Sensor fault diagnosis using Bayesian belief networks
This paper describes a method based on Bayesian belief networks (BBNs) sensor fault detection, isolation, classification, and accommodation (SFDIA). For this purpose, a BBN uses three basic types of nodes to represent the information associated with each sensor: (1) sensor-reading nodes that represent the mechanisms by which the information is communicated to the BBN, (2) sensor-status nodes that convey the status of the corresponding sensors at any given time, and (3) process-variable nodes that are a conceptual representation of the actual values of the process variables, which are unknown
Strategies for Generating Micro Explanations for Bayesian Belief Networks
Sember, Peter; Zukerman, Ingrid
2013-01-01
Bayesian Belief Networks have been largely overlooked by Expert Systems practitioners on the grounds that they do not correspond to the human inference mechanism. In this paper, we introduce an explanation mechanism designed to generate intuitive yet probabilistically sound explanations of inferences drawn by a Bayesian Belief Network. In particular, our mechanism accounts for the results obtained due to changes in the causal and the evidential support of a node.
ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM
Santosh Kumar Chaudhari
2011-06-01
Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.
Bayesian Belief Network untuk Menghasilkan Fuzzy Association Rules
Rolly Intan; Oviliani Yenty Yuliana; Dwi Kristanto
2010-01-01
Bayesian Belief Network (BBN), one of the data mining classification methods, is used in this research for mining and analyzing medical track record from a relational data table. In this paper, a mutual information concept is extended using fuzzy labels for determining the relation between two fuzzy nodes. The highest fuzzy information gain is used for mining fuzzy association rules in order to extend a BBN. Meaningful fuzzy labels can be defined for each domain data. For example, fuzzy label...
Predicting Software Suitability Using a Bayesian Belief Network
Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.
2005-01-01
The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.
A Software Risk Analysis Model Using Bayesian Belief Network
Yong Hu; Juhua Chen; Mei Liu; Yang Yun; Junbiao Tang
2006-01-01
The uncertainty during the period of software project development often brings huge risks to contractors and clients. Ifwe can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project, we can reduce the risk.Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we built up network structure by Delphi method for conditional probability table learning, and learn update probability table and nodes' confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately. This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.
Development of a Bayesian Belief Network Runway Incursion Model
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
Bayesian Belief Network untuk Menghasilkan Fuzzy Association Rules
Rolly Intan
2010-01-01
Full Text Available Bayesian Belief Network (BBN, one of the data mining classification methods, is used in this research for mining and analyzing medical track record from a relational data table. In this paper, a mutual information concept is extended using fuzzy labels for determining the relation between two fuzzy nodes. The highest fuzzy information gain is used for mining fuzzy association rules in order to extend a BBN. Meaningful fuzzy labels can be defined for each domain data. For example, fuzzy labels of secondary disease and complication disease are defined for a disease classification. The implemented of the extended BBN in a application program gives a contribution for analyzing medical track record based on BBN graph and conditional probability tables.
A Bayesian belief network of threat anticipation and terrorist motivations
Olama, Mohammed M.; Allgood, Glenn O.; Davenport, Kristen M.; Schryver, Jack C.
2010-04-01
Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) as well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.
Modeling Land-Use Decision Behavior with Bayesian Belief Networks
Inge Aalders
2008-06-01
Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.
Bayesian Belief Networks Approach for Modeling Irrigation Behavior
Andriyas, S.; McKee, M.
2012-12-01
Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation
ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM
Santosh Kumar Chaudhari; Murthy, Hema A.
2011-01-01
A Network Management System (NMS) plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to ...
Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs
Jeffrey O. Oseh (M.Sc.
2015-04-01
Full Text Available Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Bayesian Belief Network Method employed were validated and tested by unseen data to determine their accuracy and trend stability and were also compared with the findings obtained from Scaling equations. The obtained Bayesian Belief Network results indicated that the method showed an improved performance of predicting the amount of asphaltene precipitated in light oil reservoirs thus reducing the number of experiments required.
Tutorial on Exact Belief Propagation in Bayesian Networks: from Messages to Algorithms
Nuel, G
2012-01-01
In Bayesian networks, exact belief propagation is achieved through message passing algorithms. These algorithms (ex: inward and outward) provide only a recursive definition of the corresponding messages. In contrast, when working on hidden Markov models and variants, one classically first defines explicitly these messages (forward and backward quantities), and then derive all results and algorithms. In this paper, we generalize the hidden Markov model approach by introducing an explicit definition of the messages in Bayesian networks, from which we derive all the relevant properties and results including the recursive algorithms that allow to compute these messages. Two didactic examples (the precipitation hidden Markov model and the pedigree Bayesian network) are considered along the paper to illustrate the new formalism and standalone R source code is provided in the appendix.
Ge, L.; Asseldonk, van, N.; Valeeva, N.I.; Hennen, W.H.G.J.; Bergevoet, R.H.M.
2011-01-01
Efficient policy intervention to reduce antibiotic use in livestock production requires knowledge about the rationale underlying antibiotic usage. Animal health status and management quality are considered the two most important factors that influence farmersâ¿¿ decision-making concerning antibiotic use. Information on these two factors is therefore crucial in designing incentive mechanisms. In this paper, a Bayesian belief network (BBN) is built to represent the knowledge on how these factor...
Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs
Jeffrey O. Oseh (M.Sc.); Olugbenga A. Falode (Ph.D)
2015-01-01
Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Baye...
A Study of Scaling Issues in Bayesian Belief Networks for Ship Classification
Musman, Scott A.; Chang, L. W.
2013-01-01
The problems associated with scaling involve active and challenging research topics in the area of artificial intelligence. The purpose is to solve real world problems by means of AI technologies, in cases where the complexity of representation of the real world problem is potentially combinatorial. In this paper, we present a novel approach to cope with the scaling issues in Bayesian belief networks for ship classification. The proposed approach divides the conceptual model of a complex ship...
Applying Bayesian belief networks in rapid response situations
Gibson, William L [Los Alamos National Laboratory; Deborah, Leishman, A. [Los Alamos National Laboratory; Van Eeckhout, Edward [Los Alamos National Laboratory
2008-01-01
The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed. These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.
Doskey, Steven Craig
2014-01-01
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
Influences of variables on ship collision probability in a Bayesian belief network model
The influences of the variables in a Bayesian belief network model for estimating the role of human factors on ship collision probability in the Gulf of Finland are studied for discovering the variables with the largest influences and for examining the validity of the network. The change in the so-called causation probability is examined while observing each state of the network variables and by utilizing sensitivity and mutual information analyses. Changing course in an encounter situation is the most influential variable in the model, followed by variables such as the Officer of the Watch's action, situation assessment, danger detection, personal condition and incapacitation. The least influential variables are the other distractions on bridge, the bridge view, maintenance routines and the officer's fatigue. In general, the methods are found to agree on the order of the model variables although some disagreements arise due to slightly dissimilar approaches to the concept of variable influence. The relative values and the ranking of variables based on the values are discovered to be more valuable than the actual numerical values themselves. Although the most influential variables seem to be plausible, there are some discrepancies between the indicated influences in the model and literature. Thus, improvements are suggested to the network.
Development of a Bayesian Belief Network Runway Incursion and Excursion Model
Green, Lawrence L.
2014-01-01
In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.
Bayesian Belief Networks for predicting drinking water distribution system pipe breaks
In this paper, we use Bayesian Belief Networks (BBNs) to construct a knowledge model for pipe breaks in a water zone. To the authors’ knowledge, this is the first attempt to model drinking water distribution system pipe breaks using BBNs. Development of expert systems such as BBNs for analyzing drinking water distribution system data is not only important for pipe break prediction, but is also a first step in preventing water loss and water quality deterioration through the application of machine learning techniques to facilitate data-based distribution system monitoring and asset management. Due to the difficulties in collecting, preparing, and managing drinking water distribution system data, most pipe break models can be classified as “statistical–physical” or “hypothesis-generating.” We develop the BBN with the hope of contributing to the “hypothesis-generating” class of models, while demonstrating the possibility that BBNs might also be used as “statistical–physical” models. Our model is learned from pipe breaks and covariate data from a mid-Atlantic United States (U.S.) drinking water distribution system network. BBN models are learned using a constraint-based method, a score-based method, and a hybrid method. Model evaluation is based on log-likelihood scoring. Sensitivity analysis using mutual information criterion is also reported. While our results indicate general agreement with prior results reported in pipe break modeling studies, they also suggest that it may be difficult to select among model alternatives. This model uncertainty may mean that more research is needed for understanding whether additional pipe break risk factors beyond age, break history, pipe material, and pipe diameter might be important for asset management planning. - Highlights: • We show Bayesian Networks for predictive and diagnostic management of water distribution systems. • Our model may enable system operators and managers to prioritize system
Zhujie Chu
2016-02-01
Full Text Available Municipal household solid waste (MHSW has become a serious problem in China over the course of the last two decades, resulting in significant side effects to the environment. Therefore, effective management of MHSW has attracted wide attention from both researchers and practitioners. Separate collection, the first and crucial step to solve the MHSW problem, however, has not been thoroughly studied to date. An empirical survey has been conducted among 387 households in Harbin, China in this study. We use Bayesian Belief Networks model to determine the influencing factors on separate collection. Four types of factors are identified, including political, economic, social cultural and technological based on the PEST (political, economic, social and technological analytical method. In addition, we further analyze the influential power of different factors, based on the network structure and probability changes obtained by Netica software. Results indicate that technological dimension has the greatest impact on MHSW separate collection, followed by the political dimension and economic dimension; social cultural dimension impacts MHSW the least.
Gran, Bjørn Axel
2002-01-01
The objective of the research has been to investigate the possibility to transfer the requirements of a software safety standard into Bayesian belief networks (BBNs). The BBN methodology has mainly been developed and applied in the AI society, but more recently it has been proposed to apply it to the assessment of programmable systems. The relation to AI application is relevant in the sense that the method reflects the way of an assessor's thinking during the assessment process. Conceptually,...
Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report
The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)
Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report
Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K. [Lloyd' s Register Consulting AB, Sundbyberg (Sweden)
2013-10-15
The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)
Using Bayesian Belief Network (BBN) modelling for Rapid Source Term Prediction. RASTEP Phase 1
Knochenhauer, M.; Swaling, V.H.; Alfheim, P. [Scandpower AB, Sundbyberg (Sweden)
2012-09-15
The project is connected to the development of RASTEP, a computerized source term prediction tool aimed at providing a basis for improving off-site emergency management. RASTEP uses Bayesian belief networks (BBN) to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, timing, and pathway of released radio-nuclides). The output is a set of possible source terms with associated probabilities. In the NKS project, a number of complex issues associated with the integration of probabilistic and deterministic analyses are addressed. This includes issues related to the method for estimating source terms, signal validation, and sensitivity analysis. One major task within Phase 1 of the project addressed the problem of how to make the source term module flexible enough to give reliable and valid output throughout the accident scenario. Of the alternatives evaluated, it is recommended that RASTEP is connected to a fast running source term prediction code, e.g., MARS, with a possibility of updating source terms based on real-time observations. (Author)
Prediction of near-term breast cancer risk using a Bayesian belief network
Zheng, Bin; Ramalingam, Pandiyarajan; Hariharan, Harishwaran; Leader, Joseph K.; Gur, David
2013-03-01
Accurately predicting near-term breast cancer risk is an important prerequisite for establishing an optimal personalized breast cancer screening paradigm. In previous studies, we investigated and tested the feasibility of developing a unique near-term breast cancer risk prediction model based on a new risk factor associated with bilateral mammographic density asymmetry between the left and right breasts of a woman using a single feature. In this study we developed a multi-feature based Bayesian belief network (BBN) that combines bilateral mammographic density asymmetry with three other popular risk factors, namely (1) age, (2) family history, and (3) average breast density, to further increase the discriminatory power of our cancer risk model. A dataset involving "prior" negative mammography examinations of 348 women was used in the study. Among these women, 174 had breast cancer detected and verified in the next sequential screening examinations, and 174 remained negative (cancer-free). A BBN was applied to predict the risk of each woman having cancer detected six to 18 months later following the negative screening mammography. The prediction results were compared with those using single features. The prediction accuracy was significantly increased when using the BBN. The area under the ROC curve increased from an AUC=0.70 to 0.84 (pvalue (PPV) and negative predictive value (NPV) also increased from a PPV=0.61 to 0.78 and an NPV=0.65 to 0.75, respectively. This study demonstrates that a multi-feature based BBN can more accurately predict the near-term breast cancer risk than with a single feature.
Bayesian belief networks for human reliability analysis: A review of applications and gaps
The use of Bayesian Belief Networks (BBNs) in risk analysis (and in particular Human Reliability Analysis, HRA) is fostered by a number of features, attractive in fields with shortage of data and consequent reliance on subjective judgments: the intuitive graphical representation, the possibility of combining diverse sources of information, the use the probabilistic framework to characterize uncertainties. In HRA, BBN applications are steadily increasing, each emphasizing a different BBN feature or a different HRA aspect to improve. This paper aims at a critical review of these features as well as at suggesting research needs. Five groups of BBN applications are analysed: modelling of organizational factors, analysis of the relationships among failure influencing factors, BBN-based extensions of existing HRA methods, dependency assessment among human failure events, assessment of situation awareness. Further, the paper analyses the process for building BBNs and in particular how expert judgment is used in the assessment of the BBN conditional probability distributions. The gaps identified in the review suggest the need for establishing more systematic frameworks to integrate the different sources of information relevant for HRA (cognitive models, empirical data, and expert judgment) and to investigate algorithms to avoid elicitation of many relationships via expert judgment. - Highlights: • We analyze BBN uses for HRA applications; but some conclusions can be generalized. • Special review focus on BBN building approaches, key for model acceptance. • Gaps relate to the transparency of the BBN building and quantification phases. • Need for more systematic framework to integrate different sources of information. • Need of ways to avoid elicitation of many relationships via expert judgment
Odbert, Henry; Aspinall, Willy
2013-04-01
When volcanoes exhibit unrest or become eruptively active, science-based decision support invariably is sought by civil authorities. Evidence available to scientists about a volcano's internal state is usually indirect, secondary or very nebulous.Advancement of volcano monitoring technology in recent decades has increased the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Monitoring timeseries may be interpreted in real time by observatory staff and are often later subjected to further analytic scrutiny by the research community at large. With increasing variety and resolution of data, interpreting these multiple strands of parallel, partial evidence has become increasingly complex. In practice, interpretation of many timeseries involves familiarity with the idiosyncracies of the volcano, the monitoring techniques, the configuration of the recording instrumentation, observations from other datasets, and so on. Assimilation of this knowledge is necessary in order to select and apply the appropriate statistical techniques required to extract the required information. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple observations, model results and interpretations - and associated uncertainties - in a methodical manner. The formulation is usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic timeseries, the certainty with which inferences may be drawn, and how they can be updated dynamically. Such approaches provide a route to developing analytical interface(s) between volcano monitoring analyses and probabilistic hazard analysis. We discuss the use of BBNs in hazard
Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model
Green, Lawrence L.
2015-01-01
One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly
Antoniou, Constantinos; Harrison, Glenn W.; Lau, Morten I.;
2015-01-01
A large literature suggests that many individuals do not apply Bayes’ Rule when making decisions that depend on them correctly pooling prior information and sample data. We replicate and extend a classic experimental study of Bayesian updating from psychology, employing the methods of experimenta...
Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro
2016-01-01
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. PMID:26597639
Schmitt, Laetitia Helene Marie; Brugere, Cecile
2013-01-01
Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876
Nojavan A, Farnaz; Qian, Song S; Paerl, Hans W; Reckhow, Kenneth H; Albright, Elizabeth A
2014-06-15
The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions. PMID:24814252
LiMin Wang
2013-01-01
Full Text Available The problem of extracting knowledge from a relational database for probabilistic reasoning is still unsolved. On the basis of a three-phase learning framework, we propose the integration of a Bayesian network (BN with the functional dependency (FD discovery technique. Association rule analysis is employed to discover FDs and expert knowledge encoded within a BN; that is, key relationships between attributes are emphasized. Moreover, the BN can be updated by using an expert-driven annotation process wherein redundant nodes and edges are removed. Experimental results show the effectiveness and efficiency of the proposed approach.
Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard
2015-04-01
It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network
A Bayesian belief network (BBN) was developed to characterize the effects of sediment accumulation on the water storage capacity of Lago Lucchetti (located in southwest Puerto Rico) and to forecast the life expectancy (usefulness) of the reservoir under different management scena...
Salvador Dura-Bernal; Thomas Wennekers; DENHAM, SUSAN L.
2012-01-01
Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very co...
An Efficient Method for Assessing Water Quality Based on Bayesian Belief Networks
Khalil Shihab
2014-08-01
Full Text Available A new methodo logy is developed to analyse existing water quality monitoring networks. This methodology incorporates different aspects of monitoring, including vulnerability/probability assessment, environmental health risk, the value of information, and redundancy redu ction. The work starts with a formulation of a conceptual framework for groundwater quality monitoring to represent the methodology’s context . This work presents the development of Bayesian techniques for the assessment of groundwater quality. The primary aim is to develop a predictive model and a computer system to assess and predict the impact of pollutants on the water column. The process of the analysis begins by postulating a model in light of al l available knowledge taken from relevant phenomenon. The previous knowledge as represented by the prior distribution of the model parameters is then combined with the new data through Bayes’ theorem to yield the current knowledge represented by the posterior distribution of model parameters. This process of upd ating information about the unknown model parameters is then repeated in a sequential manner as more and more new information becomes available
Mark H. Huff; Turley, Marianne C.; Randy Molina; Russ Holmes; Steve Morey; Hohenlohe, Paul A.; Bruce G. Marcot; John A. Laurence
2006-01-01
We developed a set of decision-aiding models as Bayesian belief networks (BBNs) that represented a complex set of evaluation guidelines used to determine the appropriate conservation of hundreds of potentially rare species on federally-administered lands in the Pacific Northwest United States. The models were used in a structured assessment and paneling procedure as part of an adaptive management process that evaluated new scientific information under the Northwest Forest Plan. The models wer...
This report propose a method that can produce quantitative reliability of safety-critical software for PSA by making use of Bayesian Belief Networks (BBN). BBN has generally been used to model the uncertain system in many research fields. The proposed method was constructed by utilizing BBN that can combine the qualitative and the quantitative evidence relevant to the reliability of safety-critical software, and then can infer a conclusion in a formal and a quantitative way. A case study was also carried out with the proposed method to assess the quality of software design specification of safety-critical software that will be embedded in reactor protection system. The V and V results of the software were used as inputs for the BBN model. The calculation results of the BBN model showed that its conclusion is mostly equivalent to those of the V and V expert for a given input data set. The method and the results of the case study will be utilized in PSA of NPP. The method also can support the V and V expert's decision making process in controlling further V and V activities
Wiegmann, Douglas A.a
2005-01-01
The NASA Aviation Safety Program (AvSP) has defined several products that will potentially modify airline and/or ATC operations, enhance aircraft systems, and improve the identification of potential hazardous situations within the National Airspace System (NAS). Consequently, there is a need to develop methods for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the judgments to develop Bayesian Belief Networks (BBN's) that model the potential impact that specific interventions may have. Specifically, the present report summarizes methodologies for improving the elicitation of probability estimates during expert evaluations of AvSP products for use in BBN's. The work involved joint efforts between Professor James Luxhoj from Rutgers University and researchers at the University of Illinois. The Rutgers' project to develop BBN's received funding by NASA entitled "Probabilistic Decision Support for Evaluating Technology Insertion and Assessing Aviation Safety System Risk." The proposed project was funded separately but supported the existing Rutgers' program.
During the last three decades, several techniques have been developed for the quantitative study of human reliability. In the 1980s, techniques were developed to model systems by means of binary trees, which did not allow for the representation of the context in which human actions occur. Thus, these techniques cannot model the representation of individuals, their interrelationships, and the dynamics of a system. These issues make the improvement of methods for Human Reliability Analysis (HRA) a pressing need. To eliminate or at least attenuate these limitations, some authors have proposed modeling systems using Bayesian Belief Networks (BBNs). The application of these tools is expected to address many of the deficiencies in current approaches to modeling human actions with binary trees. This paper presents a methodology based on BBN for analyzing human reliability and applies this method to the operation of an oil tanker, focusing on the risk of collision accidents. The obtained model was used to determine the most likely sequence of hazardous events and thus isolate critical activities in the operation of the ship to study Internal Factors (IFs), Skills, and Management and Organizational Factors (MOFs) that should receive more attention for risk reduction.
McDonald, K S; Ryder, D S; Tighe, M
2015-05-01
Bayesian Belief Networks (BBNs) are being increasingly used to develop a range of predictive models and risk assessments for ecological systems. Ecological BBNs can be applied to complex catchment and water quality issues, integrating multiple spatial and temporal variables within social, economic and environmental decision making processes. This paper reviews the essential components required for ecologists to design a best-practice predictive BBN in an ecological risk assessment (ERA) framework for aquatic ecosystems, outlining: (1) how to create a BBN for an aquatic ERA?; (2) what are the challenges for aquatic ecologists in adopting the best-practice applications of BBNs to ERAs?; and (3) how can BBNs in ERAs influence the science/management interface into the future? The aims of this paper are achieved using three approaches. The first is to demonstrate the best-practice development of BBNs in aquatic sciences using a simple nutrient model. The second is to discuss the limitations and challenges aquatic ecologists encounter when applying BBNs to ERAs. The third is to provide a framework for integrating best-practice BBNs into ERAs and the management of aquatic ecosystems. A quantitative review of the application and development of BBNs in aquatic science from 2002 to 2014 was conducted to identify areas where continued best-practice development is required. We outline a best-practice framework for the integration of BBNs into ERAs and study of complex aquatic systems. PMID:25733196
Dirk W. te Velde
2006-12-01
Full Text Available Commercialization of non-timber forest products (NTFPs has been widely promoted as a means of sustainably developing tropical forest resources, in a way that promotes forest conservation while supporting rural livelihoods. However, in practice, NTFP commercialization has often failed to deliver the expected benefits. Progress in analyzing the causes of such failure has been hindered by the lack of a suitable framework for the analysis of NTFP case studies, and by the lack of predictive theory. We address these needs by developing a probabilistic model based on a livelihood framework, enabling the impact of NTFP commercialization on livelihoods to be predicted. The framework considers five types of capital asset needed to support livelihoods: natural, human, social, physical, and financial. Commercialization of NTFPs is represented in the model as the conversion of one form of capital asset into another, which is influenced by a variety of socio-economic, environmental, and political factors. Impacts on livelihoods are determined by the availability of the five types of assets following commercialization. The model, implemented as a Bayesian Belief Network, was tested using data from participatory research into 19 NTFP case studies undertaken in Mexico and Bolivia. The model provides a novel tool for diagnosing the causes of success and failure in NTFP commercialization, and can be used to explore the potential impacts of policy options and other interventions on livelihoods. The potential value of this approach for the development of NTFP theory is discussed.
Eom, H. S.; Kang, H. G.; Chang, S. C.; Park, G. Y.; Kwon, K. C
2007-02-15
This report propose a method that can produce quantitative reliability of safety-critical software for PSA by making use of Bayesian Belief Networks (BBN). BBN has generally been used to model the uncertain system in many research fields. The proposed method was constructed by utilizing BBN that can combine the qualitative and the quantitative evidence relevant to the reliability of safety-critical software, and then can infer a conclusion in a formal and a quantitative way. A case study was also carried out with the proposed method to assess the quality of software design specification of safety-critical software that will be embedded in reactor protection system. The V and V results of the software were used as inputs for the BBN model. The calculation results of the BBN model showed that its conclusion is mostly equivalent to those of the V and V expert for a given input data set. The method and the results of the case study will be utilized in PSA of NPP. The method also can support the V and V expert's decision making process in controlling further V and V activities.
The paper presents an innovative approach to integrate Human and Organisational Factors (HOF) into risk analysis. The approach has been developed and applied to a case study in the maritime industry, but it can also be utilised in other sectors. A Bayesian Belief Network (BBN) has been developed to model the Maritime Transport System (MTS), by taking into account its different actors (i.e., ship-owner, shipyard, port and regulator) and their mutual influences. The latter have been modelled by means of a set of dependent variables whose combinations express the relevant functions performed by each actor. The BBN model of the MTS has been used in a case study for the quantification of HOF in the risk analysis carried out at the preliminary design stage of High Speed Craft (HSC). The study has focused on a collision in open sea hazard carried out by means of an original method of integration of a Fault Tree Analysis (FTA) of technical elements with a BBN model of the influences of organisational functions and regulations, as suggested by the International Maritime Organisation's (IMO) Guidelines for Formal Safety Assessment (FSA). The approach has allowed the identification of probabilistic correlations between the basic events of a collision accident and the BBN model of the operational and organisational conditions. The linkage can be exploited in different ways, especially to support identification and evaluation of risk control options also at the organisational level. Conditional probabilities for the BBN have been estimated by means of experts' judgments, collected from an international panel of different European countries. Finally, a sensitivity analysis has been carried out over the model to identify configurations of the MTS leading to a significant reduction of accident probability during the operation of the HSC
Reasons for (prior) belief in bayesian epistemology
Dietrich, Franz; List, Christian
2012-01-01
Bayesian epistemology tells us with great precision how we should move from prior to posterior beliefs in light of new evidence or information, but says little about where our prior beliefs come from. It o¤ers few resources to describe some prior beliefs as rational or well-justi�ed, and others as irrational or unreasonable. A di¤erent strand of epistemology takes the central epistemological question to be not how to change one�s beliefs in light of new evidence, but what reasons justify a gi...
One of the major challenges in using the digital systems in a NPP is the reliability estimation of safety critical software embedded in the digital safety systems. Precise quantitative assessment of the reliability of safety critical software is nearly impossible, since many of the aspects to be considered are of qualitative nature and not directly measurable, but they have to be estimated for a practical use. Therefore an expert's judgment plays an important role in estimating the reliability of the software embedded in safety-critical systems in practice, because they can deal with all the diverse evidence relevant to the reliability and can perform an inference based on the evidence. But, in general, the experts' way of combining the diverse evidence and performing an inference is usually informal and qualitative, which is hard to discuss and will eventually lead to a debate about the conclusion. We have been carrying out research on a quantitative assessment of the reliability of safety critical software using Bayesian Belief Networks (BBN). BBN has been proven to be a useful modeling formalism because a user can represent a complex set of events and relationships in a fashion that can easily be interpreted by others. In the previous works we have assessed a software requirement specification of a reactor protection system by using our BBN-based assessment model. The BBN model mainly employed an expert's subjective probabilities as inputs. In the process of assessing the software requirement documents we found out that the BBN model was excessively dependent on experts' subjective judgments in a large part. Therefore, to overcome the weakness of our methodology we employed conventional software engineering measures into the BBN model as shown in this paper. The quantitative relationship between the conventional software measures and the reliability of software were not identified well in the past. Then recently there appeared a few researches on a ranking of
Márcio das Chagas Moura
2008-08-01
Full Text Available In this work it is proposed a model for the assessment of availability measure of fault tolerant systems based on the integration of continuous time semi-Markov processes and Bayesian belief networks. This integration results in a hybrid stochastic model that is able to represent the dynamic characteristics of a system as well as to deal with cause-effect relationships among external factors such as environmental and operational conditions. The hybrid model also allows for uncertainty propagation on the system availability. It is also proposed a numerical procedure for the solution of the state probability equations of semi-Markov processes described in terms of transition rates. The numerical procedure is based on the application of Laplace transforms that are inverted by the Gauss quadrature method known as Gauss Legendre. The hybrid model and numerical procedure are illustrated by means of an example of application in the context of fault tolerant systems.Neste trabalho, é proposto um modelo baseado na integração entre processos semi-Markovianos e redes Bayesianas para avaliação da disponibilidade de sistemas tolerantes à falha. Esta integração resulta em um modelo estocástico híbrido o qual é capaz de representar as características dinâmicas de um sistema assim como tratar as relações de causa e efeito entre fatores externos tais como condições ambientais e operacionais. Além disso, o modelo híbrido permite avaliar a propagação de incerteza sobre a disponibilidade do sistema. É também proposto um procedimento numérico para a solução das equações de probabilidade de estado de processos semi-Markovianos descritos por taxas de transição. Tal procedimento numérico é baseado na aplicação de transformadas de Laplace que são invertidas pelo método de quadratura Gaussiana conhecido como Gauss Legendre. O modelo híbrido e procedimento numérico são ilustrados por meio de um exemplo de aplicação no contexto de
Eom, Heung Seop; Kang, Hyun Gook; Park, Ki Hong; Kwon, Kee Choon; Chang, Seung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
One of the major challenges in using the digital systems in a NPP is the reliability estimation of safety critical software embedded in the digital safety systems. Precise quantitative assessment of the reliability of safety critical software is nearly impossible, since many of the aspects to be considered are of qualitative nature and not directly measurable, but they have to be estimated for a practical use. Therefore an expert's judgment plays an important role in estimating the reliability of the software embedded in safety-critical systems in practice, because they can deal with all the diverse evidence relevant to the reliability and can perform an inference based on the evidence. But, in general, the experts' way of combining the diverse evidence and performing an inference is usually informal and qualitative, which is hard to discuss and will eventually lead to a debate about the conclusion. We have been carrying out research on a quantitative assessment of the reliability of safety critical software using Bayesian Belief Networks (BBN). BBN has been proven to be a useful modeling formalism because a user can represent a complex set of events and relationships in a fashion that can easily be interpreted by others. In the previous works we have assessed a software requirement specification of a reactor protection system by using our BBN-based assessment model. The BBN model mainly employed an expert's subjective probabilities as inputs. In the process of assessing the software requirement documents we found out that the BBN model was excessively dependent on experts' subjective judgments in a large part. Therefore, to overcome the weakness of our methodology we employed conventional software engineering measures into the BBN model as shown in this paper. The quantitative relationship between the conventional software measures and the reliability of software were not identified well in the past. Then recently there appeared a few
Salvador Dura-Bernal
Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom
Landuyt, Dries; Lemmens, Pieter; D'hondt, Rob; Broekx, Steven; Liekens, Inge; De Bie, Tom; Declerck, Steven A J; De Meester, Luc; Goethals, Peter L M
2014-12-01
Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice. PMID:25005053
Mark H. Huff
2006-12-01
Full Text Available We developed a set of decision-aiding models as Bayesian belief networks (BBNs that represented a complex set of evaluation guidelines used to determine the appropriate conservation of hundreds of potentially rare species on federally-administered lands in the Pacific Northwest United States. The models were used in a structured assessment and paneling procedure as part of an adaptive management process that evaluated new scientific information under the Northwest Forest Plan. The models were not prescriptive but helped resource managers and specialists to evaluate complicated and at times conflicting conservation guidelines and to reduce bias and uncertainty in evaluating the scientific data. We concluded that applying the BBN modeling framework to complex and equivocal evaluation guidelines provided a set of clear, intuitive decision-aiding tools that greatly aided the species evaluation and conservation process.
Kolb Ayre, Kimberley; Caldwell, Colleen A.; Stinson, Jonah; Landis, Wayne G.
2014-01-01
Introduction and spread of the parasite Myxobolus cerebralis, the causative agent of whirling disease, has contributed to the collapse of wild trout populations throughout the intermountain west. Of concern is the risk the disease may have on conservation and recovery of native cutthroat trout. We employed a Bayesian belief network to assess probability of whirling disease in Colorado River and Rio Grande cutthroat trout (Oncorhynchus clarkii pleuriticus and Oncorhynchus clarkii virginalis, respectively) within their current ranges in the southwest United States. Available habitat (as defined by gradient and elevation) for intermediate oligochaete worm host, Tubifex tubifex, exerted the greatest influence on the likelihood of infection, yet prevalence of stream barriers also affected the risk outcome. Management areas that had the highest likelihood of infected Colorado River cutthroat trout were in the eastern portion of their range, although the probability of infection was highest for populations in the southern, San Juan subbasin. Rio Grande cutthroat trout had a relatively low likelihood of infection, with populations in the southernmost Pecos management area predicted to be at greatest risk. The Bayesian risk assessment model predicted the likelihood of whirling disease infection from its principal transmission vector, fish movement, and suggested that barriers may be effective in reducing risk of exposure to native trout populations. Data gaps, especially with regard to location of spawning, highlighted the importance in developing monitoring plans that support future risk assessments and adaptive management for subspecies of cutthroat trout.
