Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-14
Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.
Tecker, F.
2016-01-01
The course gives a summary of longitudinal beam dynamics for both linear and circular accelerators. After discussing different types of acceleration methods and synchronism conditions, it focuses on the particle motion in synchrotrons.
Tecker, F
2014-01-01
The course gives a summary of longitudinal beam dynamics for both linear and circular accelerators. After discussing different types of acceleration methods and synchronism conditions, it focuses on the particle motion in synchrotrons.
Dynamic acoustic tractor beams
Mitri, F. G.
2015-03-01
Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.
Dynamic acoustic tractor beams
Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)
2015-03-07
Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.
Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al
2012-07-01
The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.
Beam Dynamics and Beam Losses - Circular Machines
Kain, V
2016-01-01
A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.
Beam dynamics issues for linear colliders
Ruth, R.D.
1987-09-01
In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.
Dynamics of beam halo in mismatched beams
High-power proton linacs for nuclear materials transmutation and production, and new accelerator-driven neutron spallation sources must be designed to control beam-halo formation, which leads to beam loss. The study of particle-core models is leading to a better understanding of the causes and characteristics of beam halo produced by space-charge forces in rms mismatched beams. Detailed studies of the models have resulted in predictions of the dependence of the maximum amplitude of halo particles on a mismatch parameter and on the space-charge tune-depression ratio. Scaling formulas have been derived which will provide guidance for choosing the aperture radius to contain the halo without loss. (author)
Spacecraft Dynamic Characteristics While Deploying Flexible Beams
程绪铎; 李俊峰; 樊勇; 王照林
2002-01-01
The attitude dynamic equations of a spacecraft while deploying two flexible beams and the beam equations were developed from momentum theory. The dynamic equations were solved numerically using the Runge-Kutta method to calculate the vibration amplitudes of the flexible beams and the attitude angular velocity. The results show that the vibration amplitudes increase as the beam length increases or as the initial attitude angular velocity increases. The results also show that the vibration amplitudes decrease as the deployment velocity increases.
Large deformation dynamic bending of composite beams
Derian, Edward J.
1985-01-01
The large deformation response of composite beams subjected to a dynamic axial load was studied. The beams were loaded with a moderate amount of eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied in order to determine the difference between the static and dynamic failure. Twelve different la...
Statics and rotational dynamics of composite beams
Ghorashi, Mehrdaad
2016-01-01
This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a t...
Introduction to Transverse Beam Dynamics
Holzer, B J
2014-01-01
In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.
Cyclotron beam dynamic simulations in MATLAB
MATLAB is useful for beam dynamic simulations in cyclotrons. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modeling results with an example of two different cyclotron designs are presented. Programming with MATLAB opens wide possibilities of the development of the complex program, able to perform complete block of calculations for the design of the accelerators
Quantum fluctuations in beam dynamics.
Kim, K.-J.
1998-06-04
Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects.
Quantum fluctuations in beam dynamics
Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects
Beam dynamics in high energy particle accelerators
Wolski, Andrzej
2014-01-01
Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams.
Single-particle beam dynamics in Boomerang
We describe simulations of the beam dynamics in the storage ring (Boomerang), a 3-GeV third-generation light source being designed for the Australian Synchrotron Project[1]. The simulations were performed with the code Goemon[2]. They form the basis for design specifications for storage ring components (apertures, alignment tolerances, magnet quality, etc.), and for determining performance characteristics such as coupling and beam lifetime
Parallel beam dynamics simulation of linear accelerators
Qiang, Ji; Ryne, Robert D.
2002-01-01
In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity b...
Nonlinear beam dynamics experimental program at SPEAR
Since nonlinear effects can impose strict performance limitations on modern colliders and storage rings, future performance improvements depend on further understanding of nonlinear beam dynamics. Experimental studies of nonlinear beam motion in three-dimensional space have begun in SPEAR using turn-by-turn transverse and longitudinal phase-space monitors. This paper presents preliminary results from an on-going experiment in SPEAR
A contemporary guide to beam dynamics
A methodological discussion is given for single particle beam dynamics in circular machines. The discussions are introductory, but (or, even therefore) we avoid to rely on too much simplified concepts. We treat things from a very general and fundamental point of view, because this is the easiest and rightest way to teach how to simulate particle motion and how to analyze its results. We give some principles of particle tracking free from theoretical prejudices. We also introduce some transparent methods to deduce the necessary information from the tracking: many of the traditional beam-dynamics concepts can be abstracted from them as approximate quantities which are valid in certain limiting cases
A contemporary guide to beam dynamics
A methodological discussion is given for single particle beam dynamics in circular machines. The discussions are introductory, but (or, even therefore) we avoid to rely on too much simplified concepts. We treat things from a very general and fundamental point of view, because this is the easiest and rightest way to teach how to simulate particle motion and how to analyze its results. We give some principles of particle tracking free from theoretical prejudices. We also introduce some transparent methods to deduce the necessary information from the tracking: many of the traditional beam-dynamics concepts can be abstracted from them as approximate quantities which are valid in certain limiting cases. (author)
Jacobi equations and particle accelerator beam dynamics
Torrome, Ricardo Gallego
2012-01-01
A geometric formulation of the linear beam dynamics in accelerator physics is presented. In particular, it is proved that the linear transverse and longitudinal dynamics can be interpret geometrically as an approximation to the Jacobi equation of an affine averaged Lorentz connection. We introduce a specific notion reference trajectory as integral curves of the main velocity vector field. A perturbation caused by the statistical nature of the bunch of particles is considered.
Dynamic Bowtie for Fan-beam CT
Liu, Fenglin; Cong, Wenxiang; Hsieh, Scott; Pelc, Norbert
2013-01-01
A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy-discriminative photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. Our dynamic bowtie modifies an x-ray beam intensity profile by mechanical rotation and adaptive adjustment of the x-ray source flux. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dy...
Notes on beam dynamics in linear accelerators
Gluckstern, R.L.
1980-09-01
A collection of notes, on various aspects of beam dynamics in linear accelerators, which were produced by the author during five years (1975 to 1980) of consultation for the LASL Accelerator Technology (AT) Division and Medium-Energy Physics (MP) Division is presented.
Beam dynamic issues in TESLA damping ring
In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs
Introduction to Longitudinal Beam Dynamics
Holzer, B J
2014-01-01
This chapter gives an overview of the longitudinal dynamics of the particles in an accelerator and, closely related to that, the issue of synchronization between the particles and the accelerating field. Beginning with the trivial case of electrostatic accelerators, the synchronization condition is explained for a number of driven accelerators like Alvarez linacs, cyclotrons and finally synchrotrons and storage rings, where it plays a crucial role. In the case of the latter, the principle of phase focusing is motivated qualitatively as well as on a mathematically more correct level and the problem of operation below and above the transition energy is discussed. Throughout, the main emphasis is more on physical understanding rather than on a mathematically rigorous treatment.
Stochastic beam dynamics in storage rings
In this thesis several approaches to stochastic dynamics in storage rings are investigated. In the first part the theory of stochastic differential equations and Fokker-Planck equations is used to describe the processes which have been assumed to be Markov processes. The mathematical theory of Markov processes is well known. Nevertheless, analytical solutions can be found only in special cases and numerical algorithms are required. Several numerical integration schemes for stochastic differential equations will therefore be tested in analytical solvable examples and then applied to examples from accelerator physics. In particular the stochastically perturbed synchrotron motion is treated. For the special case of a double rf system several perturbation theoretical methods for deriving the Fokker-Planck equation in the action variable are used and compared with numerical results. The second part is concerned with the dynamics of electron storage rings. Due to the synchrotron radiation the electron motion is influenced by damping and exciting forces. An algorithm for the computation of the density function in the phase space of such a dissipative stochastically excited system is introduced. The density function contains all information of a process, e.g. it determines the beam dimensions and the lifetime of a stored electron beam. The new algorithm consists in calculating a time propagator for the density function. By means of this propagator the time evolution of the density is modelled very computing time efficient. The method is applied to simple models of the beam-beam interaction (one-dimensional, round beams) and the results of the density calculations are compared with results obtained from multiparticle tracking. Furthermore some modifications of the algorithm are introduced to improve its efficiency concerning computing time and storage requirements. Finally, extensions to two-dimensional beam-beam models are described. (orig.)
Dynamic two-dimensional beam-pattern steering technique
Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang
1993-01-01
A dynamic two-dimensional laser-beam-pattern steering technique using photorefractive holograms in conjunction with electrically addressed spatial light modulators is proposed and investigated. The experimental results demonstrate the dynamic steering of random combinations of basis beam patterns. The proposed method has the advantages of random beam-pattern combination, good beam intensity uniformity, and higher diffraction efficiency compared with conventional methods.
Beam dynamics studies for photocathode RF gun
Photocathode RF guns are very popular choice as injector for low emittance beams especially to light sources world wide. In demand for these gun is increasing steadily and efforts are on to make 2.6 cell RF Gun as SAMEER as proto type for future use at various laboratories. The base design of this 2.6 cell RF Gun is ready and fabrication is planned in near future. In this paper, we present beam dynamic study results of the gun and methodology to arrive at the operating point. Simulation results for Gaussian with nano-second pulse length will be discussed in detail and proposal for generation of few MeV beam will be presented. (author)
RIA Beam Dynamics Comparing TRACK to IMPACT
Mustapha, Brahim; Ostroumov, Peter; Qiang, Ji; Ryne, Robert D
2005-01-01
In order to benchmark the newly developed beam dynamics code TRACK we have performed comparisons with well established existing codes. During code development, codes like TRANSPORT, COSY, GIOS and RAYTRACE were used to check TRACK's implementation of the different beam line elements. To benchmark the end-to-end simulation of the RIA driver linac, the simulation of the low-energy part (from the ion source to the entrance of the SC linac) was compared with PARMTEQ and found to agree well. For the simulation of the SC linac the code IMPACT is used. Prior to these simulations, the code IMPACT had to be updated to meet the special requirements of the RIA driver linac. Features such as multiple charge state acceleration, stripper simulation and beam collimation were added to the code. IMPACT was also modified to support new types of rf cavities and to include fringe fields for all the elements. This paper will present a comparison of the beam dynamics simulation in the RIA driver linac between the codes TRACK and I...
Beam dynamics calculations for fault-tolerance
The European Transmutation Demonstration requires a high-power proton accelerator operating in CW mode. This accelerator is also expected to have a very limited number of unexpected beam interruptions per year. To reach such an ambitious goal, it is clear that reliability-oriented design practices need to be followed from the early stage of components design and fault-tolerance capabilities have to be introduced to the maximum extent. The goal of this document is precisely to investigate in more details the fault-tolerance capability of the XT-ADS linac. From previous analysis, it appears that if nothing is done, a cavity's failure leads in nearly all the cases to a complete beam loss, due to the non-relativistic varying velocity of the particles. To avoid such a total beam loss, it is clear that some kind of retuning has to be performed to compensate the lack of acceleration due to the faulty cavity. We have to identify and develop fast failure recovery scenarios to ensure that such retuning can be performed in less than 1 second. 2 ways are investigated. The first way is to stop the beam to achieve the retuning (Scenario 1). The other way is to try to perform the retuning without stopping the beam (Scenario 2). The present analysis demonstrates on the beam dynamics point of view that a fast retuning procedure can be envisaged without stopping the beam (Scenario 2). Nevertheless, this Scenario 2 implies stringent specifications, especially on: - the fault detection time, that has to be extremely short (order of magnitude: 100 μs) and - the margins required on the accelerating field and RF power point of view, that are higher than in Scenario 1
Beam stability and nonlinear dynamics. Summary report
A open-quotes Beam Stability and Nonlinear Dynamicsclose quotes Symposium was held October 3-5, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of our open-quotes New Ideas for Particle Acceleratorsclose quotes program. The symposia was organized and chaired by Dr. Zohreh Parsa of ITP/ Brookhaven National Laboratory. The purpose of this symposium was to deal with some of the fundamental theoretical problems of accelerator physics by bringing together leaders from accelerator physics communities, mathematics, and other fields of physics. The focus was on nonlinear dynamics and beam stability. The symposium began with some defining talks on relevant mathematical topics such as single-particle Hamiltonian dynamics, chaos, and new ideas in symplectic integrators. The physics topics included single-particle and many-particle dynamics. These topics concern circular accelerators in which particles circulate for a very large number of turns as well as linear accelerators where space charge and wakefields induced in accelerating cavities play a strong role. A major question is to determine the best model for numerical simulations in order to accurately reproduce behavior of beams in real accelerators and to predict long-term or long distance stability. Comparison with experiment is recognized as an important tool in improving models
Beam dynamics in CIME for third harmonic
This report presents the results from simulations for beam dynamics in CIME third harmonics. Details are given regarding the procedures to reach the adaptation at the inflector exit. The aim of these simulation is to determine, for any given ion, the beam correlations at the inflector exit as well as the current values in the isochronous coils for all the field levels. Although not all the steps of the simulation are thoroughly displayed, the report gathers all the the elements necessary for CIME control. Information useful for controlling the Very Low Energy line, the main field and the isochronous coils are also presented. The report has the following content: I. Introduction. II. The field maps and the used codes. A. The maps of CIME magnetic fields; B. The 3D map of CIME electric potentials; C. The maps of 3D electric potentials in the CIME central region; D. Code LIONS and sorting codes. III. Central region. A. An outlook. B.Central rays; IV. Determination of beam correlations. A. Analytical calculation of adaptation conditions; B. Calculation of adaptation conditions based on particle distributions; C. Creating the beam matrices. D. Calculation method for inverse return correlations. V. Results of simulations. VI. Interpolation of isochronous coils at the referential frequency. VII. The interpolation code PARAM. VIII. Conclusions. The paper is supplemented by 4 appendices. The harmonics 2, 4 and 5 are currently under way and the results will be reported in a future paper
Beam dynamics issues in the FCC
AUTHOR|(CDS)2067437; Benedikt, Michael; Besana, Maria Ilaria; Bruce, Roderik; Bruning, Oliver; Buffat, Xavier; Burkart, Florian; Burkhardt, Helmut; Calatroni, Sergio; Cerutti, Francesco; Fartoukh, Stephane; Fiascaris, Maria; Garion, Cedric; Goddard, Brennan; Hofle, Wolfgang; Holzer, Bernhard; Jowett, John; Kersevan, Roberto; Martin, Roman; Mether, Lotta Maria; Milanese, Attilio; Pieloni, Tatiana; Redaelli, Stefano; Rumolo, Giovanni; Salvant, Benoit; Schaumann, Michaela; Schulte, Daniel; Chapochnikova, Elena; Stoel, Linda; Tambasco, Claudia; Tomas Garcia, Rogelio; Tommasini, Davide; Zimmermann, Frank; Guillermo Canton, Gerardo; Kornilov, Vladimir; Boine-Frankenheim, Oliver; Niedermayer, Uwe; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Chance, Antoine; Dalena, Barbara; Payet, Jacques; Bambade, Philip; Faus-Golfe, Angeles; Molson, James; Biarrotte, Jean-Luc; Lachaize, Antoine; Fox, John D; Stupakov, Gennady; Abelleira, Jose; Cruz Alaniz, Emilia; Seryi, Andrei; Appleby, Robert Barrie; Boscolo, Manuela; Collamati, Francesco; Drago, Alessandro; Barranco Garcia, Javier; Khan, Shaukat; Riemann, Bernhard
2016-01-01
The international Future Circular Collider (FCC) study is designing hadron, lepton and lepton-hadron colliders based on a new 100 km tunnel in the Geneva region. The main focus and ultimate goal of the study are high luminosity proton-proton collisions at a centre-of-mass energy of 100 TeV, using 16 T Nb3Sn dipole magnets. Specific FCC beam dynamics issues are related to the large circumference, the high brightness—made available by radiation damping —, the small geometric emittance, unprecedented collision energy and luminosity, the huge amount of energy stored in the beam, large synchrotron radiation power, plus the injection scenarios. In addition to the FCC-hh proper, also a High-Energy LHC (HE-LHC) is being explored, using the FCC-hh magnet technology in the existing LHC tunnel, which can yield a centre-of-mass energy around 25 TeV.
Photorefractive dynamic holography using self-pumped phase conjugate beam
Arun Anand; C S Narayanamurthy
2006-03-01
Dynamic holography in photorefractive materials using self-pumped phase conjugate beam of the object beam itself as the other writing beam is proposed. Our detailed theoretical analysis shows four-fold increase in the diffraction efficiency of dynamic holograms if recorded using this geometry even in photorefractive crystal like BTO (having low optical activity) without applying external field. Detailed theoretical analysis is given.
