Bayesian Variable Selection in Spatial Autoregressive Models
Jesus Crespo Cuaresma; Philipp Piribauer
2015-01-01
This paper compares the performance of Bayesian variable selection approaches for spatial autoregressive models. We present two alternative approaches which can be implemented using Gibbs sampling methods in a straightforward way and allow us to deal with the problem of model uncertainty in spatial autoregressive models in a flexible and computationally efficient way. In a simulation study we show that the variable selection approaches tend to outperform existing Bayesian model averaging tech...
Bayesian Spatial Modelling with R-INLA
Finn Lindgren; Håvard Rue
2015-01-01
The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA) approach proposed by Rue, Martino, and Chopin (2009) is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized) linear mixed to spatial and spatio-temporal models. Combined with the stochastic...
Bayesian Spatial Modelling with R-INLA
Finn Lindgren
2015-02-01
Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.
An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation
Dharmagunawardhana, Chathurika; Mahmoodi, Sasan; Bennett, Michael; Niranjan, Mahesan
2014-01-01
In statistical model based texture feature extraction, features based on spatially varying parameters achieve higher discriminative performances compared to spatially constant parameters. In this paper we formulate a novel Bayesian framework which achieves texture characterization by spatially varying parameters based on Gaussian Markov random fields. The parameter estimation is carried out by Metropolis-Hastings algorithm. The distributions of estimated spatially varying paramete...
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies
Bayesian point event modeling in spatial and environmental epidemiology.
Lawson, Andrew B
2012-10-01
This paper reviews the current state of point event modeling in spatial epidemiology from a Bayesian perspective. Point event (or case event) data arise when geo-coded addresses of disease events are available. Often, this level of spatial resolution would not be accessible due to medical confidentiality constraints. However, for the examination of small spatial scales, it is important to be capable of examining point process data directly. Models for such data are usually formulated based on point process theory. In addition, special conditioning arguments can lead to simpler Bernoulli likelihoods and logistic spatial models. Goodness-of-fit diagnostics and Bayesian residuals are also considered. Applications within putative health hazard risk assessment, cluster detection, and linkage to environmental risk fields (misalignment) are considered. PMID:23035034
Spatial and spatio-temporal bayesian models with R - INLA
Blangiardo, Marta
2015-01-01
Dedication iiiPreface ix1 Introduction 11.1 Why spatial and spatio-temporal statistics? 11.2 Why do we use Bayesian methods for modelling spatial and spatio-temporal structures? 21.3 Why INLA? 31.4 Datasets 32 Introduction to 212.1 The language 212.2 objects 222.3 Data and session management 342.4 Packages 352.5 Programming in 362.6 Basic statistical analysis with 393 Introduction to Bayesian Methods 533.1 Bayesian Philosophy 533.2 Basic Probability Elements 573.3 Bayes Theorem 623.4 Prior and Posterior Distributions 643.5 Working with the Posterior Distribution 663.6 Choosing the Prior Distr
The impact of spatial scales and spatial smoothing on the outcome of bayesian spatial model.
Su Yun Kang
Full Text Available Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease, we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matérn correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.
Bayesian joint modeling of longitudinal and spatial survival AIDS data.
Martins, Rui; Silva, Giovani L; Andreozzi, Valeska
2016-08-30
Joint analysis of longitudinal and survival data has received increasing attention in the recent years, especially for analyzing cancer and AIDS data. As both repeated measurements (longitudinal) and time-to-event (survival) outcomes are observed in an individual, a joint modeling is more appropriate because it takes into account the dependence between the two types of responses, which are often analyzed separately. We propose a Bayesian hierarchical model for jointly modeling longitudinal and survival data considering functional time and spatial frailty effects, respectively. That is, the proposed model deals with non-linear longitudinal effects and spatial survival effects accounting for the unobserved heterogeneity among individuals living in the same region. This joint approach is applied to a cohort study of patients with HIV/AIDS in Brazil during the years 2002-2006. Our Bayesian joint model presents considerable improvements in the estimation of survival times of the Brazilian HIV/AIDS patients when compared with those obtained through a separate survival model and shows that the spatial risk of death is the same across the different Brazilian states. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26990773
Assessing fit in Bayesian models for spatial processes
Jun, M.
2014-09-16
© 2014 John Wiley & Sons, Ltd. Gaussian random fields are frequently used to model spatial and spatial-temporal data, particularly in geostatistical settings. As much of the attention of the statistics community has been focused on defining and estimating the mean and covariance functions of these processes, little effort has been devoted to developing goodness-of-fit tests to allow users to assess the models\\' adequacy. We describe a general goodness-of-fit test and related graphical diagnostics for assessing the fit of Bayesian Gaussian process models using pivotal discrepancy measures. Our method is applicable for both regularly and irregularly spaced observation locations on planar and spherical domains. The essential idea behind our method is to evaluate pivotal quantities defined for a realization of a Gaussian random field at parameter values drawn from the posterior distribution. Because the nominal distribution of the resulting pivotal discrepancy measures is known, it is possible to quantitatively assess model fit directly from the output of Markov chain Monte Carlo algorithms used to sample from the posterior distribution on the parameter space. We illustrate our method in a simulation study and in two applications.
Forecasting unconventional resource productivity - A spatial Bayesian model
Montgomery, J.; O'sullivan, F.
2015-12-01
Today's low prices mean that unconventional oil and gas development requires ever greater efficiency and better development decision-making. Inter and intra-field variability in well productivity, which is a major contemporary driver of uncertainty regarding resource size and its economics is driven by factors including geological conditions, well and completion design (which companies vary as they seek to optimize their performance), and uncertainty about the nature of fracture propagation. Geological conditions are often not be well understood early on in development campaigns, but nevertheless critical assessments and decisions must be made regarding the value of drilling an area and the placement of wells. In these situations, location provides a reasonable proxy for geology and the "rock quality." We propose a spatial Bayesian model for forecasting acreage quality, which improves decision-making by leveraging available production data and provides a framework for statistically studying the influence of different parameters on well productivity. Our approach consists of subdividing a field into sections and forming prior distributions for productivity in each section based on knowledge about the overall field. Production data from wells is used to update these estimates in a Bayesian fashion, improving model accuracy far more rapidly and with less sensitivity to outliers than a model that simply establishes an "average" productivity in each section. Additionally, forecasts using this model capture the importance of uncertainty—either due to a lack of information or for areas that demonstrate greater geological risk. We demonstrate the forecasting utility of this method using public data and also provide examples of how information from this model can be combined with knowledge about a field's geology or changes in technology to better quantify development risk. This approach represents an important shift in the way that production data is used to guide
Mapping the Obesity in Iran by Bayesian Spatial Model
Maryam Farhadian
2013-06-01
Full Text Available Background: One of the methods used in the analysis of data related to diseases, and their underlying reasons is drawing geographical map. Mapping diseases is a valuable tool to determine the regions of high rate of infliction requiring therapeutic interventions. The objective of this study was to investigate obesity pattern in Iran by drawing geographical maps based on Bayesian spatial model to recognize the pattern of the understudy symptom more carefully.Methods: The data of this study consisted of the number of obese people in provinces of Iran in terms of sex based on the reports of non-contagious disease's risks in 30 provinces by the Iran MSRT disease center in 2007. The analysis of data was carried out by software R and Open BUGS. In addition, the data required for the adjacency matrix were produced by Geo bugs software.Results: The greatest percentage of obese people in all age ranges (15-64 is 17.8 for men in Mazandaran and the lowest is 4.9 in Sistan and Baluchestan. For women the highest and lowest are 29.9 and 11.9 in Mazandaran and Hormozgan, respectively. Mazandaran was considered the province of the greatest odds ratio of obesity for men and women.Conclusion: Recognizing the geographical distribution and the regions of high risk of obesity is the prerequisite of decision making in management and planning for health system of the country. The results can be applied in allocating correct resources between different regions of Iran.
Bayesian prediction of spatial count data using generalized linear mixed models
Christensen, Ole Fredslund; Waagepetersen, Rasmus Plenge
2002-01-01
Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, ...
Møller, Jesper; Rasmussen, Jakob Gulddahl
We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model, i.e. each new point is generated given the previous points. Under this model...... previous points is such that the dependent cluster point is likely to occur closely to a previous cluster point. We demonstrate the flexibility of the model for producing point patterns with linear structures, and propose to use the model as the likelihood in a Bayesian setting when analyzing a spatial...
Modelling the presence of disease under spatial misalignment using Bayesian latent Gaussian models.
Barber, Xavier; Conesa, David; Lladosa, Silvia; López-Quílez, Antonio
2016-01-01
Modelling patterns of the spatial incidence of diseases using local environmental factors has been a growing problem in the last few years. Geostatistical models have become popular lately because they allow estimating and predicting the underlying disease risk and relating it with possible risk factors. Our approach to these models is based on the fact that the presence/absence of a disease can be expressed with a hierarchical Bayesian spatial model that incorporates the information provided by the geographical and environmental characteristics of the region of interest. Nevertheless, our main interest here is to tackle the misalignment problem arising when information about possible covariates are partially (or totally) different than those of the observed locations and those in which we want to predict. As a result, we present two different models depending on the fact that there is uncertainty on the covariates or not. In both cases, Bayesian inference on the parameters and prediction of presence/absence in new locations are made by considering the model as a latent Gaussian model, which allows the use of the integrated nested Laplace approximation. In particular, the spatial effect is implemented with the stochastic partial differential equation approach. The methodology is evaluated on the presence of the Fasciola hepatica in Galicia, a North-West region of Spain. PMID:27087038
Kostas Alexandridis
2013-06-01
Full Text Available Assessing spatial model performance often presents challenges related to the choice and suitability of traditional statistical methods in capturing the true validity and dynamics of the predicted outcomes. The stochastic nature of many of our contemporary spatial models of land use change necessitate the testing and development of new and innovative methodologies in statistical spatial assessment. In many cases, spatial model performance depends critically on the spatially-explicit prior distributions, characteristics, availability and prevalence of the variables and factors under study. This study explores the statistical spatial characteristics of statistical model assessment of modeling land use change dynamics in a seven-county study area in South-Eastern Wisconsin during the historical period of 1963–1990. The artificial neural network-based Land Transformation Model (LTM predictions are used to compare simulated with historical land use transformations in urban/suburban landscapes. We introduce a range of Bayesian information entropy statistical spatial metrics for assessing the model performance across multiple simulation testing runs. Bayesian entropic estimates of model performance are compared against information-theoretic stochastic entropy estimates and theoretically-derived accuracy assessments. We argue for the critical role of informational uncertainty across different scales of spatial resolution in informing spatial landscape model assessment. Our analysis reveals how incorporation of spatial and landscape information asymmetry estimates can improve our stochastic assessments of spatial model predictions. Finally our study shows how spatially-explicit entropic classification accuracy estimates can work closely with dynamic modeling methodologies in improving our scientific understanding of landscape change as a complex adaptive system and process.
Evaluation of Image Registration Spatial Accuracy Using a Bayesian Hierarchical Model
Liu, Suyu; Yuan, Ying; Castillo, Richard; Guerrero, Thomas; Johnson, Valen E.
2014-01-01
To evaluate the utility of automated deformable image registration (DIR) algorithms, it is necessary to evaluate both the registration accuracy of the DIR algorithm itself, as well as the registration accuracy of the human readers from whom the ”gold standard” is obtained. We propose a Bayesian hierarchical model to evaluate the spatial accuracy of human readers and automatic DIR methods based on multiple image registration data generated by human readers and automatic DIR methods. To fully a...
Bayesian spatial semi-parametric modeling of HIV variation in Kenya.
Oscar Ngesa
Full Text Available Spatial statistics has seen rapid application in many fields, especially epidemiology and public health. Many studies, nonetheless, make limited use of the geographical location information and also usually assume that the covariates, which are related to the response variable, have linear effects. We develop a Bayesian semi-parametric regression model for HIV prevalence data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (McMC. The model is applied to HIV prevalence data among men in Kenya, derived from the Kenya AIDS indicator survey, with n = 3,662. Past studies have concluded that HIV infection has a nonlinear association with age. In this study a smooth function based on penalized regression splines is used to estimate this nonlinear effect. Other covariates were assumed to have a linear effect. Spatial references to the counties were modeled as both structured and unstructured spatial effects. We observe that circumcision reduces the risk of HIV infection. The results also indicate that men in the urban areas were more likely to be infected by HIV as compared to their rural counterpart. Men with higher education had the lowest risk of HIV infection. A nonlinear relationship between HIV infection and age was established. Risk of HIV infection increases with age up to the age of 40 then declines with increase in age. Men who had STI in the last 12 months were more likely to be infected with HIV. Also men who had ever used a condom were found to have higher likelihood to be infected by HIV. A significant spatial variation of HIV infection in Kenya was also established. The study shows the practicality and flexibility of Bayesian semi-parametric regression model in analyzing epidemiological data.
A Bayesian, spatially-varying calibration model for the TEX86 proxy
Tierney, Jessica E.; Tingley, Martin P.
2014-02-01
TEX86 is an important proxy for constraining ocean temperatures in the Earth's past. Current calibrations, however, feature structured residuals indicative of a spatially-varying relationship between TEX86 and sea-surface temperatures (SSTs). Here we develop and apply a Bayesian regression approach to the TEX86-SST calibration that explicitly allows for model parameters to smoothly vary as a function of space, and considers uncertainties in the modern SSTs as well as in the TEX86-SST relationship. The spatially-varying model leads to larger uncertainties at locations that are data-poor, while Bayesian inference naturally propagates calibration uncertainty into the uncertainty in the predictions. Applications to both Quaternary and Eocene TEX86 data demonstrate that our approach produces reasonable results, and improves upon previous methods by allowing for probabilistic assessments of past temperatures. The scientific understanding of TEX86 remains imperfect, and the model presented here allows for predictions that implicitly account for the effects of environmental factors other than SSTs that lead to a spatially non-stationary TEX86-SST relationship.
C. Mukherjee
2011-01-01
Full Text Available Inverse modeling applications in atmospheric chemistry are increasingly addressing the challenging statistical issues of data synthesis by adopting refined statistical analysis methods. This paper advances this line of research by addressing several central questions in inverse modeling, focusing specifically on Bayesian statistical computation. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on increasingly high-resolution satellite retrievals of atmospheric chemical concentrations, we address head-on the need for integrating formal spatial statistical methods of residual error structure in global scale inversion models. We do this using analytically and computationally tractable spatial statistical models, know as conditional autoregressive spatial models, as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors in a more physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a~proof-of-concept and model assessment, and then in analysis of real MOPITT data.
Hierarchical Bayesian spatial models for alcohol availability, drug "hot spots" and violent crime
Horel Scott
2006-12-01
Full Text Available Abstract Background Ecologic studies have shown a relationship between alcohol outlet densities, illicit drug use and violence. The present study examined this relationship in the City of Houston, Texas, using a sample of 439 census tracts. Neighborhood sociostructural covariates, alcohol outlet density, drug crime density and violent crime data were collected for the year 2000, and analyzed using hierarchical Bayesian models. Model selection was accomplished by applying the Deviance Information Criterion. Results The counts of violent crime in each census tract were modelled as having a conditional Poisson distribution. Four neighbourhood explanatory variables were identified using principal component analysis. The best fitted model was selected as the one considering both unstructured and spatial dependence random effects. The results showed that drug-law violation explained a greater amount of variance in violent crime rates than alcohol outlet densities. The relative risk for drug-law violation was 2.49 and that for alcohol outlet density was 1.16. Of the neighbourhood sociostructural covariates, males of age 15 to 24 showed an effect on violence, with a 16% decrease in relative risk for each increase the size of its standard deviation. Both unstructured heterogeneity random effect and spatial dependence need to be included in the model. Conclusion The analysis presented suggests that activity around illicit drug markets is more strongly associated with violent crime than is alcohol outlet density. Unique among the ecological studies in this field, the present study not only shows the direction and magnitude of impact of neighbourhood sociostructural covariates as well as alcohol and illicit drug activities in a neighbourhood, it also reveals the importance of applying hierarchical Bayesian models in this research field as both spatial dependence and heterogeneity random effects need to be considered simultaneously.
