons by a non-perturbative, sub-micron thick Al foil placed directly in the extracted beam path. The secondary electrons, accelerated by an electrostatic focusing system, are detected by a monolithic silicon position-sensitive sensor, which provides the beam intensity and its position with a precision of 1 mm at 10 kHz frame rate. The results of the laboratory tests of the first system prototype with thermoionic electrons emitted from a hot Tungsten wire are presented together with the measurements performed on a low intensity hadron beam at the Cyclotron of the Joint Research Centre in Ispra. (author)

  16. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  17. Design of fast kickers for the ISABELLE beam abort system

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Montemurro, P.A.; Baron, J.

    1981-01-01

    The ISA beam abort (extraction) system must be highly efficient, in the sense of producing minimum beam loss, and reliable to prevent serious damage to accelerator components by the circulating high-energy beams. Since the stored beams will be debunched, the low-loss requirement can be met only with ultra-thin extraction septa and/or fast-acting kickers. This paper examines the design of the ISA extraction kickers subject to a set of extraction channel constraints and a given maximum working voltage. Expressions are derived for determining system parameters for both a lumped parameter magnet and a delay-line magnet. Using these relationships, design parameters are worked out for several possible system configurations. The paper also describes the construction of a full-scale prototype module of the kicker and summarizes the preliminary test results obtained with the module

  18. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  19. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA

    International Nuclear Information System (INIS)

    Zander, Sven

    2013-10-01

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  20. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  1. The Booster to AGS beam transfer fast kicker systems

    International Nuclear Information System (INIS)

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented

  2. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  3. Polarimeters for the AGS polarized-proton beam

    International Nuclear Information System (INIS)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed

  4. Cyclotrons with fast variable and/or multiple energy extraction

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2013-10-01

    Full Text Available We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators. If one uses reverse bends between the sectors (instead of or in combination with drifts and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H_{2}^{+}, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H_{2}^{+} beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS, this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field

  5. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1992-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long-pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle energy distributions in large, dense, ignited tokamaks such as ITER

  6. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1993-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle distributions in large, dense, ignited tokamaks such as ITER

  7. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  8. Production of radioactive molecular beams for CERN-ISOLDE

    CERN Document Server

    AUTHOR|(SzGeCERN)703149; Kröll, Thorsten

    SOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10^11 ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computanional techniques have been used.

  9. Novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    Directory of Open Access Journals (Sweden)

    Andrea Franchi

    2015-07-01

    Full Text Available With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fast-pulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the incoming or outgoing beam.

  10. The energy stabilization for the SLC scavenger beam

    International Nuclear Information System (INIS)

    Hsu, I.; Browne, M.; Himel, T.; Humphrey, R.; Jobe, K.; Ross, M.; Pellegrin, J.L.; Seeman, J.

    1991-01-01

    The energy of the SLC scavenger beam which is used to produce positrons must be carefully maintained so that the beam can be transported through the collimators in the dispersive region of the extraction line which leads from the Linac to the positron target. A feedforward control loop has been developed to compensate the energy fluctuations due to the beam intensity fluctuations. The loop detects the beam intensities in the damping rings and then calculates how much energy needs to be compensated due to beam loading effects. The energy is corrected by adjusting the acceleration phases of two sets of klystrons right before the extraction. Because there is feedback loop using the same controls, their interaction needs to be carefully treated. This paper presents an overview of the feedforward algorithms

  11. The energy stabilization for the SLC scavenger beam

    International Nuclear Information System (INIS)

    Hsu, Ian; Browne, M.; Himel, T.; Humphrey, R.; Jobe, K.; Ross, M.; Pellegrin, J.L.; Seeman, J.

    1990-08-01

    The energy of the SLC scavenger beam which is used to produce positrons must be carefully maintained so that the beam can be transported through the collimators in the dispersive region of the extraction line which leads from the Linac to the positron target. A feedforward control loop has been developed to compensate the energy fluctuations due to the beam intensity fluctuations. The loop detects the beam intensities in the damping rings and then calculates how much energy needs to be compensated due to beam loading effects. The energy is corrected by adjusting the acceleration phases of two sets of klystrons right before the extraction. Because there is feedback loop using the same controls, their interaction needs to be carefully treated. This paper presents an overview of the feedforward algorithms. 3 figs

  12. Tailoring phase-space in neutron beam extraction

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaumer, S. [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Brandl, G. [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Stahn, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Panzner, T. [Material Science and Simulations, Neutrons and Muons, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Böni, P. [Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)

    2015-09-01

    In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.

  13. Gas utilization in the Tokamak Fusion Test Reactor neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Jones, T.T.C.

    1989-01-01

    Measurements of gas utilization were performed using hydrogen and deuterium beams in the Tokamak Fusion Test Reactor (TFTR) neutral beam test beamline to study the feasibility of operating tritium beams with existing ion sources under conditions of minimal tritium consumption. (i) It was found that the fraction of gas molecules introduced into the TFTR long-pulse ion sources that are converted to extracted ions (i.e., the ion source gas efficiency) was higher than with previous short-pulse sources. Gas efficiencies were studied over the range 33%--55%, and its effect on neutralization of the extracted ions was studied. At the high end of the gas efficiency range, the neutral fraction of the beam fell below that predicted from room-temperature molecular gas flow (similar to observations at the Joint European Torus). (ii) Beam isotope change studies were performed. No extracted hydrogen ions were observed in the first deuterium beam following a working gas change from H 2 to D 2 . There was no arc conditioning or gas injection preceding the first beam extraction attempt. (iii) Experiments were also performed to determine the reliability of ion source operation during the long waiting periods between pulses that are anticipated during tritium operation. It was found that an ion source conditioned to 120 kV could produce a clean beam pulse after a waiting period of 14 h by preceding the beam extraction with several acceleration voltage/filament warm-up pulses. It can be concluded that the operation of up to six ion sources on tritium gas should be compatible with on-site inventory restrictions established for D--T, Q = 1 experiments on TFTR

  14. Simulation study on control of spill structure of slow extracted beam from a medical synchrotron with feed-forward and feedback using a fast quadruple magnet and RF-knockout system

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Ryo; Nakanishi, Tetsuya, E-mail: nakanishi.tetsuya@nihon-u.ac.jp

    2017-02-21

    A feedback control of the spill structure for the slow beam extraction from the medical synchrotron using a fast quadruple and radio frequency (RF)-knockout (QAR method) is studied to obtain the designed spill structure. In addition the feed-forward control is used so that the feedback control is performed effectively. In this extraction method, the spill of several ms are extracted continuously with an interval time of less than 1 ms. Beam simulation showed that a flat spill structure was effectively obtained with feed-forward and feedback control system as well as a step-wise structure which is useful for the shortening of an irradiation time in a spot scanning operation. The effect of current ripples from main quadruple magnet's power supplies could be also reduced with the feedback control application.

  15. Upgrade of the LHC Beam Dumping Protection Elements

    CERN Document Server

    Weterings, W; Balhan, B; Borburgh, J; Goddard, B; Maglioni, C; Versaci, R

    2012-01-01

    The Beam Dumping System for the Large Hadron Collider comprises for each ring a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred meters further downstream, an absorber block. A mobile diluter (TCDQ) protects the superconducting quadrupole immediately downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters, in case of a beam dump that is not synchronized with the particle free gap or a spontaneous firing of the extraction kickers. Simulations have shown that an asynchronous dump of a 7 TeV nominal beam into the TCDQ absorber blocks could damage it. This paper describes the proposed changes to this device in order to maintain the protection for the downstream elements while reducing the risk of damaging the TCDQ in case of such a beam loss.

  16. Design study of longitudinal dynamics of the drive beam in 1 TeV relativistic klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Yu, S.S.; Sessler, A.M.

    1994-10-01

    In this paper the authors present a design study on the longitudinal dynamics of a relativistic klystron two-beam accelerator (RK-TBA) scheme which has been proposed as a power source candidate for a 1 TeV next linear collider (NLC). They address the issue of maintaining stable power output at desired level for a 300-m long TBA with 150 extraction cavities and present their simulation results to demonstrate that it can be achieved by inductively detuning the extraction cavities to counter the space charge debunching effect on the drive beam. They then carry out simulation study to show that the beam bunches desired by the RK-TBA can be efficiently obtained by first chopping an initially uniform beam of low energy into a train of beam bunches with modest longitudinal dimension and then using the open-quotes adiabatic captureclose quotes scheme to bunch and accelerate these beam bunches into tight bunches at the operating energy of the drive beam. The authors have also examined the open-quotes after burnerclose quotes scheme which is implemented in their RK-TBA design for efficiency enhancement

  17. Negative-ion-beam generation with the ORNL SITEX source

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.; Kim, J.

    1982-05-01

    Parametric studies were made on a hot cathode reflex discharge H - Surface Ionization source with Transverse Extraction (SITEX) in both the pure hydrogen and the mixed hydrogen-cesium mode. Extraction current density, beam current, gas efficiency, extracted electron-to-H - current ratio, heavy negative ion impurities, optics, and long pulse operation were investigated as a function of time, arc voltage, arc current, converter voltage, H 2 gas flow, cesium feed rate, and plasma generator geometries. Initial results of the research were an extracted H - beam current density of 56 mA/cm 2 at 23 mA for 5 s pulses and, gas efficiency of 3%, theta/sub perpendicular/ (1/e) approx. 2 +- 1 0 , theta/sub parallel/ (1/e) approx. 1 +- 1 0 , at a beam energy of 25 keV. Negative heavy ion beam impurities were reduced to - ions are produced prinicpally by positive ion surface conversion using elemental cesium fractional monolayer coverage on a molybdenum converter substrate, which is biased negatively with respect to the anode

  18. Design study of a microwave driver for a Relativistic Klystron Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Houck, T.L.

    1993-05-01

    In two-beam accelerators, the reacceleration of a modulated drive beam can enable high conversion efficiency of electron beam energy to rf energy. However, the stability issues involved with the transport of high current electron beams through rf extraction structures and induction accelerator cells are critical. The author reports on theoretical studies and computer simulations of a two-beam accelerator design using traveling-wave extraction structures. Specific issues addressed include regenerative and cumulative transverse instabilities

  19. The injection and extraction of SSRF booster

    International Nuclear Information System (INIS)

    Li Yuan; Li Haohu; Liu Guimin; Li Deming

    2008-01-01

    The layout of injection and extraction system were introduced in this paper. The horizontal and vertical injection acceptance are about 23 πmm·mrad and 37 πmm·mrad, respectively, while emittance of the injected beam is 9 πmm·mrad (3σ). This ensures the high injection efficiency. Three slow kickers can form a good bump. The inside position of the entrance of septum is set to 15 mm, where the bumped beam and the extraction beam are 10 mm and 22 mm, respectively, far from the booster central orbit. (authors)

  20. Neutral Beam Injection for Plasma and Magnetic Field Diagnostics

    International Nuclear Information System (INIS)

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton, Fred

    2007-01-01

    At the Lawrence Berkeley National Laboratory (LBNL) a diagnostic neutral beam injection system for measuring plasma parameters, flow velocity, and local magnetic field is being developed. High proton fraction and small divergence is essential for diagnostic neutral beams. In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller) elliptical beam spot at 2.5 m from the end of the extraction column is produced. The beam will deliver up to 5 A of hydrogen beam to the target with a pulse width of ∼1 s, once every 1-2 min. The H1+ ion species of the hydrogen beam will be over 90 percent. For this application, we have compared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antenna behind a dielectric RF-window. The second one uses an internal antenna in similar ion source geometry. The source needs to generate uniform plasma over a large (8 cm x 5 cm) extraction area. We expect that the ion source with internal antenna will be more efficient at producing the desired plasma density but might have the issue of limited antenna lifetime, depending on the duty factor. For both approaches there is a need for extra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator material such as quartz that has been observed to generate plasma with higher atomic fraction than sources with metal walls. The ion beam will be extracted and accelerated by a set of grids with slits, thus forming an array of 6 sheet-shaped beamlets. The multiple grid extraction will be optimized using computer simulation programs. Neutralization of the beam will be done in neutralization chamber, which has over 70 percent neutralization efficiency

  1. Production of radioactive molecular beams for CERN-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, Christoph

    2015-06-15

    ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10{sup 11} ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computational techniques have been used.

  2. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  3. The latest development of EAST neutral beam injector

    International Nuclear Information System (INIS)

    Hu Chundong; Xu Yongjian

    2014-01-01

    As the first full superconducting non-circular cross section Tokomak in the world, EAST is used to explore the forefront physics and engineering issues on the construction of Tokomak fusion reactor. Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, a set of neutral beam injector (4∼8 MW, 10∼100 s)will be built and operational in 2014. The paper presents the latest development of EAST neutral beam injector and the latest experiment results of long pulse beam extraction and high power beam extraction are reported, those results show that all targets reach or almost reach the design targets. All these will lay a solid foundation for the achievement of plasma heating and current drive for EAST in 2014. (authors)

  4. Monitoring external beam radiotherapy using real-time beam visualization

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Cesare H. [Department of Mechanical Engineering and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  5. Correlation of beam loss to residual activation in the AGS

    International Nuclear Information System (INIS)

    Brown, K.A.

    1991-01-01

    Studies of beam loss and activation at the AGS have provided a better understanding of measurements of beam loss and how they may be used to predict activation. Studies have been done in which first order correlations have been made between measured beam losses on the distributed ionization chamber system in the AGS and the health physics recorded residual activation. These studies have provided important insight into the ionization chamber system, its limitations, and its usefulness in the prediction of activation based on monitored beam loss. In recent years the AGS has run high intensity protons primarily for rare kaon decay experiments. In this mode of running the AGS typically accelerates beam from an injection momentum of 0.644 GeV/c up to a slow extracted beam (SEB) momentum of 24.2 GeV/c. The beam intensities are on the order of 4.5 x 10 13 protons per AGS cycle at injection to as high as 1.9 x 10 13 protons per AGS cycle at extraction. Residual activation varies around the AGS ring from the order of 5 mR/hour to levels of the order at 5 R/hour. The highest levels occur around the AGS beam catcher and the extraction equipment

  6. Detail design of the beam source for the SPIDER experiment

    International Nuclear Information System (INIS)

    Marcuzzi, D.; Agostinetti, P.; Dalla Palma, M.; Degli Agostini, F.; Pavei, M.; Rizzolo, A.; Tollin, M.; Trevisan, L.

    2010-01-01

    The ITER Neutral Beam Test Facility (PRIMA-Padova Research on Injector Megavolt Accelerated) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size plasma source with low voltage extraction called SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and a full size neutral beam injector at full beam power called MITICA (Megavolt ITER Injector Concept Advancement). SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H - and in a later stage D - ions) from an ITER size ion source. The main requirements of this experiment are a H - /D - current of approximately 70 A/50 A and an energy of 100 keV. This paper presents an overview of the SPIDER beam source design, with a particular focus on the main design choices, aiming at reaching the best compromise between physics, optics, thermo-mechanical, cooling, assembly and electrical requirements.

  7. Properties of H- and D- beams from magnetron and Penning sources

    International Nuclear Information System (INIS)

    Sluyters, T.; Kovarik, V.

    1979-01-01

    The quality of negative hydrogen isotope beams are evaluated after extraction from magnetron and Penning sources. The general conclusions of these measurements are that: (a) the beam quality from these plasma sources are adequate for the transport of high current negative ion beams in bending magnets; (b) there is evidence of practically complete space charge neutralization in the drift space beyond the extractor; (c) the beam performance from the Penning source appears to be better compared with the magnetron source; and (d) it is likely that the high electric field gradient and a concave ion emission boundary are responsible for a beam cross-over near the anode aperture, which causes beam divergence practically independent of the extraction geometry

  8. LEAR: antiproton extraction lines

    CERN Multimedia

    Photographic Service

    1992-01-01

    Antiprotons, decelerated in LEAR to a momentum of 100 MeV/c (kinetic energy of 5.3 MeV), were delivered to the experiments in an "Ultra-Slow Extraction", dispensing some 1E9 antiprotons over times counted in hours. Beam-splitters and a multitude of beam-lines allowed several users to be supplied simultaneously.

  9. Slow extraction from the IHEP accelerator by internal target scattering

    International Nuclear Information System (INIS)

    Maksimov, A.V.

    1994-01-01

    The existing slow extraction system is not able to satisfy the required quality of the beam time structure in the intensity region 10 10 - 10 11 ppp. Calculations on simulation of slow extraction by internal target scattering are presented. Two regime of slow extraction are analysed: nonresonant and resonant extraction by target scattering. Resonant extraction by target scattering is able to ensure intensity of extracted beam up to 10 11 . The agreement between calculations and experimental data is good enough. The calculation of extraction possibility by thin W-target scattering are also presented. In this case the extraction efficiency is about 85%. 15 refs., 6 figs

  10. Works on a Moeller polarimeter for the extracted ELSA beam

    International Nuclear Information System (INIS)

    Reuter, R.

    1990-09-01

    In future experiments with a polarized electron beam are planned at ELSA. The polarization degree of longitudinally polarized electrons can be measured by employing the spin dependence of the elastic electron-electron cross section (Moeller-scattering). Due to their lower energy the Moeller electrons can be separated from the primary beam by a dipol magnet which is part of the beam line. In a suitable apperatus the Moeller electrons can be detected. To enable a comparison between the measured and theoretical counting rate, it was necessary to measure the field of the dipol magnet. The field chart was used in a Monte-Carlo-simulation of the experiment. (orig.) [de

  11. Antigenotoxic potential of Asparagus racemosus root extract against electron beam radiation induced micronuclei formation in Swiss albino mice

    International Nuclear Information System (INIS)

    Bhandary, B. Satheesh Kumar; Sharmila, K.P.; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To evaluate the antigenotoxic potential of Asparagus Racemosus Root ethanolic extract (ARE) against electron beam radiation induced micronuclei formation in Swiss albino mice. Micronucleus assay was performed in the bone marrow of Swiss albino mice according to the method of Hosseinimehr et al., 2003. The experimental animals were orally administered 200 mg/kg body weight of ARE once daily for 15 consecutive days. At the end of experimental period, the animals were euthanized and the bone marrow was collected from the femur. Control (C), Radiation control (RC) and drug control (DC) group was also maintained. The number of radiation induced Micronucleated Polychromatic Erythrocytes (MnPCE) and Micronucleated Normochromatic Erythrocytes were decreased in the ARE treated mice which was statistically significant (p<0.05) compared to radiation control group. Present findings demonstrate the antigenotoxic potential of ARE against electron beam radiation induced micronuclei formation which may be attributed to scavenging of radiation-induced free radicals

  12. Experimental approach to high power long duration neutral beams

    International Nuclear Information System (INIS)

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  13. Study on the adaptation of the VICKSI-accelerator to the beam guidance system. Model of a target position with a vertical beam. Pt. 1, 2

    International Nuclear Information System (INIS)

    Hinterberger, F.

    1974-09-01

    The problem of matching an extracted beam onto the entrance slit of a monochromator system is studied under the special assumption of very restricted free space. The investigation refers to the matching of the VICKSI beam. Systems of 2, 3 and 4 quadrupole lenses are discussed. The constraints which have to be imposed upon the phase space distribution of the extracted beam are established in a general form. In order to realize a target area with vertical incoming beam two designs are proposed which can be combined with the planned beam handling system. Each one of the two designs provides the additional installation of only one 90 0 -bending magnet. It is shown that the ionoptical problem to focus the beam onto the target can be solved in a satisfactory manner. (orig.) [de

  14. I. The theory of aberrations of quadrupole focusing arrays. II. Ion optical design of high quality extracted synchrotron beams with application to the bevatron

    Energy Technology Data Exchange (ETDEWEB)

    Meads, Jr, Philip Francis [Univ. of California, Berkeley, CA (United States). Applied Science and Technology

    1963-05-15

    In Part One they formulate in a general way the problem of analyzing and evaluating the aberrations of quadrupole magnet beam systems, and of characterizing the shapes and other properties of the beam envelopes in the neighborhood of foci. They consider all aberrations, including those due to misalignments and faulty construction, through third order in small parameters, for quadrupole beam systems. One result of this study is the development of analytic and numerical techniques for treating these aberrations, yielding useful expressions for the comparison of the aberrations of different beam systems. A second result of this study is a comprehensive digital computer program that determines the magnitude and nature of the aberrations of such beam systems. The code, using linear programming techniques, will adjust the parameters of a beam system to obtain specified optical properties and to reduce the magnitude of aberrations that limit the performance of that system. They examine numerically, in detail, the aberrations of two typical beam systems. In Part Two, they examine the problem of extracting the proton beam from a synchrotron of 'H' type magnet construction. They describe the optical studies that resulted in the design of an external beam from the Bevatron that is optimized with respect to linear, dispersive, and aberration properties and that uses beam elements of conservative design. The design of the beam is the result of the collaboration of many people representing several disciplines. They describe the digital computer programs developed to carry out detailed orbit studies which were required because of the existence of large second order aberrations in the beam.

  15. Transient Thermo-Mechanical Analysis of the TPSG4 Beam Diluter

    CERN Document Server

    Goddard, B; Herrera-Martínez, A; Kadi, Y; Marque, S

    2002-01-01

    A new extraction channel is being built in the Super Proton Synchrotron (SPS) Long Straight Section 4 (LSS4) to transfer proton beams to the Large Hadron Collider (LHC) and also to the CERN Neutrino to Gran Sasso (CNGS) target. The beam is extracted in a fast mode during a single turn. For this purpose a protection of the MSE copper septum coil, in the form of a beam diluting element placed upstream, will be required to cope with the new failure modes associated with the fast extraction operation. The present analysis focuses on the thermo-mechanical behavior of the proposed TPSG4 diluter element irradiated by a fast extracted beam (up to 4.9 x 10^13 protons per 7.2 mus pulse) from the SPS. The deposited energy densities, estimated from primary and secondary particle simulations using the high-energy particle transport code FLUKA, were converted to internal heat generation rates taken as a thermal load input for the finite-element engineering analyses code ANSYS. According to the time dependence of the extrac...