Ayre, Kimberley Kolb; Caldwell, Colleen A; Stinson, Jonah; Landis, Wayne G
2014-09-01
Introduction and spread of the parasite Myxobolus cerebralis, the causative agent of whirling disease, has contributed to the collapse of wild trout populations throughout the intermountain west. Of concern is the risk the disease may have on conservation and recovery of native cutthroat trout. We employed a Bayesian belief network to assess probability of whirling disease in Colorado River and Rio Grande cutthroat trout (Oncorhynchus clarkii pleuriticus and Oncorhynchus clarkii virginalis, respectively) within their current ranges in the southwest United States. Available habitat (as defined by gradient and elevation) for intermediate oligochaete worm host, Tubifex tubifex, exerted the greatest influence on the likelihood of infection, yet prevalence of stream barriers also affected the risk outcome. Management areas that had the highest likelihood of infected Colorado River cutthroat trout were in the eastern portion of their range, although the probability of infection was highest for populations in the southern, San Juan subbasin. Rio Grande cutthroat trout had a relatively low likelihood of infection, with populations in the southernmost Pecos management area predicted to be at greatest risk. The Bayesian risk assessment model predicted the likelihood of whirling disease infection from its principal transmission vector, fish movement, and suggested that barriers may be effective in reducing risk of exposure to native trout populations. Data gaps, especially with regard to location of spawning, highlighted the importance in developing monitoring plans that support future risk assessments and adaptive management for subspecies of cutthroat trout. PMID:24660663
Highlights: • Permafrost areas are subject to accelerated rates of climate change leading to thaw. • Thaw will increase decomposition rates, exacerbating climate feedback. • We present a Bayesian belief network as a tool to examine interacting factors. • Organic soil (Hudson Plain region) and mineral soil (Arctic region) are contrasted. • Hudson Plain has contributed more to climate feedback than Arctic, but gap closing. - Abstract: Permafrost affected soils are an important component of the Boreal, Subarctic, and Arctic ecosystems of Canada. These areas are undergoing accelerated rates of climate change and have been identified as being at high risk for thaw. Thaw will expose soil to warmer conditions that support increased decomposition rates, which in turn will affect short- and long-term carbon storage capacity and result in feedback to global climate. We present a tool in the form of a Bayesian belief network influence diagram that will allow policymakers and managers to understand how interacting factors contribute to permafrost thaw and resulting effects on greenhouse gas (GHG) production and climate feedback. A theoretical example of expected responses from an organic soil typical of the Hudson Plain region and a mineral soil typical in the Arctic region demonstrate variability in responses across different combinations of climate and soil conditions within Canada. Based on the network results, the Arctic has historically had higher probability of thaw, but the Hudson Plain has had higher probability of producing carbon dioxide (CO2) and methane (CH4). Under past and current climate conditions, the Hudson Plain has, on a per unit area basis, contributed more to climate feedback than the Arctic. However, the gap in contribution between the two regions is likely to decrease as thaw progresses more rapidly in the Arctic than Hudson Plain region, resulting in strong positive feedback to climate warming from both regions. The flexible framework
Adaptive Dynamic Bayesian Networks
Ng, B M
2007-10-26
A discrete-time Markov process can be compactly modeled as a dynamic Bayesian network (DBN)--a graphical model with nodes representing random variables and directed edges indicating causality between variables. Each node has a probability distribution, conditional on the variables represented by the parent nodes. A DBN's graphical structure encodes fixed conditional dependencies between variables. But in real-world systems, conditional dependencies between variables may be unknown a priori or may vary over time. Model errors can result if the DBN fails to capture all possible interactions between variables. Thus, we explore the representational framework of adaptive DBNs, whose structure and parameters can change from one time step to the next: a distribution's parameters and its set of conditional variables are dynamic. This work builds on recent work in nonparametric Bayesian modeling, such as hierarchical Dirichlet processes, infinite-state hidden Markov networks and structured priors for Bayes net learning. In this paper, we will explain the motivation for our interest in adaptive DBNs, show how popular nonparametric methods are combined to formulate the foundations for adaptive DBNs, and present preliminary results.
Bayesian Networks and Influence Diagrams
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...
A Flexible Software System for Learning Bayesian Networks from data
Aabakken, Trond
2007-01-01
Bayesian networks, also referred to as belief networks, originates from the artificial intelligence field where they were used to reason about uncertain knowledge. They differ from other knowledge representation schemes as they constitute a model of the environment rather than a model of the reasoning process. Among the Bayesian networks' main assets is that they offer a sound methodology for combining (a priori) information a domain expert may have with information available in databases. I...
Neuronanatomy, neurology and Bayesian networks
Bielza Lozoya, Maria Concepcion
2014-01-01
Bayesian networks are data mining models with clear semantics and a sound theoretical foundation. In this keynote talk we will pinpoint a number of neuroscience problems that can be addressed using Bayesian networks. In neuroanatomy, we will show computer simulation models of dendritic trees and classification of neuron types, both based on morphological features. In neurology, we will present the search for genetic biomarkers in Alzheimer's disease and the prediction of health-related qualit...
Bayesian Networks and Influence Diagrams
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...
Bayesian networks and food security - An introduction
Stein, A.
2004-01-01
This paper gives an introduction to Bayesian networks. Networks are defined and put into a Bayesian context. Directed acyclical graphs play a crucial role here. Two simple examples from food security are addressed. Possible uses of Bayesian networks for implementation and further use in decision sup
Bayesian Network--Response Regression
WANG, LU; Durante, Daniele; Dunson, David B.
2016-01-01
There is an increasing interest in learning how human brain networks vary with continuous traits (e.g., personality, cognitive abilities, neurological disorders), but flexible procedures to accomplish this goal are limited. We develop a Bayesian semiparametric model, which combines low-rank factorizations and Gaussian process priors to allow flexible shifts of the conditional expectation for a network-valued random variable across the feature space, while including subject-specific random eff...
Plug & Play object oriented Bayesian networks
Bangsø, Olav; Flores, J.; Jensen, Finn Verner
2003-01-01
Object oriented Bayesian networks have proven themselves useful in recent years. The idea of applying an object oriented approach to Bayesian networks has extended their scope to larger domains that can be divided into autonomous but interrelated entities. Object oriented Bayesian networks have...... been shown to be quite suitable for dynamic domains as well. However, processing object oriented Bayesian networks in practice does not take advantage of their modular structure. Normally the object oriented Bayesian network is transformed into a Bayesian network and, inference is performed...... by constructing a junction tree from this network. In this paper we propose a method for translating directly from object oriented Bayesian networks to junction trees, avoiding the intermediate translation. We pursue two main purposes: firstly, to maintain the original structure organized in an instance tree...
Inference in hybrid Bayesian networks
Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael;
2009-01-01
and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....
Space Shuttle RTOS Bayesian Network
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores
Quantum Inference on Bayesian Networks
Yoder, Theodore; Low, Guang Hao; Chuang, Isaac
2014-03-01
Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.
Nonparametric Bayesian Modeling of Complex Networks
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...... for complex networks can be derived and point out relevant literature....
Bayesian networks with applications in reliability analysis
Langseth, Helge
2002-01-01
A common goal of the papers in this thesis is to propose, formalize and exemplify the use of Bayesian networks as a modelling tool in reliability analysis. The papers span work in which Bayesian networks are merely used as a modelling tool (Paper I), work where models are specially designed to utilize the inference algorithms of Bayesian networks (Paper II and Paper III), and work where the focus has been on extending the applicability of Bayesian networks to very large domains (Paper IV and ...
Belief Approach for Social Networks
Dhaou, Salma Ben; Kharoune, Mouloud; Martin, Arnaud; Ben Yaghlane, Boutheina
2014-01-01
Nowadays, social networks became essential in information exchange between individuals. Indeed, as users of these networks, we can send messages to other people according to the links connecting us. Moreover, given the large volume of exchanged messages, detecting the true nature of the received message becomes a challenge. For this purpose, it is interesting to consider this new tendency with reasoning under uncertainty by using the theory of belief functions. In this paper, we tried to mode...
Mobile sensor network noise reduction and recalibration using a Bayesian network
Xiang, Y.; Tang, Y.; Zhu, W.
2016-02-01
People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potential for atmospheric research. However, systems based on low-cost air quality sensors often suffer from sensor noise and drift. For the sensing systems to operate stably and reliably in real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and recalibrate the drifted sensors simultaneously. Our method improves upon the state-of-art Bayesian belief network techniques by incorporating the virtual evidence and adjusting the sensor calibration functions recursively.Specifically, we have (1) designed a system based on the Bayesian belief network to detect and recover the abnormal readings, (2) developed methods to update the sensor calibration functions infield without requirement of ground truth, and (3) extended the Bayesian network with virtual evidence for infield sensor recalibration. To validate our technique, we have tested our technique with metal oxide sensors measuring NO2, CO, and O3 in a real-world deployment. Compared with the existing Bayesian belief network techniques, results based on our experiment setup demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.
Survey for Wavelet Bayesian Network Image Denoising
Pallavi Sharma,
2014-04-01
Full Text Available In now days, wavelet-based image denoising method, which extends a recently emerged ―geometrical‖ Bayesian framework. The new scheme combines three criteria for distinctive theoretically useful coefficients from noise: coefficient magnitudes, their advancement across scales and spatial clustering of bulky coefficients close to image edges. These three criteria are united in a Bayesian construction. The spatial clustering properties are expressed in a earlier model. The statistical properties regarding coefficient magnitudes and their development crossways scales are expressed in a joint conditional model. We address the image denoising difficulty, where zero-mean white and homogeneous Gaussian additive noise is to be uninvolved from a given image. We employ the belief propagation (BP algorithm, which estimates a coefficient based on every one the coefficients of a picture, as the maximum-a-posterior (MAP estimator to derive the denoised wavelet coefficients. We illustrate that if the network is a spanning tree, the customary BP algorithm can achieve MAP estimation resourcefully. Our research consequences show that, in conditions of the peak-signal-to-noise-ratio and perceptual superiority, the planned approach outperforms state-of-the-art algorithms on a number of images, mostly in the textured regions, with a range of amounts of white Gaussian noise.
Compiling Relational Bayesian Networks for Exact Inference
Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan
2004-01-01
We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating and ...
Compiling Relational Bayesian Networks for Exact Inference
Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark
We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by eva...
An Intuitive Dashboard for Bayesian Network Inference
Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.
2014-03-01
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.
An Intuitive Dashboard for Bayesian Network Inference
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++
Bayesian networks in educational assessment
Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M
2015-01-01
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...
Learning Bayesian networks for discrete data
Liang, Faming
2009-02-01
Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.
Belief propagation in genotype-phenotype networks.
Moharil, Janhavi; May, Paul; Gaile, Daniel P; Blair, Rachael Hageman
2016-03-01
Graphical models have proven to be a valuable tool for connecting genotypes and phenotypes. Structural learning of phenotype-genotype networks has received considerable attention in the post-genome era. In recent years, a dozen different methods have emerged for network inference, which leverage natural variation that arises in certain genetic populations. The structure of the network itself can be used to form hypotheses based on the inferred direct and indirect network relationships, but represents a premature endpoint to the graphical analyses. In this work, we extend this endpoint. We examine the unexplored problem of perturbing a given network structure, and quantifying the system-wide effects on the network in a node-wise manner. The perturbation is achieved through the setting of values of phenotype node(s), which may reflect an inhibition or activation, and propagating this information through the entire network. We leverage belief propagation methods in Conditional Gaussian Bayesian Networks (CG-BNs), in order to absorb and propagate phenotypic evidence through the network. We show that the modeling assumptions adopted for genotype-phenotype networks represent an important sub-class of CG-BNs, which possess properties that ensure exact inference in the propagation scheme. The system-wide effects of the perturbation are quantified in a node-wise manner through the comparison of perturbed and unperturbed marginal distributions using a symmetric Kullback-Leibler divergence. Applications to kidney and skin cancer expression quantitative trait loci (eQTL) data from different mus musculus populations are presented. System-wide effects in the network were predicted and visualized across a spectrum of evidence. Sub-pathways and regions of the network responded in concert, suggesting co-regulation and coordination throughout the network in response to phenotypic changes. We demonstrate how these predicted system-wide effects can be examined in connection with
A belief network approach for development of a nuclear power plant diagnosis system
Belief network(or Bayesian network) based on Bayes'rule in probabilistic theory can be applied to the reasoning of diagnostic systems. This paper describes the basic theory of concept and feasibility of using the network for diagnosis of nuclear power plants. An example shows that the probabilities of root causes of a failure are calculated from the measured or believed evidences
The Diagnosis of Reciprocating Machinery by Bayesian Networks
无
2003-01-01
A Bayesian Network is a reasoning tool based on probability theory and has many advantages that other reasoning tools do not have. This paper discusses the basic theory of Bayesian networks and studies the problems in constructing Bayesian networks. The paper also constructs a Bayesian diagnosis network of a reciprocating compressor. The example helps us to draw a conclusion that Bayesian diagnosis networks can diagnose reciprocating machinery effectively.
An introduction to Gaussian Bayesian networks.
Grzegorczyk, Marco
2010-01-01
The extraction of regulatory networks and pathways from postgenomic data is important for drug -discovery and development, as the extracted pathways reveal how genes or proteins regulate each other. Following up on the seminal paper of Friedman et al. (J Comput Biol 7:601-620, 2000), Bayesian networks have been widely applied as a popular tool to this end in systems biology research. Their popularity stems from the tractability of the marginal likelihood of the network structure, which is a consistent scoring scheme in the Bayesian context. This score is based on an integration over the entire parameter space, for which highly expensive computational procedures have to be applied when using more complex -models based on differential equations; for example, see (Bioinformatics 24:833-839, 2008). This chapter gives an introduction to reverse engineering regulatory networks and pathways with Gaussian Bayesian networks, that is Bayesian networks with the probabilistic BGe scoring metric [see (Geiger and Heckerman 235-243, 1995)]. In the BGe model, the data are assumed to stem from a Gaussian distribution and a normal-Wishart prior is assigned to the unknown parameters. Gaussian Bayesian network methodology for analysing static observational, static interventional as well as dynamic (observational) time series data will be described in detail in this chapter. Finally, we apply these Bayesian network inference methods (1) to observational and interventional flow cytometry (protein) data from the well-known RAF pathway to evaluate the global network reconstruction accuracy of Bayesian network inference and (2) to dynamic gene expression time series data of nine circadian genes in Arabidopsis thaliana to reverse engineer the unknown regulatory network topology for this domain. PMID:20824469
Fuzzy Functional Dependencies and Bayesian Networks
LIU WeiYi(刘惟一); SONG Ning(宋宁)
2003-01-01
Bayesian networks have become a popular technique for representing and reasoning with probabilistic information. The fuzzy functional dependency is an important kind of data dependencies in relational databases with fuzzy values. The purpose of this paper is to set up a connection between these data dependencies and Bayesian networks. The connection is done through a set of methods that enable people to obtain the most information of independent conditions from fuzzy functional dependencies.
Belief Networks and Local Computations
Jiroušek, Radim
Chennai : Springer, 2011 - (Li, S.; Wang, X.; Okazaki, Y.; Kawabe, J.; Murofushi, T.; Guann, L.), s. 179-188 ISBN 978-3-642-22832-2. - (Advances in Intelligent and Soft Computing,). [Nonlinear Mathematics for Uncertainty and its Applications. Peking (CN), 07.09.2011-09.09.2011] R&D Projects: GA MŠk 1M0572; GA ČR GEICC/08/E010; GA ČR GA201/09/1891 Institutional research plan: CEZ:AV0Z10750506 Keywords : operator of composition * factorization * decomposable model * conditioning Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2011/MTR/jirousek- belief networks and local computations.pdf
Bayesian Network Models for Adaptive Testing
Plajner, Martin; Vomlel, Jiří
Achen: Sun SITE Central Europe, 2016 - (Agosta, J.; Carvalho, R.), s. 24-33. (CEUR Workshop Proceedings. Vol 1565). ISSN 1613-0073. [The Twelfth UAI Bayesian Modeling Applications Workshop (BMAW 2015). Amsterdam (NL), 16.07.2015] R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Bayesian networks * Computerized adaptive testing Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2016/MTR/plajner-0458062.pdf
Scaling Bayesian network discovery through incremental recovery
Castelo, J.R.; Siebes, A.P.J.M.