C. Mukherjee
2011-06-01
Full Text Available We present and discuss the use of Bayesian modeling and computational methods for atmospheric chemistry inverse analyses that incorporate evaluation of spatial structure in model-data residuals. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on satellite retrievals of atmospheric chemical concentrations, we address the need for formal modeling of spatial residual error structure in global scale inversion models. We do this using analytically and computationally tractable conditional autoregressive (CAR spatial models as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors on source fluxes in a physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a proof-of-concept and model assessment, and then in analysis of real MOPITT data. These studies demonstrate the ability of these simple spatial models to substantially improve over standard non-spatial models in terms of statistical fit, ability to recover sources in synthetic examples, and predictive match with real data.
Rodhouse, Thomas J.; Kathryn M Irvine; Vierling, Kerri T.; Lee A Vierling
2011-01-01
Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population f...
Zhang, Zhen; Lim, Chae Young; Maiti, Tapabrata; Kato, Seiji
2016-01-01
In climate change study, the infrared spectral signatures of climate change have recently been conceptually adopted, and widely applied to identifying and attributing atmospheric composition change. We propose a Bayesian hierarchical model for spatial clustering of the high-dimensional functional data based on the effects of functional covariates and local features. We couple the functional mixed-effects model with a generalized spatial partitioning method for: (1) producing spatially contigu...
BSMac: a MATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity.
Zhang, Lijun; Agravat, Sanjay; Derado, Gordana; Chen, Shuo; McIntosh, Belinda J; Bowman, F DuBois
2012-02-15
We present a statistical and graphical visualization MATLAB toolbox for the analysis of functional magnetic resonance imaging (fMRI) data, called the Bayesian Spatial Model for activation and connectivity (BSMac). BSMac simultaneously performs whole-brain activation analyses at the voxel and region of interest (ROI) levels as well as task-related functional connectivity (FC) analyses using a flexible Bayesian modeling framework (Bowman et al., 2008). BSMac allows for inputting data in either Analyze or Nifti file formats. The user provides information pertaining to subgroup memberships, scanning sessions, and experimental tasks (stimuli), from which the design matrix is constructed. BSMac then performs parameter estimation based on Markov Chain Monte Carlo (MCMC) methods and generates plots for activation and FC, such as interactive 2D maps of voxel and region-level task-related changes in neural activity and animated 3D graphics of the FC results. The toolbox can be downloaded from http://www.sph.emory.edu/bios/CBIS/. We illustrate the BSMac toolbox through an application to an fMRI study of working memory in patients with schizophrenia. PMID:22101143
A Bayesian Hierarchical Model for Estimation of Abundance and Spatial Density of Aedes aegypti.
Daniel A M Villela
Full Text Available Strategies to minimize dengue transmission commonly rely on vector control, which aims to maintain Ae. aegypti density below a theoretical threshold. Mosquito abundance is traditionally estimated from mark-release-recapture (MRR experiments, which lack proper analysis regarding accurate vector spatial distribution and population density. Recently proposed strategies to control vector-borne diseases involve replacing the susceptible wild population by genetically modified individuals' refractory to the infection by the pathogen. Accurate measurements of mosquito abundance in time and space are required to optimize the success of such interventions. In this paper, we present a hierarchical probabilistic model for the estimation of population abundance and spatial distribution from typical mosquito MRR experiments, with direct application to the planning of these new control strategies. We perform a Bayesian analysis using the model and data from two MRR experiments performed in a neighborhood of Rio de Janeiro, Brazil, during both low- and high-dengue transmission seasons. The hierarchical model indicates that mosquito spatial distribution is clustered during the winter (0.99 mosquitoes/premise 95% CI: 0.80-1.23 and more homogeneous during the high abundance period (5.2 mosquitoes/premise 95% CI: 4.3-5.9. The hierarchical model also performed better than the commonly used Fisher-Ford's method, when using simulated data. The proposed model provides a formal treatment of the sources of uncertainty associated with the estimation of mosquito abundance imposed by the sampling design. Our approach is useful in strategies such as population suppression or the displacement of wild vector populations by refractory Wolbachia-infected mosquitoes, since the invasion dynamics have been shown to follow threshold conditions dictated by mosquito abundance. The presence of spatially distributed abundance hotspots is also formally addressed under this modeling
Bayesian inference in camera trapping studies for a class of spatial capture-recapture models
Royle, J. Andrew; Karanth, K. Ullas; Gopalaswamy, Arjun M.; Kumar, N. Samba
2009-01-01
We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.
Stephen S Ban; Pressey, Robert L.; Graham, Nicholas A. J.
2015-01-01
Multiple stressors are an increasing concern in the management and conservation of ecosystems, and have been identified as a key gap in research. Coral reefs are one example of an ecosystem where management of local stressors may be a way of mitigating or delaying the effects of climate change. Predicting how multiple stressors interact, particularly in a spatially explicit fashion, is a difficult challenge. Here we use a combination of an expert-elicited Bayesian network (BN) and spatial env...
A bayesian integrative model for genetical genomics with spatially informed variable selection.
Cassese, Alberto; Guindani, Michele; Vannucci, Marina
2014-01-01
We consider a Bayesian hierarchical model for the integration of gene expression levels with comparative genomic hybridization (CGH) array measurements collected on the same subjects. The approach defines a measurement error model that relates the gene expression levels to latent copy number states. In turn, the latent states are related to the observed surrogate CGH measurements via a hidden Markov model. The model further incorporates variable selection with a spatial prior based on a probit link that exploits dependencies across adjacent DNA segments. Posterior inference is carried out via Markov chain Monte Carlo stochastic search techniques. We study the performance of the model in simulations and show better results than those achieved with recently proposed alternative priors. We also show an application to data from a genomic study on lung squamous cell carcinoma, where we identify potential candidates of associations between copy number variants and the transcriptional activity of target genes. Gene ontology (GO) analyses of our findings reveal enrichments in genes that code for proteins involved in cancer. Our model also identifies a number of potential candidate biomarkers for further experimental validation. PMID:25288877
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes and...... largely due to the availability of efficient inference algorithms for answering probabilistic queries about the states of the variables in the network. Furthermore, to support the construction of Bayesian network models, learning algorithms are also available. We give an overview of the Bayesian network...
Rubin, Yoram; Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie
2010-10-01
This paper addresses the inverse problem in spatially variable fields such as hydraulic conductivity in groundwater aquifers or rainfall intensity in hydrology. Common to all these problems is the existence of a complex pattern of spatial variability of the target variables and observations, the multiple sources of data available for characterizing the fields, the complex relations between the observed and target variables and the multiple scales and frequencies of the observations. The method of anchored distributions (MAD) that we propose here is a general Bayesian method of inverse modeling of spatial random fields that addresses this complexity. The central elements of MAD are a modular classification of all relevant data and a new concept called "anchors." Data types are classified by the way they relate to the target variable, as either local or nonlocal and as either direct or indirect. Anchors are devices for localization of data: they are used to convert nonlocal, indirect data into local distributions of the target variables. The target of the inversion is the derivation of the joint distribution of the anchors and structural parameters, conditional to all measurements, regardless of scale or frequency of measurement. The structural parameters describe large-scale trends of the target variable fields, whereas the anchors capture local inhomogeneities. Following inversion, the joint distribution of anchors and structural parameters is used for generating random fields of the target variable(s) that are conditioned on the nonlocal, indirect data through their anchor representation. We demonstrate MAD through a detailed case study that assimilates point measurements of the conductivity with head measurements from natural gradient flow. The resulting statistical distributions of the parameters are non-Gaussian. Similarly, the moments of the estimates of the hydraulic head are non-Gaussian. We provide an extended discussion of MAD vis à vis other inversion
Jane Law
2016-01-01
Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate r...
Rodhouse, Thomas J; Irvine, Kathryn M; Vierling, Kerri T; Vierling, Lee A
2011-01-01
Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach. PMID:22163047
Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.
2011-01-01
Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
Gong, Maozhen
Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.
Møller, Jesper; Rasmussen, Jakob Gulddahl
We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model, i.e. each new point is generated given the previous points. Under this mode...
Spatial guilds in the Serengeti food web revealed by a Bayesian group model.
Edward B Baskerville
2011-12-01
Full Text Available Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts.
Jane Law
2016-03-01
Full Text Available Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s for each area; and (spatial weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended.
Møller, Jesper; Rasmussen, Jakob Gulddahl
2012-01-01
We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model. Under this model, the points can be of one of three types: a ‘background...... point’ an ‘independent cluster point’ or a ‘dependent cluster point’. The background and independent cluster points are thought to exhibit ‘complete spatial randomness’, whereas the dependent cluster points are likely to occur close to previous cluster points. We demonstrate the flexibility of the model...
Ball, Jessica Lynne
Light Detection and Ranging (LiDAR) data has shown great potential to estimate spatially explicit forest variables, including above-ground biomass, stem density, tree height, and more. Due to its ability to garner information about the vertical and horizontal structure of forest canopies effectively and efficiently, LiDAR sensors have played a key role in the development of operational air and space-borne instruments capable of gathering information about forest structure at regional, continental, and global scales. Combining LiDAR datasets with field-based validation measurements to build predictive models is becoming an attractive solution to the problem of quantifying and mapping forest structure for private forest land owners and local, state, and federal government entities alike. As with any statistical model using spatially indexed data, the potential to violate modeling assumptions resulting from spatial correlation is high. This thesis explores several different modeling frameworks that aim to accommodate correlation structures within model residuals. The development is motivated using LiDAR and forest inventory datasets. Special attention is paid to estimation and propagation of parameter and model uncertainty through to prediction units. Inference follows a Bayesian statistical paradigm. Results suggest the proposed frameworks help ensure model assumptions are met and prediction performance can be improved by pursuing spatially enabled models.
Thomas J Rodhouse
Full Text Available Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas] population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones" with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
Bayesian spatial modeling of cetacean sightings during a seismic acquisition survey.
Vilela, Raul; Pena, Ursula; Esteban, Ruth; Koemans, Robin
2016-08-15
A visual monitoring of marine mammals was carried out during a seismic acquisition survey performed in waters south of Portugal with the aim of assessing the likelihood of encountering Mysticeti species in this region as well as to determine the impact of the seismic activity upon encounter. Sightings and effort data were assembled with a range of environmental variables at different lags, and a Bayesian site-occupancy modeling approach was used to develop prediction maps and evaluate how species-specific habitat conditions evolved throughout the presence or not of seismic activity. No statistical evidence of a decrease in the sighting rates of Mysticeti by comparison to source activity was found. Indeed, it was found how Mysticeti distribution during the survey period was driven solely by environmental variables. Although further research is needed, possible explanations may include anthropogenic noise habituation and zone of seismic activity coincident with a naturally low density area. PMID:27210556
Baltic sea algae analysis using Bayesian spatial statistics methods
Eglė Baltmiškytė
2013-03-01
Full Text Available Spatial statistics is one of the fields in statistics dealing with spatialy spread data analysis. Recently, Bayes methods are often applied for data statistical analysis. A spatial data model for predicting algae quantity in the Baltic Sea is made and described in this article. Black Carrageen is a dependent variable and depth, sand, pebble, boulders are independent variables in the described model. Two models with different covariation functions (Gaussian and exponential are built to estimate the best model fitting for algae quantity prediction. Unknown model parameters are estimated and Bayesian kriging prediction posterior distribution is computed in OpenBUGS modeling environment by using Bayesian spatial statistics methods.
Maximum Likelihood Bayesian Averaging of Spatial Variability Models in Unsaturated Fractured Tuff
Hydrologic analyses typically rely on a single conceptual-mathematical model. Yet hydrologic environments are open and complex, rendering them prone to multiple interpretations and mathematical descriptions. Adopting only one of these may lead to statistical bias and underestimation of uncertainty. Bayesian Model Averaging (BMA) provides an optimal way to combine the predictions of several competing models and to assess their joint predictive uncertainty. However, it tends to be computationally demanding and relies heavily on prior information about model parameters. We apply a maximum likelihood (ML) version of BMA (MLBMA) to seven alternative variogram models of log air permeability data from single-hole pneumatic injection tests in six boreholes at the Apache Leap Research Site (ALRS) in central Arizona. Unbiased ML estimates of variogram and drift parameters are obtained using Adjoint State Maximum Likelihood Cross Validation in conjunction with Universal Kriging and Generalized L east Squares. Standard information criteria provide an ambiguous ranking of the models, which does not justify selecting one of them and discarding all others as is commonly done in practice. Instead, we eliminate some of the models based on their negligibly small posterior probabilities and use the rest to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. We then average these four projections, and associated kriging variances, using the posterior probability of each model as weight. Finally, we cross-validate the results by eliminating from consideration all data from one borehole at a time, repeating the above process, and comparing the predictive capability of MLBMA with that of each individual model. We find that MLBMA is superior to any individual geostatistical model of log permeability among those we consider at the ALRS
Bayesian default probability models
Andrlíková, Petra
2014-01-01
This paper proposes a methodology for default probability estimation for low default portfolios, where the statistical inference may become troublesome. The author suggests using logistic regression models with the Bayesian estimation of parameters. The piecewise logistic regression model and Box-Cox transformation of credit risk score is used to derive the estimates of probability of default, which extends the work by Neagu et al. (2009). The paper shows that the Bayesian models are more acc...
Koutsourelakis, P S
2008-01-01
This paper proposes a hierarchical, multi-resolution framework for the identification of model parameters and their spatially variability from noisy measurements of the response or output. Such parameters are frequently encountered in PDE-based models and correspond to quantities such as density or pressure fields, elasto-plastic moduli and internal variables in solid mechanics, conductivity fields in heat diffusion problems, permeability fields in fluid flow through porous media etc. The proposed model has all the advantages of traditional Bayesian formulations such as the ability to produce measures of confidence for the inferences made and providing not only predictive estimates but also quantitative measures of the predictive uncertainty. In contrast to existing approaches it utilizes a parsimonious, non-parametric formulation that favors sparse representations and whose complexity can be determined from the data. The proposed framework in non-intrusive and makes use of a sequence of forward solvers opera...
Farid Zayeri; Masoud Salehi; Hasan Pirhosseini
2011-01-01
Objective:To present the geographical map of malaria and identify some of the important environmental factors of this disease in Sistan and Baluchistan province, Iran.Methods:We used the registered malaria data to compute the standard incidence rates (SIRs) of malaria in different areas of Sistan and Baluchistan province for a nine-year period (from 2001 to 2009). Statistical analyses consisted of two different parts: geographical mapping of malaria incidence rates, and modeling the environmental factors. The empirical Bayesian estimates of malaria SIRs were utilized for geographical mapping of malaria and a Poisson random effects model was used for assessing the effect of environmental factors on malaria SIRs.Results:In general, 64 926 new cases of malaria were registered in Sistan and Baluchistan Province from 2001 to 2009. Among them, 42 695 patients (65.8%) were male and 22 231 patients (34.2%) were female. Modeling the environmental factors showed that malaria incidence rates had positive relationship with humidity, elevation, average minimum temperature and average maximum temperature, while rainfall had negative effect on malaria SIRs in this province.Conclusions:The results of the present study reveals that malaria is still a serious health problem in Sistan and Baluchistan province, Iran. Geographical map and related environmental factors of malaria can help the health policy makers to intervene in high risk areas more efficiently and allocate the resources in a proper manner.
Mueller, Julie M.; Loomis, John B.
2010-01-01
The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedo...
Lesage, James P.; Vance, Colin; Chih, Yao-Yu
2016-01-01
We apply a heterogenous coefficient spatial autoregressive panel model from Aquaro, Bailey and Pesaran (2015) to explore competition/cooperation by Berlin fueling stations in setting prices for diesel and E5 fuel. Unlike the maximum likelihood estimation method set forth by Aquaro, Bailey and Pesaran (2015), we rely on a Markov Chain Monte Carlo (MCMC) estimation methodology. MCMC estimates as applied here with non-informative priors will produce estimates equal to those from maximum likeliho...
A Bayesian spatial assimilation scheme for snow coverage observations in a gridded snow model
Kolberg, S.; Rue, H.; Gottschalk, L.
2006-01-01
A method for assimilating remotely sensed snow covered area (SCA) into the snow subroutine of a grid distributed precipitation-runoff model (PRM) is presented. The PRM is assumed to simulate the snow state in each grid cell by a snow depletion curve (SDC), which relates that cell's SCA to its snow cover mass balance. The assimilation is based on Bayes' theorem, which requires a joint prior distribution of the SDC variables in all the grid cells. In this paper we propose a spatial model for th...