  16. Power secant method applied to natural frequency extraction of Timoshenko beam structures

    Directory of Open Access Journals (Sweden)

    C.A.N. Dias

    Full Text Available This work deals with an improved plane frame formulation whose exact dynamic stiffness matrix (DSM presents, uniquely, null determinant for the natural frequencies. In comparison with the classical DSM, the formulation herein presented has some major advantages: local mode shapes are preserved in the formulation so that, for any positive frequency, the DSM will never be ill-conditioned; in the absence of poles, it is possible to employ the secant method in order to have a more computationally efficient eigenvalue extraction procedure. Applying the procedure to the more general case of Timoshenko beams, we introduce a new technique, named "power deflation", that makes the secant method suitable for the transcendental nonlinear eigenvalue problems based on the improved DSM. In order to avoid overflow occurrences that can hinder the secant method iterations, limiting frequencies are formulated, with scaling also applied to the eigenvalue problem. Comparisons with results available in the literature demonstrate the strength of the proposed method. Computational efficiency is compared with solutions obtained both by FEM and by the Wittrick-Williams algorithm.

  17. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  18. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  19. Study of electron beam production by a plasma focus

    International Nuclear Information System (INIS)

    Smith, J.R.; Luo, C.M.; Rhee, M.J.; Schneider, R.F.

    1983-01-01

    A preliminary investigation of the electron beam produced by a plasma focus device using a current charged transmission line is described. Electron beam currents as high as 10 kA were measured. Interaction of the extracted beam and the filling gas was studied using open shutter photography

  20. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    Science.gov (United States)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  1. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Directory of Open Access Journals (Sweden)

    C. A. Valerio-Lizarraga

    2018-03-01

    Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  2. Nucleon and meson beams of the JINR phasotron for fundamental and applied investigations

    International Nuclear Information System (INIS)

    Abazov, V.M.; Andreev, G.A.; Bragin, A.N.

    1990-01-01

    The paper throughly describes the medical beam lines and reports the results obtained in measurement of the physical and dosimetric characteristics of high energy neutron, meson and proton beams obtained at the JINR phasotron in the last three years. It is pointed out that for the present intensity of the extracted proton beam of the JINR phasotron 2.0-2.5 μA the meson beam intensities 10 3 s- 1 (π + -mesons) and 3x10 7 s -1 (π - -mesons) have been achieved with a wide-angle magnetic lens. These values correspond to the designed parameters of the facility 'F' meson beams for the extracted proton beam intensity planned to be 25 μA. Besides, a beam of so-called 'surface μ-muons (energy about 4 MeV) with the intensity 10 4 s -1 has been obtained. The achieved meason beam intensities make the possibilities of the JINR phasotron as high as those of small meson factories with the equivalent extracted proton beam current 20-25 μA and ensures progress both in meson physics studies and in fulfilment of some applied tasks. 20 refs.; 7 figs.; 8 tabs

  3. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  4. Overview of the JET Neutral Beam Enhancement Project

    International Nuclear Information System (INIS)

    Ciric, D.

    2006-01-01

    Three objectives of the JET Neutral Beam Enhancement (NBE) are a) to increase the NB power delivered to JET from 25 MW to >34 MW; b) to extend the beam pulse duration from 10 to 20 seconds and c) to improve availability and reliability of the JET NB system. The project is based on the upgrade of the two existing JET neutral injectors, each equipped with eight positive ion neutral injectors (PINIs). The main increase of the NB power will come from the rearrangement of the ion source permanent magnets from the present supercusp to pure chequerboard configuration, thus eliminating the magnetic filter used to limit primary electrons reaching the extraction region. This modification considerably increases the fraction of molecular ions, which leads to higher neutralisation efficiency. Further increase in the injected neutral beam power will result from higher beam transmission, the consequence of high uniformity and superior properties of the beams extracted from chequerboard ion sources. Finally, the maximum extracted deuterium ion current will be increased from the present ∼ 55 A to ∼ 65 A. This will be accomplished by the minor modification of the extraction aperture diameter and the accelerator gap. All PINIs will be operated at the same acceleration voltage (125 kV). The increase of the beam pulse length from 10 to 20 seconds requires modification or replacement of inter-pulse water cooled beamline components. The most challenging among these tasks is the replacement the duct liner, which protects the vessel from re-ionised beam power at the beam entry into the torus. It will be replaced with an actively cooled liner based on proven hypervapotron technology. To improve the overall reliability of the JET neutral beam system and to allow extraction of 65 A of deuterium ion current, eight existing 80 kV/60 A high voltage power supplies (HVPS) will be replaced with four new 130 kV/130 A units. This means that, after the completion of the NBE project, 75% of the JET

  5. COMMISSIONING RESULTS OF SLOW EXTRACTION OF HEAVY IONS from THE AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; BELLAVIA, S.; BINELLO, S.; BRELSFORD, B.; DUMONT, D.; ENG, W.; GARDNER, C.; GASSNER, D.; GLENN, J.W.; HAMMONS, L.; HOCK, J.; HOFF, L.; HUTCHINSON, E.; JAMILKOWSKI, J.; KLING, N.; KOTLYAR, Y.; KRISHOCK, A.; LOCKEY, R.; MAPES, M.; MARNERIS, I.; MARR, G.; MCNERNEY, A.; MEYER, A.; MORRIS, J.; NAYLOR, C.; NEMESURE, S.; PHILLIPS, D.; RUSEK, A.; RYAN, J.; SHREY, T.; SNYDSTRUP, L.; TSOUPAS, N.; VANKUIK, B.; ZAHARIOU-COHEN, K.; ZENO, K.

    2003-01-01

    Brookhaven's AGS Booster has been modified to deliver slow extracted beam to a new beam line, the NASA Space Radiation Laboratory (NSRL). This facility was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The design of the resonant extraction system has been described in [1]. A more detailed description, which includes predictions of the slow extracted beam time structure has been described in [2]. In this report we will present results of the system commissioning and performance

  6. Polarized deuteron beam at the Dubna synchrophasotron

    International Nuclear Information System (INIS)

    Ershov, V.P.; Fimushkin, V.V.; Gai, G.I.

    1990-01-01

    The experimental equipment and setup used to accelerate a polarized deuteron beam at the Dubna synchrophasotron are briefly described. Basic characteristics of the cryogenic source of polarized deuterons POLARIS are presented. The results of measurements of the intensity of the accelerated beam, vector and tensor polarization at the output of the linac LU-20, inside the synchrophasotron ring and in the extracted beam are given. 16 refs.; 9 figs.; 3 tabs

  7. BNL neutral beam development group. Progress report FY 1980

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1981-01-01

    The objective of the BNL Neutral Beam Program is to develop a 250 keV neutral beam system suitable for heating and other experiments in toroidal or mirror plasma devices. The system is based on acceleration and neutralization of negative hydrogen ions produced in and directly extracted from a source. The objective of source studies is to develop a module delivering 10 A of negative ion currents, with pulse lengths ranging from several seconds duration up to a steady-state operation. The extracted current density should be several hundred mA/cm 2 , and the source should operate with power and gas efficiencies acceptable from the beam line point of view. The objective of beam extraction and transport studies is to design a system matching the 10 A source module to the acceleration stage. The 250 keV acceleration studies cover several options, including a d.c. close-coupled system, a large aperture d.c. system matched to the source by a bending magnet, a multiaperture d.c. system following a multiaperture strong focusing transport line, and a MEQALAC structure

  8. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    Science.gov (United States)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  9. Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump

    International Nuclear Information System (INIS)

    Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.

    1993-01-01

    The 300μs, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/μs for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/μs should minimize hydrodynamic effects. 3D calculations support this

  10. Method for energy recovery of spent ERL beams

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy

    2018-01-16

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  11. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  12. Automated cyclotron tuning using beam phase measurements

    International Nuclear Information System (INIS)

    Timmer, J.H.; Roecken, H.; Stephani, T.; Baumgarten, C.; Geisler, A.

    2006-01-01

    The ACCEL K250 superconducting cyclotron is specifically designed for the use in proton therapy systems. The compact medical 250 MeV proton accelerator fulfils all present and future beam requirements for fast scanning treatment systems and is delivered as a turn key system; no operator is routinely required. During operation of the cyclotron heat dissipation of the RF system induces a small drift in iron temperature. This temperature drift slightly detunes the magnetic field and small corrections must be made. A non-destructive beam phase detector has been developed to measure and quantify the effect of a magnetic field drift. Signal calculations were made and the design of the capacitive pickup probe was optimised to cover the desired beam current range. Measurements showed a very good agreement with the calculated signals and beam phase can be measured with currents down to 3 nA. The measured phase values are used as input for a feedback loop controlling the current in the superconducting coil. The magnetic field of the cyclotron is tuned automatically and online to maintain a fixed beam phase. Extraction efficiency is thereby optimised continuously and activation of the cyclotron is minimised. The energy and position stability of the extracted beam are well within specification

  13. Preliminary design of the pulse generator for the CLIC damping ring extraction system

    CERN Document Server

    Holma, Janne; Ovaska, Seppo

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  14. Preliminary results of spatially resolved ECR ion beam profile investigations

    International Nuclear Information System (INIS)

    Panitzsch, L.; Stalder, M.; Wimmer-Schweingruber, R.F.

    2012-01-01

    The profile of an ion beam produced in an Electron Cyclotron Resonance Ion Source (ECRIS) can vary greatly depending on the source settings and the ion-optical tuning. Strongly focussed ion beams form circular structures (hollow beams) as predicted by simulations and observed in experiments. Each of the rings is predicted to be dominated by ions with same or at least similar m/q-ratios due to ion-optical effects. To check this we performed a series of preliminary investigations to test the required tuning capabilities of our ion source. This includes beam focussing (A) and beam steering (B) using a 3D-movable extraction. Having tuned the source to deliver a beam of strongly focussed ions of different ion species and having steered this beam to match the transmittance area of the sector magnet we also recorded the ion charge state distribution of the strongly focussed beam profile at different, spatially limited positions (C). The preliminary results will be introduced within this paper: it appears that our 3D-movable extraction is very efficient to steer and to focus the beam strongly. The paper is followed by the slides of the presentation. (authors)

  15. arXiv Cyclotrons: Magnetic Design and Beam Dynamics

    CERN Document Server

    Zaremba, Simon

    Classical, isochronous, and synchro-cyclotrons are introduced. Transverse and longitudinal beam dynamics in these accelerators are covered. The problem of vertical focusing and iscochronism in compact isochronous cyclotrons is treated in some detail. Different methods for isochronization of the cyclotron magnetic field are discussed. The limits of the classical cyclotron are explained. Typical features of the synchro-cyclotron, such as the beam capture problem, stable phase motion, and the extraction problem are discussed. The main design goals for beam injection are explained and special problems related to a central region with an internal ion source are considered. The principle of a Penning ion gauge source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different methods of (axial) injection are briefly outlined. Different solutions for beam extraction are described. These include the internal target, extracti...

  16. Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, Z.

    2009-11-01

    The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studied for hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found. (orig.)

  17. Beam diagnostic tools for the negative hydrogen ion source test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, Riccardo; Fantz, Ursel; Franzen, Peter; Froeschle, Markus; Heinemann, Bernd; Riedl, Rudolf; Ruf, Benjamin; Wuenderlich, Dirk

    2013-01-01

    Highlights: ► We present an overview of beam diagnostic tools foreseen for the new testbed ELISE. ► A sophisticated diagnostic calorimeter allows beam profile measurement. ► A tungsten wire mesh in the beam path provides a qualitative picture of the beam. ► Stripping losses and beam divergence are measured by H α Doppler shift spectroscopy. -- Abstract: The test facility ELISE, presently being commissioned at IPP, is a first step in the R and D roadmap for the RF driven ion source and extraction system of the ITER NBI system. The “half-size” ITER-like test facility includes a negative hydrogen ion source that can be operated for 1 h. ELISE is expected to extract an ion beam of 20 A at 60 kV for 10 s every 3 min, therefore delivering a total power of 1.2 MW. The extraction area has a geometry that closely reproduces the ITER design, with the same width and half the height, i.e. 1 m × 1 m. This paper presents an overview of beam diagnostic tools foreseen for ELISE. For the commissioning phase, a simple beam dump with basic diagnostic capabilities has been installed. In the second phase, the beam dump will be substituted by a more sophisticated diagnostic calorimeter to allow beam profile measurement. Additionally, a tungsten wire mesh will be introduced in the beam path to provide a qualitative picture of beam size and position. Stripping losses and beam divergence will be measured by means of H α Doppler shift spectroscopy. An absolute calibration is foreseen in order to measure beam intensity

  18. SNS EXTRACTION KICKER POWER SUPPLY PROTOTYPE TEST

    International Nuclear Information System (INIS)

    MI, J.L.; SANDBERG, J.; SANDERS, R.; SOUKAS, A.; ZHANG, W.

    2000-01-01

    The SNS (Spallation Neutron Source) accumulator ring Extraction System consists of a Fast kicker and a Lambertson Septum magnet. The proposed design will use 14 kicker magnets powered by an Extraction Kicker Power Supply System. They will eject the high power beam from the SNS accumulator ring into RTBT (Ring to Target Beam Tunnel) through a Lambertson Septum magnet. This paper describes some test results of the SNS Extraction Kicker power supply prototype. The high repetition rate of 60 pulse per second operation is the challenging part of the design. In the prototype testing, a 3 kA damp current of 700ns pulse-width, 200 nS rise time and 60 Hz repetition rate at 32 kV PFN operation voltage has been demonstrated. An Extraction kicker power supply system design diagram is depicted

  19. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  20. Performance requirements of the MedAustron beam delivery system

    CERN Document Server

    AUTHOR|(CDS)2073034

    The Austrian hadron therapy center MedAustron is currently under construction with patient treatment planned to commence in 2015. Tumors will be irradiated using proton and carbon ions, for which the steeply rising Bragg curve and finite range offer a better conformity of the dose to the geometrical shape of the tumor compared to conventional photon irradiation. The current trend is to move from passive scattering toward active scanning using a narrow pencil beam in order to reach an even better dose conformation and limit the need of patient specific hardware. The quality of the deposited dose will ultimately depend on the performance of the beam delivery chain: beam profile and extraction stability of the extracted beam, accuracy and ramp rate of the scanning magnet power supplies, and precision of the beam monitors used for verifying the delivered dose. With a sharp lateral penumbra, the transverse dose fall-off can be minimized. This is of particular importance in situations where the lesion is adjace...

  1. Generation of helical electron beams by a nonadiabatic gun

    International Nuclear Information System (INIS)

    Barroso, J.J.; Stellati, C.

    1996-01-01

    The design of a non-adiabatic gun to produce a 10A, 50kV hollow laminar electron beam for gyrotron applications is reported. The beam is extracted from the emitting ring in a direction parallel to the axial guide magnetic field and then propagates across the radial electric field in the anode gap. The electrons are thereby given a transverse velocity upon passing through the modulation anode region where an electrostatic pumping mechanism takes place, so that a considerable amount of the electron energy is converted to transverse kinetic energy. Such a beam extraction method gives rise to favourable features that are examined throughout the work. The dynamics of hollow electron beams with gyromotion propagating down a cylindrical drift tube are also analysed. Due to the action of the beam's self-space charge field, the transverse velocity spread has an oscillatory behaviour along the drift tube wherein the spatial automodulation period shortens with increasing current. Numerical simulation results indicate that even at a 10A beam current, the resulting transverse velocity spread is still less than the spread for a zero beam current. (UK)

  2. Beam Stability in the Drive-Beam Decelerator of CLIC Using Structures of High-Order Symmetry

    CERN Document Server

    Millich, Antonio; Schulte, Daniel

    1999-01-01

    The RF power necessary to accelerate the main beam of the Compact Linear Collider (CLIC) is produced by decelerating a high-current drive beam in Power Extraction and Transfer Structures (PETS). The reference structure is not cylindrically symmetric but has longitudinal waveguides carved into the inner surface. This gives rise to a transverse component of the main longitudinal mode which can not be damped, in contrast to the transverse dipole wake- field. The field is non-linear and couples the motion of the particles in the two planes. Limits of the stability of the decelerated beam are investigated for different structures.

  3. Beam-pointing error compensation method of phased array radar seeker with phantom-bit technology

    Directory of Open Access Journals (Sweden)

    Qiuqiu WEN

    2017-06-01

    Full Text Available A phased array radar seeker (PARS must be able to effectively decouple body motion and accurately extract the line-of-sight (LOS rate for target missile tracking. In this study, the real-time two-channel beam pointing error (BPE compensation method of PARS for LOS rate extraction is designed. The PARS discrete beam motion principium is analyzed, and the mathematical model of beam scanning control is finished. According to the principle of the antenna element shift phase, both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed, and the effect of BPE caused by phantom-bit technology (PBT on the extraction accuracy of the LOS rate is examined. A compensation method is given, which includes coordinate transforms, beam angle margin compensation, and detector dislocation angle calculation. When the method is used, the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle. The simulation results validate the proposed method.

  4. Calculation of injection and extraction orbits for the IPCR SSC

    International Nuclear Information System (INIS)

    Goto, A.; Yano, Y.; Kishida, N.; Nakanishi, N.; Wada, T.

    1982-01-01

    Calculations of beam trajectories in the injection and extraction systems for the IPCR SSC were done and the characteristics of those elements were determined. Beam centering for single turn extraction by use of first harmonic fields were also studied. The rather simple conditions at the injection point for a well-centered acceleration orbit are also discussed

  5. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    Science.gov (United States)

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  6. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  7. Analysis and calibration of the noise voltage between the damper plates used for beam diffusion during the crystal extraction experiment

    CERN Document Server

    Gyr, Marcel; Klem, J T; Louwerse, R; Milstead, I

    1995-01-01

    The analogue noise signal produced by a WAVETEK function generator, which is used to excite one of the horizontal dampers BDH 21437 or BDH 21451 for blowing up the beam during the crystal extraction MDs, has been analysed to determine its r.m.s. value as a function of the selected attenuation. The input/output characteristics of damper Nº 2 (BDH 21451) has been measured in order to calibrate the r.m.s. kicks (diffusion speed) which a particle experiences on its passage through the damper.

  8. Micro computer aided beam transport for the SF cyclotron

    International Nuclear Information System (INIS)

    Honma, Toshihiro; Yamazaki, Tsutomu.

    1984-01-01

    An improvement of the beam transport system for the SF cyclotron is described. The system was designed to handle on-line alignment of the beam extracted from the SF cyclotron onto the optical axis of the transport line. It also enables to measure the beam emittance. The measurement of the emittance parameters is in particular necessary to calculate the beam optics. The calculation has been modified to become easy to handle. With the help of the computer-aided on-line beam profile measurement system, the operation of the beam transport system is very subservient to shorten the beam-tuning time and to improve the beam-transmission efficiency and the quality. (author)

  9. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  10. Cesium-enhanced D sup - beam characteristics from a high-brightness volume source

    Energy Technology Data Exchange (ETDEWEB)

    Debiak, T.W. (Grumman Corporate Research Center, Bethpage, NY (USA))

    1991-05-01

    Previous experiments have demonstrated that the H{sup -} beam extracted from a volume ion source may increase by a factor of 4 or more when cesium vapor is introduced into the arc discharge chamber. We have extended these experiments to cesiated D{sup -} beams transported with and without space-charge neutralization by xenon gas. The D{sup -} results show qualitatively similar characteristics to those obtained with H{sup -}. In particular, a factor of almost 7 in current enhancement was obtained compared with noncesiated beams accompanied by a dramatic reduction in electron current. A study of the beam divergence as a function of extracted equivalent current showed that the divergence of the cesiated beams was larger than the uncesiated beams at the same equivalent current. Introduction of xenon gas at a partial pressure of 2.5x10{sup -5} Torr reduced the divergence of the cesiated beams to the value obtained for the uncesiated beams. (orig.).

  11. A standard 9MeV γ beam for detector calibration

    International Nuclear Information System (INIS)

    Troesch-Lasseur, G.; Bermann, F.; Gaulard, M.

    1975-01-01

    A γ capture irradiation device with beam extraction is being developed at Triton. The mean energy in the beam is 9MeV. The beam intensity has been determined from absorbed dose measurements according to ICRU specifications. The maximum dose rate taken as calibration standard is 125+-9rad/h [fr

  12. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  13. Analysis and optimization of the extracted ELSA beam at the Bonn ELAN experiment

    International Nuclear Information System (INIS)

    Breest, A.

    1989-09-01

    In 1987 the new electron-stretcher-ring ELSA came into operation. Before starting the first experiment at the electron scattering facility ELAN several detailed measurements on the external beam-line and the beam itself had to be performed. These measurements concerned the correct alignment and background studies and the emittance and time-structure (duty-cycle) of the ejected electron-beam. Finally the measurement of elastic electron-proton cross-sections showed that the beam and apparatus are well under control. (orig.) [de

  14. Injection and extraction techniques in circular accelerators

    International Nuclear Information System (INIS)

    Tang Jingyu

    2008-01-01

    Injection and extraction are usually the key systems in circular accelerators. They play important roles in transferring the beam from one stage acceleration to the other or to experimental stations. It is also in the injection and extraction regions where beam losses happen mostly. Due to the tight space and to reduce the perturbation to the circulating orbit, the devices are usually designed to meet special requirements such as compactness, small stray field, fast rise time or fall time, etc. Usual injection and extraction devices include septum magnets, kicker magnets, electrostatic deflectors, slow bump magnets and strippers. In spite of different accelerators and specification for the injection and extraction devices, many techniques are shared in the design and manufacturing. This paper gives a general review on the techniques employed in the major circular accelerators in China. (authors)

  15. Experimental evidence for multi-pass extraction with a bent crystal

    CERN Document Server

    Dehning, Bernd; Fidecaro, Giuseppe; Gyr, Marcel; Herr, Werner; Klem, J T; Scandale, Walter; Vuagnin, G; Weisse, E; Weisz, S; Møller, S P; Uggerhøj, Erik; Freund, A; Hustache, R; Carboni, G; Bussa, M P; Tosello, F

    1996-01-01

    The feasibility of extracting particles from the halo of a circulating proton beam using a bent silicon crystal has been demonstrated experimentally at the SPS for a beam energy of 120 GeV. Presently studies are conducted to understand the extraction mechanisms and the measured efficiencies. In particular the contribution of multi-pass extraction, where the particles can pass through the crystal many times before being channelled and extracted, is investigated. In a recent experiment, using a crystal especially fabricated with a finite amorphous layer on its surface, it has been proven that multi-pass extraction plays an important role. The experiment is described and the implication for further studies are discussed.