Summary of session 3 on synchrotron radiation and beam dynamics
Shiltsev, V.; /Fermilab; Metral, E.; /CERN
2010-12-01
We summarize presentations, discussions and general conclusions of the Workshop session on 'Beam Dynamics Issues'. Major subjects include effects due to synchrotron radiation (SR), cryogenic loads, electron cloud, impedances, intra-beam scattering (IBS) and beam-beam interactions.
Beam stability & nonlinear dynamics. Formal report
Parsa, Z. [ed.
1996-12-31
his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.
Beam stability ampersand nonlinear dynamics. Formal report
This report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report
Molecular beam studies of reaction dynamics
Lee, Y.T.
1987-03-01
Purpose of this research project is two-fold: (1) to elucidate detailed dynamics of simple elementary reactions which are theoretically important and to unravel the mechanism of complex chemical reactions or photo chemical processes which play an important role in many macroscopic processes and (2) to determine the energetics of polyatomic free radicals using microscopic experimental methods. Most of the information is derived from measurement of the product fragment translational energy and angular distributions using unique molecular beam apparati designed for these purposes.
Beam dynamics in magnetic quadrupole triplets
The Frankfurt Neutron source at the Stern-Gerlach-Zentrum (FRANZ) will produce high intensity neutron pulses in the energy range of 1 to 500 keV at a very short repetition rate. The neutrons are gained from 7Li(p,n)7Be reactions induced by 2 MeV protons and will be used to examine the nucleosynthesis during the s-process as it occurs in stars, cross sections of neutron capture reactions as well as the behaviour of non-neutral plasmas. In the linear accelerator section, consisting of a 4-rod-radio-frequency-quadrupole and a H-type drift tube linac, the proton pulses are accelerated to 2.03 MeV. Inside the drift tube cavity a magnetic quadrupole triplet will be integrated, in order to compensate transversally defocussing effects and therefore avoid losses. Behind the linear accelerator section the proton beam ist rebunched in a 5-cell CH-rebuncher which is framed by two more quadrupole triplets. To investigate the beam dynamics inside the magnetic quadrupole triplets, various magnetostatic and particle tracking codes like CST Studio and LORASR were used to simulate the beam transport properties of the magnets and compare the individual magnetic field distributions with the ones measured at the magnet laboratory at GSI. In doing so, important aspects to be considered are the longitudinal and transversal fringe fields and the saturation effects which all possibly cause emittance growth and geometrical aberrations.
Beam dynamics in magnetic quadrupole triplets
Claessens, Christine; Heilmann, Manuel; Meusel, Oliver; Podlech, Holger; Ratzinger, Ulrich; Wiesner, Christoph [IAP, Frankfurt University, Frankfurt am Main (Germany)
2013-07-01
The Frankfurt Neutron source at the Stern-Gerlach-Zentrum (FRANZ) will produce high intensity neutron pulses in the energy range of 1 to 500 keV at a very short repetition rate. The neutrons are gained from {sup 7}Li(p,n){sup 7}Be reactions induced by 2 MeV protons and will be used to examine the nucleosynthesis during the s-process as it occurs in stars, cross sections of neutron capture reactions as well as the behaviour of non-neutral plasmas. In the linear accelerator section, consisting of a 4-rod-radio-frequency-quadrupole and a H-type drift tube linac, the proton pulses are accelerated to 2.03 MeV. Inside the drift tube cavity a magnetic quadrupole triplet will be integrated, in order to compensate transversally defocussing effects and therefore avoid losses. Behind the linear accelerator section the proton beam ist rebunched in a 5-cell CH-rebuncher which is framed by two more quadrupole triplets. To investigate the beam dynamics inside the magnetic quadrupole triplets, various magnetostatic and particle tracking codes like CST Studio and LORASR were used to simulate the beam transport properties of the magnets and compare the individual magnetic field distributions with the ones measured at the magnet laboratory at GSI. In doing so, important aspects to be considered are the longitudinal and transversal fringe fields and the saturation effects which all possibly cause emittance growth and geometrical aberrations.
On the dynamics of viscous masonry beams
Lucchesi, M.; Pintucchi, B.; Šilhavý, M.; Zani, N.
2015-05-01
In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler-Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis, 1999) and Zani (Eur J Mech A/Solids 23:467-484, 2004). The viscous part amounts to the Kelvin-Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88-105, 2007 ). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.
Study of beam dynamics at cooler synchrotron TARN-II
Several kinds of beam diagnostic instruments, have been developed at cooler-synchrotron TARN-II. These are intended to study beam dynamics at low beam current of several microamperes and then have high sensitivity of good S/N ratio. In addition, the acceleration system, especially low level RF system, has been improved to attain the maximum beam energy. With the successful performance of these instrumentations, the study of beam dynamics are presently being carried out. For example, the synchrotron acceleration of the light ions was achieved up to 220 MeV/u without any beam loss. (author)
Kikuchi Takashi
2013-11-01
Full Text Available In a final stage of an accelerator system for heavy ion inertial fusion (HIF, pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.
SPP Beamline Design and Beam Dynamics
Turemen, G; Yasatekin, B; Yildiz, V; Celik, M; Alacakir, A; Unel, G; Mete, O
2014-01-01
The Radio Frequency Quadrupole of SANAEM Project Prometheus will be a demonstration and educational machine which will accelerate protons from 20 keV to 1.5 MeV. The project is funded by Turkish Atomic Energy Authority and it will be located at Saraykoy Nuclear Research and Training Center in Ankara. The SPP beamline consists of a multi-cusp H+ ion source, a Low Energy Beam Transport line and a four-vane RFQ operating at 352.2 MHz. The design studies for the multi-cusp ion source (RF or DC) were performed with IBSimu and SIMION software packages. The source has already been produced and currently undergoes extensive testing. There is also a preliminary design for the solenoid based LEBT, POISSON and PATH were used in parallel for the preliminary design. Two solenoid magnets are produced following this design. The RFQ design was made using LIDOS.RFQ.Designer and it was crosschecked with a home-grown software package, DEMIRCI. The initial beam dynamics studies have been performed with both LIDOS and TOUTATIS. T...
Molecular beam studies of reaction dynamics
Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.
Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators
In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)
Large Dynamic Range Beam Profile Measurements with Low Current Electron Beams
Large dynamic range [Peak/Noise > 105] beam profile measurements are routinely performed in the Hall-B beamline at Jefferson Lab. These measurements are made with a 1 to 10nA electron beam current with energies between 1 to 6 GeV. The electron beam scatters off of a thin [25 mu-m] W or Fe wire and the scattered particle/shower is detected via scintillation or Cerenkov light several meters downstream of the wire. This light is converted to an electrical pulse via photomultiplier tubes [PMT]. The PMT readout and wire motion are controlled and synchronized by VME electronics. This report describes results on increasing the dynamic range by using multiple wires of varying diameters. Profile measurements with this large dynamic range can be of use for machines with very large beam currents (ERL) where any FR-actional beam loss represents a significant amount of beam power [1,2
Chaotic dynamics of flexible beams with piezoelectric and temperature phenomena
Krysko, V.A. [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl [Lodz University of Technology, Department of Automation and Biomechanics, 1/15 Stefanowski St., 90-924 Lodz (Poland); Warsaw University of Technology, Department of Vehicles, 84 Narbutta St., 02-524 Warsaw (Poland); Kutepov, I.E.; Zagniboroda, N.A.; Papkova, I.V.; Serebryakov, A.V. [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Krysko, A.V. [Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation)
2013-11-01
The Euler–Bernoulli kinematic model as well as the von Kármán geometric non-linearity are used to derive the PDEs governing flexible beam vibrations. The beam is embedded into a 2D temperature field, and its surface is subjected to action of the electric potential. We report how an increase of the exciting load amplitude yields the beam turbulent behavior, and how the temperature changes a scenario from a regular/laminar to spatio-temporal/turbulent dynamics. Both classical Fourier analysis and Morlet wavelets are used to monitor a strong influence of temperature on regular and chaotic beam dynamics.
Controllable circular Airy beams via dynamic linear potential
Zhong, Hua; Belić, Milivoj R; Li, Changbiao; Wen, Feng; Zhang, Zhaoyang; Zhang, Yanpeng
2016-01-01
We investigate controllable spatial modulation of circular autofocusing Airy beams, under action of different dynamic linear potentials, both theoretically and numerically. We introduce a novel treatment method in which the circular Airy beam is represented as a superposition of narrow azimuthally-modulated one-dimensional Airy beams that can be analytically treated. The dynamic linear potentials are appropriately designed, so that the autofocusing effect can either be weakened or even eliminated when the linear potential exerts a "pulling" effect on the beam, or if the linear potential exerts a "pushing" effect, the autofocusing effect can be greatly strengthened. Numerical simulations agree with the theoretical results very well.
Beam dynamics with new booster dipoles
New bending magnets are being designed for the booster synchrotron at RRCAT, Indore with the same effective length and field which will be installed in the existing ring with the same configuration of drifts and quadrupole magnets. Presently sector type dipoles are in use. It is easier to fabricate parallel edge (rectangular type) dipoles but the beam optics gets modified due to edges which provide additional focusing. The effect on tune point can be corrected using two quadrupole families. Studies indicate that the beam emittance is lower in the optics with rectangular type dipoles but the beam injection and extraction are more difficult. In this paper, the beam optics, beam emittance, injection and extraction with two configurations of the dipole magnets are compared. (author)
Beam dynamics design of the Compact Linear Collider Drive Beam injector
In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane
Beam dynamics design of the Compact Linear Collider Drive Beam injector
Hajari, Sh. Sanaye, E-mail: ssanayeh@cern.ch [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland); Shaker, H. [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland); Doebert, S. [European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland)
2015-11-01
In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane.
Screw theoretic view on dynamics of spatially compliant beam
Xi-lun DING; J.M.SELIG
2010-01-01
Beams with spatial compliance can be deformed as bending in a plane,twisting,and extending.In terms of the screw theory on rigid body motions,the concept of"deflection screw"is introduced,a spatial compliant beam theory via the deflection screw is proposed,and the spatial compliance of such a beam system is presented and analysed based on the material theory and fundamental kinematic assumptions.To study the dynamics of the spatially compliant beam,the potential energy and the kinetic energy of the beam are discussed by using the screw theory to obtain the Lagrangian.The Rayleigh-Ritz method is used to compute the vibrational frequencies based on discussions of boundary conditions and shape functions.The eigenfrequencies of the beam with spatial compliance are compared with those of individual deformation cases,pure bending,extension,or torsion.Finally,dynamics of a robot with two spatial compliant links and perpendicular joints is studied using the spatial compliant beam theory.Coupling between the joint rigid body motions and the deformations of spatial compliant links can easily be found in dynamic simulation.The study shows the effectiveness of using the screw theory to deal with the problems of dynamic modeling and analysis of mechanisms with spatially compliant links.
Multi-Bunch Beam Dynamics Studies for the European XFEL
Baboi, N
2004-01-01
In the X-ray free electron laser planned to be built at DESY (TESLA XFEL) the acceleration of the electron bunches will be made with 9-cell superconducting cavities. These cavities have been initially developed within the TESLA linear collider study. The impact of the higher order modes (HOM) has been shown to be within the acceptable beam dynamics limits for the collider. For the XFEL the dynamics is relaxed from point of view of multi-bunch effects (e.g. shorter length, higher emittance). However the lower energy and different time structure of the beam make the study of the HOM effects in the XFEL linac necessary. Multi-bunch beam dynamics studies are ongoing. The results of the HOM measurements at the TESLA Test Facility are used. Several options for the beam structure, as necessary for various applications, are studied. The results will be discussed.
Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers
Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.;
-sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full...... scientific and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the...... temporal dynamics of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by...
Beam Dynamics Challenges for FCC-ee
AUTHOR|(SzGeCERN)442987; Benedikt, Michael; Oide, Katsunobu; Bogomyagkov, Anton; Levichev, Evgeny; Migliorati, Mauro; Wienands, Uli
2015-01-01
The goals of FCC-ee include reaching luminosities of up to a few 1036 cm-2s-1 per interaction point at the Z pole or some 1034 cm-2s-1 at the ZH production peak, and pushing the beam energy up to ≥175 GeV, in a ring of 100 km circumference, with a total synchrotron-radiation power not exceeding 100 MW. A parameter baseline as well as high-luminosity crab-waist options were described in [1] and [2], respectively. The extremely high luminosity and resulting short beam lifetime (due to radiative Bhabha scattering) are sustained by top-up injection. The FCC-ee design status and typical beam parameters for different modes of operation are reported in [3]. One distinct feature of the FCC-ee design is its conception as a double ring, with separate beam pipes for the two counter-rotating (electron and positron) beams, resembling, in this aspect, the high-luminosity B factories PEP-II, KEKB and SuperKEKB as well as the LHC. The two separate rings do not only permit operation with a large number of bunches, up to a f...
Longitudinal beam dynamics for heavy ion fusion
The longitudinal wall impedance instability is of great interest for a heavy ion fusion (HIF) driver because complete stabilization of this mode via momentum spread is impractical due to requirements of focusing the beam onto the inertial confinement fusion target. This instability is being studied with the WARPrz particle-in-cell code. The impedance of the induction linac modules is modeled as a wall impedance corresponding to a continuum of resistors and capacitors in parallel. We discuss simulations of the this instability, including reflections of perturbations off the beam end and the effects of finite temperature, and simulations of errors in intermittently-applied axial confining fields as a seed for this instability. We also present very long simulations in which we look for beam equilibria
Periodic Poisson model for beam dynamics simulation
Dohlus, M.; Henning, Ch.
2016-03-01
A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary condition is realized. In beam physics, this approach allows us to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle-mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudoperiodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.
Absolute nodal coordinate plane beam formulation for multibody systems dynamics
A new plane beam dynamic formulation for constrained multibody system dynamics is developed. Flexible multibody system dynamics includes rigid body dynamics and superimposed vibratory motions. The complexity of mechanical system dynamics originates from rotational kinematics, but the natural coordinate formulation does not use rotational coordinates, so that simple dynamic formulation is possible. These methods use only translational coordinates and simple algebraic constraints. A new formulation for plane flexible multibody systems are developed utilizing the curvature of a beam and point masses. Using absolute nodal coordinates, a constant mass matrix is obtained and the elastic force becomes a nonlinear function of the nodal coordinates. In this formulation, no infinitesimal or finite rotation assumptions are used and no assumption on the magnitude of the element rotations is made. The distributed body mass and applied forces are lumped to the point masses. Closed loop mechanical systems consisting of elastic beams can be modeled without constraints since the loop closure constraints can be substituted as beam longitudinal elasticity. A curved beam is modeled automatically. Several numerical examples are presented to show the effectiveness of this method.
Absolute nodal coordinate plane beam formulation for multibody systems dynamics
Souh, Byungyil, E-mail: bysouh@dyu.ac.kr [Dongyang University (Korea, Republic of)
2013-06-15
A new plane beam dynamic formulation for constrained multibody system dynamics is developed. Flexible multibody system dynamics includes rigid body dynamics and superimposed vibratory motions. The complexity of mechanical system dynamics originates from rotational kinematics, but the natural coordinate formulation does not use rotational coordinates, so that simple dynamic formulation is possible. These methods use only translational coordinates and simple algebraic constraints. A new formulation for plane flexible multibody systems are developed utilizing the curvature of a beam and point masses. Using absolute nodal coordinates, a constant mass matrix is obtained and the elastic force becomes a nonlinear function of the nodal coordinates. In this formulation, no infinitesimal or finite rotation assumptions are used and no assumption on the magnitude of the element rotations is made. The distributed body mass and applied forces are lumped to the point masses. Closed loop mechanical systems consisting of elastic beams can be modeled without constraints since the loop closure constraints can be substituted as beam longitudinal elasticity. A curved beam is modeled automatically. Several numerical examples are presented to show the effectiveness of this method.
Lee, S. Y.
2014-04-07
We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.
Dynamic Behavior of Sandwich Beams With Internal Resonators
Sharma, Bhisham Nar Narain
2013-01-01
Dynamic behavior of sandwich beams with internal resonators was investigated. The effect of inserting spring-mass resonators into the sandwich core was theoretically analyzed and it was shown that a wave attenuation bandgap exists due to local resonance. Steady state experiments were used to demonstrate such an attenuation bandgap. Frequency response functions were obtained for a beam with resonators and without resonators. It was shown that insertion of resonators into the core causes a wave...
Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator
Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok [Institute for Basic Science, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of)
2016-02-15
RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement of the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.