A Bayesian spatial assimilation scheme for snow coverage observations in a gridded snow model
S. Kolberg
2006-01-01
Full Text Available A method for assimilating remotely sensed snow covered area (SCA into the snow subroutine of a grid distributed precipitation-runoff model (PRM is presented. The PRM is assumed to simulate the snow state in each grid cell by a snow depletion curve (SDC, which relates that cell's SCA to its snow cover mass balance. The assimilation is based on Bayes' theorem, which requires a joint prior distribution of the SDC variables in all the grid cells. In this paper we propose a spatial model for this prior distribution, and include similarities and dependencies among the grid cells. Used to represent the PRM simulated snow cover state, our joint prior model regards two elevation gradients and a degree-day factor as global variables, rather than describing their effect separately for each cell. This transformation results in smooth normalised surfaces for the two related mass balance variables, supporting a strong inter-cell dependency in their joint prior model. The global features and spatial interdependency in the prior model cause each SCA observation to provide information for many grid cells. The spatial approach similarly facilitates the utilisation of observed discharge. Assimilation of SCA data using the proposed spatial model is evaluated in a 2400 km2 mountainous region in central Norway (61° N, 9° E, based on two Landsat 7 ETM+ images generalized to 1 km2 resolution. An image acquired on 11 May, a week before the peak flood, removes 78% of the variance in the remaining snow storage. Even an image from 4 May, less than a week after the melt onset, reduces this variance by 53%. These results are largely improved compared to a cell-by-cell independent assimilation routine previously reported. Including observed discharge in the updating information improves the 4 May results, but has weak effect on 11 May. Estimated elevation gradients are shown to be sensitive to informational deficits occurring at high altitude, where snowmelt has not started
Beatriz Martínez-López; Tsviatko Alexandrov; Lina Mur; Fernando Sánchez-Vizcaíno; Sánchez-Vizcaíno, José M.
2014-01-01
The spatial pattern and epidemiology of backyard pig farming and other low bio-security pig production systems and their role in the occurrence of classical swine fever (CSF) is described and evaluated. A spatial Bayesian model was used to explore the risk factors, including human demographics, socioeconomic and environmental factors. The analyses were performed for Bulgaria, which has a large number of backyard farms (96% of all pig farms in the country are classified as backyard farms), and...
Balbi, S.; Villa, F.; Mojtahed, V.; Hegetschweiler, K. T.; Giupponi, C.
2015-10-01
This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of: (1) likelihood of non-fatal physical injury; (2) likelihood of post-traumatic stress disorder; (3) likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland) including the city of Zurich. The model is used to estimate the benefits of improving an existing Early Warning System, taking into account the reliability, lead-time and scope (i.e. coverage of people reached by the warning). Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event: about 75 % of fatalities, 25 % of injuries and 18 % of post-traumatic stress disorders could be avoided.
Balbi, Stefano; Villa, Ferdinando; Mojtahed, Vahid; Hegetschweiler, Karin Tessa; Giupponi, Carlo
2016-06-01
This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; and produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of (1) likelihood of non-fatal physical injury, (2) likelihood of post-traumatic stress disorder and (3) likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland) including the city of Zurich. The model is used to estimate the effect of improving an existing early warning system, taking into account the reliability, lead time and scope (i.e., coverage of people reached by the warning). Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event.
Hideaki Kawaguchi
Full Text Available Regional disparity in suicide rates is a serious problem worldwide. One possible cause is unequal distribution of the health workforce, especially psychiatrists. Research about the association between regional physician numbers and suicide rates is therefore important but studies are rare. The objective of this study was to evaluate the association between physician numbers and suicide rates in Japan, by municipality.The study included all the municipalities in Japan (n = 1,896. We estimated smoothed standardized mortality ratios of suicide rates for each municipality and evaluated the association between health workforce and suicide rates using a hierarchical Bayesian model accounting for spatially correlated random effects, a conditional autoregressive model. We assumed a Poisson distribution for the observed number of suicides and set the expected number of suicides as the offset variable. The explanatory variables were numbers of physicians, a binary variable for the presence of psychiatrists, and social covariates.After adjustment for socioeconomic factors, suicide rates in municipalities that had at least one psychiatrist were lower than those in the other municipalities. There was, however, a positive and statistically significant association between the number of physicians and suicide rates.Suicide rates in municipalities that had at least one psychiatrist were lower than those in other municipalities, but the number of physicians was positively and significantly related with suicide rates. To improve the regional disparity in suicide rates, the government should encourage psychiatrists to participate in community-based suicide prevention programs and to settle in municipalities that currently have no psychiatrists. The government and other stakeholders should also construct better networks between psychiatrists and non-psychiatrists to support sharing of information for suicide prevention.
Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary
2013-06-01
Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the
Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the
Congdon, Peter
2014-01-01
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU
Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data
Montagna, Silvia; Wager, Tor; Feldman-Barrett, Lisa; Timothy D. Johnson; Nichols, Thomas E.
2016-01-01
Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-based Meta-analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously...
Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.
2013-01-01
In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.
Du, Qingyun; Zhang, Mingxiao; Li, Yayan; Luan, Hui; Liang, Shi; Ren, Fu
2016-01-01
Incorporating the information of hypertension, this paper applies Bayesian multi-disease analysis to model the spatial patterns of Ischemic Heart Disease (IHD) risks. Patterns of harmful alcohol intake (HAI) and overweight/obesity are also modelled as they are common risk factors contributing to both IHD and hypertension. The hospitalization data of IHD and hypertension in 2012 were analyzed with three Bayesian multi-disease models at the sub-district level of Shenzhen. Results revealed that the IHD high-risk cluster shifted slightly north-eastward compared with the IHD Standardized Hospitalization Ratio (SHR). Spatial variations of overweight/obesity and HAI were found to contribute most to the IHD patterns. Identified patterns of IHD risk would benefit IHD integrated prevention. Spatial patterns of overweight/obesity and HAI could supplement the current disease surveillance system by providing information about small-area level risk factors, and thus benefit integrated prevention of related chronic diseases. Middle southern Shenzhen, where high risk of IHD, overweight/obesity, and HAI are present, should be prioritized for interventions, including alcohol control, innovative healthy diet toolkit distribution, insurance system revision, and community-based chronic disease intervention. Related health resource planning is also suggested to focus on these areas first. PMID:27104551
Bayesian mixture models for Poisson astronomical images
Guglielmetti, Fabrizia; Fischer, Rainer; Dose, Volker
2012-01-01
Astronomical images in the Poisson regime are typically characterized by a spatially varying cosmic background, large variety of source morphologies and intensities, data incompleteness, steep gradients in the data, and few photon counts per pixel. The Background-Source separation technique is developed with the aim to detect faint and extended sources in astronomical images characterized by Poisson statistics. The technique employs Bayesian mixture models to reliably detect the background as...
Bayesian Model Averaging for Propensity Score Analysis
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Bayesian modeling using WinBUGS
Ntzoufras, Ioannis
2009-01-01
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Bayesian kinematic earthquake source models
Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.
2009-12-01
Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high
Beatriz Martínez-López
2014-05-01
Full Text Available The spatial pattern and epidemiology of backyard pig farming and other low bio-security pig production systems and their role in the occurrence of classical swine fever (CSF is described and evaluated. A spatial Bayesian model was used to explore the risk factors, including human demographics, socioeconomic and environmental factors. The analyses were performed for Bulgaria, which has a large number of backyard farms (96% of all pig farms in the country are classified as backyard farms, and it is one of the countries for which both backyard pig and farm counts were available. Results reveal that the high-risk areas are typically concentrated in areas with small family farms, high numbers of outgoing pig shipments and low levels of personal consumption (i.e. economically deprived areas. Identification of risk factors and high-risk areas for CSF will allow to targeting risk-based surveillance strategies leading to prevention, control and, ultimately, elimination of the disease in Bulgaria and other countries with similar socio-epidemiological conditions.
A Bayesian Nonparametric IRT Model
Karabatsos, George
2015-01-01
This paper introduces a flexible Bayesian nonparametric Item Response Theory (IRT) model, which applies to dichotomous or polytomous item responses, and which can apply to either unidimensional or multidimensional scaling. This is an infinite-mixture IRT model, with person ability and item difficulty parameters, and with a random intercept parameter that is assigned a mixing distribution, with mixing weights a probit function of other person and item parameters. As a result of its flexibility...
Bayesian Stable Isotope Mixing Models
Parnell, Andrew C.; Phillips, Donald L.; Bearhop, Stuart; Semmens, Brice X.; Ward, Eric J.; Moore, Jonathan W.; Andrew L Jackson; Inger, Richard
2012-01-01
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixture. The most widely used application is quantifying the diet of organisms based on the food sources they have been observed to consume. At the centre of the multivariate statistical model we propose is a compositional m...
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the mo
Hejun KANG; Shelley M.ALEXANDER
2009-01-01
We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS) -based approaches: logistic regression and Akaike's Information Criterion (AIC),Multiple Criteria Evaluation (MCE),and Bayesian Analysis (specifically Dempster-Shafer theory). We used lynx Lynx canadensis as our focal species,and developed our environment relationship model using track data collected in Banff National Park,Alberta,Canada,during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy),the failure to predict a species where it occurred (omission error) and the prediction of presence where there was absence (commission error). Our overall accuracy showed the logistic regression approach was the most accurate (74.51% ). The multiple criteria evaluation was intermediate (39.22%),while the Dempster-Shafer (D-S) theory model was the poorest (29.90%). However,omission and commission error tell us a different story: logistic regression had the lowest commission error,while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least,the logistic regression model is optimal. However,where sample size is small or the species is very rare,it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer) that would over-predict,protect more sites,and thereby minimize the risk of missing critical habitat in conservation plans.
Lawson, Andrew B
2002-01-01
Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...
Bayesian variable order Markov models: Towards Bayesian predictive state representations
C. Dimitrakakis
2009-01-01
We present a Bayesian variable order Markov model that shares many similarities with predictive state representations. The resulting models are compact and much easier to specify and learn than classical predictive state representations. Moreover, we show that they significantly outperform a more st
Nonparametric Bayesian Modeling of Complex Networks
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...... for complex networks can be derived and point out relevant literature....
Maria Alejandra Chadid; Dávalos, Liliana M.; Jorge Molina; Dolors Armenteras
2015-01-01
The loss of tropical forests has continued in recent decades despite wide recognition of their importance to maintaining biodiversity. Here, we examine the conversion of forests to pastures and coca crops (illicit activity) on the San Lucas Mountain Range, Colombia for 2002–2007 and 2007–2010. Land use maps and biophysical variables were used as inputs to generate land use and cover change (LUCC) models using the DINAMICA EGO software. These analyses revealed a dramatic acceleration of the pa...
A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data
DeSarbo, WS; Kim, Y; Fong, D
1999-01-01
We present a new Bayesian formulation of a vector multidimensional scaling procedure for the spatial analysis of binary choice data. The Gibbs sampler is gainfully employed to estimate the posterior distribution of the specified scalar products, bilinear model parameters. The computational procedure
Maria Alejandra Chadid
2015-10-01
Full Text Available The loss of tropical forests has continued in recent decades despite wide recognition of their importance to maintaining biodiversity. Here, we examine the conversion of forests to pastures and coca crops (illicit activity on the San Lucas Mountain Range, Colombia for 2002–2007 and 2007–2010. Land use maps and biophysical variables were used as inputs to generate land use and cover change (LUCC models using the DINAMICA EGO software. These analyses revealed a dramatic acceleration of the pace of deforestation in the region, with rates of conversion from forest to pasture doubling from the first to the second period. Altitude, distance to other crops, and distance to rivers were the primary drivers of deforestation. The influence of these drivers, however, differed markedly depending on whether coca cultivation or pastures replaced forest. Conversion to coca was more probable farther from other crops and from settlements. In contrast, proximity to other crops and to settlements increased conversion to pasture. These relationships highlight the different roles of coca and pastures in forest loss, with coca tending to open up new forest frontiers, and pastures tending to consolidate agricultural expansion and urban influence. Large differences between LUCC processes for each period suggest highly dynamic changes, likely associated with shifting underlying causes of deforestation. These changes may relate to shifts in demand for illicit crops, land, or mining products; however, the data to test these hypotheses are currently lacking. More frequent and detailed monitoring is required to guide actions to decrease the loss of forest in this highly vulnerable biodiversity hotspot in the Northern Andes.
A Bayesian approach to model uncertainty
A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given
Computational methods for Bayesian model choice
Robert, Christian P.; Wraith, Darren
2009-01-01
In this note, we shortly survey some recent approaches on the approximation of the Bayes factor used in Bayesian hypothesis testing and in Bayesian model choice. In particular, we reassess importance sampling, harmonic mean sampling, and nested sampling from a unified perspective.
Gutiérrez, Jose Manuel; San Martín, Daniel; Herrera, Sixto; Santiago Cofiño, Antonio
2016-04-01
The growing availability of spatial datasets (observations, reanalysis, and regional and global climate models) demands efficient multivariate spatial modeling techniques for many problems of interest (e.g. teleconnection analysis, multi-site downscaling, etc.). Complex networks have been recently applied in this context using graphs built from pairwise correlations between the different stations (or grid boxes) forming the dataset. However, this analysis does not take into account the full dependence structure underlying the data, gien by all possible marginal and conditional dependencies among the stations, and does not allow a probabilistic analysis of the dataset. In this talk we introduce Bayesian networks as an alternative multivariate analysis and modeling data-driven technique which allows building a joint probability distribution of the stations including all relevant dependencies in the dataset. Bayesian networks is a sound machine learning technique using a graph to 1) encode the main dependencies among the variables and 2) to obtain a factorization of the joint probability distribution of the stations given by a reduced number of parameters. For a particular problem, the resulting graph provides a qualitative analysis of the spatial relationships in the dataset (alternative to complex network analysis), and the resulting model allows for a probabilistic analysis of the dataset. Bayesian networks have been widely applied in many fields, but their use in climate problems is hampered by the large number of variables (stations) involved in this field, since the complexity of the existing algorithms to learn from data the graphical structure grows nonlinearly with the number of variables. In this contribution we present a modified local learning algorithm for Bayesian networks adapted to this problem, which allows inferring the graphical structure for thousands of stations (from observations) and/or gridboxes (from model simulations) thus providing new
Bayesian Models of Brain and Behaviour
Penny, William
2012-01-01
This paper presents a review of Bayesian models of brain and behaviour. We first review the basic principles of Bayesian inference. This is followed by descriptions of sampling and variational methods for approximate inference, and forward and backward recursions in time for inference in dynamical models. The review of behavioural models covers work in visual processing, sensory integration, sensorimotor integration, and collective decision making. The review of brain models covers a range of...
Robertson, D. E.; Wang, Q. J.; McAllister, A. T.; Abuzar, M.; Malano, H. M.; Etchells, T.
2009-02-01
Catchment managers are interested in understanding impacts of the management options they promote at both farm and regional scales. In this third paper of this series, we use Inteca-Farm, a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia, to assess the current condition of management outcome measures and the impact of historical and future management intervention. To help overcome difficulties in comprehending modeling results that are expressed as probability distributions, to capture uncertainties, we introduce methods to spatially display and compare the output from Bayesian network models and to use these methods to compare model predictions for three management scenarios. Model predictions suggest that management intervention has made a substantial improvement to the condition of management outcome measures and that further improvements are possible. The results highlight that the management impacts are spatially variable, which demonstrates that farm modeling can provide valuable evidence in substantiating the impact of catchment management intervention.
Bayesian mixture models for Poisson astronomical images
Guglielmetti, Fabrizia; Dose, Volker
2012-01-01
Astronomical images in the Poisson regime are typically characterized by a spatially varying cosmic background, large variety of source morphologies and intensities, data incompleteness, steep gradients in the data, and few photon counts per pixel. The Background-Source separation technique is developed with the aim to detect faint and extended sources in astronomical images characterized by Poisson statistics. The technique employs Bayesian mixture models to reliably detect the background as well as the sources with their respective uncertainties. Background estimation and source detection is achieved in a single algorithm. A large variety of source morphologies is revealed. The technique is applied in the X-ray part of the electromagnetic spectrum on ROSAT and Chandra data sets and it is under a feasibility study for the forthcoming eROSITA mission.
Statistical modelling of railway track geometry degradation using hierarchical Bayesian models
Andrade, António Ramos; Teixeira, P. Fonseca
2015-01-01
Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated c...
A Bayesian observer model constrained by efficient coding can explain 'anti-Bayesian' percepts.