  16. The New SPS Extraction Channel for LHC and CNGS

    CERN Document Server

    Goddard, B; Schröder, G; Weterings, W; Uythoven, J

    2000-01-01

    The Large Hadron Collider (LHC) and CERN Neutrino to Gran Sasso (CNGS) projects require the construction of a new fast-extraction system in the long straight section LSS4 of the Super Proton Synchrotron (SPS) at CERN. A conventional DC septum magnet will be used, in conjunction with the installation of horizontal and vertical extraction bumpers, main quadrupoles with enlarged apertures, extraction kicker magnets and additional hardware protection, instrumentation, controls and electronics. The extraction channel must be able to accept the bright LHC proton beam at 450 GeV/c, and also the high intensity, large emittance fixed target CNGS proton beam at the nominal 400 GeV/c extraction momentum. This paper describes the extraction channel to be installed in 2003, and shows how the requirements for both the LHC and CNGS project can be met.

  17. A stable production of intense electron beam plasma with ion back stream

    International Nuclear Information System (INIS)

    Uramoto, Johshin.

    1975-12-01

    An intense electron beam is extracted without space charge limit from a dc plasma source along a magnetic field. The beam space charge is neutralized stably through back streaming of self-ionized ions from the beam extracting anode region where a neutral gas is fed locally. In Appendix I, a space charge free electron gun is designed under this neutralization method. In Appendix II, a dynamic discharge through a series resistance is described, where an operative mechanism of the well-known TP-D plasma is clarified. (auth.)

  18. 1.5 GeV/c multiturn shaving extraction and its transport line for the Brookhaven AGS

    International Nuclear Information System (INIS)

    Weng, W.T.; Blumberg, L.N.; Gill, E.; Soukas, A.; Witkover, R.L.; Egleman, E.; LoSecco, J.; Sulak, L.

    1979-01-01

    A system for fast shaving extraction at 1.5 GeV/c is implemented to extract the circulating beam in five turns. A numerical simulation is first carried out to determine the emittance and the rf structure of the extracted beam. This is followed by several machine study sessions which establish the optimal extraction configuration, confirm the emittance, and modify the transport line for low energy beam. Finally, a one-week run for the Neutrino Oscillation experiment demonstrates that the system is very stable and capable of delivering 7.5 x 10 12 p/sec with 70% extraction efficiency and 95% transport efficiency

  19. Measurements of Linac4 H$^{-}$ ion source beam with a magnetized Einzel lens electron dump

    CERN Document Server

    Midttun, O; Scrivens, R

    2014-01-01

    Linac4 is a part of the upgrade of CERN’s accelerator complex for increased luminosity in the LHC. A new system to extract the ion beam from the plasma generator has been designed and tested, in order to improve the reliability and beam optics of the pulsed H- ion source. This paper presents the successfully implemented extraction system and three different beam measurements. The simulations compare well to the measurements and show that the plasma density was too low for the extraction system design during the measurements.

  20. Commissioning status of the decelerator test beam line in CTF3

    CERN Document Server

    Adli, E; Lillestol, R; Olvegaard, M; Syratchev, I; Carrillo, D; Toral, F; Faus-Golfe, A; Garcia-Garrigos, J J; Kubyshin, Y; Montoro, G

    2010-01-01

    The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a FODO lattice with high precision BPM’s and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam provided by the CTF3 machine. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be injected into the test beam line. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 65 MeV and 1...

  1. A Magnetic Transport Middle Eastern Positron Beam

    International Nuclear Information System (INIS)

    Al-Qaradawi, I.Y.; Britton, D.T.; Rajaraman, R.; Abdulmalik, D.

    2008-01-01

    A magnetically guided slow positron beam is being constructed at Qatar University and is currently being optimised for regular operation. This is the first positron beam in the Middle East, as well as being the first Arabic positron beam. Novel features in the design include a purely magnetic in-line deflector, working in the solenoid guiding field, to eliminate un-moderated positrons and block the direct line of sight to the source. The impact of this all-magnetic transport on the Larmor radius and resultant beam characteristics are studied by SIMION simulations for both ideal and real life magnetic field variations. These results are discussed in light of the coupled effect arising from electrostatic beam extraction

  2. Ion beam characteristics of the controlatron/zetatron family of the gas filled neutron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.S.; Shope, L.A.; O' Neal, M.L.; Boers, J.E.; Bickes, R.W. Jr.

    1981-03-01

    A gas filled tube used to produce a neutron flux with the D(T,He/sup 4/)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100 mA. The characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50 kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density onto the target. The perveance of the beam is discussed. Maximum perveance values are 2 to 20 nanopervs. Tube focusing and neutron production characteristics are described.

  3. The CLIC Multi-Drive Beam Scheme

    CERN Document Server

    Corsini, R

    1998-01-01

    The CLIC study of an e+ / e- linear collider in the TeV energy range is based on Two-Beam Acceleration (TBA) in which the RF power needed to accelerate the beam is extracted from high intensity relativistic electron beams, the so-called drive beams. The generation, acceleration and transport of the high-intensity drive beams in an efficient and reliable way constitute a challenging task. An overview of a potentially very effective scheme is presented. It is based on the generation of trains of short bunches, accelerated sequentially in low frequency superconducting cavities in a c.w. mode, stored in an isochronous ring and combined at high energy by funnelling before injection by sectors into the drive linac for RF power production. The various systems of the complex are discussed.

  4. Beam extraction dynamics at the space-charge-limit of the high brightness E-XFEL electron source at DESY-PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ye; Gjonaj, Erion; Weiland, Thomas [TEMF, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2015-07-01

    The physics of the photoemission, as one of the key issues for successful operation of linac based free-electron lasers like the European X-ray Free Electron Laser (E-XFEL) and the Free-electron Laser in Hamburg (FLASH), is playing an increasingly important role in the high brightness DESY-PITZ electron source. We study photoemission physics and discuss full three-dimensional numerical modeling of the electron bunch emission. The beam extraction dynamics at the photocathode has been investigated through the 3D fully electromagnetic (EM) Particle-in-Cell (PIC) solver of CST Particle Studio under the assumption of the photoemission source operating at or close to its space charge limit. PIC simulation results have shown good agreements with measurements on total emitted bunch charge for distinct experimental parameters. Further comparisons showed a general failure for the conventional Poisson solver based tracking algorithm to correctly predict the beam dynamics at the space charge limit. It is furthermore found, that fully EM PIC simulations are also consistent with a simple emission model based on the multidimensional Child-Langmuir law.

  5. Design of a relativistic klystron two-beam accelerator prototype

    International Nuclear Information System (INIS)

    Westenskow, G.; Caporaso, G.; Chen, Y.

    1995-01-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented

  6. Single bunched beam generation without subharmonic prebuncher

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tagawa, S.

    1995-01-01

    The intensity of the accelerated single bunched electron beam depends on the performance of the electron gun and the fast cathode pulser. The electron beam is emitted by a Y-796 cathode assembly with a cathode of 2 cm 2 (8 A/cm 2 ), and an extracted voltage of 90 kV. The maximum charge of the single bunched beam was attained at 1.5 nC/pulse using SHB. Recently, a single bunched beam has been generated by an ultrafast cathode pulser (rise and fall time <100 ps pulse height -2 kV at 50 Ω) without SHB. The charge of the accelerated electron beam is about 40 pC/pulse (pulse width <10 ps) without the production of a satellite beam. This result show that a single bunched beam can be produced by the linear accelerator without SHB. ((orig.))

  7. Time-dependent beam focusing at the DARHT-II injector diode

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Fawley, W.; Yu, S.

    1999-01-01

    The injector for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) is being designed and constructed at LBNL. The injector consists of a single gap diode extracting 2(micro)s, 2kA, 3.2 MeV electron beam from a 6.5 inches diameter thermionic dispenser cathode. The injector is powered through a ceramic column by a Marx generator. We also investigated the possibility of extracting a beam current of 4 kA. The focusing system for the electron beam consists of a Pierce electrostatic focusing electrode at the cathode and three solenoidal focusing magnets positioned between the anode and induction accelerator input. The off-energy components (beam-head) during the 400 ns energy rise time are overfocused, leading to beam envelope mismatch and growth resulting in the possibility of beam hitting the accelerator tube walls. The anode focusing magnets can be tuned to avoid the beam spill in the 2kA case. To allow beam-head control for the 4kA case we are considering the introduction of time-varying magnetic focusing field along the accelerator axis generated by a single-loop solenoid magnet positioned in the anode beam tube. We will present the beam-head dynamics calculations as well as the solenoid design and preliminary feasibility test results

  8. Source of spill ripple in the RF-KO slow-extraction method with FM and AM

    CERN Document Server

    Noda, K; Shibuya, S; Muramatsu, M; Uesugi, T; Kanazawa, M; Torikoshi, M; Takada, E; Yamada, S

    2002-01-01

    The RF-knockout (RF-KO) slow-extraction method with frequency modulation (FM) and amplitude modulation (AM) has brought high-accuracy irradiation to the treatment of a cancer tumor moving with respiration, because of a quick response to beam start/stop. However, a beam spill extracted from a synchrotron ring through RF-KO slow-extraction has a huge ripple with a frequency of around 1 kHz related to the FM. The spill ripple will disturb the lateral dose distribution in the beam scanning methods. Thus, the source of the spill ripple has been investigated through experiments and simulations. There are two tune regions for the extraction process through the RF-KO method: the extraction region and the diffusion region. The particles in the extraction region can be extracted due to amplitude growth through the transverse RF field, only when its frequency matches with the tune in the extraction region. For a large chromaticity, however, the particles in the extraction region can be extracted through the synchrotron ...

  9. Status of the H- extraction program at TRIUMF

    International Nuclear Information System (INIS)

    Zach, M.; Laxdal, R.E.; Dutto, G.; Fong, K.; MacKenzie, G.H.; Pearson, J.B.; Stanford, G.

    1989-05-01

    The principle of utilizing the ν r - 3/2 resonance for efficient direct extraction of 100 μA of H - ions at 450 MeV from the TRIUMF cyclotron has been previously demonstrated. The initiation of the KAON Factory Project Definition Study at TRIUMF moves the emphasis of the H - extraction effort from the design of components compatible with short beam tests to equipment suitable for the final extraction configuration and from beam dynamics studies to engineering studies. To this end a reference extraction design has been chosen and will be described. Designs for the magnetic channels, both air core and iron compensated, ranging in strength from 0.1 T to 0.45 T, are progressing. Engineering constraints complicating the implementation of the reference design will be discussed

  10. The Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Grunder, H.A.; Bisognano, J.J.; Diamond, W.I.; Hartline, B.K.; Leemann, C.W.; Mougey, J.; Sundelin, R.M.; York, R.C.

    1987-01-01

    On February 13, 1987, construction started on the Continuous Electron Beam Accelerator Facility - a 4-GeV, 200-μA, continuous beam, electron accelerator facility designed for nuclear physics research. The machine has a racetrack configuration with two antiparallel, 500-MeV, superconducting linac segments connected by beam lines to allow four passes of recirculation. The accelerating structure consists of 1500-MHz, five-cell niobium cavities developed at Cornell University. A liquid helium cryogenic system cools the cavities to an operating temperature of 2 K. Beam extraction after any three of the four passes allows simultaneous delivery of up to three beams of independently variable currents and different, but correlated, energies to the three experimental areas. Beam breakup thresholds exceed the design current by nearly two orders of magnitude. Project completion and the start of physics operations are scheduled for 1993. The total estimated cost is $255 million

  11. Development of a dc, broad beam, Mevva ion source

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; MacGill, R.A.

    1991-09-01

    We are developing an embodiment of metal vapor vacuum arc (Mevva) ion source which will operate dc and have very large area beam. In preliminary testing, a dc titanium ion beam was formed with a current of approximately 0.6 amperes at an extraction voltage of 9kV (about 18 keV ion energy, by virtue of the ion charge state distribution) and using an 18 cm diameter set of multi-aperture. Separately, we have tested and formed beam from a 50 cm diameter (2000 cm 2 ) set of grids using a pulsed plasma gun. This configuration appears to be very efficient in terms of plasma utilization, and we have formed beams with diameter 33 cm (FWHM) and ion current up to 7 amperes at an extraction voltage of 50 kV (about 100 keV mean ion energy) and up to 20 amperes peak at the current overshoot part of the beam pulse. Here we describe this Part Of our Mevva development program and summarize the results obtained to-date

  12. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  13. Considerations on a new fast extraction kicker concept for SPS

    CERN Document Server

    Barnes, M

    2010-01-01

    An alternative extraction kicker concept is investigated for the SPS, based on open C-type kickers and a fast-bumper system. The beam is moved into the kicker gap some tens of ms before extraction. The concept is illustrated in detail with the LSS4 extraction from the SPS – very similar parameters and considerations apply to LSS6. A similar concept could also be conceived for injection but is more difficult due to the larger beam size. The technical issues are presented and the potential impact on the machine impedance outlined.

  14. Analytical and numerical studies of positive ion beam expansion for surface treatment applications

    Science.gov (United States)

    Lounes-Mahloul, Soumya; Bendib, Abderrezeg; Oudini, Noureddine

    2018-01-01

    The aim of this work is to study the expansion in vacuum, of a positive ion beam with the use of one dimensional (1D) analytic model and a two dimensional Particle-In-Cell (2D-PIC) simulation. The ion beam is extracted and accelerated from preformed plasma by an extraction system composed of two polarized parallel perforated grids. The results obtained with both approaches reveal the presence of a potential barrier downstream the extraction system which tends to reflect the ion flux. The dependence of the critical distance for which all extracted ions are reflected, is investigated as a function of the extracted ion beam current density. In particular, it is shown that the 1D model recovers the well-known Child-Langmuir law and that the 2D simulation presents a significant discrepancy with respect to the 1D prediction. Indeed, for a given value of current density, the transverse effects lead to a greater critical distance.

  15. Phoenix I energy extraction experiment

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Patterson, E.L.; Tisone, G.C.; Moreno, J.B.

    1980-07-01

    Energy extraction experiments are reported for the Phoenix I amplifier driven by a discharge-initiated oscillator-preamplifier system operating on mixtures of either SF 6 -HI or SF 6 -C 2 H 6 and an electron-beam-initiated intermediate amplifer (lambda-3) fueled with H 2 and F 2 mixtures. When the oscillator-preamplifier system operated with mixtures of SF 6 -HI the input spectrum to the Phoenix I amplifier contained approx. 28 P-branch vibrational-rotational lines which were almost identical to the input spectrum from the H 2 -F 2 fueled oscillator. In this case the energy extraction measurements were essentially the same as the results obtained with the spectrum produced using H 2 and F 2 mixtures. For an input intensity of 10 7 W/cm 2 , 170 J were extracted from the amplifier. With the SF 6 -C 2 H 6 spectrum, extraction was only obtained from the first three excited vibrational levels. This result indicates that most of the energy in the amplifier could be extracted on the first three excited vibrational levels. It is shown that the extraction results can be fit with a simple two level model. The radius of curvature of the beam was estimated using a lateral shearing interferometer. It was found that the Phoenix I amplifier altered the radius of curvature

  16. Investigation of the imaging properties of inorganic scintillation screens using high energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice [TU Darmstadt (Germany); JWG Universitaet Frankfurt/Main (Germany); Forck, Peter; Sieber, Thomas [GSI Darmstadt (Germany); Ensinger, Wolfgang; Lederer, Stephan [TU Darmstadt (Germany); Kester, Oliver [JWG Universitaet Frankfurt/Main (Germany)

    2016-07-01

    Inorganic scintillation screens are a common diagnostics tool in heavy ion accelerators. In order to investigate the imaging properties of various screen materials, four different material compositions were irradiated at GSI, using protons up to Uranium ions as projectiles. Beams were extracted from SIS18 with high energy (300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was simultaneously recorded by two different optical setups to investigate light output, profile characteristics and emission spectra. It was observed, that fast extracted beams induce in general lower light output than slow extracted beams, while the light output per deposited energy decreases with atomic number. The analysis of the spectral emission as well as investigations with classical optical methods showed no significant defect-building in all materials, not even under irradiation with increasing beam intensity or over long time periods. The investigated scintillation screens can be considered as stable under irradiation with high energetic heavy ion pulses and are appropriate for beam diagnostics applications in future accelerator facilities like FAIR. Characteristic properties and application areas of the screens are presented in the poster.

  17. Ion extraction in the cyclotron geometry

    International Nuclear Information System (INIS)

    Rodenburg, R.E.

    1985-01-01

    The detailed physics of ion beam extraction from a plasma column by intense sinusoidal radio frequency (rf) electric fields at the ion cyclotron frequency omega/sub ci/ and its harmonics is experimentally studied. Results describe the instantaneous relationship - within one rf period of approx. = 3009 nsec - between applied rf, the plasma response and the ions expelled by rf and plasma fields. Reflex discharges in H 2 , D 2 , and He with ion and electron densities greater than or equal to10 11 cm -3 are subjected to 0-5 kV zero-to-peak rf electric fields E vector and 0.65-9.00 kG background magnetic fields B 0 vector with E vector perpendicular to B 0 vector. Ion currents up to 200 μA are extracted. Nonperturbing optical diagnostics measure the relative amplitude and phase of instantaneous ion and electron density fluctuations induced by the rf during each rf cycle and the time variation of extracted ion bursts, the latter made possible by the use of a phosphor beam-stop. Detailed dependences on external electric and magnetic fields are reported. The plasma density fluctuations are in good agreement with the dispersion relation for electrostatic ion cyclotron waves (EICW), and the beam data show current enhancement at the second harmonic over that at the fundamental and evidence for a radically different mechanism for the rf-driven ion extraction process than conventional wisdom assumes. This work represents the first detailed, systematic study of the ac ion extraction process

  18. Experimental use of neutrinos from ISABELLE beam dumps

    International Nuclear Information System (INIS)

    Bozoki, G.E.; Thorndike, A.M.; Mann, A.K.

    1978-01-01

    The technical feasibility and possible applicability of using ISABELLE beam dumps as powerful sources for directed high-energy neutrino bursts are investigated. In the present machine design two dump systems are applied to absorb the extracted fast beams. The expected normal beam extraction rate is 1 to 2 per day, when about (6.3 to 7.5) x 10 14 protons are hitting the external targets during a pulse length of approx. 50 μs. These protons are considered so far to be useless. The neutrinos produced could be used for the following activities: the study of coherent neutrino regeneration, calibration and permanent testing of cosmic-ray and astrophysical neutrino detectors, research on the practical applicability of neutrinos in telecommunication, and certain astro- and geophysical applications. Tailoring the system to meet these activities is illustrated. 6 figures

  19. Dynamic structural analysis of the TPSG4 & TPSG6 beam diluters

    CERN Document Server

    Massidda, L; Kadi, Y; Balhan, B

    2005-01-01

    In this report we present the technical specification for the numerical model and the study of the dynamic structural behaviour of the beam diluter elements (TPSG4 & 6) protecting the extraction septum magnets (MSE & MST) in the event of an asynchronous firing of the extraction kickers (MKE). The deposited energy densities, estimated by the high-energy particle transport code FLUKA, were converted to internal heat generation rates according to the time dependence of the extracted beam. The transient response to this thermal load was obtained by solving the power deposition and structural deformation problem by the spectral-element code ELSE.

  20. Advanced ion beam calorimetry for the test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, R.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-01-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m 2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m 2 , for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  1. Cryogenic Beam Loss Monitoring for the LHC

    CERN Document Server

    Kurfuerst, C; Sapinski, M

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. T...

  2. Large area ion and plasma beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Waldorf, J. [IPT Ionen- und Plasmatech. GmbH, Kaiserslautern (Germany)

    1996-06-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.).

  3. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    Waldorf, J.

    1996-01-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  4. Extraction of highly charged ions from the Berlin Electron Beam Ion Trap for interactions with a gas target

    International Nuclear Information System (INIS)

    Allen, F.I.; Biedermann, C.; Radtke, R.; Fussmann, G.

    2006-01-01

    Highly charged ions are extracted from the Berlin Electron Beam Ion Trap for investigations of charge exchange with a gas target. The classical over-the-barrier model for slow highly charged ions describes this process, whereby one or more electrons are captured from the target into Rydberg states of the ion. The excited state relaxes via a radiative cascade of the electron to ground energy. The cascade spectra are characteristic of the capture state. We investigate x-ray photons emitted as a result of interactions between Ar 17+ ions at energies ≤5q keV with Ar atoms. Of particular interest is the velocity dependence of the angular momentum capture state l c

  5. Characterization and monitoring of transverse beam tails

    International Nuclear Information System (INIS)

    Seeman, J.T.; Decker, F.J.; Hsu, I.; Young, C.

    1991-05-01

    Low emittance electron beams accelerated to high energy in a linac experience transverse effects (wakefield, filamentation, optics) which produce non-Gaussian projected transverse beam distributions. Characterizations of the beam shapes are difficult because the shapes are asymmetric and change with betatron phase. In this note several methods to describe beam distributions are discussed including an accelerator physics model of these tails. The uses of these characterizations in monitoring the beam emittances in the SLC are described in this paper. First, two dimensional distributions from profile monitor screens are reviewed showing correlated tails. Second, a fitting technique for non-Gaussian one dimensional distributions is used to extract the core from the tail areas. Finally, a model for tail propagation in the linac is given. 3 refs., 6 figs

  6. [Project for] a high-flux extracted neutron beam reactor [for physicists]; Un [projet de] reacteur a haut flux et faisceaux sortis [pour physiciens

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    French requirements in neutron beams of different energies extracted from a reactor are briefly described. The well-known importance of cold neutrons (above 4 Angstrom) is emphasized. The main characteristics of a reactor suitable for physicists are outlined: They are: 1 - A flux of about 7. 10{sup 14} thermal neutrons in the heavy water of the reflector, 2 - Maximum flexibility obtained by: - physical separation of the core and the reflector, - independence of the different experiments, - possibility of modifying physical experiments up to - and including - the nature of the used reflector, without any appreciable interruption in the operation of the reactor, - reduction of fixed shields to a minimum; ample use of liquid shields (water) and fluid shields (sands). 3 - Technological continuity as far as possible with French research reactors (Siloe, Pegase, Osiris) already existing or under construction. 4 - Safety of operation arising from simplicity of conception. 5 - Minimised construction costs. Lowering of the operating costs is looked for indirectly in the simplification of the solutions and the reduction of operating staff, rather than directly by reducing the consumption of fuel elements and energy. The recommended solution can be described as a closed-core non-pressurized swimming-pool reactor, highly under-moderated by the cooling light water. Surrounding the reactor are a number of 'beam tubes-loops' each consisting of: - a part of the reflector (heavy water in the example described), - a part of neutron extraction beam tube, - the circuits required for their cooling, - the inlet systems of suitable fluids to the beam tube nose (liquid hydrogen in the example described), - the necessary outlets for measurement and control system. The whole 'beam tubes loops' is immersed in the water of the metallic self-supporting swimming-pool. The shielding outside the swimming-pool is composed for the most part by heavy sand in which is the rest of the beam extraction

  7. Phoenix II energy extraction and angular multiplexing experiments

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Hays, G.N.