1999-01-01
Bayesian networks are a type of graphical models that, e.g., allow one to analyze the interaction among the variables in a database. A well-known problem with the discovery of such models from a database is the ``problem of high-dimensionality''. That is, the discovery of a network from a database w
Learning Bayesian Networks from Correlated Data
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola
2016-05-01
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Estimating dependability of programmable systems using bayesian belief nets
The research programme at the Halden Project on software safety assessment is augmented through a joint project with Kongsberg Defence and Aerospace AS and Det Norske Veritas. The objective of this project is to investigate the possibility to combine the Bayesian Belief Net (BBN) methodology with a software safety standard. The report discusses software safety standards in general, with respect to how they can be used to measure software safety. The possibility to transfer the requirements of a software safety standard into a BBN is also investigated. The aim is to utilise the BBN methodology and associated tools, by transferring the software safety measurement into a probabilistic quantity. In this way software can be included in a total probabilistic safety analysis. This project was performed by applying the method for an evaluation of a real, safety related programmable system which was developed according to the avionic standard DO-178B. The test case, the standard, and the BBN methodology are shortly described. This is followed by a description of the construction of the BBN used in this project. This includes the topology of the BBN, the elicitation of probabilities and the making of observations. Based on this a variety of computations are made using the SERENE methodology and the HUGIN tool. Observations and conclusions are made on the basis of the findings from this process. This report should be considered as a progress report in a more long-term activity on the use of BBNs as support for safety assessment of programmable systems. (Author). 23 refs., 9 figs., tabs
Rethinking the learning of belief network probabilities
Musick, R.
1996-03-01
Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rote learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neural networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.
Efficient Bayesian Learning in Social Networks with Gaussian Estimators
Mossel, Elchanan
2010-01-01
We propose a simple and efficient Bayesian model of iterative learning on social networks. This model is efficient in two senses: the process both results in an optimal belief, and can be carried out with modest computational resources for large networks. This result extends Condorcet's Jury Theorem to general social networks, while preserving rationality and computational feasibility. The model consists of a group of agents who belong to a social network, so that a pair of agents can observe each other's actions only if they are neighbors. We assume that the network is connected and that the agents have full knowledge of the structure of the network. The agents try to estimate some state of the world S (say, the price of oil a year from today). Each agent has a private measurement of S. This is modeled, for agent v, by a number S_v picked from a Gaussian distribution with mean S and standard deviation one. Accordingly, agent v's prior belief regarding S is a normal distribution with mean S_v and standard dev...
Hierarchical Bayesian Analysis of Biased Beliefs and Distributional Other-Regarding Preferences
Jeroen Weesie
2013-02-01
Full Text Available This study investigates the relationship between an actor’s beliefs about others’ other-regarding (social preferences and her own other-regarding preferences, using an “avant-garde” hierarchical Bayesian method. We estimate two distributional other-regarding preference parameters, α and β, of actors using incentivized choice data in binary Dictator Games. Simultaneously, we estimate the distribution of actors’ beliefs about others α and β, conditional on actors’ own α and β, with incentivized belief elicitation. We demonstrate the benefits of the Bayesian method compared to it’s hierarchical frequentist counterparts. Results show a positive association between an actor’s own (α; β and her beliefs about average(α; β in the population. The association between own preferences and the variance in beliefs about others’ preferences in the population, however, is curvilinear for α and insignificant for β. These results are partially consistent with the cone effect [1,2] which is described in detail below. Because in the Bayesian-Nash equilibrium concept, beliefs and own preferences are assumed to be independent, these results cast doubt on the application of the Bayesian-Nash equilibrium concept to experimental data.
A building block for hardware belief networks.
Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo
2016-01-01
Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models. PMID:27443521
Benchmarking dynamic Bayesian network structure learning algorithms
Trabelsi, Ghada; Leray, Philippe; Ben Ayed, Mounir; Alimi, Adel
2012-01-01
Dynamic Bayesian Networks (DBNs) are probabilistic graphical models dedicated to modeling multivariate time series. Two-time slice BNs (2-TBNs) are the most current type of these models. Static BN structure learning is a well-studied domain. Many approaches have been proposed and the quality of these algorithms has been studied over a range of di erent standard networks and methods of evaluation. To the best of our knowledge, all studies about DBN structure learning use their own benchmarks a...
Kernels and Submodels of Deep Belief Networks
Montufar, Guido F.; Morton, Jason
2012-01-01
We study the mixtures of factorizing probability distributions represented as visible marginal distributions in stochastic layered networks. We take the perspective of kernel transitions of distributions, which gives a unified picture of distributed representations arising from Deep Belief Networks (DBN) and other networks without lateral connections. We describe combinatorial and geometric properties of the set of kernels and products of kernels realizable by DBNs as the network parameters v...
Mean Field Theory for Sigmoid Belief Networks
Saul, L. K.; Jaakkola, T.; Jordan, M. I.
1996-01-01
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition---the classification of handwritten digits.
Bayesian Overlapping Community Detection in Dynamic Networks
Ghorbani, Mahsa; Khodadadi, Ali
2016-01-01
Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...
Bayesian network learning for natural hazard assessments
Vogel, Kristin
2016-04-01
Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables
A belief network approach for development of a nuclear power plant diagnosis system
Hwang, I. K.; Kim, J. T.; Lee, D. Y.; Jung, C. H.; Kim, J. Y.; Lee, J. S.; Ham, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
Belief network (or Bayesian network) based on Bayes` rule in probabilistic theory can be applied to the reasoning of diagnostic system. This paper describes the basic theory of concept and feasibility of using the network for diagnosis of nuclear power plants. An example shows that the probabilities of root causes of a failure are calculated from the measured or believed evidences. 6 refs., 3 figs. (Author)
Learning Bayesian networks using genetic algorithm
Chen Fei; Wang Xiufeng; Rao Yimei
2007-01-01
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.
Bayesian networks for enterprise risk assessment
Bonafede, C E
2006-01-01
According to different typologies of activity and priority, risks can assume diverse meanings and it can be assessed in different ways. In general risk is measured in terms of a probability combination of an event (frequency) and its consequence (impact). To estimate the frequency and the impact (severity) historical data or expert opinions (either qualitative or quantitative data) are used. Moreover qualitative data must be converted in numerical values to be used in the model. In the case of enterprise risk assessment the considered risks are, for instance, strategic, operational, legal and of image, which many times are difficult to be quantified. So in most cases only expert data, gathered by scorecard approaches, are available for risk analysis. The Bayesian Network is a useful tool to integrate different information and in particular to study the risk's joint distribution by using data collected from experts. In this paper we want to show a possible approach for building a Bayesian networks in the parti...
Software Health Management with Bayesian Networks
Mengshoel, Ole; Schumann, JOhann
2011-01-01
Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.
Distributed Bayesian Networks for User Modeling
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang;
2006-01-01
The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such...... adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... mechanism efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....
Centralized Bayesian reliability modelling with sensor networks
Dedecius, Kamil; Sečkárová, Vladimíra
2013-01-01
Roč. 19, č. 5 (2013), s. 471-482. ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant ostatní: GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf
Characteristic imsets for learning Bayesian network structure
Hemmecke, R.; Lindner, S.; Studený, Milan
2012-01-01
Roč. 53, č. 9 (2012), s. 1336-1349. ISSN 0888-613X R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * essential graph * standard imset * characteristic imset * LP relaxation of a polytope Subject RIV: BA - General Mathematics Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/studeny-0382596.pdf
Forming Object Concept Using Bayesian Network
Nakamura, Tomoaki; Nagai, Takayuki
2010-01-01
This chapter hase discussed a novel framework for object understanding. Implementation of the proposed framework using Bayesian Network has been presented. Although the result given in this paper is preliminary one, we have shown that the system can form object concept by observing the performance by human hands. The on-line learning is left for the future works. Moreover the model should be extended so that it can represent the object usage and work objects.
Improving Environmental Scanning Systems Using Bayesian Networks
Simon Welter; Jörg H. Mayer; Reiner Quick
2013-01-01
As companies’ environment is becoming increasingly volatile, scanning systems gain in importance. We propose a hybrid process model for such systems' information gathering and interpretation tasks that combines quantitative information derived from regression analyses and qualitative knowledge from expert interviews. For the latter, we apply Bayesian networks. We derive the need for such a hybrid process model from a literature review. We lay out our model to find a suitable set of business e...
Parameterized Complexity Results for Exact Bayesian Network Structure Learning
Sebastian Ordyniak; Stefan Szeider
2014-01-01
Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a nat...
Option Pricing Using Bayesian Neural Networks
Pires, Michael Maio
2007-01-01
Options have provided a field of much study because of the complexity involved in pricing them. The Black-Scholes equations were developed to price options but they are only valid for European styled options. There is added complexity when trying to price American styled options and this is why the use of neural networks has been proposed. Neural Networks are able to predict outcomes based on past data. The inputs to the networks here are stock volatility, strike price and time to maturity with the output of the network being the call option price. There are two techniques for Bayesian neural networks used. One is Automatic Relevance Determination (for Gaussian Approximation) and one is a Hybrid Monte Carlo method, both used with Multi-Layer Perceptrons.
Revealing ecological networks using Bayesian network inference algorithms.
Milns, Isobel; Beale, Colin M; Smith, V Anne
2010-07-01
Understanding functional relationships within ecological networks can help reveal keys to ecosystem stability or fragility. Revealing these relationships is complicated by the difficulties of isolating variables or performing experimental manipulations within a natural ecosystem, and thus inferences are often made by matching models to observational data. Such models, however, require assumptions-or detailed measurements-of parameters such as birth and death rate, encounter frequency, territorial exclusion, and predation success. Here, we evaluate the use of a Bayesian network inference algorithm, which can reveal ecological networks based upon species and habitat abundance alone. We test the algorithm's performance and applicability on observational data of avian communities and habitat in the Peak District National Park, United Kingdom. The resulting networks correctly reveal known relationships among habitat types and known interspecific relationships. In addition, the networks produced novel insights into ecosystem structure and identified key species with high connectivity. Thus, Bayesian networks show potential for becoming a valuable tool in ecosystem analysis. PMID:20715607
Seeded Bayesian Networks: Constructing genetic networks from microarray data
Quackenbush John
2008-07-01
Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.
Learning Local Components to Understand Large Bayesian Networks
Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge;
2009-01-01
(domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data.......Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...
A Bayesian Networks approach to Operational Risk
Aquaro, V.; Bardoscia, M.; Bellotti, R.; Consiglio, A.; De Carlo, F.; Ferri, G.
2010-04-01
A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters; since the main aim is to understand the role of the correlations among the losses, the assessments of domain experts are not used. The algorithm has been validated on synthetic time series. It should be stressed that the proposed algorithm has been thought for the practical implementation in a mid or small sized bank, since it has a small impact on the organizational structure of a bank and requires an investment in human resources which is limited to the computational area.
On local optima in learning bayesian networks
Dalgaard, Jens; Kocka, Tomas; Pena, Jose
2003-01-01
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness is...... set at maximum, KES corresponds to the greedy equivalence search algorithm (GES). When greediness is kept at minimum, we prove that under mild assumptions KES asymptotically returns any inclusion optimal BN with nonzero probability. Experimental results for both synthetic and real data are reported...
Bayesian Network Based XP Process Modelling
Mohamed Abouelela
2010-07-01
Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.
Using imsets for learning Bayesian networks
Vomlel, Jiří; Studený, Milan
Praha : UTIA AV ČR, 2007 - (Kroupa, T.; Vejnarová, J.), s. 178-189 [Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./. Liblice (CZ), 15.09.2007-18.09.2007] R&D Projects: GA MŠk(CZ) 1M0572 Grant ostatní: GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian networks * artificial intelligence * probabilistic graphical models * machine learning Subject RIV: BB - Applied Statistics, Operational Research
Some Quantum Information Inequalities from a Quantum Bayesian Networks Perspective
Tucci, Robert R.
2012-01-01
This is primarily a pedagogical paper. The paper re-visits some well-known quantum information theory inequalities. It does this from a quantum Bayesian networks perspective. The paper illustrates some of the benefits of using quantum Bayesian networks to discuss quantum SIT (Shannon Information Theory).
Sensor Validation Using Dynamic Belief Networks
Nicholson, Ann; Brady, J. M.
2013-01-01
The trajectory of a robot is monitored in a restricted dynamic environment using light beam sensor data. We have a Dynamic Belief Network (DBN), based on a discrete model of the domain, which provides discrete monitoring analogous to conventional quantitative filter techniques. Sensor observations are added to the basic DBN in the form of specific evidence. However, sensor data is often partially or totally incorrect. We show how the basic DBN, which infers only an impossible combination of e...
Fuzzy Naive Bayesian for constructing regulated network with weights.
Zhou, Xi Y; Tian, Xue W; Lim, Joon S
2015-01-01
In the data mining field, classification is a very crucial technology, and the Bayesian classifier has been one of the hotspots in classification research area. However, assumptions of Naive Bayesian and Tree Augmented Naive Bayesian (TAN) are unfair to attribute relations. Therefore, this paper proposes a new algorithm named Fuzzy Naive Bayesian (FNB) using neural network with weighted membership function (NEWFM) to extract regulated relations and weights. Then, we can use regulated relations and weights to construct a regulated network. Finally, we will classify the heart and Haberman datasets by the FNB network to compare with experiments of Naive Bayesian and TAN. The experiment results show that the FNB has a higher classification rate than Naive Bayesian and TAN. PMID:26405944
Statistical performance analysis by loopy belief propagation in Bayesian image modeling
The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.
Application of Bayesian Network Learning Methods to Land Resource Evaluation
HUANG Jiejun; HE Xiaorong; WAN Youchuan
2006-01-01
Bayesian network has a powerful ability for reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to deal with prediction, classification and clustering. Firstly, this paper presented an overview of Bayesian network and its characteristics, and discussed how to learn a Bayesian network structure from given data, and then constructed a Bayesian network model for land resource evaluation with expert knowledge and the dataset. The experimental results based on the test dataset are that evaluation accuracy is 87.5%, and Kappa index is 0.826. All these prove the method is feasible and efficient, and indicate that Bayesian network is a promising approach for land resource evaluation.
Filtering in hybrid dynamic Bayesian networks (center)
Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin
framework outperform the generic PF, EKF and EKF in a PF framework with respect to accuracy and robustness in terms of estimation RMSE (root-mean-square error). Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. We also show that the...... choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...
Intrusion detection using deep belief network
This paper proposes an intrusion detection technique based on DBN (Deep Belief Network) to classify four intrusion classes and one normal class using KDD-99 dataset. The proposed technique is based on two phases: in first phase it removes the class imbalance problem and in the next, it applies DBN followed by FFNN (Feed-Forward Neural Network) to build a prediction model. The obtained results are compared with those given in (9). The prediction accuracy of our model shows promising results on both intrusion and normal patterns. (author)
Using consensus bayesian network to model the reactive oxygen species regulatory pathway.
Liangdong Hu
Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.
Learning Bayesian Networks from Data by Particle Swarm Optimization
无
2006-01-01
Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal. The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms.
Logistic regression against a divergent Bayesian network
Noel Antonio Sánchez Trujillo
2015-01-01
Full Text Available This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered; we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.
Learning Bayesian network structure with immune algorithm
Zhiqiang Cai; Shubin Si; Shudong Sun; Hongyan Dui
2015-01-01
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa-per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further-more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Final y, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
Bayesian network learning with cutting planes
Cussens, James
2012-01-01
The problem of learning the structure of Bayesian networks from complete discrete data with a limit on parent set size is considered. Learning is cast explicitly as an optimisation problem where the goal is to find a BN structure which maximises log marginal likelihood (BDe score). Integer programming, specifically the SCIP framework, is used to solve this optimisation problem. Acyclicity constraints are added to the integer program (IP) during solving in the form of cutting planes. Finding good cutting planes is the key to the success of the approach -the search for such cutting planes is effected using a sub-IP. Results show that this is a particularly fast method for exact BN learning.