Wei, Xue-Xin; Stocker, Alan A
2015-10-01
Bayesian observer models provide a principled account of the fact that our perception of the world rarely matches physical reality. The standard explanation is that our percepts are biased toward our prior beliefs. However, reported psychophysical data suggest that this view may be simplistic. We propose a new model formulation based on efficient coding that is fully specified for any given natural stimulus distribution. The model makes two new and seemingly anti-Bayesian predictions. First, it predicts that perception is often biased away from an observer's prior beliefs. Second, it predicts that stimulus uncertainty differentially affects perceptual bias depending on whether the uncertainty is induced by internal or external noise. We found that both model predictions match reported perceptual biases in perceived visual orientation and spatial frequency, and were able to explain data that have not been explained before. The model is general and should prove applicable to other perceptual variables and tasks. PMID:26343249
Bayesian models a statistical primer for ecologists
Hobbs, N Thompson
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili
A genetic and spatial Bayesian analysis of mastitis resistance
Frigessi Arnoldo; Sæbø Solve
2004-01-01
Abstract A nationwide health card recording system for dairy cattle was introduced in Norway in 1975 (the Norwegian Cattle Health Services). The data base holds information on mastitis occurrences on an individual cow basis. A reduction in mastitis frequency across the population is desired, and for this purpose risk factors are investigated. In this paper a Bayesian proportional hazards model is used for modelling the time to first veterinary treatment of clinical mastitis, including both ge...
A genetic and spatial Bayesian analysis of mastitis resistance
Sæbø, Solve; Frigessi, Arnoldo
2004-01-01
A nationwide health card recording system for dairy cattle was introduced in Norway in 1975 (the Norwegian Cattle Health Services). The data base holds information on mastitis occurrences on an individual cow basis. A reduction in mastitis frequency across the population is desired, and for this purpose risk factors are investigated. In this paper a Bayesian proportional hazards model is used for modelling the time to first veterinary treatment of clinical mastitis, including both genetic and...
Bayesian Analysis of Multivariate Probit Models
Siddhartha Chib; Edward Greenberg
1996-01-01
This paper provides a unified simulation-based Bayesian and non-Bayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods, and maximum likelihood estimates are obtained by a Markov chain Monte Carlo version of the E-M algorithm. Computation of Bayes factors from the simulation output is also considered. The methods are applied to a bivariate data set, to a 534-subject, four-year longitudinal dat...
Bayesian Network Models for Adaptive Testing
Plajner, Martin; Vomlel, Jiří
Achen: Sun SITE Central Europe, 2016 - (Agosta, J.; Carvalho, R.), s. 24-33. (CEUR Workshop Proceedings. Vol 1565). ISSN 1613-0073. [The Twelfth UAI Bayesian Modeling Applications Workshop (BMAW 2015). Amsterdam (NL), 16.07.2015] R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Bayesian networks * Computerized adaptive testing Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2016/MTR/plajner-0458062.pdf
On Bayesian Nonparametric Continuous Time Series Models
Karabatsos, George; Walker, Stephen G.
2013-01-01
This paper is a note on the use of Bayesian nonparametric mixture models for continuous time series. We identify a key requirement for such models, and then establish that there is a single type of model which meets this requirement. As it turns out, the model is well known in multiple change-point problems.
Bayesian semiparametric dynamic Nelson-Siegel model
C. Cakmakli
2011-01-01
This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model where the density of the yield curve factors and thereby the density of the yields are estimated along with other model parameters. This is accomplished by modeling the error distributions of the factors according to a Diric
Bayesian calibration of car-following models
Van Hinsbergen, C.P.IJ.; Van Lint, H.W.C.; Hoogendoorn, S.P.; Van Zuylen, H.J.
2010-01-01
Recent research has revealed that there exist large inter-driver differences in car-following behavior such that different car-following models may apply to different drivers. This study applies Bayesian techniques to the calibration of car-following models, where prior distributions on each model p
Bayesian Semiparametric Modeling of Realized Covariance Matrices
Jin, Xin; John M Maheu
2014-01-01
This paper introduces several new Bayesian nonparametric models suitable for capturing the unknown conditional distribution of realized covariance (RCOV) matrices. Existing dynamic Wishart models are extended to countably infinite mixture models of Wishart and inverse-Wishart distributions. In addition to mixture models with constant weights we propose models with time-varying weights to capture time dependence in the unknown distribution. Each of our models can be combined with returns...
Complex Bayesian models: construction, and sampling strategies
Huston, Carolyn Marie
2011-01-01
Bayesian models are useful tools for realistically modeling processes occurring in the real world. In particular, we consider models for spatio-temporal data where the response vector is compositional, ie. has components that sum-to-one. A unique multivariate conditional hierarchical model (MVCAR) is proposed. Statistical methods for MVCAR models are well developed and we extend these tools for use with a discrete compositional response. We harness the advantages of an MVCAR model when the re...
Bayesian Approach to Neuro-Rough Models for Modelling HIV
Marwala, Tshilidzi
2007-01-01
This paper proposes a new neuro-rough model for modelling the risk of HIV from demographic data. The model is formulated using Bayesian framework and trained using Markov Chain Monte Carlo method and Metropolis criterion. When the model was tested to estimate the risk of HIV infection given the demographic data it was found to give the accuracy of 62% as opposed to 58% obtained from a Bayesian formulated rough set model trained using Markov chain Monte Carlo method and 62% obtained from a Bayesian formulated multi-layered perceptron (MLP) model trained using hybrid Monte. The proposed model is able to combine the accuracy of the Bayesian MLP model and the transparency of Bayesian rough set model.
Survey of Bayesian Models for Modelling of Stochastic Temporal Processes
Ng, B
2006-10-12
This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.
Spatial correlation in Bayesian logistic regression with misclassification
Bihrmann, Kristine; Toft, Nils; Nielsen, Søren Saxmose;
2014-01-01
Standard logistic regression assumes that the outcome is measured perfectly. In practice, this is often not the case, which could lead to biased estimates if not accounted for. This study presents Bayesian logistic regression with adjustment for misclassification of the outcome applied to data with....... Parameters were estimated by Markov Chain Monte Carlo methods, using slice sampling to improve convergence. The results demonstrated that adjustment for misclassification must be included to produce unbiased regression estimates. With strong correlation the ICAR model performed best. With weak or moderate...
Kai Cao
2016-05-01
Full Text Available Objective: To explore the spatial-temporal interaction effect within a Bayesian framework and to probe the ecological influential factors for tuberculosis. Methods: Six different statistical models containing parameters of time, space, spatial-temporal interaction and their combination were constructed based on a Bayesian framework. The optimum model was selected according to the deviance information criterion (DIC value. Coefficients of climate variables were then estimated using the best fitting model. Results: The model containing spatial-temporal interaction parameter was the best fitting one, with the smallest DIC value (−4,508,660. Ecological analysis results showed the relative risks (RRs of average temperature, rainfall, wind speed, humidity, and air pressure were 1.00324 (95% CI, 1.00150–1.00550, 1.01010 (95% CI, 1.01007–1.01013, 0.83518 (95% CI, 0.93732–0.96138, 0.97496 (95% CI, 0.97181–1.01386, and 1.01007 (95% CI, 1.01003–1.01011, respectively. Conclusions: The spatial-temporal interaction was statistically meaningful and the prevalence of tuberculosis was influenced by the time and space interaction effect. Average temperature, rainfall, wind speed, and air pressure influenced tuberculosis. Average humidity had no influence on tuberculosis.
Baltic sea algae analysis using Bayesian spatial statistics methods
Eglė Baltmiškytė; Kęstutis Dučinskas
2013-01-01
Spatial statistics is one of the fields in statistics dealing with spatialy spread data analysis. Recently, Bayes methods are often applied for data statistical analysis. A spatial data model for predicting algae quantity in the Baltic Sea is made and described in this article. Black Carrageen is a dependent variable and depth, sand, pebble, boulders are independent variables in the described model. Two models with different covariation functions (Gaussian and exponential) are built to estima...
Bayesian modeling and classification of neural signals
Lewicki, Michael S.
1994-01-01
Signal processing and classification algorithms often have limited applicability resulting from an inaccurate model of the signal's underlying structure. We present here an efficient, Bayesian algorithm for modeling a signal composed of the superposition of brief, Poisson-distributed functions. This methodology is applied to the specific problem of modeling and classifying extracellular neural waveforms which are composed of a superposition of an unknown number of action potentials CAPs). ...
Spatial Distribution of TDS in Drinking Water of Tehsil Jampur using Ordinary and Bayesian Kriging
Maqsood Ahmad
2015-09-01
Full Text Available In this research article, level of TDS in groundwater with spatial domain Tehsil Jampur, Pakistan is considered as response variable. Its enhanced level in drinking water produces both the human health concerns and aquatic ecological impacts. Its high value causes several diseases like bilestone, joints stiffness, obstruction of blood vessel and kidney stones. Some Geostatistical techniques were used to interpolate TDS at unmonitored locations of Tehsil Jampur. Four estimation techniques were comparatively studied for fitting well known matern spatial covariance models. Model based Ordinary Kriging (OK and Bayesian Kriging (BK were used for spatial interpolation at unmonitored locations. Cross validation statistic was used to select best interpolation technique with reduced RMSPE. Prediction maps were generated for visual presentation of interpolated sited for both techniques. This study revealed that among thirty observed locations, 56% water samples exceed the maximum permissible limit (1000g/ml of TDS as described by WHO
Distributed Bayesian Networks for User Modeling
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang;
2006-01-01
The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such...... adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... mechanism efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....
Constrained bayesian inference of project performance models
Sunmola, Funlade
2013-01-01
Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in ...
Bayesian Network Based XP Process Modelling
Mohamed Abouelela
2010-07-01
Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.
A Bayesian Modelling of Wildfires in Portugal
Silva, Giovani L.; Soares, Paulo; Marques, Susete; Dias, Inês M.; Oliveira, Manuela M.; Borges, Guilherme J.
2015-01-01
In the last decade wildfires became a serious problem in Portugal due to different issues such as climatic characteristics and nature of Portuguese forest. In order to analyse wildfire data, we employ beta regression for modelling the proportion of burned forest area, under a Bayesian perspective. Our main goal is to find out fire risk factors that influence the proportion of area burned and what may make a forest type susceptible or resistant to fire. Then, we analyse wildfire...
Market Segmentation Using Bayesian Model Based Clustering
Van Hattum, P.
2009-01-01
This dissertation deals with two basic problems in marketing, that are market segmentation, which is the grouping of persons who share common aspects, and market targeting, which is focusing your marketing efforts on one or more attractive market segments. For the grouping of persons who share common aspects a Bayesian model based clustering approach is proposed such that it can be applied to data sets that are specifically used for market segmentation. The cluster algorithm can handle very l...
Centralized Bayesian reliability modelling with sensor networks
Dedecius, Kamil; Sečkárová, Vladimíra
2013-01-01
Roč. 19, č. 5 (2013), s. 471-482. ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant ostatní: GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf
A Bayesian semiparametric approach with change points for spatial ordinal data.
Cai, Bo; Lawson, Andrew B; McDermott, Suzanne; Aelion, C Marjorie
2016-04-01
The change-point model has drawn much attention over the past few decades. It can accommodate the jump process, which allows for changes of the effects before and after the change point. Intellectual disability is a long-term disability that impacts performance in cognitive aspects of life and usually has its onset prior to birth. Among many potential causes, soil chemical exposures are associated with the risk of intellectual disability in children. Motivated by a study for soil metal effects on intellectual disability, we propose a Bayesian hierarchical spatial model with change points for spatial ordinal data to detect the unknown threshold effects. The spatial continuous latent variable underlying the spatial ordinal outcome is modeled by the multivariate Gaussian process, which captures spatial variation and is centered at the nonlinear mean. The mean function is modeled by using the penalized smoothing splines for some covariates with unknown change points and the linear regression for the others. Some identifiability constraints are used to define the latent variable. A simulation example is presented to evaluate the performance of the proposed approach with the competing models. A retrospective cohort study for intellectual disability in South Carolina is used as an illustration. PMID:23070600
Bayesian Inference of a Multivariate Regression Model
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
Bayesian regression model for seasonal forecast of precipitation over Korea
Jo, Seongil; Lim, Yaeji; Lee, Jaeyong; Kang, Hyun-Suk; Oh, Hee-Seok
2012-08-01
In this paper, we apply three different Bayesian methods to the seasonal forecasting of the precipitation in a region around Korea (32.5°N-42.5°N, 122.5°E-132.5°E). We focus on the precipitation of summer season (June-July-August; JJA) for the period of 1979-2007 using the precipitation produced by the Global Data Assimilation and Prediction System (GDAPS) as predictors. Through cross-validation, we demonstrate improvement for seasonal forecast of precipitation in terms of root mean squared error (RMSE) and linear error in probability space score (LEPS). The proposed methods yield RMSE of 1.09 and LEPS of 0.31 between the predicted and observed precipitations, while the prediction using GDAPS output only produces RMSE of 1.20 and LEPS of 0.33 for CPC Merged Analyzed Precipitation (CMAP) data. For station-measured precipitation data, the RMSE and LEPS of the proposed Bayesian methods are 0.53 and 0.29, while GDAPS output is 0.66 and 0.33, respectively. The methods seem to capture the spatial pattern of the observed precipitation. The Bayesian paradigm incorporates the model uncertainty as an integral part of modeling in a natural way. We provide a probabilistic forecast integrating model uncertainty.
Bayesian Kinematic Finite Fault Source Models (Invited)
Minson, S. E.; Simons, M.; Beck, J. L.
2010-12-01
Finite fault earthquake source models are inherently under-determined: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are only limited observations at the Earth's surface. Traditional inverse techniques rely on model constraints and regularization to generate one model from the possibly broad space of all possible solutions. However, Bayesian methods allow us to determine the ensemble of all possible source models which are consistent with the data and our a priori assumptions about the physics of the earthquake source. Until now, Bayesian techniques have been of limited utility because they are computationally intractable for problems with as many free parameters as kinematic finite fault models. We have developed a methodology called Cascading Adaptive Tempered Metropolis In Parallel (CATMIP) which allows us to sample very high-dimensional problems in a parallel computing framework. The CATMIP algorithm combines elements of simulated annealing and genetic algorithms with the Metropolis algorithm to dynamically optimize the algorithm's efficiency as it runs. We will present synthetic performance tests of finite fault models made with this methodology as well as a kinematic source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. This earthquake was well recorded by multiple ascending and descending interferograms and a network of high-rate GPS stations whose records can be used as near-field seismograms.
Bayesian Estimation of a Mixture Model
Ilhem Merah; Assia Chadli
2015-01-01
We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010). This one is a mixture of a Gamma distribution G(2, (1/θ)) and a new distribution L(θ). We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980) and Tierney and Kadane (1986). Usin...
Bayesian mixture models for partially verified data
Kostoulas, Polychronis; Browne, William J.; Nielsen, Søren Saxmose;
2013-01-01
, where a perfect reference test does not exist. However, their discriminatory ability diminishes with increasing overlap of the distributions and with increasing number of latent infection stages to be discriminated. We provide a method that uses partially verified data, with known infection status for......Bayesian mixture models can be used to discriminate between the distributions of continuous test responses for different infection stages. These models are particularly useful in case of chronic infections with a long latent period, like Mycobacterium avium subsp. paratuberculosis (MAP) infection...
A Nonparametric Bayesian Model for Nested Clustering.
Lee, Juhee; Müller, Peter; Zhu, Yitan; Ji, Yuan
2016-01-01
We propose a nonparametric Bayesian model for clustering where clusters of experimental units are determined by a shared pattern of clustering another set of experimental units. The proposed model is motivated by the analysis of protein activation data, where we cluster proteins such that all proteins in one cluster give rise to the same clustering of patients. That is, we define clusters of proteins by the way that patients group with respect to the corresponding protein activations. This is in contrast to (almost) all currently available models that use shared parameters in the sampling model to define clusters. This includes in particular model based clustering, Dirichlet process mixtures, product partition models, and more. We show results for two typical biostatistical inference problems that give rise to clustering. PMID:26519174
Bayesian Discovery of Linear Acyclic Causal Models
Hoyer, Patrik O
2012-01-01
Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-based methods (Geiger and Heckerman, 1994) (which assign relative scores to the equivalence classes) are available. On the contrary, all current methods able to utilize non-Gaussianity in the data (Shimizu et al., 2006; Hoyer et al., 2008) always return only a single graph or a single equivalence class, and so are fundamentally unable to express the degree of certainty attached to that output. In this paper we develop a Bayesian score-based approach able to take advantage of non-Gaussianity when estimating linear acyclic causal models, and we empirically demonstrate that, at least on very modest size networks, its accur...