    1981-08-01

    The energy extraction efficiency as a function of input intensity has been determined from a large-volume HF amplifier. For an input intensity of 4 x 10 6 W/cm 2 , 1080 Joules was extracted from the amplifier. This corresponded to an energy extraction efficiency of 0.90. At the highest H 2 /F 2 /O 2 pressures used, 1700 Joules was obtained from this system when used in an oscillator configuration. These results also show evidence that energy extraction at low input intensities in large-volume HF amplifiers is strongly influenced by parasitic oscillations. The results also indicate that, for a long-pulse HF amplifier (60-nsec electron beam), the timing between the amplifier and oscillator to achieve optimum operating conditions is not very critical. This same amplifier, used in conjunction with a short-pulse, good-beam-quality oscillator-preamplifier chain, has also been used to evaluate pulse compression using angular multiplexing. Using two sequential 24-nsec pulses, the essential elements of angular multiplexing have been evaluated as a function of interpulse separation time. Included are energy extraction efficiency, overall temporal pulse distortion, leading-edge contrast-ratio distortion, and suppression of amplified spontaneous emission relative to a single, long-duration input pulse. For appropriate interpulse delay time, we show that distortionless amplification is possible with energy-extraction efficiency the same as is obtained using a single input beam having a pulse width equal to the duration of the amplifier gain

  8. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    International Nuclear Information System (INIS)

    Chao, Ming; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi; Wei, Jie; Li, Tianfang

    2016-01-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  −0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. (paper)

  9. The beam diagnosis system for ELSA

    International Nuclear Information System (INIS)

    Schillo, M.

    1991-10-01

    A beam diagnostic system, which is based on capacitive beam-position monitors combined with fast electronics, has been developed for the Bonn Electron Stretcher Accelerator ELSA. The position signal of each monitor is digitized at an adjustable sampling rate and the most recent 8192 position and intensity values are buffered. This allows a wide range of different beam diagnostic measurements. The main purpose is the closed-orbit correction, which can be carried out on various time scales. To optimize the duty factor of the extracted beam, the system can also be used as a fast relative intensity monitor resolving the intensity distribution of the bunches or of the injected beam. It is designed to support betatron tune and phase measurements with very high accuracy, offering the choice to select any of the beam position monitors. This enables the measuring of many optical parameters. Furthermore any pair of suitable monitors can be used for experimental particle tracking or phase space measurements. (orig.) [de

  10. A beam diagnostic system for ELSA

    International Nuclear Information System (INIS)

    Schillo, M.; Althoff, K.H.; Drachenfels, W.; Goetz, T.; Husmann, D.; Neckenig, M.; Picard, M.; Schittko, F.J.; Schauerte, W.; Wenzel, J.

    1991-01-01

    A beam diagnostic system, which is based on capacitive beam-position monitors combined with fast electronics, has been developed for the Bonn ELectron Stretcher Accelerator ELSA. The position signal of each monitor is digitized at an adjustable sampling rate (max.: 10 MHz) and the most recent 8192 position and intensity values are buffered. This allows a wide range of different beam diagnostic measurements. The main purpose is the closed-orbit correction, which can be carried out on various time scales. To optimize the duty factor of the extracted beam, the system can also be used as a fast relative intensity monitor resolving the intensity distribution of the bunches or of the injected beam. It is designed to support betatron tune and phase measurements with very high accuracy, offering the choice to select any of the beam position monitors. This enables the measuring of many optical parameters. Furthermore any pair of suitable monitors can be used for experimental particle tracking or phase space measurements

  11. Conceptual Design of the LHC Beam Dumping Protection Elements TCDS and TCDQ

    CERN Document Server

    Goddard, B; Sans-Merce, M; Weterings, W

    2004-01-01

    The Beam Dumping System for the Large Hadron Collider, presently under construction at CERN, consists, per ring, of a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred metres further downstream, an absorber block. A fixed diluter (TCDS) will protect the septa in the event of a beam dump that is not synchronised with the particle free gap or a spontaneous firing of the extraction kickers which will cause the beam to sweep over the septum. Another, mobile, diluter block (TCDQ) will protect the superconducting quadrupole immediate downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters. This paper describes the conceptual design of the protection elements.

  12. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  13. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2012-01-01

    A meniscus of plasma-beam boundary in H - ion sources largely affects the extracted H - ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H - ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H - ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.

  14. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2012-06-04

    A meniscus of plasma-beam boundary in H{sup -} ion sources largely affects the extracted H{sup -} ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H{sup -} ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H{sup -} ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.

  15. Modular low-voltage electron beams

    Science.gov (United States)

    Berejka, Anthony J.; Avnery, Tovi; Carlson, Carl

    2004-09-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out—plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed.

  16. Beam Scraping for LHC Injection

    CERN Document Server

    Burkhardt, H; Fischer, C; Gras, J-J; Koschik, A; Kramer, Daniel; Pedersen, S; Redaelli, S

    2007-01-01

    Operation of the LHC will require injection of very high intensity beams from the SPS to the LHC. Fast scrapers have been installed and will be used in the SPS to detect and remove any existing halo before beams are extracted, to minimize the probability for quenching of superconducting magnets at injection in the LHC. We briefly review the functionality of the scraper system and report about measurements that have recently been performed in the SPS on halo scraping and re-population of tails.

  17. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  18. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    CERN Document Server

    Zhang, P; Baboi, Nicoleta

    2012-01-01

    Higher order modes (HOM) are electromagnetic resonant fields. They can be excited by an electron beam entering an accelerating cavity, and constitute a component of the wakefield. This wakefield has the potential to dilute the beam quality and, in the worst case, result in a beam-break-up instability. It is therefore important to ensure that these fields are well suppressed by extracting energy through special couplers. In addition, the effect of the transverse wakefield can be reduced by aligning the beam on the cavity axis. This is due to their strength depending on the transverse offset of the excitation beam. For suitably small offsets the dominant components of the transverse wakefield are dipole modes, with a linear dependence on the transverse offset of the excitation bunch. This fact enables the transverse beam position inside the cavity to be determined by measuring the dipole modes extracted from the couplers, similar to a cavity beam position monitor (BPM), but requires no additional vacuum instrum...

  19. Characteristics of possible beam losses in superconducting cyclotron

    International Nuclear Information System (INIS)

    Pradhan, J.; Paul, Santanu; Debnath, Jayanta; Dutta, Atanu; Bhunia, Uttam; Naser, Md. Zamal Abdul; Singh, Vinay; Agrawal, Ankur; Dey, Malay Kanti

    2015-01-01

    In a compact superconducting cyclotron large coherent oscillation and off-centering of the beam may cause large amount of beam loss. The off-centered beam may hit the beam chamber wall prohibiting extraction of the beam. Or it may hit the RF liner surfaces due to vertical blow-up across various resonances during acceleration. The vertical shift of beam caused by the mis-alignment gradually moves the beam out of geometrical median plane eventually leading to internal beam losses. The loss of isochronisms results the reduction of beam intensity depending on the particle phase history. Small field perturbations generated by trim coils have been used to identify the beam loss mechanisms in the superconducting cyclotron at out centre. Besides, the beam loss due to interaction of accelerating ions with residual gases is also discussed. The beam profile obtained from differential and three finger probes gives a clear insight of the loss-mechanism. The paper describes different beam losses observed in the cyclotron with corresponding beam profiles under different field perturbations, Special emphasis is given on characteristics features of beam-current profile to identify the cause of beam loss. (author)

  20. Ion source for ion beam deposition employing a novel electrode assembly

    Science.gov (United States)

    Hayes, A. V.; Kanarov, V.; Yevtukhov, R.; Hegde, H.; Druz, B.; Yakovlevitch, D.; Cheesman, W.; Mirkov, V.

    2000-02-01

    A rf inductively coupled ion source employing a novel electrode assembly for focusing a broad ion beam on a relatively small target area was developed. The primary application of this ion source is the deposition of thin films used in the fabrication of magnetic sensors and optical devices. The ion optics consists of a three-electrode set of multiaperture concave dished grids with a beam extraction diameter of 150 mm. Also described is a variation in the design providing a beam extraction diameter of 120 mm. Grid hole diameters and grid spacing were optimized for low beamlet divergence and low grid impingement currents. The radius of curvature of the grids was optimized to obtain an optimally focused ion beam at the target location. A novel grid fabrication and mounting design was employed which overcomes typical limitations of such grid assemblies, particularly in terms of maintaining optimum beam focusing conditions after multiple cycles of operation. Ion beam generation with argon and xenon gases in energy ranges from 0.3 to 2.0 keV was characterized. For operation with argon gas, beam currents greater than 0.5 A were obtained with a beam energy of 800 eV. At optimal beam formation conditions, beam profiles at distances about equal to the radius of curvature were found to be close to Gaussian, with 99.9% of the beam current located within a 150 mm target diameter. Repeatability of the beam profile over long periods of operation is also reported.

  1. Single side damage simulations and detection in beam-like structures

    International Nuclear Information System (INIS)

    Zhou, Yun-Lai; Perera, R; Wahab, M Abdel; Maia, N; Sampaio, R; Figueiredo, E

    2015-01-01

    Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performance. (paper)

  2. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  3. Design study of low-energy beam transport for multi-charge beams at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Bahng, Jungbae [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of); Qiang, Ji [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, Eun-San, E-mail: eskim1@korea.ac.kr [Department of Accelerator Science, Graduate School, Korea University Sejong Campus, Sejong 30019 (Korea, Republic of)

    2015-12-21

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  4. Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Bhat, S. [Fermilab

    2017-10-19

    Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.

  5. The ASDEX 100 keV neutral lithium beam diagnostic gun

    International Nuclear Information System (INIS)

    McCormick, K.; Kick, M.

    1983-04-01

    The neutral lithium beam gun intended for measurement of the poloidal magnetic field and of the density gradient in the scrape-off layer of ASDEX is described, and test results over a beam energy range of 27-100 keV are presented. In the gun, lithium ions are extracted from a solid emitter (#betta#-Eurcryptite) in a Pierce-type configuration, accelerated and focused in a two-tube immersion lens, and neutralized in a charge-exchange cell using sodium. The beam can be pulsed from less than one to several seconds, depending on experimental needs. At a distance of 165 cm from the gun the neutral beam equivalent current is typically greater than 1 mA (0.16 mA) for a beam energy of 100 keV (27 keV), the beam FWHM being about 8-9 mm. It is found that to produce a particular beam with a certain ratio must be maintained between the extraction and total beam voltages, this relationship depending in turn on the emitter-extractor separation. The principal features which distinguish the ASDEX gun from that employed on W7a are the greater compactness - all the active elements, i.e. emitter, extractor, lens, deflection plates and neutralizer, are contained with 57 cm - and the vacuum vessel, which simultaneously serves as the magnetic shielding. (orig.)

  6. Energy spread in ion beam analysis

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2000-01-01

    In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures

  7. Energy spread in ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E. E-mail: szilagyi@rmki.kkfki.hu

    2000-03-01

    In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures.

  8. A beam energy measurement system at NIRS-930 cyclotron

    International Nuclear Information System (INIS)

    Hojo, S.; Honma, T.; Sakamoto, Y.; Miyahara, N.; Okada, T.; Komatsu, K.; Tsuji, N.; Yamada, S.

    2005-01-01

    A beam energy measurement system employing a set of capacitive probes has been developed at NIRS-930 cyclotron. Principle of the measurement is applying a modified-TOF method, so that the two proves are installed at one of the straight section in the beam transport line. Usually they are separated about 5.8 m, which is equivalent to the almost final path length of the beam extracted in the cyclotron. In the measurement, two beam signals are superimposed by adjusting a position of the downstream-probe along the beam direction with watching an oscilloscope screen roughly. In order to determine the beam energy accurately the signals are processed by MCA with suitable electric module. (author)

  9. Preliminary thermal analysis of grids for twin source extraction system

    International Nuclear Information System (INIS)

    Pandey, Ravi; Bandyopadhyay, Mainak; Chakraborty, Arun K.

    2017-01-01

    The TWIN (Two driver based Indigenously built Negative ion source) source provides a bridge between the operational single driver based negative ion source test facility, ROBIN in IPR and an ITER-type multi driver based ion source. The source is designed to be operated in CW mode with 180kW, 1MHz, 5s ON/600s OFF duty cycle and also in 5Hz modulation mode with 3s ON/20s OFF duty cycle for 3 such cycle. TWIN source comprises of ion source sub-assembly (consist of driver and plasma box) and extraction system sub-assembly. Extraction system consists of Plasma grid (PG), extraction grid (EG) and Ground grid (GG) sub assembly. Negative ion beams produced at plasma grid seeing the plasma side of ion source will receive moderate heat flux whereas the extraction grid and ground grid would be receiving majority of heat flux from extracted negative ion and co-extracted electron beams. Entire Co-extracted electron beam would be dumped at extraction grid via electron deflection magnetic field making the requirement of thermal and hydraulic design for extraction grid to be critical. All the three grids are made of OFHC Copper and would be actively water cooled keeping the peak temperature rise of grid surface within allowable limit with optimum uniformity. All the grids are to be made by vacuum brazing process where joint strength becomes crucial at elevated temperature. Hydraulic design must maintain the peak temperature at the brazing joint within acceptable limit

  10. Initial electron-beam characterizations for the Los Alamos APEX Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O' Shea, P.G. (Los Alamos National Lab., NM (United States)); Fiorito, R.B.; Rule, D.W. (Naval Surface Warfare Center, Silver Spring, MD (United States))

    1991-01-01

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus minus} 0.2%), and drive laser phase stability (< 2 ps (rms)). 10 refs.

  11. Initial electron-beam characterizations for the Los Alamos APEX Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O`Shea, P.G. [Los Alamos National Lab., NM (United States); Fiorito, R.B.; Rule, D.W. [Naval Surface Warfare Center, Silver Spring, MD (United States)

    1991-12-31

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus_minus} 0.2%), and drive laser phase stability (< 2 ps [rms]). 10 refs.

  12. Final design of kaon beam K2 at KEK

    International Nuclear Information System (INIS)

    Kurokawa, Shin-ichi; Yamamoto, Akira.

    1977-09-01

    Final design of the 2.3 GeV/c kaon beam K2 is given. The K2 beam starts from the production target in slow extracted beam. Momentum range is 1 GeV/c through 2.3 GeV/c. Nominal total beam length is 27.9 m and solid-angle momentum acceptance is 6.25 msr%ΔP/P. Using a platinum target of diameter 3 mm and length 6 cm, 2.0 GeV/c beam fluxes of 1.0 x 10 6 K + and 5.2 x 10 5 K - per 10 12 13 GeV/c incident protons are expected at the final focus. (auth.)

  13. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    International Nuclear Information System (INIS)

    Toader, D.; Craciun, G.; Manaila, E.; Oproiu, C.; Marghitu, S.

    2009-01-01

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES L V) with a plasma electron source (PES L V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP L V source.

  14. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  15. Monitoring beam position in the TRISTAN AR-to-MR transport lines

    International Nuclear Information System (INIS)

    Ieiri, Takao; Arinaga, Mitsuhiro

    1994-01-01

    A beam-position monitor (BPM) has been installed in the transport lines between the Accumulation Ring (AR) and the Main Ring (MR) of TRISTAN. This monitor can detect the beam position and its charge every passage of the beam. Variations of the beam position have been observed during the routine operation. An investigation into the AR extraction components has been carried out in order to clarify a source of the variations. (author)

  16. A Multiple-room, Continuous Beam Delivery, Hadron-therapy Installation

    Science.gov (United States)

    Méot, F.

    A proton-therapy hospital installation, based on multiple beam extraction systems from a fixed-field synchrotron, is presented and commented. Potential interest as hospital operation efficiency, as well as estimates of the impact of continuous, multiple-port extraction, on the cost of a session, are discussed.

  17. A machine protection beam position monitor system

    International Nuclear Information System (INIS)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-01-01

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II B Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center (>20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts. copyright 1998 American Institute of Physics

  18. Beam catcher/dump

    International Nuclear Information System (INIS)

    Makdisi, Y.; Rodger, E.; Glenn, J.W.; Brown, K.

    1985-01-01

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted acceleration or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel. 3 refs., 6 figs

  19. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  20. Modular low-voltage electron beams

    International Nuclear Information System (INIS)

    Berejka, A.J.; Avnery, Tovi; Carlson, Carl

    2004-01-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out--plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (<10 μm of titanium foil), solid-state 19 in. (48 cm) rack-mounted power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed

  1. Longitudinal stability of the LHC beam in the SPS

    CERN Document Server

    Shaposhnikova, Elena

    2001-01-01

    Longitudinal beam stability is analysed for the LHC Beam in the SPS. The most critical area is shown to be the top energy. Analysis explains some results of measurements with the beam done d uring the MDs last year. The possibility of using this cycle for CNGS is considered as well. There, without special requirements on bunch parameters at extraction, the impedance limitations move to the lowest energy. An option with low transition energy is presented also.

  2. Beam dynamics studies to develop LHC luminosity model

    CERN Document Server

    Campogiani, Giovanna; Papaphilippou, Ioannis

    The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...

  3. Protection against Accidental Beam Losses at the LHC

    CERN Document Server

    Wenninger, Jörg

    2005-01-01

    Protection of the LHC against uncontrolled beam losses is of prime importance due to the very high stored beam energy. For nominal beam intensities, each of the two 7 TeV/c proton beams has a stored energy of 360 MJ threatening to damage accelerator equipment. At injection a number of passive beam absorbers must be correctly positioned and specific procedures have been proposed to ensure safe injection of high intensity. The LHC beam dump block being the only LHC element that can safety absorb the full LHC beam, it is essential that the beams are extracted unto the dump block in case of emergency. The failure time constants extend from 100 microseconds to few seconds depending on the equipment. Failures must be detected at a sufficiently early stage and transmitted to the beam interlock system that triggers the beam dumping system. To ensure safe operation the machine protection system uses a variety of systems to detect such failures. The strategy for protection of the LHC will be illustrated, with emphasis ...

  4. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  5. Light ion source studies with a magnetically insulated extraction diode

    International Nuclear Information System (INIS)

    Struckman, C.K.

    1992-01-01

    Light ion sources are currently being studied to assess their ability to drive an inertial confinement fusion reactor. The author has produced a high purity, 1MV, 300A/cm 2 lithium beam using a 200cm 2 extraction geometry, magnetically insulated ion diode. The lithium source was an AC glow discharge cleaned, LiF/Al film active anode. The active anode plasma was formed after 50KA of current was shunted through the anode film for 20ns. The stoichiometry of the resulting ion beam was 65% Li + , 20% Al +2 , and 15% H + . Without the glow discharge cleaning, the ion beam was over 55% hydrogen and only 20% Li + . At the time of the diode's design, extraction diodes were producing poor ion beams: their current efficiency was only 60-70%, and their extracted ion current was radially nonuniform. This diode was the first high efficiency extraction diode, and produced over 200KA of ions with 80-90% ion current efficiency. In addition, by varying the tilt of the applied magnetic field, it was possible to show that the ion current density could be made independent of radius. Since the author was unable to make a Li + beam with a passive anode, he installed an active anode that used an external current to vaporize a thin metal film on the anode surface. Poor beam purity was the most serious problem with active anodes. In order to remove impurities, especially the hydrogen contamination, the author cleaned the anodes with a glow discharge. Al film anodes were cleaned with a 110mA, 33W DC glow discharge, and the LiF/Al film anodes were cleaned with an equivalent AC discharge. The results obtained and a model for the mechanism behind the cleaning process are throughly discussed

  6. Beam scraping problems in storage rings: the black cloud

    International Nuclear Information System (INIS)

    Jones, L.W.

    1980-01-01

    The heavy ion, multi-GeV drivers for inertial confinement fusion are being designed to produce beams of an energy, power, and specific ionization sufficient to raise matter to thermonuclear temperatures. The magnitude of these parameters is so far beyond current experience that some problems raised warrant careful scrutiny. In particular, the consequence of some fraction of the beam lost on storage ring inflection septa, extraction channels, and beam-defining collimators seems potentially very serious. Unless carefully contained, a beam halo can easily vaporize the best refractory materials, and the resulting vapor cloud will interact destructively within microseconds with the following beam. The limits on beam flux which may be so lost for particular examples are orders of magnitude below current experience

  7. Beam-chopping system for LNS superconducting cyclotron

    International Nuclear Information System (INIS)

    Calabretta, L.; Caruso, A.; Raia, G.; Sparta, A.; Zappala, E.; Zingale, A.; Khemka, P.; Wei, C.Y.