DARHT-II Long-Pulse Beam-Dynamics Experiments
Ekdahl, Carl; Bartsch, Richard; Bender, Howard; Briggs, Richard J; Broste, William; Carlson, Carl; Caudill, Larry; Chan, Kwok-Chi D; Chen Yu Jiuan; Dalmas, Dale; Durtschi, Grant; Eversole, Steven; Eylon, Shmuel; Fawley, William M; Frayer, Daniel; Gallegos, Robert J; Harrison, James; Henestroza, Enrique; Holzscheiter, M H; Houck, Timothy L; Hughes, Thomas P; Jacquez, Edward; Johnson, Douglas; Johnson, Jeffrey; Jones, Kenneth; McCuistian, Brian T; Meidinger, Alfred; Montoya, Nicholas; Mostrom, Chris; Moy, Kenneth; Nath, Subrata; Nielsen, Kurt; Oro, David; Rodriguez, Leroy; Rodriguez, Patrick; Rowton, Larry J; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin; Schulze, Martin E; Simmons, David; Studebaker, Jan; Sturgess, Ronald; Sullivan, Gary; Swinney, Charles; Tang, Yan; Temple, Rodney; Tipton, Angela; Tom, C Y; Vernon Smith, H; Yu, Simon
2005-01-01
When completed, the DARHT-II linear induction accelerator (LIA) will produce a 2-kA, 18-MeV electron beam with more than 1500-ns current/energy "flat-top." In initial tests DARHT-II has already accelerated beams with current pulse lengths from 500-ns to 1200-ns full-width at half maximum (FWHM) with more than1.2-kA, 12.5-MeV peak current and energy. Experiments are now underway with a ~2000-ns pulse length, but reduced current and energy. These pulse lengths are all significantly longer than any other multi-MeV LIA, and they define a novel regime for high-current beam dynamics, especially with regard to beam stability. Although the initial tests demonstrated absence of BBU, the pulse lengths were too short to test the predicted protection against ion-hose instability. The present experiments are designed to resolve these and other beam-dynamics issues with a ~2000-ns pulse length beam.
The δf algorithm for beam dynamics
An algorithm is developed to study particle dynamics of beams including collective interaction with high accuracy and low noise. Particle dynamics with collective interactions is treated through particle simulation, where the main or average distribution f0 and the deviation away from it δf are separately followed. The main distribution f0 is handled by an analytic equilibrium solution and the perturbation away from it δf is followed by the method of characteristics. We call this the δf algorithm. We specifically model a synchrotron collider which includes the collision section where collective effects of collisions are simulated by this δf algorithm and the rest of the collider where single particle dynamics are treated by simple harmonic transport. The most important target of this simulation is to understand and predict the long-time behavior of the beam luminosity and lifetime. The δf method allows the study the effect of small perturbations over long timescales on beam lifetime by eliminating the numerical noise problem inherent in Particle-in-Cell techniques. In the δf code using the reference parameters of the SSC (Superconducting Super Collider), beam blow-up near resonances and oscillations in the tune shift, Δν, far from resonances are observed. In studying long timescale particle diffusion in the phase space of the beams away from resonances, the δf code performance is compared with a tracking code which does not incorporate collective interaction
On the dynamics of viscous masonry beams
Lucchesi, M.; Pintucchi, B.; Šilhavý, Miroslav; Zani, N.
2015-01-01
Roč. 27, č. 3 (2015), s. 349-365. ISSN 0935-1175 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : non-linear dynamics * no-tension material * masonry slender towers and arches * coupling phenomena * Galerkin method Subject RIV: BA - General Mathematics Impact factor: 1.779, year: 2014 http://link.springer.com/article/10.1007%2Fs00161-014-0352-y
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
Mastoridis, Themistoklis [Stanford Univ., CA (United States)
2010-08-01
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
Mastoridis, Themistoklis; /Stanford U., Elect. Eng. Dept. /SLAC
2011-03-01
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
Cold atom dynamics in crossed laser beam waveguides
Torrontegui, E; Ruschhaupt, A; Guéry-Odelin, D; Muga, J G
2010-01-01
We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling process this setting works as a one-way device or "atom diode".
Evaluating the Dynamic Characteristics of Retrofitted RC Beams
Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang
2008-07-01
The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.
Evaluating the Dynamic Characteristics of Retrofitted RC Beams
The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case
Specific features of dynamics of a heavy multicharged ion beam
For the purpose of investigating a possibility for increasing current in a heavy ion accelerator, longitudinal and transverse motions of a beam of quintuply charged ions in a linear accelerator with drift tubes and quadrupole-lens focusing have been studied. The value of the equilibrium phase has been assumed to be equal to -35 deg, the accelerating field amplitude in the gap 110 kV/cm, the wave length 2 m, the gap factor 0.25. The accelerating channel contained 142 oacceleration periods. It is shown that an increase in the beam effective emittance constitutes no more than 1.5 times. It has been concluded that the peculiarity of a multiply-charged beam dynamics is an increase in its phase volume and that an increase in ion charges in the beam accelerated after charge exchange may turn out to be a rather effective method for increasing current in a traditional linear accelerator
Dynamical deformed Airy beams with arbitrary angles between two wings.
Liang, Yi; Hu, Yi; Ye, Zhuoyi; Song, Daohong; Lou, Cibo; Zhang, Xinzheng; Xu, Jingjun; Morandotti, Roberto; Chen, Zhigang
2014-07-01
We study both numerically and experimentally the acceleration and propagation dynamics of 2D Airy beams with arbitrary initial angles between their "two wings." Our results show that the acceleration of these generalized 2D Airy beams strongly depends on the initial angles and cannot be simply described by the vector superposition principle (except for the normal case of a 90° angle). However, as a result of the "Hyperbolic umbilic" catastrophe (a two-layer caustic), the main lobes of these 2D Airy beams still propagate along parabolic trajectories even though they become highly deformed. Under such conditions, the peak intensity (leading energy flow) of the 2D Airy beams cannot be confined along the main lobe, in contrast to the normal 90° case. Instead, it is found that there are two parabolic trajectories describing the beam propagation: one for the main lobe, and the other for the peak intensity. Both trajectories can be readily controlled by varying the initial wing angle. Due to their self-healing property, these beams tend to evolve into the well-known 1D or 2D Airy patterns after a certain propagation distance. The theoretical analysis corroborates our experimental observations, and explains clearly why the acceleration of deformed Airy beams increases with the opening of the initial wing angle. PMID:25121433
Dynamics of a high-current relativistic electron beam
The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations
Online optimization of storage ring nonlinear beam dynamics
Huang, Xiaobiao
2015-01-01
We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.
Online optimization of storage ring nonlinear beam dynamics
Huang, Xiaobiao; Safranek, James
2015-08-01
We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.
Non Linear Beam Dynamics Studies at SPEAR
The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.
LIE algebraic treatment of linear and nonlinear beam dynamics
Dragt, A.J.; Neri, F.; Rangarajan, G.; Douglas, D.R.; Healy, L.M.; Ryne, R.D.
1988-01-01
The purpose of this paper is to present a summary of new methods employing Lie algebraic tools for characterizing beam dynamics in charged- particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics by a certain operator. The operators can then be concatenated following well defined rules to obtain a resultant operator that characterizes the entire system. (AIP)
Beam dynamics of CANDLE storage ring low alpha operation
Sargsyan, A.; Amatuni, G.; Sahakyan, V.; Tsakanov, V.; Zanyan, G.
2015-10-01
The generation of the coherent THz radiation and short pulse synchrotron radiation in dedicated electron storage rings requires the study of non-standard magnetic lattices which provide low momentum compaction factor (alpha) of the ring. In the present paper two low alpha operation lattices based on modification of the original beam optics and implementation of inverse bend magnets are studied for CANDLE storage ring. For considered cases an analysis of transverse and longitudinal beam dynamics is given and the feasibility of lattices is discussed.
Beam dynamics studies in a tesla positron pre-accelerator
Moiseev, V A; Flöttmann, K
2001-01-01
The TESLA linear collider is based on superconducting accelerating cavities.Behind the positron production target normal conducting cavities have to be used in order to cope with high particle losses and with focusing solenoid surrounding the cavities.The main purpose of this pre-accelerator is to provide maximum capture efficiency for the useful part of the totally acceptable positron beam with technically reasonable parameters of the linac.The coupled optimization of the capture optics behind the target and pre-accelerator rf-operation has been carried out.The beam dynamics simulation results as well as the pre-accelerator peculiarities are presented.
Beam dynamics of CANDLE storage ring low alpha operation
The generation of the coherent THz radiation and short pulse synchrotron radiation in dedicated electron storage rings requires the study of non-standard magnetic lattices which provide low momentum compaction factor (alpha) of the ring. In the present paper two low alpha operation lattices based on modification of the original beam optics and implementation of inverse bend magnets are studied for CANDLE storage ring. For considered cases an analysis of transverse and longitudinal beam dynamics is given and the feasibility of lattices is discussed
Beam dynamics studies of high current RF and DTL tanks
An accelerator for spallation breeding of fissile fuel must have low beam loss and high acceleration efficiency. An extensive investigation using the PARMTEQ and PARMILA computer beam dynamics codes has been undertaken to obtain a reference design for a 100% duty cycle 300 mA 10 MeV proton linac called ZEBRA (Zero Energy BReeder Accelerator) that could serve as the first stage of an accelerator-breeder. This paper discusses results of this investigation, showing how current carrying capacity and accelerating efficiency in both RFQ's and DTL's is affected by accelerator and injector parameters
Quantitative high dynamic range beam profiling for fluorescence microscopy
Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)
2014-10-15
Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.
Transverse beam dynamics studies of a heavy ion induction linac
The multiple beam induction linac experiment (MBE-4) was built to study the accelerator physics of the low energy, electrostatically focused end of a driver for heavy ion inertial confinement fusion. In this machine four beams of Cs+ ions are accelerated through 24 common induction gaps while being focused in separate AG focusing channels. Each channel consists of a syncopated FODO lattice of 30 periods. The authors report results of the most recent studies of the transverse beam dynamics of a single drifting (180 keV) beam in this machine. The dependence of the emittance on the zero-current phase advance shows systematic variations which may be understood in the light of previous theoretical work on this topic. This result, unique to the beam parameters of a linac for heavy ion fusion, is discussed in the context of its implications for a driver design. In addition they discuss recent measurements of the motion of the beam centroid through the linac. These measurements, coupled with simulations, have proven to be a powerful tool in determining the presence of misalignment errors in the lattice of the accelerator
Dual-Beam Atom Laser Driven by Spinor Dynamics
Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David
2007-01-01
An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.
Longitudinal beam dynamics for heavy ion fusion using WARPrz
WARPrz is a 2.5 dimensional, cylindrically symmetric, electrostatic, particle-in-cell code. It is part of the WARP family of codes which has been developed to study heavy ion fusion driver issues. WARPrz is being used to study the longitudinal dynamics of heavy ion beams including a longitudinal instability that is driven by the impedance of the LINAC accelerating modules. This instability is of concern because it can enhance longitudinal momentum spread; chromatic abhoration in the lens system restricts the amount of momentum spread allowed in the beam in the final focusing system. The impedance of the modules is modeled by a continuum of resistors and capacitors in parallel in WARPrz. We discuss simulations of this instability including the effect of finite temperature and reflection of perturbations off the beam ends. We also discuss intermittency of axial confining fields (''ears'' fields) as a seed for this instability
Beam dynamics of alternating-phase-focused linac
Iwata, Y; Kapin, V
2004-01-01
A simple method to find an array of synchronous phases for alternating-phase-focused (APF) linacs is presented. The phase array is described with a smooth function having free parameters. With a set of the parameters, a simulation on the beam dynamics was made and distributions of the six-dimensional phase spaces were calculated for each set of the parameters. The parameters were varied, and numbers of the simulations have been performed. An optimum set of the parameters were determined so that the simulations of the beam dynamics yield large acceptances and small emittances of the extracted beams. Since the APF linac can provide both axial and radial stability of beams just with the rf acceleration-field, no additional focusing element inside of drift tubes are necessary. Comparing with conventional linacs having focusing elements, it has advantage in construction and operation costs as well as its acceleration rate. Therefore, the APF linacs would be suited for an injector of medical synchrotrons. A practic...
SciDAC Advances and Applications in Computational Beam Dynamics
Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J; Bohn, C; Cary, J; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.
2005-01-01
SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators -- which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook -- are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are with...
Dynamics of beam pair coupled by visco-elastic interlayer
Náprstek, Jiří; Hračov, Stanislav
2015-01-01
Roč. 9, č. 2 (2015), s. 127-140. ISSN 1802-680X R&D Projects: GA ČR(CZ) GP13-41574P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : double-beam dynamics * visco-elastic interlayer * kinematic damping Subject RIV: JM - Building Engineering http://www.kme.zcu.cz/acm/acm/article/view/292
Space-charge dynamics of polymethylmethacrylate under electron beam irradiation
Gong, H; Ong, C K
1997-01-01
Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)
Some topics in beam dynamics of storage rings
In the following report we want to review some beam dynamics problems in accelerator physics. Theoretical tools and methods are introduced and discussed, and it is shown how these concepts can be applied to the study of various problems in storage rings. The first part treats Hamiltonian systems (proton accelerators) whereas the second part is concerned with explicitly stochastic systems (e.g. electron storage rings). (orig.)
Dynamic Terahertz Beam Steering Based on Graphene Metasurfaces
Liu, Liming; Zarate, Yair; Hattori, Haroldo T.
2015-01-01
A full (2$\\pi$) phase modulation is critical for efficient wavefront manipulation. In this article, a metasurface based on graphene long/short-strip resonators is used to implement a dynamic 2$\\pi$ phase modulation by applying different voltages to different graphene resonators. The configuration is found to have high reflection efficiency (minimum 56%) and has a full phase modulation in a wide frequency range. Terahertz (THz) beam steering as large as 120 degrees ($\\pm60^\\circ$) is demonstra...
On the dynamics of space-charge dominated beams
A space-charge dominated beam is indubitably a complex system; both Chaos Dynamics and Plasma Physics can be used to explain its behaviour. It is shown that the nonlinear resonances induce local instabilities, mixing property and stochastic motions, and nonlinear space-charge waves which lead to meta-equilibria and thermalization of the particle system. Results obtained using the particle-core model and a self-consistent PIC code (RENOIR) are presented and compared. (authors). 5 figs., 10 refs
Dynamics of fast charged particle beam rotation in bended crystals
Dynamics of fast charged particle beam rotation in a bended monocrystal is considered. Face and volume mechanisms of capture in channels are taken into account simultaneously in the model presented. Functions of distribution in transverse energies (φ) of channeled and dechanneled particles are obtained. Charge-energy ''scale invariance'' in ion channeling with charge Z in a bended crystal determined by scale parameter W=pv/Z (p and v are pulse and velocity local to transverse planes) follows from the model presented
Nonlinear Dynamical analysis of an AFM tapping mode microcantilever beam
Choura S.
2012-07-01
Full Text Available We focus in this paper on the modeling and dynamical analysis of a tapping mode atomic force microscopy (AFM microcantilever beam. This latter is subjected to a harmonic excitation of its base displacement and to Van der Waals and DMT contact forces at its free end. For AFM design purposes, we derive a mathematical model for accurate description of the AFM microbeam dynamics. We solve the resulting equations of motions and associated boundary conditions using the Galerkin method. We find that using one-mode approximation in tapping mode operating in the neighborhood of the contact region one-mode approximation may lead to erroneous results.
Investigations of the Dynamics of Space Charged Dominated Beams
York, Richard C.
2002-08-01
We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool.