Rasheda Arman Chowdhury
Full Text Available Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG or Magneto-EncephaloGraphy (MEG signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i brain activity may be modeled using cortical parcels and (ii brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM and the Hierarchical Bayesian (HB source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2 to 30 cm(2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.
Adversarial life testing: A Bayesian negotiation model
Life testing is a procedure intended for facilitating the process of making decisions in the context of industrial reliability. On the other hand, negotiation is a process of making joint decisions that has one of its main foundations in decision theory. A Bayesian sequential model of negotiation in the context of adversarial life testing is proposed. This model considers a general setting for which a manufacturer offers a product batch to a consumer. It is assumed that the reliability of the product is measured in terms of its lifetime. Furthermore, both the manufacturer and the consumer have to use their own information with respect to the quality of the product. Under these assumptions, two situations can be analyzed. For both of them, the main aim is to accept or reject the product batch based on the product reliability. This topic is related to a reliability demonstration problem. The procedure is applied to a class of distributions that belong to the exponential family. Thus, a unified framework addressing the main topics in the considered Bayesian model is presented. An illustrative example shows that the proposed technique can be easily applied in practice
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Kang, Su Yun; Cramb, Susanna M; White, Nicole M; Ball, Stephen J; Mengersen, Kerrie L
2016-01-01
Disease maps are effective tools for explaining and predicting patterns of disease outcomes across geographical space, identifying areas of potentially elevated risk, and formulating and validating aetiological hypotheses for a disease. Bayesian models have become a standard approach to disease mapping in recent decades. This article aims to provide a basic understanding of the key concepts involved in Bayesian disease mapping methods for areal data. It is anticipated that this will help in interpretation of published maps, and provide a useful starting point for anyone interested in running disease mapping methods for areal data. The article provides detailed motivation and descriptions on disease mapping methods by explaining the concepts, defining the technical terms, and illustrating the utility of disease mapping for epidemiological research by demonstrating various ways of visualising model outputs using a case study. The target audience includes spatial scientists in health and other fields, policy or decision makers, health geographers, spatial analysts, public health professionals, and epidemiologists. PMID:27245803
Bayesian Estimation of a Mixture Model
Ilhem Merah
2015-05-01
Full Text Available We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010. This one is a mixture of a Gamma distribution G(2, (1/θ and a new distribution L(θ. We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980 and Tierney and Kadane (1986. Using a statistical sample of 60 failure data relative to a technical device, we illustrate the results derived. Based on a simulation study, comparisons are made between these two methods and the maximum likelihood method of this two parameters model.
The Bayesian Modelling Of Inflation Rate In Romania
Mihaela Simionescu
2014-01-01
Bayesian econometrics knew a considerable increase in popularity in the last years, joining the interests of various groups of researchers in economic sciences and additional ones as specialists in econometrics, commerce, industry, marketing, finance, micro-economy, macro-economy and other domains. The purpose of this research is to achieve an introduction in Bayesian approach applied in economics, starting with Bayes theorem. For the Bayesian linear regression models the methodology of estim...
A tutorial introduction to Bayesian models of cognitive development
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei
2010-01-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the what, the how, and the why of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for developmentalists. We emphasize a qualitative understanding of Bayesian inference, but also include information about additional resources for those interested in...
Merging Digital Surface Models Implementing Bayesian Approaches
Sadeq, H.; Drummond, J.; Li, Z.
2016-06-01
In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
Spatial Bayesian surveillance for small area case event data.
Rotejanaprasert, Chawarat; Lawson, Andrew; Bolick-Aldrich, Susan; Hurley, Deborah
2016-08-01
There has been little development of surveillance procedures for epidemiological data with fine spatial resolution such as case events at residential address locations. This is often due to difficulties of access when confidentiality of medical records is an issue. However, when such data are available, it is important to be able to affect an appropriate analysis strategy. We propose a model for point events in the context of prospective surveillance based on conditional logistic modeling. A weighted conditional autoregressive model is developed for irregular lattices to account for distance effects, and a Dirichlet tessellation is adopted to define the neighborhood structure. Localized clustering diagnostics are compared including the proposed local Kullback-Leibler information criterion. A simulation study is conducted to examine the surveillance and detection methods, and a data example is provided of non-Hodgkin's lymphoma data in South Carolina. PMID:27566768
Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
Orbanz, Peter; Roy, Daniel M
2015-02-01
The natural habitat of most Bayesian methods is data represented by exchangeable sequences of observations, for which de Finetti's theorem provides the theoretical foundation. Dirichlet process clustering, Gaussian process regression, and many other parametric and nonparametric Bayesian models fall within the remit of this framework; many problems arising in modern data analysis do not. This article provides an introduction to Bayesian models of graphs, matrices, and other data that can be modeled by random structures. We describe results in probability theory that generalize de Finetti's theorem to such data and discuss their relevance to nonparametric Bayesian modeling. With the basic ideas in place, we survey example models available in the literature; applications of such models include collaborative filtering, link prediction, and graph and network analysis. We also highlight connections to recent developments in graph theory and probability, and sketch the more general mathematical foundation of Bayesian methods for other types of data beyond sequences and arrays. PMID:26353253
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. PMID:26945109
Modeling Social Annotation: a Bayesian Approach
Plangprasopchok, Anon
2008-01-01
Collaborative tagging systems, such as del.icio.us, CiteULike, and others, allow users to annotate objects, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations, contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of socially-generated data, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated objects. Unfortunately, our proposed approach had a number of shortcomings, including overfitting, local maxima and the requirement to specify values for some parameters. In this paper we address these shortcomings in two ways. First, we extend the model to a fully Bayesian framework. Second, we describe an infinite ver...
Improving randomness characterization through Bayesian model selection
R., Rafael Díaz-H; Martínez, Alí M Angulo; U'Ren, Alfred B; Hirsch, Jorge G; Marsili, Matteo; Castillo, Isaac Pérez
2016-01-01
Nowadays random number generation plays an essential role in technology with important applications in areas ranging from cryptography, which lies at the core of current communication protocols, to Monte Carlo methods, and other probabilistic algorithms. In this context, a crucial scientific endeavour is to develop effective methods that allow the characterization of random number generators. However, commonly employed methods either lack formality (e.g. the NIST test suite), or are inapplicable in principle (e.g. the characterization derived from the Algorithmic Theory of Information (ATI)). In this letter we present a novel method based on Bayesian model selection, which is both rigorous and effective, for characterizing randomness in a bit sequence. We derive analytic expressions for a model's likelihood which is then used to compute its posterior probability distribution. Our method proves to be more rigorous than NIST's suite and the Borel-Normality criterion and its implementation is straightforward. We...
Modeling Land-Use Decision Behavior with Bayesian Belief Networks
Inge Aalders
2008-06-01
Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.
Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models
Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a Hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated components between consecutive track sections, namely for the deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese railway line Lisbon–Oporto. - Highlights: • Rail track geometry degradation is analysed using Hierarchical Bayesian models. • A Gibbs sampling strategy is put forward to estimate the HBM. • Model comparison and sensitivity analysis find the most suitable model. • We applied the most suitable model to all the segments of the main Portuguese line. • Tackling spatial correlations using CAR structures lead to a better model fit
A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION
We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...
Slater, Hannah; Michael, Edwin
2013-01-01
There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account
A new approach for Bayesian model averaging
TIAN XiangJun; XIE ZhengHui; WANG AiHui; YANG XiaoChun
2012-01-01
Bayesian model averaging (BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the additional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA (referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algorithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is almost equivalent to that for EM.
Assessing global vegetation activity using spatio-temporal Bayesian modelling
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support
Bayesian Model Selection for LISA Pathfinder
Karnesis, Nikolaos; Sopuerta, Carlos F; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; Plagnol, Eric; Vitale, and Stefano
2013-01-01
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the LISA/eLISA concept. The Data Analysis (DA) team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment on-board LPF. These models are used for simulations, but more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the DA team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching to this problem is to recover the essential parameters of the LTP which describe the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes Factor between two competing models. In our analysis, we use three main different methods to estimate...
Bayesian Model Averaging in the Instrumental Variable Regression Model
Gary Koop; Robert Leon Gonzalez; Rodney Strachan
2011-01-01
This paper considers the instrumental variable regression model when there is uncertainly about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainly can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very fl...
EVENT MODEL: A ROBUST BAYESIAN TOOL FOR CHRONOLOGICAL MODELING
Lanos, Philippe; Philippe, Anne
2015-01-01
We propose a new modeling approach for combining dates through the Event model by using hierarchical Bayesian statistics. The Event model aims to estimate the date of a context (unit of stratification) from individual dates assumed to be contemporaneous and which are affected by errors of different types: laboratory and calibration curve errors and also irreducible errors related to contaminations, taphonomic disturbances, etc, hence the possible presence of outliers. The Event model has a hi...
Stochastic model updating utilizing Bayesian approach and Gaussian process model
Wan, Hua-Ping; Ren, Wei-Xin
2016-03-01
Stochastic model updating (SMU) has been increasingly applied in quantifying structural parameter uncertainty from responses variability. SMU for parameter uncertainty quantification refers to the problem of inverse uncertainty quantification (IUQ), which is a nontrivial task. Inverse problem solved with optimization usually brings about the issues of gradient computation, ill-conditionedness, and non-uniqueness. Moreover, the uncertainty present in response makes the inverse problem more complicated. In this study, Bayesian approach is adopted in SMU for parameter uncertainty quantification. The prominent strength of Bayesian approach for IUQ problem is that it solves IUQ problem in a straightforward manner, which enables it to avoid the previous issues. However, when applied to engineering structures that are modeled with a high-resolution finite element model (FEM), Bayesian approach is still computationally expensive since the commonly used Markov chain Monte Carlo (MCMC) method for Bayesian inference requires a large number of model runs to guarantee the convergence. Herein we reduce computational cost in two aspects. On the one hand, the fast-running Gaussian process model (GPM) is utilized to approximate the time-consuming high-resolution FEM. On the other hand, the advanced MCMC method using delayed rejection adaptive Metropolis (DRAM) algorithm that incorporates local adaptive strategy with global adaptive strategy is employed for Bayesian inference. In addition, we propose the use of the powerful variance-based global sensitivity analysis (GSA) in parameter selection to exclude non-influential parameters from calibration parameters, which yields a reduced-order model and thus further alleviates the computational burden. A simulated aluminum plate and a real-world complex cable-stayed pedestrian bridge are presented to illustrate the proposed framework and verify its feasibility.
Bayesian estimation of parameters in a regional hydrological model
Engeland, K.; Gottschalk, L.
2002-01-01
This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC) analysis. The Bayesian method requires formulation of a likelihood funct...
Bayesian estimation of parameters in a regional hydrological model
Engeland, K.; Gottschalk, L.
2002-01-01
This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC) analysis. The Bayesian method requires formulation of ...
Bayesian Analysis of Dynamic Multivariate Models with Multiple Structural Breaks
Sugita, Katsuhiro
2006-01-01
This paper considers a vector autoregressive model or a vector error correction model with multiple structural breaks in any subset of parameters, using a Bayesian approach with Markov chain Monte Carlo simulation technique. The number of structural breaks is determined as a sort of model selection by the posterior odds. For a cointegrated model, cointegrating rank is also allowed to change with breaks. Bayesian approach by Strachan (Journal of Business and Economic Statistics 21 (2003) 185) ...
Bayesian Test of Significance for Conditional Independence: The Multinomial Model
de Morais Andrade, Pablo; Stern, Julio; de Bragança Pereira, Carlos
2014-03-01
Conditional independence tests (CI tests) have received special attention lately in Machine Learning and Computational Intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of Probabilistic Graphical Models (PGM)--which includes Bayesian Networks (BN) models--CI tests are especially important for the task of learning the PGM structure from data. In this paper, we propose the Full Bayesian Significance Test (FBST) for tests of conditional independence for discrete datasets. FBST is a powerful Bayesian test for precise hypothesis, as an alternative to frequentist's significance tests (characterized by the calculation of the \\emph{p-value}).
Bayesian Nonparametrics in Topic Modeling: A Brief Tutorial
Spangher, Alexander
2015-01-01
Using nonparametric methods has been increasingly explored in Bayesian hierarchical modeling as a way to increase model flexibility. Although the field shows a lot of promise, inference in many models, including Hierachical Dirichlet Processes (HDP), remain prohibitively slow. One promising path forward is to exploit the submodularity inherent in Indian Buffet Process (IBP) to derive near-optimal solutions in polynomial time. In this work, I will present a brief tutorial on Bayesian nonparame...
Two-Stage Bayesian Model Averaging in Endogenous Variable Models.
Lenkoski, Alex; Eicher, Theo S; Raftery, Adrian E
2014-01-01
Economic modeling in the presence of endogeneity is subject to model uncertainty at both the instrument and covariate level. We propose a Two-Stage Bayesian Model Averaging (2SBMA) methodology that extends the Two-Stage Least Squares (2SLS) estimator. By constructing a Two-Stage Unit Information Prior in the endogenous variable model, we are able to efficiently combine established methods for addressing model uncertainty in regression models with the classic technique of 2SLS. To assess the validity of instruments in the 2SBMA context, we develop Bayesian tests of the identification restriction that are based on model averaged posterior predictive p-values. A simulation study showed that 2SBMA has the ability to recover structure in both the instrument and covariate set, and substantially improves the sharpness of resulting coefficient estimates in comparison to 2SLS using the full specification in an automatic fashion. Due to the increased parsimony of the 2SBMA estimate, the Bayesian Sargan test had a power of 50 percent in detecting a violation of the exogeneity assumption, while the method based on 2SLS using the full specification had negligible power. We apply our approach to the problem of development accounting, and find support not only for institutions, but also for geography and integration as development determinants, once both model uncertainty and endogeneity have been jointly addressed. PMID:24223471
Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model
Mo, Qianxing
2010-01-29
ChIP-chip experiments are procedures that combine chromatin immunoprecipitation (ChIP) and DNA microarray (chip) technology to study a variety of biological problems, including protein-DNA interaction, histone modification, and DNA methylation. The most important feature of ChIP-chip data is that the intensity measurements of probes are spatially correlated because the DNA fragments are hybridized to neighboring probes in the experiments. We propose a simple, but powerful Bayesian hierarchical approach to ChIP-chip data through an Ising model with high-order interactions. The proposed method naturally takes into account the intrinsic spatial structure of the data and can be used to analyze data from multiple platforms with different genomic resolutions. The model parameters are estimated using the Gibbs sampler. The proposed method is illustrated using two publicly available data sets from Affymetrix and Agilent platforms, and compared with three alternative Bayesian methods, namely, Bayesian hierarchical model, hierarchical gamma mixture model, and Tilemap hidden Markov model. The numerical results indicate that the proposed method performs as well as the other three methods for the data from Affymetrix tiling arrays, but significantly outperforms the other three methods for the data from Agilent promoter arrays. In addition, we find that the proposed method has better operating characteristics in terms of sensitivities and false discovery rates under various scenarios. © 2010, The International Biometric Society.
Bayesian model reduction and empirical Bayes for group (DCM) studies.
Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter
2016-03-01
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570
A space-time multivariate Bayesian model to analyse road traffic accidents by severity
Boulieri, A; Liverani, S; Hoogh, K. de; Blangiardo, M.
2016-01-01
The paper investigates the dependences between levels of severity of road traffic accidents, accounting at the same time for spatial and temporal correlations. The study analyses road traffic accidents data at ward level in England over the period 2005–2013. We include in our model multivariate spatially structured and unstructured effects to capture the dependences between severities, within a Bayesian hierarchical formulation. We also include a temporal component to capture the time effects...
Sampling Techniques in Bayesian Finite Element Model Updating
Boulkaibet, I; Mthembu, L; Friswell, M I; Adhikari, S
2011-01-01
Recent papers in the field of Finite Element Model (FEM) updating have highlighted the benefits of Bayesian techniques. The Bayesian approaches are designed to deal with the uncertainties associated with complex systems, which is the main problem in the development and updating of FEMs. This paper highlights the complexities and challenges of implementing any Bayesian method when the analysis involves a complicated structural dynamic model. In such systems an analytical Bayesian formulation might not be available in an analytic form; therefore this leads to the use of numerical methods, i.e. sampling methods. The main challenge then is to determine an efficient sampling of the model parameter space. In this paper, three sampling techniques, the Metropolis-Hastings (MH) algorithm, Slice Sampling and the Hybrid Monte Carlo (HMC) technique, are tested by updating a structural beam model. The efficiency and limitations of each technique is investigated when the FEM updating problem is implemented using the Bayesi...