Inference of Gene Regulatory Network Based on Local Bayesian Networks
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan
2016-01-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Inference of Gene Regulatory Network Based on Local Bayesian Networks.
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan
2016-08-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Approximation methods for efficient learning of Bayesian networks
Riggelsen, C
2008-01-01
This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.
BelNet - A computer program for belief-network processing
Recent work relating statistical models to graphical representations of dependency relationships has produced new powerful belief-network techniques for propagating the impact of new evidence and beliefs. So far the best applicable methods - with respect to computational complexity - have been developed within the Bayesian tradition, thus implying that beliefs are consistent with the axioms of probability theory. The advocates of these new techniques emphasize that the elementary building-blocks which make up human probabilistic knowledge are not the entries of a joint distribution table but, rather, the low-order marginal and conditional probabilities defined over small clusters of propositions. Belief updating is to be performed by a process that preserves the structure of human reasoning in the sense that each computational step obtains inputs only from neighbouring, semantically related variables. In this report three belief-network algorithms are presented. Two of these are applicable only to singly-connected networks but produce exact results efficiently. The third algorithm uses stochastic simulation to give estimates of exact belief values and is especially suited for complex, nondecomposable models representable by multiply-connected belief networks where the complexity of analytical computation is prohibitive. The algorithms studied apply only to networks with discrete variables. A computer program written in Lisp, which provides means for constructing, modifying and processing belief networks, is described. Implementations of the three algorithms mentioned are included in the capabilities of the program. Additionally, the program offers methods for assessing conditional probabilities between variables by user-defined functions. Functions performing the most important tasks of the program have also been made available for direct use in application programs
Developing Large-Scale Bayesian Networks by Composition
National Aeronautics and Space Administration — In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale...
Macroscopic Models of Clique Tree Growth for Bayesian Networks
National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...
Designing Resource-Bounded Reasoners using Bayesian Networks
National Aeronautics and Space Administration — In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are...
Bayesian Network Structure Learning from Limited Datasets through Graph Evolution
Tonda, Alberto; Lutton, Evelyne; Reuillon, Romain; Squillero, Giovanni; Wuillemin, Pierre-Henri
2012-01-01
Bayesian networks are stochastic models, widely adopted to encode knowledge in several fields. One of the most interesting features of a Bayesian network is the possibility of learning its structure from a set of data, and subsequently use the resulting model to perform new predictions. Structure learning for such models is a NP-hard problem, for which the scientific community developed two main approaches: score-and-search metaheuristics, often evolutionary-based, and dependency-analysis det...
On polyhedral approximations of polytopes for learning Bayesian networks
Studený, Milan; Haws, D.C.
2013-01-01
Roč. 4, č. 1 (2013), s. 59-92. ISSN 1309-3452 R&D Projects: GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : Bayesian network structure * integer programming * standard imset * characteristic imset * LP relaxation Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2013/MTR/studeny-on polyhedral approximations of polytopes for learning bayesian networks.pdf
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
Hernández-Lobato, José Miguel; Adams, Ryan P.
2015-01-01
Large multilayer neural networks trained with backpropagation have recently achieved state-of-the-art results in a wide range of problems. However, using backprop for neural net learning still has some disadvantages, e.g., having to tune a large number of hyperparameters to the data, lack of calibrated probabilistic predictions, and a tendency to overfit the training data. In principle, the Bayesian approach to learning neural networks does not have these problems. However, existing Bayesian ...
Uncertainty management using bayesian networks in student knowledge diagnosis
Adina COCU; Diana STEFANESCU
2005-01-01
In intelligent tutoring systems, student or user modeling implies dealing with imperfect and uncertain knowledge. One of the artificial intelligence techniques used for uncertainty management is that of Bayesian networks. This paradigm is recommended in the situation when exist dependencies between data and qualitative information about these data. In this work we present a student knowledge diagnosis model based on representation with Bayesian networks. The educational system incorporate a m...
Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
This paper presents how Bayesian networks can be used to make optimal decisions for repairs of offshore wind turbines. The Bayesian network is an efficient tool for updating a deterioration model whenever new information becomes available from inspections/monitoring. The optimal decision is found such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Ba...
Current reliability assessments of safety critical software embedded in the digital systems in nuclear power plants are based on the rule-based qualtitative assessment methods. But practical needs require the quantitative features of software reliability for Probabilistic Safety Assessment (PSA) that is one of important methods being used in assessing the whole safety of nuclear power plant. This paper discusses a Bayesian Belief Nets(BBN) based quantification method that models current qualitative software assessment in formal way and produces quantitative results required for PSA. Commercial Off-The-Shelf(COTS) software dedication process was applied to the discussed BBN based method for evaluating the plausibility of the method in PSA
Using Bayesian Networks to Improve Knowledge Assessment
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
Study of Online Bayesian Networks Learning in a Multi-Agent System
Yonghui Cao
2013-01-01
Full Text Available This paper introduces online Bayesian network learning in detail. The structural and parametric learning abilities of the online Bayesian network learning are explored. The paper starts with revisiting the multi-agent self-organization problem and the proposed solution. Then, we explain the proposed Bayesian network learning, three scoring functions, namely Log-Likelihood, Minimum description length, and Bayesian scores.
Study of Online Bayesian Networks Learning in a Multi-Agent System
Yonghui Cao
2013-01-01
This paper introduces online Bayesian network learning in detail. The structural and parametric learning abilities of the online Bayesian network learning are explored. The paper starts with revisiting the multi-agent self-organization problem and the proposed solution. Then, we explain the proposed Bayesian network learning, three scoring functions, namely Log-Likelihood, Minimum description length, and Bayesian scores.
A Bayesian Networks in Intrusion Detection Systems
M. Mehdi
2007-01-01
Full Text Available Intrusion detection systems (IDSs have been widely used to overcome security threats in computer networks. Anomaly-based approaches have the advantage of being able to detect previously unknown attacks, but they suffer from the difficulty of building robust models of acceptable behaviour which may result in a large number of false alarms caused by incorrect classification of events in current systems. We propose a new approach of an anomaly Intrusion detection system (IDS. It consists of building a reference behaviour model and the use of a Bayesian classification procedure associated to unsupervised learning algorithm to evaluate the deviation between current and reference behaviour. Continuous re-estimation of model parameters allows for real time operation. The use of recursive Log-likelihood and entropy estimation as a measure for monitoring model degradation related with behavior changes and the associated model update show that the accuracy of the event classification process is significantly improved using our proposed approach for reducing the missing-alarm.
HEURISTIC DISCRETIZATION METHOD FOR BAYESIAN NETWORKS
Mariana D.C. Lima
2014-01-01
Full Text Available Bayesian Network (BN is a classification technique widely used in Artificial Intelligence. Its structure is a Direct Acyclic Graph (DAG used to model the association of categorical variables. However, in cases where the variables are numerical, a previous discretization is necessary. Discretization methods are usually based on a statistical approach using the data distribution, such as division by quartiles. In this article we present a discretization using a heuristic that identifies events called peak and valley. Genetic Algorithm was used to identify these events having the minimization of the error between the estimated average for BN and the actual value of the numeric variable output as the objective function. The BN has been modeled from a database of Bit’s Rate of Penetration of the Brazilian pre-salt layer with 5 numerical variables and one categorical variable, using the proposed discretization and the division of the data by the quartiles. The results show that the proposed heuristic discretization has higher accuracy than the quartiles discretization.
Deep belief networks learn context dependent behavior.
Florian Raudies
Full Text Available With the goal of understanding behavioral mechanisms of generalization, we analyzed the ability of neural networks to generalize across context. We modeled a behavioral task where the correct responses to a set of specific sensory stimuli varied systematically across different contexts. The correct response depended on the stimulus (A,B,C,D and context quadrant (1,2,3,4. The possible 16 stimulus-context combinations were associated with one of two responses (X,Y, one of which was correct for half of the combinations. The correct responses varied symmetrically across contexts. This allowed responses to previously unseen stimuli (probe stimuli to be generalized from stimuli that had been presented previously. By testing the simulation on two or more stimuli that the network had never seen in a particular context, we could test whether the correct response on the novel stimuli could be generated based on knowledge of the correct responses in other contexts. We tested this generalization capability with a Deep Belief Network (DBN, Multi-Layer Perceptron (MLP network, and the combination of a DBN with a linear perceptron (LP. Overall, the combination of the DBN and LP had the highest success rate for generalization.
Reliability assessment of a software-based motor protection relay using Bayesian networks
Often to make justified reliability claim of a certain system different kinds of evidence needs to be combined. Some of the evidence supporting the claim may be of qualitative type, whereas some of the evidence may be of quantitative type. Combination of disparate evidence together is not always straightforward and the reasoning behind the conclusions obtained from the combination may be hard to explain. Bayesian networks provide a consistent and transparent method for the combination of the evidence and for the reasoning of one's beliefs on the relation of different pieces of evidence. In the special report we demonstrate the combination of disparate evidence with a case study on the reliability assessment of a software-based motor protection relay, where the combination of the reliability related evidence has been carried out using Bayesian networks. The reliability related evidence in the case study is the expert judgement on the development process and the operational experience estimated for the softwarebased motor protection relay. (orig.)
Control of Complex Systems Using Bayesian Networks and Genetic Algorithm
Marwala, Tshilidzi
2007-01-01
A method based on Bayesian neural networks and genetic algorithm is proposed to control the fermentation process. The relationship between input and output variables is modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. A feedback loop based on genetic algorithm is used to change input variables so that the output variables are as close to the desired target as possible without the loss of confidence level on the prediction that the neural network gives. The proposed procedure is found to reduce the distance between the desired target and measured outputs significantly.
Handwriting and Speech Prototypes of Parkinson Patients: Belief Network Approach
Ali Saad
2012-05-01
Full Text Available Articulator phonetics and handwriting dysfunctions are frequent observations in Parkinsons disease (PD. In this paper we make an inductive study of speech and handwriting skills of PD patients by proposing ways for discovering prototypes of PD patients. Each discovered prototype consists of labeled cluster that combines a similar handwriting and speech skills. For this approach, a mixed acquisition system of electronic pen and speech signals have been performed through voice and handwriting experiments on ten PD patients that share the same experimental conditions. The acquired signals were preprocessed and subjected to feature extractor. Our modeling approach is based on unsupervised learning of a probabilistic graphical model, i.e. a Bayesian Belief Network (BBN based on Expectation Maximization (EM algorithm. The structure components of BBN consist of layered architecture and hidden variables hierarchy. Each written and spoken test is represented by its own local hidden pattern; we considered that there exists a global hidden pattern dealing with each local pattern. The discovered patterns have been labeled and then conceptualized as a prototype to serve as a helpful assistant to a motor diagnostic tool based on articulator and handwriting diagnosis, more specifically for PD.
A Decomposition Algorithm for Learning Bayesian Network Structures from Data
Zeng, Yifeng; Cordero Hernandez, Jorge
2008-01-01
the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks.......It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...
Flood quantile estimation at ungauged sites by Bayesian networks
Mediero, L.; Santillán, D.; Garrote, L.
2012-04-01
Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a
Bayesian networks for mastitis management on dairy farms
Steeneveld, Wilma; van der Gaag, Linda; Barkema, H.W.; Hogeveen, H.
2009-01-01
This manuscript presents the idea of providing dairy farmers with probability distributions to support decisions on mastitis management and illustrates its feasibility by two applications. Naive Bayesian networks were developed for both applications. The networks in the first application were used t
Uncertainty Modeling Based on Bayesian Network in Ontology Mapping
LI Yuhua; LIU Tao; SUN Xiaolin
2006-01-01
How to deal with uncertainty is crucial in exact concept mapping between ontologies. This paper presents a new framework on modeling uncertainty in ontologies based on bayesian networks (BN). In our approach, ontology Web language (OWL) is extended to add probabilistic markups for attaching probability information, the source and target ontologies (expressed by patulous OWL) are translated into bayesian networks (BNs), the mapping between the two ontologies can be digged out by constructing the conditional probability tables (CPTs) of the BN using a improved algorithm named I-IPFP based on iterative proportional fitting procedure (IPFP). The basic idea of this framework and algorithm are validated by positive results from computer experiments.
Sensor Localization using Generalized Belief Propagation in Networks with Loops
Savic, Vladimir; Zazo, Santiago
2009-01-01
Belief propagation (BP), also called “sum-product algorithm”, is one of the best-known graphical model for inference in statistical physics, artificial intelligence, computer vision, etc. Furthermore, a recent research in distributed sensor network localization showed us that BP is an efficient way to obtain sensor location as well as appropriate uncertainty. However, BP convergence is not guaranteed in a network with loops. In this paper, we propose localization using generalized belief prop...
The application of Bayesian networks in natural hazard analyses
K. Vogel
2013-10-01
Full Text Available In natural hazards we face several uncertainties due to our lack of knowledge and/or the intrinsic randomness of the underlying natural processes. Nevertheless, deterministic analysis approaches are still widely used in natural hazard assessments, with the pitfall of underestimating the hazard with potentially disastrous consequences. In this paper we show that the Bayesian network approach offers a flexible framework for capturing and expressing a broad range of different uncertainties as those encountered in natural hazard assessments. Although well studied in theory, the application of Bayesian networks on real-world data is often not straightforward and requires specific tailoring and adaption of existing algorithms. We demonstrate by way of three case studies (a ground motion model for a seismic hazard analysis, a flood damage assessment, and a landslide susceptibility study the applicability of Bayesian networks across different domains showcasing various properties and benefits of the Bayesian network framework. We offer suggestions as how to tackle practical problems arising along the way, mainly concentrating on the handling of continuous variables, missing observations, and the interaction of both. We stress that our networks are completely data-driven, although prior domain knowledge can be included if desired.
Bayesian网中的独立关系%The Independence Relations in Bayesian Networks
王飞; 刘大有; 卢奕男; 薛万欣
2001-01-01
Bayesian networks are compact representation of joint probabilistic distribution. Independence is soul of Bayesian networks because it enables to save storage space,to reduce computational complexity and to simplify knowledge acquisition and modeling. In this paper,we discuss three kinds of independences in Bayesian networks :conditional independence,context-specific independence and causal influence independence.
Dynamic Bayesian Networks for Cue Integration
Paul Maier; Frederike Petzschner
2012-01-01
If we want to understand how humans use contextual cues to solve tasks such as estimating distances from optic flow during path integration, our models need to represent the available information and formally describe how these representations are processed. In particular the temporal dynamics need to be incorporated, since it has been shown that humans exploit short-term experience gained in previous trials (Petzschner und Glasauer, 2011). Existing studies often use a Bayesian approach to mo...
Implementation of an Adaptive Learning System Using a Bayesian Network
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki
2015-01-01
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
Nursing Home Care Quality: Insights from a Bayesian Network Approach
Goodson, Justin; Jang, Wooseung; Rantz, Marilyn
2008-01-01
Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…
A Structure Learning Algorithm for Bayesian Network Using Prior Knowledge
徐俊刚; 赵越; 陈健; 韩超
2015-01-01
Learning structure from data is one of the most important fundamental tasks of Bayesian network research. Particularly, learning optional structure of Bayesian network is a non-deterministic polynomial-time (NP) hard problem. To solve this problem, many heuristic algorithms have been proposed, and some of them learn Bayesian network structure with the help of different types of prior knowledge. However, the existing algorithms have some restrictions on the prior knowledge, such as quality restriction and use restriction. This makes it diﬃcult to use the prior knowledge well in these algorithms. In this paper, we introduce the prior knowledge into the Markov chain Monte Carlo (MCMC) algorithm and propose an algorithm called Constrained MCMC (C-MCMC) algorithm to learn the structure of the Bayesian network. Three types of prior knowledge are defined: existence of parent node, absence of parent node, and distribution knowledge including the conditional probability distribution (CPD) of edges and the probability distribution (PD) of nodes. All of these types of prior knowledge are easily used in this algorithm. We conduct extensive experiments to demonstrate the feasibility and effectiveness of the proposed method C-MCMC.