Nonlinear three-dimensional beam theory for flexible multibody dynamics
In flexible multibody systems, it is convenient to approximate many structural components as beams or shells. Classical beam theories, such as Euler–Bernoulli beam theory, often form the basis of the analytical development for beam dynamics. The advantage of this approach is that it leads to a very simple kinematic representation of the problem: the beam’s section is assumed to remain plane and its displacement field is fully defined by three displacement and three rotation components. While such an approach is capable of capturing the kinetic energy of the system accurately, it cannot represent the strain energy adequately. This paper presents a different approach to the problem. Based on a finite element discretization of the cross-section, an exact solution of the theory of three-dimensional elasticity is developed. The proposed approach is based on the Hamiltonian formalism and leads to an expansion of the solution in terms of extremity and central solutions. Kinematically, the problem is decomposed into an arbitrarily large rigid-section motion and a warping field. The sectional strains associated with the rigid-section motion and the warping field are assumed to remain small. As a consequence of this kinematic decomposition, the governing equations of the problem fall into two distinct categories: the equations describing geometrically exact beams and those describing local deformations. The governing equations for geometrically exact beams are nonlinear, one-dimensional equations, whereas a linear, two-dimensional analysis provides the detailed distribution of three-dimensional stress and strain fields. Within the stated assumptions, the solutions presented here are the exact solution of three-dimensional elasticity for beams undergoing arbitrarily large motions
Nonlinear three-dimensional beam theory for flexible multibody dynamics
Han, Shilei; Bauchau, Olivier A., E-mail: olivier.bauchau@sjtu.edu.cn [University of Michigan–Shanghai Jiao Tong University Joint Institute (China)
2015-07-15
In flexible multibody systems, it is convenient to approximate many structural components as beams or shells. Classical beam theories, such as Euler–Bernoulli beam theory, often form the basis of the analytical development for beam dynamics. The advantage of this approach is that it leads to a very simple kinematic representation of the problem: the beam’s section is assumed to remain plane and its displacement field is fully defined by three displacement and three rotation components. While such an approach is capable of capturing the kinetic energy of the system accurately, it cannot represent the strain energy adequately. This paper presents a different approach to the problem. Based on a finite element discretization of the cross-section, an exact solution of the theory of three-dimensional elasticity is developed. The proposed approach is based on the Hamiltonian formalism and leads to an expansion of the solution in terms of extremity and central solutions. Kinematically, the problem is decomposed into an arbitrarily large rigid-section motion and a warping field. The sectional strains associated with the rigid-section motion and the warping field are assumed to remain small. As a consequence of this kinematic decomposition, the governing equations of the problem fall into two distinct categories: the equations describing geometrically exact beams and those describing local deformations. The governing equations for geometrically exact beams are nonlinear, one-dimensional equations, whereas a linear, two-dimensional analysis provides the detailed distribution of three-dimensional stress and strain fields. Within the stated assumptions, the solutions presented here are the exact solution of three-dimensional elasticity for beams undergoing arbitrarily large motions.
Study of longitudinal dynamics in space-charge dominated beams
Tian, Kai
Modern accelerator applications, such as heavy ion fusion drivers, pulsed neutron sources, electron injectors for high-energy linear colliders, and X-ray Free Electron Lasers, demand beams with high intensity, low emittance and small energy spread. At low (non-relativistic) energies, the "electrostatic", collective interactions from space-charge forces existing in such intense beams play the dominant role; we characterize these beams as space-charge dominated beams. This dissertation presents numerous new findings on the longitudinal dynamics of a space-charge dominated beam, particularly on the propagation of density perturbations. In order to fully understand the complex physics of longitudinal space-charge waves, we combine the results of theory, computer simulation, and experiment. In the Long Solenoid Experimental system (LSE), with numerous diagnostic tools and techniques, we have, for the first time, experimentally measured the detailed energy profiles of longitudinal space-charge waves at different locations, both near the beam source and at the end of the transport system. Along with the current profiles, we have a complete set of experimental data for the propagation of space-charge waves. We compare these measured results to a 1-D theory and find better agreement for beams with perturbations in the linear regime, where the perturbation strength is less than 10%, than those with nonlinear perturbations. Using fast imaging techniques that we newly developed, we have, for the first time, obtained the progressive time-resolved images of longitudinal slices of a space-charge dominated beam. These images not only provide us time-resolved transverse density distribution of the beam, but also enable us to take time-resolved transverse phase space measurement using computerized tomography. By combining this information with the longitudinal energy measurement, we have, for the first time, experimentally constructed the full 6-D phase space. Part of the results
Dynamic bowtie filter for cone-beam/multi-slice CT.
Fenglin Liu
Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.
Experimental dynamic trapping of electrostatically actuated bistable micro-beams
Medina, Lior; Gilat, Rivka; Robert Ilic, B.; Krylov, Slava
2016-02-01
We demonstrate a dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. The nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of the micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.
Parallel beam dynamics calculations on high performance computers
Faced with a backlog of nuclear waste and weapons plutonium, as well as an ever-increasing public concern about safety and environmental issues associated with conventional nuclear reactors, many countries are studying new, accelerator-driven technologies that hold the promise of providing safe and effective solutions to these problems. Proposed projects include accelerator transmutation of waste (ATW), accelerator-based conversion of plutonium (ABC), accelerator-driven energy production (ADEP), and accelerator production of tritium (APT). Also, next-generation spallation neutron sources based on similar technology will play a major role in materials science and biological science research. The design of accelerators for these projects will require a major advance in numerical modeling capability. For example, beam dynamics simulations with approximately 100 million particles will be needed to ensure that extremely stringent beam loss requirements (less than a nanoampere per meter) can be met. Compared with typical present-day modeling using 10,000-100,000 particles, this represents an increase of 3-4 orders of magnitude. High performance computing (HPC) platforms make it possible to perform such large scale simulations, which require 10's of GBytes of memory. They also make it possible to perform smaller simulations in a matter of hours that would require months to run on a single processor workstation. This paper will describe how HPC platforms can be used to perform the numerically intensive beam dynamics simulations required for development of these new accelerator-driven technologies
Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics
Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne
1988-12-01
The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).
Implementation of geometrically exact beam element for nonlinear dynamics modeling
Wang, Jielong, E-mail: jelon.wang@gmail.com [Commercial Aircraft Corporation of China, Ltd., Beijing Aeronautical Science & Technology Research Institute (China)
2015-12-15
The paper develops a new type of geometrically exact beam element featuring large displacements and rotations together with small warping. The dimension reduction approach based on variational asymptotic method has been explored, and a linear two-dimensional finite element procedure has been implemented to predict the cross-sectional stiffness and recover the cross-sectional strain fields of the beam. The total and incremental variables mixed formula of governing equations of motion is presented, in which the Wiener–Milenković parameters are selected to vectorize the finite rotation. The dynamic problem of geometrically exact beam has been solved by the implicit Radau IIA algorithms, the time histories of large translations and rotations with small three-dimensional warping have been integrated. Numerical simulations have been performed and the results have been compared to those of commercial software LS-DYNA. It can be concluded that the current modeling approach features high accuracy and that the new geometrically exact beam with warping is robust enough to predict large deformations with small strain.
Implementation of geometrically exact beam element for nonlinear dynamics modeling
The paper develops a new type of geometrically exact beam element featuring large displacements and rotations together with small warping. The dimension reduction approach based on variational asymptotic method has been explored, and a linear two-dimensional finite element procedure has been implemented to predict the cross-sectional stiffness and recover the cross-sectional strain fields of the beam. The total and incremental variables mixed formula of governing equations of motion is presented, in which the Wiener–Milenković parameters are selected to vectorize the finite rotation. The dynamic problem of geometrically exact beam has been solved by the implicit Radau IIA algorithms, the time histories of large translations and rotations with small three-dimensional warping have been integrated. Numerical simulations have been performed and the results have been compared to those of commercial software LS-DYNA. It can be concluded that the current modeling approach features high accuracy and that the new geometrically exact beam with warping is robust enough to predict large deformations with small strain
Internal dynamics of intense twin beams and their coherence.
Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria
2016-01-01
The dynamics of intense twin beams in pump-depleted parametric down-conversion is studied. A generalized parametric approximation is suggested to solve the quantum model. Its comparison with a semiclassical model valid for larger twin-beam intensities confirms its applicability. The experimentally observed maxima in the spectral and spatial intensity auto- and cross- correlation functions depending on pump power are explained in terms of different speeds of the (back-) flow of energy between the individual down-converted modes and the corresponding pump modes. This effect is also responsible for the gradual replacement of the initial exponential growth of the down-converted fields by the linear one. Furthermore, it forms a minimum in the curve giving the effective number of twin-beam modes. These effects manifest a tight relation between the twin-beam coherence and its internal structure, as clearly visible in the model. Multiple maxima in the intensity correlation functions originating in the oscillations of energy flow between the pump and down-converted modes are theoretically predicted. PMID:26924749
Beam dynamics simulations for linacs driving short-wavelength FELs
The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)
An instrument for beam shape measurement including the halo is strongly required in intense proton accelerators such as the J-PARC. For diagnosing of the beam halo and halo cut at the injection beam line (3-50 BT) which connects the rapid cycling synchrotron (RCS) and the main ring (MR) in the J-PARC, we have developed a high sensitive two-dimensional profile monitor with screens. The beam core was observed with OTR from titanium foil screen, and the beam halo whose density were less almost three orders than it of the beam core was observed with fluorescence (FL) from chromium doped alumina screens placed in the four directions around the beam space. These alumina screens and remote movable system were installed in this spring, and they can be used with existing OTR screens simultaneously. These OTR and FL are focused in the same optical system having large opening angle of 30 degree, and these are observed by a camera with an image intensifier (II). By these method, two-dimensional beam profile contained the beam halo of high-intensity proton beam of 1.5 × 1013 was measured successfully with a dynamic range of more than six orders in magnitude. Two typical measured results as below are discussed mainly in this paper: (1) halo cut by the beam collimators, (2) simultaneous measurement of the beam halo of the minus 4th order with the beam core. These high-sensitive two-dimensional data give powerful information for beam diagnosing. As further topics, increasing the sensitivity of the beam halo measurement and simultaneous measurement of beam halo with beam core with wider dynamic range, their studies are planned this autumn, are also described. (author)
Crossed molecular beam studies of unimolecular reaction dynamics
The study of seven radical-molecule reactions using the crossed molecular beam technique with supersonic nozzle beams is reported. Product angular and velocity distributions were obtained and compared with statistical calculations in order to identify dynamical features of the reactions. In the reaction of chlorine and fluorine atoms with vinyl bromide, the product energy distributions are found to deviate from predictions of the statistical model. A similar effect is observed in the reaction of chlorine atoms with 1, 2 and 3-bromopropene. The reaction of oxygen atoms with ICl and CF3I has been used to obtain an improved value of the IO bond energy, 55.0 +- 2.0 kcal mol-1. In all reactions studied, the product energy and angular distributions are found to be coupled, and this is attributed to a kinematic effect of the conservation of angular momentum
Beam dynamics studies of the Heavy Ion Fusion Accelerator injector
A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K+) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented
Crossed-beam studies of the dynamics of radical reactions
Liu, K. [Argonne National Laboratory, IL (United States)
1993-12-01
The objective of this program is to characterize the detailed dynamics of elementary radical reactions and to provide a better understanding of radical reactivity in general. The radical beam is typically generated by a laser photolysis method. After colliding with the reacting molecule in a crossed-beam apparatus, the reaction product state distribution is interrogated by laser spectroscopic techniques. Several radicals of combustion significance, such as O, CH, OH, CN and NCO have been successfully generated and their collisional behavior at the state-to-state integral cross section level of detail has been studied in this manner. During the past year, the detection system has been converted from LIF to REMPI schemes, and the emphasis of this program shifted to investigate the product angular distributions. Both inelastic and reactive processes have been studied.
These proceedings contain the papers presented at the 'Second advanced beam dynamics workshop on aperture-related limitations of the performance and beam lifetime in storage rings', which was organized in Lugano, Switzerland, from 11 to 16 April 1988, by the Beam Dynamics Panel of the International Committee for Future Accelerators (ICFA). The papers cover experiments on existing accelerators, analytical methods for determining amplitude limitations, criteria for the properties of the circulating beam and for the quality of accelerator components, and compensation schemes for field defects. (orig.)
Chaotic dynamics of flexible Euler-Bernoulli beams
Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl [Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland and Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw (Poland); Krysko, A. V., E-mail: anton.krysko@gmail.com [Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Kutepov, I. E., E-mail: iekutepov@gmail.com; Zagniboroda, N. A., E-mail: tssrat@mail.ru; Dobriyan, V., E-mail: Dobriy88@yandex.ru; Krysko, V. A., E-mail: tak@san.ru [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation)
2013-12-15
Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.
Spin dynamics of electron beams in circular accelerators
Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.
Beam Dynamics Studies for a Laser Acceleration Experiment
Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert
2005-01-01
The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...
Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
Akhter, T.; Fedele, R.; Nicola, S. De; Tanjia, F.; Jovanović, D.; Mannan, A.
2016-09-01
The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Self modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
Akhter, T; De Nicola, S; Tanjia, F; Jovanovic, D; Mannan, A
2015-01-01
Self modulated dynamics of a relativistic charged particle beam is reviewed within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Parallel beam dynamics calculations on high performance computers
Faced with a backlog of nuclear waste and weapons plutonium, as well as an ever-increasing public concern about safety and environmental issues associated with conventional nuclear reactors, many countries are studying new, accelerator-driven technologies that hold the promise of providing safe and effective solutions to these problems. Proposed projects include accelerator transmutation of waste (ATW), accelerator-based conversion of plutonium (ABC), accelerator-driven energy production (ADEP), and accelerator production of tritium (APT). Also, next-generation spallation neutron sources based on similar technology will play a major role in materials science and biological science research. The design of accelerators for these projects will require a major advance in numerical modeling capability. For example, beam dynamics simulations with approximately 100 million particles will be needed to ensure that extremely stringent beam loss requirements (less than a nanoampere per meter) can be met. Compared with typical present-day modeling using 10,000 endash 100,000 particles, this represents an increase of 3 endash 4 orders of magnitude. High performance computing (HPC) platforms make it possible to perform such large scale simulations, which require 10 close-quote s of GBytes of memory. They also make it possible to perform smaller simulations in a matter of hours that would require months to run on a single processor workstation. This paper will describe how HPC platforms can be used to perform the numerically intensive beam dynamics simulations required for development of these new accelerator-driven technologies. copyright 1997 American Institute of Physics
Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE
Fraser, M A
2013-01-01
With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.
Beam dynamics simulations and measurements at the Project X Test Facility
Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.
Beam dynamics simulations and measurements at the Project X Test Facility
Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab
2011-03-01
Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.
Electron-beam dynamics for an advanced flash-radiography accelerator
Ekdahl, Carl August Jr. [Los Alamos National Laboratory
2015-06-22
Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.
An electron beam or other charged particle beam tube of the compound fly's eye type having a coarse deflection system is described. The beam tube comprises an evacuated housing together with an electron gun or other charged particle beam producing means disposed at one end of the evacuated housing for producing a beam of electrons or other charged particles. A coarse deflector, a compound micro lens assembly, and a fine deflector are disposed in the housing in the path of the electron or other charged particle beam for first selecting a lenslet and thereafter finely deflecting an electron or other charged particle beam to a desired spot on a target plane. The electron or other charged particle beam tube is designed in a manner such that the electron or other charged particle beam is caused to diverge at a small angle of divergence in advance of passing through the coarse deflector by appropriately locating the virtual origin or point source of the charged particle a small distance in advance of the coarse deflector. In addition, a dynamic focusing correction potential is supplied to the micro lens assembly along with a high voltage energizing potential with the dynamic focusing correction potential being derived from components of both the coarse deflection potentials and the fine deflection potentials
Dynamic Terahertz Beam Steering Based on Graphene Metasurfaces
Liu, Liming; Hattori, Haroldo T
2016-01-01
A full (2$\\pi$) phase modulation is critical for efficient wavefront manipulation. In this article, we propose a metasurface based on graphene long/short-strip resonators which are capable of implementing a dynamic 2$\\pi$ phase modulation by applying different voltages to different graphene resonators. The configuration is found to have high reflection efficiency (minimum 56%) and has a full phase modulation in a wide frequency range. Terahertz (THz) beam steering as large as 120 degrees ($\\pm60^\\circ$) is demonstrated in a broad frequency range (1.2 to 1.9 THz) by changing the Fermi levels of different graphene resonators accordingly. This metasurface can provide a new platform for effectively manipulating THz waves.
Impact of Ion Clearing Electrodes on Beam Dynamics in DAFNE
Zobov, M; Clozza, A; Lollo, V; Milardi, C; Spataro, B; Stella, A; Vaccarezza, C
2007-01-01
Presently clearing electrodes are being considered as a possible cure of e-cloud driven problems in existing and future colliders. 'Invisible' electrodes, made of a thin highly resistive layer pasted on a dielectric plate, have been proposed as one of design solutions for the e-cloud clearing. For the first time such electrodes were successfully used in the electron-positron accumulator (EPA) of LEP. Similar electrodes had been using for a long time for ion clearing purposes in the DAFNE electron ring. Theoretical considerations and experimental measurements at DAFNE have revealed a substantial contribution of the ion clearing electrodes (ICE) to the machine broad-band impedance giving rise to several harmful effects degrading the collider performance. In this paper we discuss the impact of the electrodes on DAFNE beam dynamics, show the results of ICE wake field and impedance calculations and compare them with available experimental data. We also describe the procedure of ICE removal from the wiggler section...