Efficient Nonparametric Bayesian Modelling with Sparse Gaussian Process Approximations
Seeger, Matthias; Lawrence, Neil; Herbrich, Ralf
2006-01-01
Sparse approximations to Bayesian inference for nonparametric Gaussian Process models scale linearly in the number of training points, allowing for the application of powerful kernel-based models to large datasets. We present a general framework based on the informative vector machine (IVM) (Lawrence et.al., 2002) and show how the complete Bayesian task of inference and learning of free hyperparameters can be performed in a practically efficient manner. Our framework allows for arbitrary like...
Modelling biogeochemical cycles in forest ecosystems: a Bayesian approach
Bagnara, Maurizio
2015-01-01
Forest models are tools for explaining and predicting the dynamics of forest ecosystems. They simulate forest behavior by integrating information on the underlying processes in trees, soil and atmosphere. Bayesian calibration is the application of probability theory to parameter estimation. It is a method, applicable to all models, that quantifies output uncertainty and identifies key parameters and variables. This study aims at testing the Bayesian procedure for calibration to different t...
Bayesian inverse modeling at the hydrological surface-subsurface interface
Cucchi, K.; Rubin, Y.
2014-12-01
In systems where surface and subsurface hydrological domains are highly connected, modeling surface and subsurface flow jointly is essential to accurately represent the physical processes and come up with reliable predictions of flows in river systems or stream-aquifer exchange. The flow quantification at the interface merging the two hydrosystem components is a function of both surface and subsurface spatially distributed parameters. In the present study, we apply inverse modeling techniques to a synthetic catchment with connected surface and subsurface hydrosystems. The model is physically-based and implemented with the Gridded Surface Subsurface Hydrologic Analysis software. On the basis of hydrograph measurement at the catchment outlet, we estimate parameters such as saturated hydraulic conductivity, overland and channel roughness coefficients. We compare maximum likelihood estimates (ML) with the parameter distributions obtained using the Bayesian statistical framework for spatially random fields provided by the Method of Anchored Distributions (MAD). While ML estimates maximize the probability of observing the data and capture the global trend of the target variables, MAD focuses on obtaining a probability distribution for the random unknown parameters and the anchors are designed to capture local features. We check the consistency between the two approaches and evaluate the additional information provided by MAD on parameter distributions. We also assess the contribution of adding new types of measurements such as water table depth or soil conductivity to the reduction of parameter uncertainty.
A unified Bayesian hierarchical model for MRI tissue classification.
Feng, Dai; Liang, Dong; Tierney, Luke
2014-04-15
Various works have used magnetic resonance imaging (MRI) tissue classification extensively to study a number of neurological and psychiatric disorders. Various noise characteristics and other artifacts make this classification a challenging task. Instead of splitting the procedure into different steps, we extend a previous work to develop a unified Bayesian hierarchical model, which addresses both the partial volume effect and intensity non-uniformity, the two major acquisition artifacts, simultaneously. We adopted a normal mixture model with the means and variances depending on the tissue types of voxels to model the observed intensity values. We modeled the relationship among the components of the index vector of tissue types by a hidden Markov model, which captures the spatial similarity of voxels. Furthermore, we addressed the partial volume effect by construction of a higher resolution image in which each voxel is divided into subvoxels. Finally, We achieved the bias field correction by using a Gaussian Markov random field model with a band precision matrix designed in light of image filtering. Sparse matrix methods and parallel computations based on conditional independence are exploited to improve the speed of the Markov chain Monte Carlo simulation. The unified model provides more accurate tissue classification results for both simulated and real data sets. PMID:24738112
Bayesball: A Bayesian hierarchical model for evaluating fielding in major league baseball
Jensen, Shane T.; Shirley, Kenneth E.; Wyner, Abraham J.
2008-01-01
The use of statistical modeling in baseball has received substantial attention recently in both the media and academic community. We focus on a relatively under-explored topic: the use of statistical models for the analysis of fielding based on high-resolution data consisting of on-field location of batted balls. We combine spatial modeling with a hierarchical Bayesian structure in order to evaluate the performance of individual fielders while sharing information between fielders at each posi...
Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks
Skare, Øivind; Møller, Jesper; Vedel Jensen, Eva B.
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample f...
Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks
Skare, Øivind; Møller, Jesper; Jensen, Eva B. Vedel
2007-01-01
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample f...
Bayesian Inference and Optimal Design in the Sparse Linear Model
Seeger, Matthias; Steinke, Florian; Tsuda, Koji
2007-01-01
The sparse linear model has seen many successful applications in Statistics, Machine Learning, and Computational Biology, such as identification of gene regulatory networks from micro-array expression data. Prior work has either approximated Bayesian inference by expensive Markov chain Monte Carlo, or replaced it by point estimation. We show how to obtain a good approximation to Bayesian analysis efficiently, using the Expectation Propagation method. We also address the problems of optimal de...
Tierney, J. E.; Tingley, M.
2013-12-01
Improving the calibration of SST proxies is fundamental to providing accurate estimates of past changes in sea-surface temperatures. Existing calibrations assume spatially and temporally constant regression terms, but this may not adequately capture the influence of both known and unknown secondary environmental factors on proxy response. As an alternative, we propose a BAYesian, SPAtially-varying Regression model (BAYSPAR) for general application to marine organic geochemical SST proxies. The calibration model treats regression parameters as slowly-varying functions in space and allows for a full propagation of errors in both the proxy and the SST field. Initial application of the technique to the TEX86 proxy demonstrates that it yields better-behaved residuals than previous calibrations and therefore improves SST estimates in certain regions. Two different prediction models allow users to apply to the calibration to either Neogene or "deep-time" data, the latter of which uses an analog approach. Traditionally, calibrations for SST proxies are updated incrementally via individual publications over a period of many years, and in some cases the coretop collections that form these calibrations are left unarchived. To facilitate both up-to-date prediction and data archiving, BAYSPAR will be designed to reflect community-based improvements in knowledge and data in real time via a semi-autonomous updating process. Users may enter new coretop data into a portal on the web, and after a screening procedure, the data will be added to the calibration model, which will then be autonomously updated and made available to the users. In this way, calibration of SST proxies becomes a community-driven process.
Modelling of JET diagnostics using Bayesian Graphical Models
Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.
2011-07-01
The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This
Bayesian model discrimination for glucose-insulin homeostasis
Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene
the reformulation of existing deterministic models as stochastic state space models which properly accounts for both measurement and process variability. The analysis is further enhanced by Bayesian model discrimination techniques and model averaged parameter estimation which fully accounts for model as well......In this paper we analyse a set of experimental data on a number of healthy and diabetic patients and discuss a variety of models for describing the physiological processes involved in glucose absorption and insulin secretion within the human body. We adopt a Bayesian approach which facilitates...
Using consensus bayesian network to model the reactive oxygen species regulatory pathway.
Liangdong Hu
Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.
Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro
2016-01-01
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. PMID:26597639
Wu, Yuefeng; Hooker, Giles
2013-01-01
This paper introduces a hierarchical framework to incorporate Hellinger distance methods into Bayesian analysis. We propose to modify a prior over non-parametric densities with the exponential of twice the Hellinger distance between a candidate and a parametric density. By incorporating a prior over the parameters of the second density, we arrive at a hierarchical model in which a non-parametric model is placed between parameters and the data. The parameters of the family can then be estimate...
Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm
Raj Kumar
2012-12-01
Full Text Available In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi Newton-Raphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC simulation method in OpenBUGS(established software for Bayesian analysis using Markov Chain Monte Carlo methods. The R functions are developed to study the statistical properties, model validation and comparison tools of the model and the output analysis of MCMC samples generated from OpenBUGS. Details of applying MCMC to parameter estimation for the Gumbel model are elaborated and a real software reliability data set is considered to illustrate the methods of inference discussed in this paper.
Lack of Confidence in Approximate Bayesian Computation Model Choice
Robert, Christian P.; Cornuet, Jean-Marie; Marin, Jean-Michel; Pillai, Natesh S.
2011-01-01
Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex stochastic models. Grelaud et al. [(2009) Bayesian Anal 3:427–442] advocated the use of ABC for model choice in the specific case of Gibbs random fields, relying on an intermodel sufficiency property to show that the approximation was legitimate. We implemented ABC model choice in a wide range of phylogenetic models in the Do It Yourself-ABC (DIY-ABC) software [Cornuet et al. (2008) Bioinformatics...
Cosmological parameter estimation and Bayesian model comparison using VSA data
Slosar, A; Cleary, K; Davies, R D; Davis, R J; Dickinson, C; Genova-Santos, R; Grainge, K; Gutíerrez, C M; Hafez, Y A; Hobson, M P; Jones, M E; Kneissl, R; Lancaster, K; Lasenby, A; Leahy, J P; Maisinger, K; Marshall, P J; Pooley, G G; Rebolo, R; Rubiño-Martín, J A; Rusholme, B A; Saunders, R D E; Savage, R; Scott, P F; Molina, P J S; Taylor, A C; Titterington, D; Waldram, E M; Watson, R A; Wilkinson, A; Slosar, Anze; Carreira, Pedro; Cleary, Kieran; Davies, Rod D.; Davis, Richard J.; Dickinson, Clive; Genova-Santos, Ricardo; Grainge, Keith; Gutierrez, Carlos M.; Hafez, Yaser A.; Hobson, Michael P.; Jones, Michael E.; Kneissl, Rudiger; Lancaster, Katy; Lasenby, Anthony; Maisinger, Klaus; Marshall, Phil J.; Pooley, Guy G.; Rebolo, Rafael; Rubino-Martin, Jose Alberto; Rusholme, Ben; Saunders, Richard D. E.; Savage, Richard; Scott, Paul F.; Molina, Pedro J. Sosa; Taylor, Angela C.; Titterington, David; Waldram, Elizabeth; Watson, Robert A.; Wilkinson, Althea
2003-01-01
We constrain the basic comological parameters using the first observations by the Very Small Array (VSA) in its extended configuration, together with existing cosmic microwave background data and other cosmological observations. We estimate cosmological parameters for four different models of increasing complexity. In each case, careful consideration is given to implied priors and the Bayesian evidence is calculated in order to perform model selection. We find that the data are most convincingly explained by a simple flat Lambda-CDM cosmology without tensor modes. In this case, combining just the VSA and COBE data sets yields the 68 per cent confidence intervals Omega_b h^2=0.034 (+0.007, -0.007), Omega_dm h^2 = 0.18 (+0.06, -0.04), h=0.72 (+0.15,-0.13), n_s=1.07 (+0.06,-0.06) and sigma_8=1.17 (+0.25, -0.20). The most general model considered includes spatial curvature, tensor modes, massive neutrinos and a parameterised equation of state for the dark energy. In this case, by combining all recent cosmological...
On the Bayesian Nonparametric Generalization of IRT-Type Models
San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel
2011-01-01
We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…
Bayesian inference model for fatigue life of laminated composites
Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian
2016-01-01
A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference. The...
Modelling LGD for unsecured retail loans using Bayesian methods
Katarzyna Bijak; Thomas, Lyn C
2015-01-01
Loss Given Default (LGD) is the loss borne by the bank when a customer defaults on a loan. LGD for unsecured retail loans is often found difficult to model. In the frequentist (non-Bayesian) two-step approach, two separate regression models are estimated independently, which can be considered potentially problematic when trying to combine them to make predictions about LGD. The result is a point estimate of LGD for each loan. Alternatively, LGD can be modelled using Bayesian methods. In the B...
A Bayesian Matrix Factorization Model for Relational Data
Singh, Ajit P
2012-01-01
Relational learning can be used to augment one data source with other correlated sources of information, to improve predictive accuracy. We frame a large class of relational learning problems as matrix factorization problems, and propose a hierarchical Bayesian model. Training our Bayesian model using random-walk Metropolis-Hastings is impractically slow, and so we develop a block Metropolis- Hastings sampler which uses the gradient and Hessian of the likelihood to dynamically tune the proposal. We demonstrate that a predictive model of brain response to stimuli can be improved by augmenting it with side information about the stimuli.
Bayesian inference of chemical kinetic models from proposed reactions
Galagali, Nikhil
2015-02-01
© 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.
The Bayesian Modelling Of Inflation Rate In Romania
Mihaela Simionescu (Bratu
2014-06-01
Full Text Available Bayesian econometrics knew a considerable increase in popularity in the last years, joining the interests of various groups of researchers in economic sciences and additional ones as specialists in econometrics, commerce, industry, marketing, finance, micro-economy, macro-economy and other domains. The purpose of this research is to achieve an introduction in Bayesian approach applied in economics, starting with Bayes theorem. For the Bayesian linear regression models the methodology of estimation was presented, realizing two empirical studies for data taken from the Romanian economy. Thus, an autoregressive model of order 2 and a multiple regression model were built for the index of consumer prices. The Gibbs sampling algorithm was used for estimation in R software, computing the posterior means and the standard deviations. The parameters’ stability proved to be greater than in the case of estimations based on the methods of classical Econometrics.
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming
2013-06-01
This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Involving Stakeholders in Building Integrated Fisheries Models Using Bayesian Methods
Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari
2013-06-01
A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts.
Applications of Bayesian Model Selection to Cosmological Parameters
Trotta, R
2005-01-01
Bayesian evidence is a tool for model comparison which can be used to decide whether the introduction of a new parameter is warranted by data. I show that the usual sampling statistic rejection tests for a null hypothesis can be misleading, since they do not take into account the information content of the data. I review the Laplace approximation and the Savage-Dickey density ratio to compute Bayes factors, which avoid the need of carrying out a computationally demanding multi-dimensional integration. I present a new procedure to forecast the Bayes factor of a future observation by computing the Expected Posterior Odds (ExPO). As an illustration, I consider three key parameters for our understanding of the cosmological concordance model: the spectral tilt of scalar perturbations, the spatial curvature of the Universe and a CDM isocurvature component to the initial conditions which is totally (anti)correlated with the adiabatic mode. I find that current data are not informative enough to draw a conclusion on t...
Bayesian modeling and prediction of solar particles flux
Dedecius, Kamil; Kalová, J.
Praha: FJFI ČVUT v Praze, 2009 - (Štěpán, V.), s. 77-77 ISBN 978-80-01-04430-8. [XXXI. Dny radiační ochrany. Kouty nad Desnou, Hrubý Jeseník (CZ), 02.11.2009-06.11.2009] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian model * solar particle * solar wind Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2009/AS/dedecius-bayesian modeling and prediction of solar particle s flux.pdf
Research & development and growth: A Bayesian model averaging analysis
Horváth, Roman
2011-01-01
Roč. 28, č. 6 (2011), s. 2669-2673. ISSN 0264-9993. [Society for Non-linear Dynamics and Econometrics Annual Conferencen. Washington DC, 16.03.2011-18.03.2011] R&D Projects: GA ČR GA402/09/0965 Institutional research plan: CEZ:AV0Z10750506 Keywords : Research and development * Growth * Bayesian model averaging Subject RIV: AH - Economics Impact factor: 0.701, year: 2011 http://library.utia.cas.cz/separaty/2011/E/horvath-research & development and growth a bayesian model averaging analysis.pdf
Approximate Bayesian Recursive Estimation of Linear Model with Uniform Noise
Pavelková, Lenka; Kárný, Miroslav
Brussels: IFAC, 2012, s. 1803-1807. ISBN 978-3-902823-06-9. [16th IFAC Symposium on System Identification The International Federation of Automatic Control. Brussels (BE), 11.07.2012-13.07.2012] R&D Projects: GA TA ČR TA01030123 Institutional support: RVO:67985556 Keywords : recursive parameter estimation * bounded noise * Bayesian learning * autoregressive models Subject RIV: BC - Control System s Theory http://library.utia.cas.cz/separaty/2012/AS/pavelkova-approximate bayesian recursive estimation of linear model with uniform noise.pdf
Comparing Bayesian models for multisensory cue combination without mandatory integration
Beierholm, Ulrik R.; Shams, Ladan; Kording, Konrad P; Ma, Wei Ji
2009-01-01
Bayesian models of multisensory perception traditionally address the problem of estimating an underlying variable that is assumed to be the cause of the two sensory signals. The brain, however, has to solve a more general problem: it also has to establish which signals come from the same source and should be integrated, and which ones do not and should be segregated. In the last couple of years, a few models have been proposed to solve this problem in a Bayesian fashion. One of these ha...