    1999-01-01

    Several experiments which foresee the measurement of time of flight require a bunched beam with a FWHM smaller that 1 ns and a temporal separation from 100 to 200 ns. An H.E. Chopper that achieves this temporal separation between the impulses has been installed along the beam extraction line of the cyclotron. The two electrodes, which deflect the beam and the inductance coil are both under vacuum. The operating frequency range of the LC resonant circuit is from 4.5 to 9 MHz and the maximum design voltage is 70 kV. The chopper selects only the beam bunches which cross the device at peak voltage, one bunch for cycle. A steerer magnet to recover the selected bunches on the beam axis is used. All the tests, measurements and chopper's performance, will be presented. (authors)

  8. Beam-chopping system for LNS superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Calabretta, L.; Caruso, A.; Raia, G.; Sparta, A.; Zappala, E.; Zingale, A. [INFN-LNS, Catania (Italy); Khemka, P. [VEEC, Calcutta (India); Wei, C.Y. [Institute of Modern Physics, Lanzhou (China)

    1999-07-01

    Several experiments which foresee the measurement of time of flight require a bunched beam with a FWHM smaller that 1 ns and a temporal separation from 100 to 200 ns. An H.E. Chopper that achieves this temporal separation between the impulses has been installed along the beam extraction line of the cyclotron. The two electrodes, which deflect the beam and the inductance coil are both under vacuum. The operating frequency range of the LC resonant circuit is from 4.5 to 9 MHz and the maximum design voltage is 70 kV. The chopper selects only the beam bunches which cross the device at peak voltage, one bunch for cycle. A steerer magnet to recover the selected bunches on the beam axis is used. All the tests, measurements and chopper's performance, will be presented. (authors)

  9. Beam emittance measurements on multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Lee, Y.; Leung, K.N. [and others

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 {mu}m patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma.

  10. Beam emittance measurements on multicusp ion sources

    International Nuclear Information System (INIS)

    Sarstedt, M.; Lee, Y.; Leung, K.N.

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 μm patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma

  11. The intensity feedback system at Heidelberg Ion-Beam Therapy Centre

    Energy Technology Data Exchange (ETDEWEB)

    Schoemers, Christian, E-mail: christian.schoemers@med.uni-heidelberg.de; Feldmeier, Eike; Naumann, Jakob; Panse, Ralf; Peters, Andreas; Haberer, Thomas

    2015-09-21

    At Heidelberg Ion-Beam Therapy Centre (HIT), more than 2500 tumour patients have been treated with charged particle beams since 2009 using the raster scanning method. The tumour is irradiated slice-by-slice, each slice corresponding to a different beam energy. For the particle dose of each raster point the pre-irradiation by more distal slices has to be considered. This leads to highly inhomogeneous dose distributions within one iso-energy slice. The particles are extracted from the synchrotron via transverse RF knock-out. A pure feed forward control cannot take into account fluence inhomogeneities or deal with intensity fluctuations. So far, fluctuations have been counteracted by a reduced scanning velocity. We now added a feedback loop to the extraction system. The dose monitoring ionisation chambers in front of the patient have been coupled to the extraction device in the synchrotron. Characterization and implementation of the intensity feedback system into the HIT facility is described here. By its implementation the treatment time has been reduced by 10% in average.

  12. Behavioural effects of methanol stem bark extract of Boswellia ...

    African Journals Online (AJOL)

    In the open field test, the extract at all doses tested (20, 40 and 80 mg/kg) ... The extract did not produce motor coordination deficit in the beam walking ... Keywords: Boswellia dalzielii, Behaviour, Exploration, Motor coordination, Sleeping time ...

  13. Collective effects and experimental verification of the CLIC drive beam and decelerator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00418229; Stapnes, Steinar; Adli, Erik

    The Compact Linear Collider (CLIC) is a potential next-generation particle collider, in which electrons and positrons collide at a center-of-mass energy of up to 3 TeV. In order to reach a high accelerating gradient and reduce the length of the machine, CLIC uses a novel two-beam scheme. Here, the acceleration energy for the main beam is provided by energy extraction from a secondary electron drive beam, by the use of Power Extraction and Transfer Structures (PETS). This Ph.D. thesis describes deceleration measurements from the CLIC Test Facility 3 at CERN, from a beam that had up to 37 % of its kinetic energy converted into 12 GHz rf power. The results are part of the feasibility demonstration of the CLIC scheme. The measured difference in beam energy of the decelerated beam is correlated with particle tracking simulations and with predictions based on analytical formulae, and a very good agreement is demonstrated. The evolution of the transverse emittance was also studied, since it is critical to contain th...

  14. Measuring beam losses in the THI project

    International Nuclear Information System (INIS)

    David, L.; Duneau, P.; Lecorche, E.; Lermine, P.; Lemaitre, E.; Ulrich, M.

    1997-01-01

    The goal of the THI project (High Intensity Transport) is to upgrade the GANIL facilities by increasing the beam by a factor of 15, at least for light ions. This higher intensity is required by the radioactive beam facility SPIRAL starting in September 1997, to generate the new nuclear species in the solid target-source (ISOL method). For the control system, the most important issues are now to tune the accelerators while minimizing the beam losses at each stage of acceleration and when not possible, to have a fast beam loss detection signal. This system is composed of probes which deliver a signal to stop the beam when there's too much intensity lost and when not, a logarithmic value of the beam intensity. These probes are linked to a front end VME crate on the network, and in the control room, on the workstations, a graphical user interface program displays the beam variations using logarithmic scales. This program is also used to center the beam while injecting in or ejecting from the main cyclotrons by tuning the steerers, the magnetic elements inside, and the electrostatic deflector to be able to separate and extract the last beam turn. (author)

  15. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  16. Progress toward fusion with particle beams

    International Nuclear Information System (INIS)

    Kuswa, G.W.; Bieg, K.W.; Burns, E.J.T.

    1979-01-01

    This report discusses ion beam diodes which use insulating magnetic fields produced by coil systems. The development of ion diodes to produce light ion beams for fusion pellet ignition is briefly reviewed. The major goals for the light ion effort, which include the development of an ion diode to provide several TW/cm 2 , are discussed. The necessity to design ion sources which provide a prompt and uniform plasma layer when the diode voltage uses, in order to minimize electron loss and anode damage, is noted. Results of a number of materials and configurations tested for ion sources are reported. Numerical calculations are performed to investigate diode behavior. Future work on diodes with extracted beams is mentioned

  17. Impedance studies of the dummy septum for CERN PS multi-turn extraction

    CERN Document Server

    Persichelli, S; Berrig, O; Herbst, J; Kuczerowski, J; Giovannozzi, M; Salvant, B

    2014-01-01

    A protection septum has been installed in the CERN PS section 15 in order to mitigate irradiation of the magnetic septum 16 for fast extractions towards the SPS. Impedance studies have been performed, showing that beams circulating in the septum during extraction generate sharp resonances in the coupling impedance. Impedance measurements with the wire technique have been performed, showing a good agreement with simulations. Instability rise times of trapped modes have been evaluated and compared to extraction duration. Solutions for reducing the impact on the stability of the beam have been considered

  18. Upgrades to the SPS-to-LHC Transfer Line Beam Stoppers for the LHC High-Luminosity Era

    CERN Document Server

    Kain, Verena; Fraser, Matthew; Goddard, Brennan; Meddahi, Malika; Perillo Marcone, Antonio; Steele, Genevieve; Velotti, Francesco

    2016-01-01

    Each of the 3 km long transfer lines between the SPS and the LHC is equipped with two beam stoppers (TEDs), one at the beginning of the line and one close to the LHC injection point, which need to absorb the full transferred beam. The beam stoppers are used for setting up the SPS extractions and transfer lines with beam without having to inject into the LHC. Energy deposition and thermo-mechanical simulations have, however, shown that the TEDs will not be robust enough to safely absorb the high intensity beams foreseen for the high-luminosity LHC era. This paper will summarize the simulation results and limitations for upgrading the beam stoppers. An outline of the hardware upgrade strategy for the TEDs together with modifications to the SPS extraction interlock system to enforce intensity limitations for beam on the beam stoppers will be given.

  19. Doppler-shift spectra of Hα lines from negative-ion-based neutral beams for large helical device neutral beam injection

    International Nuclear Information System (INIS)

    Oka, Y.; Ikeda, K.; Takeiri, Y.; Tsumori, K.; Kaneko, O.; Nagaoka, K.; Osakabe, M.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Grisham, L.; Umeda, N.; Honda, A.; Ikeda, Y.; Yamamoto, T.

    2006-01-01

    The velocity spectra of the negative-ion-(H - ) based neutral beams are studied in high-performance large-area ion sources during injection into large helical device fusion plasmas. We are conducting systematic observations in standard neutral beam injection to correlate beam spectra with source operating conditions. Almost all of the transmitted beam power was at full acceleration energy (∼170 keV). The small stripping beam component which was produced in the extraction gap was evaluated to be about 9%-22% by amplitude of the measured spectra for the sources in beam lines 1 and 2. H - production uniformity from the spectrum profile was 86%-90% for three sources. For the longest pulse injection during 74 and 128 s, a full energy component tended to decrease with time, while the accelerator gap stripping tail tended to increase slightly with time, which is attributed to beam-induced outgassing in the accelerator. A higher conductance multislot ground grid accelerator appeared to show little growth in the accelerator gap beam stripping during long pulses compared to the conventional multiaperture ground grid. The beam uniformity appeared to vary in part with the Cs uniformity on the plasma grid

  20. Acceleration region influence on beam parameters on stripping foil

    International Nuclear Information System (INIS)

    Samsonov, E.V.; Tomic, S.

    1999-01-01

    Some formulas describing the beam parameters on the stripping foil (SF) as a function of the radial amplitude of betatron oscillations and energy gain are derived. The results computed by these formulas are in good agreement with the results of the numerical calculations. Obtained results show that between the radial emittance and the energy spread exists parametric dependence via amplitude of radial betatron oscillations. This conclusion allows one to create a working diagram of expected beam parameters on SF. This diagram may be particularly useful for the extraction system designers since it gives relationship between parameters considered as the extraction system input parameters. (author)

  1. Axial magnetic field extraction type microwave ion source with a permanent magnet

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1984-01-01

    A new type of microwave ion source in which a permanent magnet generates an axially directed magnetic field needed for the electron cyclotron resonance was developed. The electron cyclotron resonance produces a high density plasma in the ion source. A mA-order ion beam can be extracted. Compared with usual microwave ion sources, this source has a distinguished feature in that the axially directed magnetic field is formed by use of a permanent magnet. Shape of magnetic force lines near the ion extraction aperture was carefully investigated. The extracted ion current as a function of the ion extraction voltage was measured. The experimental data are in good agreement with the theoretical line. The ion source can be heated up to 500 deg C, and extraction of the alkaline metal ions is possible. The extracted ion current for various elements are shown in the table. The current density normalized by the proton was 350-650 mA/cm 2 which was nearly equal to the upper limit of the extractable positive ion current density. The plasma density was estimated and was 2 - 3 x 10 12 cm -3 . The mass spectrum of a Cesium ion beam was obtained. A negligible amount of impurities was observed. The emittance diagram of the extracted ion beam was measured. The result shows that a low emittance and high brightness ion source is constructed. (Kato, T.)

  2. Commissioning of the LHC Beam Transfer Line TI 8

    International Nuclear Information System (INIS)

    Uythoven, J.A.; Arduini, G.; Goddard, B.; Jacquet, D.; Kain, V.; Lamont, M.; Mertens, V.; Spinks, A.; Wenninger, J.; Chao, Y.-C.

    2005-01-01

    The first of the two LHC transfer lines was commissioned in autumn 2004. Beam reached an absorber block located some 2.5 km downstream of the SPS extraction point at the first shot, without the need of any threading. The hardware preparation and commissioning phase will be summarized, followed by a description of the beam tests and their results regarding optics and other line parameters, including the experience gained with beam instrumentation, the control system and the machine protection equipment

  3. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    Energy Technology Data Exchange (ETDEWEB)

    Toader, D; Craciun, G; Manaila, E; Oproiu, C [National Institute of Research for Laser, Plasma and Radiation Physics Bucuresti (Romania); Marghitu, S [ICPE Electrostatica S.A - Bucuresti (Romania)

    2009-11-15

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES{sub L}V) with a plasma electron source (PES{sub L}V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP{sub L}V source.

  4. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA; Optische Strahldiagnose an der Elektronen-Stretcher-Anlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Zander, Sven

    2013-10-15

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  5. Beam dynamics in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-09-01

    In this paper, we discuss some basic beam dynamics issues related to obtaining and preserving the luminosity of a next generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. 27 refs., 1 fig

  6. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay

    Energy Technology Data Exchange (ETDEWEB)

    Delferriere, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O. [Commissariat a l' Energie Atomique, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France)

    2012-02-15

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  7. Observation and comparative analysis of proton beam extraction or collimation by different planar channels of a bent crystal

    Directory of Open Access Journals (Sweden)

    A. G. Afonin

    2012-08-01

    Full Text Available In the experiment the efficiency of the 50 GeV proton beam extraction from accelerator by means of a bent crystal as a function of crystal orientation was measured. This allowed one to make a comparative analysis of efficiencies of high-energy protons deflection by different crystal atomic planes with different values of the electrostatic field. The results of simulation of high-energy protons deflection by means of crystal atomic planes and crystal atomic strings are also presented in the article. In the case of planar channeling the simulation shows a good agreement with experimental data. In the case of proton motion in the regime of stochastic scattering by bent atomic strings the simulation shows that angles of particle deflection are much greater than the critical channeling angle.

  8. Transient Beam Dynamics in the LBL 2 MV Injector

    International Nuclear Information System (INIS)

    Henestroza, E; Grote, D

    1999-01-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun preinjector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot aluminosilicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 (micro)s, and is reversed to turn-off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several (micro)s), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the Particle in Cell codes GYMNOS and WARP3d in a time dependent mode. The generalization and its implementation in WAIW3d of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented

  9. SPS slow extraction septa

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    SPS long straight section (LSS) with a series of 5 septum tanks for slow extraction (view in the direction of the proton beam). There are 2 of these: in LSS2, towards the N-Area; in LSS6 towards the W-Area. See also Annual Report 1975, p.175.

  10. Beam dynamics issues in an extended relativistic klystron

    International Nuclear Information System (INIS)

    Giordano, G.; Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.

    1995-04-01

    Preliminary studies of beam dynamics in a relativistic klystron were done to support a design study for a 1 TeV relativistic klystron two-beam accelerator (RK-TBA), 11.424 GHz microwave power source. This paper updates those studies. An induction accelerator beam is modulated, accelerated to 10 MeV, and injected into the RK with a rf current of about 1.2 kA. The main portion of the RK is the 300-m long extraction section comprise of 150 traveling-wave output structures and 900 induction accelerator cells. A periodic system of permanent quadrupole magnets is used for focusing. One and two dimensional numerical studies of beam modulation, injection into the main RK, transport and longitudinal equilibrium are presented. Transverse beam instability studies including Landau damping and the ''Betatron Node Scheme'' are presented

  11. LHC Report: The beam is back at the LHC

    CERN Multimedia

    Reyes Alemany

    2015-01-01

    A series of sector beam tests paved the way for the start-up of the LHC in 2008 and 2009. These tests and the follow-up of the issues that arose were part of the process that led to a smooth start-up with beam.   Given this experience, sector tests were scheduled to take place several weeks before the 2015 start-up. On the weekend of 6-9 March, beam from the SPS was injected into both LHC injection regions, followed by a first pass through the downstream LHC sectors. For the clockwise LHC beam (called “beam 1”) this meant passing through ALICE and into Sector 2-3, while the anticlockwise beam (called “beam 2”) was threaded through LHCb and all the way from Point 8 to Point 6, where it was extracted by the beam dump kickers onto the beam dump block. The dry runs in the previous weeks were mainly targeted at preparation for the sector tests. The systems tested included: injection, timing, synchronisation and beam instrumentation. The beam interlock ...

  12. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.

    1978-05-01

    A conceptual design of a neutral beam line based on the neutralization of negative deuterium ions is presented. This work is a detailed design of a complete neutral beam line based on using negative ions from a direct extraction source. Anticipating major technological advancements, beam line components have been scaled including the negative ion sources and components for the direct energy recovery of charged beams and high speed cryogenic pumping. With application to the next step in experimental fusion reactors (TNS), the neutral beam injector system that has been designed provides 10 MW of 200 keV neutral deuterium atoms. Several arms are required for plasma ignition

  13. Direct extraction of a Na- beam from a sodium plasma

    International Nuclear Information System (INIS)

    Sasao, Namiko; Fujita, Junji; Yamaoka, Hitoshi; Wada, Motoi.

    1990-07-01

    Negative sodium ions (Na - ) were extracted from a small multi-cusp ion source. A steady state sodium plasma was produced by primary electrons in a sodium gas evaporating from a metal sample placed in the discharge chamber. The Na - current density of 1.5 μA/cm 2 was obtained from a single aperture of 1.5 mm diameter at relatively low discharge power of about 0.4 W and filament power of 50 W. Extraction characteristics were studied by changing the plasma electrode bias. The extracted Na - current showed dependence on the bias voltage similar to that of H - or Li - volume production. (author)

  14. Superconducting resonator used as a beam phase detector

    Directory of Open Access Journals (Sweden)

    S. I. Sharamentov

    2003-05-01

    Full Text Available Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a “pure” (or reference rf and the beam-induced signal. A new method of circular phase rotation (CPR, allowing extraction of the beam phase information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1° (at 48 MHz for a beam current of 100 nA. The electronics design is described and experimental data are presented.

  15. Performance test results of ion beam transport for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M R; Mattoo, S K [Institute for Plasma Research Bhat, Gandhinagar-382428, Gujarat (India); Uhlemann, R, E-mail: mukti@ipr.res.i [Forschungszentrum Juelich, Institute fur Energieforschung IEF-4, Plasmaphysik D-52425 Juelich (Germany)

    2010-02-01

    this problem, we have validated and scaled our design calculations with performance parameters of the Neutral Beam Injector at IPP, Julich, Germany. The performance test of the SST-1 PINI ion source was done at MARION Test Stand at IPP, Julich. Analyses of these results indicate that the measured power profile and the optical parameters of the beam are in good agreement with the simulation results. These parameters are stable over the beam pulse of 14s with extracted beam energy of 31 MJ at 41 kV. This paper presents these results and details out future work need to be done in order to assess the steady state stability of the beam parameters.

  16. Determination of metastable fraction in an ion beam extracted from ECR plasma

    International Nuclear Information System (INIS)

    Matsumoto, Atsushi; Ohtani, Shunsuke; Iwai, Tsuruji.

    1982-04-01

    The fraction of metastable-state Ar 2 + (3p 4 1 D) ions in Ar 2 + beam has been determined by an optical attenuation method (OAM) combined with the conventional beam attenuation method. The present OAM is based on observation of spatial decay of specified emission line intensities arising from charge-changed ions, along the beam axis in a target gas cell. The validity of the OAM is discussed in detail. The cross sections for one-electron capture by the ground-state Ar 2 + ( 3 P) ions, σ 21 , and by the metastable-state Ar 2 + ( 1 D) ions, σ 21 *, from Na have been measured independently by the OAM. Both the cross sections are of the order of 10 - 14 cm 2 and σ 21 * is about 1.3 times as large as σ 21 at the collision energy of 1.5 keV. (author)

  17. Techniques to extract physical modes in model-independent analysis of rings

    International Nuclear Information System (INIS)

    Wang, C.-X.

    2004-01-01

    A basic goal of Model-Independent Analysis is to extract the physical modes underlying the beam histories collected at a large number of beam position monitors so that beam dynamics and machine properties can be deduced independent of specific machine models. Here we discuss techniques to achieve this goal, especially the Principal Component Analysis and the Independent Component Analysis.

  18. All-magnetic extraction for cyclotron beam reacceleration

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  19. Generation of linearly polarized resonant transition radiation X-ray beam

    International Nuclear Information System (INIS)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu

    2000-01-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-μm thick Kapton foil stack. (author)

  20. Generation of linearly polarized resonant transition radiation X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-{mu}m thick Kapton foil stack. (author)

  1. Pseudo ribbon metal ion beam source

    International Nuclear Information System (INIS)

    Stepanov, Igor B.; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-01-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface

  2. Pseudo ribbon metal ion beam source.

    Science.gov (United States)

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  3. Tevatron extraction microcomputer

    International Nuclear Information System (INIS)

    Chapman, L.; Finley, D.A.; Harrison, M.; Merz, W.

    1985-06-01

    Extraction in the Fermilab Tevatron is controlled by a multi-processor Multibus microcomputer system called QXR (Quad eXtraction Regulator). QXR monitors several analog beam signals and controls three sets of power supplies: the ''bucker'' and ''pulse'' magnets at a rate of 5760 Hz, and the ''QXR'' magnets at 720 Hz. QXR supports multiple slow spills (up to a total of 35 seconds) with multiple fast pulses intermixed. It linearizes the slow spill and bucks out the high frequency components. Fast extraction is done by outputting a variable pulse waveform. Closed loop learning techniques are used to improve performance from cycle to cycle for both slow and fast extraction. The system is connected to the Tevatron clock system so that it can track the machine cycle. QXR is also connected to the rest of the Fermilab control system, ACNET. Through ACNET, human operators and central computers can monitor and control extraction through communications with QXR. The controls hardware and software both employ some standard and some specialized components. This paper gives an overview of QXR as a control system; another paper summarizes performance

  4. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  5. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    Science.gov (United States)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.

    2011-07-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  6. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    International Nuclear Information System (INIS)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Froeschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Staebler, A.; Wuenderlich, D.

    2011-01-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 x 0.9 m 2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( ∼ 1/8 of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density-being consistent with ion trajectory calculations-and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  7. Status report on the development of a tubular electron beam ion source

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E.N.; Pikin, A.I.

    2004-01-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm 2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations

  8. Towards a slow extraction system for the TRIUMF Kaon factory extender ring with 0.1% losses

    International Nuclear Information System (INIS)

    Wienands, U.; Servranckx, R.V.