Beam dynamics calculations and particle tracking using massively parallel processors
During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking
Beam dynamics simulations using a parallel version of PARMILA
The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code. (author)
Beam dynamics simulations using a parallel version of PARMILA
The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code
The dynamical dipole radiation in dissipative collisions with exotic beams
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. We will review in detail all the main properties, yield, spectrum, damping and angular distributions, revealing important isospin effects. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. Predictions are also presented for deep-inelastic and fragmentation collisions induced by neutron rich projectiles. The importance of studying violent collisions with radioactive beams at low and Fermi energies is finally stressed. (author)
Beam dynamics in the SLC final focus system
The SLC luminosity is reached by colliding beams focused to about 2 μm transverse sizes. The Final Focus System (FFS) must enable, beyond its basic optical design, the detection and correction of errors accumulated in the system. In this paper, after summarizing the design, we review the sensitivity to such errors and the ability to correct them. The overall tuning strategy involves three phases: single beam spot minimization, steering the beams in collision and luminosity optimization with beam-beam effects
The dynamics of radiation damage by focused ion beams in the ion beam synthesis
The following topics were covered: direct ion implantation, focused ion beams, cobalt silicides (CoSi2), RBS, ion beam synthesis, CoSi2 ion beam synthesis by focused ion beams in Si(111), germanium FIB implantation in Si(111), radiation damage at FIB implantation, models and simulation. (WL)
Beam dynamics studies during commissioning of two undulators in Indus-2
Indus-2, a synchrotron light source facility at RRCAT, Indore is in continuous operation at 2.5 GeV, generating the synchrotron radiation from its bending magnets. For enhancing the intensity of synchrotron radiation, two planar undulators have been installed and successfully commissioned with the Indus-2 electron beam. Various beam dynamical challenges such as beam accumulation, beam energy ramping and storage at 2.5 GeV have been addressed to ensure the smooth commissioning of these devices. Moreover, due to interaction of the stored beam with magnetic field of undulators, various parameters of the electron beam get changed. In this paper, the beam dynamics studies to ensure the smooth commissioning of these devices and its measured effect on beam parameters have been presented. (author)
Electron beam dynamics in the DARHT-II linear induction accelerator
Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrata [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [NSTEC/STL; Williams, John [Los Alamos National Laboratory; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS
2008-01-01
The DARHT-II linear induction accelerator (LIA) accelerates a 2-kA electron beam to more than 17 MeV. The beam pulse has a greater than 1.5-microsecond flattop region over which the electron kinetic energy is constant to within 1%. The beam dynamics are diagnosed with 21 beam-position monitors located throughout the injector, accelerator, and after the accelerator exit, where we also have beam imaging diagnostics. We discuss the tuning of the injector and accelerator, and present data for the resulting beam dynamics. We discuss the tuning procedures and other methods used to minimize beam motion, which is undesirable for its application as a bremsstrahlung source for multi-pulse radiography of exlosively driven hydrodynamic experiments. We also present beam stability measurements, which we relate to previous stability experiments at lower current and energy.
Electron beam dynamics in the DARHT-II linear induction accelerator
The DARHT-II linear induction accelerator (LIA) accelerates a 2-kA electron beam to more than 17 MeV. The beam pulse has a greater than 1.5-microsecond flattop region over which the electron kinetic energy is constant to within 1%. The beam dynamics are diagnosed with 21 beam-position monitors located throughout the injector, accelerator, and after the accelerator exit, where we also have beam imaging diagnostics. We discuss the tuning of the injector and accelerator, and present data for the resulting beam dynamics. We discuss the tuning procedures and other methods used to minimize beam motion, which is undesirable for its application as a bremsstrahlung source for multi-pulse radiography of exlosively driven hydrodynamic experiments. We also present beam stability measurements, which we relate to previous stability experiments at lower current and energy.
Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment
Banerjee, J. R.; Cheung, C. W.; Morishima, R; Perera, M; Njuguna, James A. K.
2007-01-01
In this paper, an accurate dynamic stiffness model for a three-layered sandwich beam of unequal thicknesses is developed and subsequently used to investigate its free vibration characteristics. Each layer of the beam is idealised by the Timoshenko beam theory and the combined system is reduced to a tenth-order system using symbolic computation. An exact dynamic stiffness matrix is then developed by relating amplitudes of harmonically varying loads to those of the responses. ...
Dynamics of relativistic electron beam space charge compensation in a neutral gas
Kurilko, V.I.; Ognivenko, V.V.
1983-06-01
The dynamics of the space charge compensation of a relativistic electron beam with magnetized electrons as a result of ionization collisions of beam electrons and secondary ions with gas atoms has been studied theoretically. The analysis of calculation data shows that the neutral gas ionization by a relativistic electron beam leads to appearance of secondary ions which oscillate in a potential well of the electron beam space charge. It is shown that the density of ions formed is maximal in the beam center and drops to the beam periphery. As a result, the force compensation is possible only in the vicinity of a fixed coordinate which value grows with time.
XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen
2011-01-01
A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending magnet and an extra multi-harmonic buncher. The total length of this segment is about 7 meters. The beam dynamics in this LEBT has been studied using three-dimensional PIC (particle-in-cell) code BEAMPATH. The simulation results show that the continuous beam from the ion source is first well analyzed by a charge-to-mass selection system, and the beam of the selected charge-to-mass ratio is then efficiently pre-bunched by a multi-harmonic buncher and optimally matched into the RFQ (radio frequency quadrupole) for further acceleration. The principles and effects of the solenoid collimation channel are discussed, and it could limit the beam emittance by changing the aperture size.
Low energy ion beam dynamics of NANOGAN ECR ion source
Kumar, Sarvesh; Mandal, A.
2016-04-01
A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.
Optimal control methods for vertical and horizontal beam dynamics
An application of the Macro Fiber Composite (MFC) actuators for damping of a composite beam is presented in this paper. The effectiveness of vibration reduction by a selected control method is tested for vertical and horizontal position of the beam. The original model has been studied numerically by using Galerkin's discretisation method. The numerical results for the vertical and horizontal beams are compared.
Beam dynamics design and electromagnetic analysis of 3 MeV RFQ for TAC Proton Linac
A Caliskan; HF Kisoglu; M Yilmaz
2015-01-01
A beam dynamics design of 352.2 MHz radio-frequency quadrupole (RFQ) of Turkish Accelerator Cen-ter (TAC) project which accelerates continuous wave (CW) proton beam with 30 mA current from 50 keV to 3 MeV kinetic energy has been performed in this study. Also, it includes error analysis of the RFQ, in which some fluctuations have been introduced to input beam parameters to see how the output beam parameters are affected, two-dimensional (2-D) and three-dimensional (3-D) electromagnetic structural design of the RFQ to obtain optimum cavity paramaters that agree with the ones of the beam dynamics. The beam dynamics and error analysis of the RFQ have been done by using LIDOS.RFQ. Electromagnetic design parameters have been obtained by using SUPERFISH for 2-D cavity geometry and CST Microwave Studio for 3-D cavity geometry.
De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio
1998-01-01
A recent proposal (see quant-ph/9803068) to simulate semiclassical corrections to classical dynamics by suitable classical stochastic fluctuations is applied to the specific instance of charged beam dynamics in particle accelerators. The resulting picture is that the collective beam dynamics, at the leading semiclassical order in Planck constant can be described by a particular diffusion process, the Nelson process, which is time-reversal invariant. Its diffusion coefficient $\\sqrt{N}\\lambda_...
Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation
Wang, Qing-Tao; Tian, Qiang; Hu, Hai-Yan
2015-12-01
Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation (ANCF). The internal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation. A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient contact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the proposed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.
Dynamic Calculation Method of Beam System Under Low Velocity Impact
LI Wen-pei; WANG De-rong; SONG Chun-ming; WANG Ming-yang
2008-01-01
The beating beams and the supporting beams under low velocity impact may be in four different strain stages of deformation depending on the impact intensity and beam structure strength. Based on the different judging conditions of deformation stages, the corresponding calculation models are proposed, the calculation formulae for the determination of the impact force and the beam's lateral displacement are obtained. Calculation shows that the beam's total deflection is small when the flexibility of the supporting component is high and the effect of diminishing deflection disappears almost when the stiffness of the supporting component is high.
Beam Dynamics Measurements for the SLAC Laser Acceleration Experiment
The NLC Test Accelerator (NLCTA) was built to address beam dynamics issues for the Next Linear Collider and beyond. An S-Band RF gun, diagnostics and low energy spectrometer (LES) at 6 MeV together with a large-angle extraction line at 60 MeV have now been built and commissioned for the laser acceleration experiment, E163. Following a four quad matching section after the NLCTA chicane, the extraction section is followed by another matching section, final focus and buncher. The laser-electron interaction point (IP) is followed by a broad range, high resolving power spectrometer (HES) for electron bunch analysis. Optical symmetries in the design of the 25.5 degree extraction line provide 1:1 phase space transfer without sextupoles for a large, 6D phase space volume and range of input conditions. Spot sizes down to a few microns at the IP (HES object) allow testing microscale structures with high resolving power at the HES image. Tolerances, tuning sensitivities, diagnostics and the latest commissioning results are discussed and compared to design expectations
Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions
R. Naz
2015-01-01
Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.
Beam Dynamics Studies for a Laser Acceleration Experiment
The NLC Test Accelerator (NLCTA) at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun is being installed together with a large-angle extraction line at 60 MeV followed by a matching section, buncher and final focus for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. Another spectrometer at 6 MeV will be used for analysis of bunch charges up to 1 nC. Emittance compensating solenoids and the low energy spectrometer (LES) will be used to tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5o extraction line provide 1:1 phase space transfer without use of sextupoles for a large, 6D phase space volume and range of input conditions. Design techniques, tolerances, tuning sensitivities and orthogonal knobs are discussed
Beam dynamics at the main LEBT of RAON accelerator
Jin, Hyunchang
2015-01-01
The high-intensity rare-isotope accelerator (RAON) of the Rare Isotope Science Project (RISP) in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams. The ion beams, which are generated by Electron Cyclotron Resonance Ion Source (ECR-IS), will be transported through the main Low Energy Beam Transport (LEBT) system to the Radio Frequency Quadrupole (RFQ). While passing the beams through LEBT, we should keep the transverse beam size and longitudinal emittance small. Furthermore, the matching of required twiss parameter at the RFQ entrance will be performed by using electro-static quadrupoles at the main LEBT matching section which is from the multi-harmonic buncher (MHB) to the entrance of RFQ. We will briefly review the new aspects of main LEBT lattice and the beam matching at the main LEBT matching section will be presented. In addition, the effects of various errors on the beam orbit and the correction of distorted orbit will be discussed.
Dynamic response of multispan beam to a transverse impact
In nuclear power systems, beams on many supports both inside and outside the containment are sometimes postulated to be struck by moving masses and missiles. In this paper, the general case of an elastic impact between a continuous beam on many supports and a moving mass striking the beam transversely at any point has been analyzed by employing the operational methods of Heaviside. Expressions for the deflection of the beam at any point along the beam including the struck point, the impact force and the duration of impact have been theoretically derived. The results are presented in convenient and easily computable form. Experiments have been performed on a three-span beam using a photographic method of measurement. The elegance of this method over other methods is that the photographs obtained by a simple camera, improvised for the purpose, clearly records the motion of any given point of the beam and the impacting mass at successive stages during and after impact. The results of the experiment have been compared with the theory. The agreement between the theory and the experiment is excellent. For a beam of any given number of spans, struck at any point, the computational procedure shown yields rapid and reliable results. The deduction are applicable for any beam with other support conditions at the ends and intermediate points. The formulations presented are expected to provide the basis for development of a rapid and reliable method for analysis and design of beams of any number of spans to withstand impact loading
De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio
1999-01-01
A recent proposal (see quant-ph/9803068) to simulate semiclassical corrections to classical dynamics by suitable classical stochastic fluctuations is applied to the specific instance of charged beam dynamics in particle accelerators. The resulting picture is that the collective beam dynamics, at the leading semiclassical order in Planck constant can be described by a particular diffusion process, the Nelson process, which is time-reversal invariant. Its diffusion coefficient $\\sqrt{N}\\lambda_{c}$ represents a semiclassical unit of emittance (here $N$ is the number of particles in the beam, and $\\lambda_{c}$ is the Compton wavelength). The stochastic dynamics of the Nelson type can be easily recast in the form of a Schroedinger equation, with the semiclassical unit of emittance replacing Planck constant. Therefore we provide a physical foundation to the several quantum-like models of beam dynamics proposed in recent years. We also briefly touch upon applications of the Nelson and Schroedinger formalisms to inc...
Stochastic collective dynamics of charged-particle beams in the stability regime.
Petroni, N C; De Martino, S; De Siena, S; Illuminati, F
2001-01-01
We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time-reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by lambda(c)sqrt[N], where N is the number of particles in the beam and lambda(c) the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schrödinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so-called "quantum-like approaches" to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam-field interaction, both the focusing and the transverse oscillations of the beam, either together or independently. PMID:11304370
Fundamentals of particle beam dynamics and phase space
This report discusses the following topics on synchrotron accelerators: Transverse motion---betatron oscillations; machine lattice; representation of a particle beam; and longitudinal motion---synchrotron oscillations
Transverse and longitudinal beam dynamics studies at the Fermilab photoinjector
The Fermilab photoinjector produces electron bunches of 1-12 nC charge with an energy of 16-18 MeV. Detailed measurements and optimization of the transverse emittance have been carried out for a number of beam line optics conditions, and at a number of beam line locations. The length of the bunches has also been measured, first for an uncompressed beam (as a function of the charge) and then for a compressed beam of 8 nC charge (as a function of the 9-cell cavity phase). These measurements are presented and compared with the simulation codes HOMDYN and ASTRA
Quasi-static and dynamical bending of a cantilever poroelastic beam
YANG Yi; LI Li; YANG Xiao
2009-01-01
Based on the theory of porous media, the quasi-static and dynamical bending of a cantilever poroelastic beam subjected to a step load at its free end is investigated, and the influences of its permeability on bending deformation is examined.The initial boundary value problems for dynamical and quasi-static responses are solved with the Laplace transform technique,and the deflections, the bending moments of the solid skeleton and the equivalent couples of the pore fluid pressure are shown in figures. It is shown that the dynamical and quasi-static behavior of the saturated poroelastic beam depends closely on the permeability conditions at the beam ends. Under the different permeability conditions, the deflections of the beam may oscillate or not. The Mandel-Cryer effect also exists in liquid-saturated poroelastic beams.
Beam dynamics studies to develop LHC luminosity model
Campogiani, Giovanna; Papaphilippou, Ioannis
The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...
Experimental validation of flexible multibody dynamics beam formulations
Bauchau, Olivier A., E-mail: olivier.bauchau@sjtu.edu.cn; Han, Shilei [University of Michigan-Shanghai Jiao Tong University Joint Institute (China); Mikkola, Aki; Matikainen, Marko K. [Lappeenranta University of Technology, Department of Mechanical Engineering (Finland); Gruber, Peter [Austrian Center of Competence in Mechatronics GmbH (Austria)
2015-08-15
In this paper, the accuracies of the geometrically exact beam and absolute nodal coordinate formulations are studied by comparing their predictions against an experimental data set referred to as the “Princeton beam experiment.” The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics is described using two nodes. The second is based on a recently proposed approach featuring three nodes. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similar to those of linear beam theory. This study suggests that a careful and thorough evaluation of beam elements must be carried out to assess their ability to deal with the three-dimensional deformations typically found in flexible multibody systems.
Experimental validation of flexible multibody dynamics beam formulations
In this paper, the accuracies of the geometrically exact beam and absolute nodal coordinate formulations are studied by comparing their predictions against an experimental data set referred to as the “Princeton beam experiment.” The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics is described using two nodes. The second is based on a recently proposed approach featuring three nodes. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similar to those of linear beam theory. This study suggests that a careful and thorough evaluation of beam elements must be carried out to assess their ability to deal with the three-dimensional deformations typically found in flexible multibody systems
Beam dynamics in a long-pulse linear induction accelerator
Ekdahl, Carl [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mc Cuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rose, Chris R [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Scarpetti, Raymond [LLNL; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS
2010-01-01
The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.
Beam dynamics in a long-pulse linear induction accelerator
The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.
Investigation of the transverse beam dynamics in the thermal wave model with a functional method
Jang, Ji-Ho; Cho, Yong-sub; Kwon, Hyeok-jung
2006-01-01
We investigated the transverse beam dynamics in a thermal wave model by using a functional method. It can describe the beam optical elements separately with a kernel for a component. The method can be applied to general quadrupole magnets beyond a thin lens approximation as well as drift spaces. We found that the model can successfully describe the PARMILA simulation result through an FODO lattice structure for the Gaussian input beam without space charge effects.