Bayesian model mixing for cold rolling mills: Test results
Ettler, P.; Puchr, I.; Dedecius, Kamil
Slovensko: Slovak University of Technology, 2013, s. 359-364. ISBN 978-1-4799-0926-1. [19th International Conference on Process Control . Štrbské Pleso (SK), 18.06.2013-21.06.2013] R&D Projects: GA MŠk(CZ) 7D09008; GA MŠk 7D12004 Keywords : Bayesian statistics * model mixing * process control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2013/AS/dedecius-bayesian model mixing for cold rolling mills test results.pdf
Bayesian Model Comparison With the g-Prior
Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Cemgil, Ali Taylan;
2014-01-01
Model comparison and selection is an important problem in many model-based signal processing applications. Often, very simple information criteria such as the Akaike information criterion or the Bayesian information criterion are used despite their shortcomings. Compared to these methods, Djuric’...
Bayesian Estimation of the DINA Model with Gibbs Sampling
Culpepper, Steven Andrew
2015-01-01
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Gou, Faxiang; Liu, Xinfeng; Ren, Xiaowei; Liu, Dongpeng; Liu, Haixia; Wei, Kongfu; Yang, Xiaoting; Cheng, Yao; Zheng, Yunhe; Jiang, Xiaojuan; Li, Juansheng; Meng, Lei; Hu, Wenbiao
2016-06-01
The influence of socio-ecological factors on hand, foot and mouth disease (HFMD) were explored in this study using Bayesian spatial modeling and spatial patterns identified in dry regions of Gansu, China. Notified HFMD cases and socio-ecological data were obtained from the China Information System for Disease Control and Prevention, Gansu Yearbook and Gansu Meteorological Bureau. A Bayesian spatial conditional autoregressive model was used to quantify the effects of socio-ecological factors on the HFMD and explore spatial patterns, with the consideration of its socio-ecological effects. Our non-spatial model suggests temperature (relative risk (RR) 1.15, 95 % CI 1.01-1.31), GDP per capita (RR 1.19, 95 % CI 1.01-1.39) and population density (RR 1.98, 95 % CI 1.19-3.17) to have a significant effect on HFMD transmission. However, after controlling for spatial random effects, only temperature (RR 1.25, 95 % CI 1.04-1.53) showed significant association with HFMD. The spatial model demonstrates temperature to play a major role in the transmission of HFMD in dry regions. Estimated residual variation after taking into account the socio-ecological variables indicated that high incidences of HFMD were mainly clustered in the northwest of Gansu. And, spatial structure showed a unique distribution after taking account of socio-ecological effects.
J. P. Werner
2015-03-01
Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.
Hongqiang Liu
2016-06-01
Full Text Available A Bayesian random effects modeling approach was used to examine the influence of neighborhood characteristics on burglary risks in Jianghan District, Wuhan, China. This random effects model is essentially spatial; a spatially structured random effects term and an unstructured random effects term are added to the traditional non-spatial Poisson regression model. Based on social disorganization and routine activity theories, five covariates extracted from the available data at the neighborhood level were used in the modeling. Three regression models were fitted and compared by the deviance information criterion to identify which model best fit our data. A comparison of the results from the three models indicates that the Bayesian random effects model is superior to the non-spatial models in fitting the data and estimating regression coefficients. Our results also show that neighborhoods with above average bar density and department store density have higher burglary risks. Neighborhood-specific burglary risks and posterior probabilities of neighborhoods having a burglary risk greater than 1.0 were mapped, indicating the neighborhoods that should warrant more attention and be prioritized for crime intervention and reduction. Implications and limitations of the study are discussed in our concluding section.
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
Bayesian Joint Modelling for Object Localisation in Weakly Labelled Images.
Shi, Zhiyuan; Hospedales, Timothy M; Xiang, Tao
2015-10-01
We address the problem of localisation of objects as bounding boxes in images and videos with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. In this paper, a novel framework based on Bayesian joint topic modelling is proposed, which differs significantly from the existing ones in that: (1) All foreground object classes are modelled jointly in a single generative model that encodes multiple object co-existence so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) Image backgrounds are shared across classes to better learn varying surroundings and "push out" objects of interest. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Moreover, the Bayesian formulation enables the exploitation of various types of prior knowledge to compensate for the limited supervision offered by weakly labelled data, as well as Bayesian domain adaptation for transfer learning. Extensive experiments on the PASCAL VOC, ImageNet and YouTube-Object videos datasets demonstrate the effectiveness of our Bayesian joint model for weakly supervised object localisation. PMID:26340253
Modeling error distributions of growth curve models through Bayesian methods.
Zhang, Zhiyong
2016-06-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided. PMID:26019004
Asymptotically minimax Bayesian predictive densities for multinomial models
Komaki, Fumiyasu
2011-01-01
One-step ahead prediction for the multinomial model is considered. The performance of a predictive density is evaluated by the average Kullback-Leibler divergence from the true density to the predictive density. Asymptotic approximations of risk functions of Bayesian predictive densities based on Dirichlet priors are obtained. It is shown that a Bayesian predictive density based on a specific Dirichlet prior is asymptotically minimax. The asymptotically minimax prior is different from known objective priors such as the Jeffreys prior or the uniform prior.
Uncertainty Modeling Based on Bayesian Network in Ontology Mapping
LI Yuhua; LIU Tao; SUN Xiaolin
2006-01-01
How to deal with uncertainty is crucial in exact concept mapping between ontologies. This paper presents a new framework on modeling uncertainty in ontologies based on bayesian networks (BN). In our approach, ontology Web language (OWL) is extended to add probabilistic markups for attaching probability information, the source and target ontologies (expressed by patulous OWL) are translated into bayesian networks (BNs), the mapping between the two ontologies can be digged out by constructing the conditional probability tables (CPTs) of the BN using a improved algorithm named I-IPFP based on iterative proportional fitting procedure (IPFP). The basic idea of this framework and algorithm are validated by positive results from computer experiments.
Improving Bayesian Reasoning: The Effects of Phrasing, Visualization, and Spatial Ability.
Ottley, Alvitta; Peck, Evan M; Harrison, Lane T; Afergan, Daniel; Ziemkiewicz, Caroline; Taylor, Holly A; Han, Paul K J; Chang, Remco
2016-01-01
Decades of research have repeatedly shown that people perform poorly at estimating and understanding conditional probabilities that are inherent in Bayesian reasoning problems. Yet in the medical domain, both physicians and patients make daily, life-critical judgments based on conditional probability. Although there have been a number of attempts to develop more effective ways to facilitate Bayesian reasoning, reports of these findings tend to be inconsistent and sometimes even contradictory. For instance, the reported accuracies for individuals being able to correctly estimate conditional probability range from 6% to 62%. In this work, we show that problem representation can significantly affect accuracies. By controlling the amount of information presented to the user, we demonstrate how text and visualization designs can increase overall accuracies to as high as 77%. Additionally, we found that for users with high spatial ability, our designs can further improve their accuracies to as high as 100%. By and large, our findings provide explanations for the inconsistent reports on accuracy in Bayesian reasoning tasks and show a significant improvement over existing methods. We believe that these findings can have immediate impact on risk communication in health-related fields. PMID:26390491
Bayesian Modelling of fMRI Time Series
Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward
2000-01-01
We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...
Bayesian Modelling of fMRI Time Series
Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward
We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...
Bayesian nonparametric estimation of hazard rate in monotone Aalen model
Timková, Jana
2014-01-01
Roč. 50, č. 6 (2014), s. 849-868. ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : Aalen model * Bayesian estimation * MCMC Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.541, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/timkova-0438210.pdf
Research on Bayesian Network Based User's Interest Model
ZHANG Weifeng; XU Baowen; CUI Zifeng; XU Lei
2007-01-01
It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability.
Enrique Gracia
2014-01-01
Full Text Available This paper uses spatial data of cases of intimate partner violence against women (IPVAW to examine neighborhood-level influences on small-area variations in IPVAW risk in a police district of the city of Valencia (Spain. To analyze area variations in IPVAW risk and its association with neighborhood-level explanatory variables we use a Bayesian spatial random-effects modeling approach, as well as disease mapping methods to represent risk probabilities in each area. Analyses show that IPVAW cases are more likely in areas of high immigrant concentration, high public disorder and crime, and high physical disorder. Results also show a spatial component indicating remaining variability attributable to spatially structured random effects. Bayesian spatial modeling offers a new perspective to identify IPVAW high and low risk areas, and provides a new avenue for the design of better-informed prevention and intervention strategies.
Bayesian estimation of parameters in a regional hydrological model
K. Engeland
2002-01-01
Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis
A Bayesian Markov geostatistical model for estimation of hydrogeological properties
A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden
Bayesian and maximin optimal designs for heteroscedastic regression models
Dette, Holger; Haines, Linda M.; Imhof, Lorens A.
2003-01-01
The problem of constructing standardized maximin D-optimal designs for weighted polynomial regression models is addressed. In particular it is shown that, by following the broad approach to the construction of maximin designs introduced recently by Dette, Haines and Imhof (2003), such designs can be obtained as weak limits of the corresponding Bayesian Φq-optimal designs. The approach is illustrated for two specific weighted polynomial models and also for a particular growth model.
Bayesian modeling growth curves for quail assuming skewness in errors
Robson Marcelo Rossi
2014-06-01
Full Text Available Bayesian modeling growth curves for quail assuming skewness in errors - To assume normal distributions in the data analysis is common in different areas of the knowledge. However we can make use of the other distributions that are capable to model the skewness parameter in the situations that is needed to model data with tails heavier than the normal. This article intend to present alternatives to the assumption of the normality in the errors, adding asymmetric distributions. A Bayesian approach is proposed to fit nonlinear models when the errors are not normal, thus, the distributions t, skew-normal and skew-t are adopted. The methodology is intended to apply to different growth curves to the quail body weights. It was found that the Gompertz model assuming skew-normal errors and skew-t errors, respectively for male and female, were the best fitted to the data.
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
Sabuncu, Mert R.; Van Leemput, Koen
2012-01-01
This paper presents the relevance voxel machine (RVoxM), a dedicated Bayesian model for making predictions based on medical imaging data. In contrast to the generic machine learning algorithms that have often been used for this purpose, the method is designed to utilize a small number of spatially...
A Bayesian nonlinear mixed-effects disease progression model
Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith
2016-01-01
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability. PMID:26798562
Non-stationarity in GARCH models: A Bayesian analysis
Kleibergen, Frank; Dijk, Herman
1993-01-01
textabstractFirst, the non-stationarity properties of the conditional variances in the GARCH(1,1) model are analysed using the concept of infinite persistence of shocks. Given a time sequence of probabilities for increasing/decreasing conditional variances, a theoretical formula for quasi-strict non-stationarity is defined. The resulting conditions for the GARCH(1,1) model are shown to differ from the weak stationarity conditions mainly used in the literature. Bayesian statistical analysis us...
A New Bayesian Unit Root Test in Stochastic Volatility Models
Yong Li; Jun Yu
2010-01-01
A new posterior odds analysis is proposed to test for a unit root in volatility dynamics in the context of stochastic volatility models. This analysis extends the Bayesian unit root test of So and Li (1999, Journal of Business Economic Statistics) in two important ways. First, a numerically more stable algorithm is introduced to compute the Bayes factor, taking into account the special structure of the competing models. Owing to its numerical stability, the algorithm overcomes the problem of ...
Bayesian Modelling in Machine Learning: A Tutorial Review
Seeger, Matthias
2006-01-01
Many facets of Bayesian Modelling are firmly established in Machine Learning and give rise to state-of-the-art solutions to application problems. The sheer number of techniques, ideas and models which have been proposed, and the terminology, can be bewildering. With this tutorial review, we aim to give a wide high-level overview over this important field, concentrating on central ideas and methods, and on their interconnections. The reader will gain a basic understanding of the topics and the...
Performance and prediction: Bayesian modelling of fallible choice in chess
Haworth, Guy McCrossan; Regan, Ken; Di Fatta, Giuseppe
2010-01-01
Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration ...
Bayesian modeling and prediction of solar particles flux
An autoregression model was developed based on the Bayesian approach. Considering the solar wind non-homogeneity, the idea was applied of combining the pure autoregressive properties of the model with expert knowledge based on a similar behaviour of the various phenomena related to the flux properties. Examples of such situations include the hardening of the X-ray spectrum, which is often followed by coronal mass ejection and a significant increase in the particles flux intensity
Bayesian modeling and prediction of solar particles flux
Dedecius, Kamil; Kalová, J.
18/56/, 7/8 (2010), s. 228-230. ISSN 1210-7085 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : mathematical models * solar activity * solar flares * solar flux * solar particles Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2010/AS/dedecius-bayesian modeling and prediction of solar particles flux.pdf
Hierarchical Bayesian Modeling of Hitting Performance in Baseball
Jensen, Shane T.; McShane, Blake; Wyner, Abraham J.
2009-01-01
We have developed a sophisticated statistical model for predicting the hitting performance of Major League baseball players. The Bayesian paradigm provides a principled method for balancing past performance with crucial covariates, such as player age and position. We share information across time and across players by using mixture distributions to control shrinkage for improved accuracy. We compare the performance of our model to current sabermetric methods on a held-out seaso...
Bayesian estimation of a DSGE model with inventories
Foerster, Marcel
2011-01-01
This paper introduces inventories in an otherwise standard Dynamic Stochastic General Equilibrium Model (DSGE) of the business cycle. Firms accumulate inventories to facilitate sales, but face a cost of doing so in terms of costly storage of intermediate goods. The paper's main contribution is to present a DSGE model with inventories that is estimated using Bayesian methods. Based on US data we show that accounting for inventory dynamics has a significant impact on parameter estimates and imp...
Markov Model of Wind Power Time Series UsingBayesian Inference of Transition Matrix
Chen, Peiyuan; Berthelsen, Kasper Klitgaard; Bak-Jensen, Birgitte; Chen, Zhe
2009-01-01
This paper proposes to use Bayesian inference of transition matrix when developing a discrete Markov model of a wind speed/power time series and 95% credible interval for the model verification. The Dirichlet distribution is used as a conjugate prior for the transition matrix. Three discrete Markov models are compared, i.e. the basic Markov model, the Bayesian Markov model and the birth-and-death Markov model. The proposed Bayesian Markov model shows the best accuracy in modeling the autocorr...
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Spatial Stochastic Point Models for Reservoir Characterization
Syversveen, Anne Randi
1997-12-31
The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.
Bayesian hierarchical modelling of weak lensing - the golden goal
Heavens, Alan; Jaffe, Andrew; Hoffmann, Till; Kiessling, Alina; Wandelt, Benjamin
2016-01-01
To accomplish correct Bayesian inference from weak lensing shear data requires a complete statistical description of the data. The natural framework to do this is a Bayesian Hierarchical Model, which divides the chain of reasoning into component steps. Starting with a catalogue of shear estimates in tomographic bins, we build a model that allows us to sample simultaneously from the the underlying tomographic shear fields and the relevant power spectra (E-mode, B-mode, and E-B, for auto- and cross-power spectra). The procedure deals easily with masked data and intrinsic alignments. Using Gibbs sampling and messenger fields, we show with simulated data that the large (over 67000-)dimensional parameter space can be efficiently sampled and the full joint posterior probability density function for the parameters can feasibly be obtained. The method correctly recovers the underlying shear fields and all of the power spectra, including at levels well below the shot noise.
A localization model to localize multiple sources using Bayesian inference
Dunham, Joshua Rolv
Accurate localization of a sound source in a room setting is important in both psychoacoustics and architectural acoustics. Binaural models have been proposed to explain how the brain processes and utilizes the interaural time differences (ITDs) and interaural level differences (ILDs) of sound waves arriving at the ears of a listener in determining source location. Recent work shows that applying Bayesian methods to this problem is proving fruitful. In this thesis, pink noise samples are convolved with head-related transfer functions (HRTFs) and compared to combinations of one and two anechoic speech signals convolved with different HRTFs or binaural room impulse responses (BRIRs) to simulate room positions. Through exhaustive calculation of Bayesian posterior probabilities and using a maximal likelihood approach, model selection will determine the number of sources present, and parameter estimation will result in azimuthal direction of the source(s).