Exploiting sensitivity analysis in Bayesian networks for consumer satisfaction study
Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.
2004-01-01
The paper presents an application of Bayesian network technology in a empirical customer satisfaction study. The findings of the study should provide insight as to the importance of product/service dimensions in terms of the strength of their influence on overall satisfaction. To this end we apply a
Differential gene co-expression networks via Bayesian biclustering models
Gao, Chuan; Zhao, Shiwen; McDowell, Ian C.; Brown, Christopher D.; Barbara E Engelhardt
2014-01-01
Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering me...
Bayesian variable selection and data integration for biological regulatory networks
Jensen, Shane T; Chen, Guang; Stoeckert, Jr, Christian J.
2007-01-01
A substantial focus of research in molecular biology are gene regulatory networks: the set of transcription factors and target genes which control the involvement of different biological processes in living cells. Previous statistical approaches for identifying gene regulatory networks have used gene expression data, ChIP binding data or promoter sequence data, but each of these resources provides only partial information. We present a Bayesian hierarchical model that integrates all three dat...
Smail, Linda
2016-06-01
The basic task of any probabilistic inference system in Bayesian networks is computing the posterior probability distribution for a subset or subsets of random variables, given values or evidence for some other variables from the same Bayesian network. Many methods and algorithms have been developed to exact and approximate inference in Bayesian networks. This work compares two exact inference methods in Bayesian networks-Lauritzen-Spiegelhalter and the successive restrictions algorithm-from the perspective of computational efficiency. The two methods were applied for comparison to a Chest Clinic Bayesian Network. Results indicate that the successive restrictions algorithm shows more computational efficiency than the Lauritzen-Spiegelhalter algorithm.
Theory-independent limits on correlations from generalized Bayesian networks
Bayesian networks provide a powerful tool for reasoning about probabilistic causation, used in many areas of science. They are, however, intrinsically classical. In particular, Bayesian networks naturally yield the Bell inequalities. Inspired by this connection, we generalize the formalism of classical Bayesian networks in order to investigate non-classical correlations in arbitrary causal structures. Our framework of ‘generalized Bayesian networks’ replaces latent variables with the resources of any generalized probabilistic theory, most importantly quantum theory, but also, for example, Popescu–Rohrlich boxes. We obtain three main sets of results. Firstly, we prove that all of the observable conditional independences required by the classical theory also hold in our generalization; to obtain this, we extend the classical d-separation theorem to our setting. Secondly, we find that the theory-independent constraints on probabilities can go beyond these conditional independences. For example we find that no probabilistic theory predicts perfect correlation between three parties using only bipartite common causes. Finally, we begin a classification of those causal structures, such as the Bell scenario, that may yield a separation between classical, quantum and general-probabilistic correlations. (paper)
Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network
LIU Bei; MENG Fanjiang; LI Yong; LIU Liyan
2008-01-01
The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorithm for controlling the gene expression regulatory network of the whole cell was designed using Bayesian network which provides an effective aided analysis for gene regulatory network.
Looking for Sustainable Urban Mobility through Bayesian Networks
Giovanni Fusco
2004-11-01
Full Text Available There is no formalised theory of sustainable urban mobility systems. Observed patterns of urban mobility are often considered unsustainable. But we don’t know what a city with sustainable mobility should look like. It is nevertheless increasingly apparent that the urban mobility system plays an important role in the achievement of the city’s wider sustainability objectives.In this paper we explore the characteristics of sustainable urban mobility systems through the technique of Bayesian networks. At the frontier between multivariate statistics and artificial intelligence, Bayesian networks provide powerful models of causal knowledge in an uncertain context. Using data on urban structure, transportation offer, mobility demand, resource consumption and environmental externalities from seventy-five world cities, we developed a systemic model of the city-transportation-environment interaction in the form of a Bayesian network. The network could then be used to infer the features of the city with sustainable mobility.The Bayesian model indicates that the city with sustainable mobility is most probably a dense city with highly efficient transit and multimodal mobility. It produces high levels of accessibility without relying on a fast road network. The achievement of sustainability objectives for urban mobility is probably compatible with all socioeconomic contexts.By measuring the distance of world cities from the inferred sustainability profile, we finally derive a geography of sustainability for mobility systems. The cities closest to the sustainability profile are in Central Europe as well as in affluent countries of the Far East. Car-dependent American cities are the farthest from the desired sustainability profile.
Modeling belief systems with scale-free networks
Antal, Miklos
2008-01-01
Evolution of belief systems has always been in focus of cognitive research. In this paper we delineate a new model describing belief systems as a network of statements considered true. Testing the model a small number of parameters enabled us to reproduce a variety of well-known mechanisms ranging from opinion changes to development of psychological problems. The self-organizing opinion structure showed a scale-free degree distribution. The novelty of our work lies in applying a convenient set of definitions allowing us to depict opinion network dynamics in a highly favorable way, which resulted in a scale-free belief network. As an additional benefit, we listed several conjectural consequences in a number of areas related to thinking and reasoning.
Nuclear charge radii: Density functional theory meets Bayesian neural networks
Utama, Raditya; Piekarewicz, Jorge
2016-01-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonst...
Research on Bayesian Network Based User's Interest Model
ZHANG Weifeng; XU Baowen; CUI Zifeng; XU Lei
2007-01-01
It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability.
Uncertainty management using bayesian networks in student knowledge diagnosis
Adina COCU
2005-12-01
Full Text Available In intelligent tutoring systems, student or user modeling implies dealing with imperfect and uncertain knowledge. One of the artificial intelligence techniques used for uncertainty management is that of Bayesian networks. This paradigm is recommended in the situation when exist dependencies between data and qualitative information about these data. In this work we present a student knowledge diagnosis model based on representation with Bayesian networks. The educational system incorporate a multimedia interface for accomplishes the testing tools. The results of testing sessions are represented and interpreted with probability theory in order to ensure an adapted support for the student. The aims of the computer assisted application that contains this diagnose module are to support the student in personalized learning process and errors explanation.
Decision Support System for Maintenance Management Using Bayesian Networks
无
2007-01-01
The maintenance process has undergone several major developments that have led to proactive considerations and the transformation from the traditional "fail and fix" practice into the "predict and prevent" proactive maintenance methodology. The anticipation action, which characterizes this proactive maintenance strategy is mainly based on monitoring, diagnosis, prognosis and decision-making modules. Oil monitoring is a key component of a successful condition monitoring program. It can be used as a proactive tool to identify the wear modes of rubbing parts and diagnoses the faults in machinery. But diagnosis relying on oil analysis technology must deal with uncertain knowledge and fuzzy input data. Besides other methods, Bayesian Networks have been extensively applied to fault diagnosis with the advantages of uncertainty inference; however, in the area of oil monitoring, it is a new field. This paper presents an integrated Bayesian network based decision support for maintenance of diesel engines.
Which Factors Contributes to Resolving Coreference Chains with Bayesian Networks?
Weissenbacher, Davy; Sasaki, Yutaka
2013-01-01
This paper describes coreference chain resolution with Bayesian Networks. Several factors in the resolution of coreference chains may greatly affect the final performance. If the choice of machine learning algorithm and the features the learner relies on are largely addressed by the community, others factors implicated in the resolution, such as noisy features, anaphoricity resolution or the search windows, have been less studied, and their importance remains unclear. In this article, we desc...
An algeraic approach to structural learning Bayesian networks
Studený, Milan
Paris: Editions EDK, 2006 - (Bouchon-Meunier, B.; Yager, R.), s. 2284-2291 ISBN 2-84254-112-X. [IMPU 2006. Paris (FR), 02.07.2006-07.07.2006] R&D Projects: GA ČR GA201/04/0393 Institutional research plan: CEZ:AV0Z10750506 Keywords : learning Bayesian networks * standard imset * data vector Subject RIV: BA - General Mathematics
Bayesian Methods for Neural Networks and Related Models
Titterington, D.M.
2004-01-01
Models such as feed-forward neural networks and certain other structures investigated in the computer science literature are not amenable to closed-form Bayesian analysis. The paper reviews the various approaches taken to overcome this difficulty, involving the use of Gaussian approximations, Markov chain Monte Carlo simulation routines and a class of non-Gaussian but “deterministic” approximations called variational approximations.
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks
Doucet, Arnaud; De Freitas, Nando; Murphy, Kevin; Russell, Stuart
2013-01-01
Particle filters (PFs) are powerful sampling-based inference/learning algorithms for dynamic Bayesian networks (DBNs). They allow us to treat, in a principled way, any type of probability distribution, nonlinearity and non-stationarity. They have appeared in several fields under such names as "condensation", "sequential Monte Carlo" and "survival of the fittest". In this paper, we show how we can exploit the structure of the DBN to increase the efficiency of particle filtering, using a techni...
Bayesian network models in brain functional connectivity analysis
Ide, Jaime S.; Zhang, Sheng; Chiang-shan R. Li
2013-01-01
Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and wh...
Learning genetic epistasis using Bayesian network scoring criteria
Barmada M Michael; Neapolitan Richard E; Jiang Xia; Visweswaran Shyam
2011-01-01
Abstract Background Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is Multifactor Dimensionality Reduction (MDR). Jiang et al. created a combinatorial epistasis learning method called BNMBL to learn Bayesian network (BN) ep...
A Bayesian Network Framework for Relational Shape Matching
Rangarajan, Anand; Coughlan, James; Yuille, Alan
2003-01-01
A Bayesian network formulation for relational shape matching is presented. The main advantage of the re- lational shape matching approach is the obviation of the non-rigid spatial mappings used by recent non-rigid matching approaches. The basic variables that need to be estimated in the relational shape matching objective function are the global rotation and scale and the lo- cal displacements and correspondences. The new Bethe free energy approach is used to estimate the pairwise co...
Bayesian Fusion Algorithm for Inferring Trust in Wireless Sensor Networks
Mohammad Momani; Subhash Challa; Rami Alhmouz
2010-01-01
This paper introduces a new Bayesian fusion algorithm to combine more than one trust component (data trust and communication trust) to infer the overall trust between nodes. This research work proposes that one trust component is not enough when deciding on whether or not to trust a specific node in a wireless sensor network. This paper discusses and analyses the results from the communication trust component (binary) and the data trust component (continuous) and proves that either component ...
Fracture prediction of cardiac lead medical devices using Bayesian networks
A novel Bayesian network methodology has been developed to enable the prediction of fatigue fracture of cardiac lead medical devices. The methodology integrates in-vivo device loading measurements, patient demographics, patient activity level, in-vitro fatigue strength measurements, and cumulative damage modeling techniques. Many plausible combinations of these variables can be simulated within a Bayesian network framework to generate a family of fatigue fracture survival curves, enabling sensitivity analyses and the construction of confidence bounds on reliability predictions. The method was applied to the prediction of conductor fatigue fracture near the shoulder for two market-released cardiac defibrillation leads which had different product performance histories. The case study used recently published data describing the in-vivo curvature conditions and the in-vitro fatigue strength. The prediction results from the methodology aligned well with the observed qualitative ranking of field performance, as well as the quantitative field survival from fracture. This initial success suggests that study of further extension of this method to other medical device applications is warranted. - Highlights: • A new method to simulate the fatigue experience of an implanted cardiac lead. • Fatigue strength and use conditions are incorporated within a Bayesian network. • Confidence bounds reflect the uncertainty in all input parameters. • A case study is presented using market released cardiac leads
Accommodating Uncertainty in Rangeland Condition Assessment Using Bayesian Belief Networks
Bashari, Hossein; Smith, Carl
2010-01-01
Most methods for assessing rangeland condition are deterministic. Stocktake is a local-level monitoring tool that is flexible, adaptive and easy to use by local land users for monitoring and documenting changes in grazing land condition in order to guide and support management responses accordingly. Integration of a condition assessment tool, such as Stocktake, with BBN allows for the construction of cause and effect models and allows uncertainty to be explicitly incorporated into condition a...
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
Bayesian network models for error detection in radiotherapy plans
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Recurrent Bayesian Reasoning in Probabilistic Neural Networks
Grim, Jiří; Hora, Jan
Vol. Part I. Berlin: Springer, 2007 - (Marques de Sá, J.; Alexandre, L.; Duch, W.; Mandic, D.), s. 129-138. (Lecture Notes in Computer Scinece. SL 1 - Theoretical Computer Science and General Issues. 4669). ISBN 3-540-74693-5. [International Conference on Artificial Neural Networks /17./. Porto (PT), 09.09.2007-13.09.2007] R&D Projects: GA MŠk 1M0572; GA ČR GA102/07/1594 EU Projects: European Commission(XE) 507752 - MUSCLE Grant ostatní: GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : neural networks * probabilistic approach * distribution mixtures Subject RIV: BD - Theory of Information
Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal
The scenario in a risk analysis can be defined as the propagating feature of specific initiating event which can go to a wide range of undesirable consequences. If we take various scenarios into consideration, the risk analysis becomes more complex than do without them. A lot of risk analyses have been performed to actually estimate a risk profile under both uncertain future states of hazard sources and undesirable scenarios. Unfortunately, in case of considering specific systems such as a radioactive waste disposal facility, since the behaviour of future scenarios is hardly predicted without special reasoning process, we cannot estimate their risk only with a traditional risk analysis methodology. Moreover, we believe that the sources of uncertainty at future states can be reduced pertinently by setting up dependency relationships interrelating geological, hydrological, and ecological aspects of the site with all the scenarios. It is then required current methodology of uncertainty analysis of the waste disposal facility be revisited under this belief. In order to consider the effects predicting from an evolution of environmental conditions of waste disposal facilities, this paper proposes a quantitative assessment framework integrating the inference process of Bayesian network to the traditional probabilistic risk analysis. We developed and verified an approximate probabilistic inference program for the specific Bayesian network using a bounded-variance likelihood weighting algorithm. Ultimately, specific models, including a model for uncertainty propagation of relevant parameters were developed with a comparison of variable-specific effects due to the occurrence of diverse altered evolution scenarios (AESs). After providing supporting information to get a variety of quantitative expectations about the dependency relationship between domain variables and AESs, we could connect the results of probabilistic inference from the Bayesian network with the consequence
Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent.
Wen, Dingqiao; Yu, Yun; Nakhleh, Luay
2016-05-01
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation. PMID:27144273
Modeling operational risks of the nuclear industry with Bayesian networks
Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
A DIVERSIFIED DEEP BELIEF NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
P Zhong; Gong, Z. Q.; Schönlieb, C.
2016-01-01
In recent years, researches in remote sensing demonstrated that deep architectures with multiple layers can potentially extract abstract and invariant features for better hyperspectral image classification. Since the usual real-world hyperspectral image classification task cannot provide enough training samples for a supervised deep model, such as convolutional neural networks (CNNs), this work turns to investigate the deep belief networks (DBNs), which allow unsupervised training. T...
Bayesian probabilistic network approach for managing earthquake risks of cities
Bayraktarli, Yahya; Faber, Michael
2011-01-01
This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models and...... geographical information systems. The proposed framework comprises several modules: A module on the probabilistic description of potential future earthquake shaking intensity, a module on the probabilistic assessment of spatial variability of soil liquefaction, a module on damage assessment of buildings and a...... fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated on...
Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks
Jiang, Jiuchuan; Jaeger, Manfred
2014-01-01
Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes. In...... us to express different models capturing different aspects of community detection in multiplex networks in a coherent manner, and to use a single inference mechanism for all models....... this paper we propose to use relational Bayesian networks for the specification of probabilistic network models, and develop inference techniques that solve the community detection problem based on these models. The use of relational Bayesian networks as a flexible high-level modeling framework enables...
Approach to the Correlation Discovery of Chinese Linguistic Parameters Based on Bayesian Method
WANG Wei(王玮); CAI LianHong(蔡莲红)
2003-01-01
Bayesian approach is an important method in statistics. The Bayesian belief network is a powerful knowledge representation and reasoning tool under the conditions of uncertainty.It is a graphics model that encodes probabilistic relationships among variables of interest. In this paper, an approach to Bayesian network construction is given for discovering the Chinese linguistic parameter relationship in the corpus.