    1988-03-01

    In order to reduce extraction losses a modified third-integral slow extraction system is proposed using a 0.5 m long and 10 μm thin electrostatic preseptum. Various factors limiting the extraction efficiency are investigated, and the losses are estimated to be as low as 0.2%. The extracted beam emittance is found to be about 0.2 π mm-mrad for achromatic extraction. For chromatic extraction a reduction in momentum width of the extracted beam by a factor of 2.5 will result in an extracted momentum bite of less than 30 MeV/c FWHM. This figure is limited by emittance blow-up due to synchrotron oscillations, which in turn increases extraction losses. Following the analytical estimate of the performance of the extraction system, simulation results are shown

  9. The System of Nanosecond 280-KeV He+ Pulsed Beam

    International Nuclear Information System (INIS)

    Junphong, P.; Ano, V.; Lekprasert, B.; Suwannakachorn, D.; Thongnopparat, N.; Vilaithong, T.; Chiang Mai U.; Wiedemann, H.; SLAC/SLAC, SSRL

    2006-01-01

    At Fast Neutron Research Facility, the 150 kV-pulses neutron generator is being upgraded to a 280-kV-pulsed-He beam for time-of-flight Rutherford backscattering spectrometry. It involves replacing the existing beam line elements by a multicusp ion source, a 400-kV accelerating tube, 45-double focusing dipole magnet and quadrupole lens. The multicusp ion source is a compact filament-driven of 2.6 cm in diameter and 8 cm in length. The current extracted is 20.4 μ A with 13 kV of extraction voltage and 8.8 kV of Einzel lens voltage. The beam emittance has found to vary between 6-12 mm mrad. The beam transport system has to be redesigned based on the new elements. The important part of a good pulsed beam depends on the pulsing system. The two main parts are the chopper and buncher. An optimized geometry for the 280 keV pulsed helium ion beam will be presented and discussed. The PARMELA code has been used to optimize the space charge effect, resulting in pulse width of less than 2 ns at a target. The calculated distance from a buncher to the target is 4.6 m. Effects of energy spread and phase angle between chopper and buncher have been included in the optimization of the bunch length

  10. Numerical Simulations to Evaluate the Performance of CERN PS Dummy Septum to Reduce Irradiation for the Multi-Turn Extraction

    CERN Document Server

    Hernalsteens, C; Gilardoni, S; Giovannozzi, M

    2013-01-01

    The losses created by the proposed Multi-Turn Extraction (MTE) at the CERN PS induce high activation of the magnetic extraction septum due to the de-bunched longitudinal beam structure requested to transfer the beam to the SPS. A mitigation measure is under study aiming at localizing the losses in a well-shielded area by shadowing the magnetic extraction septum thanks to a septum-like passive device. Such a solution is based on a so-called dummy septum, a blade which absorbs particles during the rise time of the extraction kickers for MTE beams. The efficiency of the scheme is presented in this paper. The quantitative estimate is based on detailed simulations that analyze the beam-matter interaction and provide a determination of the shadowing effect of the dummy septum.

  11. High energy extraction of electron beam pumped KrF lasers at multi atmospheres

    NARCIS (Netherlands)

    Kleikamp, B.M.H.H.; Witteman, W.J.

    1984-01-01

    The construction is described of a simple and compact KrF laser with electron beam excitation. The electron beam is generated in a coaxial vacuum diode, driven directly by a ten-stage coaxial Marx generator. A flat MgF2 outcoupler and a suprasil roof prism, protected by an MgF2 window, proved to be

  12. Regenerative Needs Following Alveolar Ridge Preservation Procedures in Compromised and Noncompromised Extraction Sockets: A Cone Beam Computed Tomography Study.

    Science.gov (United States)

    Koutouzis, Theofilos; Lipton, David

    2016-01-01

    The aim of this study was to evaluate the necessity for additional regenerative procedures following healing of compromised and noncompromised extraction sockets with alveolar ridge preservation procedures through the use of virtual implant imaging software. The cohort was comprised of 87 consecutive patients subjected to a single maxillary tooth extraction with an alveolar ridge preservation procedure for subsequent implant placement. Patients were divided into two main groups based on the integrity of the buccal bone plate following teeth extraction. Patients in the compromised socket (CS) group (n = 52) had partial or complete buccal bone plate loss, and patients in the noncompromised socket (NCS) group (n = 35) exhibited no bone loss of their socket walls following tooth extraction. Following 4 to 6 months of healing, all patients had a cone beam computed tomography (CBCT) study. Root-formed implants were placed virtually in an ideal prosthetic position. The number of implants per group and location (anterior, premolar, molar) exhibiting exposed buccal implant surface was calculated. In the CS group, 5 out of 19 anterior implants (26.3%), 4 out of 14 premolar implants (28.5%), and 7 out of 19 molar implants (36.8%) had exposed buccal surfaces. In the NCS group, 4 out of 9 anterior implants (44.4%), 2 out of 9 premolar implants (22.2%), and 4 out of 17 molar implants (23.5%) had exposed buccal surfaces. There were no statistically significant differences for intragroup and intergroup comparisons (χ² test, P > .05). This study failed to find statistically significant differences in the frequency of implants with exposed buccal surfaces placed virtually, following treatment of compromised and noncompromised sockets. A high proportion (22% to 44%) of sites had implants that potentially needed additional regenerative procedures.

  13. The SPS Beam quality monitor, from design to operation

    CERN Document Server

    Papotti, G; Follin, F; Shaposhnikova, E

    2011-01-01

    The SPS Beam Quality Monitor is a system that monitors longitudinal beam parameters on a cycle-by-cycle basis and prevents extraction to the LHC in case the specifications are not met. This avoids losses, unnecessary stress of machine protection components and luminosity degradation, additionally helping efficiency during the filling process. The system has been operational since the 2009 LHC run, checking the beam pattern, its correct position with respect to the LHC references, individual bunch lengths and stability. In this paper the algorithms used, the hardware implementation and the operational aspects are presented.

  14. Tests of SEC stability in high flux proton beams

    International Nuclear Information System (INIS)

    Agoritsas, V.; Witkover, R.L.

    1979-01-01

    The Secondary Emission Chamber (SEC) is used to measure the beam intensity in slow extracted beam channels of proton synchrotrons around the world. With the improvements in machine intensity, these monitors have been exposed to higher flux conditions than in the past. A change in sensitivity of up to 25% has been observed in the region around the beam spot. Using SEC's of special construction, a series of tests was performed at FNAL, BNL-AGS and CERN-PS. The results of these tests and conclusions about the construction of more stable SEC's are presented

  15. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  16. Alignment and girder position of MSE septa in the new LSS4 extraction channel of the SPS

    CERN Document Server

    Balhan, B; Rizzo, A; Weterings, W; CERN. Geneva. SPS and LHC Division

    2002-01-01

    For the extraction of the beam from the Super Proton Synchrotron (SPS) to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso (CNGS)facility, a new fast-extraction system is being constructed in the long straight section LSS4 of the SPS. Besides extraction bumpers, enlarged aperture quadrupoles and extraction kicker magnets (MKE), six conventional DC septum magnets (MSE) are used. These magnets are mounted on a single rigid support girder, pre-aligned so as to follow the trajectory of the extracted beam and optimise the available aperture. The girder has been motorised in order to optimise the local SPS aperture during setting up, so as to avoid the risk of circulating beam impact on the septum coils. In this note, we briefly present the trajectory and apertures of the beam, we describe the calculations and methods that have been used to determine the magnet position on the girder, and finally we report on the details of the girder movement and alignment.

  17. Preparation of the beam for PS-MTE at the PSB

    CERN Document Server

    Chanel, M; CERN. Geneva. BE Department

    2009-01-01

    The Multi-Turn Extraction(MTE)1 at the PS requires, from the PSB, a beam(up to 6.5 1012 protons/ring) with a large horizontal emittance to better produce the five beamlets and a vertical emittance as small as possible. The ways to produce this beam and adjust the parameters are described in this note.

  18. Improvement in Dissolution of Cotton Pulp with Ionic liquid by the Electron Beam Treatment

    International Nuclear Information System (INIS)

    Lee, Won Sil; Jung, Wong Gi; Sung, Yong Joo

    2013-01-01

    Electron beam treatment was applied for improving dissolution of cotton pulp with ionic liquids. Two ionic liquids, 1-allyl-3-methylimidazolium chloride ([Amim]Cl]: AC) and 1,3-dimethylimidzolium methlphosphite ([Dmim][(MeO)(H)PO2]: Me) were used for this experiment. Treatment with electron beams up to dose of 400 kGy resulted in the increase of hot water extract and alkali extract of cotton pulp and the great reduction in the molecular weight of cellulose. For the dissolution of cotton pulp with two ionic liquids, the electron beam treated samples showed faster dissolution. The dissolved cellulose with Me ionic liquid were regenerated with Acetonitrile and the structure of regenerated cellulose showed distinct difference depending on the electron beam treatment. Those results provide the electron beam pre-treatment could be applied as an energy efficient and environmentally benign method to increase the dissolution of cotton pulp with ionic liquids

  19. Source of spill ripple in the RF-KO slow-extraction method with FM and AM

    International Nuclear Information System (INIS)

    Noda, K.; Furukawa, T.; Shibuya, S.; Muramatsu, M.; Uesugi, T.; Kanazawa, M.; Torikoshi, M.; Takada, E.; Yamada, S.

    2002-01-01

    The RF-knockout (RF-KO) slow-extraction method with frequency modulation (FM) and amplitude modulation (AM) has brought high-accuracy irradiation to the treatment of a cancer tumor moving with respiration, because of a quick response to beam start/stop. However, a beam spill extracted from a synchrotron ring through RF-KO slow-extraction has a huge ripple with a frequency of around 1 kHz related to the FM. The spill ripple will disturb the lateral dose distribution in the beam scanning methods. Thus, the source of the spill ripple has been investigated through experiments and simulations. There are two tune regions for the extraction process through the RF-KO method: the extraction region and the diffusion region. The particles in the extraction region can be extracted due to amplitude growth through the transverse RF field, only when its frequency matches with the tune in the extraction region. For a large chromaticity, however, the particles in the extraction region can be extracted through the synchrotron oscillation, even when the frequency does not match with the tune in the extraction region. Thus, the spill structure during one period of the FM strongly depends on the horizontal chromaticity. They are repeated with the repetition frequency of the FM, which is the very source of the spill ripple in the RF-KO method

  20. Infrared Extraction Change for the NSLS-II Storage Ring

    International Nuclear Information System (INIS)

    Blednykh, A.; Carr, L.; Coburn, D.; Krinsky, S.

    2009-01-01

    The short- and long-range wakepotentials have been studied for the design of the infrared (IR) extraction chamber with large full aperture: 67mm vertical and 134mm horizontal. The IR-chamber will be installed within a 2.6m long wide-gap bending magnet with 25m bend radius. Due to the large bend radius it is difficult to separate the light from the electron trajectory. The required parameters of the collected IR radiation at the extraction mirror are ∼50mrad horizontal and ∼25mrad vertical (full radiation opening angles). If the extraction mirror is seen by the beam, resonant modes are generated in the chamber. In this paper, we present the detailed calculated impedance for the design of the far-IR chamber, and show that placing the extraction mirror in the proper position eliminates the resonances. In this case, the impedance reduces to that of a simple tapered structure, which is acceptable in regard to its impact on the electron beam.

  1. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  2. Formation of helical electron beams by electrostatic pumping

    International Nuclear Information System (INIS)

    Barroso, J.J.; Spassovsky, L.P.; Stellati, C.

    1993-01-01

    A non-adiabatic gun for a 35 GHz, 100 kw gyrotron is presented. A 50 kV, 10 A laminar helical electron beam has been achieved with a perpendicular to parallel velocity ratio of 1.9. A non-adiabatic change of the pumping electric field is used to impart rotational velocity to the beam particles which are extracted at the cathode surface in a direction parallel to the guiding magnetic field. (author)

  3. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  4. Improvements for extending the time between maintenance periods for the Heidelberg ion beam therapy center (HIT) ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, Tim, E-mail: tim.winkelmann@med.uni-heidelberg.de; Cee, Rainer; Haberer, Thomas; Naas, Bernd; Peters, Andreas; Schreiner, Jochen [Heidelberger Ionenstrahl-Therapie Centrum (HIT), D -69120 Heidelberg (Germany)

    2014-02-15

    The clinical operation at the Heidelberg Ion Beam Therapy Center (HIT) started in November 2009; since then more than 1600 patients have been treated. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. The modification of the low energy beam transport line and the integration of a third ion source into the therapy facility will be shown. In the last year we implemented a new extraction system at all three sources to enhance the lifetime of extraction parts and reduce preventive and corrective maintenance. The new four-electrode-design provides electron suppression as well as lower beam emittance. Unwanted beam sputtering effects which typically lead to contamination of the insulator ceramics and subsequent high-voltage break-downs are minimized by the beam guidance of the new extraction system. By this measure the service interval can be increased significantly. As a side effect, the beam emittance can be reduced allowing a less challenging working point for the ion sources without reducing the effective beam performance. This paper gives also an outlook to further enhancements at the HIT ion source testbench.

  5. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  6. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  7. Preliminary results of a broad beam RF ion source with electron plasma interaction. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E; Zakhary, S G; Ghanem, A A; Abdel-Ghaffar, A M [Ion Sources and Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    A new design of a broad beam RF ion source is made to be capable to deliver wide and uniform beam with currents reaching (100 {mu} A up to 30 mA) at extraction voltages (200 V up to 2 kV). Its plasma intensifying system is made with the addition of electrons from an immersed filament in the discharge and axial magnetic field (70 up to 300 G). A uniform beam distribution is made with a planner graphite cathode which has a number of holes arranged to produce perveance matching with the normal Gaussian distribution of the beam density. These holes are arranged in a consequent orbits with equal distance between the adjacent holes in each orbit. These holes increase in diameter with increasing the orbit radius. This allows increasing the extracted ion currents at the source outer edges and decreases its value at the source inner region; producing wide and uniform beam which is suitable for material modifications. The beam profiles are traced with electromechanical scanner and X-Y recorder. The perveance matching is found to produce a beam uniformity of =66% of its width which reaches =6 cm. The variation of the output currents are with the variation of extraction voltages, magnetic field, discharge pressure and electron injection into the plasma. The extracted current increases with the increase of the discharge pressure, RF power and magnetic field intensity. The influence of electron plasma interaction is found to have a great effect on increasing the ion currents to about four times its value without electron interaction, however, this increase is limited due to presence of breakdown at V{sub ex} > 2 kV. The simple design of this source, its cleanness due to the use of pyrex discharge bottle, easy operation and maintenance adds other features to this broad beam type ion source which makes it suitable for metallurgical applications in broad beam accelerators. 6 figs.

  8. RF extraction issues in the relativistic klystron amplifiers

    Science.gov (United States)

    Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.

  9. Section of CMS Beam Pipe Removed

    CERN Multimedia

    2013-01-01

    Seven components of the beam pipe located at the heart of the CMS detector were removed in recent weeks. The delicate operations were performed in several stages as the detector was opened. Video of the extraction of one section: http://youtu.be/arGuFgWM7u0

  10. Simulation of the Plasma Meniscus with and without Space Charge using Triode Extraction System

    International Nuclear Information System (INIS)

    Abdel Rahman, M.M.; EI-Khabeary, H.

    2007-01-01

    In this work simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. Tbe influence of acceleration voltage applied to tbe acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat concave and convex ) without space change at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. Tbe influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V a cc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V a cc = - 2000 volt applied to the acceleration electrode of. the triode extraction system has been studied

  11. Simulation of the plasma meniscus with and without space charge using triode extraction system

    International Nuclear Information System (INIS)

    Rahman, M.M.Abdel; El-Khabeary, H.

    2009-01-01

    In this work, simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. The influence of acceleration voltage applied to the acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes, ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat, concave and convex ) without space charge at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. The influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been studied. (author)

  12. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  13. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    Science.gov (United States)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  14. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    International Nuclear Information System (INIS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L.D.

    2012-01-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli (E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  15. The synchrotron and its related technology for ion beam therapy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo; Umezawa, Masumi; Saito, Kazuyoshi; Tootake, Satoshi; Nishiuchi, Hideaki; Hara, Shigemistu; Tanaka, Masanobu; Matsuda, Koji; Sakurabata, Hiroaki; Moriyama, Kunio

    2007-01-01

    Hitachi has developed several new technologies for the synchrotron and its related system to realize reliable and flexible operation of a proton therapy system. Especially important among them are a non-resonant RF acceleration cavity using FINEMET core with multiple power feeding and radio frequency driven beam extraction technique (RF-DE) for a synchrotron. Various treatment operations such as variable acceleration energy or respiration gating became possible and simple due to the above technique. For beam transport, a beam steering method for the beam, using transfer matrix realizes quick and precise correction of the beam orbit. A compact microwave ion source has also been developed for the injector to obtain further higher reliability and availability. Most of these technologies are also effective to enhance the reliability and flexibility of other ion beam therapy systems

  16. Importance of beam-beam tune spread to collective beam-beam instability in hadron colliders

    International Nuclear Information System (INIS)

    Jin Lihui; Shi Jicong

    2004-01-01

    In hadron colliders, electron-beam compensation of beam-beam tune spread has been explored for a reduction of beam-beam effects. In this paper, effects of the tune-spread compensation on beam-beam instabilities were studied with a self-consistent beam-beam simulation in model lattices of Tevatron and Large Hodron Collider. It was found that the reduction of the tune spread with the electron-beam compensation could induce a coherent beam-beam instability. The merit of the compensation with different degrees of tune-spread reduction was evaluated based on beam-size growth. When two beams have a same betatron tune, the compensation could do more harm than good to the beams when only beam-beam effects are considered. If a tune split between two beams is large enough, the compensation with a small reduction of the tune spread could benefit beams as Landau damping suppresses the coherent beam-beam instability. The result indicates that nonlinear (nonintegrable) beam-beam effects could dominate beam dynamics and a reduction of beam-beam tune spread by introducing additional beam-beam interactions and reducing Landau damping may not improve the stability of beams

  17. A novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    CERN Document Server

    AUTHOR|(SzGeCERN)395725

    2015-01-01

    With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fastpulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the inco...

  18. Beam Scraping to detect and remove Halo in LHC Injection

    CERN Document Server

    Letnes, P A; Brielmann, A; Burkhardt, H; Kramer, Daniel

    2008-01-01

    Fast scrapers are installed in the SPS to detect and remove beam halo before extraction of beams to the LHC, to minimize the probability for quenching of superconducting magnets in the LHC. We shortly describe the current system and then focus on our recent work, which aims at providing a system which can be used as operational tool for standard LHC injection. A new control application was written and tested with the beam. We describe the current status and results and compare these with detailed simulations.

  19. Stability of the drive beam in the decelerator of CLIC

    CERN Document Server

    Schulte, Daniel

    2002-01-01

    The RF power necessary to accelerate the main beam in the compact linear collider (CLIC) is generated by decelerating high-intensity low energy drive beams in 44 decelerators. Recently new decelerating structures (PETS, power extraction and transfer structures) have been developed. In these structures the RF energy travels with particularly high group velocity, which can affect efficiency and transverse stability. The paper considers the transverse beam stability in the decelerator as well as the longitudinal effects in the presence of dynamic and static imperfections.

  20. Dependability analysis of a safety critical system the LHC beam dumping system at CERN

    CERN Document Server

    Filippini, R

    2006-01-01

    This thesis presents the dependability study of the Beam Dumping System of the Large Hadron Collider (LHC), the high energy particle accelerator to be commissioned at CERN in summer 2007. There are two identical, independent LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of a series of magnets that extract the particle beam from the LHC ring into the extraction line leading to the absorbing block. The consequences of a failure within the LBDS can be very severe. This risk is reduced by applying redundancy to the design of the most critical components and on-line surveillance that, in case of a detected failure, issues a safe operation abort, called false beam dump. The system has been studied applying Failure Modes Effects and Criticality Analysis (FMECA) and reliability prediction. The system failure processes have been represented with a state transition diagram, governed by a Markov regenerative stochastic process, and analysed for different operational scenarios for one year of operati...

  1. Energy spectrum control for modulated proton beams

    International Nuclear Information System (INIS)

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-01-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to ±21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than ±3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  2. Determination of intensity and position of the extracted electron beam at ELSA by means of high-frequency resonators; Bestimmung von Intensitaet und Position des extrahierten Elektronenstrahls an ELSA mittels Hochfrequenzresonatoren

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Thorsten

    2012-06-15

    The electron stretcher facility ELSA provides an electron beam of a few hundred pA used for the generation of bremsstrahlung photons probing the nucleon structure in a detector setup. For the correct interpretation of the events registered, the persistence of the beam position over time is crucial. Its continuous monitoring has been enabled by setting up a measurement system based on resonant cavities. Position signals at a frequency of 1.5 GHz and below one aW of power can be abstracted from the beam without degrading its quality. After frequency down-conversion to a few kHz, a narrow bandwidth detection performed by lock-in amplifiers separates them from noise. A maximum sample rate of 9 Hz and a resolution of one tenth of a millimeter could be achieved. The position signals have to be normalized to the beam current which is monitored by another dedicated resonator. The measurement precision down to a few pA allows for the accelerator extraction mechanism to be controlled by a feedback loop in order to obtain the respective requested current. (orig.)

  3. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  4. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    Science.gov (United States)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  5. Recovery of CTF beam signals from a strong wakefield background

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Y [TRIUMF, Vancouver, BC (Canada); Schulte, E [European Organization for Nuclear Research, Geneva (Switzerland); Ekeloef, T [Uppsala Univ. (Sweden)

    1995-06-01

    The beam monitor for the CERN Linear Collider Test Facility (CTF) has to work not only with very short pulses (350 ps FWHM) at a spacing of 330 ps, but also in a strong wakefield background. A cone-shaped button pickup electrode has been designed and constructed for use with CTF beams and tests have been made using a real time analogue Gaussian filter to recover the beam signals from the strong wakefield signals. As a comparison to the analogue filter, a study has been made to process the data off-line and extract the beam signals using digital filtering based on the wavelet concept. (author). 3 refs., 7 figs.