We investigate a linear accelerator system capable of generating short electron beams and femtosecond hard X-ray pulses. We show a detailed for a two-stage bunch compressor to generate the short electron beams in the linear accelerator. The bunch compressor system consists of two chicanes with a short system length that can compress an electron bunch of 0.6 nC and beam energy of 162 MeV, from 3 to 0.5 ps rms. One important design issue in the bunch compressor is to make as small growths of the emittance and energy spread as possible. The normalized horizontal emittance of 3 mm mrad is increased by approximately 10% due to coherent synchrotron radiation in the designed bunch compressor. Lattice distortions due to machine errors associate with quadrupole magnets, bending magnets and beam position monitors in the linear accelerator were investigated. It is shown that the lattice distortions due to the machine errors can be easily compensated by performing both orbit correction and dispersion correction in the linear accelerator. We have performed tolerance studies due to the various jitter sources in the linear accelerator to examine their sensitivities on the beam quality. From these results, it is shown that the linear accelerator system provides sufficient tolerances to maintain stable electron beams. We also investigated the generation of femtosecond hard X-ray pulses that may be provided by the interactions at 90deg of the short electron beams in the linear accelerator with a laser system. It is shown that 3.4x106 photons within 10% bandwidth at 0.04 A wavelength in about 350 fs rms pulse may be provided using the linear accelerator system. We presented studies on beam dynamics in the linear accelerator system that may provide the short beams and intense X-ray pulses. (author)
Chaotic dynamics of dilute thermal atom clouds on stationary optical Bessel beams
We characterize the semiclassical dynamics of dilute thermal atom clouds located in three-dimensional optical lattices generated by stationary optical Bessel beams. The dynamics of the cold atoms is explored in the quasi-Hamiltonian regime that arises using laser beams with far-off resonance detuning. Although the transverse structure of Bessel beams exhibits a complex topological structure, it is found that the longitudinal motion along the main propagation axis of the beam is the detonator of a high sensitivity of the atoms' motion to the initial conditions. This effect would not be properly described by bidimensional models. We show that an experimental implementation can be highly simplified by an analysis of the behaviour of the dynamical system under scale transformations. Experimentally feasible signatures of the chaotic dynamics of the atom clouds are also identified. (paper)
Dynamics of ion–molecule reactions from beam experiments: A historical survey
Herman, Zdeněk; Futrell, J. H.
2015-01-01
Roč. 377, FEB 2015 (2015), s. 84-92. ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : Ion–molecule reactions * Dynamics * Beam scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.972, year: 2014
Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model
Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People' s Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)
2012-01-15
Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.
Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model
Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.
Beam Dynamics Observations of the 2015 High Intensity Scrubbing Runs at the Cern Sps
Bartosik, Hannes; Li, Kevin; Mether, Lotta; Romano, Annalisa; Rumolo, Giovanni; Schenk, Michael
2016-01-01
Beam quality degradation caused by e-cloud effects has been identified as one of the main performance limitations for high intensity LHC beams with 25 ns bunch spacing in the SPS. In view of the beam parameters targeted with the LHC injectors upgrade (LIU) project, about two weeks of SPS machine time in 2015 were devoted to dedicated scrubbing runs with high intensity LHC 25 ns and dedicated 'doublet' beams in order to study the achievable reduction of e-cloud effects and quantify the consequent beam performance improvements. This paper describes the main observations concerning the coherent instabilities and beam dynamics limitations encountered as well as a detailed characterisation of the performance reach with the highest beam intensity presently available from the pre-injectors.
Start-to-end simulations for beam dynamics in the RISP heavy-ion accelerator
Kim, Eun-San, E-mail: eskim1@knu.ac.kr [Department of Physics, Kyungpook National University, Deagu (Korea, Republic of); Bahng, JungBae [Department of Physics, Kyungpook National University, Deagu (Korea, Republic of); Hwang, Ji-Gwang [KIRAMS, Seoul (Korea, Republic of); Choi, Bong-Hyuk; Kim, Hye-Jin; Jeon, Dong-O [Institute for Basic Science, Daejeon (Korea, Republic of)
2015-09-11
RAON has been designed as a rare isotope accelerator facility for the Rare Isotope Science Project (RISP). The main accelerator for the in-flight system accelerates uranium and proton beams to 200 MeV/u and 660 MeV, respectively, with a beam power of 400 kW. The front-end system consists of two 28 GHz electron cyclotron resonance ion sources (10 keV/u), a low-energy beam transport (LEBT) line with two 90° bends, a multi-harmonic buncher with three different rf frequencies, a radio-frequency quadrupole (RFQ), and a medium-energy beam transport line (MEBT) with three rebunchers and eight quadrupoles. A driver linac system consisting of Linac-1 and Linac-2 has been designed to optimize the beam and accelerator parameters so as to meet the required design goals. A charge stripper section is located between Linac-1 and Linac-2. To optimize these designs, we performed start-to-end simulations with the beams from the LEBT to Linac-2 using 1 million macroparticles. We present the resulting beam dynamics to evaluate the performance of the accelerator. Our simulation results predict that the transmission rate of the uranium beam is 85.8% from the LEBT to Linac-2. The designed facility is expected to achieve the required beam loss condition of less than 1 W/m. The RAON driver linac lattice design was developed and an overview of the beam dynamics is presented.
Beam dynamics studies in the driver LINAC pre-stripper section of the RIA facility
E S Lessner; P N Ostroumov
2002-12-01
The RIA facility driver LINAC consists of about 400 superconducting (SC) independently phased rf cavities. The LINAC is designed to accelerate simultaneously several charge-state beams to generate as much as 400 kW of uranium beam power. The LINAC beam dynamics is most sensitive to the focusing and accelerating structure parameters of the pre-stripper section, where the uranium beam is accelerated from 0.17 keV/u to 9.4 MeV/u. This section is designed to accept and accelerate two charge states (28 and 29) of uranium beam from an ECR ion source. The pre-stripper section must be designed to minimize the beam emittance distortion of this two-charge-state beam. In particular, the inter-cryostat spaces must be minimized and beam parameters near transitions of the accelerating and focusing lattices must be matched carefully. Several sources of possible effective emittance growth are considered in the design of the pre-stripper section and a tolerance budget is established. Numerical beam dynamics studies include realistic electric and magnetic three-dimensional ﬁeld distributions in the SC rf cavities and SC solenoids. Error effects in the longitudinal beam parameters are studied.
Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion
The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted
Crossed molecular beam studies of atmospheric chemical reaction dynamics
Zhang, Jingsong
1993-04-01
The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.
Beam dynamics requirement for proposed booster extraction septum magnet
To improve the performance of Indus-2 storage ring, it is planned to operate the booster injector at beam energy of 700 MeV, which is presently being operated at 550 MeV. At higher beam energy the beam size will increase and quality of extracted beam from booster will be deteriorated because of the poor magnetic field homogeneity of existing septum magnet. As a consequence it may reduce the injection efficiency of Indus-2. In this perspective, magnetic field homogeneity and good field region of the extraction septum magnet plays a vital role. Thus it is required to upgrade the technical specification of the booster extraction septum magnet. The same has been evolved and its results are presented. (author)
Beam optics and dynamics of the Saclay heavy ion booster
The purpose of this paper is to give to users: experimental physicists, engineers and technicians involved in the machine operation a good understanding of the beam properties of the helical cavities used in the Saclay superconducting heavy ion linac
Spiral design and beam dynamics for a variable energy cyclotron
Beam-orbit studies were performed for the conversion of the SREL synchrocyclotron magnet for use as a room temperature, multiparticle, isochronous cyclotron. Based on model magnet measurements of field profiles for 8 to 230K gauss hill fields, a four sector spiral pole tip design has been realized which allows all isotope species of heavy ion beams to be accelerated to required final energies. The total spiral angle of 380 allows injection of the beams from the MP tandem into the cyclotron through a valley. The two valey RF system of 140 kV peak accelerates beams on harmonic numbers 2, 3, 4, 6 and 10 at 14 to 21 MHz. Computer calculations indicated acceptable ν/sub z/, ν/sub r/ and phase space beam characteristics and passing of resonances for typical beams considered: 16O at 8 and 150 MeV/amu, 60Ni at 100 MeV/amu and 238U at 2.5 and 16 MeV/amu. Single turn extraction is achieved with electrostatic deflection
On the basis of the exact nonlinear theory relativistic TWT and BWO on irregular hollow waveguides with cathode filters-modulators with the account as propagating, and beyond cut-off waves, with the account of losses in walls of a waveguide and inhomogeneity directing an electronic beam magnetostatic fields finds out influence of dynamic stratification influence on efficiency of the generator. Possibility of almost fill compensation the electronic beam dynamic stratification influence on efficiency by optimization of an electronic beam arrangement in inhomogeneous high frequency and magnetic fields and characteristics of the irregular corrugated waveguide is shown. (author)
Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source
Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.
2013-05-20
We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.
Finite element formulation for dynamics of planar flexible multi-beam system
In some previous geometric nonlinear finite element formulations, due to the use of axial displacement, the contribution of all the elements lying between the reference node of zero axial displacement and the element to the foreshortening effect should be taken into account. In this paper, a finite element formulation is proposed based on geometric nonlinear elastic theory and finite element technique. The coupling deformation terms of an arbitrary point only relate to the nodal coordinates of the element at which the point is located. Based on Hamilton principle, dynamic equations of elastic beams undergoing large overall motions are derived. To investigate the effect of coupling deformation terms on system dynamic characters and reduce the dynamic equations, a complete dynamic model and three reduced models of hub-beam are prospected. When the Cartesian deformation coordinates are adopted, the results indicate that the terms related to the coupling deformation in the inertia forces of dynamic equations have small effect on system dynamic behavior and may be neglected, whereas the terms related to coupling deformation in the elastic forces are important for system dynamic behavior and should be considered in dynamic equation. Numerical examples of the rotating beam and flexible beam system are carried out to demonstrate the accuracy and validity of this dynamic model. Furthermore, it is shown that a small number of finite elements are needed to obtain a stable solution using the present coupling finite element formulation
Working group II report: Production and dynamics of high brightness beams
This paper summarizes the main discussions of the Working Group on the Production and Dynamics of High Brightness Beams. The following topics are covered in this paper. Proposed new electron sources and needed research on existing sources is covered. The discussions on issues relating to the description of phase space on non-thermalized electron beam distributions and the theoretical modeling on non-thermalized electron beam distributions is presented. Finally, the present status of the theoretical modeling of beam transport in bends is given
Analysis of Static and Dynamic Behavior of T-shape Beam Reinforced by External Prestressing Tendon
Dinghai Li
2013-01-01
Full Text Available External prestressing has become a primary method for strengthening existing concrete beam and has been increasingly used in the construction of newly erected ones, particularly railroad bridges in recent years. In order to evaluate the effect of this method, the static and dynamic behavior of a T-frame beam reinforced by external prestressed strengthened concrete beam was analyzed by 3D finite element method, and the field test study was also made. The study was carried out to further investigate the simply supported reinforced prestressed concrete beam strengthened by external prestressing through theory analysis and experiment.
Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider
Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit, also degrade the collimation cleaning efficiency, and so on. In this paper, we explore the principal feasibility of LHC crab cavities from a beam dynamics point of view. The implications of the crab cavities for the LHC optics, analytical and numerical luminosity studies, dynamic aperture, aperture and beta beating, emittance growth, beam-beam tune shift, long-range collisions, and synchrobetatron resonances, crab dispersion, and collimation efficiency will be discussed.
This paper investigates the nonlinear dynamic response of an atomic force microscope (AFM) cantilever beam tip during the nanolithography of a copper (Cu) surface using a high-depth feed. The dynamic motion of the tip is modeled using a combined approach based on Newton's law and empirical observations. The cutting force is determined from experimental observations of the piling height on the Cu surface and the rotation angle of the cantilever beam tip. It is found that the piling height increases linearly with the cantilever beam carrier velocity. Furthermore, the cantilever beam tip is found to execute a saw tooth motion. Both this motion and the shear cutting force are nonlinear. The elastic modulus in the y direction is variable. Finally, the velocity of the cantilever beam tip as it traverses the specimen surface has a discrete characteristic rather than a smooth, continuous profile
Beam dynamics and commissioning of low and medium energy H- beam at Linac4
Satri, Masoomeh Yarmohammadi; Lamehi-Rachti , Mohammad
The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...
Beam dynamics study of RFQ for CADS with a 3D space-charge-effect
The ADS (accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences. The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles (RFQ) operating in CW mode. To test the feasibility of this physical design, a new Fortran code for RFQ beam dynamics study, which is space charge dominated, was developed. This program is based on Particle-In-Cell (PIC) technique in the time domain. Using the RFQ structure designed for the CADS project, the beam dynamics behavior is performed. The well-known simulation code TRACK is used for benchmarks. The results given by these two codes show good agreements. Numerical techniques as well as the results of beam dynamics studies are presented in this paper. (authors)
DTL cavity design and beam dynamics for a TAC linear proton accelerator
Caliskan, A.; Yılmaz, M.
2012-02-01
A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.
DTL cavity design and beam dynamics for a TAC linear proton accelerator
A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted. (authors)
Beam dynamics study of RFQ for CADS with a 3D space-charge-effect
Li, Chao; Zhang, Zhi-Lei; Qi, Xin; Xu, Xian-Bo; He, Yuan; Yang, Lei
2014-03-01
The ADS (accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences. The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles (RFQ) operating in CW mode. To test the feasibility of this physical design, a new Fortran code for RFQ beam dynamics study, which is space charge dominated, was developed. This program is based on Particle-In-Cell (PIC) technique in the time domain. Using the RFQ structure designed for the CADS project, the beam dynamics behavior is performed. The well-known simulation code TRACK is used for benchmarks. The results given by these two codes show good agreements. Numerical techniques as well as the results of beam dynamics studies are presented in this paper.
Dynamics and transport of laser-accelerated particle beams
The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects
Dynamics and transport of laser-accelerated particle beams
Becker, Stefan
2010-04-19
The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects
A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac
A new linear accelerator system, called the SSC-Linac injector, is being designed at HIRFL (the heavy ion research facility of Lanzhou). As part of the SSC-Linac, the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles, a re-buncher and a diagnose box. The total length of this segment is about 1.75 m. The beam dynamics simulation in MEBT has been studied using the TRACK 3D particle- in-cell code, and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces, and that most of the particles can be captured by the final sector focusing cyclotron for further acceleration. The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail, and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design. (authors)
Gas dynamics considerations in a non-invasive profile monitor for charged particle beams
Tzoganis, Vasilis; Welsch, Carsten P
2014-01-01
A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.
Propagation dynamics of a light beam in fractional Schr\\"odinger equation
Zhang, Yiqi; Belić, Milivoj R; Zhong, Weiping; Zhang, Yanpeng; Xiao, Min
2015-01-01
Dynamics of wavepackets in fractional Schrodinger equation is still an open problem. The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator. We investigate analytically and numerically the propagation of optical beams in fractional Schr\\"odinger equation with a harmonic potential. We find that the propagation of one- and two-dimensional (1D, 2D) input chirped Gaussian beams is not harmonic. In 1D, the beam propagates along a zigzag trajectory in the real space, which corresponds to a modulated anharmonic oscillation in the momentum space. In 2D, the input Gaussian beam evolves into a breathing ring structure in both real and momentum spaces, which forms a filamented funnel-like aperiodic structure. The beams remain localized in propagation, but with increasing distance display increasingly irregular behavior, unless both the linear chirp and the transverse displacement of the incident beam are zero.
Beam dynamics and optics studies for the LHC injectors upgrade
Bartosik, Hannes; Benedikt, Michael
The Large Hadron Collider (LHC) upgrade, which aims at reaching signiﬁcantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the ﬁrst part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...
Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals
Lee, Y. T.
1973-09-01
The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.
Dynamics of ion beam charge neutralization by ferroelectric plasma sources
Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.
2016-04-01
Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ˜5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.
Mastorides, T; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC; Tytelman, D.; /Dimtel, Redwood City
2008-07-07
A dynamics simulation model is used to estimate limits of performance of the Positron-Electron Project (PEP-II). The simulation captures the dynamics and technical limitations of the Low Level Radio Frequency (LLRF) system, the high-power RF components and the low-order mode coupled bunch longitudinal beam dynamics. Simulation results showing the effect of non-linearities on the LLRF loops, and studies of the effectiveness of technical component upgrades are reported, as well as a comparison of these results with PEP-II measurements. These studies have led to the estimation of limits and determining factors in the maximum stored current that the Low Energy Ring/High Energy Ring (LER/HER) can achieve, based on system stability for different RF station configurations and upgrades. In particular, the feasibility of the PEP-II plans to achieve the final goal in luminosity, which required an increase of the beam currents to 4A for LER and 2.2A for HER, is studied. These currents are challenging in part because they would push the longitudinal low-order beam mode stability to the limit, and the klystron forward power past a level of satisfactory margin. An acceptable margin is defined in this paper, which in turn determines the corresponding klystron forward power limitation.