Bayesian Inference of Natural Rankings in Incomplete Competition Networks
Park, Juyong
2013-01-01
Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest -- essential in determining reward or penalty -- is almost always an ambiguous task due to the incomplete nature of competition networks. Here we introduce ``Natural Ranking," a desirably unambiguous ranking method applicable to a complete (full) competition network, and formulate an analytical model based on the Bayesian formula inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in solving issues in ranking by applying to a real-world competition network of economic and social importance.
Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer.
Kahn, C. E.; Roberts, L. M.; K. Wang; Jenks, D.; Haddawy, P.
1995-01-01
Bayesian networks use the techniques of probability theory to reason under conditions of uncertainty. We investigated the use of Bayesian networks for radiological decision support. A Bayesian network for the interpretation of mammograms (MammoNet) was developed based on five patient-history features, two physical findings, and 15 mammographic features extracted by experienced radiologists. Conditional-probability data, such as sensitivity and specificity, were derived from peer-reviewed jour...
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. PMID:26945109
Identifying optimal targets of network attack by belief propagation
Mugisha, Salomon
2016-01-01
For a network formed by nodes and undirected links between pairs of nodes, the network optimal attack problem aims at deleting a minimum number of target nodes to break the network down into many small components. This problem is intrinsically related to the feedback vertex set problem that was successfully tackled by spin glass theory and an associated belief propagation-guided decimation (BPD) algorithm [H.-J. Zhou, Eur.~Phys.~J.~B 86 (2013), 455]. In the present work we apply a slightly adjusted version of the BPD algorithm to the network optimal attack problem, and demonstrate that it has much better performance than a recently proposed Collective Information algorithm [F. Morone and H. A. Makse, Nature 524 (2015), 63--68] for different types of random networks and real-world network instances. The BPD-guided attack scheme often induces an abrupt collapse of the whole network, which may make it very difficult to defend.
Ildikó Ungvári; Gábor Hullám; Péter Antal; Petra Sz Kiszel; András Gézsi; Éva Hadadi; Viktor Virág; Gergely Hajós; András Millinghoffer; Adrienne Nagy; András Kiss; Semsei, Ágnes F.; Gergely Temesi; Béla Melegh; Péter Kisfali
2012-01-01
Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called bayesian network based bayesian multilevel analysis of relevance (BN-BMLA). Th...
Bayesian-network-based safety risk analysis in construction projects
This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical
Risk Analysis of New Product Development Using Bayesian Networks
MohammadRahim Ramezanian
2012-06-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios..
Quantum-Like Bayesian Networks for Modeling Decision Making.
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669
Node Augmentation Technique in Bayesian Network Evidence Analysis and Marshaling
Keselman, Dmitry [Los Alamos National Laboratory; Tompkins, George H [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory
2010-01-01
Given a Bayesian network, sensitivity analysis is an important activity. This paper begins by describing a network augmentation technique which can simplifY the analysis. Next, we present two techniques which allow the user to determination the probability distribution of a hypothesis node under conditions of uncertain evidence; i.e. the state of an evidence node or nodes is described by a user specified probability distribution. Finally, we conclude with a discussion of three criteria for ranking evidence nodes based on their influence on a hypothesis node. All of these techniques have been used in conjunction with a commercial software package. A Bayesian network based on a directed acyclic graph (DAG) G is a graphical representation of a system of random variables that satisfies the following Markov property: any node (random variable) is independent of its non-descendants given the state of all its parents (Neapolitan, 2004). For simplicities sake, we consider only discrete variables with a finite number of states, though most of the conclusions may be generalized.
Risk Analysis of New Product Development Using Bayesian Networks
Mohammad Rahim Ramezanian
2012-01-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios.
A Bayesian Network View on Nested Effects Models
Fröhlich Holger
2009-01-01
Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.
A geometric view on learning Bayesian network structures
Studený, Milan; Vomlel, Jiří; Hemmecke, R.
2010-01-01
Roč. 51, č. 5 (2010), s. 578-586. ISSN 0888-613X. [PGM 2008] R&D Projects: GA AV ČR(CZ) IAA100750603; GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Grant ostatní: GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : learning Bayesian networks * standard imset * inclusion neighborhood * geometric neighborhood * GES algorithm Subject RIV: BA - General Mathematics Impact factor: 1.679, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/studeny-0342804.pdf
Probe Error Modeling Research Based on Bayesian Network
Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan
2015-01-01
Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.
Bayesian and neural networks for preliminary ship design
Clausen, H. B.; Lützen, Marie; Friis-Hansen, Andreas; Bjørneboe, Nanna Katrine
2001-01-01
examples, the three methods are evaluated in terms of accuracy and limitations of use. For different types of ships, the methods provide information on the relations between length, breadth, height, draft, speed, displacement, block coefficient and loading capacity. Thus, useful tools are available to the...... 000 ships is acquired and various methods for derivation of empirical relations are employed. A regression analysis is carried out to fit functions to the data. Further, the data are used to learn Bayesian and neural networks to encode the relations between the characteristics. On the basis of...
Risk-Based Operation and Maintenance Using Bayesian Networks
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2011-01-01
This paper describes how risk-based decision making can be used for maintenance planning of components exposed to degradation such as fatigue in offshore wind turbines. In fatigue models, large epistemic uncertainties are usually present. These can be reduced if monitoring results are used to...... update the models, and hereby a better basis for decision making is obtained. An application example shows how a Bayesian network model can be used as a tool for updating the model and assist in risk-based decision making....
Analysis of the Schiphol Cell Complex fire using a Bayesian belief net based model
In the night of the 26 and 27 October 2005, a fire broke out in the K-Wing of the Schiphol Cell Complex near Amsterdam. Eleven of 43 occupants of this wing died due to smoke inhalation. The Dutch Safety Board analysed the fire and released a report 1 year later. This article presents how a probabilistic model based on Bayesian networks can be used to analyse such a fire. The paper emphasises the usefulness of the model for this analysis. In additional it discusses the applicability for prioritisation of the recommendations such as those posed by the investigation board for the improvements of fire safety in special buildings. The big advantage of the model is that it can be used not only for fire analyses after accidents, but also prior to the accident, for example in the design phase of the building, to estimate the outcome of a possible fire given different possible scenarios. This contribution shows that if such a model was used before the fire occurred the number of fatalities would have not come as a surprise, since the model predicts a larger percentage of people dying than happened in the real fire.
Learning ground CP-logic theories by means of Bayesian network techniques
Meert, Wannes; Struyf, Jan; Blockeel, Hendrik
2007-01-01
Causal relationships are present in many application domains. CP-logic is a probabilistic modeling language that is especially designed to express such relationships. This paper investigates the learning of CP-theories from examples, and focusses on structure learning. The proposed approach is based on a transformation between CP-logic theories and Bayesian networks, that is, the method applies Bayesian network learning techniques to learn a CP-theory in the form of an equivalent Bayesian net...
Learning document semantic representation with hybrid deep belief network.
Yan, Yan; Yin, Xu-Cheng; Li, Sujian; Yang, Mingyuan; Hao, Hong-Wei
2015-01-01
High-level abstraction, for example, semantic representation, is vital for document classification and retrieval. However, how to learn document semantic representation is still a topic open for discussion in information retrieval and natural language processing. In this paper, we propose a new Hybrid Deep Belief Network (HDBN) which uses Deep Boltzmann Machine (DBM) on the lower layers together with Deep Belief Network (DBN) on the upper layers. The advantage of DBM is that it employs undirected connection when training weight parameters which can be used to sample the states of nodes on each layer more successfully and it is also an effective way to remove noise from the different document representation type; the DBN can enhance extract abstract of the document in depth, making the model learn sufficient semantic representation. At the same time, we explore different input strategies for semantic distributed representation. Experimental results show that our model using the word embedding instead of single word has better performance. PMID:25878657
Application of Deep Belief Networks for Precision Mechanism Quality Inspection
Sun, Jianwen; Steinecker, Alexander; Glocker, Philipp
2014-01-01
Precision mechanism is widely used for various industry applications. Quality inspection for precision mechanism is essential for manufacturers to assure the product leaving factory with expected quality. In this paper, we propose a novel automated fault detection method, named Tilear, based on a Deep Belief Network (DBN) auto-encoder. DBN is a probabilistic generative model, composed by stacked Restricted Boltzmann Machines. With its RBM-layer-wise training methods, DBN can perform fast infe...
Applying Hierarchical Bayesian Neural Network in Failure Time Prediction
Ling-Jing Kao
2012-01-01
Full Text Available With the rapid technology development and improvement, the product failure time prediction becomes an even harder task because only few failures in the product life tests are recorded. The classical statistical model relies on the asymptotic theory and cannot guarantee that the estimator has the finite sample property. To solve this problem, we apply the hierarchical Bayesian neural network (HBNN approach to predict the failure time and utilize the Gibbs sampler of Markov chain Monte Carlo (MCMC to estimate model parameters. In this proposed method, the hierarchical structure is specified to study the heterogeneity among products. Engineers can use the heterogeneity estimates to identify the causes of the quality differences and further enhance the product quality. In order to demonstrate the effectiveness of the proposed hierarchical Bayesian neural network model, the prediction performance of the proposed model is evaluated using multiple performance measurement criteria. Sensitivity analysis of the proposed model is also conducted using different number of hidden nodes and training sample sizes. The result shows that HBNN can provide not only the predictive distribution but also the heterogeneous parameter estimates for each path.
Clustering and Bayesian network for image of faces classification
Jayech, Khlifia
2012-01-01
In a content based image classification system, target images are sorted by feature similarities with respect to the query (CBIR). In this paper, we propose to use new approach combining distance tangent, k-means algorithm and Bayesian network for image classification. First, we use the technique of tangent distance to calculate several tangent spaces representing the same image. The objective is to reduce the error in the classification phase. Second, we cut the image in a whole of blocks. For each block, we compute a vector of descriptors. Then, we use K-means to cluster the low-level features including color and texture information to build a vector of labels for each image. Finally, we apply five variants of Bayesian networks classifiers (Na\\"ive Bayes, Global Tree Augmented Na\\"ive Bayes (GTAN), Global Forest Augmented Na\\"ive Bayes (GFAN), Tree Augmented Na\\"ive Bayes for each class (TAN), and Forest Augmented Na\\"ive Bayes for each class (FAN) to classify the image of faces using the vector of labels. ...
Application of Bayesian Networks to hindcast barrier island morphodynamics
Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.
2015-01-01
Prediction of coastal vulnerability is of increasing concern to policy makers, coastal managers and other stakeholders. Coastal regions and barrier islands along the Atlantic and Gulf coasts are subject to frequent, large storms, whose waves and storm surge can dramatically alter beach morphology, threaten infrastructure, and impact local economies. Given that precise forecasts of regional hazards are challenging, because of the complex interactions between processes on many scales, a range of probable geomorphic change in response to storm conditions is often more helpful than deterministic predictions. Site-specific probabilistic models of coastal change are reliable because they are formulated with observations so that local factors, of potentially high influence, are inherent in the model. The development and use of predictive tools such as Bayesian Networks in response to future storms has the potential to better inform management decisions and hazard preparation in coastal communities. We present several Bayesian Networks designed to hindcast distinct morphologic changes attributable to the Nor'Ida storm of 2009, at Fire Island, New York. Model predictions are informed with historical system behavior, initial morphologic conditions, and a parameterized treatment of wave climate.
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
Antal, P.; Fannes, G.; Timmerman, D.; Moreau, Yves; Moor, B.
2004-01-01
Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate infor...... performance of a Bayesian network for the classification of ovarian tumors from clinical data....
Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Cohn, Ido; Friedman, Nir; Kupferman, Raz
2012-01-01
Continuous-time Bayesian networks is a natural structured representation language for multicomponent stochastic processes that evolve continuously over time. Despite the compact representation, inference in such models is intractable even in relatively simple structured networks. Here we introduce a mean field variational approximation in which we use a product of inhomogeneous Markov processes to approximate a distribution over trajectories. This variational approach leads to a globally consistent distribution, which can be efficiently queried. Additionally, it provides a lower bound on the probability of observations, thus making it attractive for learning tasks. We provide the theoretical foundations for the approximation, an efficient implementation that exploits the wide range of highly optimized ordinary differential equations (ODE) solvers, experimentally explore characterizations of processes for which this approximation is suitable, and show applications to a large-scale realworld inference problem.
Gutiérrez, Jose Manuel; San Martín, Daniel; Herrera, Sixto; Santiago Cofiño, Antonio
2016-04-01
The growing availability of spatial datasets (observations, reanalysis, and regional and global climate models) demands efficient multivariate spatial modeling techniques for many problems of interest (e.g. teleconnection analysis, multi-site downscaling, etc.). Complex networks have been recently applied in this context using graphs built from pairwise correlations between the different stations (or grid boxes) forming the dataset. However, this analysis does not take into account the full dependence structure underlying the data, gien by all possible marginal and conditional dependencies among the stations, and does not allow a probabilistic analysis of the dataset. In this talk we introduce Bayesian networks as an alternative multivariate analysis and modeling data-driven technique which allows building a joint probability distribution of the stations including all relevant dependencies in the dataset. Bayesian networks is a sound machine learning technique using a graph to 1) encode the main dependencies among the variables and 2) to obtain a factorization of the joint probability distribution of the stations given by a reduced number of parameters. For a particular problem, the resulting graph provides a qualitative analysis of the spatial relationships in the dataset (alternative to complex network analysis), and the resulting model allows for a probabilistic analysis of the dataset. Bayesian networks have been widely applied in many fields, but their use in climate problems is hampered by the large number of variables (stations) involved in this field, since the complexity of the existing algorithms to learn from data the graphical structure grows nonlinearly with the number of variables. In this contribution we present a modified local learning algorithm for Bayesian networks adapted to this problem, which allows inferring the graphical structure for thousands of stations (from observations) and/or gridboxes (from model simulations) thus providing new
Direct message passing for hybrid Bayesian networks and performance analysis
Sun, Wei; Chang, K. C.
2010-04-01
Probabilistic inference for hybrid Bayesian networks, which involves both discrete and continuous variables, has been an important research topic over the recent years. This is not only because a number of efficient inference algorithms have been developed and used maturely for simple types of networks such as pure discrete model, but also for the practical needs that continuous variables are inevitable in modeling complex systems. Pearl's message passing algorithm provides a simple framework to compute posterior distribution by propagating messages between nodes and can provides exact answer for polytree models with pure discrete or continuous variables. In addition, applying Pearl's message passing to network with loops usually converges and results in good approximation. However, for hybrid model, there is a need of a general message passing algorithm between different types of variables. In this paper, we develop a method called Direct Message Passing (DMP) for exchanging messages between discrete and continuous variables. Based on Pearl's algorithm, we derive formulae to compute messages for variables in various dependence relationships encoded in conditional probability distributions. Mixture of Gaussian is used to represent continuous messages, with the number of mixture components up to the size of the joint state space of all discrete parents. For polytree Conditional Linear Gaussian (CLG) Bayesian network, DMP has the same computational requirements and can provide exact solution as the one obtained by the Junction Tree (JT) algorithm. However, while JT can only work for the CLG model, DMP can be applied for general nonlinear, non-Gaussian hybrid model to produce approximate solution using unscented transformation and loopy propagation. Furthermore, we can scale the algorithm by restricting the number of mixture components in the messages. Empirically, we found that the approximation errors are relatively small especially for nodes that are far away from
Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis
This paper deals with the use of Bayesian networks to compute system reliability. The reliability analysis problem is described and the usual methods for quantitative reliability analysis are presented within a case study. Some drawbacks that justify the use of Bayesian networks are identified. The basic concepts of the Bayesian networks application to reliability analysis are introduced and a model to compute the reliability for the case study is presented. Dempster Shafer theory to treat epistemic uncertainty in reliability analysis is then discussed and its basic concepts that can be applied thanks to the Bayesian network inference algorithm are introduced. Finally, it is shown, with a numerical example, how Bayesian networks' inference algorithms compute complex system reliability and what the Dempster Shafer theory can provide to reliability analysis
HU Zhao-yong
2005-01-01
Engineering diagnosis is essential to the operation of industrial equipment. The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesian network is a powerful tool for it. This paper utilizes the Bayesian network to represent and reason diagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologic structure based on operating conditions, possible faults and corresponding symptoms. The paper also discusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gas turbine diagnosis is constructed on a platform developed under a Visual C++ environment. It shows that the Bayesian network is a powerful model for representation and reasoning of diagnostic knowledge. The three-layer structure and the approximate algorithm are effective also.
a Simplified Bayesian Network Model Applied in Crop or Animal Disease Diagnosis
Yu, Helong; Chen, Guifen; Liu, Dayou
Bayesian network is a powerful tool to represent and deal with uncertain knowledge. There exists much uncertainty in crop or animal disease. The construction of Bayesian network need much data and knowledge. But when data is scarce, some methods should be adopted to construct an effective Bayesian network. This paper introduces a disease diagnosis model based on Bayesian network, which is two-layered and obeys noisy-or assumption. Based on the two-layered structure, the relationship between nodes is obtained by domain knowledge. Based on the noisy-model, the conditional probability table is elicited by three methods, which are parameter learning, domain expert and the existing certainty factor model. In order to implement this model, a Bayesian network tool is developed. Finally, an example about cow disease diagnosis was implemented, which proved that the model discussed in this paper is an effective tool for some simple disease diagnosis in crop or animal field.