  6. Scintillation screen materials for beam profile measurements of high energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Renuka

    2016-06-22

    For the application as a transverse ion beam diagnostics device, various scintillation screen materials were analysed. The properties of the materials such as light output, image reproduction and radiation stability were investigated with the ion beams extracted from heavy ion synchrotron SIS-18. The ion species (C, Ne, Ar, Ta and U) were chosen to cover the large range of elements in the periodic table. The ions were accelerated to the kinetic energies of 200 MeV/u and 300 MeV/u extracted with 300 ms pulse duration and applied to the screens. The particle intensity of the ion beam was varied from 10{sup 4} to 10{sup 9} particles per pulse. The screens were irradiated with typically 40 beam pulses and the scintillation light was captured using a CCD camera followed by characterization of the beam spot. The radiation hardness of the screens was estimated with high intensity Uranium ion irradiation. In the study, a linear light output for 5 orders of magnitude of particle intensities was observed from sensitive scintillators and ceramic screens such as Al{sub 2}O{sub 3}:Cr and Al{sub 2}O{sub 3}. The highest light output was recorded by CsI:Tl and the lowest one by Herasil. At higher beam intensity saturation of light output was noticed from Y and Mg doped ZrO{sub 2} screens. The light output from the screen depends not only on the particle intensity but also on the ion species used for irradiation. The light yield (i.e. the light intensity normalised to the energy deposition in the material by the ion) is calculated from the experimental data for each ion beam setting. It is shown that the light yield for light ions is about a factor 2 larger than the one of heavy ions. The image widths recorded exhibit a dependence on the screens material and differences up to 50 % were registered. On radiation stability analysis with high particle intensity of Uranium ions of about 6 x 10{sup 8} ppp, a stable performance in light output and image reproduction was documented from Al

  7. Developments in broad-beam, ion-source technology and applications

    International Nuclear Information System (INIS)

    Kaufman, H.R.; Harper, J.M.E.; Cuomo, J.J.

    1982-01-01

    Recent advances in broad-beam, ion-source technology are summarized, including low-energy ion optics, improved extraction grid fabrication, a compact ion-source design and a gridless ion-source design. Recent applications have emphasized concepts such as stress modification of vapor deposited films, very low energy ion beams to minimize the physical sputtering portion in reactive etching, and the use of multiple sources and targets to sputter deposit alloys and compounds. A comprehensive critical review by the same authors appears concurrently, describing in detail the developments in broad-beam, ion-source technology 1 and the applications of these sources. 2

  8. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  9. Tevatron extraction microcomputer

    International Nuclear Information System (INIS)

    Chapman, L.; Finley, D.A.; Harrison, M.; Merz, W.; Batavia, IL)

    1985-01-01

    Extraction in the Fermilab Tevatron is controlled by a multi-processor Multibus microcomputer system called QXR (Quad eXtraction Regulator). QXR monitors several analog beam signals and controls three sets of power supplies: the ''bucker'' and ''pulse'' magnets at a rate of 5760 Hz, and the ''QXR'' magnets at 720 Hz. QXR supports multiple slow spills (up to a total of 35 seconds) with multiple fast pulses intermixed. It linearizes the slow spill and bucks out the high frequency components. Fast extraction is done by outputting a variable pulse waveform. Closed loop learning techniques are used to improve performance from cycle to cycle for both slow and fast extraction. The system is connected to the Tevatron clock system so that it can track the machine cycle. QXR is also connected to the rest of the Fermilab control system, ACNET. Through ACNET, human operators and central computers can monitor and control extraction through communications with QXR. The controls hardware and software both employ some standard and some specialized components. This paper gives an overview of QXR as a control system; another paper (1) summarizes performance

  10. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  11. Effect of the gas mixing technique on the production efficiency of ion beams extracted from an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Tarvainen, O.; Suominen, P.; Koivisto, H.

    2004-01-01

    In this work the effect of gas mixing on the production efficiency of ion beams extracted from an ECR ion source has been studied with the JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS). It was found that the gas mixing affects strongly the confinement of ions in the plasma of the ECRIS. The information obtained can be used to minimize the consumption of expensive materials or isotopes and to reduce contamination of the plasma chamber. It was observed that the carbon contamination, which is built up when the MIVOC method is used could be decreased with the aid of the gas mixing technique. The best mixing gas for this purpose was found to be oxygen

  12. Analytic Scalings of the Constant-Neutralization Beam Envelope Equation, with Applications

    International Nuclear Information System (INIS)

    McCarrick, J F

    2007-01-01

    Neutralized transport of relativistic electron beams can achieved in various circumstances. In one form, the beam is transported through a plasma, either pre-formed or beam generated, where the plasma electrons are ejected due to the space charge influence of the beam. The beam can be fully neutralized this way if the plasma is sufficiently dense. Typically, the transport physics of concern in this case are the various macro- and micro-instabilities that can develop due to interactions of the beam with the plasma; charge and current neutralization are certainly important but tend to be just one set of concerns among many. The study of beam/plasma interactions has been active for many years [e.g. 1]. In a different scenario, the beam impinges on a plasma with a sharp boundary (as maintained on the timescale of a beam pulse) and, via space charge, extracts ions from the plasma; extraction energies can be hundreds of kilovolts in the case of tightly focused, high current beams. In this case, the ions have a lower density than the beam and are not accompanied by a plasma electron population; the main transport issue is charge neutralization. Such a sharply bounded plasma can occur via ionization of surface impurities from a solid target; the transport of the beam through this thin layer is typically not of interest relative to the transport upstream of the surface and the beam/target interactions beyond the surface. Since the partial neutralization of the beam changes its focusing characteristics on the target, and since the high extraction energy means the ion column is moving rapidly into the beam and introducing strong time variation, this 'backstreaming ion' phenomenon has been an area of active study in the transport of the high-intensity electron beams used in radiographic accelerators (see [2] for an example of such machines). However, much of the work has been experimental [3] and numerical [4]. The conceptual understanding provided by pencil-and-paper analysis

  13. Proton GE/GM from beam-target asymmetry

    International Nuclear Information System (INIS)

    Mark Jones; Aram Aghalaryan; Abdellah Ahmidouch; Razmik Asaturyan; Frederic Bloch; Werner Boeglin; Peter Bosted; Cedric Carasco; Roger Carlini; Jinseok Cha; Jian-Ping Chen; Michael Christy; Leon Cole; Luminita Coman; Donald Crabb; Samuel Danagoulian; Donal Day; James Dunne; Mostafa Elaasar; Rolf Ent; Howard Fenker; Emil Frlez; David Gaskell; Liping Gan; Javier Gomez; Bitao Hu; Juerg Jourdan; Christopher Keith; Cynthia Keppel; Mahbubul Khandaker; Andreas Klein; Laird Kramer; Yongguang Liang; Jechiel Lichtenstadt; Richard Lindgren; David Mack; Paul McKee; Dustin McNulty; David Meekins; Hamlet Mkrtchyan; Rakhsha Nasseripour; Maria-Ioana Niculescu; Kristoff Normand; Blaine Norum; Dinko Pocanic; Yelena Prok; Brian Raue; Joerg Reinhold; Julie Roche; Daniela Rohe; Oscar Rondon-Aramayo; Nikolai Savvinov; Bradley Sawatzky; Mikell Seely; Ingo Sick; Karl Slifer; C. Smith; Gregory Smith; S. Stepanyan; Liguang Tang; Shigeyuki Tajima; Giuseppe Testa; William Vulcan; Kebin Wang; Glen Warren; Frank Wesselmann; Stephen Wood; Chen Yan; Lulin Yuan; Junho Yun; Markus Zeier; Hong Guo Zhu

    2006-01-01

    The ratio of the proton's electric to magnetic form factor, G E /G M , can be extracted in elastic electron-proton scattering by measuring either cross sections, beam-target asymmetry or recoil polarization. Separate determinations of G E /G M by cross sections and recoil polarization observables disagree for Q 2 > 1 (GeV/c) 2 . Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q 2 = 1.51 (GeV/c) 2 for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q 2 at which G E /G M has been determined by a beam-target asymmetry experiment. The result, μG E /G M = 0.884 +/- 0.027 +/- 0.029, is compared to previous world data

  14. Synchronous characterization of semiconductor microcavity laser beam.

    Science.gov (United States)

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  15. The Aperture and Layout of the LHC Extraction Septa and TCDS Diluter with an Enlarged MSDC Vacuum Chamber

    CERN Document Server

    Goddard, B

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams over the whole energy range, under all realistically possible fault conditions. These include normal operation, failure of machine elements and also abnormal performance of subsystems of the beam dumping system itself. To avoid unnecessary irradiation and even equipment damage, the MSD extraction septa must provide sufficient aperture both for the circulating and extracted beams. In order to satisfy this requirement, a modified (enlarged) vacuum chamber design will be used for the limiting MSDC septa. The analysis of the available apertures is presented, with emphasis on the dependence on the local orbit and beam emittance.

  16. Study of a microwave power source for a two-beam accelerator

    International Nuclear Information System (INIS)

    Houck, T.L.

    1994-01-01

    A theoretical and experimental study of a microwave power source suitable for driving a linear e + e - collider is reported. The power source is based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept, is driven by a 5-MeV, 1-kA induction accelerator electron beam, and operates at X-band frequencies. The development of a computer code to simulate the transverse beam dynamics of an intense relativistic electron beam transiting a system of microwave resonant structures is presented. This code is time dependent with self-consistent beam-cavity interactions and uses realistic beam parameters. Simulations performed with this code are compared with analytical theory and experiments. The concept of spacing resonant structures at distances equal to the betatron wavelength of the focusing system to suppress the growth of transverse instabilities is discussed. Simulations include energy spread over the beam to demonstrate the effect of Landau damping and establish the sensitivity of the betatron wavelength spacing scheme to errors in the focusing system. The design of the Reacceleration Experiment is described in detail and includes essentially all the issues related to a full scale RK-TBA microwave source. A total combined power from three output structures in excess of 170 MW with an amplitude stability of ±4% over a 25 ns pulse was achieved. The results of the experiment are compared to simulations used during the design phase to validate the various codes and methods used. The primary issue for the RK-TBA concept is identified as transverse beam instability associated with the excitation of higher order modes in the resonant structures used for extracting microwave power from the modulated beam. This work represents the first successful experimental demonstration of repeated cycles of microwave energy extraction from and reacceleration of a modulated beam

  17. Light ion beam transport research at NRL

    International Nuclear Information System (INIS)

    Hinshelwood, D.D.; Boller, J.R.; Cooperstein, G.

    1996-01-01

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs

  18. Light ion beam transport research at NRL

    Energy Technology Data Exchange (ETDEWEB)

    Hinshelwood, D D; Boller, J R; Cooperstein, G [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.; and others

    1997-12-31

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs.

  19. NSLS infra-red beam line (U3) conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1984-02-09

    We describe the conceptual design of an infrared (I-R) beam line on the vacuum-ultra-violet storage ring of the National Synchrotron Light Source. The beam line forms part of the Phase II expansion of the NSLS. Consistent with the implementation of the current design is the extraction of hitherto wasted radiation and the establishment of a mezzanine floor or platform to make full use of the available headroom. This means that the I-R beam line, once established, does not interfere with any existing operations on the VUV floor.

  20. Conceptual design of a linac-stretcher ring to obtain a 2-gev continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, >100 /mu/A 2-Gev electron beam, a linac-stretcher ring system was designed. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-Gev SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an rf system whose purpose is to control the beam orbit and rate of extraction from the ring. With an rf system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring. 4 refs

  1. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  2. Beam focusing by aperture displacement in multiampere ion sources

    International Nuclear Information System (INIS)

    Stewart, L.D.; Kim, J.; Matsuda, S.

    1975-05-01

    Results are given of an experimental study of beam focusing by aperture displacement (Δx) in duoPIGatron ion sources. Measurements with a single aperture, accel-decel electrode geometry show that the beam deflection angle is linear with Δx/z for the round aperture and with Δx/z* 2 for the slit aperture where z and z* are respectively the extraction gap distance and the effective gap distance. Applying the result of the single aperture study to the multiaperture, duoPIGatron sources, it was possible to increase the neutral beam injection power to the ORMAK plasma by approximately 40 percent. Also presented are discussion and comparison of other work on the effect of aperture displacement on beam deflection. (U.S.)

  3. A simple beam analyser

    International Nuclear Information System (INIS)

    Lemarchand, G.

    1977-01-01

    (ee'p) experiments allow to measure the missing energy distribution as well as the momentum distribution of the extracted proton in the nucleus versus the missing energy. Such experiments are presently conducted on SACLAY's A.L.S. 300 Linac. Electrons and protons are respectively analysed by two spectrometers and detected in their focal planes. Counting rates are usually low and include time coincidences and accidentals. Signal-to-noise ratio is dependent on the physics of the experiment and the resolution of the coincidence, therefore it is mandatory to get a beam current distribution as flat as possible. Using new technologies has allowed to monitor in real time the behavior of the beam pulse and determine when the duty cycle can be considered as being good with respect to a numerical basis

  4. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  5. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  6. Design of power supply system for the prototype RF-driven negative ion source for neutral beam injection application

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Caichao; Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Wei, Jianglong, E-mail: jlwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xie, Yahong; Xu, Yongjian; Liang, Lizhen; Chen, Shiyong; Liu, Sheng; Liu, Zhimin; Xie, Yuanlai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    Highlights: • A supporting power supply system was designed in details for a RF-driven prototype negative ion source at ASIPP. • The RF power supply for plasma generation adopts an all-solid-state power supply structure. • The extraction grid power supply adopts the pulse step modulator (PSM) technology. - Abstract: In order to study the generation and extraction of negative ions for neutral beam injection application, a prototype RF-driven negative ion source and the corresponding test bed are under construction at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The target of the negative ion source is extracting a negation ion beam of 350 A/m{sup 2} for 3600 s plasma duration and 100 s beam duration. According to the required parameters of test bed, the design of power supply system is put forward for earlier study. In this paper, the performance requirements and design schemes of RF power supply for plasma generation, impedance matching network, bias voltage power supply, and extraction voltage power supply for negative beam extraction are introduced in details. The schemes provide a reference for the construction of power supply system and lay a foundation for the next phase of experimental operation.

  7. The rapid cycling synchrotron of the Eurisol / Beta-Beam facility

    International Nuclear Information System (INIS)

    Lachaize, A.

    2008-09-01

    In order to ask for physicians requests, some neutrinos facilities are under studies to produce pure, intense, well collimated neutrinos beams with a well determined energy spectrum. One of them, the Beta-Beam project, is based on neutrinos production by radioactive ion beams decay after acceleration. The thesis is focused on one step of the complex, namely the low energy ring required for accumulation and injection of ion beams between the post-acceleration linac of the EURISOL complex (dedicated complex for radioactive ion beam production) and the CERN PS. After the description of the EURISOL complex and the Beta-Beam complex, a description of charged particles beams transport formalism is given. Then, in the second part, studies on the definition and the optimisation of the ring are given, starting by optical structure then different simulations concerning beam dynamics, i.e. multiturn injection, synchronous acceleration with beam losses localization and intensity, fast extraction, chromaticity with eddy currents correction and space charge effects. Finally, a preliminary technical design of the RCS main magnets is proposed. (author)

  8. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    Science.gov (United States)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  9. Feasibility Analysis for the Construction of Vertical Neutron Beam in the MNSR

    International Nuclear Information System (INIS)

    Al-Ayoubi, S.; Sulaiman, I.

    2009-06-01

    The MCNP-4C code was used to investigate the possibility of extracting a vertical neutron beam in the MNSR reactor. Code results showed that thermal neutron flux at the exit aperture of about ( 6 x10 5 ) cm -2 s -1 could be obtained and neutron beam properties were determined. (author)

  10. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    Science.gov (United States)

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  11. Dimensional Changes of Fresh Sockets With Reactive Soft Tissue Preservation: A Cone Beam CT Study.

    Science.gov (United States)

    Crespi, Roberto; Capparé, Paolo; Crespi, Giovanni; Gastaldi, Giorgio; Gherlone, Enrico Felice

    2017-06-01

    The aim of this study was to assess dimensional changes of the fresh sockets grafted with collagen sheets and maintenance of reactive soft tissue, using cone beam computed tomography (CBCT). Tooth extractions were performed with maximum preservation of the alveolar housing, reactive soft tissue was left into the sockets and collagen sheets filled bone defects. Cone beam computed tomography were performed before and 3 months after extractions. One hundred forty-five teeth, 60 monoradiculars and 85 molars, were extracted. In total, 269 alveoli were evaluated. In Group A, not statistically significant differences were found between monoradiculars, whereas statistically significant differences (P 0.05) for all types of teeth. This study reported an atraumatic tooth extraction, reactive soft tissue left in situ, and grafted collagen sponge may be helpful to reduce fresh socket collapse after extraction procedures.

  12. Scintillation chamber of calorimeters for colliding beam detectors

    International Nuclear Information System (INIS)

    Jones, L.W.

    1983-01-01

    It is suggested that the scintillation chamber, a technique first discussed almost thirty years ago, might find application in colliding beam detector systems, in particular as a means of efficiently extracting detailed spatial and energy information from a sampling calorimeter

  13. Upgrade of the CERN SPS Extraction Protection Elements TPS

    CERN Document Server

    Borburgh, Jan; Barnes, Michael; Baud, Cedric; Fraser, Matthew; Kain, Verena; Maciariello, Fausto; Steele, Genevieve; Velotti, Francesco

    2017-01-01

    In 2006 the protection devices upstream of the septa in both extraction channels of the CERN SPS to the LHC were installed. Since then, new beam parameters have been proposed for the SPS beam towards the LHC in the framework of the LIU project. The mechanical parameters and assumptions on which these protection devices presently have been based, need validation before the new upgraded versions can be designed and constructed. The paper describes the design assumptions for the present protection device and the testing program for the TPSG4 at HiRadMat to validate them. Finally the requirements and the options to upgrade both extraction protection elements in the SPS are described.

  14. Modified M20 Beam Position Monitor Testing

    Science.gov (United States)

    Koros, Jessica; Musson, John

    2017-09-01

    Beam position monitors (BPMs) are used to measure lateral beam position. Two pairs of modified wire BPMs are being evaluated for installation into the injector at Jefferson Lab (JLab). The BPMs were coated with a Non-Evaporable Getter (NEG) to aid in pumping at the electron gun, as an ultra-high vacuum is required to protect the gun and to avoid scattering the beam. Beam in the injector has a large diameter, allowing extraction of second moments to give information about beam profile and emittance. The purpose of this project is to determine the effects of NEG coating on the BPMs and to calculate second moments from beam models on the Goubau Line (G-Line). Using the G-Line, scans of the BPMs were taken before and after NEG coating. Each scan produced an electrical field map, which characterizes properties of the BPM, including scale factors and coupling. Second moments were calculated using superposition of previous scan data, and verification of this method was attempted using several beam models. Results show the BPMs responded well to NEG and that measurement of second moments is possible. Once the BPMs are installed, they will enhance gun vacuum and enable monitoring of shape and trajectory of the beam as it exits the electron gun to ensure quality beam for experiments. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  15. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  16. Power plant by deuteron beams using indirect-driven target

    International Nuclear Information System (INIS)

    Niu, Keishiro

    1989-01-01

    An indirect-driven target is proposed to be used for 6-beam nonuniform irradiation of deuteron particles. The target consists of 5 layers; tamper, radiator, smoother (radiation gap), absorber (pusher) and solid DT fuel. The fluctuation comes from nonuniform energy deposition in the radiator layer. Through the smoother layer, radiative energy transport from the radiator layer to the absorber layer is expected to smooth out the temperature fluctuation in the absorber layer. The total beam energy of 12 MJ is launched to the target by 6 beams. In order to delete the charge of the front edge of the propagating deuteron beam, the electron beam is proposed to be launched to the target with the same velocity and with the same number density at the same time of the deuteron extraction form the diode. To stabilize the beam propagation, the electron beam has a rotation velocity which induces the magnetic field in the propagation direction. The construction of the power supply system whose total stored energy is 12 MJ seems to be not difficult and to be economical. (author)

  17. Developments on positron scattering experiments including beam production and detection

    International Nuclear Information System (INIS)

    Selim, F.A.; Golovchenko, J.A.

    2001-01-01

    Positron scattering and channeling experiments require high quality (low emittance) beams. A new electrostatic optics system for extracting positrons from a moderator is presented. The system features improved efficiency of focusing and beam transport of moderated positrons emitted with angular spreads up to ± 30 , with good phase space characteristics. The presented optics also provides a high degree of freedom in controlling exit beam trajectories. The system has been installed in the LLNL Pelletron accelerator and showed great enhancement on the beam quality. On the detection side, image plates were used to measure the angular distributions of positrons transmitted through the gold crystals. The measurements demonstrate the advantages of image plates as quantitative position sensitive detectors for positrons. (orig.)

  18. Towards a slow extraction system for the TRIUMF KAON Factory extender ring with 0.1% losses

    International Nuclear Information System (INIS)

    Wienands, U.; Servranckx, R.V.

    1988-06-01

    In order to reduce extraction losses a modified third-integral slow extraction system is proposed using a 0.5 m long and 10 μm thin electrostatic pre-septum. Various factors limiting the extraction efficiency like power-supply noise and synchrotron oscillations are investigated analytically as well as by simulation, and the losses are estimated to be as low as 0.2%. The extracted beam emittance is about 0.2 π mm-mrad. For chromatic extraction a reduction in momentum width of the extracted beam by a factor of 2.5, resulting in an extracted momentum bite of less than 30 MeV/c FWHM, can be achieved without emittance blowup. The duty factor typically is between 55% and 65%. Between 1.8% and 3.7% of the particles did not get extracted by the resonant system. First investigation of half-integer extraction indicates possible difficulties in achieving small extracted emittances. (Author) (5 refs., 4 figs.)