Egorov, E. N.; Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.
2013-11-01
Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.
Egorov, E. N., E-mail: evgeniy.n.egorov@gmail.com; Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E. [Chernyshevsky Saratov State University (Russian Federation)
2013-11-15
Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.
Pseudo Slice Energy Spread in Dynamics of Electron Beams Moving through Magnetic Bends
Li, Rui
2014-01-01
In the previous canonical formulation of beam dynamics for an electron bunch moving ultrarelativistically through magnetic bending systems, we have shown that the transverse dynamics equation for a particle in the bunch has a driving term which behaves as the centrifugal force caused by the particle's initial potential energy due to collective particle interactions within the bunch. As a result, the initial potential energy at the entrance of a bending system, which we call pseudo (kinetic) energy, is indistinguishable from the usual kinetic energy offset from the design energy in its perturbation to particle optics through dispersion and momentum compaction. In this paper, in identifying this centrifugal force on particles as the remnant of the CSR cancellation effect in transverse particle dynamics, we show how the dynamics equation in terms of the canonical momentum for beam motion on a curved orbit is related to the Panofsky-Wenzel theorem for wakefields for beam motion on a straight path. It is shown tha...
Space charge dominated beam dynamics in 1 MeV compact proton cyclotron
Compact high current cyclotrons to accelerate proton beams are still considered as favorable source for many applications such as isotope production, injector for high intensity cyclotron for ADSS etc. Data shows that existing commercial compact machines are limited to beam current below 1 m.A, With proper design and improved understanding of how to control the high intensity beam at low energy, it is possible to increase this current and accelerate beam of several mA's with minimum losses. The development of 1 MeV, 5 mA compact proton cyclotron at VECC is an R and D effort with the main aim to study and settle various technological and beam dynamics related problems during injection and acceleration of high intensity beams. The evolution of space charge dominated beam in a cyclotron is very complex due to the coupling between the transverse and longitudinal motions. For optimum performance, the input phase ellipses of the injected beam must be matched to the acceptance of the central region. The envelope mismatch is the major cause of emittance growth and halo formation. Thus it is important to study the evolution of space charge dominated beam during transport and acceleration in the cyclotron focusing channel to avoid beam loss
Dynamic Response of Inextensible Beams by Improved Energy Balance Method
Sfahani, M. G.; Barari, Amin; Omidvar, M.;
2011-01-01
An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam with a...
Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron
AUTHOR|(CDS)2082016; Benedikt, Michael
With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...
Electron beam dynamics and design of electron beam ion-charge breeding source
There is a requirement to develop an electron beam ion-charge breeding source (EBIBS) to produce a highly charged and highly pure ion beam of common elements as well as rare isotopes. The EBIBS consists of an electron gun chamber, the main solenoid and ionization chamber and an electron collector chamber for attaining highly charged and pure ion beam of species. Some studies have been performed to reach appropriate design of the proposed source, The report explains certain design choices and constraints involved in developing the EBIBS. Trajectory simulation of electron beams in >5A range current has been done to determine the configuration of electrodes and magnet coils appropriate to obtain high current density electron pencil beam at the ionization region in high magnetic field of the superconducting solenoid. The electron beam starts from the high pervious electron gun and dumped on the water cooled electron collector. The background pressure in the trap region should be low enough that one does not produce a significant number of ions from the background gas. An impurity value of the order of ∼5% can be tolerated, so an acceptable range of vacuum in EBIBS, 10-10 - 10-12 mbar, is assumed. Physics design of high perveance electron gun, superconducting solenoid ionization region and the electron collector has been done and is under further study to achieve superior design of the source, The mechanical design of various components and the source bench has been started also. All these developments will be presented in the conference. (author)
Beam-dynamics driven design of the LHeC energy-recovery linac
Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex
2015-12-01
The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.
Effect of skin-core debonding on the dynamic behaviour of GFRP composite beams
Jayatilake, Indunil; Karunasena, Karu; Lokuge, Weena
2013-08-01
Composites are materials made by combining two individual materials where one material forms the matrix while the other provides the reinforcement. A novel composite sandwich made up of glass fibre reinforced polymer (GFRP) face sheets and modified phenolic core has been developed recently. Although perfect bond between the skin and the core is a common assumption, an important issue that needs to be considered in using a composite beam is the development of debonding between the skin and the core. Debonding may arise during fabrication or under service conditions, which causes changes to the dynamic behaviour in addition to the strength degradation. This paper focuses on the effect of debonding on dynamic characteristics of sandwich beams of different debonding sizes and end conditions. Strand7 software is used for 3D finite element simulation. Free vibration behaviour reported in the literature for composite beams will first be used to compare the analytical results with the fully bonded and debonded beams. Study is extended to depict the effect of debonding on free vibration behaviour of novel composite beams. It is revealed that the decrease in natural frequency with the increase in the extent of debonding is more dependent on the width of debonding across the beam than the length along the beam. It is also perceived that full width debonding leads to increased participation of twisting modes in comparison to half-width debonding in clamped-clamped end condition. End conditions of the beam are a governing factor dictating which modes are more affected.
Static and dynamic testing of a damaged post tensioned concrete beam
Limongelli M.P.
2015-01-01
Full Text Available In this paper are reported the results of an experimental campaign carried out on a post tensioned concrete beam with the aim of investigating the possibility to detect early warning signs of deterioration basing on static and/or dynamic tests. The beam was tested in several configurations aimed to reproduce several different phases of the ‘life’ of the beam: the original undamaged state, increasing loss of tension in the post tensioning cables, a strengthening intervention carried out by means of a second tension cable, formation of further cracks on the strengthened beam. Responses of the beam were measured by an extensive set of instruments consisting of accelerometers, inclinometers, displacement transducers, strain gauges and optical fibres. The paper discusses the tests program and the dynamic characterization of the beam in the different damage scenarios. The modal properties of the beam in the different phases were recovered basing on the responses recorded on the beam during sine-sweep and impact hammer tests. The variation of the first modal frequency was studied to investigate the sensitivity of this parameter to both the cracking of the concrete section and the tension in the cables and also to compare results given by different types of experimental tests.
Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method
Lee, Usik; Kim, Daehwan; Park, Ilwook
2013-03-01
The health of thin laminated composite beams is often monitored using the ultrasonic guided waves excited by wafer-type piezoelectric transducers (PZTs). Thus, for the smart composite beams which consist of a laminated composite base beam and PZT layers, it is very important to develop a very reliable mathematical model and to use a very accurate computational method to predict accurate dynamic characteristics at very high ultrasonic frequency. In this paper, the axial-bending-shear-lateral contraction coupled differential equations of motion are derived first by the Hamilton's principle with Lagrange multipliers. The smart composite beam is represented by a Timoshenko beam model by adopting the first-order shear deformation theory (FSDT) for the laminated composite base beam. The axial deformation of smart composite beam is improved by taking into account the effects of lateral contraction by adopting the concept of Mindlin-Herrmann rod theory. The spectral element model is then formulated by the variation approach from coupled differential equations of motion transformed into the frequency domain via the discrete Fourier transform. The high accuracy of the present spectral element model is verified by comparing with other solution methods: the finite element model developed in this paper and the commercial FEA package ANSYS. Finally the dynamics and wave characteristics of some example smart composite beams are investigated through the numerical studies.
Beam dynamics simulation studies of a 100 MeV RF electron linac
We have studied the beam dynamics of a 100 MeV rf electron linear accelerator for neutron generation purposes at APPD, BARC, Mumbai. The linac is designed to provide optimal beams to generate 1012-1014 n/sec for measurement of neutron cross-section of (n, gamma), (n, xn) and (n, f) reactions. An optium choice of beam parameters is performed to reduce the transverse emittance in order to limit the radioactivity and the cost of the linac itself and increase the transmission efficiency. The tracking simulations in the linac include the self field effects in the injector section. The bunch compressor is designed to reduce the bunch length with a careful choice of beam parameters and accelerator parameters such that the transverse emittance is not significantly increased. The linac consists of electron gun followed by an accelerating section. The accelerating section consists of 1.3 GHz TESLA cavities of length 1 m. Beam focusing is ensured by solenoids, quadrupoles. The bunch compressor is a 4-dipole chicane magnet to compress the bunch. This beam dynamics study with ASTRA and ELLEGANT explores the optimized beam parameters and predict the beam quality for the linac operation. (author)
Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions
Highlights: ► Effects of wider range of loading rates on dynamic shear behavior of RC deep beams. ► Experimental investigation of RC deep beam with and without shear reinforcements. ► Verification of experimental results with truss model and FE simulation results. ► Empirical equations are proposed to predict the dynamic increase factor of maximum resistance. -- Abstract: Research on reinforced concrete (RC) deep beams has seen considerable headway over the past three decades; however, information on the dynamic shear strength and behavior of RC deep beams under varying rates of loads remains limited. This paper describes the experimental results of 24 RC deep beams with and without shear reinforcements under varying rates of concentrated loading. Results obtained serve as useful data on shear resistance, failure patterns and strain rates corresponding to varying loading rates. An analytical truss model approach proves its efficacy in predicting the dynamic shear resistance under varying loading rates. Furthermore, three-dimensional nonlinear finite element (FE) model is described and the simulation results are verified with the experimental results. A parametric study is then conducted to investigate the influence of longitudinal reinforcement ratio, transverse reinforcement ratio and shear span to effective depth ratio on shear behavior. Subsequently, two empirical equations were proposed by integrating the various parameters to assess the dynamic increase factor (DIF) of maximum resistance under varying rates of concentrated loading
Beam dynamics studies on the stored proton beam in the SPS
Boussard, Daniel; Gareyte, Jacques; Graziani, C; Linnecar, Trevor Paul R; Scandale, Walter; Thomas, D; CERN. Geneva
1980-01-01
Recent improvements to the low-level radiofrequency system have resulted in a considerable increase in bunched beam lifetime. Single proton bunches have been stored for up to 18 hours. In the course of these studies, new instrumentation has been developed and other experiments relevant to pp operation have been performed. (9 refs).
Beam dynamics simulation of the EURISOL radioactive beam superconducting LINAC option
The EURISOL project is aimed at designing a preliminary setup of the next-generation European Rare Isotope Separation On-Line facility. For most of the scientific applications a post-accelerator is needed in order to accelerate the rare isotopes to a wide range of energies. The EURISOL main dictated requirements for the post accelerator are: a: acceleration of all possible radioactive beams. b: to all possible final energies up to 100 MeV/u, c: finely tunable final energy. d: very good beam-quality up to at least 10 MeV/u. e: high transmission efficiency aiming to 100%. f: mass resolution capable of isobar separation and g: affordable construction and operation cost. For the design of the post-accelerator a test case of a radioactive beam of 132Sn25+, generated by a charge breeder, was dictated. In this work we propose a design of an independently phased superconducting cavities linear accelerator for this EURISOL post-accelerator. Recent developments in the field allow high transmission efficiency after stripping due to multi-charge beam transport [2] and high acceleration gradient. Both achievements enable the design of a competitive construction and low operation cost post-accelerator. The rare isotopes are produced in a conventional ISOL target by fragmentation, spallation, or fission techniques. Upon extraction, a desired isotope, as 132Sn, is selected by a high-resolution mass separator and introduced into a charge breeder. The ions are then accelerated by the post-accelerator
Ewen, Hamish Maclean; Riccardo, Bartolini
The non-linear beam dynamics of a circular accelerator, such as the Large Hadron Collider, can have a significant impact on its operation. In order to avoid limitations on the performance reach of the accelerator, and ensure machine protection, it is vital that the beam dynamics are well understood and controlled. This thesis presents the results of studies of non-linear beam dynamics undertaken on the Large Hadron Collider at CERN, during the 2010 to 2013 period. It sets out to quantify the understanding of the non-linear beam dynamics through the comparison of beam-based measurements to simulation, and where able and appropriate seeks to explain deviations of measurement from the model, and define corrections for relevant aspects of the dynamics. The analyses presented in this thesis represent considerable advances in the understanding of the LHC beam dynamics which should allow for an improved operation of the machine in the coming years.
Structural dynamic response of target container against proton beam
Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-11-01
Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)
Structural dynamic response of target container against proton beam
Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)
Dynamic deformations of beams connected by damping element
Půst, Ladislav
Praha : Ústav termomechaniky AV ČR, v. v. i., 2009 - (Pešek, L.), s. 107-116 ISBN 978-80-87012-16-1. [Dynamika strojů 2009. Praha (CZ), 03.02.2009-04.02.2009] R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : beam vibration * damping * modes of vibration Subject RIV: BI - Acoustics
An exact dynamic stiffness matrix for axially loaded double-beam systems
Li Xiaobin; Xu Shuangxi; Wu Weiguo; Li Jun
2014-06-01
An exact dynamic stiffness method is presented in this paper to determine the natural frequencies and mode shapes of the axially loaded double-beam systems,which consist of two homogeneous and prismatic beams with a distributed spring in parallel between them.The effects of the axial force, shear deformation and rotary inertia are considered, as shown in the theoretical formulation. The dynamic stiffness influence coefficients are formulated from the governing differential equations of the axially loaded double-beam system in free vibration by using the Laplace transform method. An example is given to demonstrate the effectiveness of this method, in which ten boundary conditions are investigated and the effect of the axial force on the natural frequencies and mode shapes of the double-beam system are further discussed.
Beam Dynamics Based Design of Solenoid Channel for TAC Proton Linac
Kisoglu, H F
2014-01-01
Today a linear particle accelerator (linac), in which electric and magnetic fields are of vital importance, is one of the popular energy generation sources like Accelerator Driven System (ADS). A multipurpose, including primarily ADS, proton linac with energy of ~2 GeV is planned to constitute within the Turkish Accelerator Center (TAC) project collaborated by more than 10 Turkish universities. A Low Energy Beam Transport (LEBT) channel with two solenoids is a subcomponent of this linac. It transports the proton beam ejected by an ion source, and matches it with the Radio Frequency Quadrupole (RFQ) that is an important part of the linac. The LEBT channel would be consisted of two focusing solenoids and some diagnostic elements such as faraday cup, BC transformers, etc. This paper includes a beam dynamical design and optimization study of LEBT channel for TAC proton linac done by using a beam dynamics simulation code PATH MANAGER and comparing of the simulation results with the theoretical expectations.
Thermal and dynamic effects in electron beam welding cavities
An experimental and analytical study of the temperature distributions along the molten metal surface in an electron beam welding cavity is described. Surface temperature distributions in cavities were measured with a narrow band infrared radiation pyrometer. The availability of the cavity temperature measurements allowed estimates to be made for the vapor pressure and surface energy forces as a function of cavity position. The results indicated a force imbalance occurred in the cavity. It is postulated that at the location of the force imbalance a liquid material projection forms periodically and moves into the path of the electron beam. The liquid in this projection is driven towards the bottom, partially filling the cavity. This action is followed by the electron beam pushing the liquid aside to form a maximum depth cavity. This process is then repeated. An analysis for predicting cavity oscillation frequency shows reasonable agreement with frequencies measured at the weld root determined from weld sections. A study of the measured temperature distributions in cavities of varying depth combined with the force imbalance observations led to an interpretation of when spiking might occur. A procedure is proposed for determining the spiking tendency for a given set of weld parameters. The results of this study permit a designer to select apriori the best set of weld parameters to achieve a weld of predictable quality
Simulation of Electron Beam Dynamics in a Nonmagnetized High-Current Vacuum Diode
Anishchenko, Sergey
2016-01-01
The electron beam dynamics in a nonmagnetized high-current vacuum diode is analyzed for different cathode-anode gap geometries. The conditions enabling to achieve the minimal {initial} momentum spread in the electron beam are found out. A drastic rise of current density in a vacuum diode with a ring-type cathode is described. The effect is shown to be caused by electrostatic repulsion.
APPLICATION OF UAL TO HIGH INTENSITY BEAM DYNAMICS STUDIES IN THE SNS ACCUMULATOR RING
The SNS Ring off-line parallel simulation environment based on the Unified Accelerator Libraries (UAL) has been implemented and used for extensive full-scale beam dynamics studies arising in high-intensity rings. The paper describes the structure of this environment and its application to the development and analysis of the SNS accumulator ring beam loss model including a complex combination of several physical effects
Veerman, R.P.; Koenders, E.A.B.
2014-01-01
Structural Health Monitoring (SHM) systems are frequently used in civil infrastructures. One important durability property in reinforced concrete (RC) structures is the level of steel bar corrosion. In a dynamic four-point-bending test, two beams are loaded simultaneously, in which corrosion is accelerated in one of them. Since geophones are commonly used in SHM systems to monitor vertical deformations and to calculate modal properties, the first natural frequency of both beams are analysed i...
Accessing defect dynamics using intense, nanosecond pulsed ion beams
Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.