Dynamic Bayesian Networks for Context-Aware Fall Risk Assessment
Gregory Koshmak
2014-05-01
Full Text Available Fall incidents among the elderly often occur in the home and can cause serious injuries affecting their independent living. This paper presents an approach where data from wearable sensors integrated in a smart home environment is combined using a dynamic Bayesian network. The smart home environment provides contextual data, obtained from environmental sensors, and contributes to assessing a fall risk probability. The evaluation of the developed system is performed through simulation. Each time step is represented by a single user activity and interacts with a fall sensors located on a mobile device. A posterior probability is calculated for each recognized activity or contextual information. The output of the system provides a total risk assessment of falling given a response from the fall sensor.
CEO Emotional Intelligence and Firms’ Financial Policies. Bayesian Network Method
Mohamed Ali Azouzi
2014-03-01
Full Text Available The aim of this paper is to explore the determinants of firms’ financial policies according to the manager’s psychological characteristics. More specifically, it examines the links between emotional intelligence, decision biases and the effectiveness of firms’ financial policies. The article finds that the main cause of an organization’s problems is the CEO’s emotional intelligence level. We introduce an approach based on Bayesian network techniques with a series of semi-directive interviews. The research paper represents an original approach because it characterizes behavioral corporate policy choices in emerging markets. To the best of our knowledge, this is the first study in the Tunisian context to explore this area of research. Our results show that Tunisian leaders adjust their decisions (on investments and distributions to minimize the risk of loss of compensation or reputation. They opt for decisions that minimize agency costs, transaction costs, and cognitive costs.
Construction and Experiment of Hierarchical Bayesian Network in Data Assimilation
A Hierarchical Bayesian Network Algorithm (HBN) is developed for data assimilation and tested with an instance of soil moisture assimilation from hydrological model and ground observations. In this work, data assimilation separates into data level, process level and parameter level, and conditional probability models are defined for each level. The data model mainly deals with the scale differences between multiple data, while the process model is designed to take account of non-stationary process. Soil moisture from Soil Moisture Experiment in 2003 and Variable Infiltration Capacity Model is sequentially assimilated with HBN. The result shows that the assimilation with HBN provides spatial and temporal distribution information of soil moisture and the assimilation result agrees well with the ground observations
Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model
Qi Yuan(Alan
2010-01-01
Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.
NML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks
Kontkanen Petri
2007-01-01
Full Text Available Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on the normalized maximum likelihood (NML distribution, which has several desirable theoretical properties. In the case of discrete data, straightforward computation of the NML distribution requires exponential time with respect to the sample size, since the definition involves a sum over all the possible data samples of a fixed size. In this paper, we first review some existing algorithms for efficient NML computation in the case of multinomial and naive Bayes model families. Then we proceed by extending these algorithms to more complex, tree-structured Bayesian networks.
Safety Analysis of Liquid Rocket Engine Using Bayesian Networks
WANG Hua-wei; YAN Zhi-qiang
2007-01-01
Safety analysis for liquid rocket engine has a great meaning for shortening development cycle, saving development expenditure and reducing development risk. The relationship between the structure and component of liquid rocket engine is much more complex, furthermore test data are absent in development phase. Thereby, the uncertainties exist in safety analysis for liquid rocket engine. A safety analysis model integrated with FMEA(failure mode and effect analysis)based on Bayesian networks (BN) is brought forward for liquid rocket engine, which can combine qualitative analysis with quantitative decision. The method has the advantages of fusing multi-information, saving sample amount and having high veracity. An example shows that the method is efficient.
Risk analysis of dust explosion scenarios using Bayesian networks.
Yuan, Zhi; Khakzad, Nima; Khan, Faisal; Amyotte, Paul
2015-02-01
In this study, a methodology has been proposed for risk analysis of dust explosion scenarios based on Bayesian network. Our methodology also benefits from a bow-tie diagram to better represent the logical relationships existing among contributing factors and consequences of dust explosions. In this study, the risks of dust explosion scenarios are evaluated, taking into account common cause failures and dependencies among root events and possible consequences. Using a diagnostic analysis, dust particle properties, oxygen concentration, and safety training of staff are identified as the most critical root events leading to dust explosions. The probability adaptation concept is also used for sequential updating and thus learning from past dust explosion accidents, which is of great importance in dynamic risk assessment and management. We also apply the proposed methodology to a case study to model dust explosion scenarios, to estimate the envisaged risks, and to identify the vulnerable parts of the system that need additional safety measures. PMID:25264172
Designing and testing inflationary models with Bayesian networks
Price, Layne C; Frazer, Jonathan; Easther, Richard
2015-01-01
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Designing and testing inflationary models with Bayesian networks
Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics
2015-11-15
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Development of a cyber security risk model using Bayesian networks
Cyber security is an emerging safety issue in the nuclear industry, especially in the instrumentation and control (I and C) field. To address the cyber security issue systematically, a model that can be used for cyber security evaluation is required. In this work, a cyber security risk model based on a Bayesian network is suggested for evaluating cyber security for nuclear facilities in an integrated manner. The suggested model enables the evaluation of both the procedural and technical aspects of cyber security, which are related to compliance with regulatory guides and system architectures, respectively. The activity-quality analysis model was developed to evaluate how well people and/or organizations comply with the regulatory guidance associated with cyber security. The architecture analysis model was created to evaluate vulnerabilities and mitigation measures with respect to their effect on cyber security. The two models are integrated into a single model, which is called the cyber security risk model, so that cyber security can be evaluated from procedural and technical viewpoints at the same time. The model was applied to evaluate the cyber security risk of the reactor protection system (RPS) of a research reactor and to demonstrate its usefulness and feasibility. - Highlights: • We developed the cyber security risk model can be find the weak point of cyber security integrated two cyber analysis models by using Bayesian Network. • One is the activity-quality model signifies how people and/or organization comply with the cyber security regulatory guide. • Other is the architecture model represents the probability of cyber-attack on RPS architecture. • The cyber security risk model can provide evidence that is able to determine the key element for cyber security for RPS of a research reactor
Bias, Belief and Consensus: Collective opinion formation on fluctuating networks
Ngampruetikorn, V
2015-01-01
With the advent of online networks, societies are substantially more connected with individual members able to easily modify and maintain their own social links. Here, we show that active network maintenance exposes agents to confirmation bias, the tendency to confirm one's beliefs, and we explore how this affects collective opinion formation. We introduce a model of binary opinion dynamics on a complex network with fast, stochastic rewiring and show that confirmation bias induces a segregation of individuals with different opinions. We use the dynamics of global opinion to generally categorize opinion update rules and find that confirmation bias always stabilizes the consensus state. Finally, we show that the time to reach consensus has a non-monotonic dependence on the magnitude of the bias, suggesting a novel avenue for large-scale opinion engineering.
The scenario in a risk analysis can be defined as the propagating feature of specific initiating event which can go to a wide range of undesirable consequences. If one takes various scenarios into consideration, the risk analysis becomes more complex than do without them. A lot of risk analyses have been performed to actually estimate a risk profile under both uncertain future states of hazard sources and undesirable scenarios. Unfortunately, in case of considering some stochastic passive systems such as a radioactive waste disposal facility, since the behaviour of future scenarios is hardly predicted without special reasoning process, we cannot estimate their risk only with a traditional risk analysis methodology. Moreover, it is believed that the sources of uncertainty at future states can be reduced pertinently by setting up dependency relationships interrelating geological, hydrological, and ecological aspects of the site with all the scenarios. It is then required current methodology of uncertainty analysis of the waste disposal facility be revisited under this belief. In order to consider the effects predicting from an evolution of environmental conditions of waste disposal facilities, this study proposes a quantitative assessment framework integrating the inference process of Bayesian network to the traditional probabilistic risk analysis. In this study an approximate probabilistic inference program for the specific Bayesian network developed and verified using a bounded-variance likelihood weighting algorithm. Ultimately, specific models, including a Monte-Carlo model for uncertainty propagation of relevant parameters, were developed with a comparison of variable-specific effects due to the occurrence of diverse altered evolution scenarios (AESs). After providing supporting information to get a variety of quantitative expectations about the dependency relationship between domain variables and AESs, this study could connect the results of probabilistic
E-commerce System Security Assessment based on Bayesian Network Algorithm Research
Ting Li; Xin Li
2013-01-01
Evaluation of e-commerce network security is based on assessment method Bayesian networks, and it first defines the vulnerability status of e-commerce system evaluation index and the vulnerability of the state model of e-commerce systems, and after the principle of the Bayesian network reliability of e-commerce system and the criticality of the vulnerabilities were analyzed, experiments show that the change method is a good evaluation of the security of e-commerce systems.
Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network
Bin Suo; Ying Yan
2013-01-01
Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much un...
Identifying optimal targets of network attack by belief propagation
Mugisha, Salomon; Zhou, Hai-Jun
2016-07-01
For a network formed by nodes and undirected links between pairs of nodes, the network optimal attack problem aims at deleting a minimum number of target nodes to break the network down into many small components. This problem is intrinsically related to the feedback vertex set problem that was successfully tackled by spin-glass theory and an associated belief propagation-guided decimation (BPD) algorithm [Zhou, Eur. Phys. J. B 86, 455 (2013), 10.1140/epjb/e2013-40690-1]. In the present work we apply the BPD algorithm (which has approximately linear time complexity) to the network optimal attack problem and demonstrate that it has much better performance than a recently proposed collective information algorithm [Morone and Makse, Nature 524, 65 (2015), 10.1038/nature14604] for different types of random networks and real-world network instances. The BPD-guided attack scheme often induces an abrupt collapse of the whole network, which may make it very difficult to defend.
Exact Structure Discovery in Bayesian Networks with Less Space
Parviainen, Pekka
2012-01-01
The fastest known exact algorithms for scorebased structure discovery in Bayesian networks on n nodes run in time and space 2nnO(1). The usage of these algorithms is limited to networks on at most around 25 nodes mainly due to the space requirement. Here, we study space-time tradeoffs for finding an optimal network structure. When little space is available, we apply the Gurevich-Shelah recurrence-originally proposed for the Hamiltonian path problem-and obtain time 22n-snO(1) in space 2snO(1) for any s = n/2, n/4, n/8, . . .; we assume the indegree of each node is bounded by a constant. For the more practical setting with moderate amounts of space, we present a novel scheme. It yields running time 2n(3/2)pnO(1) in space 2n(3/4)pnO(1) for any p = 0, 1, . . ., n/2; these bounds hold as long as the indegrees are at most 0.238n. Furthermore, the latter scheme allows easy and efficient parallelization beyond previous algorithms. We also explore empirically the potential of the presented techniques.
Bayesian Fusion Algorithm for Inferring Trust in Wireless Sensor Networks
Mohammad Momani
2010-07-01
Full Text Available This paper introduces a new Bayesian fusion algorithm to combine more than one trust component (data trust and communication trust to infer the overall trust between nodes. This research work proposes that one trust component is not enough when deciding on whether or not to trust a specific node in a wireless sensor network. This paper discusses and analyses the results from the communication trust component (binary and the data trust component (continuous and proves that either component by itself, can mislead the network and eventually cause a total breakdown of the network. As a result of this, new algorithms are needed to combine more than one trust component to infer the overall trust. The proposed algorithm is simple and generic as it allows trust components to be added and deleted easily. Simulation results demonstrate that a node is highly trustworthy provided that both trust components simultaneously confirm its trustworthiness and conversely, a node is highly untrustworthy if its untrustworthiness is asserted by both components.
Construction of gene regulatory networks using biclustering and bayesian networks
Alakwaa Fadhl M; Solouma Nahed H; Kadah Yasser M
2011-01-01
Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA mi...
As part of the 'Probabilistic Safety Assessment of safety grade digital systems used in Nuclear Power plants' research, measures and methodologies applicable to quantitative reliability assessment of safety critical software were surveyed. Among the techniques proposed in the literature we selected those which are in use currently and investigated their limitations in quantitative reliability assessment. One promising methodology from the survey is Bayesian Belief Nets (BBN) which has a formalism and can combine various disparate evidence relevant to reliability into final decision under uncertainty. Thus we analyzed BBN and its application cases in digital systems assessment area and finally studied the possibility of its application to the quantitative reliability assessment of safety critical software
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Construction of gene regulatory networks using biclustering and bayesian networks
Alakwaa Fadhl M
2011-10-01
Full Text Available Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling. Results In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method. Conclusions Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.
Huang Yufei
2007-01-01
Full Text Available We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.
Isabel Tienda Luna
2007-06-01
Full Text Available We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.
Making Supply Chains Resilient to Floods Using a Bayesian Network
Haraguchi, M.
2015-12-01
Natural hazards distress the global economy by disrupting the interconnected supply chain networks. Manufacturing companies have created cost-efficient supply chains by reducing inventories, streamlining logistics and limiting the number of suppliers. As a result, today's supply chains are profoundly susceptible to systemic risks. In Thailand, for example, the GDP growth rate declined by 76 % in 2011 due to prolonged flooding. Thailand incurred economic damage including the loss of USD 46.5 billion, approximately 70% of which was caused by major supply chain disruptions in the manufacturing sector. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and Hurricane Sandy in 2012. This study proposes a methodology for modeling supply chain disruptions using a Bayesian network analysis (BNA) to estimate expected values of countermeasures of floods, such as inventory management, supplier management and hard infrastructure management. We first performed a spatio-temporal correlation analysis between floods and extreme precipitation data for the last 100 years at a global scale. Then we used a BNA to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains and market demands. We also included decision variables of countermeasures that would mitigate potential losses caused by supply chain disruptions. Finally, we conducted a cost-benefit analysis by estimating the expected values of these potential countermeasures while conducting a sensitivity analysis. The methodology was applied to supply chain disruptions caused by the 2011 Thailand floods. Our study demonstrates desirable typical data requirements for the analysis, such as anonymized supplier network data (i.e. critical dependencies, vulnerability information of suppliers) and sourcing data(i.e. locations of suppliers, and production rates and
Bashar, Abul; Parr, Gerard; McClean, Sally; Scotney, Bryan; Nauck, Detlef
The ever-evolving nature of telecommunication networks has put enormous pressure on contemporary Network Management Systems (NMSs) to come up with improved functionalities for efficient monitoring, control and management. In such a context, the rapid deployments of Next Generation Networks (NGN) and their management requires intelligent, autonomic and resilient mechanisms to guarantee Quality of Service (QoS) to the end users and at the same time to maximize revenue for the service/network providers. We present a framework for evaluating a Bayesian Networks (BN) based Decision Support System (DSS) for assisting and improving the performance of a Simple Network Management Protocol (SNMP) based NMS. More specifically, we describe our methodology through a case study which implements the function of Call Admission Control (CAC) in a multi-class video conferencing service scenario. Simulation results are presented for a proof of concept, followed by a critical analysis of our proposed approach and its application.