  19. The expert system OPTRAN (Ver 1.0) and its application to beam transportation line design

    International Nuclear Information System (INIS)

    Xiao Meiqin; Lu Hongyou; Fan Mingwu

    1994-01-01

    The expert system OPTRAN (Ver 1.0) used for beam transportation line design is introduced. The knowledge storage and reasoning principle, of which the intelligence part of OPTRAN are composed, have been described in detail. By using OPTRAN (Ver 1.0), the design of a beam transportation line for extracted ion beam of Cyclone 30 was completed

  20. Runaway electrons beams in ITER disruptions

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1993-01-01

    In agreement with the initial projections, the potential generation of runaway beams in disruptions of ITER discharges was performed. This analysis was based on the best-available present projections of plasma parameters existing in large-tokamak disruptions. Using these parameters, the potential contributions from various basic mechanisms for the generation of runway electrons were estimated. The envisioned mechanisms included (i) the well-known Dreicer process (assuming an evaporation of the runways from the thermal distribution), (ii) the seeding of runaway beams resulting from the potential presence of trapped high-temperature electrons from the original discharge still remaining in the disruption plasma at time of reclosure of the magnetic surfaces, and (iii) the generation of runaway beams through avalanche exponentiation of low-level seed runaways resulting via close collisions of existing runaways with cold plasma electrons. Finally, the prospective behavior of the any generated runaway beams -- in particular during their decay -- as well as their potential avoidance and/or damage controlled extraction through the use of magnetic perturbation fields also was considered in some detail

  1. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  2. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-01-01

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H − extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  3. Development of ion/proton beam equipment for industrial uses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho; Lee, J. H.; Cho, Y. S.; Joo, P. K.; Kang, S. S.; Song, W. S.; Kim, H. J.; Chang, G. H.; Bang, S. W

    1999-12-01

    KAERI has possessed design and fabrication technologies of various ion sources including Duoplasmatron and DuoPiGatron developed by R and D projects of the long-term nuclear technology development program. In order to industrialize ion beam equipments utilizing these ion sources, a technology transfer project for a technology transfer project for a domestic firm has been performed. Under this project, engineers of the firm have been trained through classroom lectures of ion beam principles and OJT, an ion/proton beam equipment (DEMO equipment) has been designed, assembled and commissioned jointly with the engineers. Quality of the ion sources has been quantified, and technologies for ion beam equipment construction, functional test and application research have been developed. The DEMO equipment, which consists of an ion source, power supplies, vacuum, cooling and target systems, has been fabricated and tested to secure stability and reliability for industrial uses. Various characteristic tests including high voltage insulation, beam extraction, beam current measuring, etc. have been performed. This DEMO can be utilized for ion sources development as well as ion beam process development for various industrial products. Engineers of the firm have been trained for the industrialization of ion beam equipment and joined in beam application technology development to create industrial needs of beam equipment. (author)

  4. Studies on the Extraction Region of the Type VI RF Driven H- Ion Source

    Science.gov (United States)

    McNeely, P.; Bandyopadhyay, M.; Franzen, P.; Heinemann, B.; Hu, C.; Kraus, W.; Riedl, R.; Speth, E.; Wilhelm, R.

    2002-11-01

    IPP Garching has spent several years developing a RF driven H- ion source intended to be an alternative to the current ITER (International Thermonuclear Experimental Reactor) reference design ion source. A RF driven source offers a number of advantages to ITER in terms of reduced costs and maintenance requirements. Although the RF driven ion source has shown itself to be competitive with a standard arc filament ion source for positive ions many questions still remain on the physics behind the production of the H- ion beam extracted from the source. With the improvements that have been implemented to the BATMAN (Bavarian Test Machine for Negative Ions) facility over the last two years it is now possible to study both the extracted ion beam and the plasma in the vicinity of the extraction grid in greater detail. This paper will show the effect of changing the extraction and acceleration voltage on both the current and shape of the beam as measured on the calorimeter some 1.5 m downstream from the source. The extraction voltage required to operate in the plasma limit is 3 kV. The perveance optimum for the extraction system was determined to be 2.2 x 10-6 A/V3/2 and occurs at 2.7 kV extraction voltage. The horizontal and vertical beam half widths vary as a function of the extracted ion current and the horizontal half width is generally smaller than the vertical. The effect of reducing the co-extracted electron current via plasma grid biasing on the H- current extractable and the beam profile from the source is shown. It is possible in the case of a silver contaminated plasma to reduce the co-extracted electron current to 20% of the initial value by applying a bias of 12 V. In the case where argon is present in the plasma, biasing is observed to have minimal effect on the beam half width but in a pure hydrogen plasma the beam half width increases as the bias voltage increases. New Langmuir probe studies that have been carried out parallel to the plasma grid (in the

  5. Phase space measurements at non-accessible point on the beam path of an accelerator facility

    International Nuclear Information System (INIS)

    Hassan, A.

    2004-01-01

    The optimization of beam lines for particles extracted from accelerator facilities requires the knowledge of beam parameters. A method for the measurement of phase space and beam intensity distribution is represented. This method depends on the setting of quadrupole lenses that allows the imaging of beam profiles at arbitrary positions along the beam path on the same multi-wire proportional chamber, where the intensity distribution can be evaluated. The necessary focusing powers for a certain imaging task are calculated in a thin lens approximation. The corresponding focusing power for thick quadrupole lenses are calculated using the PC transport program. A comparison of the calculated focusing powers for thin and thick lenses reveals deviations at the highest field strengths, due to saturation effect. The position of the beam waist in normal and angular space is directly calculated and visualized. The horizontal and vertical waist positions are found to be rather independent of the beam energy. Extensive calculation was done to study the effect of a reduced aperture on the maximum beam emittances aa x and aa y of the extracted particles. The main result shows that the maximum emittance passing through depends on the waist distant and the diameter of the reduced aperture. (orig.)

  6. Beam dynamics of alternating-phase-focused linac

    CERN Document Server

    Iwata, Y; Kapin, V

    2004-01-01

    A simple method to find an array of synchronous phases for alternating-phase-focused (APF) linacs is presented. The phase array is described with a smooth function having free parameters. With a set of the parameters, a simulation on the beam dynamics was made and distributions of the six-dimensional phase spaces were calculated for each set of the parameters. The parameters were varied, and numbers of the simulations have been performed. An optimum set of the parameters were determined so that the simulations of the beam dynamics yield large acceptances and small emittances of the extracted beams. Since the APF linac can provide both axial and radial stability of beams just with the rf acceleration-field, no additional focusing element inside of drift tubes are necessary. Comparing with conventional linacs having focusing elements, it has advantage in construction and operation costs as well as its acceleration rate. Therefore, the APF linacs would be suited for an injector of medical synchrotrons. A practic...

  7. Stresses in the foil of an electron accelerator extraction channel

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Makarenko, T.I.; Tokmakov, I.L.

    1983-01-01

    Stresses in the foil of an electron accelerator extraction channel are assessed with account of contributions of thermal expansion and stress concentrations during switchings. Optimization of extraction grid parameters of the electron accelerator extraction channel and choice of foil material for high current electron beam is conducted. It is suggested that an extraction grid with circular cells and Al-Mg foil should be used. A simple formula applicable for design calculations is proposed for evaluation of stress concentration coefficient during phase switchings

  8. Protective effect of Asparagus racemosus root extract against lethal total - body electron beam radiation induced damage in Swiss albino mice

    International Nuclear Information System (INIS)

    Sharmila, K.P.; Bhandary, B. Satheesh Kumar; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To investigate the protective effect of Asparagus Racemosus Root ethanolic extract (ARE) in Swiss albino mice against acute lethal total - body Electron beam irradiation. Swiss Albino mice were used for the assessment of radiation induced sickness and 30 day survival analysis. Survival studies were determined using the Kaplan-Meier survival curves. The maximum survival was observed in the experimental mice pretreated with 200 mg/kg.b.wt. of ARE which also reduced the radiation sickness characteristics. This dose was considered as an optimal dose for radioprotection. Treatment of mice with ARE before irradiation delayed the onset of mortality as compared with the untreated irradiated controls. Present findings demonstrate the potential of ARE in mitigating radiation-induced mortality, which may be attributed to its free radical scavenging and increased antioxidant potential

  9. Extraction from TEV-range accelerators using bent crystal channeling

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.; Jackson, G.; Murphy, C.T.; Newberger, B.

    1993-01-01

    Plans and first results from Fermilab Experiment 853 are presented. E853 is an experiment to test the feasibility and efficiency of extracting a low-intensity beam from the halo of the Tevatron using channeling in a bent silicon crystal. The motivation of the experiment is to apply crystal extraction to trans-TeV accelerators like the SSC. Channeling developments related to crystal extraction and some early results from accelerator studies at the Tevatron are presented

  10. Comparison of electron beam and gamma irradiation for the sterilization of allograft

    International Nuclear Information System (INIS)

    Jong il Choi; Nak Yun Sung; Hee Sub Lee; Jae Hun Kim; Myung Woo Byun; Ju Woon Lee

    2008-01-01

    Full text: For human use, it is necessary to sterilize the allograft in order to reduce the risk of infections and associated complications. In this study, we compared the effects of electron beam and gamma irradiation for the sterilization of the demineralized bone matrix (DBM) in a carboxymethylcellulose (CMC) carrier with regard to the physiological and osteoinductive properties. The CMC carrier was irradiated at the various doses. and the viscosity of the irradiated CMC was measured. The viscosity of the CMC irradiated with electron beam was higher than that with gamma ray. Also, the addition of vitamin C as the radical scavenger and irradiation at -70 degree C were shown to be effective in preventing the degradation of CMC by the irradiation. To investigate the effect of irradiation on the osteoinduction of DBM, alkaline phosphatase (ALP) activity with C2C12 cells was measured. The ALP activity of DBM in CMC was higher when irradiated with the electron beam compared with the gamma ray. The bone morphogenetic proteins (BMP) were extracted from DBM irradiated with electron beam and gamma ray, and it was found that the extraction efficiency of BMP was higher from DBM irradiated with the electron beam. This was reasoned for the higher APL activity of the electron beam irradiated DBM. With the advantages of electron beam such as short processing time, in-line processing, and low equipment cost, these results suggest that electron beam irradiation is recommendable for the sterilization of DBM allograft. (Author)

  11. Conceptual design of a linac-stretcher ring to obtain a 2-GeV continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, > 100 μA 2-GeV electron beam, we have designed a linac-stretcher ring system. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-GeV SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an RF system whose purpose is to control the beam orbit and rate of extraction from the ring. With an RF system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring

  12. The Rapid Cycling Synchrotron of the EURISOL Beta-Beam facility

    CERN Document Server

    Lachaize, A

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times.General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 (http://beta-beam.web.cern.ch/beta-beam/). More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS.Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitat...

  13. Transmission property and its applications of MeV ion beams with various capillaries

    International Nuclear Information System (INIS)

    Fujita, N; Ishii, K; Ogawa, H

    2012-01-01

    In order to clarify transmission properties of an ion beam extracted with various capillaries into the air, we have measured intensity distributions for the core and the halo components of MeV ion beams using various capillaries. In addition, we have performed in-air-RBS and in-air-PIXE from the point of the application. At the conference, progress report of transmission properties of ion beams with various capillaries and its applications will be presented.

  14. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  15. Trapped modes in a dummy extraction septum for CERN Proton Synchrotron

    International Nuclear Information System (INIS)

    Persichelli, S.

    2014-01-01

    The term trapped mode is usually referred to a mode that can not propagate in the beam pipe, but is localized in a particular region inside the device, producing narrow resonances peaks in the coupling impedance. They can be excited by the presence of discontinuities inside different devices of an accelerator, producing unwanted beam instabilities. It is therefore important to identify trapped modes, especially for new elements to be installed in a high-intensity accelerator. We present a recent study of the coupling impedance due to trapped modes in a new extraction septum that will be installed in the CERN Proton Synchrotron in the framework of PS Multi-turn extraction (MTE) commissioning. Simulation and theoretical calculations were performed in order to understand performance limitations of the machine, to find cures to reduce the instabilities, and to evaluate beam-induced heating.

  16. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  17. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  18. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  19. Emittance Measurements For Future LHC Beams Using The PS Booster Measurement Line

    CERN Document Server

    Abelleira, Jose; Mikulec, Bettina; Di Giovanni, Gian Piero; CERN. Geneva. ATS Department

    2017-01-01

    The CERN PS Booster measurement line contains three pairs of SEM grids separated by drift space that measures the beam size in both planes. The combined analysis of these grids allows calculating a value for the transverse beam emittances. The precision of such a measurement depends on the ratio of RMS beam size and wire spacing. Within the LIU-PSB upgrade the extraction kinetic energy of the PSB will be increased from the current 1.4 GeV to 2.0 GeV. This will result in smaller transverse beam sizes for some of the future beams. The present layout of the transverse emittance measurement line is reviewed to verify if it will satisfy future requirements.

  20. Production and Release of ISOL Beams from Molten Fluoride Salt Targets

    CERN Document Server

    Mendonca, T M; Ghetta, V; Alibert, M; Heuer, D; Noah, E; Cimmino, S; Delonca, M; Gottberg, A; Kronberger, M; Ramos, J; Seiffert, C; Stora, T; CERN. Geneva. ATS Department

    2014-01-01

    In the framework of the Beta Beams study, a molten fluoride target has been proposed for the production of the required 1013 18Ne/s. The production and extraction of such rates are obtained on a circulating molten salt with proton beam energy beams at close to 1 MW power. As a most important step to validate the concept, a prototype has been designed and investigated at CERN-ISOLDE using a static target unit. The target material consisted of a binary fluoride system, NaF:LiF (39:61 % mol.), with melting point at 649ºC. The production of Ne beams has been monitored as a function of the target temperature and proton beam intensity. The prototype development and the results of the first online tests with 1.4 GeV proton beam are presented in this paper.

  1. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    International Nuclear Information System (INIS)

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  2. Proposal for a new LEIR Slow Extraction Scheme dedicated to Biomedical Research

    CERN Document Server

    Garonna, A; Carli, C

    2014-01-01

    This report presents a proposal for a new slow extraction scheme for the Low Energy Ion Ring (LEIR) in the context of the feasibility study for a biomedical research facility at CERN. LEIR has to be maintained as a heavy ion accumulator ring for LHC and for fixed-target experiments with the SPS. In parallel to this on-going operation for physics experiments, an additional secondary use of LEIR for a biomedical research facility was proposed [Dosanjh2013, Holzscheiter2012, PHE2010]. This facility would complement the existing research beam-time available at other laboratories for studies related to ion beam therapy. The new slow extraction [Abler2013] is based on the third-integer resonance. The reference beam is composed of fully stripped carbon ions with extraction energies of 20-440 MeV/u, transverse physical emittances of 5-25 µm and momentum spreads of ±2-9•10-4. Two resonance driving mechanisms have been studied: the quadrupole-driven method and the RF-knockout technique. Both were made compatible...

  3. Transient beam dynamics in the Lawrence Berkeley Laboratory 2 MV injector

    International Nuclear Information System (INIS)

    Henestroza, E.

    1996-01-01

    A driver-scale injector for the heavy ion fusion accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (above 2 MV), high current (more than 0.8 A of K + ) and low normalized emittance (less than 1 π mm mrad). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator which provides strong (alternating gradient) focusing for the space-charge-dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun pre-injector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot alumino-silicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and to avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 μs, and is reversed to turn off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several microseconds), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the particle-in-cell codes GYMNOS and WARP3D in a time-dependent mode. The generalization and its implementation is WARP3D of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented. (orig.)

  4. Design, Results and Plans for Power Beaming Competitive Challenge

    International Nuclear Information System (INIS)

    Shelef, Ben

    2008-01-01

    In our context, Power Beaming refers to the extraction of useable electrical power from a directed electromagnetic beam. In order to promote interest in this technology, the Spaceward Foundation proposed and is managing a technology prize challenge based on a Space Elevator design scenario. The challenge has a prize purse of $2M, provided by NASA's Centennial Challenges office. This paper covers the considerations that went into the design of the challenge, a brief chronology of past results, and plans for the future

  5. The beam diagnosis system for ELSA. Das Strahldiagnosesystem fuer ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Schillo, M.

    1991-10-01

    A beam diagnostic system, which is based on capacitive beam-position monitors combined with fast electronics, has been developed for the Bonn Electron Stretcher Accelerator ELSA. The position signal of each monitor is digitized at an adjustable sampling rate and the most recent 8192 position and intensity values are buffered. This allows a wide range of different beam diagnostic measurements. The main purpose is the closed-orbit correction, which can be carried out on various time scales. To optimize the duty factor of the extracted beam, the system can also be used as a fast relative intensity monitor resolving the intensity distribution of the bunches or of the injected beam. It is designed to support betatron tune and phase measurements with very high accuracy, offering the choice to select any of the beam position monitors. This enables the measuring of many optical parameters. Furthermore any pair of suitable monitors can be used for experimental particle tracking or phase space measurements. (orig.).

  6. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    Science.gov (United States)

    Douglas, David R [York County, VA

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  7. FNAL Booster intensity, extraction, and synchronization control for collider operation

    International Nuclear Information System (INIS)

    Ducar, R.J.; Lackey, J.R.; Tawzer, S.R.

    1987-03-01

    Booster operation for collider physics is considerably different than for fixed target operation. Various scenarios for collider physics, machine studies, and P-Bar targeting may require that the intensity vary from 5E10 PPP to 3E12 PPP at a 15 Hertz machine cycle rate. In addition to the normal Booster single turn extraction mode, collider operations require that the Booster inject into the Main Ring a small number of beam bunches for coalescing into a single high intensity bunch. These bunches must be synchronized such that the center bunch arrives in the RF bucket which corresponds to the zero phase of the coalescing cavity. The system implemented has the ability to deliver a precise fraction of the available 84 Booster beam bunches to Main Ring or to the P-Bar Debuncher via the newly installed AP-4 beam line for tune-up and studies. It is required that all of the various intensity and extraction scenarios be accommodated with minimal operator intervention

  8. LHC Injection Beam Quality During LHC Run I

    CERN Document Server

    AUTHOR|(CDS)2079186; Kain, Verena; Stapnes, Steinar

    The LHC at CERN was designed to accelerate proton beams from 450 GeV to 7 TeV and collide them in four large experiments. The 450 GeV beam is extracted from the last pre-accelerator, the SPS, and injected into the LHC via two 3 km long transfer lines, TI 2 and TI 8. The injection process is critical in terms of preservation of beam quality and machine protection. During LHC Run I (2009-2013) the LHC was filled with twelve high intensity injections per ring, in batches of up to 144 bunches of 1.7*10^11 protons per bunch. The stored beam energy of such a batch is already an order of magnitude above the damage level of accelerator equipment. Strict quality and machine protection requirements at injection have a significant impact on operational efficiency. During the first years of LHC operation, the injection phase was identified as one of the limiting factors for fast LHC turnaround time. The LHC Injection Quality Check (IQC) software framework was developed as a part of this thesis to monitor the beam quality...

  9. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A.; Hiratsuka, J. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2016-02-15

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  10. The polarized proton and deuteron beam at the Bonn isochronous cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, K G; Enders, R; Hammon, W; Krause, K D; Lesemann, D; Scholzen, A [Bonn Univ. (F.R. Germany). Inst. fuer Angewandte Physik; Euler, K; Schueller, B [Bonn Univ. (F.R. Germany). Inst. fuer Strahlen- und Kernphysik

    1976-02-15

    The present state of the polarized proton and deuteron source at the Bonn cyclotron is described. The source, which is of the atomic beam type, gives typical ion beam intensities of 2 ..mu..A for protons and 3 ..mu..A for deuterons. The overall transmission from the source to the first stopper after extraction from the cyclotron is 3%. Target currents with an energy resolution E/..delta..E=500 are 20 nA for deuterons and 10 nA for protons. For the proton beam, a polarization P=-0.71 was measured. For the deuteron beam, a pure vector polarization Psub(z)=-0.47 or various mixtures of vector and tensor polarization are obtained.

  11. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    International Nuclear Information System (INIS)

    Ikeda, Shunsuke; Sekine, Megumi; Romanelli, Mark; Cinquegrani, David; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-01-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface

  12. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    International Nuclear Information System (INIS)

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-01-01

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles

  13. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  14. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Science.gov (United States)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  15. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shunsuke, E-mail: shunsuke.ikeda@riken.jp; Sekine, Megumi [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Riken, Wako, Saitama (Japan); Romanelli, Mark [Cornell University, Ithaca, New York 14850 (United States); Cinquegrani, David [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kumaki, Masafumi [Waseda University, Shinjuku, Tokyo (Japan); Fuwa, Yasuhiro [Kyoto University, Uji, Kyoto (Japan); Kanesue, Takeshi; Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973 (United States); Horioka, Kazuhiko [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2014-02-15

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  16. Leptoquark production with polarized γe beams

    International Nuclear Information System (INIS)

    Aliev, T.M.; Mustafaev, Kh.A.

    1991-01-01

    Possibilities of single production of the scalar leptoquark and also of its supersymmetric partner in polarized γe beams are studied in E 6 superstring theories. Expressions for the differential and total cross sections are obtained and analyzed. It is shown that the scalar leptoquark of mass 300 GeV can be detected even for a very small interaction constant γ 2 /4π∼10 -2 a and its supersymmetric partner can be detected for γ 2 /4π∼10 -2 a. The spin asymmetry due to the photon-beam polarization and the effect of this polarization on both the differential and the total cross sections are studied in detail. It is shown that study of the spin asymmetry and the effect of the photon-beam polarization can be used to extract information about the leptoquark masses

  17. Experimental demonstration of dielectric structure based two beam acceleration

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-01-01

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented

  18. Experimental demonstration of dielectric structure based two beam acceleration.

    Energy Technology Data Exchange (ETDEWEB)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  19. Production of light radioactive ion beams (RIB) using inverse kinematics

    International Nuclear Information System (INIS)

    Das, J.J.; Sugathan, P.; Madhavan, N.; Madhusudhana Rao, P.V.; Jhingan, A.; Varughese, T.; Barua, S.; Nath, S.; Sinha, A.K.; Kumar, B.; Zacharias, J.

    2005-01-01

    At Nuclear Science Centre (NSC), New Delhi, we have implemented a facility to produce low energy light radioactive ion beams (RIBs) using (p,n) type of reactions in inverse kinematics. For this purpose primary beams from the 15-UD Pelletron accelerator impinged on a thin polypropylene foil mounted on a rotating/linearly moving target assembly. For efficiently separating the secondary beam from primary beam, the existing recoil mass spectrometer (RMS) HIRA was operated with new ion optics. Suitable hardware modifications were also made. Using this facility, we have extracted a 7 Be beam of purity better than 99% and spot-size ∼4 mm in diameter. This 7 Be beam has been utilized in a variety of experiments in the energy range of 15-22 MeV. Typical beam parameters are: intensity 10 4 pps, angular spread ±30 mrad and energy spread ±0.5 MeV. Development of appropriate detector setup/target arrangement were also made to perform these experiments. In this paper, we describe the implementation of this project

  20. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.