2014-01-01
Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to gener...
Longitudinal Beam Dynamics Studies at CTF3 And Pulse Compressor Controlling
Shaker, S H
2009-01-01
The aim of the CLIC Test Facility CTF3, built at CERN by an international collaboration, is to address the main feasibility issues of the CLIC electron-positron linear collider technology by 2010. One key-issue studied at CTF3 is the generation of the very high current drive beam, used in CLIC as the RF power source. It is particularly important to simulate and control the drive beam longitudinal dynamics in the drive beam generation complex, since it directly affects the efficiency and stability of the RF power production process. In this thesis how to use pulse compressors to achieve a high RF power in the drive beam accelerator is discussed. We also describe the ongoing effort in modelling the longitudinal evolution of the CTF3 drive beam and compare the simulations with experimental results. Our study is based on the single bunch simulation.
Investigation of Static and Dynamic Pull-in Instability in a FGP Micro-Beam
Rezaei Kivi, Araz; Azizi, Saber; Marzbanrad, Javad
2015-12-01
In this paper, static and dynamic behavior of a fully clamped functionally graded piezoelectric micro-beam, subjected to simultaneous electrostatic and piezoelectric actuations is investigated. The micro-beam is composed of silicon and PZ4 as a piezoelectric material. Applying DC piezoelectric voltage results in the generation of an axial force and as a result the equivalent bending stiffness of the micro-beam changes. The tunability of the bending stiffness due to piezoelectric actuation is used to stabilize the pull-in instability. The nonlinear governing equation of the motion is derived using Hamiltonian principle and discretized to a single degree of freedom system using Galerkin method. The static and dynamic pull-in voltages corresponding to various piezoelectric voltages are determined. The ratio of the static to dynamic pull-in voltages is in good agreement with those of the literature.
Concept Modelling of Vehicle Joints and Beam-Like Structures through Dynamic FE-Based Methods
G. De Gaetano
2014-01-01
Full Text Available This paper presents dynamic methodologies able to obtain concept models of automotive beams and joints, which compare favourably with the existing literature methods, in terms of accuracy, easiness of implementation, and computational loads. For the concept beams, the proposed method is based on a dynamic finite element (FE approach, which estimates the stiffness characteristics of equivalent 1D beam elements using the natural frequencies, computed by a modal analysis of the detailed 3D FE model of the structure. Concept beams are then connected to each other by a concept joint, which is obtained through a dynamic reduction technique that makes use of its vibration normal modes. The joint reduction is improved through the application of a new interface beam-to-joint element, able to interpolate accurately the nodal displacements of the outer contour of the section, to obtain displacements and rotations of the central connection node. The proposed approach is validated through an application case that is typical in vehicle body engineering: the analysis of a structure formed by three spot-welded thin-walled beams, connected by a joint.
Laser transmission welding of absorber-free thermoplastics using dynamic beam superposition
Mamuschkin, Viktor; Olowinsky, Alexander; van der Straeten, Kira; Engelmann, Christoph
2015-03-01
So far, the main approach to weld absorber-free thermoplastics is exploiting their intrinsic absorption by choosing a proper wavelength of the laser. In order to melt the joining partners spatially restricted at the interface usually optics with a high numerical aperture are used. However, practice shows that the heat affected zone (HAZ) extends over a large area along the beam axis regardless of the optics used. Without clamping or convective cooling thermally induced expansion of the material can cause blowholes or deformation of the irradiated surface. To reduce the thermal stress on the part surface a dynamic beam superposition is investigated with the laser beam performing a precession movement.
Dynamics of the echolocation beam during prey pursuit in aerial hawking bats
Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie
2015-01-01
In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats...... broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their "acoustic field of view." In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of...... stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation....
SciDAC Advances in Beam Dynamics Simulation: From Light Sources to Colliders
In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of the SciDAC-2 accelerator project 'Community Petascale Project for Accelerator Science and Simulation (ComPASS).' Several parallel computational tools for beam dynamics simulation are described. Also presented are number of applications in current and future accelerator facilities (e.g., LCLS, RHIC, Tevatron, LHC, and ELIC). Particle accelerators are some of most important tools of scientific discovery. They are widely used in high-energy physics, nuclear physics, and other basic and applied sciences to study the interaction of elementary particles, to probe the internal structure of matter, and to generate high-brightness radiation for research in materials science, chemistry, biology, and other fields. Modern accelerators are complex and expensive devices that may be several kilometers long and may consist of thousands of beamline elements. An accelerator may transport trillions of charged particles that interact electromagnetically among themselves, that interact with fields produced by the accelerator components, and that interact with beam-induced fields. Large-scale beam dynamics simulations on massively parallel computers can help provide understanding of these complex physical phenomena, help minimize design cost, and help optimize machine operation. In this paper, we report on beam dynamics simulations in a variety of accelerators ranging from next generation light sources to high-energy ring colliders that have been studied during the first year of the SciDAC-2 accelerator project.
Beam dynamics of a liquid metal ion source
RMS emittance growth of liquid metal ion sources is studied. Processes included are nonlinear expansion through extractor and accelerator fringe fields, nonlinear beam space charge, plasma effects near needle, and waves (either ion-acoustic or space charge limited as considered by V.I. Dudnikov). This investigation consists of 2-D analysis of appropriate Vlasov-Poisson equations in both steady-state and time-dependent formulations. Various geometries will be considered such as some used by G. Alton of ORNL. 2 refs., 7 figs
Dynamic boundary controls of a rotating body-beam system with time-varying angular velocity
Boumediène Chentouf
2004-01-01
This paper deals with feedback stabilization of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the rigid body rotates with a nonconstant angular velocity. To stabilize this system, we propose a feedback law which consists of a control torque applied on the rigid body and either a dynamic boundary control moment or a dynamic boundary control force or both of them applied at the free end of the beam. Then it is ...
Linac Beam Dynamics Simulations With PY-ORBIT
Linac dynamics simulation capabilities of the PyORBIT code are discussed. PyORBIT is an open source code and a further development of the original ORBIT code that was created and used for design, studies, and commissioning of the SNS ring. The PyORBIT code, like the original one, has a two-layer structure. C++ is used to perform time-consuming computations, and the program flow is controlled from a Python language shell. The flexible structure makes it possible to use PyORBIT also for linac dynamics simulations. A benchmark of PyORBIT with Parmila and the XAL Online model is presented.
Dynamics and adsorption of gas molecules using proton beams
Meso sized MgO powders and single walled and multiwalled Carbon NanoTubes (CNT) were radiated by proton beams with energy of 10-35 MeV for 30 seconds, and Ar gas adsorption experiments were carried. Any significant difference in adsorption properties of Ar at 77K was measured from the MgO powders radiated 10 MeV for 30 seconds. The single walled CNT samples, however, exhibit significant changes of adsorption curves including reduction of the adsorption amount and disappearing of the second step, while multiwalled CNTs show no difference in adsorption behavior. Interestingly, all CNTs including singlewalled and multiwalled CNTs, that were radiated by proton beams with energy 35 MeV at the Bragg peak position contain much less Fe, Ni catalysts which were presumably products of the sample preparation process. Based on this result, the method on purification of CNTs is applied for the domestic patent. The fundamental mechanism on the purification, however, is not clear and needs further studies
Lifschitz, A. F.; Maynard, G.; Vay, J.-L.
2005-05-01
In most of the proposals for HIF reactors, beams propagate ballistically through the containment chamber. To get the required final radius (˜3 mm), the charge of the beam must be neutralized to some extent. Several neutralization schemes are possible, as co-injection of negative-ion beams, inclusion of external sources of electrons, or it can be provided by electrons coming from ionization of the background gas. In this work, we study the role of the electron dynamic on the neutralization and final radius of the beam. This is done by performing fully electromagnetic PIC simulations of the beam ballistic transport using the BPIC code (Nucl. Instr. and Meth. A 464 (2001) 118). In agreement with previous works we found that the evolution of an isolated beam is well described as a bidimensional adiabatic compression, and the beam neutralization degree and final radius can be estimated from the initial electron transversal temperature. When a background gas is present the evolution differs significantly from an adiabatic compression. Even for low gas densities, the continuous electrons flow coming from gas ionization limits efficiently the compressional heating, thus reducing the final radius. Aspects of beam neutralization by background gas ionization are discussed.
Xu, Tengfei; Castel, Arnaud
2016-04-01
In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.
Multiple charge beam dynamics in Alternate Phase Focusing structure
Dechoudhury, S; Chao, Y -C
2014-01-01
Asymmetrical Alternate Phase (A-APF) focusing realized in a sequence of 36 Superconducting Quarter Wave Resonators has been shown to accelerate almost 81 % of input Uranium beam before foil stripper to an energy of 6.2 MeV/u from 1.3 MeV/u. Ten charge states from 34+ to 43+ could be simultaneously accelerated with the phase of resonators tuned for 34+. A-APF structure showed unique nature of large potential bucket for charge states higher than that of tuned one. Steering inherent to QWRs can be mitigated by selecting appropriate phase variation of the APF periods and optimization of solenoid field strengths placed in each of the periods. This mitigation facilitates multiple charge state acceleration scheme
Mathematical and Numerical Methods for Non-linear Beam Dynamics
Herr, W
2014-01-01
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of ...
Many-beam dynamical simulation of electron backscatter diffraction patterns.
Winkelmann, Aimo; Trager-Cowan, Carol; Sweeney, Francis; Day, Austin P; Parbrook, Peter
2007-01-01
We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaN{0001} at 20kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment. PMID:17126489
A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA
Beam spot shift in a dynamic astigmatism correction type (DQ-DAF) electron gun
This paper presents the results of an investigation to avoid the convergence error in color CRT guns operating with a dynamic focus correction. The dynamic spot shift as well as the spot coma can be avoided at the same time with a proper arrangement of the quadrupole and main lenses with an oblique incidence of the side beam. The design confirmation is also presented. (orig.)
Analysis of the dynamic behavior of an intense charged particle beam using the semigroup approach
Stafford, M. A.
1985-05-01
Dynamic models of a charged particle beam subject to external electromagnetic fields are cast into the abstract Cauchy problem form. Various applications of intense charged particle beams, i.e., beams whose self electromagnetic fields are significant, might require, or be enhanced by, the use of dynamic control constructed from suitably processed measurements of the state of the beam. This research provides a mathematical foundation for future engineering development of estimation and control designs for such beams. Beginning with the Vlasov equation, successively simpler models of intense beams are presented, along with their corresponding assumptions. Expression of a model in abstract Cauchy problem form is useful in determining whether the model is well posed. Solutions of well-posed problems can be expressed in terms of a one-parameter semigroup of linear operators. (The state transition matrix for a system of linear, ordinary, first-order, constant coefficient differential equations is a special case of such a semigroup.) The semigroup point of view allows the application of the rapidly maturing modern control theory of infinite-dimensional systems. An appropriate underlying Banach space is identified for a simple, but non-trivial, single degree of freedom model (the electrostatic approximation model), and the associated one-parameter semigroup of linear operators is characterized.
Analysis of the dynamic behavior of an intense charged particle beam using the semigroup approach
Dynamic models of a charged particle beam subject to external electromagnetic fields are cast into the abstract Cauchy problem form. Various applications of intense charged particle beams, i.e., beams whose self electromagnetic fields are significant, might require, or be enhanced by, the use of dynamic control constructed from suitably processed measurements of the state of the beam. This research provides a mathematical foundation for future engineering development of estimation and control designs for such beams. Beginning with the Vlasov equation, successively simpler models of intense beams are presented, along with their corresponding assumptions. Expression of a model in abstract Cauchy problem form is useful in determining whether the model is well posed. Solutions of well-posed problems can be expressed in terms of a one-parameter semigroup of linear operators. The semigroup point of view allows the application of the rapidly maturing modern control theory of infinite dimensional system. An appropriate underlying Banach space is identified for a simple, but nontrivial, single degree of freedom model (the electrostatic approximation model), and the associated one-parameter semigroup of linear operators is characterized
Dynamics of the excitation of an upper hybrid wave by a rippled laser beam in magnetoplasma
This paper presents the effects of a laser spike (superimposed on an intense laser beam) and a static magnetic field on the excitation of the upper hybrid wave (UHW) in a hot collisionless magnetoplasma, taking into account the relativistic nonlinearity. The laser beam is propagating perpendicular to the static magnetic field and has its electric vector polarized along the direction of the static magnetic field (ordinary mode). Analytical expressions for the growth rate of the ripple, the beam width of the rippled laser beam, and the UHW have been obtained. It is found that the coupling among the main laser beam, ripple, and UHW is strong. The ripple gets focused when the initial power of the laser beam is greater than the critical power for focusing. It has been shown that the presence of a laser spike affects significantly the growth rate and the dynamics of the UHW. In addition, it has been seen that the effect of changing the strength of the static magnetic field on the nonlinear coupling and on the dynamics of the excitation of the UHW is significant. The results are presented for typical laser plasma parameters
Nonlinear dynamics of a sliding beam on two supports under sinusoidal excitation
R J Somnay; R A Ibrahim
2006-08-01
This study deals with the nonlinear dynamics associated with large deformation of a beam sliding on two-knife edge supports under external excitation. The beam is referred to as a Gospodnetic–Frisch-Fay beam, after the researchers who reported its static deformation in closed form. The freedom of the beam to slide on its supports imparts a nonlinear characteristic to the force-deﬂection response. The restoring elastic force of the beam possesses characteristics similar to those of the roll-restoring moment of ships. The Gospodnetic–Frisch-Fay exact solution is given in terms of elliptic functions. A curve ﬁt of the exact solution up to eleventh-order is constructed to establish the governing equation of motion under external excitation. The dynamic stability of the unperturbed beam is examined for the damped and undamped cases. The undamped case reveals periodic orbits and one homoclinic orbit depending on the value of the initial conditions. The response to a sinusoidal excitation at a frequency below the linear natural frequency is numerically estimated for different excitation amplitude and different values of initial conditions covered by the area of the homoclinic orbit. The safe basins of attraction are plotted for different values of excitation amplitude. It is found that the safe region of operation is reduced as the excitation amplitude increases.
Dynamically reconfigurable multiple beam illumination based on optical correlation
Glückstad, Jesper; Palima, Darwin; Dam, Jeppe Seidelin; Perch-Nielsen, Ivan R.
2009-01-01
We adapt concepts from optical correlation and optical pattern recognition to propose a method for generating reconfigurable multiple spots with high efficiency. The generated spots correspond to the correlation spikes in optical pattern recognition. In pattern recognition, optimizing the...... correlation filter is constrained by the target pattern to be detected. The reverse process of light projection grants the freedom to optimize both the target pattern and the correlation filters. Combined with contemporary spatial light modulation technologies, the proposed method can yield dynamically...
Fatigue and dynamics of secondary beams in steel railway bridges
Kanter, Peeter
2014-01-01
Many steel railway bridges in Europe are older than 50 years whilethey are subjected to higher loads than they were originally designedfor. As many of these bridges are approaching the end of their designlife it is crucial to carry out accurate fatigue assessments in order toensure their safety and keep them in service. Usually the influence ofdynamics on fatigue damage is taken into account using dynamicamplification factors from design codes whereas the actual influenceof dynamics has not b...
Using a new extraction line currently under construction, the ATF2 experiment plans to test the novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. With a 1.3 GeV design beam of 30nm normalized vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical spot-size at the IP waist of 37nm. We discuss our planned strategy for tuning the ATF2 beam to meet the primary goal. Simulation studies have been performed to asses the effectiveness of the strategy, including 'static' (installation) errors and dynamical effects (ground-motion, mechanical vibration, ring extraction jitter etc.). We have simulated all steps in the tuning procedure, from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within ∼10% of the design optics value in at least 75% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks
NONLINEAR DYNAMICS OF AXIALLY ACCELERATING VISCOELASTIC BEAMS BASED ON DIFFERENTIAL QUADRATURE
Hu Ding; Liqun Chen
2009-01-01
This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equa-tion, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numeri-cally the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numer-ical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.
Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.
Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong
2016-04-01
A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems. PMID:27137046
Herman, Zdeněk
2015-01-01
Roč. 378, FEB 2015 (2015), s. 113-126. ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : Multiply-charged ions * Dynamics of chemical reactions * Beam scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.972, year: 2014
CH4 dissociation on Ni(100): Comparison of a direct dynamical model to molecular beam experiments
Luntz, Alan
1995-01-01
This paper makes an extensive comparison of a dynamical model for a mechanism of direct dissociation to the detailed molecular beam experiments of CH4 dissociation on a Ni(100) surface reported in the previous paper. When a PES incorporating an ``exit channel'' barrier is used in the model and st...... Institute of Physics....