Bayesian Inference and Forecasting in the Stationary Bilinear Model
Roberto Leon-Gonzalez; Fuyu Yang
2014-01-01
A stationary bilinear (SB) model can be used to describe processes with a time-varying degree of persistence that depends on past shocks. An example of such a process is inflation. This study develops methods for Bayesian inference, model comparison, and forecasting in the SB model. Using monthly U.K. inflation data, we find that the SB model outperforms the random walk and first order autoregressive AR(1) models in terms of root mean squared forecast errors for both the one-step-ahead and th...
Bayesian Age-Period-Cohort Modeling and Prediction - BAMP
Volker J. Schmid
2007-10-01
Full Text Available The software package BAMP provides a method of analyzing incidence or mortality data on the Lexis diagram, using a Bayesian version of an age-period-cohort model. A hierarchical model is assumed with a binomial model in the first-stage. As smoothing priors for the age, period and cohort parameters random walks of first and second order, with and without an additional unstructured component are available. Unstructured heterogeneity can also be included in the model. In order to evaluate the model fit, posterior deviance, DIC and predictive deviances are computed. By projecting the random walk prior into the future, future death rates can be predicted.
Introduction to Hierarchical Bayesian Modeling for Ecological Data
Parent, Eric
2012-01-01
Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a
Singh, Brajendra K.; Michael, Edwin
2015-01-01
Background Mathematical models of parasite transmission can help integrate a large body of information into a consistent framework, which can then be used for gaining mechanistic insights and making predictions. However, uncertainty, spatial variability and complexity, can hamper the use of such models for decision making in parasite management programs. Methods We have adapted a Bayesian melding framework for calibrating simulation models to address the need for robust modelling tools that c...
Bayesian analysis of recursive SVAR models with overidentifying restrictions
Kociecki, Andrzej; Rubaszek, Michał; Ca' Zorzi, Michele
2012-01-01
The paper provides a novel Bayesian methodological framework to estimate structural VAR (SVAR) models with recursive identification schemes that allows for the inclusion of over-identifying restrictions. The proposed framework enables the researcher to (i) elicit the prior on the non-zero contemporaneous relations between economic variables and to (ii) derive an analytical expression for the posterior distribution and marginal data density. We illustrate our methodological framework by estima...
Differential gene co-expression networks via Bayesian biclustering models
Gao, Chuan; Zhao, Shiwen; McDowell, Ian C.; Brown, Christopher D.; Barbara E Engelhardt
2014-01-01
Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering me...
Bayesian parsimonious covariance estimation for hierarchical linear mixed models
Frühwirth-Schnatter, Sylvia; Tüchler, Regina
2004-01-01
We considered a non-centered parameterization of the standard random-effects model, which is based on the Cholesky decomposition of the variance-covariance matrix. The regression type structure of the non-centered parameterization allows to choose a simple, conditionally conjugate normal prior on the Cholesky factor. Based on the non-centered parameterization, we search for a parsimonious variance-covariance matrix by identifying the non-zero elements of the Cholesky factors using Bayesian va...
Diffusion Estimation Of State-Space Models: Bayesian Formulation
Dedecius, Kamil
Reims: IEEE, 2014. ISBN 978-1-4799-3693-9. [The 24th IEEE International Workshop on Machine Learning for Signal Processing (MLSP2014). Reims (FR), 21.09.2014-24.09.2014] R&D Projects: GA ČR(CZ) GP14-06678P Keywords : distributed estimation * state-space models * Bayesian estimation Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2014/AS/dedecius-0431804.pdf
Bayesian Methods for Neural Networks and Related Models
Titterington, D.M.
2004-01-01
Models such as feed-forward neural networks and certain other structures investigated in the computer science literature are not amenable to closed-form Bayesian analysis. The paper reviews the various approaches taken to overcome this difficulty, involving the use of Gaussian approximations, Markov chain Monte Carlo simulation routines and a class of non-Gaussian but “deterministic” approximations called variational approximations.
Bayesian network models in brain functional connectivity analysis
Ide, Jaime S.; Zhang, Sheng; Chiang-shan R. Li
2013-01-01
Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and wh...
Bayesian Models of Learning and Reasoning with Relations
Chen, Dawn
2014-01-01
How do humans acquire relational concepts such as larger, which are essential for analogical inference and other forms of high-level reasoning? Are they necessarily innate, or can they be learned from non-relational inputs? Using comparative relations as a model domain, we show that structured relations can be learned from unstructured inputs of realistic complexity, applying bottom-up Bayesian learning mechanisms that make minimal assumptions about innate representations. First, we introduce...
AIC, BIC, Bayesian evidence against the interacting dark energy model
Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Krawiec, Adam [Jagiellonian University, Institute of Economics, Finance and Management, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Kurek, Aleksandra [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Kamionka, Michal [University of Wroclaw, Astronomical Institute, Wroclaw (Poland)
2015-01-01
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)
AIC, BIC, Bayesian evidence against the interacting dark energy model
Szydłowski, Marek, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Krawiec, Adam, E-mail: adam.krawiec@uj.edu.pl [Institute of Economics, Finance and Management, Jagiellonian University, Łojasiewicza 4, 30-348, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Kurek, Aleksandra, E-mail: alex@oa.uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Kamionka, Michał, E-mail: kamionka@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, ul. Kopernika 11, 51-622, Wrocław (Poland)
2015-01-14
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model.
AIC, BIC, Bayesian evidence against the interacting dark energy model
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model
Dissecting Magnetar Variability with Bayesian Hierarchical Models
Huppenkothen, Daniela; Brewer, Brendon J.; Hogg, David W.; Murray, Iain; Frean, Marcus; Elenbaas, Chris; Watts, Anna L.; Levin, Yuri; van der Horst, Alexander J.; Kouveliotou, Chryssa
2015-09-01
Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.
Dissecting magnetar variability with Bayesian hierarchical models
Huppenkothen, D; Hogg, D W; Murray, I; Frean, M; Elenbaas, C; Watts, A L; Levin, Y; van der Horst, A J; Kouveliotou, C
2015-01-01
Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture afte...
Cepeda-Cuervo, Edilberto; Núñez-Antón, Vicente
2013-01-01
In this article, a proposed Bayesian extension of the generalized beta spatial regression models is applied to the analysis of the quality of education in Colombia. We briefly revise the beta distribution and describe the joint modeling approach for the mean and dispersion parameters in the spatial regression models' setting. Finally, we…
Dynamic model based on Bayesian method for energy security assessment
Highlights: • Methodology for dynamic indicator model construction and forecasting of indicators. • Application of dynamic indicator model for energy system development scenarios. • Expert judgement involvement using Bayesian method. - Abstract: The methodology for the dynamic indicator model construction and forecasting of indicators for the assessment of energy security level is presented in this article. An indicator is a special index, which provides numerical values to important factors for the investigated area. In real life, models of different processes take into account various factors that are time-dependent and dependent on each other. Thus, it is advisable to construct a dynamic model in order to describe these dependences. The energy security indicators are used as factors in the dynamic model. Usually, the values of indicators are obtained from statistical data. The developed dynamic model enables to forecast indicators’ variation taking into account changes in system configuration. The energy system development is usually based on a new object construction. Since the parameters of changes of the new system are not exactly known, information about their influences on indicators could not be involved in the model by deterministic methods. Thus, dynamic indicators’ model based on historical data is adjusted by probabilistic model with the influence of new factors on indicators using the Bayesian method
A Bayesian Network View on Nested Effects Models
Fröhlich Holger
2009-01-01
Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.
Probe Error Modeling Research Based on Bayesian Network
Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan
2015-01-01
Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.
K. Duraiswamy
2012-01-01
Full Text Available Problem statement: A database that is optimized to store and query data that is related to objects in space, including points, lines and polygons is called spatial database. Identifying nearest neighbor object search is a vital part of spatial database. Many nearest neighbor search techniques such as Authenticated Multi-step NN (AMNN, Superseding Nearest Neighbor (SNN search, Bayesian Nearest Neighbor (BNN and so on are available. But they had some difficulties while performing NN in uncertain spatial database. AMNN does not process the queries from distributed server and it accesses the queries only from single server. In SNN, the high dimensional data structure could not be used in NN search and it accesses only low dimensional data for NN search. Approach: The previous works described the process of NN using SNN with marginal object weight ranking. The downside over the previous work is that the performance is poor when compared to another work which performed NN using BNN. To improve the NN search in spatial databases using BNN, we are going to present a new technique as BNN search using marginal object weight ranking. Based on events occurring in the nearest object, BNN starts its search using MOW. The MOW is done by computing the weight of each NN objects and rank each object based on its frequency and distance of NN object for an efficient NN search in spatial databases. Results: Marginal Object Weight (MOW is introduced to all nearest neighbor object identified using BNN for any relevant query point. It processes the queries from distributed server using MOW. Conclusion: The proposed BNN using MOW framework is experimented with real data sets to show the performance improvement with the previous MOW using SNN in terms of execution time, memory consumption and query result accuracy.
Bayesian inference and model comparison for metallic fatigue data
Babuška, Ivo
2016-02-23
In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.
Bayesian inference and model comparison for metallic fatigue data
Babuška, Ivo; Sawlan, Zaid; Scavino, Marco; Szabó, Barna; Tempone, Raúl
2016-06-01
In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.
A Bayesian Model for Discovering Typological Implications
Daumé, Hal
2009-01-01
A standard form of analysis for linguistic typology is the universal implication. These implications state facts about the range of extant languages, such as ``if objects come after verbs, then adjectives come after nouns.'' Such implications are typically discovered by painstaking hand analysis over a small sample of languages. We propose a computational model for assisting at this process. Our model is able to discover both well-known implications as well as some novel implications that deserve further study. Moreover, through a careful application of hierarchical analysis, we are able to cope with the well-known sampling problem: languages are not independent.
A Latent Variable Bayesian Approach to Spatial Clustering with Background Noise
Kayabol, K.
2011-01-01
We propose a finite mixture model for clustering of the spatial data patterns. The model is based on the spatial distances between the data locations in such a way that both the distances of the points to the cluster centers and the distances of a given point to its neighbors within a defined window
DPpackage: Bayesian Semi- and Nonparametric Modeling in R
Alejandro Jara
2011-04-01
Full Text Available Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian nonparametric and semiparametric models in R, DPpackage. Currently, DPpackage includes models for marginal and conditional density estimation, receiver operating characteristic curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison and for eliciting the precision parameter of the Dirichlet process prior, and a general purpose Metropolis sampling algorithm. To maximize computational efficiency, the actual sampling for each model is carried out using compiled C, C++ or Fortran code.
KNET: Integrating Hypermedia and Bayesian Modeling
Chavez, R. Martin; Cooper, Gregory F.
2013-01-01
KNET is a general-purpose shell for constructing expert systems based on belief networks and decision networks. Such networks serve as graphical representations for decision models, in which the knowledge engineer must define clearly the alternatives, states, preferences, and relationships that constitute a decision basis. KNET contains a knowledge-engineering core written in Object Pascal and an interface that tightly integrates HyperCard, a hypertext authoring tool for the Apple Macintosh c...
Lack of confidence in approximate Bayesian computation model choice.
Robert, Christian P; Cornuet, Jean-Marie; Marin, Jean-Michel; Pillai, Natesh S
2011-09-13
Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex stochastic models. Grelaud et al. [(2009) Bayesian Anal 3:427-442] advocated the use of ABC for model choice in the specific case of Gibbs random fields, relying on an intermodel sufficiency property to show that the approximation was legitimate. We implemented ABC model choice in a wide range of phylogenetic models in the Do It Yourself-ABC (DIY-ABC) software [Cornuet et al. (2008) Bioinformatics 24:2713-2719]. We now present arguments as to why the theoretical arguments for ABC model choice are missing, because the algorithm involves an unknown loss of information induced by the use of insufficient summary statistics. The approximation error of the posterior probabilities of the models under comparison may thus be unrelated with the computational effort spent in running an ABC algorithm. We then conclude that additional empirical verifications of the performances of the ABC procedure as those available in DIY-ABC are necessary to conduct model choice. PMID:21876135
Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.
Hack, C Eric
2006-04-17
Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach. PMID:16466842
A study of finite mixture model: Bayesian approach on financial time series data
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates
Piotr Białowolski
2012-03-01
Full Text Available The aim of this paper is to construct a forecasting model oriented on predicting basic macroeconomic variables, namely: the GDP growth rate, the unemployment rate, and the consumer price inflation. In order to select the set of the best regressors, Bayesian Averaging of Classical Estimators (BACE is employed. The models are atheoretical (i.e. they do not reflect causal relationships postulated by the macroeconomic theory and the role of regressors is played by business and consumer tendency survey-based indicators. Additionally, survey-based indicators are included with a lag that enables to forecast the variables of interest (GDP, unemployment, and inflation for the four forthcoming quarters without the need to make any additional assumptions concerning the values of predictor variables in the forecast period. Bayesian Averaging of Classical Estimators is a method allowing for full and controlled overview of all econometric models which can be obtained out of a particular set of regressors. In this paper authors describe the method of generating a family of econometric models and the procedure for selection of a final forecasting model. Verification of the procedure is performed by means of out-of-sample forecasts of main economic variables for the quarters of 2011. The accuracy of the forecasts implies that there is still a need to search for new solutions in the atheoretical modelling.
Cha, YoonKyung; Soon Park, Seok; Won Lee, Hye; Stow, Craig A.
2016-01-01
Modeling to accurately predict river phytoplankton distribution and abundance is important in water quality and resource management. Nevertheless, the complex nature of eutrophication processes in highly connected river systems makes the task challenging. To model dynamics of river phytoplankton, represented by chlorophyll a (Chl a) concentration, we propose a Bayesian hierarchical model that explicitly accommodates seasonality and upstream-downstream spatial gradient in the structure. The utility of our model is demonstrated with an application to the Nakdong River (South Korea), which is a eutrophic, intensively regulated river, but functions as an irreplaceable water source for more than 13 million people. Chl a is modeled with two manageable factors, river flow, and total phosphorus (TP) concentration. Our model results highlight the importance of taking seasonal and spatial context into account when describing flow regimes and phosphorus delivery in rivers. A contrasting positive Chl a-flow relationship across stations versus negative Chl a-flow slopes that arose when Chl a was modeled on a station-month basis is an illustration of Simpson's paradox, which necessitates modeling Chl a-flow relationships decomposed into seasonal and spatial components. Similar Chl a-TP slopes among stations and months suggest that, with the flow effect removed, positive TP effects on Chl a are uniform regardless of the season and station in the river. Our model prediction successfully captured the shift in the spatial and monthly patterns of Chl a.
Theoretical aspects of spatial-temporal modeling
Matsui, Tomoko
2015-01-01
This book provides a modern introductory tutorial on specialized theoretical aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter provides up-to-date coverage of particle association measures that underpin the theoretical properties of recently developed random set methods in space and time otherwise known as the class of probability hypothesis density framework (PHD filters). The second chapter gives an overview of recent advances in Monte Carlo methods for Bayesian filtering in high-dimensional spaces. In particular, the chapter explains how one may extend classical sequential Monte Carlo methods for filtering and static inference problems to high dimensions and big-data applications. The third chapter presents an overview of generalized families of processes that extend the class of Gaussian process models to heavy-tailed families known as alph...
Evaluating stream health based environmental justice model performance at different spatial scales
Daneshvar, Fariborz; Nejadhashemi, A. Pouyan; Zhang, Zhen; Herman, Matthew R.; Shortridge, Ashton; Marquart-Pyatt, Sandra
2016-07-01
This study evaluated the effects of spatial resolution on environmental justice analysis concerning stream health. The Saginaw River Basin in Michigan was selected since it is an area of concern in the Great Lakes basin. Three Bayesian Conditional Autoregressive (CAR) models (ordinary regression, weighted regression and spatial) were developed for each stream health measure based on 17 socioeconomic and physiographical variables at three census levels. For all stream health measures, spatial models had better performance compared to the two non-spatial ones at the census tract and block group levels. Meanwhile no spatial dependency was found at the county level. Multilevel Bayesian CAR models were also developed to understand the spatial dependency at the three levels. Results showed that considering level interactions improved models' prediction. Residual plots also showed that models developed at the block group and census tract (in contrary to county level models) are able to capture spatial variations.